Chapter XIII.

THE OVERPATH METHOD.

We saw in Chapter XII that the cohomology group $H^2(S, \mathbb{G})$ can be computed by means of functions of two variables in S, namely, symmetric 2-cocycles. The overpath method computes $H^2(S, \mathbb{G})$ by means of functions of one variable, one for every defining relation of S in any suitable presentation of S. This makes the computation of $H^2(S, \mathbb{G})$ a finite task whenever S is finitely generated.

Applications compute $H^2(S, \mathbb{G})$ when S is cyclic or, more generally, has only one defining relation, and when S is partially free. This last application depends rather heavily on the construction of group-free congruences in Chapter X. We also show that strand bases give rise to minimal cocycles. The main results are from Grillet [1992], [1995F], [1996C], [1995P], [2000Z].

1. OVERPATHS.

The overpath method depends on certain properties of free commutative semigroups and congruences on these semigroups.

1. In what follows $F = F_X$ is the free commutative monoid on a set X. We return to the additive notation for F and write the elements of F as finite linear combinations $a = \sum_{x \in X} a_x x$ of elements of X, with the usual order:

 $a \leq b$ if and only if $a_x \leq b_x$ for all $x \in X$;

the length of $a = \sum_{x \in X} a_x x$ is $|a| = \sum_{x \in X} a_x$.

Proposition 1.1. On every free commutative monoid F there exists an order relation \sqsubseteq such that:

- (1) (F, \sqsubseteq) is well-ordered;
- (2) if $a \leq b$ in F, then $a \sqsubseteq b$;
- (3) if $a \sqsubseteq b$ in F, then $a + c \sqsubseteq b + c$ for all $c \in F$.

327

Proof. Well-order X, then define \sqsubseteq as follows: $a \sqsubset b$ if and only if either |a| < |b|, or |a| = |b|, $a \neq b$ and the least $x \in X$ such that $a_x \neq b_x$ satisfies $a_x > b_x$. (This is the **degree lexicographic order** on F.)

An element of F of length l is the sum $x_1 + \ldots + x_l$ of l elements $x_1 \sqsubseteq x_2 \sqsubseteq \ldots \sqsubseteq x_l$ of X. Each set $F_l = \{a \in F \mid |a| = l\}$ is a subset of the lexicographic product $X^l = X \times \ldots \times X$ and is well-ordered by \sqsubseteq . Then F is the ordinal sum of $F_0, F_1, \ldots, F_l, \ldots$ and is well-ordered by \sqsubseteq .

If $a \leq b$ in F, then either a = b or |a| < |b|; in either case $a \subseteq b$.

Finally let $a \sqsubset b$ and $c \in F$; then either |a| < |b|, or |a| = |b| and the least x such that $a_x \neq b_x$ satisfies $a_x > b_x$. In the first case, |a+c| < |b+c|. In the second case, the least x such that $a_x \neq b_x$ is also the least x such that $a_x + c_x \neq b_x + c_x$, and satisfies $a_x + c_x > b_x + c_x$. In either case $a+c \sqsubseteq b+c$. \Box

We call an order relation \sqsubseteq on F a **compatible well order** when it has properties (1), (2), and (3) in Proposition 1.1. Explicit compatible well orders can be constructed in various ways, besides the degree lexicographic order, particularly if $X = \{x_1, x_2, \dots, x_n\}$ is finite (see e.g. Adams & Loustaunau [1994]); if for instance p_1, \dots, p_n are the first n prime numbers, then

 $a_1 x_1 + \dots + a_n x_n \sqsubseteq b_1 x_1 + \dots + b_n x_n \iff p_1^{a_1} \dots p_n^{a_n} \le p_1^{b_1} \dots p_n^{b_n}$ is a compatible well order on F, the **prime order** on F of Rosales [1995].

A lexicographic order \sqsubseteq on F is defined from a well order \preccurlyeq on X by: $a \sqsubset b$ if and only if $a \neq b$ and the least $x \in X$ such that $a_x \neq b_x$ has $a_x < b_x$. Then a < b implies $a \sqsubset b$. Also, $x \prec y$ in X implies $x \sqsupset y$ in F. (The usual definition requires $a_x > b_x$, but then a < b does not imply $a \sqsupset b$.)

Proposition 1.2. If F is finitely generated, then every lexicographic order on F is a compatible well order.

Proof. If $a \sqsubset b$ and $c \in F$, then, in the above, the least x such that $a_x \neq b_x$ is also the least x such that $a_x + c_x \neq b_x + c_x$, so that $a_x + c_x > b_x + c_x$ and $a + c \sqsubset b + c$. If X is finite, then (F, \sqsubseteq) is a finite lexicographic product of copies of \mathbb{N}^+ and is well ordered. \Box

When F is finitely generated, every total order \sqsubseteq on F with property (2) is a well order: if indeed there is an infinite sequence $a_1 \sqsupset a_2 \sqsupset \cdots \sqsupset a_n \sqsupset a_{n+1} \sqsupset \cdots$, then $A_n = \{t \in F \mid t \sqsupseteq a_n\}$ is an ideal of F for every n, by (2), and $A_1 \subsetneq A_2 \gneqq \cdots \gneqq A_n \gneqq A_n \gneqq A_{n+1} \gneqq \cdots$, a flagrant contradiction of Corollary VI.1.3; therefore the totally ordered set (F, \sqsubseteq) satisfies the descending

chain condition and is well ordered. Compatible well orders are then also known as a **linear admissible orders**.

If on the other hand X is infinite, then the first generators $x_1 \prec x_2 \prec \cdots \prec x_n \prec \cdots$ of X yield a nonempty subset $x_1 \sqsupset x_2 \sqsupset \cdots \sqsupset x_n \sqsupset \cdots$ of F with no least element and F is not well ordered by its lexicographic orders, even though they satisfy (2) and (3).

2. In what follows, \sqsubseteq is any compatible well order on F.

Let \mathcal{C} be a congruence on F. Under \sqsubseteq the \mathcal{C} -class C_a of $a \in F$ has a least element q(a) (the function minimum of Rosales [1995]). By definition,

 $a \in q(a); c \in a \text{ implies } c \sqsupseteq q(a); \text{ and } a \in b \iff q(a) = q(b).$

Then F is the disjoint union $F = P \cup Q$, where $Q = Q(\mathcal{C}) = \{q(a) \mid a \in F\} = \{q \in F \mid a \mathcal{C} q \implies a \supseteq q\}$ is the set of all least elements of all \mathcal{C} -classes, and

$$P = P(\mathfrak{C}) = F \setminus Q = \{a \in F \mid a \sqsupset q(a)\}.$$

If \mathcal{C} is the equality, then $P = \emptyset$.

Lemma 1.3. P is an ideal of F.

Proof. When $a \in P$ and $c \in F$, then $a \sqsupset q(a)$, $a + c \ \mathfrak{C} q(a) + c$, $a + c \sqsupset q(a) + c \sqsupseteq q(a + c)$, and $a + c \in P$. \Box

In what follows, $M = M(\mathbb{C})$ is the set of all minimal elements of P, under the usual order \leq ; since (F, \leq) satisfies the descending chain condition, P is generated as an ideal of F by M.

Proposition 1.4. The congruence C is generated by all pairs (m, q(m)) with $m \in M(C)$.

Proof. Let \mathcal{M} be the congruence on F generated by all pairs (m, q(m)) with $m \in M$. Then $\mathcal{M} \subseteq \mathbb{C}$, since $m \in q(m)$ for all $m \in M$. We show by artinian induction that $a \mathcal{M} q(a)$ for every $a \in F$ (this also follows from Proposition 1.5 below); then $a \in b$ implies $a \mathcal{M} q(a) = q(b) \mathcal{M} b$, so that $\mathcal{C} = \mathcal{M}$.

We have $a \mathcal{M} q(a)$ for all $a \in Q$ (then a = q(a)) and for all $a \in M$ (by definition of \mathcal{M}). Let $a \in P$. Then $a \geq m$ for some $m \in M$ and a = m + t for some $t \in F$. Let b = q(m) + t. Then $a \mathcal{M} b$, since $m \mathcal{M} q(m)$, $a \in b$ since $m \mathcal{C} q(m)$, and $a \sqsupset b$, since $m \sqsupset q(m)$. Then $b \mathcal{M} q(b)$ by the induction hypothesis, and $a \mathcal{M} b \mathcal{M} q(b) = q(a)$. \Box

Proposition 1.4 implies Rédei's Theorem. If indeed F is finitely generated, then M is finite by Dickson's Theorem (Corollary VI.1.3), and Proposition 1.4 shows that C is finitely generated (Grillet [1993R]).

Conversely Rosales [1995] devised an algorithm which constructs q from any finite set of generators of C; this provides an explicit algorithm for the solution of the word problem in any finite commutative presentation.

3. Given the congruence \mathcal{C} , we now regard the free c.m. F as a directed graph with labeled edges, in which the vertices are the elements of F and an edge $a \xrightarrow{m} b$ from a to b, labeled by m, is an ordered pair (a,m) such that $m \in M(\mathcal{C}), m \leq a$, and a - b = m - q(m). Then a = m + t and b = q(m) + t, where $t = a - m = b - q(m) \in F$; hence $q(m) \leq b$, $a \in b$ (since $m \in q(m)$), and $a \supset b$ (since $m \supset q(m)$).

A descending path from $a \in F$ to $b \in F$ is a sequence $a = p^0, \ldots, p^k = b$ of elements of F and edges

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b_k$$

where $k \ge 0$. (We index sequences of elements of F by superscripts, to keep subscripts for coordinates.) Equivalently, a path from a to b consists of a sequence $a = p^0, \ldots, p^k = b$ of elements of F and a sequence m^1, \ldots, m^k of elements of $M(\mathcal{C})$ such that $m^i \le p^{i-1}$ and $p^{i-1} - p^i = m^i - q(m^i)$ for all $1 \le i \le k$. Then $q(m^i) \le p^i, p^0, \ldots, p^k \in C_a$ and $p^0 \sqsupset \ldots \sqsupset p^k$; in particular, $a \ \mathcal{C} b$ and $a \sqsupseteq b$ (with a = b if k = 0). Also $a - b = \sum_{1 \le i \le k} (p^{i-1} - p^i) =$ $\sum_{1 \le i \le k} (m^i - q(m^i))$.

An overpath from $a \in F$ to $b \in F$ is the sequence $p: m^1, \ldots, m^k \in M(\mathcal{C})$ of labels in a path

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b,$$

from a to b. A path from a to b is determined by $p^0 = a$ and its overpath, since in the above the relation $p^{i-1} - p^i = m^i - q(m^i)$ determines p^i from p^{i-1} and m^i . In particular,

$$a-b = \sum_{1 \leq i \leq k} \left(m^i - q(m^i) \right)$$

The empty sequence is an overpath from any $a \in F$ to itself. If

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b$$

is a path from a to b, and

$$b = q^0 \stackrel{n^1}{\longrightarrow} q^1 \stackrel{n^2}{\longrightarrow} \dots \stackrel{n^k}{\longrightarrow} q^k = c$$

is a path from b to c, then

$$a = p^0 \xrightarrow{m^1} \dots \xrightarrow{m^k} p^k = b = q^0 \xrightarrow{n^1} \dots \xrightarrow{n^k} q^k = c$$

is a path from a to c. Hence if $p: m^1, \ldots, m^k$ is an overpath from a to b, and $q: n^1, \ldots, n^l$ is an overpath from b to c, then $p+q: m^1, \ldots, m^k, n^1, \ldots, n^l$ is an overpath from a to c.

Let $c \in F$. If (a,m) is an edge from a to b, then (a + c, m) is an edge from a + c to b + c. Hence if

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b$$

is a path from a to b, then there is a path with the same labels from a + c to b + c. Thus if m^1, \ldots, m^k is an overpath from a to b, then m^1, \ldots, m^k is an overpath from a + c to b + c.

The following result is a well-ordered version of Proposition I.2.9, and shows how \mathcal{C} is generated by all pairs (m, q(m)) with $m \in M$.

Proposition 1.5. For every $a \in F$, there exist a path from a to q(a) and an overpath from a to q(a).

Proof. This is proved by artinian induction on a. If $a = q(a) \in Q$, then there is an empty path from a to q(a). Now let $a \in P$. Then $a \ge m$ for some $m \in M$. Let b = q(m) + t, where a = m + t. Then (a,m) is an edge from ato b. Hence $a \in b$, $a \sqsupset b$, and the induction hypothesis yields a path from b to q(b). Adding $a \xrightarrow{m} b$ yields a path from a to q(a) = q(b). \Box

4. The process of well ordering F to select "minimal" generators of \mathbb{C} (as in Proposition 1.4) is reminiscent of Gröbner bases. Indeed let K be a field and K[X] be the polynomial ring with the set X of commuting indeterminates. Ordering F also orders the monomials $X^a = \prod_{x \in X} x^{a_x} \in K[X]$ (where $a = \sum_{x \in X} a_x x \in F$).

