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1 Introduction

In their initial work ([4], [5], [1]), Michel André and Daniel Quillen described
a cohomology theory applicable in very general algebraic categories. The
term “Quillen,” or “André-Quillen” cohomology has a uniform meaning. In
contrast, the notion of Hochschild cohomology, while making appearances
in diverse algebraic settings, has not been given such a uniform treatment.
In this paper I offer a proposal for a definition of Hochschild cohomology in
Quillen’s context.

There are close relations between the two forms of cohomology. Quillen
cohomology is intrinsically simplicial—typically one forms resolutions in a
nonadditive category—and is correspondingly hard to compute. Hochschild
cohomology, in contrast, will be defined as the derived functors of an additive
functor—a form of “global sections”—on an abelian category, and should be
easier to compute. There is a map from Hochschild to Quillen cohomology,
and a spectral sequence having it as an edge homomorphism. The spectral
sequence gives obstructions to the map being an isomorphism. The van-
ishing of the obstruction groups is a “smoothness” condition. We offer an
account of observations of Quillen which amount to the assertion that in the
category of groups every object is smooth, and in the category of associative
R algebras an object A is smooth provided that TorRq (A,A) = 0 for q > 0.
This observation accounts for the fact that Quillen cohomology offers noth-
ing new in those contexts. The proposed definition of Hochschild cohomology
actually gives Shukla cohomology in the case of associative R algebras, and
(up to the usual shift in dimension, about which we will have more to say) it
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gives ordinary group cohomology when applied to groups. André and Quillen
proved that under appropriate finiteness conditions this general condition of
smoothness coincides in commutative algebras with the usual one.

I also consider a couple of more novel examples: categories with fixed
object set (following work of Baues and Dwyer), and “racks” (recovering
work of Andru.. and Grana).

2 Definitions

Let C be an “algebraic category,” i.e. a cocomplete category with a set of
small projective generators. Quillen observes that for any object C ∈ C, the
category Ab(C/C) is abelian, and that there is a left adjoint to the forgetful
functor,

AbC : C/C → Ab(C/C).

He also exhibits a model category structure on the category of simplicial
objects sC/C.

Let X• → C be a cofibrant replacement for C in C (or, equivalently, of
1 : C → C in C/C). The Quillen homology object or “cotangent complex”
is

LC = AbCX• ∈ Ho (sAb(C/C)).

Its homotopy is the Quillen homology

HQs(C) = πs(LC).

If M ∈ Ab(C/C), the Quillen cohomology of C with coefficients in M is

HQ∗(C;M) = π∗(HomC/C(X•,M)).

This cohomology can be rewritten as

HQ∗(C;M) = π∗(HomAb(C/C)(AbCX•,M)).

This expresses the Quillen cohomology as the derived functors of a composite:

B 7→ AbCB 7→ HomAb(C/C)(AbCB,M)

C/C → Ab(C/C)→ Ab(Sets)

2



The first functor is a left adjoint, and we receive a “universal coefficients”
spectral sequence

Est
2 = ExtsAb(C/C)(HQt(C),M) =⇒ HQs+t(C;M).

Regarded as a functor on Ab(C/C),

HomC/C(C,M) = HomAb(C/C)(AbCC,M)

could be called the group of “global sections.” I would like to call its derived
functors the Hochschild cohomology of C with coefficients in M :

HH∗(C;M) = Ext∗Ab(C/C)(AbCC,M)

The edge homomorphism in the universal coefficients spectral sequence
is a natural map

HH∗(C;M)→ HQ∗(C;M) (1)

and the spectral sequence gives obstructions to this map being an isomor-
phism. The initial terms give

HH0(C;M)
∼=−→HQ0(C;M)

and the exact sequence

0→ HH1(C;M)→ HQ1(C;M)→ HomAb(C/C)(HQ1(C),M)→

→ HH2(C;M)→ HQ2(C;M)

More generally, if the Quillen homology object LC is discrete, then the
map (1) is an isomorphism. In this case we will call the object C smooth. To
be provocative we will also call C étale if LC = 0.

The next couple of sections will evoke fairly standard arguments for the
first two clauses in the following theorem.

