
Chapter XIII. 

THE OVERPATH METHOD. 

We saw in Chapter XII that the cohomology group H 2 ( S, G) can be computed 

by means of functions of two variables in S, namely, symmetric 2-cocycles. The 

overpath method computes H 2 ( S, G) by means of functions of one variable, one 

for every defining relation of S in any suitable presentation of S. This makes 

the computation of H 2 ( S, G) a finite task whenever S is finitely generated. 

Applications compute H 2 (S, G) when S is cyclic or, more generally, has 

only one defining relation, and when S is partially free. This last application 

depends rather heavily on the construction of group-free congruences in Chapter 

X. We also show that strand bases give rise to minimal cocycles. The main results 

are from Grillet [ 1992], [ 1995F], [ 1996C], [ 1995P], [2000Z]. 

1. OVERPATHS. 

The overpath method depends on certain properties of free commutative semi

groups and congruences on these semigroups. 

1. In what follows F = Fx is the free commutative monoid on a set X. We 
return to the additive notation for F and write the elements of F as finite linear 

combinations a = I::xEX ax x of elements of X, with the usual order: 

a~ b if and only if ax~ bx for all x EX; 

the length of a = I::xEX ax x is Ia I = I::xEX ax. 

Proposition 1.1. On every free commutative monoid F there exists an order 

relation [;;; such that: 

(1) (F, [;;;) is well-ordered; 

( 2) if a ~ b in F, then a [;;; b; 

(3) if a[;;; bin F, then a+c C b+cforall c E F. 
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328 XIII. THE OVERPATH METHOD. 

Proof. Well-order X, then define [;;;; as follows: a C b if and only if either 
lal < lbl, or Ia I = lbl, a -1- b and the least x E X such that ax -j. bx satisfies 
ax > bx. (This is the degree lexicographic order on F.) 

An element ofF of length l is the sum x 1 + ... + xl of l elements x1 [;;;; 

x 2 [;;;; ... [;;;; xl of X. Each set Fl = {a E F I lal = l} is a subset of the 

lexicographic product xl = X X 0 0 0 X X and is well-ordered by [;;;; 0 Then F is 
the ordinal sum of F0 , F1 , ... , Fz, ... and is well-ordered by !;;;; • 

If a ~ b in F, then either a = b or lal < lbl; in either case a [;;;; b. 

Finally let a C b and e E F; then either Ia I < lbl, or Ia I = lbl and the 
least x such that ax -j. bx satisfies ax > bx. In the first case, Ia + el < lb + el. 
In the second case, the least x such that ax -j. bx is also the least x such 
that ax + ex -j. bx + ex, and satisfies ax + ex > bx + ex. In either case 
a+e [;;;; b+e. 0 

We call an order relation [;;;; on F a compatible well order when it has 
properties (1), (2), and (3) in Proposition 1.1. Explicit compatible well orders can 
be constructed in various ways, besides the degree lexicographic order, particularly 
if X = { x 1, x2 , ... , x n } is finite (see e.g. Adams & Loustaunau [ 1994 ]); if for 
instance p1, ... , Pn are the first n prime numbers, then 

b b a1 an < b1 bn 
alxl +···+anxn [;;;; 1X1 +···+ nxn {=::} P1 ···Pn =Pl ···Pn 

is a compatible well order on F, the prime order on F of Rosales [ 1995]. 

A lexicographic order [;;;; on F is defined from a well order ~ on X by: 
a C b if and only if a -j. b and the least x EX such that ax -1- bx has ax < bx. 
Then a < b implies a c b. Also, x -< y in X implies x :::J y in F. (The usual 
definition requires ax > bx, but then a< b does not imply a :::J b.) 

Proposition 1.2. If F is finitely generated, then every lexicographic order 
on F is a compatible well order. 