Proposition 1.6. Let \mathcal{C} be a congruence on F and $I(\mathcal{C})$ be the ideal of K[X] generated by all $X^a - X^b$ with $a \mathcal{C} b$. The set

$$G(M) = \{ \overline{X}^m - \overline{X}^{q(m)} \mid m \in M \}$$

is a Gröbner basis of $I(\mathcal{C})$.

Proof. First we note that $I = I(\mathcal{C})$ is generated by all $X^a - X^{q(a)}$, since $a \mathcal{C} b$ implies q(a) = q(b) and $X^a - X^b = (X^a - X^{q(a)}) - (X^b - X^{q(b)})$.

We show that the ideal L(I) generated by the leading terms of polynomials in I coincides with the ideal L(G) generated by the leading terms of polynomials in G(M); this is one of the criteria for Gröbner bases (see e.g. Adams & Loustaunau [1994], Theorem 1.6.2).

When $a \in P$, then $a \sqsupset q(a)$ and the leading term of $X^a - X^{q(a)}$ is X^a . Since P is an ideal of F by Lemma 1.3, L(I) is generated by all X^a with $a \in P$. Now $a \in P$ implies, as above, $a \geqq m$ for some $m \in M$, a = m + t for some $t \in F$, and $X^a = X^m X^t \in L(G)$. Therefore $L(I) \subseteq L(G)$; conversely $L(G) \subseteq L(I)$ since $G(M) \subseteq I$. Thus L(G) = L(I). \Box

We give a direct proof that $I(\mathbb{C})$ is generated by G(M). Let J be the ideal of K[X] generated by G(M). We show by induction on a that $X^a - X^{q(a)} \in J$ for all $a \in F$. When $a \in Q$, then a = q(a) and $X^a - X^{q(a)} \in J$. Let $a \in P$. As in the proof of Proposition 1.4, $a \ge m$ for some $m \in M$ and a = m + t for some $t \in F$. Let b = q(m) + t. Then $a \sqsupset b$ since $m \sqsupset q(m)$, $X^b - X^{q(b)} \in J$ by the induction hypothesis, $X^a - X^b = X^t (X^m - X^{q(m)}) \in J$, and $X^a - X^{q(a)} =$ $(X^a - X^b) - (X^b - X^{q(b)}) \in J$. Thus $X^a - X^{q(a)} \in J$ for all $a \in F$; therefore I = J.

2. MAIN RESULT.

The main result in this chapter is the computation of $H^2(S, \mathbb{G})$ by the overpath method. As a first application we find $H^2(S, \mathbb{G})$ when S has a presentation with only one defining relation; for instance, when S is cyclic. We also relate $H^2(S, \mathbb{G})$ to the strand bases in Chapter XI.

1. When S is a commutative semigroup which does not have an identity element, we saw that $H^2(S, \mathbb{G}) \cong H^2(S^1, \mathbb{G}')$, where \mathbb{G}' extends \mathbb{G} to $H(S^1)$ so that $G'_1 = 0$ (Corollary XII.4.5). Hence we may as well start with a monoid S.

In what follows S is a commutative monoid and $\mathbb{G} = (G, \gamma)$ is an abelian group valued functor on H(S); $\pi : F \longrightarrow S$ is a surjective homomorphism, where F is the free c.m. on some set X, and $\mathbb{C} = \ker \pi$; \sqsubseteq is any compatible well order on F; M and q are as in Section 1. By Proposition 1.4, \mathbb{C} is generated by all (m, q(m)) with $m \in M(\mathbb{C})$; this provides a presentation of S as the c.m. generated by X subject to all relations m = q(m) with $m \in M$. A minimal cochain on S with values in \mathbb{G} (short for minimal 1-cochain) is a family $u = (u_m)_{m \in M}$ such that $u_m \in G_{\pi m}$ for all $m \in M$.

Let u be a minimal cochain. Let $a \in F$, $p: m^1, \ldots, m^k$ be an overpath from a to b, and

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b$$

be the corresponding path from a to b, in which $p^0, \ldots, p^k \in C_a$, so that $\pi p^i = \pi a$ for all i. Define

$$u_{a;p} = \sum_{1 \leq i \leq k} u_{m^i}^{\pi t^i} \in G_{\pi a}$$

where $t^i = p^i - q(m^i) = p^{i-1} - m^i$. A **minimal cocycle** on S with values in G is a minimal cochain u such that $u_{a;p} = u_{a;q}$ whenever p and q are overpaths from a to q(a) (so that $u_{a;p}$ does not depend on p).

Let $g = (g_x)_{x \in X} \in \prod_{x \in X} G_{\pi x}$ be a family such that $g_x \in G_{\pi x}$ for every generator $x \in X$ of F. A minimal cochain δg is defined by

$$(\delta g)_m = \sum_{x \in X, x \leq m} m_x g_x^{\pi(m-x)} - \sum_{x \in X, x \leq q(m)} q(m)_x g_x^{\pi(q(m)-x)}$$

for every $m = \sum_{x \in X} m_x x \in M$. A minimal cochain constructed in this fashion is a **minimal coboundary**. Under pointwise addition, minimal coboundaries, minimal cocycles, and minimal cochains constitute abelian groups

$$MB^{1}(S,\mathbb{G}) \subseteq MZ^{1}(S,\mathbb{G}) \subseteq MC^{1}(S,\mathbb{G}) = \prod_{m \in M} G_{\pi m}$$

The main result in this chapter is:

Theorem 2.1. For every commutative monoid S there is an isomorphism

$$H^2(S,\mathbb{G}) \cong MZ^1(S,\mathbb{G}) / MB^1(S,\mathbb{G})$$

which is natural in \mathbb{G} .

2. The proof of Theorem 2.1 occupies the next section. First we consider an example: when S has a commutative presentation (as a semigroup or as a monoid)

$$S \cong \langle a_1, \dots, a_n, \dots \mid a_1^{r_1} a_2^{r_2} \cdots a_n^{r_n} = a_1^{s_1} a_2^{s_2} \cdots a_n^{s_n} \rangle$$

with a single defining relation, in which we assume, not unreasonably, that $r_i + s_i > 0$ for all $i \leq n$ and that $r_i \neq s_i$ for some *i*. Other examples are given in Grillet [2000T] and in Sections 4 and 5.

We can set up the surjective homomorphism $\pi: F = F_X \longrightarrow S$ so that X

contains distinct elements x_1, \ldots, x_n such that $\pi x_1 = a_1, \ldots, \pi x_n = a_n$. Then $\mathcal{C} = \ker \pi$ is the congruence on F generated by the single pair (r, s), where

$$r = \sum_{1 \leq i \leq n} r_i x_i$$
 and $s = \sum_{1 \leq i \leq n} s_i x_i$

The congruence \mathcal{C} is readily described:

Lemma 2.2. $a \in b$ if and only if there exists a sequence p^0, \ldots, p^k of elements of F such that $k \ge 0$, $a = p^0$, $p^k = b$, and either

$$p^{i-1} - r = p^i - s \ge 0$$
 for all $i \ge 1$ (A)

or

$$p^{i-1} - s = p^i - r \ge 0$$
 for all $i \ge 1$ (B)

Proof. By Proposition I.2.9, $a \in b$ if and only if there exists a sequence p^0, \ldots, p^k of elements of F such that $k \ge 0$, $a = p^0$, $p^k = b$, and, for every $i \ge 1$, either

$$p^{i-1} - r = p^i - s \geqq 0 \tag{a}$$

or

$$p^{i-1} - s = p^i - r \ge 0. \tag{b}$$

If (a) holds for i < k and (b) holds for i+1, then $p^{i-1} - r = p^i - s = p^{i+1} - r$ and p^i , p^{i+1} may be deleted from the sequence. Similarly if (b) holds for i < kand (a) holds for i+1, then $p^{i-1} - s = p^i - r = p^{i+1} - s$ and again p^i , p^{i+1} may be deleted from the sequence. After all such deletions, either (a) holds for all *i*, or (b) holds for all *i*. \Box

Now let \Box be any compatible well order on F. We may assume that $r \sqsupset s$. When $a \ C \ b$ and (A) holds, then in Lemma 2.2 $p^{i-1} - r = p^i - s \ge 0$ implies $p^{i-1} = r+t$ and $p^i = s+t$, where $t = p^{i-1} - r = p^i - s \ge 0$, so that $p^{i-1} \sqsupset p^i$ for all $i \ge 1$ and $a \sqsupset b$; if (B) holds, then similarly $a \sqsubset b$. If therefore $a \in P$, so that $a \ C \ q(a)$ and $a \sqsupset q(a)$, then (A) holds, $a - r = p^0 - r \ge 0$, and $a \ge r$. On the other hand, $r \ C \ s$ and $r \sqsupset s$, so that $r \in P$. This proves:

Lemma 2.3. $M(\mathcal{C})$ has just one element, namely r; and q(r) = s. Let

$$d = a_1^{r_1} a_2^{r_2} \cdots a_n^{r_n} = a_1^{s_1} a_2^{s_2} \cdots a_n^{s_n} = \pi r = \pi s \in S$$

By Lemma 2.3, a minimal cochain consists of $u \in G_d$, and $MC^1(S, \mathbb{G}) = G_d$. Moreover there is only one overpath from any $c \in F$ to q(c), which is a sequence of r's. Hence every minimal cochain is a minimal cocycle and $MZ^1(S, \mathbb{G}) = G_d$. A minimal cochain $u \in G_d$ is a minimal coboundary if and only if there exists a family $g = (g_x)_{x \in X}$ such that $g_x \in G_{\pi x}$ for every $x \in X$ and

$$u = \sum_{x \in X, x \leq r} r_x g_x^{\pi(r-x)} - \sum_{x \in X, x \leq q(r)} q(r)_x g_x^{\pi(q(r)-x)}$$
$$= \sum_{i \leq n, r_i > 0} r_i g_{x_i}^{\pi(r-x_i)} - \sum_{i \leq n, s_i > 0} s_i g_{x_i}^{\pi(s-x_i)}.$$

Let $\gamma_i: G_{a_i} \longrightarrow G_d$ be defined by:

$$\gamma_i \ = \ \begin{cases} r_i \ \gamma_{a_i,d'_i} - s_i \ \gamma_{a_i,d''_i} & \text{if } r_i, s_i > 0, \\ r_i \ \gamma_{a_i,d'_i} & \text{if } r_i > 0, s_i = 0, \\ -s_i \ \gamma_{a_i,d''_i} & \text{if } r_i = 0, s_i > 0, \end{cases}$$

where

$$\begin{array}{lll} d'_i &=& a_1^{r_1} \cdots a_{i-1}^{r_{i-1}} \ a_i^{r_i-1} \ a_{i+1}^{r_i+1} \ \cdots \ a_n^{r_n} & (\text{when } r_i > 0), \text{ and} \\ \\ d''_i &=& a_1^{s_1} \ \cdots \ a_{i-1}^{s_{i-1}} \ a_i^{s_i-1} \ a_{i+1}^{s_{i+1}} \ \cdots \ a_n^{s_n} & (\text{when } s_i > 0). \end{array}$$

Then u is a minimal coboundary if and only if there exist $g_i = g_{x_i} \in G_{a_i}$ such that $u = \sum_{1 \leq i \leq n} \gamma_i g_i$. Hence $MB^1(S, \mathbb{G}) = \sum_{1 \leq i \leq n} \operatorname{Im} \gamma_i$ and:

Proposition 2.4. When S has a commutative semigroup or monoid presentation with a single nontrivial defining relation, then, with the notation as above,

$$H^2(S,\mathbb{G}) \cong G_d / \left(\sum_{1 \leq i \leq n} \operatorname{Im} \gamma_i \right).$$

Corollary 2.5. When $S = \langle a \mid a^r = a^{r+p} \rangle$ is cyclic with index r and period p, then $H^2(S, \mathbb{G}) \cong G_{a^r} / p \operatorname{Im} \gamma_{a, a^{r-1}}$.

Proposition 2.4 becomes simpler when \mathbb{G} is thin. Then $d \leq_{\mathcal{H}} a_i$ for all i (since $r_i + s_i > 0$) and $\gamma_{a_i, d'_i} = \gamma_d^{a_i}$ when $r_i > 0$, $\gamma_{a_i, d''_i} = \gamma_d^{a_i}$ when $s_i > 0$, and $\gamma_i = (r_i - s_i) \gamma_d^{a_i}$ for all i. Hence

Corollary 2.6. When S has a commutative semigroup or monoid presentation with a single nontrivial defining relation and \mathbb{G} is thin, then, with the notation as above,

$$H^2(S,\mathbb{G}) \cong G_d / \left(\sum_{1 \leq i \leq n} (r_i - s_i) \operatorname{Im} \gamma_d^{a_i} \right).$$

If for instance $S = \langle a \mid a^r = a^{r+p} \rangle$ is cyclic with index r and period pand $\mathbb{G} = A$ is constant ($G_s = A$ and $\gamma_{s,t} = 1_A$ for all $s \in S$ and $t \in S^1$), then $H^2(S,\mathbb{G}) \cong A/pA$; thus $H^2(S,\mathbb{G}) \cong \operatorname{Ext}(H,A)$, where H is the subgroup $\{a^k \mid k \geq r\} \cong \mathbb{Z}_p$ of S.

