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•1. Introduction

In [2] Atiyah investigates a certain invariant of spin structures dating back
originally to Riemann. This invariant is defined as the mod 2 dimension of a certain
space of holomorphic sections associated to the spin structure, and does not depend
on the complex structures involved. The original motivation of this paper was to give
a simple topological definition of the invariant. It was found in the process that there
is a natural lifting of mod 2 homology classes on the surface to mod 2 classes in its
unit tangent bundle. This produced in its wake a natural correspondence between
spin structures on the surface and quadratic forms (of symplectic type) on Hx. The
Atiyah invariant of a spin structure can then be defined as the Arf invariant of the
corresponding quadratic form.

2. Preliminaries

Let M be a smooth closed orientable surface of genus g. We use the following
notations and abbreviations.

SCC means "simple closed curve". If a, /? are SCCs, then a ~ /? means that the
two curves are homologous mod 2.

Hx, H1 mean H1(M,Z2), H1(M,Z2) respectively. The intersection form on H1

(written as a dot product) is symplectic, that is, x • x = 0 for all x. A basis ahbi
(i = 1,..., g) of Hx is symplectic if a,- • a} = b( • bj = 0, a{ • b} = 0 if i j= j , and
arbt = l.

The dual pairing of Hx and H1 is denoted <a,x> for ae H1 ,xe Hx. The
symplectic automorphism group of Hx is denoted by Sp; it is a finite group
isomorphic to Sp(g, Z2). The dual action of he Sp on H1 will be written on the right,
so that ct(gh) = {ccg)h for cteH1 and g,heSp. We have by definition
<a/t, x> = <a, hx}. If / is a homeomorphism of M, then the induced map on Hx is
denoted by /* .

We write UM for the unit tangent bundle of M and Hlt H1 for HX{UM, Z2) and
H1(UM,Z2) respectively. An element of Hx can be represented as a smooth closed
curve in UM or equivalently by a. framed closed curve in M, by which we shall mean
a smooth closed curve in M and a smooth vector field along it (the rest of a true
frame follows from this data and an orientation of M). If i: Sl -> UM and
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p: IJM -> M are the fiber inclusion and projection, then we have exact sequences

i* _ p*
0 > Z2 > H l - ^ H1 • 0

Hl - ^ — Z , >0.
, P*

The generator of Z2 in the first sequence will be denoted by z; it is the "fiber class",
and may be represented, for example, by a small circle in M with framing given by its
tangent vector field. The generator of Z2 in the second sequence we denote simply by
1 e Z2 . This sequence allows us to identify Z/1 with the subspace of Z?1 consisting of
all d such that i*{S) = 0.

A spin structure on M is a class t, e Hl such that i*(£) = 1, or alternatively, such
that <£, z> = 1 (see [2; p. 55] or [3]). Intuitively we think of ^ as a function assigning
a number mod 2 to each framed curve of M, subject to the usual homological
conditions and also that the boundary of a disc in M, tangentially framed, receives a
one. Note that H1 is the disjoint union of H1 c Hl and the set <D of spin structures.

3. Lifting cycles on M to UM

Let a be a smooth oriented SCC on M. There is an obvious lifting of a to UM
given by framing it with its unit tangent vector field; we denote this lifting by a.If a is
not oriented, then we have two such liftings possible, but note that they are
homotopic: we simply rotate all the vectors of one framing uniformly through 180°
to get the other framing. Thus the mod 2 homology class of the lifting depends only
on a and not on its orientation.

THEOREM 1A. Let {a,} (i = l,...m), {/?,} (j = l , . . .n) be two collections of
(smooth) SCCs in M, the curves of each collection being mutually disjoint. If

m n

I « . * Z Pi
1 = 1 j=\

in M, then

m C/M.