Proof. If a C b and e E F, then, in the above, the least x such that ax -j. bx 

is also the least x such that ax +ex -j. bx +ex, so that ax +ex > bx +ex and 
a+ e C b +c. If X is finite, then (F, !;;;;) is a finite lexicographic product of 

copies of N+ and is well ordered. D 

When F is finitely generated, every total order !;;;; on F with property (2) 
is a well order: if indeed there is an infinite sequence a 1 :::J a 2 :::J • • · :::J an :::J 

an+l :::J ···,then An= {t E F I t;;;;) an} is an ideal ofF for every n, 

by (2), and A1 ~ A2 ~ · · · ~ An ~ An+l ~ · · ·, a flagrant contradiction of 

Corollary VI.l.3; therefore the totally ordered set (F, [;;;;) satisfies the descending 
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chain condition and is well ordered. Compatible well orders are then also known 

as a linear admissible orders. 

If on the other hand X is infinite, then the first generators x1 -< x2 -< · · · -< 
xn -< · · · of X yield a nonempty subset x1 =:J x2 =:J • • • =:J xn =:J • • • of F with no 
least element and F is not well ordered by its lexicographic orders, even though 

they satisfy (2) and (3). 

2. In what follows, !;;; is any compatible well order on F. 

Let e be a congruence on F. Under !;;; the e-class C a of a E F has a least 

element q( a) (the function minimum of Rosales [ 1995]). By definition, 

a e q(a); c e a implies c;;;;) q(a); and a e b ¢:::::} q(a) = q(b). 

Then F is the disjoint union F = P U Q, where Q = Q(e) = { q(a) I a E F} = 

{ q E F I a e q ====? a ;;;;) q} is the set of all least elements of all e-classes, and 

P = P(e) = F\Q = {a E F I a =:1 q(a) }. 

If e is the equality, then P = 0. 

Lemma 1.3. P is an ideal ofF. 

Proof. When a E P and c E F, then a =:J q(a), a+ c e q(a) + c, 

a+c =:J q(a) +c ;;;;) q(a+c), and a+c E P. 0 

In what follows, M = M (e) is the set of all minimal elements of P, under 

the usual order ~; since (F, ~) satisfies the descending chain condition, P is 

generated as an ideal of F by M. 

Proposition 1.4. The congruence e is generated by all pairs (m, q(m)) 

with mE M(e). 

Proof. Let JY( be the congruence on F generated by all pairs ( m, q( m)) with 

mE M. Then JY( ~ e, since me q(m) for all mE M. We show by artinian 

induction that a JY( q(a) for every a E F (this also follows from Proposition 1.5 

below); then a e b implies aM q(a) = q(b) M b, so that e = M. 

We have a JY( q(a) for all a E Q (then a = q(a)) and for all a E M (by 

definition of M). Let a E P. Then a ~ m for some m E M and a= m + t 
for some t E F. Let b = q(m) + t. Then aM b, since m M q(m), a e b 
since me q(m), and a =:J b, since m =:J q(m). Then b M q(b) by the induction 

hypothesis, and a JY( b JY( q(b) = q(a). 0 

Proposition 1.4 implies Redei's Theorem. If indeed F is finitely generated, 

then M is finite by Dickson's Theorem (Corollary VI.l.3), and Proposition 1.4 

shows that e is finitely generated (Grillet [ 1993R]). 
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Conversely Rosales [ 1995] devised an algorithm which constructs q from any 
finite set of generators of e; this provides an explicit algorithm for the solution 
of the word problem in any finite commutative presentation. 

3. Given the congruence e, we now regard the free c.m. F as a directed 
graph with labeled edges, in which the vertices are the elements of F and an 

edge a ~ b from a to b, labeled by m, is an ordered pair (a, m) such that 
mEM(e), m~a,and a-b=m-q(m). Then a=m+t and b=q(m)+t, 
where t =a-m= b- q(m) E F; hence q(m) ~ b, a e b (since me q(m) ), 
and a =:J b (since m =:J q(m) ). 

A descending path from a E F to b E F is a sequence a = p0 , ... ,pk = b 
of elements of F and edges 

where k ~ 0. (We index sequences of elements of F by superscripts, to keep 
subscripts for coordinates.) Equivalently, a path from a to b consists of a se

quence a = p0 , ... ,pk = b of elements of F and a sequence m 1, ... , mk of 
elements of M(e) such that mi ~ pi-1 and pi-1 -pi = mi- q(mi) for all 

1 < . < k Th ( i) < i o k C d o k . . l = z = . en q m = p , p , ... , p E a an p =:J ... =:J p ; m parttcu ar, 

a e b and a~ b (with a= b if k = 0). Also a- b = 2::1::;i::;k (pi-1 - pi) = 

"El~i~k (mi- q(mi)). 