3. Finally we show that strand bases in Chapter XI give rise to minimal cocycles. This result is from Grillet [1996C], [2001C].

In what follows, \mathcal{C} is a subcomplete congruence on a free commutative monoid F and \mathcal{C}^* is its group-free hull; $\pi : F \longrightarrow S$ and $\pi^* : F \longrightarrow S^*$ are surjective homomorphisms which induce \mathcal{C} and \mathcal{C}^* respectively. If \mathcal{C} is complete, then $S^* \cong S/\mathcal{H}$ and one expects the cohomology of S^* to show up somewhere in the construction of S and \mathcal{C} . Minimal cocycles provide this connection.

The direction set, extent cells, strand groups, strand bases, and notation are as in Chapter XI. Also \sqsubseteq is a compatible well order on F; the mapping q and sets M and Q are those of \mathcal{C}^* , not of \mathcal{C} .

Lemma 2.7. Let s be a strand base of \mathcal{C} . For every $m \in M(\mathcal{C}^*)$ let

$$\overline{s}_m = s_m - m - s_{q(m)} + q(m) \in G_m.$$

If m^1, m^2, \ldots, m^k is an overpath from a to b, then

$$s_a-s_b-a+b-\overline{s}_{m^1}-\cdots-\overline{s}_{m^k}\ \in\ R_a=R_b.$$

Proof. Let

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b$$

be a path from a to b, so that $p^{i-1} = m^i + t^i$, $p^i = q(m^i) + t^i$ for some $t^i \in F$ and $p^{i-1} - p^i = m^i - q(m^i)$, for every $1 \leq i \leq k$. Then $R_a = R_{p^0} = R_{p^1} = \cdots = R_{p^k} = R_b$ by (R2), since $a = p^0$, p^1 , ..., $p^k = b$ are all in the same \mathcal{C}^* -class, and

$$\begin{split} s_{p^{i-1}} - s_{p^i} - p^{i-1} + p^i - \overline{s}_{m^i} &= s_{p^{i-1}} - s_{p^i} - m^i + q(m^i) - \overline{s}_{m^i} \\ &= s_{p^{i-1}} - s_{p^i} - s_{m^i} + s_{q(m^i)} \in R_{p^i} = R_a \end{split}$$

by (S+) in Lemma XI.6.1. Adding these equalities yields $s_a - s_b - a + b - \overline{s}_{m^1} - \dots - \overline{s}_{m^k} \in R_a$. \Box

With b = q(a), Lemma 2.7 implies that a strand base of C is completely determined modulo strand groups by its values on $M \cup Q$.

2. The strand group functor $\mathbb{K} = (K, \psi)$ of \mathcal{C} is the thin abelian group valued functor on F/\mathcal{C}^* defined as follows (Section XI.4). To every \mathcal{C}^* -class

 C^* , K assigns the group $K_a = G_a/R_a$, which does not depend on the choice of $a \in C^*$. When $C^* \geq_{\mathcal{H}} D^*$ in F/\mathbb{C}^* , then $a \leq b$ for some $a \in C^*$, $b \in D^*$, $G_a \subseteq G_b$, $R_a \subseteq R_b$ by (R3), and $\psi_b^a : K_a \longrightarrow K_b$ sends $g + R_a$ to $g + R_b$ and does not depend on the choice of $a \in C^*$ and $b \in D^*$ (as long as $a \leq b$). Since $S^* \cong F/\mathbb{C}^*$ we may regard \mathbb{K} as a thin abelian group valued functor on S^* ; then \mathbb{K} is isomorphic to the extended Schützenberger functor of S, which is the usual Schützenberger functor if S is complete (Proposition XI.4.8).

Proposition 2.8. Let C be a subcomplete congruence on F and s be a strand base of C. For every $m \in M(C^*)$ let

$$s_m^* = \bar{s}_m + R_m = s_m - m - s_{q(m)} + q(m) + R_m \in G_m/R_m$$

Then s^* is a minimal 1-cocycle on F/\mathbb{C}^* with values in the strand group functor \mathbb{K} of \mathbb{C} . Moreover, two strand bases s and t define the same congruence if and only if $s^* = t^*$.

Proof. s^* is a minimal cochain. When $p:m^1,\ldots,m^k$ is an overpath from a to b and

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b$$

is the corresponding path, then

$$s_{a;p;b}^{*} = \sum_{i} \psi_{pi}^{m_{i}} s_{m_{i}}^{*} = \sum_{i} \overline{s}_{mi} + R_{a} = s_{a} - s_{b} - a + b + R_{a}$$

by Lemma 2.7. Hence $s_{a;p;b}^*$ is independent of path and s^* is a minimal cocycle.

By Proposition XI.5.2, two strand bases s and t define the same congruence if and only if $a \ \mathbb{C}^* b$ implies $s_a - s_b - t_a + t_b \in R_a (= R_b)$. Since $m \ \mathbb{C}^* q(m)$ this implies

$$(s_m - m - s_{q(m)} + q(m)) - (t_m - m - t_{q(m)} + q(m)) \in R_m$$

for all $m \in M$ and $s^* = t^*$. Conversely assume that $s^* = t^*$. Then $s^*_{a;p;b} = t^*_{a;p;b}$ and

$$s_a-s_b-a+b+R_a \ = \ t_a-t_b-a+b+R_a$$

whenever p is an overpath from a to b. Hence $s_a - s_{q(a)} - t_a + t_{q(a)} \in R_a$ for all a. If $a \in t^* b$, then q(a) = q(b), $s_b - s_{q(a)} - t_b + t_{q(a)} \in R_b = R_a$, and $s_a - s_b - t_a + t_b \in R_a$. Thus s and t are equivalent. \Box

Proposition 2.8 embeds the set of equivalence classes of strand bases (and the set of all subcomplete congruence with the given strand groups) into the abelian group $MZ^1(F/\mathbb{C}^*,\mathbb{K})$.

3. PROOF OF MAIN RESULT.

1. In what follows, S is a commutative monoid, $\mathbb{G} = (G, \gamma)$ is an abelian group valued functor on H(S), $F = F_X$ is the free c.s. on a set X, and $\pi : F \longrightarrow S$ is a surjective homomorphism; we prove Theorem 2.1.

We begin the proof by lifting 1- and 2-cochains from S to F.

The homomorphism $\pi: F \longrightarrow S$ extends to a functor $\pi: H(F) \longrightarrow H(S)$. Hence $\mathbb{G} = (G, \gamma)$ lifts to an abelian group valued functor $\mathbb{G}\pi = (\mathbb{G}\pi, \gamma\pi) = \mathbb{G}\circ\pi$ on H(F); $\mathbb{G}\pi$ assigns $G_{\pi a}$ to $a \in F$ and $\gamma_{\pi a, \pi t}$ to $(a, t): a \longrightarrow at$. Thus $g^t = g^{\pi t}$, where $g \in G_{\pi a}$, g^t is provided by $\mathbb{G}\pi$, and $g^{\pi t}$ is provided by \mathbb{G} . Note that $\mathbb{G}\pi$ is thin, since F is cancellative.

Every 1-cochain $u = (u_a)_{a \in S} \in C^1(S, \mathbb{G})$ lifts to a 1-cochain $\pi^* u = u \circ \pi \in C^1(F, \mathbb{G}\pi)$ defined by

$$(\pi^* u)_a = u_{\pi a} \in G_{\pi a}$$

for all $a \in F$. If u is a 1-cocycle, so that $u_{ab} = u_a^b + u_b^a$ for all $a, b \in S$, then

$$(\pi^* u)_{ab} = u_{(\pi a)(\pi b)} = u_{\pi a}^{\pi b} + u_{\pi b}^{\pi a} = (\pi^* u)_a^b + (\pi^* u)_b^a$$

and π^*u is a 1-cocycle; thus $\pi^*Z^1(S,\mathbb{G}) \subseteq Z^1(F,\mathbb{G}\pi)$.

Similarly every symmetric 2-cochain $u = (u_a)_{a \in S} \in SC^2(S, \mathbb{G})$ lifts to a symmetric 2-cochain $\pi^* u = u \circ \pi \in C^2(F, \mathbb{G}\pi)$ defined by

 $(\pi^* u)_{a,b} = u_{\pi a,\pi b} \in G_{\pi(ab)}$

for all $a, b \in F$. If u is a symmetric 2-cocycle, so that $u_{a,b}^c + u_{ab,c} = u_{a,bc} + u_{b,c}^a$ for all $a, b, c \in S$, then

$$\begin{aligned} & (\pi^* u)_{a,b}^c + (\pi^* u)_{ab,c} = u_{\pi a,\pi b}^{\pi c} + u_{(\pi a)(\pi b),\pi c} \\ & = u_{\pi a,(\pi b)(\pi c)} + u_{\pi b,\pi c}^{\pi a} = (\pi^* u)_{a,bc} + (\pi^* u)_{b,c}^a \end{aligned}$$

for all $a, b, c \in F$, and $\pi^* u$ is a symmetric 2-cocycle. If $u = \delta v$ is a symmetric 2-coboundary, so that $u_{a,b} = v_a^b - v_{ab} + v_b^a$ for all $a, b \in S$, then

$$(\pi^* u)_{a,b} = v_{\pi a}^{\pi b} - v_{(\pi a)(\pi b)} + v_{\pi b}^{\pi a} = (\delta \pi^* v)_{a,b}$$

for all $a, b \in S$, and $\pi^* u$ is a symmetric 2-coboundary. Thus

 $\pi^* \, SZ^2(S,\mathbb{G}) \subseteq SZ^2(F,\mathbb{G}\pi) \quad \text{and} \quad \pi^* \, SB^2(S,\mathbb{G}) \subseteq SB^2(F,\mathbb{G}\pi).$

Since $H^2(F, \mathbb{G}\pi) = 0$ (Theorem XII.3.4), symmetric 2-cocycles on S lift to symmetric 2-coboundaries on F and can therefore be constructed by projecting the coboundaries of 1-cochains on F. This marks the birthplace of Theorem 2.1.

2. A 1-cochain $u \in C^1(F, \mathbb{G}\pi)$ is consistent (relative to π) when $\pi a = \pi b$ implies $u_{a+c} - u_{b+c} = u_a^c - u_b^c$ for all $c \in F$.

Under pointwise addition consistent 1-cochains form a subgroup $K^1(F, \mathbb{G}\pi)$ of $C^1(F, \mathbb{G}\pi)$. We shall see that consistent 1-cochains on F are precisely those whose coboundaries project to symmetric 2-cocycles on S. First we show:

Lemma 3.1. $K^1(F, \mathbb{G}\pi)$ contains $Z^1(F, \mathbb{G}\pi)$ and $\pi^* C^1(S, \mathbb{G})$.

Proof. If $u \in Z^1(F, \mathbb{G}\pi)$, then $\pi a = \pi b$ implies $\gamma_{\pi a, \pi c} = \gamma_{\pi b, \pi c}$ and $u_a^c - u_{a+c} = u_c^a = u_c^b = u_b^c - u_{b+c}$.

If $u = \pi^* v$, then $\pi a = \pi b$ implies $u_a = v_{\pi a} = v_{\pi b} = u_b$, $\gamma_{\pi a,\pi c} = \gamma_{\pi b,\pi c}$, $\pi(a+c) = \pi(b+c)$, $u_{ac} = u_{bc}$, and $u_a^c - u_{a+c} = u_b^c - u_{b+c}$. \Box

When $u \in K^1(F, \mathbb{G}\pi)$, then $\pi a = \pi b$, $\pi c = \pi d$ imply $\gamma_{\pi c, \pi a} = \gamma_{\pi c, \pi b}$, $\gamma_{\pi b, \pi c} = \gamma_{\pi b, \pi d}$, and

$$u_a^c - u_{a+c} + u_c^a = u_b^c - u_{b+c} + u_c^b = u_b^d - u_{b+d} + u_d^b$$
.

Hence a homomorphism $\Delta: K^1(F, \mathbb{G}\pi) \longrightarrow SC^2(S, \mathbb{G})$ is well defined by

$$(\Delta u)_{\pi a,\pi c} = u_a^c - u_{a+c} + u_c^a = (\delta u)_{a,c}$$

for all $a, c \in F$. It is immediate that Δ is natural in \mathbb{G} .

Lemma 3.2. Im $\Delta = SZ^2(S, \mathbb{G})$.