Theorem (Quillen, André). (1) If C is the category of groups, every
object is smooth, but only the trivial group is étale. (2) If C is the category
of associative algebras over a commutative ring R, every object A such that

TorRq (A,A) = 0 for q > 0
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is smooth, and if in addition µ : A ⊗R A → A is an isomorphism then A
is étale. (3) If C is the category of commutative algebras over a Noethe-
rian commutative ring R, then a finitely generated R algebra C is smooth
(resp. étale) if and only if it is smooth (resp. étale) in the usual sense of
commutative algebra.

We end this section with a comment about why one focuses on AbAA
rather than the more general AbAB for an object p : B → A over A. The
composition functor C/B → C/A has a right adjoint p∗ : C/A → C/B,
sending C → A to B ×A C → B. This right adjoint lifts to a functor p∗ :
Ab(C/A)→ Ab(C/B), which is right adjoint to a functor p∗ : Ab(C/B)→
Ab(C/A). Since the diagram

C/B
p∗←− C/A

↑ ↑
Ab(C/B)

p∗←− Ab(C/A)

commutes, the diagram of left adjoints commutes as well, showing that there
is an isomorphism natural in C → B

p∗AbBC = AbAC.

In particular, AbAB = p∗AbBB.
We will identify the functor p∗ in examples below.

further comments

Lemma. If A is an additive category, every object of A has a unique unital
product, namely the abelian group structure with unit given by the unique
map from the terminal object and product given by the fold map A

∐
A→ A

composed with the inverse of the isomorphism A
∐
A→ A× A.

Lemma. If A is abelian and A ∈ A, then the functor sending an object
p : B → A of A/A to ker p ∈ A establishes an equivalence from the category
of sectioned objects over A to the category A.

3 Groups

Let C = Gp. We’ll recall what a group object over G ∈ Gp turns out to be.
It’s a group H and a homomorphism p : H → G; a “unit” homomorphism
e : G → H such that pe = 1G; and more. Already we can say that we have
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a split extension. Let K = ker p. The extension is determined by the action
of G on K determined by e:—G × K → H by (g, k) 7→ k · eg is a group
isomorphism, if we put the group structure

(g, k)(g′, k′) = (gg′, k · gk′)

on the product, where gk′ = (eg)k′(eg)−1. Write G×̃K for this group.
Now for the group structure: this is a group homomorphism

µ : G×K ×K = (G×K)×G (G×K)→ G×K.

Being a homomorphism says that

µ(g, k, k′)µ(g1, k1, k
′
1) = µ(gg1, k · gk1, k′ · gk′1).

µ is supposed to define on G×K the structure of a group over G; so it should
be unital:

µ(g, 1, k) = (g, k) = µ(g, k, 1).

Thus

µ(g, k, k′1) = µ(1, k, 1) · µ(g, 1, k′1) = (1, k) · (g, k′1) = (g, kk′1).

This says that the map K → p−1(g) sending k to k · e(g) = e(g) ·k is a group
isomorphism. We see that the group structure map µ is determined by the
ordinary group product on K, and is independent of the action of G. The
group structure is abelian provided K is abelian.

Thus: an abelian group object in the category of groups over G is precisely
a split extension of G with abelian kernel. That is, for any group G, the
category of abelian groups over G is simply the category of ZG modules.

Under this identification, the abelianization AbGH of an object H → G in
Gp/G is the ZG module which is characterized by the existence of a natural
isomorphism

MapG(H,G×̃M) ∼= HomZG(AbGH,M)

A map H → G×̃M over G is of the form h 7→ (ph, ϕh) where ϕ(hh′) =
ϕh + p(h)ϕh′; that is, it’s the same thing as a crossed homomorphism H →
M , ϕ ∈ Z1(H;M). This means that ϕ is a ZH module homomorphism
ϕ : ZH[H] → M with the property that ϕ([hh′] − [h] − p(h)[h′]) = 0. Thus
AbGH = ZH[H]/([hh′]− [h]− p(h)[h′]), which implies that

AbGH = ZG⊗ZH IH .
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where
IH = ker (ε : ZH → Z).

The abelianization comes equipped with a map from H over G, which trans-
lates to the universal crossed homomorphism to a G module, d : H →
ZG⊗ZH IH , sending h 7→ 1⊗ (h− 1).

The functor p∗ : Ab(Gp/G)→ Ab(Gp/H) simply regards a ZG module
as a ZH module via the map p : ZH → ZG. Its left adjoint is given by
p∗M = ZG⊗ZH M , and the isomorphism AbGH = p∗AbHH is in view.