An overpath from a E F to b E F is the sequence p: ml, ... , mk E M(e) 
of labels in a path 

mk k 
----t p = b, 

from a to b. A path from a to b is determined by p0 = a and its overpath, since 
in the above the relation pi-1 - pi = mi- q(mi) determines pi from pi-1 and 

mi. In particular, 

a-b = "2:1~i~k(mi-q(mi)). 

The empty sequence is an overpath from any a E F to itself. If 

0 ml 1 m2 
a = p ----t p ----t 

is a path from a to b, and 
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is a path from b to c, then 

a=po ~ ~pk=b=qo ~--· ~qk=c 
is a path from a to c. Hence if p : m 1, ... , mk is an overpath from a to b, and 

1 l· hfr b h 1 k 1 l· q : n , ... , n IS an overpat om to c, t en p + q : m , ... , m , n , ... , n IS 

an overpath from a to c. 

Let c E F. If (a, m) is an edge from a to b, then (a+ c, m) is an edge 
from a + c to b + c. Hence if 

is a path from a to b, then there is a path with the same labels from a + c to 

b +c. Thus if m 1, ... , mk is an overpath from a to b, then m 1, ... , mk is an 
overpath from a + c to b + c. · 

The following result is a well-ordered version of Proposition 1.2.9, and shows 
how e is generated by all pairs ( m, q( m)) with m E M. 

Proposition 1.5. For every a E F, there exist a path from a to q(a) and 
an overpath from a to q( a). 

Proof. This is proved by artinian induction on a. If a = q( a) E Q, then 
there is an empty path from a to q( a) . Now let a E P. Then a ~ m for some 
m E M. Let b = q( m) + t, where a = m + t. Then (a, m) is an edge from a 
to b. Hence a e b, a :::J b, and the induction hypothesis yields a path from b to 

q(b). Adding a ~ b yields a path from a to q(a) = q(b). 0 

4. The process of well ordering F to select "minimal" generators of e (as 
in Proposition 1.4) is reminiscent of Gr5bner bases. Indeed let K be a field 
and K[X] be the polynomial ring with the set X of commuting indeterminates. 

Ordering F also orders the monomials Xa = flxEX xax E K[X] (where 

a = L::xEX ax x E F). 

Proposition 1.6. Let e be a congruence on F and I(e) be the ideal of 

K[X] generated by all Xa- Xb with a e b. The set 

G(M) = {Xm- xq(m) I mE M} 

is a Grabner basis of I(e). 

Proof. First we note that I = I(e) is generated by all Xa - Xq(a), since 

a e b implies q(a) = q(b) and Xa- Xb = (Xa- Xq(a)) - (Xb- Xq(b)). 
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We show that the ideal L(I) generated by the leading tenns of polynomials in 
I coincides with the ideal L( G) generated by the leading tenns of polynomials in 
G(M); this is one of the criteria for Grobner bases (see e.g. Adams & Loustaunau 
[ 1994 ], Theorem 1.6.2). 

When a E P, then a :::J q(a) and the leading tenn of Xa- Xq(a) is Xa. 

Since P is an ideal of F by Lemma 1.3, L(I) is generated by all Xa with 
a E P. Now a E P implies, as above, a ~ m for some m E M, a = m + t for 

a m t 
some t E F, and X = X X E L( G) . Therefore L( I) ~ L( G); conversely 
L(G) ~ L(I) since G(M) ~ I. Thus L(G) = L(I). 0 

We give a direct proof that I(e) is generated by G(M). Let J be the ideal 

of K[X] generated by G(M). We show by induction on a that Xa- Xq(a) E J 

forallaEF. WhenaEQ,thena=q(a) andXa-Xq(a) EJ. LetaEP. As 
in the proof of Proposition 1.4, a ~ m for some m E M and a = m + t for some 

t E F. Let b = q( m) + t. Then a :::J b since m :::J q( m). Xb - Xq(b) E J by the 

induction hypothesis, Xa - Xb = Xt ( Xm - Xq( m)) E J, and Xa - Xq( a) = 

(Xa- Xb)- (Xb- Xq(b)) E J. Thus Xa- Xq(a) E J for all a E F; 

therefore I = J. 