Proof. Δu is a symmetric 2-cocycle, since δu is a cocycle and

$$\begin{aligned} (\Delta u)_{\pi a,\pi b}^{\pi c} &+ (\Delta u)_{(\pi a)(\pi b),\pi c} = (\delta u)_{a,b}^{c} + (\delta u)_{a+b,c} \\ &= (\delta u)_{a,b+c} + (\delta u)_{b,c}^{a} = (\Delta u)_{\pi a,(\pi b)(\pi c)} + (\Delta u)_{\pi b,\pi c}^{\pi a} \end{aligned}$$

Conversely let $s \in SZ^2(S, \mathbb{G})$. Then $\pi^* s \in SZ^2(F, \mathbb{G}\pi)$. Since $H^2(F, \mathbb{G}\pi)$ = 0 we have $\pi^* s = \delta u$ for some $u \in C^1(F, \mathbb{G}\pi)$, so that

$$s_{\pi a,\pi c} = u_a^c - u_{a+c} + u_c^a$$

for all $a, c \in F$. If $\pi a = \pi b$, then

$$u_a^c - u_{a+c} + u_c^a = s_{\pi a,\pi c} = s_{\pi b,\pi c} = u_b^c - u_{b+c} + u_c^b$$

 $\gamma_{\pi c, \pi b} = \gamma_{\pi c, \pi a}, \ u_c^a = u_c^b, \text{ and } u_a^c - u_{a+c} = u_b^c - u_{b+c}.$ Thus $u \in K^1(F, \mathbb{G}\pi)$. We see that $\Delta u = s$. \Box

3. Lemma 3.2 shows that $H^2(S, \mathbb{G})$ is determined by consistent cochains.

Lemma 3.3. When $u \in K^1(F, \mathbb{G}\pi)$, then $\Delta u \in SB^2(S, \mathbb{G})$ if and only if $u \in Z^1(F, \mathbb{G}\pi) + \pi^*C^1(S, \mathbb{G})$.

Proof. If $u = v + \pi^* w$, where $v \in Z^1(F, \mathbb{G}\pi)$ and $w \in C^1(S, \mathbb{G})$, then $u \in K^1(F, \mathbb{G}\pi)$ by Lemma 3.1 and

 $(\Delta u)_{\pi a,\pi b} = v_a^b - v_{a+b} + v_b^a + w_{\pi a}^{\pi b} - w_{(\pi a)(\pi b)} + w_{\pi b}^{\pi a} = (\delta w)_{\pi a,\pi b}$

for all $a, b \in F$, since $v \in Z^1(F, \mathbb{G}\pi)$, so that $\Delta u = \delta w \in SB^2(S, \mathbb{G})$.

Conversely assume $\Delta u = \delta w \in SB^2(S, \mathbb{G})$, where $w \in C^1(S, \mathbb{G})$. Then $u_a^b - u_{a+b} + u_b^a = w_{\pi a}^{\pi b} - w_{(\pi a)(\pi b)} + w_{\pi b}^{\pi a} = (\pi^* w)_a^b - (\pi^* w)_{a+b} + (\pi^* w)_b^a$ for all $a, b \in F$, and $v = u - \pi^* w \in Z^1(F, \mathbb{G}\pi)$. \Box

Corollary 3.4. There is an isomorphism

 $H^2(S,\mathbb{G}) \cong K^1(F,\mathbb{G}\pi) / \left(Z^1(F,\mathbb{G}\pi) + \pi^* C^1(S,\mathbb{G}) \right)$

which is natural in \mathbb{G} .

Proof. The isomorphism follows from Lemmas 3.2 and 3.3, since $H^2(S, \mathbb{G})$ $\cong SZ^2(S, \mathbb{G}) / SB^2(S, \mathbb{G})$; it is natural in \mathbb{G} since Δ is natural in \mathbb{G} . \Box

4. Now let \sqsubseteq be any compatible well order on F and $\mathcal{C} = \ker \pi$. We use P, Q, M, q from Section 1 to trim consistent cochains.

A partial 1-cochain on F with values in \mathbb{G} is a 1-cochain $u = (u_a)_{a \in F} \in C^1(F, \mathbb{G}\pi)$ such that $u_c = 0$ for all $c \in Q$. (Thus u is, in effect, a cochain on P only.) Under pointwise addition, partial 1-cochains constitute a subgroup $P^1(F, \mathbb{G}\pi) \cong \prod_{a \in P} G_{\pi a}$ of $C^1(F, \mathbb{G}\pi)$. Consistent partial 1-cochains constitute an abelian group $KP^1(F, \mathbb{G}\pi) = K^1(F, \mathbb{G}\pi) \cap P^1(F, \mathbb{G}\pi)$.

When $u \in C^1(F, \mathbb{G}\pi)$, define Πu by

$$(\Pi u)_a = u_a - u_{q(a)} \in G_{\pi a}$$

for all $a \in F$. If $a \in Q$, then a = q(a) and $(\Pi u)_a = 0$. Thus Π is a homomorphism of $C^1(F, \mathbb{G}\pi)$ into $P^1(F, \mathbb{G}\pi)$. In fact $\operatorname{Im} \Pi = P^1(F, \mathbb{G}\pi)$, since every partial cochain v satisfies $v_{q(a)} = 0$ and $\Pi v = v$. We see that Π is natural in \mathbb{G} .

Lemma 3.5. When $u \in C^1(F, \mathbb{G}\pi)$, then $u \in K^1(F, \mathbb{G}\pi)$ if and only if $\Pi u \in KP^1(F, \mathbb{G}\pi)$.

Proof. Let $u \in C^1(F, \mathbb{G}\pi)$ and $v = \Pi u$. Let $a, b, c \in F$ satisfy $\pi a = \pi b$. Let r = q(a) = q(b) and s = q(a+c) = q(b+c). Then

$$\begin{array}{rcl} v_{a+c} \ - \ v_a^c \ = \ (u_{a+c} - u_a^c) \ - \ (u_s - u_r^c), & \mbox{and} \\ v_{b+c} \ - \ v_b^c \ = \ (u_{b+c} - u_b^c) \ - \ (u_s - u_r^c). \end{array}$$

If u is consistent, then $u_{a+c} - u_a^c = u_{b+c} - u_b^c$ and $v_{a+c} - v_a^c = v_{b+c} - v_b^c$; hence v is consistent. If conversely v is consistent, then $v_{a+c} - v_a^c = v_{b+c} - v_b^c$ and $u_{a+c} - u_a^c = u_{b+c} - u_b^c$; hence u is consistent. \Box

5. Given a family $g = (g_x)_{x \in X} \in \prod_{x \in X} G_{\pi x}$ (with $g_x \in G_{\pi x}$ for all $x \in X$), define $Dg \in C^1(F, \mathbb{G}\pi)$ by

$$(Dg)_a = \sum_{x \in X, x \leq a} a_x g_x^{a-x} - \sum_{x \in X, x \leq q(a)} q(a)_x g_x^{q(a)-x}$$

for all $a = \sum_{x \in X} a_x x \in F$. We see that $(Dg)_a \in G_{\pi a} = G_{\pi q(a)}$, and that D is a homomorphism of $\prod_{x \in X} G_{\pi x}$ into $C^1(F, \mathbb{G}\pi)$ and is natural in \mathbb{G} .

Lemma 3.6. Im $D \subseteq KP^1(F, \mathbb{G}\pi)$. When $u \in C^1(F, \mathbb{G}\pi)$, then $u \in Z^1(F, \mathbb{G}\pi) + \pi^*C^1(S, \mathbb{G})$ if and only if $\Pi u \in \operatorname{Im} D$.

Proof. If $a \in Q$, then a = q(a) and $(Dg)_a = 0$; thus $Dg \in P^1(F, \mathbb{G}\pi)$. That $Dg \in K^1(F, \mathbb{G}\pi)$ can be proved directly but follows from Lemma 3.1 and the rest of the statement, as $u \in \text{Im } D$ implies $\Pi u = u$ and $u \in Z^1(F, \mathbb{G}\pi) + \pi^* C^1(S, \mathbb{G}) \subseteq K^1(F, \mathbb{G}\pi)$.

Let $u = z + \pi^* w \in Z^1(F, \mathbb{G}\pi) + \pi^* C^1(S, \mathbb{G})$, where $z \in Z^1(F, \mathbb{G}\pi)$ and $w \in C^1(S, \mathbb{G})$, so that $u_a = z_a + w_{\pi a}$ for all $a \in F$. Since z is a 1-cocycle we have $z_{a+b} = z_a^b + z_b^a$ for all $a, b \in F$; hence

$$z_a = \sum_{x \in X, x \leq a} a_x z_x^{a-x},$$

for every $a = \sum_{x \in X} a_x x \in F$. Since $\pi q(a) = \pi a$,

$$(\Pi u)_{a} = z_{a} + w_{\pi a} - z_{q(a)} - w_{\pi q(a)}$$
$$= \sum_{x \in X, x \leq a} a_{x} z_{x}^{a-x} - \sum_{x \in X, x \leq q(a)} q(a)_{x} z_{x}^{q(a)-x} = (Dg)_{a},$$

where $g = (z_x)_{x \in X}$. Thus $\Pi u \in \operatorname{Im} D$.

Conversely assume $\Pi u \in \text{Im } D$, so that there exists $g = (g_x)_{x \in X} \in \prod_{x \in X} G_{\pi x}$ such that

$$u_a - u_{q(a)} = \sum_{x \in X, x \leq a} a_x g_x^{a-x} - \sum_{x \in X, x \leq q(a)} q(a)_x g_x^{q(a)-x}$$

for all $a \in F$. For every $a \in F$ let

$$z_a = \sum_{x \in X, x \leq a} a_x g_x^{a-x} \in G_{\pi a}.$$

If $a, b \in F$, and $x \leq a + b$ (equivalently, $(a + b)_x > 0$), then $x \leq a$ or $x \leq b$ (or both); hence

$$\begin{aligned} z_{a+b} &= \sum_{x \in X, x \leq a, x \neq b} a_x g_x^{a+b-x} \\ &+ \sum_{x \in X, x \neq a, x \leq b} b_x g_x^{a+b-x} \\ &+ \sum_{x \in X, x \leq a, x \leq b} (a_x + b_x) g_x^{a+b-x} &= z_a^b + z_b^a; \end{aligned}$$

thus $z \in Z^1(F, \mathbb{G}\pi)$. Also $u_a - u_{q(a)} = z_a - z_{q(a)}$ for all a. Let $v_a = u_a - z_a$. Then $v \in C^1(F, \mathbb{G}\pi)$ and $v_a = v_{q(a)}$ for all a. Hence $\pi a = \pi b$ implies $v_a = v_b$ and $v = \pi^* w$, where $w \in C^1(S, \mathbb{G})$ is well defined by $w_{\pi a} = v_a$. Thus $u = z + \pi^* w \in Z^1(F, \mathbb{G}\pi) + \pi^* C^1(S, \mathbb{G})$. \Box

Corollary 3.7. There is an isomorphism

 $H^2(S,\mathbb{G}) \cong KP^1(F,\mathbb{G}\pi) / \operatorname{Im} D$

which is natural in \mathbb{G} .

Proof. We saw that $\Pi: C^1(F, \mathbb{G}\pi) \longrightarrow P^1(F, \mathbb{G}\pi)$ is a surjective homomorphism. Now $K^1(F, \mathbb{G}\pi) = \Pi^{-1} KP^1(F, \mathbb{G}\pi)$ by Lemma 3.5 and $Z^1(F, \mathbb{G}\pi) + \pi^* C^1(S, \mathbb{G}) = \Pi^{-1} \operatorname{Im} D$ by Lemma 3.6; therefore

$$K^{1}(F,\mathbb{G}\pi) / \left(Z^{1}(F,\mathbb{G}\pi) + \pi^{*}C^{1}(S,\mathbb{G}) \right) \cong KP^{1}(F,\mathbb{G}\pi) / \operatorname{Im} D.$$

This isomorphism is natural in \mathbb{G} since Π and D are natural in \mathbb{G} . The natural isomorphism $H^2(S,\mathbb{G}) \cong KP^1(F,\mathbb{G}\pi) / \operatorname{Im} D$ then follows from Corollary 3.4. \Box

6. Recall that a minimal cochain on S with values in \mathbb{G} is a family $u = (u_m)_{m \in M}$ such that $u_m \in G_{\pi m}$ for all $m \in M$. Under pointwise addition, minimal cochains constitute a subgroup $M^1(F, \mathbb{G}\pi) \cong \prod_{m \in M} G_{\pi m}$ of $C^1(F, \mathbb{G}\pi)$.

Every partial 1-cochain $u = (u_a)_{a \in F}$ has a restriction $Ru = (u_m)_{m \in M}$ to M, which is a minimal cochain. This defines a restriction homomorphism

 $R: P^1(F, \mathbb{G}\pi) \longrightarrow M^1(F, \mathbb{G}\pi)$ which is natural in \mathbb{G} .

Lemma 3.8. R is injective on $KP^1(F, \mathbb{G}\pi)$.