Lemma 3.1 If X is a free group then IZX is a free module over ZX. If X
is the free group on the set S, then IZX is the free ZX module on the set
{s− 1 : s ∈ S}.

Proof. We are claiming that the ZX module IX freely generated by the
restriction to S of d : X → IX . For any ZX module M , the map d induces
Z1(X;M) = HomZX(IX ,M) → Map(S,M), which we must see is bijective.
Certainly, any crossed homomorphism is determined by its restriction to S.
On the other hand, knowing ϕ|S determines ϕ on the set S−1 of inverses of
elements of S: ϕ(1) = 0 implies that

ϕ(s−1) = −s−1ϕ(s).

Then the only possible choice of value of ϕ on the product x1 · · ·xn, where
xi ∈ S

∐
S−1, is

ϕ(x1 · · ·xn) = ϕ(x1) + x1ϕ(x2) + · · ·+ x1 · · ·xn−1ϕ(xn).

This is well-defined, since it is compatible with the cancellations ss−1 = 1
and s−1s = 1, and it does define a crossed homorphism, as you can check by
splitting x1 · · ·xn into a product and using the formula. qed

Proposition 3.2 If X• → H is a cofibrant replacement and H → G is a
monomorphism, then

ZG⊗ZX• IZX• → ZG⊗ZH IZH

is a weak equivalence. In particular,

LG
∼−→AbGG

and G is smooth as a group.
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Proof. In
ZG⊗L

ZX• IZX•
∼−→ ZG⊗ZX• IZX•

↓ ∼ ↓
ZG⊗L

ZH IZH −→ ZG⊗ZH IZH.

the top arrow is a weak equivalence by the lemma and the Corollary in
Quillen’s II.6.10. From the fact that X• → H is a weak equivalence it
follows that ZX• → ZH is a weak equivalence. (For a startling proof of
this standard fact, see [3], p. 161.) From this and the five lemma it follows
that IZX• → IZH is a weak equivalence. Therefore the left vertical is a
weak equivalence. Finally, the assumption that H → G is a monomorphism
implies that ZG is free over ZH, which implies that the bottom arrow is an
equivalence. Thus the right arrow is too. qed

4 Associative algebras

Let C = R−Alg. We’ll recall what a group object in R−Alg/A is. It
consists of an R algebra map p : B → A; a unit R algebra map e : A → B;
and more. Already we have a split extension. Write K for the kernel of p;
it’s a two sided ideal in B, and the splitting gives an A bimodule structure
over R on K by a ·k ·a′ = e(a)ke(a′). The map A⊕K → B sending (a, k) to
ea+ k is an A bimodule isomorphism, and in these terms the multiplication
in B is given by (a, k)(b, l) = (ab, al + kb+ kl).

Conversely, given an A bimodule M over R, define an R algebra structure
on A⊕M by requiring (a,m)(a′,m′) = (aa′, am′ +ma′) and 1 = (1, 0), and
the projection A⊕M → M is an algebra map with a kernel of square zero.
Moreover, defining µ by µ((a, k), (a, l)) = (a, k+ l) gives us an abelian group
structure on this object of R−Alg/A.

There is also a unital multiplication, µ : B ×A B → B. In terms of the
splitting, the unital condition asserts µ((a, 0), (a, k)) = (a, k) = µ((a, k), (a, 0)).
The fact that µ is additive implies then that µ((a, k), (a, l)) = (a, k + l)); it
is entirely determined by the additive structure of K. The fact that it is an
algebra map implies that K2 = 0, and we are in the situation described in
the previous paragraph.

This establishes an equivalence of categories between R−Alg/A and the
category of A bimodules over R.

Let B → A be an R algebra over A, and M an A bimodule over R. A
map of R algebras over A from B to A⊕M is the same as an R derivation
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φ : B → M . The abelianization of B as an R algebra over A is thus the A
bimodule over R that represents the functor sending the A bimodule M to
DerR(B,M). According to the pushforward formula,

AbAB = A⊗B AbBB ⊗B A

so it will be enough to determine AbBB. An R-linear map B →M extends
uniquely to a B-bimodule homomorphism B⊗RB⊗RB →M , and the map
B → M is a derivation precisely when the extended map sends all elements
of the form a⊗ bb′ ⊗ c− ab⊗ b′ ⊗ c− a⊗ b⊗ b′c to zero. AbBB is thus the
cokernel of the map B ⊗R B ⊗R B ⊗R B → B ⊗R B ⊗R B described by this
formula.