2. MAIN RESULT. 

The main result in this chapter is the computation of H 2 ( S, G) by the overpath 

method. As a first application we find H 2 ( S, G) when S has a presentation 
with only one defining relation; for instance, when S is cyclic. We also relate 

H 2 ( S, G) to the strand bases in Chapter XI. 

1. When S is a commutative semigroup which does not have an identity 

element, we saw that H2(S,G) ~ H 2(S1,G'), where G' extends G to H(S1) 

so that G~ = 0 (Corollary XII.4.5). Hence we may as well start with a monoid S. 

In what follows S is a commutative monoid and G = (G,"f) is an abelian 
group valued functor on H(S); 1r : F ---+ S is a surjective homomorphism, 
where F is the free c.m. on some set X, and e = ker 1r; G is any compatible 
well order on F; M and q are as in Section 1. By Proposition 1.4, e is generated 
by all ( m, q( m)) with m E M (e); this provides a presentation of S as the c.m. 
generated by X subject to all relations m = q( m) with m E M. 
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A minimal cochain on S with values in G (short for minimal 1-cochain) is 
a family u = (um)mEM such that um E G1rm for all mE M. 

Let u be a minimal cochain. Let a E F, p : m 1, ... , mk be an overpath 
from a to b, and 

b h d. h c. b . h" h 0 k c h e t e correspon mg pat 1rom a to , m w 1c p , ... , p E a, so t at 

1rpi = 1ra for all i. Define 

where ti =pi- q(mi) = pi-l- mi. A minimal cocycle on S with values in G 

is a minimal cochain u such that ua;p = ua;q whenever p and q are overpaths 

from a to q(a) (so that ua;p does not depend on p). 

Let g = (gx)xEX E ITxEX G1rx be a family such that 9x E G1rx for every 
generator x E X ofF. A minimal cochain 8g is defined by 

(8 ) _ "' 1r(m-x) _ "' ( ) 1r(q(m)-x) 
g m - wxEX, x;;;m mx 9x wxEX, x;;;q(m) q m X 9x 

for every m = l:xEX mx x E M. A minimal cochain constructed in this fashion 

is a minimal coboundary. Under pointwise addition, minimal coboundaries, 
minimal cocycles, and minimal cochains constitute abelian groups 

MB 1 (S,G) ~ MZ1 (S,G) ~ MC1(S,G) = ITmEM G1rm · 

The main result in this chapter is: 

Theorem 2.1. For every commutative monoid S there is an isomorphism 

which is natural in G. 

2. The proof of Theorem 2.1 occupies the next section. First we consider 
an example: when S has a commutative presentation (as a semigroup or as a 
monoid) 

with a single defining relation, in which we assume, not unreasonably, that ri + 
si > 0 for all i ~ n and that ri =f si for some i. Other examples are given in 
Grillet [2000T] and in Sections 4 and 5. 

We can set up the surjective homomorphism 1r : F = Fx ---+ S so that X 
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contains distinct elements x 1, ... , xn such that 1rx1 = a 1 , ... , 1rxn = an. Then 

e = ker 1r is the congruence on F generated by the single pair ( r, s), where 

r = 2:1:-::;i:<S;n ri xi and 8 = 2:1:-::;i:<S;n 8i xi · 

The congruence e is readily described: 

Lemma 2.2. a e b if and only if there exists a sequence p0 , ... , pk of 

elements ofF such that k ~ 0, a = p0 , pk = b, and either 

pi-1 - r =pi-s ~ 0 for all i ~ 1 (A) 

or 

pi-1 - s =pi - r ~ 0 for all i ~ 1 (B) 

Proof. By Proposition 1.2.9, a e b if and only if there exists a sequence 

p0 , ... , pk of elements of F such that k ~ 0, a = p0 , pk = b, and, for every 
i ~ 1, either 