Proof. Let $u = (u_a)_{a \in F}$ be a consistent partial cochain such that Ru = 0(such that $u_m = 0$ for all $m \in M$). We use artinian induction on a to prove that $u_a = 0$ for all $a \in P$ (so that u = 0). Already $u_a = 0$ for all $a \in Q$ and for all $a \in M$. Let $a \in P \setminus M$. Then a > m for some $m \in M$, a = m + c for some $c \in F$, and b = q(m) + c satisfies $\pi b = \pi a$ and $b \sqsubset a$. Since u is consistent we have $u_{m+c} - u_{q(m)+c} = u_m^c - u_{q(m)}^c$, with $u_m = 0$, $u_{q(m)} = 0$, and $u_{q(m)+c} = u_b = 0$ by the induction hypothesis; hence $u_a = u_{m+c} = 0$. \Box

7. Lemma 3.8 shows that a consistent partial cochain is determined by its restriction to M. Therefore Corollary 3.7 can be restated in terms of minimal cochains; this will yield the main result. First we reconstruct consistent partial cochains from their restrictions.

Let u be a minimal cochain. When $a \supseteq b$ in F and $p: m^1, \ldots, m^k$ is an overpath from a to b, let

$$u_{a;p;b} = \sum_{1 \leq i \leq k} u_{m^i}^{t^i} \in G_{\pi a}$$

where t^i is obtained from the corresponding path

with

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b$$

by $t^i = p^i - q(m^i) = p^{i-1} - m^i$. Recall that $p^0, \ldots, p^k \in C_a$, so that $\pi p^i = \pi a$ and $u_{m^i}^{t^i} \in G_{\pi a}$ for all i.

We denote $u_{a;p;q(a)}$ by $u_{a;p}$. If $a \in Q$, then p is empty and $u_{a;p} = 0$. If $a = m \in M$, then $p = \{m\}$ and $u_{m;p} = u_m$.

When p is an overpath from a to b, then p is an overpath from a + c to b + c for any $c \in F$; the corresponding path is

$$a + c = p^{0} + c \xrightarrow{m^{1}} p^{1} + c \xrightarrow{m^{2}} \dots \xrightarrow{m^{k}} p^{k} + c = b + c,$$

$$p^{i} + c - q(m^{i}) = p^{i-1} + c - m^{i} = t^{i} + c, \text{ and}$$

$$u_{a+c;\,p;\,b+c} = u_{a;p;b}^c$$

If a = b, then p is empty and $u_{a;p;b} = 0$. If $p : m^1, \ldots, m^k$ is an overpath from a to b, and $q : n^1, \ldots, n^l$ is an overpath from b to c, then p + q:

 $m^1,\ldots,m^k,\,n^1,\ldots,n^l$ is an overpath from a to c, and

$$u_{a;\,p+q;\,c} = u_{a;p;b} + u_{b;q;c}$$

In particular, $u_{a;p;b} = u_{a;p+q} - u_{b;q}$ when q is an overpath from b to q(b) = q(a).

8. Independence of path for $u_{a;p;b}$ means that $u_{a;p;b} = u_{a;q;b}$ whenever p and q are overpaths from a to b; and similarly for $u_{a;p}$. These properties are equivalent and characterize the restrictions of consistent partial cochains:

Lemma 3.9. When $u \in M^1(F, \mathbb{G}\pi)$, then $u \in R(KP^1(F, \mathbb{G}\pi))$ if and only if $u_{a;p}$ is independent of path; and then $u_{a;p;b}$ is independent of path.

Proof. First let $v \in KP^1(F, \mathbb{G}\pi)$ and u = Rv. Let $p: m^1, \ldots, m^k$ be an overpath from a to b; let

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b$$

be the corresponding path and $t^i = p^i - q(m^i) = p^{i-1} - m^i$. Since $v \in KP^1(F, \mathbb{G}\pi)$ and $\pi m^i = \pi q(m^i)$ we have

$$v_{m^{i}}^{t^{i}} - v_{p^{i-1}} = v_{q(m^{i})}^{t^{i}} - v_{p^{i}}$$

and $u_{m^i}^{t^i} = v_{p^{i-1}} - v_{p^i}$. Therefore

$$u_{a;p;b} = \sum_{1 \leq i \leq k} u_{m^{i}}^{t^{i}} = v_{p^{0}} - v_{p^{k}} = v_{a} - v_{b}.$$

Hence $u_{a:p:b}$ is independent of path. In particular $u_{a:p}$ is independent of path.

Conversely let $u \in M^1(F, \mathbb{G}\pi)$. Assume that $u_{a;p}$ is independent of path. Then $v \in C^1(F, \mathbb{G}\pi)$ is well defined by

$$v_a = u_{a;p}$$

whenever p is an overpath from a to q(a). If $a \in Q$, then p is empty and $v_a = u_{a;p} = 0$; thus $v \in P^1(F, \mathbb{G}\pi)$. If $a = m \in M$, then $p = \{m\}$ and $v_m = u_{m;p} = u_m$; thus u = Rv. It remains to show that v is consistent: $v_{a+c} - v_{b+c} = v_a^c - v_b^c$ whenever $\pi a = \pi b$ and $c \in F$.

First let b = q(a). Let p be an overpath from a to b and q be an overpath from b + c to q(b + c) = q(a + c). Then p is an overpath from a + c to b + c and p + q is an overpath from a + c to q(a + c). Hence

$$v_{a+c} \ = \ u_{a+c;\,p+q}$$

$$= u_{a+c;\,p;\,b+c} + u_{b+c;\,q} = u_{a;p}^c + u_{b+c;\,q} = v_a^c + v_{b+c}$$

and $v_a^c - v_{a+c} = -v_{b+c} = -v_{q(a)+c}$. If now we assume only $\pi a = \pi b$, then q(a) = q(b) and

$$v_a^c - v_{a+c} = -v_{q(a)+c} = -v_{q(b)+c} = v_b^c - v_{b+c}$$

Thus v is consistent. \Box

9. Finally, recall that a minimal cocycle is a minimal cochain u such that $u_{a;p}$ is independent of path. Under pointwise addition minimal cocycles constitute a subgroup $MZ^1(F, \mathbb{G}\pi)$ of $MC^1(F, \mathbb{G}\pi)$.

A minimal coboundary is a minimal cochain u for which there exists $g = (g_x)_{x \in X} \in \prod_{x \in X} G_{\pi x}$ such that u = RDg; equivalently,

$$u_m = \sum_{x \in X, x \leq m} m_x g_x^{m-x} - \sum_{x \in X, x \leq q(m)} q(m)_x g_x^{q(m)-x}$$

for all $m \in M$. Under pointwise addition minimal coboundaries constitute a subgroup $MB^1(F, \mathbb{G}\pi)$ of $MC^1(F, \mathbb{G}\pi)$.

Lemma 3.9 shows that R induces an isomorphism of $KP^1(F, \mathbb{G}\pi)$ onto $MZ^1(F, \mathbb{G}\pi)$. Since Im $D \subseteq KP^1(F, \mathbb{G}\pi)$ it follows that $MB^1(F, \mathbb{G}\pi) =$ Im $RD \subseteq MZ^1(F, \mathbb{G}\pi)$. Then Corollary 3.7 yields

$$H^2(S,\mathbb{G}) \cong KP^1(F,\mathbb{G}\pi) / \operatorname{Im} D \cong MZ^1(F,\mathbb{G}\pi) / MB^1(F,\mathbb{G}\pi)$$

which is natural in \mathbb{G} since R is natural in \mathbb{G} . This proves Theorem 2.1. \Box

4. DEFINING VECTORS.

In this section we show that minimal cocycles are determined by relations between certain integer vectors, and that the computation of $H^2(S, \mathbb{G})$ is a finite task when S is finitely generated and \mathbb{G} is thin.

1. As before, S is a commutative monoid, $F = F_X$ is the free commutative semigroup on a set X, and $\pi: F \longrightarrow S$ is a surjective homomorphism; $G = G_X$ is the free abelian group on X, whose elements are finite linear combinations $a = \sum_{x \in X} a_x x$ with integer coefficients and can be regarded as integer vectors.

By Proposition 1.4, C is generated by all pairs (m, q(m)) with $m \in M$, which may be regarded as defining relations of S. The **defining vectors** of C

(or of S) are the integer vectors

 $v(m) = m - q(m) \in G$

with $m \in M$.

Proposition 4.1. The subgroup of G generated by the defining vectors is the Rédei group R of C; the universal group of S is isomorphic to G/R.

Proof. Recall that the Rédei group of \mathcal{C} is

$$R = \{a - b \in G \mid a \mathcal{C} b\}.$$

Since C is generated by all pairs (m, q(m)) with $m \in M$, it follows from Proposition I.2.9 that a-b is a sum of differences m-q(m) and q(m)-m when $a \in b$, so that a-b belongs to the subgroup K of G generated by the defining vectors. Hence $R \subseteq K$. Conversely every defining vector v(m) = m - q(m) is in R, since $m \in q(m)$; hence $K \subseteq R$.

Since C is generated by all pairs (m, q(m)) with $m \in M$, $S \cup \{0\}$ is generated, as a commutative monoid with zero, by the set X subject to all relations m = q(m) $(m \in M)$, with $m, q(m) \neq 0$ in $S \cup \{0\}$. By Proposition III.3.4, G(S) is the abelian group generated by X subject to all relations m = q(m); that is, $G(S) \cong G/K$. \Box

Proposition 4.2. Let S have a zero element and $Z = \pi^{-1}0 \subseteq F$ be the zero class. Let K be the subgroup of G generated by all defining vectors v(m) with $m \notin Z$. Then G/K is the universal abelian group $G(S \setminus 0)$ of the partial semigroup $S \setminus 0$.

Proof. Since Z is a C-class, $m \in Z$ implies $q(m) \in Z$. Since C is generated by all pairs (m, q(m)) with $m \in M$, S is generated, as a commutative monoid with zero, by the set X subject to all relations m = q(m) $(m \in M \setminus Z)$ and m = 0 $(m \in M \cap Z)$. By Proposition III.3.4, $G(S \setminus 0)$ is the abelian group generated by X subject to all relations m = q(m) $(m \in M \setminus Z)$; that is, $G(S \setminus 0) \cong G/K$. \Box

2. We now consider relations between defining vectors. We distinguish vector relations

$$R(r): \qquad \qquad \sum_{m \in M} r_m v(m) = 0,$$

in which every r_m is an integer and $r_m = 0$ for almost all m, and **positive relations**

$$R(r,s): \qquad \qquad \sum_{m\in M} r_m v(m) \ = \ \sum_{m\in M} s_m v(m),$$

in which every r_m and every s_m is a nonnegative integer and $r_m = s_m = 0$ for almost all m. The two types are essentially equivalent.

Lemma 4.3. Every positive relation is a trivial consequence of a finite sum of minimal positive relations; if X is finite, then there are only finitely many minimal positive relations.

Proof. When R = R(r,s): $\sum_{m \in M} r_m v(m) = \sum_{m \in M} s_m v(m)$ is a positive relation, let the *weight* of R be $\sum_{m \in M} (r_m + s_m)$; call R nontrivial when $r_m \neq s_m$ for some m, and essential when it is nontrivial but there is no m such that $r_m > 0$ and $s_m > 0$ (so that no cancellation is possible in R(r,s)). Every nontrivial positive relation can be simplified by cancellation in G into an essential positive relation; hence every nontrivial positive relation R(r,s) is a trivial consequence of an essential positive relation R(e, f) ($r_m - e_m = s_m - f_m \ge 0$ for all m).

Positive relations are ordered coefficientwise: $R(p,q) \leq R(r,s)$ if and only if $p_m \leq r_m$ and $q_m \leq s_m$ for all m. A *minimal* positive relation is a minimal nontrivial positive relation. Minimal positive relations are essential.

When
$$R(p,q) < R(r,s)$$
, then $\sum_{m \in M} p_m v(m) = \sum_{m \in M} q_m v(m)$ and $\sum_{m \in M} r_m v(m) = \sum_{m \in M} s_m v(m)$ imply

$$\sum_{m \in M} (r_m - p_m) v(m) = \sum_{m \in M} (s_m - q_m) v(m)$$

so that R(r-p, s-q) is a positive relation; then R(r,s) is the sum of R(p,q)and R(r-p, s-q). If R(r,s) is essential, then so are R(p,q) and R(r-p, s-q). Thus an essential positive relation which is not minimal is a sum of essential positive relations of lesser weight. Therefore every essential positive relation is a finite sum of minimal positive relations, and every positive relation is a consequence of a finite sum of minimal positive relations.