Proof. Since £a,- and ^^ - are homologous, we may pass from {a,} to {/?,} by a
sequence of the following three operations:

(a) smooth isotopies of the collection;

(b) adding or removing the boundary of a smooth 2-disc which is disjoint from
the collection;
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(c) a band change, defined as follows: let u, v be disjoint arcs of the collection
(they may lie in the same component) and suppose that w is a smooth arc,
beginning at an interior point of u and perpendicular to it there, and ending
likewise at v, being otherwise disjoint from all the curves of the collection.
See Figure la. Then the band change along w is the result of replacing u, v
by the smooth arcs x, y of Figure lb.

Fig. l

To prove the theorem, it suffices then to show only that it holds when
related to {a,} by a single move of the above types.

is

(a) A smooth isotopy changes neither the number of components m nor the
homology classes of a,-.

(b) Adjoining or removing the boundary of a disc 3D changes m by 1 mod 2,

and to Yfii adds 3D = z mod 2, so the total change is again zero.

(c) If the band change is as illustrated in Figure 1, we need to distinguish two
cases. First we define the notion of parallel and antiparallel orientations of
u, v with respect to the arc w. This is defined pictorially in Figure 2.

PARALLEL
Fig. 2

ANTIPARALLEL

Case 1. u and v are in the same component and acquire parallel orientations
from an orientation of this component. Then Figure 3 shows a sequence of
homologies in UM converting u, v to the band changed result x, y of Figure 3f.

(a)

The change from (c) to (d) is got by reversing the orientation of the component
through B, which does not alter the lifting homologically. Thus no change has
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occurred in the sum of the tangential liftings. But note that x, y lie in the same
component, as did u, v. Hence no change occurs in the number of components, and
the theorem holds in this case.

Case 2. Either u and v lie in distinct components or are in the same component
but acquire antiparallel orientations from it. In the former, we choose antiparallel
orientations for u and v, so in either case we have the situation depicted in Figure 4a.

Fig. 4

The complete figure shows a sequence of homologies in UM whose net result is to
band change u, v to x, y and add a copy of z. In other words,

;= I

has changed by the addition of z. But note that u, v are in the same component if and
only if x, y are not so, and hence mz has also changed by z mod 2. There is, again, no
total change, and the proof is complete.

COROLLARY. Let a, fi be smooth SCCs in M and suppose that a ~ /? in M; then
a ~ l in UM.

Let now a be any homology class in Ht. We represent it by a collection of
disjoint smooth SCCs {aj (i = 1,..., m) and define ae Ht to be the homology class
of

i = 1

The theorem shows that this depends on a alone; we call it the canonical lifting of a.
Note in particular that 0 = 0: for if we represent OeW, by 3D, then
0 = dD+z = 2z = 0.

THEOREM IB. If a,be Hx then (a + b) = a + b + {a- b)z.

Remark. This formula makes precise the manner in which the canonical lifting
fails to be a homomorphism.

Proof. Suppose first that a • b = 0. Then we can represent a, b by disjoint
smooth SCCs a, j9. Choose a disc intersecting a, /? in arcs u, v as in Figure 4 and
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orient a, /? as shown there. Then in Figure 4d, x and y lie in the same component,
and its homology class is a + b. Hence we have the equality

that is,

(a + b) + z = a + b = a+z+b+z

(a + b) = d + B = d + B+(a • b)z .

Suppose on the other hand that a • b = 1. in this case we may assume a, jS to be
SCCs which intersect (transversely) in just one point, as in Figure 5a, and then
Figure 5 shows a sequence of homologies in UM connecting a + b to y.

Now the homology class of y is a + b, so we get

(a + b) = a + b

that is,
(a + b) = d + B+z = d + B+(a-b)z,

which is what we required to prove.

THEOREM 1C. / / / is a diffeomorphism of M inducing f* on Hx and Hx, then
(f*a) = f*(d).

Proof. If a is a smooth SCC representing a, then /(a) represents f*(a). But
/(a) is clearly the same as /(a), so f*(a) = f*(a). We get the required result from this

T)ylidding 7T6 both sides and noting that f*(z) = z for any / .