(a) 

or 

(b) 

If (a) holds for i < k and (b) holds for i + 1, then pi-1 - r =pi-s= pi+1 - r 

and pi, pi+1 may be deleted from the sequence. Similarly if (b) holds for i < k 

and (a) holds fori+ 1, then pi-1 - s =pi- r = pi+1 - s and again pi, pi+1 

may be deleted from the sequence. After all such deletions, either (a) holds for 
all i, or (b) holds for all i . 0 

Now let ~ be any compatible well order on F. We may assume that r :::J s. 
When a e b and (A) holds, then in Lemma 2.2 pi-1 - r =pi-s ~ 0 implies 

pi-1 = r+t and pi= s+t, where t = pi-1 -r =pi-s~ 0, so that pi-1 :::Jpi 

for all i ~ 1 and a :::J b; if (B) holds, then similarly a c:: b. If therefore a E P, 

so that a e q(a) and a :::J q(a), then (A) holds, a -r = p0 - r ~ 0, and a~ r. 
On the other hand, r e s and r :::J s, so that r E P. This proves: 

Lemma 2.3. M(e) has just one element, namely r; and q(r) = s. 

Let 

d r1 r2 Tn 81 82 8n S = a 1 a 2 · · · an = a1 a 2 · · · an = 1rr = 1r s E . 

By Lemma 2.3, a minimal cochain consists of u E Gd, and MC1(S,G) = Gd. 
Moreover there is only one overpath from any c E F to q(c), which is a sequence 

of r 's. Hence every minimal cochain is a minimal cocycle and MZ1 (S, G) = G d. 
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A minimal cochain u E G d is a minimal coboundary if and only if there 

exists a family g = (gx)xEX such that 9x E G1rx for every x E X and 

u "' r 91r(r-x) 
wxEX, x~r X X 

Let 'Yi : Ga. --+ G d be defined by: 
t 

where 

d'· r 1 ri-1 ri-1 ri+1 r h d 
t a 1 · · · ai-l ai ai+l .. · ann (w en ri > 0), an 

d~l 81 Bi-1 Si-1 Bi+1 Bn ( h 
2 a 1 .. · ai-l ai ai+l .. · an w en si > 0). 

Then u is a minimal co boundary if and only if there exist gi = 9x. E Ga. such 
t t 

that u = 2:1~i~n 'Yi9i· Hence MB1(S,G) = L: 1~i~nlm'Yi and: 

Proposition 2.4. When S has a commutative semigroup or monoid pre
sentation with a single nontrivial defining relation, then, with the notation as 
above, 

H 2 (S,G) ~ Gd/(L:l~i~n Im1J 

Corollary 2.5. When S = ( a I ar = ar+p ) is cyclic with index r and 

period p, then H 2 (S,G) ~Gar/ plm 'Ya ar-1· 
' 

Proposition 2.4 becomes simpler when G is thin. Then d ~!J-C ai for all i 

(since ri + si > 0) and 'Yai,d~ = 1:i when ri > 0, 'Ya.,d~' = 1:i when si > 0, 
t • t 

and 'Yi = (ri - si) 1:i for all i. Hence 

Corollary 2.6. When S has a commutative semigroup or monoid presen
tation with a single nontrivial defining relation and G is thin, then, with the 
notation as above, 

H 2(S,G) 9E Gd/(2:1~i~n (ri- si) Im1:i). 

If for instance S = ( a I ar = ar+p ) is cyclic with index r and period p 

and G =A is constant (G 8 =A and 'Ys.t = lA for all s E Sandt E 8 1 ), then 
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H 2 (S, G) ~ AjpA; thus H 2 (S, G) ~ Ext (H, A), where H is the subgroup 

{ ak I k ~ r} ~ ZP of S. 

3. Finally we show that strand bases in Chapter XI give rise to minimal 
cocycles. This result is from Grillet [ 1996C], [200 1 C]. 