This map is a differential in the Hochschild complex

0← B ← B ⊗R B ← B ⊗R B ⊗R B ← · · ·

This complex is exact (split exact as a sequence of one sided B-modules), so
our cokernel is canonically isomorphic to

IB = ker (µ : B ⊗R B → B)

The universal derivation d : B → IBR is given by d : b 7→ b⊗ 1− 1⊗ b.

Lemma 4.1 If X is a free R algebra then IX is free as an X bimodule over
R. If X is the free R algebra generated by the set S, then IX is the free X
bimodule over R generated by {s⊗ 1− 1⊗ s : s ∈ S}.

Proof. The composite HomXe(IX ,M) ∼= DerR(X,M)→ Map(S,M) sends f
to s 7→ f(s⊗1−1⊗ s). We wish to show that this composite is bijective, for
any X bimodule M . Certainly, any R derivation δ : X → M is determined
by its restriction to S. Conversely, given a map δ : S →M , the only possible
choice of value of an R derivation extending δ on the product x1 · · ·xn, where
xi ∈ S, is

δ(x1 · · ·xn) = δ(x1)x2 · · ·xn + x1δ(x2)x3 · · ·xn + · · ·+ x1 · · ·xn−1δ(xn).

This formula does define an R derivation, as you can check by splitting
x1 · · ·xn into a product and using the formula. qed

An A bimodule M over R can be regarded as an Ae = A⊗RA
op module,

and if A→ B is an R algebra map then the B bimodule B ⊗AM ⊗A B over
R corresponds to the Be module Be ⊗Ae M . Be if flat as a right Ae module
if and only if B is flat as both left and right A module.

Let X• → B be a cofibrant replacement for B as an R algebra.
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Lemma 4.2 If TorRq (B,B) = 0 for q > 0, then Xe
• → Be and IX• → IB are

weak equivalences.

Proof. Write Bhe for the “homotopy extension” of B, Bhe = B ⊗L
R B. In

Xhe
•

∼−→ Xe
•

↓ ∼ ↓
Bhe −→ Be

the top arrow is an equivalence, and the left arrow is an equivalence since
X• → B is. The hypothesis guarantees that the bottom arrow is an equiva-
lence, so the right arrow is.

In this situation, then, the middle vertical in

IX• −→ X• ⊗X• −→ X•
↓ ∼ ↓ ↓
IB −→ B ⊗B −→ B

is an equivalence, and so the left vertical is as well. qed

Proposition 4.3 Let X• → B be a cofibrant replacement and assume that
B → A makes A flat as both right and left B module and that TorRq (B,B) =
0 for q > 0. Then

A⊗X• IX• ⊗X• A→ A⊗B IB ⊗B A

is a weak equivalence. In particular, if TorRq (A,A) = 0 for q > 0 then

LA
∼−→AbAA

and A is smooth as an associative R algebra. Under these conditions, A
is étale as an associative R algebra exactly when the multiplication map
A⊗R A→ A is bijective.

Proof. In
Ae ⊗L

Xe
•
IX•

∼−→ Ae ⊗Xe
• IX•

↓ ∼ ↓
Ae ⊗L

Be IB −→ Ae ⊗Be IB

the top arrow is an equivalence since IX is free as an Xe
• module. Under the

Tor condition, the left arrow is an equivalence by the Lemma and a spectral
sequence. Under the assumption that Ae is flat over Be, the bottom arrow
is an equivalence, and then the right arrow is too. qed
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5 Monoids

Fix a monoid X and consider an abelian group object A in the category
Mon/X of monoids over X. We have a projection map p : A → X and a
unit section 0 : X → A. It must be a monoid map so 01 = 1 ∈ A1. For each
x ∈ X let Ax = p−1(x). The abelian structure imposes an abelian group
structure on each Ax. The fact that the abelian group structure map, +, is a
map of monoids (whose structure map we denote by juxtaposition) translates
to

ab+ a′b′ = (a+ a′)(b+ b′), a, a′ ∈ Ax, b, b′ ∈ Ay. (2)

With b = 0y and a′ = 0x this gives a0y + 0xb
′ = ab′. For any x, y ∈ X write

αx = 0x· : Ay → Axy, βy = ·0y : Ax → Axy.