Under pointwise addition, pairs (r, s) of families $r = (r_m)_{m \in M}$, $s = (s_m)_{m \in M}$ of nonnegative integers constitute a finitely generated free commutative monoid F'. Minimal positive relations constitute an antichain of F'. If X is finite, then, by Dickson's Theorem, M is finite, all antichains of F' are finite, and there are only finitely many minimal positive relations. \Box

3. Relations between defining vectors arise when there is more than one path from an element of F to another. When $p: m^1, \ldots, m^k$ is an overpath from a to b, we saw that

$$a-b = \sum_{1 \leq i \leq k} \left(m^i - q(m^i) \right) = \sum_{1 \leq i \leq k} v(m^i)$$

We write this equality as

$$a-b = \sum_{m \in M} p_m v(m),$$

where p_m is the number of appearances of m in the sequence $p: m^1, \ldots, m^k$. When p and q are two overpaths from a to b, then

$$R(p,q):\sum_{m\in M}p_m\,v(m)=a-b=\sum_{m\in M}q_m\,v(m)$$

is a positive relation and there is a vector relation

$$R(p-q): \sum_{m \in M} (p_m - q_m) v(m) = 0.$$

A relation between defining vectors is **realized at** $a \in F$ when it arises in this fashion from a pair of overpaths from a to some b. Thus a vector relation R(r): $\sum_{m \in M} r_m v(m) = 0$ is realized at a when there exist $b \in F$ and overpaths p and q from a to b such that $r_m = p_m - q_m$ for all m (so that R(r) = R(p-q)); a positive relation $R(r,s) : \sum_{m \in M} r_m v(m) = \sum_{m \in M} s_m v(m)$ is realized at $a \in F$ when there exist $b \in F$ and overpaths p and q from a to b such that $r_m - p_m = s_m - q_m \ge 0$ for all m (so that R(r,s) is a trivial consequence of R(p,q)).

Lemma 4.4. When R(r,s) is realized at a, then $r_m = s_m$ whenever $\pi m \not\geq_{\mathcal{H}} \pi a$.

Proof. Let $b \in F$ and p, q be overpaths from a to b such that $r_m - p_m = s_m - q_m \ge 0$ for all $m \in M$. If $p_m > 0$ or $q_m > 0$ (if m appears in p or in q), then $m \ge c$ for some $c \in C_a$ and $\pi m \ge_{\mathcal{H}} \pi a$. Therefore $\pi m \not\ge_{\mathcal{H}} \pi a$ implies $p_m = q_m = 0$ and $r_m = s_m$. \Box

A relation of either kind is **realized in** a C-class C when it is realized at some $a \in C$ (then $b \in C$ in the above). In the case of a vector relation it may be assumed that b = q(a), since an overpath from b to q(a) = q(b) can be added to p and q if necessary, without changing $p_m - q_m$.

The trivial relation 0 = 0 is realized at every $a \in F$. A relation which is realized at a is realized at a + c for every $c \in F$, since overpaths from a to b are also overpaths from a + c to b + c. More surprisingly:

Proposition 4.5. Every relation between defining vectors is realized in some C-class (in the zero class, if S has a zero element).

Proof. First we prove the following: for every family $r = (r_m)_{m \in M}$ of nonnegative integers (with $r_m = 0$ for almost all $m \in M$) there exists an overpath p such that $p_m = r_m$ for all m. This is shown by induction on $|r| = \sum_{m \in M} r_m$. If |r| = 0, then the empty ovepath from any a to a serves. If |r| > 0, then $r_n > 0$ for some $n \in M$, and the induction hypothesis yields an overpath $p: m^1, \ldots, m^k$ from some $a \in F$ to some $b \in F$ such that $p_m = r_m$

for all $m \neq n$ and $p_n = r_n - 1$. In F there is an element c such that $c \geq b$ and $c \geq n$ (for instance, $b \vee n$). Then $p : m^1, \ldots, m^k$ is an overpath from a + (c - b) to b + (c - b) = c, $\{n\}$ is an overpath from n + (c - n) = c to q(n) + (c - n), and $q = p + \{n\} : m^1, \ldots, m^k, n$ is an overpath from a + (c - b)to q(n) + (c - n). We see that $q_m = r_m$ for all m.

If now R(r,s) is a positive relation, then the above provides an overpath p from some a to some b such that $p_m = r_m$ for all m and an overpath q from some c to some d such that $q_m = s_m$ for all m. Then

$$\begin{array}{rcl} a-b &=& \sum_{m\in M} p_m \, v(m) &=& \sum_{m\in M} r_m \, v(m) \\ &=& \sum_{m\in M} s_m \, v(m) &=& \sum_{m\in M} q_m \, v(m) &=& c-d. \end{array}$$

In F there is an element e such that $e \ge a$ and $e \ge c$; if S has a zero element, then the zero class Z is an ideal of F and we can arrange that $e \in Z$. Let f = (e - a) + b = (e - c) + d. Then p and q are overpaths from e to f, and $p_m = r_m, q_m = s_m$ for all m. In particular R(r,s) is realized in C_e . Thus every positive relation is realized in some C-class (in the zero class, if S has a zero element). Then so is every vector relation. \Box

4. We now show that minimal cocycles are determined by relations between the defining vectors, when the coefficient functor is thin.

Let $\mathbb{G} = (G, \gamma)$ be an abelian group valued functor on H(S). When $u = (u_m)_{m \in M}$ is a minimal cochain and $p : m^1, \ldots, m^k$ is as overpath from a to b, then

$$u_{a;p;b} = \sum_{1 \leq i \leq k} u_{m^i}^{t^i}$$

where $t^i = p^i - q(m^i) = p^{i-1} - m^i$ is provided by the corresponding path

$$a = p^0 \xrightarrow{m^1} p^1 \xrightarrow{m^2} \dots \xrightarrow{m^k} p^k = b.$$

If G is thin, then $\gamma_{\pi m^i, \pi t^i}$ depends only on m^i and $\pi(m^i + t^i) = \pi p^{i-1} = \pi a$ and is denoted by $\gamma_{\pi a}^{\pi m^i}$; hence

$$\begin{aligned} u_{a;p;b} &= \sum_{1 \leq i \leq k} u_{m^{i}}^{t^{i}} &= \sum_{m \in M, \pi m \geq \mathcal{H}} \pi a} p_{m} \gamma_{\pi a}^{\pi m} u_{m} \\ &= \sum_{m \in M_{a}} p_{m} \gamma_{\pi a}^{\pi m} u_{m} , \end{aligned}$$

where

$$M_a = \{ m \in M \mid \pi m \ge_{\mathcal{H}} \pi a \}.$$

Recall that $\pi m \ge_{\mathcal{H}} \pi a$ when m appears in p (when $p_m > 0$). Thus u is a minimal cocycle if and only if

$$Z(p,q,a): \qquad \sum_{m \in M_a} p_m \gamma_{\pi a}^{\pi m} u_m = \sum_{m \in M_a} q_m \gamma_{\pi a}^{\pi m} u_m$$

whenever p and q are overpaths from $a \in F$ to q(a).

Proposition 4.6. When \mathbb{G} is thin, a minimal cochain u is a minimal cocycle if and only if

$$Z(r,s,a): \qquad \sum_{m \in M_a} r_m \gamma_{\pi a}^{\pi m} u_m = \sum_{m \in M_a} s_m \gamma_{\pi a}^{\pi m} u_m$$

holds whenever $a \in F$ and the positive relation R(r,s) is realized at a.

Proof. If R(r,s) is realized at a, then R(r,s) is a trivial consequence of R(p,q) for some overpaths p and q from a to some $b \in C_a$; then Z(r,s,a) is a trivial consequence of Z(p,q,a), since $p_m = q_m = 0$ and $r_m = s_m$ when $m \notin M_a$ by Lemma 4.5. By cancellation in $G_{\pi a}$, Z(r,s,a) holds if and only if Z(p,q,a) holds. Similarly, when an overpath from b to q(b) = q(a) is added to p and q (to obtain overpaths from a to q(a)), then Z(p,q,a) is replaced by an equivalent condition. Hence u is a minimal cocycle if and only if every Z(r,s,a) holds. \Box

On the other hand, minimal coboundaries satisfy relations between defining vectors regardless of whether they are realized. Call a positive relation R(r,s) verifiable at $a \in F$ when $r_m = s_m$ whenever $m \notin M_a$ (whenever $\pi m \not\geq_{\mathcal{H}} \pi a$). By Lemma 4.4, every positive relation which is realized at a is verifiable at a.

Proposition 4.7. When \mathbb{G} is thin and u is a minimal coboundary, then

$$Z(r,s,a): \qquad \sum_{m \in M_a} r_m \gamma_{\pi a}^{\pi m} u_m = \sum_{m \in M_a} s_m \gamma_{\pi a}^{\pi m} u_m$$

holds whenever $a \in F$ and the positive relation R(r,s) is verifiable at a.

Proof. Let u be a minimal coboundary, so that

$$u_m = \sum_{x \in X, x \leq m} m_x g_x^{\pi(m-x)} - \sum_{x \in X, x \leq q(m)} q(m)_x g_x^{\pi(q(m)-x)}$$

for all $m = \sum_{x \in X} m_x x \in M$, where $g_x \in G_{\pi x}$ for all $x \in X$. Since \mathbb{G} is thin and $\pi m = \pi q(m)$,

$$u_{m} = \sum_{x \in X, x \leq m} m_{x} \gamma_{\pi m}^{\pi x} g_{x} - \sum_{x \in X, x \leq q(m)} q(m)_{x} \gamma_{\pi m}^{\pi x} g_{x}$$

for all $m \in M$.

Let $R(r,s): \sum_{m\in M} r_m v(m) = \sum_{m\in M} s_m v(m)$ be verifiable at a. Then $\sum_{m\notin M_a} r_m v(m) = \sum_{m\notin M_a} s_m v(m)$, since $r_m = s_m$ when $m \notin M_a$;

hence
$$\sum_{m \in M_a} r_m v(m) = \sum_{m \in M_a} s_m v(m)$$
 and
 $\sum_{m \in M_a} r_m v(m)_x = \sum_{m \in M_a} s_m v(m)_x$

for every $x \in X$. Let $X_a = \{x \in X \mid \pi x \geq_{\mathcal{H}} \pi a\}$. Then $x \leq m \in M_a$ implies $\pi x \geq_{\mathcal{H}} \pi m \geq_{\mathcal{H}} \pi a$ and $x \in X_a$; $x \leq q(m) \in M_a$ implies $x \in X_a$; and

$$\begin{split} \sum_{m \in M_a} r_m \gamma_{\pi a}^{\pi m} u_m \\ &= \sum_{m \in M_a} \sum_{x \in X, x \leq m} r_m m_x \gamma_{\pi a}^{\pi x} g_x \\ &- \sum_{m \in M_a} \sum_{x \in X, x \leq q(m)} r_m q(m)_x \gamma_{\pi a}^{\pi x} g_x \\ &= \sum_{m \in M_a} \sum_{x \in X_a} r_m m_x \gamma_{\pi a}^{\pi x} g_x \\ &- \sum_{m \in M_a} \sum_{x \in X_a} r_m q(m)_x \gamma_{\pi a}^{\pi x} g_x \,, \end{split}$$

since $m_x = 0$ if $x \nleq m$ and $q(m)_x = 0$ if $x \nleq q(m)$,

$$= \sum_{m \in M_a} \sum_{x \in X_a} r_m v(m)_x \gamma_{\pi a}^{\pi x} g_x$$

$$= \sum_{m \in M_a} \sum_{x \in X_a} s_m v(m)_x \gamma_{\pi a}^{\pi x} g_x$$

$$= \sum_{m \in M_a} \sum_{x \in X, x \leq m} s_m m_x \gamma_{\pi a}^{\pi x} g_x$$

$$- \sum_{m \in M_a} \sum_{x \in X, x \leq q(m)} s_m q(m)_x \gamma_{\pi a}^{\pi x} g_x$$

$$= \sum_{m \in M_a} r_m \gamma_{\pi a}^{\pi m} u_m,$$

since $m_x = 0$ if $x \nleq m$ and $q(m)_x = 0$ if $x \nleq q(m)$. Thus u satisfies Z(r,s,a). \Box

5. Computing $H^2(S, \mathbb{G})$ with Theorem 2.1 still looks like an infinite task even when S is finite, since independence of path must be established at every $a \in F$. When F is finitely generated and \mathbb{G} is thin, we show that minimal cocycles are characterized by finitely many conditions $u_{a;p} = u_{a;q}$; hence the computation of $H^2(S, \mathbb{G})$ a finite task. It seems likely that this result holds even if \mathbb{G} is not thin.

Proposition 4.8. When \mathbb{G} is thin and X is finite, a minimal cochain u is a minimal cocycle if and only if if satisfies finitely many conditions Z(r,s,a), in which $a \in F$ and the positive relation (r,s) is realized at a.

Proof. Let F'' be the set of all ordered pairs (r,a) where $r = (r_m)_{m \in M}$ is a family of nonnegative integers and $a \in F$. Under pointwise addition, F'' is a free commutative monoid $F'' \cong F_M \times F$.

Realizability yields a binary relation \mathcal{R} on F'':

 $(r,a) \mathcal{R}(s,b) \iff a = b \text{ and } R(r,s) \text{ is realized at } a.$

We see that \mathcal{R} is reflexive and symmetric. If moreover $(r,a) \mathcal{R}(s,b)$, so that R(r,s) is realized at a, then, for any t, R(r+t, s+t) is a trivial consequence of R(r,s) and is realized at a, R(r+t, s+t) is realized at a+c for any $c \in F$, and $(r+t, a+c) \mathcal{R}(s+t, b+c)$; thus \mathcal{R} admits addition.