In what follows, e is a subcomplete congruence on a free commutative 
monoid F and e* is its group-free hull; 1r : F -----t S and 7r* : F -----t S* 
are surjective homomorphisms which induce e and e* respectively. If e is 
complete, then S* ~ Sj'){ and one expects the cohomology of S* to show 
up somewhere in the construction of S and e. Minimal cocycles provide this 
connection. 

The direction set, extent cells, strand groups, strand bases, and notation are 
as in Chapter XI. Also ~ is a compatible well order on F; the mapping q and 
sets M and Q are those of e* , not of e. 

Lemma 2.7. Let s be a strand base of e. For every m E M(e*) let 

sm = sm- m- sq(m) + q(m) E Gm. 

If m 1 , m 2 , ... , mk is an overpath from a to b, then 

sa - sb -a+ b- Sml - · · · - Smk E Ra = f?v. 
Proof. Let 

be a path from a to b, so that pi-1 = mi + ti, pi = q(mi) + ti for some ti E F 

and pi-1 - pi= mi- q(mi), for every 1 ~ i ~ k. Then Ra = Rpo = RP1 = 

· · · = RPk = Rv by (R2), since a = p0 , p1, ... , pk = b are all in the same 

e* -class, and 

by (S+) in Lemma XI.6.l. Adding these equalities yields sa- sb- a+ b- sm1-

···-skER D m a· 

With b = q( a), Lemma 2. 7 implies that a strand base of e is completely 
determined modulo strand groups by its values on M U Q. 

2. The strand group functor lK = (K, 'lj;) of e is the thin abelian group 
valued functor on F je* defined as follows (Section XI.4). To every e* -class 
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C*, K assigns the group Ka = Gal Ra, which does not depend on the choice 

of a E C* . When C* ~:H D* in FIe*, then a :_;;: b for some a E C* , b E D*, 

Ga s:;; Gb, Ra s:;; Rv by (R3), and 7/J/; : Ka --+ Kb sends g + Ra to g + Rv 
and does not depend on the choice of a E C* and b E D* (as long as a :_;;: b). 
Since S* ~ FIe* we may regard lK as a thin abelian group valued functor on 
S* ; then lK is isomorphic to the extended Schlltzenberger functor of S, which 
is the usual Schlltzenberger functor if S is complete (Proposition XI.4.8). 

Proposition 2.8. Let e be a subcomplete congruence on F and s be a 

strand base of e. For every m E M(e*) let 

s:n = sm+J\n = sm-m-sq(m)+q(m)+f\n E GmiJ\n. 

Then s* is a minimal 1-cocycle on FIe* with values in the strand group functor 
lK of e. Moreover, two strand bases s and t define the same congruence if and 
only if s* = t*. 

*. . . I h. Wh 1 k. hfi Proof. s IS a m1mma coc am. en p : m , ... , m IS an overpat rom 
a to b and 

0 ml 1 m2 
a = p ----+ p ----+ 

is the corresponding path, then 

by Lemma 2.7. Hence s~·p·b is independent of path and s* is a minimal cocycle. 
' ' 

By Proposition XI.5.2, two strand bases s and t define the same congruence 
if and only if a e* b implies sa- sb- ta + tb ERa(= Ilv). Since me* q(m) 
this implies 

(sm- m- sq(m) + q(m))- (tm- m- tq(m) + q(m)) E J\n 

for all mE M and s* = t*. Conversely assume that s* = t*. Then s~·p·b = t~·p·b 
' ' ' ' 

and 

sa - sb - a + b + Ra = ta - tb - a + b + Ra 

whenever p is an overpath from a to b. Hence sa- sq(a) - ta + tq(a) E Ra 

for all a. If a e* b, then q(a) = q(b), sb- sq(a)- tb + tq(a) E Rb = Ra, and 

sa - sb - ta + tb E Ra . Thus s and t are equivalent. D 

Proposition 2.8 embeds the set of equivalence classes of strand bases (and the 
set of all subcomplete congruence with the given strand groups) into the abelian 

group MZ1(Fie* ,JK). 
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3. PROOF OF MAIN RESULT. 

I . In what follows, S is a commutative monoid, <G = ( G, 1') is an abelian 
group valued functor on H(S), F = Fx is the free c.s. on a set X, and 
1!' : F ---+ S is a surjective homomorphism; we prove Theorem 2.1. 