LEMMA 1. Suppose that f is a diffeomorphism of M which acts trivially on Hx.
Then it also acts trivially on Hl} H1 and O.

Proof. We need only show that / * = 1 on H1. Let {ej be a basis of Hx. Then e,
and z generate HY (in fact, they actually form a basis). To see this, let x e / ^ and let
its projection to H1 be x. Then x = £m,e, and hence x —^m,e, projects to 0 in H1?

which implies it is mz for some meZ2.
Now by the hypothesis and Theorem 1C, we have /*(e,) = f*(e{) = et. Also

f*(z) = z; this implies therf that / * = 1.

THEOREM 2. The group Sp acts in a natural way on Hx by the formula
h(x) = h(x), h(z) = z for he Sp. This action lifts that of Sp on Hx.
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Proof. We may lift h to a diffeomorphism / of M such that / * = h. By the
preceding lemma, the action of/* on H^ is independent of the lifting / and hence we
may define the action of h to be that of /* . But then

This completes the proof.

We likewise get an induced action of Sp on H1 and O, written on the right as
usual. The Sp-action on <X> is an afiine one, and it emphasizes the distinction between
H1 and its affine space O: for whereas 0 e Hl is fixed by all h e Sp, it is easy to see
that, for g ^ 2, no spin structure of M is fixed by every h.

4. Spin structures and quadratic forms on H{

By a quadratic form on the symplectic space HY, we shall mean a function
co: Hl -* Z2 such that

o){a + b) — co{a) + co{b) + a- b .

Thus, a quadratic form in our restricted sense is just one whose associated bilinear
form is the existing symplectic form on H{. Note in particular that co(0) = 0.

LEMMA 2. Let col,co2 be two quadratic forms on Hi; then wl—co2 is a
homomorphism Hi^Z1. Conversely, if co is quadratic and 0:Hl->Z2 is a
homomorphism then co + 9 is quadratic.

Proof. Indeed,

(o^ — co2){a + b) = co^a + b) — co2(a + b)

= coy{a) + cax(b) + a • b — co2(a) — co2(b) — a • b

= (eo1- co2){a) + (oil - co2)(b),

showing cox —co2 to be a homomorphism. The converse is proved similarly.

This lemma prompts the following definitions: if L is an abelian group, by an
affine space over L we mean a transitive, free L-space, that is, a set K equipped with
an "addition" + : L x K -> K satisfying:

(a) Xx +{X2 + k) = (At + X2) + k for Xt eL,keK;

(b) given any kl} k2 eK, there is a unique ksL such that k2 = A + /cj.

Thus K is practically like L, but with the distinction that it lacks a natural base
point. The standard example for K is a non-trivial coset of L in some larger group
A => L. For example, the set of spin structures O, being a coset of Hl in H1, is an
affine space over H1: we may "add" cohomology classes of M to spin structures.
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Since the homomorphisms from Hl to Z2 are just the elements of//1, Lemma 2 tells
us that the set Q of quadratic forms is also an affine space over Hl.

Two affine spaces K{, K2 over L are affinely equivalent if there is an / : Kl -* K2

such that /(/l + Zcj) = X + fik^tor all /q e Kl5 A e L. This implies immediately t h a t /
is one to one and onto, and it is easy to see that any two affine spaces over L are
equivalent. A related notion is an (affine) automorphism of K: this is a map / : K -» K
such that f(X + k) = fo(X) + f(k), where f0 is some (necessarily unique) automorphism
of L. Again, / will be bijective, and the set of such / forms a group. If / is a
diffeomorphism of M then it induces a diffeomorphism of UM and hence
automorphisms / * of Hv and Hl (the action on the latter being written on the right).
Since / * takes Hl c H l into itself, we have O/* = O, and / * is clearly an affine
automorphism of <J>.