By Proposition I.2.9, the congruence $\overline{\mathbb{R}}$ on F'' generated by \mathbb{R} is given by: $(r,a) \ \overline{\mathbb{R}} (s,b)$ if and only if there exist $k \ge 0$ and $(r^0, a^0), \ldots, (r^k, a^k) \in F''$ such that $(r,a) = (r^0, a^0), (r^{i-1}, a^{i-1}) \ \mathbb{R} (r^i, a^i)$ for all $1 \le i \le k$, and $(r^k, a^k) = (s,b)$. Then $a = a^0 = \ldots = a^k = b$ and the equalities

$$\sum_{m \in M} r_m^0 v(m) = \sum_{m \in M} r_m^1 v(m) = \dots = \sum_{m \in M} r_m^k v(m)$$

show that R(r,s) is a consequence of $R(r^0, r^1)$, $R(r^1, r^2)$, ..., $R(r^{k-1}, r^k)$.

By Proposition 4.6, a minimal cochain u is a minimal cocycle if and only if it satisfies Z(r,s,a) whenever $(r,a) \mathcal{R}(s,a)$. If $(r,a) \overline{\mathcal{R}}(s,a)$, then in the above $Z(r^0, r^1, a), Z(r^1, r^2, a), \ldots, Z(r^{k-1}, r^k, a)$ hold in $G_{\pi a}$; by the equalities

$$\sum_{m \in M_a} r_m^0 \gamma_{\pi a}^{\pi m} u_m = \sum_{m \in M_a} r_m^1 \gamma_{\pi a}^{\pi m} u_m$$
$$= \dots = \sum_{m \in M_a} r_m^k \gamma_{\pi a}^{\pi m} u_m$$

Z(r,s,a) is a consequence of $Z(r^0, r^1, a)$, $Z(r^1, r^2, a)$, ..., $Z(r^{k-1}, r^k, a)$ and holds in $G_{\pi a}$ if u is a minimal cocycle. Hence a minimal cochain u is a minimal cocycle if and only if it satisfies Z(r,s,a) whenever $(r,a) \overline{\mathcal{R}}(s,a)$.

Since M is finite it follows from Rédei's Theorem that $\overline{\mathcal{R}}$ is finitely generated. Therefore a minimal cochain u is a minimal cocycle if and only if it satisfies finitely many conditions Z(r, s, a), with $a \in F$ and $(r, a) \overline{\mathcal{R}}(s, a)$, each of which is a consequence of finitely many conditions Z(r, s, a), with $a \in F$ and (r, s) realized at a. \Box

A more explicit choice of conditions to verify is given in Grillet [1995F] but no longer seems particularly helpful.

6. We conclude this section with an example. More general examples are given in Grillet [2000T].

Example 4.9. Let S be the commutative nilmonoid

$$S = \langle c,d | c^3 = c^2 d = c d^2 = d^4 = 0, c^2 = c d = d^3 \rangle;$$

S is the Volkov semigroup (Example III.3.6) with an identity adjoined.

Let $X = \{x, y\}$ and $\pi x = c$, $\pi y = d$. Then $\mathcal{C} = \ker \pi$ has four one element classes, one three element class $C = \{2x, x+y, 3y\} = \pi^{-1}(cd)$, and one infinite class $J = \pi^{-1}0$ which is the ideal of F generated by $\{3x, 2x+y, x+2y, 4y\}$.

The lexicographic order \sqsubseteq on F

 $ix + jy \sqsubset kx + ly \iff i < k, \quad \mathrm{or} \quad i = k, \; j < l$

is a compatible well order on F. Under \sqsubseteq the least element of C is 3y; the least element of J is 4y.

Thus Q is the coideal generated by 4y and x; M and the defining vectors are given by the table

m	q(m)	v(m)
l=5y	4y	y
m = x + y	3y	x-2y
n=2x	3y	2x - 3y

The defining vectors v(m) with $m \notin J$ are v(m) and v(n). They constitute a basis of G since $\begin{vmatrix} 1 & -2 \\ 2 & -3 \end{vmatrix} = 1$. Hence the universal abelian group of $S \setminus 0$ is trivial, by Proposition 4.2.

We see that v(n) = 2v(m) + v(l). The only C-class in which nontrivial positive relations are realized is J; by Proposition 4.5, every positive relation is realized in J. (More sophisticated examples are given in the next chapter.)

Let \mathbb{G} be a thin abelian group valued functor on H(S). A minimal cochain u consists of $u_l \in G_0$, $u_m \in G_{cd}$, and $u_n \in G_{cd}$.

In J, $2x + y \xrightarrow{n} 4y$ and $2x + y \xrightarrow{m} x + 3y \xrightarrow{m} 5y \xrightarrow{l} 4y$ are paths from a = 2x + y to q(a) = 4y. Hence p : n and q : m, m, l are overpaths from a to q(a) (and the relation v(n) = 2v(m) + v(l) is realized at 2x + y).

Therefore minimal cocycles satisfy

$$u_n^0 = u_{a;p} = u_{a;q} = 2u_m^0 + u_l;$$

this is according to Proposition 4.6.

Conversely let u be a minimal cochain such that $u_n^0 = 2u_m^0 + u_l$. Let $a \in F$ and let p and q be overpaths from a to q(a). We may assume that $a \in J$ (otherwise p = q). We have

$$\begin{array}{ll} a-q(a) &=& p_l\,y+p_m\,(x-2y)+p_n\,(2x-3y) \\ &=& q_l\,y+q_m\,(x-2y)+q_n\,(2x-3y); \end{array} \\ \end{array}$$

hence $p_m + 2p_n = q_m + 2q_n$ and $p_l - 2p_m - 3p_n = q_l - 2q_m - 3q_n$. Adding twice the first equality to the second yields $p_l + p_n = q_l + q_n$. Hence

Thus minimal cocycles are characterized by the single condition $u_n^0 = 2u_m^0 + u_l$; this is according to Proposition 4.8. Hence there is an isomorphism $u \mapsto (u_m, u_n)$ of $MZ^1(F, \mathbb{G}\pi)$ onto $G_{cd} \oplus G_{cd}$. A peek at minimal coboundaries suggests that u_m and u_n are uniquely determined by $g = u_n - 2u_m$ and $h = 2u_n - 3u_m$ (namely, $u_m = h - 2g$ and $u_n = 2h - 3g$), and provides a more useful isomorphism $\theta : u \mapsto (u_n - 2u_m, 2u_n - 3u_m)$ of $MZ^1(F, \mathbb{G}\pi)$ onto $G_{cd} \oplus G_{cd}$.

Next, u is a minimal coboundary if and only if there exist $g \in G_c$ and $h \in G_d$ such that $u_l = 5g^0 - 4g^0 = g^0$, $u_m = (g^d + h^c) - 3g^d = h^c - 2g^d$, and $u_n = 2h^c - 3g^d$. Then $\theta(u) = (g^d, h^c)$ and θ sends $MB^1(F, \mathbb{G}\pi)$ onto $\operatorname{Im} \gamma_{c,d} \oplus \operatorname{Im} \gamma_{d,c} \subseteq G_{cd} \oplus G_{cd}$. Hence

$$H^2(S,\mathbb{G}) \;\cong\; (G_{cd} \,/\, \operatorname{Im} \gamma_{c,d}) \oplus (G_{cd} \,/\, \operatorname{Im} \gamma_{d,c}).$$

If \mathbb{G} is surjecting (as well as thin), then $\gamma_{1,c}$, $\gamma_{1,d}$, and $\gamma_{1,cd}$ are surjective; hence $\gamma_{c,d}$, and $\gamma_{d,c}$ are surjective and $H^2(S,\mathbb{G}) = 0$.

5. PARTIALLY FREE SEMIGROUPS.

Partially free semigroups were defined in Section X.6. At this time they constitute the only large class of finite commutative semigroups with a formula for $H^2(S, \mathbb{G})$: namely,

$$H^2(S,\mathbb{G}) \cong \bigoplus_{c \in \operatorname{Irr}(S)} G_{e(c)} / \operatorname{Im} \gamma_{e(c)}^c,$$

where \mathbb{G} is thin, Irr (S) is the set of all irreducible elements of S, and e(c) is the idempotent in the archimedean component of c. This result is from Grillet [1995P].

Other formulas yield $H^2(S, \mathbb{G})$ when S has one defining relation (Proposition 2.4) or is cyclic (Corollary 2.5). But no such formula seems to exist for semigroups with two generators (Grillet [2000T]).

1. Let S be finite and partially free. By Corollary XII.5.5 we may assume that S is a monoid. Since S is group-free, $\leq_{\mathcal{H}}$ is a partial order relation on S, which we denote by \leq .

By Proposition X.2.2, S is generated by Irr (S) and has a standard presentation $\pi : F = F_X \longrightarrow S$, where X is finite, π is injective on X, and $\pi(X) = \text{Irr } (S)$. The direction set \mathcal{D} , extent cells E_A , coideals H_A , and trace congruences \mathcal{C}_A of the congruence \mathcal{C} induced by π are as in Chapter X. The idempotents of S are all $e_A = \pi(I_A)$ with $A \in \mathcal{D}$, where $I_A = E_A \cap A$. Since S is partially free, all trace congruences are Rees congruences and

 $a \ {\mathbb C} \ b$ if and only if $a, b \in E_A$ and $p'_A a = p'_A b$ for some $A \in {\mathbb D}$.

Put any total order \preccurlyeq on X and order F lexicographically: $\sum_{x \in X} a_x x \sqsubset \sum_{x \in X} b_x x$ if and only if there exists $t \in X$ such that $a_x = b_x$ for all $x \prec t$ and $a_t < b_t$. (Then $x \sqsubset y$ in F if and only if $x \succ y$ in X.) Since X is finite, \sqsubseteq is a compatible well order on F.

We show that the defining vectors contain a basis of G.

Lemma 5.1. Let $x \in X$, $c = \pi x$, and D be the smallest element of \mathcal{D} that contains x. There exists $m(x) \in M$ such that: $m(x) \in E_D \cap D$; $\pi m(x) = e(c)$; if $x \in A \in \mathcal{D}$, then $\pi m(x) \ge \pi a$ for all $a \in E_A$; and

$$v(m(x)) \;=\; x\;+\; \sum_{y\in X} t_{x,y} \, y$$

with $t_{x,y} = 0$ unless $y \prec x$ and $y \in D$.

Proof. First take any $m \in I_D$, so that $\pi m = e_D$.

If $A \in \mathcal{D}$, $A \subset D$, then $x \notin A$ by the choice of D. By (E2), $kx \in E_D$ for some k > 0. Then $c^k = \pi(kx) = e_D$ and $\pi m = e(c)$.

If $x \in A \in \mathcal{D}$, then $D \subseteq A$, $\epsilon(\pi a) = e_A$ for all $a \in E_A$ by Proposition X.3.4, and $\pi m = e_D \ge e_A \ge \pi a$ by Proposition X.3.3.

We now choose $m(x) = m \in I_D$ as follows. Let w be the least element of the C-class I_D under \sqsubseteq . Since $x \in D = D(w)$ we have $w + x \in I_D$. Let m(x) = m be least under \sqsubseteq such that $m \in I_D$ and $m_x = w_x + 1$. In particular, $w \sqsubset m \sqsubseteq w + x$.

We show that $m \in M$. First $m \notin Q = \{a \in F \mid q(a) = a\}$, since $w \ \mathbb{C} m$ and $w \sqsubset m$. To prove that m is minimal with this property (under \leq) it suffices to show that $m - y \in Q$ for every $y \in X$, $y \leq m$. Note that $y \leq m$ implies $y \in D$.

Assume $m - y \in E_D$. If $y \neq x$, then $(m - y)_x = m_x = w_x + 1$; since $m - y \in I_D$ and $m - y \sqsubset m$ this contradicts the choice of m. Therefore y = x. Hence $m - x \in I_D$, $m - x \sqsupseteq w$, $m \sqsupseteq w + x$, m = w + x, and $m - y = m - x = w \in Q$.

Now let $m - y \notin E_D$. Then $y \neq x$. Also $m - y \in E_B$ for some $B \in D$, $B \subset D$. Then $D \nsubseteq B$ and $x \notin B$. Let q = q(m - y). Then $q \sqsubseteq m - y$ and $q \ C \ m - y$; hence $q \in E_B$, and $q \in D$ since D is a union of C-classes. Since S is partially free we also have $p'_B q = p'_B(m - y)$. In particular $q_x = (m - y)_x = m_x$. Hence q + y has the following properties: $q + y \in D$, $q + y \in E_D$ (since $q + y \ C \ m$), $q + y \sqsubseteq m$, and $(q + y)_x = q_x = m_x = w_x + 1$. By the choice of m, q + y = m, and $m - y = q \in Q$.