Then
ab = αxb+ βya.

Also
α1b = b, β1a = a. (3)

With a = a′ = 0x, (2) implies that αx is a group homomorphism; similarly,
βy is a group homomorphism. Also, A1 contains the unit 1 for the monoid
A, and αx(1) = 0x · 1 = 0x and βx(1) = 1 · 0x = 0x, so we have

αx(1) = 0, βy(1) = 0. (4)

The associativity formula (ab)c = a(bc) translates to

αxyc+ βzαxb+ βzβya = αxαyc+ αxβzb+ βyza.

Taking two of the elements to be zero leads to the following three equations:

αxy = αxαy, αxβz = βzαx, βyz = βzβy (5)

and together these imply the long relation.
So Ab(Mon/X) can be identified with the category whose objects are X-

indexed abelian groups A together with homomorphisms αx : Ay → Axy, βy :
Ax → Axy, satisfying (3), (4), and (5). Thus Ab(Mon/X) is the category
of functors to abelian groups from the category Fac(X) having X as object
set, and

Fac(x, y) = {(u, v) ∈ X ×X : y = uxv}.
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In this notation αu = (u, 1), βv = (1, v). The category of functors from
this is the same as the category of modules over a ringoid RX obtained by
taking the free abelian group of all morphism sets in Fac(X). This has been
considered by Dwyer and by Baues in the greater generality of categories
with fixed object set.

In these terms, a section of the projection map is a family cx ∈ Ax of
elements with the property that

cxy = αxcy + βycx, c1 = 01.

The abelianization of X as an object over itself, AbXX, can be described
as an RX module in terms of generators and relations, and in fact there is a
canonical contractible simplicial RX module

RX(1,−)⇐ ⊕x∈XRX(x,−)⇐ ⊕x,y∈XRX(xy,−)⇐ · · · (6)

such that AbXX is the quotient of ⊕x∈XRX(x,−) by the image of the dif-
ferential. We describe the simplicial operators by giving the images of the
“fundamental classes,” that is, the identity classes. Denote by ιx1,...,xn the
identity class in the summand indexed by (x1, . . . , xn). Then

djιx1,...,xn =


αx1ιx2,...,xn for j = 0,
ιx1,...,xjxj+1,...,xn for 0 < j < n,
βxnιx1,...,xn−1 for j = n,

sjιx1,...,xn−1 = ιx1,...,xj ,1,xj+1,...,xn−1 .

There is a contracting homotopy s−1 as well. It is not a map of modules, and
so to define it I must give its value on a basis of RX(x1 · · ·xn−1, y) for each
y ∈ X:

s−1(u, v)ιx1,...,xn−1 = (1, v)ιu,x1,...,xn−1 .

(There is also
sn(u, v)ιx1,...,xn−1 = (u, 1)ιx1,...,xn−1,v,

giving a “right” contracting homotopy.)
Thus

R•Γ(X;A) = Ext•RX
(AbXX,A)

may be computed as the cohomology of a complex

0→
∏
x∈X

Ax →
∏

x,y∈X

Axy → · · · .
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This simplicial object (6) is augmented to the RX module ZX given by
the constant functor on Fac(X) with value Z, by means of ει1 = 1, and the
contracting homotopy extends to s−1 : ZX(y) → RX(1, y) by s−11 = βy.
Thus the abelianization fits into a short exact sequence

0→ AbXX → RX(1,−)→ ZX → 0.

This story extends pretty directly to the case of the categories with fixed
object set.

6 Lie algebras

Suppose C is the category of Lie algebras over a ring K: vector spaces with
a bilinear product satisfying

[x, x] = 0 , [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

This forces [x, y] = −[y, x].
The category of abelian objects over L is equivalent to the category of

L-modules, or what is the same, the category of UL-modules. A derivation
is a derivation in the usual sense, so the UL-module of Lie differentials is

UL⊗ L/{ia⊗ b− ib⊗ a− 1⊗ [a, b]}

where i : L→ UL is the canonical map. This is

coker (d : UL⊗ Λ2L→ UL⊗ L)

where d is the UL-linear extension of the map a∧b 7→ ia⊗b−ib⊗a−1⊗[a, b].
This is a differential in the Chevalley-Eilenberg complex, which (assuming L
is projective as K-module) is exact. Consequently the Beck module of Lie
differentials is given by

AbLL = IL = ker (ε : UL→ K)

As in associative algebras, a derivation on a free Lie algebra is freely
determined by its values on the generating set; so IL is a free UL module if
L is a free Lie algebra.