If now he Sp and co e Q, we define coh by a>h(x) = w(hx). It is easy to see that o)h
is quadratic on H{ and that Sp acts, in this way, affinely on Q. Since O is also an
affine space over Hl on which Sp acts affinely, it is affinely equivalent to Q over Hl,
and we are led to ask if they are equivalent in such a way as to preserve the
Sp-action. The answer to this question is yes, as we see from the following
considerations.

Let £e<D. We define a function a>, on Hy by the formula co^a) = <£,a> for
a € Hv. This is defined, since de Hv and £, e Hl. We have then:

a-b (since <£,z> = 1)

= co =(a) + aĵ (6) + a- b .

Thus co,* is indeed quadratic, and the assignment ^ -^ co^ gives us a function

THEOREM 3A. The function Q is an affine equivalence, and hence a bijection of
<D toQ.

Proof. If 3 e Hl and £ e <t>, then Q(c; + <5) = cos=

But <5, a) = <<5, a>, so we get

coi+s{a) =

for all a e / / . We may thus write Q(€ + 5) = a)<+d = CD^ + 6 = Q{Q + $, which
completes the proof.

THEOREM 3B. The function Q commutes with the action of Sp on O, Q, that is,
= (QZ)hforZe<l>,heSp.

Proof c o » = <#i, a> = <d;, /i5> = <£M> = co,(M = (co.hXa).
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As pointed out at the end of the previous section, no ^ e <I> is fixed by all heSp.
More precisely, we have:

COROLLARY. Let ^ e O and co = co^. The subgroup of Spfixing £ is precisely the
orthogonal group O^ofco.

Proof, g eSp fixes £ if and only if it fixes a>.

5. AtiyaKs invariant on spin structures

If L is a vector space over a field F and K is affine over L, we define f.K^Fto
be linear if g(X + k) = go{X)+g(k) for some (necessarily unique) linear functional
g0: L -* F. Polynomial functions on K are defined in the obvious way as sums of
products of linear ones. If x e H^ then xeHx gives a linear function on Hl defined
by a -> <a, x> for oteH1. Restricted to O this gives us a linear function which we
denote by x. Let now ah b{{i = 1,..., g) be a symplectic basis of H^ and define the
quadratic function a on O by

LEMMA 3. a(^) is the Arf invariant ofco^.

Proof. We have

COROLLARY 1. The function a is independent of the choice of symplectic basis and
is also invariant under the action of Sp on O.

Proof. This follows from the same statements for the Arf invariant on fi (proved
by Arf in [1]) and the fact that the correspondence Q commutes with the Sp action.

COROLLARY 2. Two spin structures are in the same Sp-orbit if and only if

Proof. This is proved in the same way as the first corollary.

In [2], Atiyah constructs a Z2 invariant of spin structures on a surface. This
invariant dates back to Riemann, who discovered it via theta functions. Atiyah
defines it thus: choose a complex structure on M; the spin structure £, determines a
holomorphic line bundle over M, which has then a finite dimensional vector space of
holomorphic sections. This dimension, mod 2, is independent of the complex
structure chosen and thus depends only on £,. Note that although the invariant is
defined by analytic data, it is a diffeomorphism invariant and hence it should be
possible to compute it directly from topological data. We have then:

THEOREM 4. The Atiyah invariant of t, is just a(^).
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Proof. By its definition it is clear that Atiyah's invariant is invariant under the
action of diffeomorphisms of M, that is, under the action of Sp on <X>, and hence it is
constant on each of the (two) orbits of Sp in 0 . Now by Atiyah's Theorem 3 (see [2;
pp. 49, 58]), his invariant is zero 2ff~1(2ff+1) times and one 29~1(2</-1) times, that is,
0 on the larger orbit and 1 on the smaller. But the Arf invariant satisfies this same
statement on Q (Proof. a> e Q is uniquely determined by its values a,, /?,• on a
symplectic basis ah bit and its Arf invariant is then

£«,/?,-•

The number of zeros of this expression is well known to be 29~1(29 + 1)). Hence a
satisfies the same statement on O, which implies that it is equal to Atiyah's invariant.
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