This proves $m \in M$. We have w = q(m). Hence $v(m)_x = m_x - w_x = 1$. Also $v(m)_y = m_y - w_y = 0$ if $y \notin D$, since $m, w \in D$. Since $w \sqsubset m$ there exists $t \in X$ such that $w_y = m_y$ for all $y \prec t$ and $w_t < m_t$; in particular $t \preccurlyeq x$. If $t \prec x$, then $w_y = m_y$ for all $y \prec t$ and $w_t < m_t$ implies $w + x \sqsubset m$, whereas $m \sqsubseteq w + x$; therefore t = x, and $v(m)_y = m_y - w_y = 0$ for all $y \prec x$. \Box

Lemma 5.1 implies that $(v(m(x)))_{x \in X}$ is a basis of G. In fact:

Corollary 5.2. For every $A \in \mathcal{D}$, $(v(m(x)))_{x \in X \cap A}$ is a basis of G_A .

Proof. $G_A = G(A) \subseteq G$ is the free abelian group on $X \cap A$. When $m \in M \cap E_A$, then $q(m) \in E_A$ and $m \in q(m)$ implies $p'_A m = p'_A q(m)$ since S is partially free; hence $v(m) \in G_A$. In particular $v(m(x)) \in G_A$ for all

 $x \in X \cap A$. When $x \in X \cap A$, then $D \subseteq A$ in Lemma 5.1 and

$$v(m(x)) = x + \sum_{y \in X \cap A, \ y \prec x} t_{x,y} y$$

Hence the defining vectors v(m(x)) with $x \in X \cap A$ constitute a basis of G_A . \Box

2. By Corollary 5.2 there is for every $m \in M \cap E_A$ an equality

$$v(m) = \sum_{x \in A} k_{m,x} v(m(x)) \in G_A$$

with integer coefficients $k_{m,x}$.

Lemma 5.3. For every $m \in M \cap E_A$ the vector relation

$$v(m) = \sum_{x \in A} k_{m,x} v(m(x))$$
 (*)

is realized in the C-class C_m of m.

Proof. If m = m(x) for some $x \in A$, then (*) is trivial, and is realized in C_m . Hence we may assume that $m \neq m(x)$ for all $x \in A$.

We have $m + A \subseteq C_m$, since $m \in E_A$. Let $p : m^1, \ldots, m^k$ consist of mand of $-k_{m,x}$ copies of m(x) for every $x \in X \cap A$ with $k_{m,x} < 0$, arranged in any order. Let $q : n^1, \ldots, n^l$ similarly consist of $k_{m,x}$ copies of m(x) for every $x \in X \cap A$ with $k_{m,x} > 0$, arranged in any order. Then $\sum_i v(m^i) = \sum_j v(n^j)$, by (*). Also $p_m - q_m = 1$ and $q_{m(x)} - p_{m(x)} = k_{m,x}$ for every $x \in X \cap A$. If we can show that p and q are overpaths from some $a \in C_m$ to some $b \in C_m$, then they will realize (*).

We have $m(x) \in A$ for all $x \in X \cap A$, and $m^i \in A$ for all i > 1. Also $v(m^i) \in G_A$ by Corollary 5.2. If $a \in m + A$ has sufficiently large coordinates, we can arrange by induction on i that $p^{i-1} \ge m^i$ and $p^i - m = p^{i-1} - m + v(m^i) \in A$ for all i. Then p is an overpath from a to $b = a + \sum_i v(m^i) \in m + A$. Similarly, if $a \in m + A$ has sufficiently large coordinates, then q is an overpath from a to $a + \sum_j v(n^j)$, and $\sum_j v(n^j) = b$ since $\sum_i v(m^i) = \sum_j v(n^j)$. \Box

3. Now let \mathbb{G} be a thin abelian group valued functor on H(S).

Proposition 5.4. When S is partially free and \mathbb{G} is thin, a minimal cochain $u = (u_m)_{m \in M}$ is a minimal cocycle if and only if

$$u_m = \sum_{x \in X \cap A} k_{m,x} \gamma_{\pi m}^{\pi m(x)} u_{m(x)}$$
 (**)

whenever $A \in \mathcal{D}$ and $m \in M \cap E_A$.

Proof. By Proposition 4.6, a minimal cocycle $u = (u_m)_{m \in M}$ must satisfy

(**) for all $A \in \mathcal{D}$ and $m \in M \cap E_A$, since (*) is realized at C_m by Lemma 5.3. (Note that $\pi m(x) \ge \pi m$ for all $x \in X \cap A$, by Lemma 5.1, since $m \in E_A$.)

Conversely assume that (**) holds for all $A \in \mathcal{D}$ and $m \in M \cap E_A$. Let p and q be overpaths from a to b. Then $\sum_{m \in M} p_m v(m) = b - a = \sum_{m \in M} q_m v(m)$, with $m \in M_a = \{m \in M \mid \pi m \ge \pi a\}$ whenever $p_m > 0$ or $q_m > 0$. Also $a \in b$ and $a, b \in E_A$ for some $A \in \mathcal{D}$.

If m appears in either p or q, then $m \leq c$ for some $c \in C_a \subseteq E_A$ and $m \in E_B$ for some $B \subseteq A$ by (E2). Then

$$v(m) = \sum_{x \in X \cap B} k_{m,x} v(m(x))$$
 and $u_m = \sum_{x \in X \cap B} k_{m,x} \gamma_{\pi m}^{\pi m(x)} u_{m(x)}$.

(By Lemma 5.1, $\pi m(x) \ge \pi m$ when $x \in X \cap B$ and $m \in E_B$). Let $k_{m,x} = 0$ when $m \in E_B$ and $x \in X \setminus B$. Then $v(m) = \sum_{x \in X \cap A} k_{m,x} v(m(x))$ and

Since the defining vectors v(m(x)) with $x \in X \cap A$ constitute a basis of G_A (Corollary 5.2), this implies

$$\sum_{m \in M} p_m k_{m,x} = \sum_{m \in M} q_m k_{m,x}$$

for all $x \in X \cap A$ and

$$\sum_{m \in M_a} p_m k_{m,x} = \sum_{m \in M_a} q_m k_{m,x}$$

for all $x \in X \cap A$, since $m \in M_a$ whenever $p_m > 0$ or $q_m > 0$. Since $\pi m(x) \ge \pi a$ when $x \in A$ by Lemma 5.1, we now have

$$\begin{split} u_{a;p;b} &= \sum_{m \in M_a} p_m \gamma_{\pi a}^{mm} u_m \\ &= \sum_{B \subseteq A} \sum_{m \in E_B \cap M_a} p_m \gamma_{\pi a}^{mm} u_m \\ &= \sum_{B \subseteq A} \sum_{m \in E_B \cap M_a} \sum_{x \in X \cap B} p_m k_{m,x} \gamma_{\pi a}^{mm(x)} u_{m(x)} \\ &= \sum_{B \subseteq A} \sum_{m \in E_B \cap M_a} \sum_{x \in X \cap A} p_m k_{m,x} \gamma_{\pi a}^{mm(x)} u_{m(x)} \\ &= \sum_{m \in M_a} \sum_{x \in X \cap A} p_m k_{m,x} \gamma_{\pi a}^{mm(x)} u_{m(x)} \\ &= \sum_{m \in M_a} \sum_{x \in X \cap A} q_m k_{m,x} \gamma_{\pi a}^{mm(x)} u_{m(x)} \\ &= u_{a;q;b} \,. \end{split}$$

Thus $u_{a:p:b}$ is independent of path. \Box

4. Proposition 5.4 shows that a minimal cocycle is determined by its values on all m(x). Hence

$$MZ^1(S,\mathbb{G}) \cong \bigoplus_{x \in X} G_{\pi m(x)};$$

the isomorphism $\Psi: MZ^1(S, \mathbb{G}) \longrightarrow \bigoplus_{x \in X} G_{\pi m(x)}$ sends $u = (u_m)_{m \in M} \in MZ^1(S, \mathbb{G})$ to $(u_{m(x)})_{x \in X}$. We now compute $MB^1(S, \mathbb{G})$.

Lemma 5.5. $\Psi(MB^1(S,\mathbb{G})) = \Theta(\bigoplus_{x \in X} \operatorname{Im} \gamma_{\pi m(x)}^{\pi x}))$, where Θ is the automorphism of $\bigoplus_{x \in X} G_{\pi m(x)}$ defined for all $v = (v_x)_{x \in X} \in \bigoplus_{x \in X} G_{\pi m(x)}$ by

$$(\Theta v)_{x} = v_{x} + \sum_{y \in X, \, t_{x,y} \neq 0} t_{x,y} \, \gamma_{\pi \, m(x)}^{\pi \, m(y)} \, v_{y} \, .$$

Proof. Let D be the smallest element of \mathcal{D} containing x. By Lemma 5.1, $\pi x \ge \pi m(x)$ and $v(m(x)) = x + \sum_{y \in X} t_{x,y} y$, where $t_{x,y} \ne 0$ implies $y \prec x$, $y \in D$, and (by Lemma 5.1 applied to y) $\pi m(y) \ge \pi m(x)$, since $m(x) \in E_D$. Hence Θ is well defined. Since $t_{x,y} \ne 0$ implies $y \prec x$, the matrix of Θ is triangular with 1's on the diagonal and Θ is an isomorphism.

Let
$$u = \delta g \in MB^1(S, \mathbb{G})$$
, where $g = (g_x)_{x \in X} \in \bigoplus_{x \in X} G_{\pi x}$. Then
 $u_m = \sum_{x \in X, x \leq m} m_x \gamma_{\pi m}^{\pi x} g_x - \sum_{x \in X, x \leq q(m)} q(m)_x \gamma_{\pi q(m)}^{\pi x}$.

Let $x \in X$, D be the smallest element of \mathcal{D} containing $x, y \in X$, and m = m(x). By Lemma 5.1, $m \in I_D = E_D \cap D$, $y \leq m$ implies $y \in D$, $q(m) \in I_D$, and $y \leq q(m)$ implies $y \in D$. Since $\pi y \geq \pi m(y) \geq \pi m(x)$ for all $y \in D$ and $m - q(m) = v(m) = x + \sum_{y \in X} t_{x,y} y$, we have

$$\begin{split} u_{m(x)} &= \sum_{y \in X, \, y \leq m} \, m_y \, \gamma_{\pi m}^{\pi y} g_y \, - \, \sum_{y \in X, \, y \leq q(m)} \, q(m)_y \, \gamma_{\pi \, q(m)}^{\pi y} \\ &= \sum_{y \in X \cap D} \, m_y \, \gamma_{\pi m}^{\pi y} g_y \, - \, \sum_{y \in X \cap D} \, q(m)_y \, \gamma_{\pi \, q(m)}^{\pi y} \\ &= \sum_{y \in X \cap D} \, v(m)_y \, \gamma_{\pi m}^{\pi y} g_y \, = \, \gamma_{\pi m}^{\pi x} g_x \, + \, \sum_{y \in D} \, t_{x,y} \, \gamma_{\pi m}^{\pi y} g_y \\ &= \, \gamma_{\pi m}^{\pi x} g_x \, + \, \sum_{y \in X, \, t_{x,y} \neq 0} \, t_{x,y} \, \gamma_{\pi m}^{\pi y} g_y \, = \, (\Theta v)_x \,, \end{split}$$

where $v = (\gamma_{\pi m(x)}^{\pi x} g_x)_{x \in X}$. Thus $\Psi u = \Theta v$. Hence $\Psi(MB^1(S, \mathbb{G})) = \Theta(\bigoplus_{x \in X} \operatorname{Im} \gamma_{\pi m(x)}^{\pi x})$. \Box

We can now prove

Theorem 5.6. When S is a finite partialy free commutative semigroup and

 \mathbb{G} is thin, there is an isomorphism

$$H^2(S,\mathbb{G}) \cong \bigoplus_{c \in \operatorname{Irr}(S)} G_{e(c)} / \operatorname{Im} \gamma^c_{e(c)},$$

which is natural in G.

Proof. We may assume that S is a monoid. Since Ψ and Θ are isomorphisms,

$$H^{2}(S,\mathbb{G}) \cong MZ/MB \cong \Theta^{-1}\Psi MZ / \Theta^{-1}\Psi MB$$

= $(\bigoplus_{x \in X} G_{\pi m(x)}) / (\bigoplus_{x \in X} \operatorname{Im} \gamma_{\pi m(x)}^{\pi x})$
= $\bigoplus_{x \in X} (G_{\pi m(x)} / \operatorname{Im} \gamma_{\pi m(x)}^{\pi x})$
= $\bigoplus_{c \in \operatorname{Irr}(S)} G_{e(c)} / \operatorname{Im} \gamma_{e(c)}^{c}$,

since $\pi: F \longrightarrow S$ induces a bijection of X onto Irr (S) and $x \in X$ implies $c = \pi x \in \text{Irr}(S)$ and $\pi m(x) = e(c)$, by Lemma 5.1. The isomorphism is natural in \mathbb{G} , since Ψ and Θ are natural in \mathbb{G} . \Box