But now assume that self-brackets vanish. Then L embeds into its univer-
sal enveloping algebra. The Poincaré-Birkoff-Witt theorem tells us that the
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Lie filtration on UL has Sym(L) as associated graded, and so depends only
on the underlying vector space of L. Therefore U preserves weak equivalences
because its associated graded object does by Dold’s theorem.

Let X• → L be a cofibrant replacement. Then UX• → UL is an equiva-
lence. Therefore IX• → IL is an equivalence.

The cotangent complex is given by

LL = UL⊗UX• IX•

We have a diagram

UL⊗L
UX• IX• → UL⊗UX• IX•

↓ ↓
UL⊗L

UL IL → IL

The top map is an isomorphism because IX• is free over X•; the left one by
one of Quillen’s spectral sequences; and the bottom one, since UL is free over
UL.

This shows that the cotangent object is discrete.
Hence for any L-module M , the universal coefficient spectral sequence

collapses to the isomorphism

Ext∗UL(IL,M) = HQ∗(L;M)

The short exact sequence 0 → IL → UL → K → 0 then shows that the
Quillen cohomology of L with coeffients in M coincides up to a shift in
dimension with the Chevalley-Eilenberg cohomology.

One may also study L∗Q on the category of Lie algebras, where

QL = L/[L,L]

is what is traditionally called abelianization. This is not correct terminology
in general, but notice that the map L → IUL carries [x, y] to xy − yx ∈
(IUL)2 and hence induces a map

QL→ IUL/(IUL)2 = K ⊗UL IUL = U(0)⊗UL IUL = Ab0(L)

If L is free on the vector space V then QL = V , UL = Tens(V ), and
IUL/(IUL)2 = V , so in that case this map is an isomorphism.

So if X• is a cofibrant replacement for L, then

LnQ(L) = πn(QX•) = πn(K ⊗UX• IUX•) = HQn(L;K)

where K is regarded as a UL-module through the augmenation.
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7 Extended Lie algebras

In characteristic 2, you may want to replace the axiom [x, x] = 0 with the
weaker assumption (equivalent in characteristic not 2) that [x, y] = [y, x].
Call these “extended Lie algebras,” Liee. The map e : x 7→ [x, x] is linear.
The set of self-brackets forms an ideal R, one with the property that [R,L] =
0. Then the universal map to the Lie algebra underlying an associative
algebra kills this ideal. Write Lr for L/R. The category Ab(Liee/L) is
equivalent to the category of left U(Lr)-modules, and the module of Kähler
differentials is IU(Lr).

The free functor Modk → Liee can be seen as Lie(V )⊕ eLie(V ).
The module of indecomposables QL is of course equal to QLr, and as

before LnQ
Liee(L) = HQn(L;K).

Let E be the exterior algebra on one generator e. It acts on an extended
Lie algebra, with ex = [x, x]. The forgetful functor Liee →ModE has a left
adjoint F . We should be able to compute L∗Q

Liee(FV ).

8 Hochschild resolutions

So we have the “Hochschild resolutions”

IA ← A⊗ A⊗ A← A⊗ A⊗2 ⊗ A← · · ·

IG ← Z[G]〈G〉 ← Z[G]〈G2〉 ← · · ·

IL ← UL⊗ L← UL⊗ Λ2(L)← · · ·

9 σ-algebras

Fix a prime p. A σ-algebra is a commutative algebra R together with a self
map σ such that r 7→ rp − pσ(r) is a ring endomorphism. A module over
(R, σ) consists in an R module M together with an additive self map τ such
that

τ(rx) = rpτ(x)− pσ(r)(x+ τ(x)) .

A global section of (M, τ) is a derivation d : R→M such that

d(σr) = rp−1dr − τ(dr) .

14



References

[1] Michel André,
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2009.

[4] Daniel Quillen, Homotopical Algebra, Springer Lecture Notes in Mathe-
matics 43 (1967).

[5] Daniel Quillen, The (co-)homology of commutative rings, Proceedings of
Symposia on Pure Mathematics XVII (1970) 65–87.

15