We begin the proof by lifting 1- and 2-cochains from S to F. 

The homomorphism 11' : F ---+ S extends to a functor 1!' : H (F) ---+ H ( S) . 
Hence <G = ( G, 1') lifts to an abelian group valued functor <G11' = ( <G1!', ')'11') = <Go 1!' 
on H(F); <G1!' assigns G1ra to a E F and 1'1ra1rt to (a,t): a---+ at. Thus 

' l = g1rt, where g E G 1ra, l is provided by <G11', and g1rt is provided by <G. 
Note that <G11' is thin, since F is cancellative. 

Every 1-cochain u = (ua)aES E C 1(S,<G) lifts to a 1-cochain 1!'*u = uo1!' E 

C 1 ( F, <G1!') defined by 

(11'*u)a = u'Tra E G7ra 

for all a E F. If u is a 1-cocycle, so that uab = u~ + ub' for all a, b E S, then 

( * ) 1rb 1ra ( * )b ( * )a 11' u ab = u(1ra)(1rb) = u1ra + u1rb = 11' u a+ 11' u b 

and 11'* u is a 1-cocycle; thus 11'* Z 1 ( S, <G) ~ Z 1 ( F, !G-11') • 

Similarly every symmetric 2-cochain u = ( ua) aES E SC2 ( S, <G) lifts to a 

symmetric 2-cochain 11'* u = u o 1!' E C 2 ( F, <G1!') defined by 

(11'*u)a,b = u1ra,1rb E G1r(ab) 

for all a, b E F. If u is a symmetric 2-cocycle, so that u~ b + uab c = ua be + ub' c 
' ' ' ' 

for all a, b, c E S, then 

(11'*u)~,b + (11'*u)ab,c = u;~,1rb + u(1ra)(1rb),7rc 

= u1ra, (1rb)(1rc) + u;b,1rc = (11'*u)a,bc + (11'*u)b,c 

for all a, b, c E F, and 11'*u is a symmetric 2-cocycle. If u = 8v is a symmetric 

2-coboundary, so that ua b = v~ - v ab + vb' for all a, b E S, then 
' 

( * ) 1rb 1ra ( 5: * ) 11' u a,b = v1ra - v(1ra)(1rb) + v1rb = u1!' v a,b 

for all a, b E S, and 1!'*u is a symmetric 2-coboundary. Thus 

11'* SZ2 (S,<G) ~ SZ2 (F,<G11') and 11'* SB2 (S,G) ~ SB2 (F,<G1!'). 
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Since H 2 ( F, !G1r) = 0 (Theorem XII.3 .4 ), symmetric 2-cocycles on S lift to 
symmetric 2-coboundaries on F and can therefore be constructed by projecting 
the coboundaries of 1-cochains on F. This marks the birthplace of Theorem 2.1. 

2. A 1-cochain u E C 1 ( F, !G1r) is consistent (relative to 1r) when 

1ra = 1rb implies ua+c - ub+c = u~ - ub for all c E F. 

Under pointwise addition consistent 1-cochains form a subgroup K 1 ( F, !G1r) of 

C1 ( F, !G1r). We shall see that consistent 1-cochains on F are precisely those 
whose coboundaries project to symmetric 2-cocycles on S. First we show: 

Lemma 3.1. K 1(F,!G1r) contains Z 1(F,!G1r) and 1r*C1(S,!G). 

Proof. If u E Z 1(F,IG1r), then 1ra = 1rb implies l1ra 1rc = l1rb 1rc and 
' ' c a b c ua - ua+c = uc = uc = ub - ub+c · 

If u = 1r*v, then 1ra = 1rb implies ua = v1ra = v1rb = ub, l1ra,1rc = l1rb,1rc' 

1r(a+c) = 1r(b+c), uac = ubc' and u~ -ua+c = ub-ub+c· D 

When u E K 1(F,IG1r), then 1ra = 1rb, 1rc = 1rd imply l1rc 1ra = l1rc 1rb' 
' ' 

Hence a homomorphism .6. : K 1(F,!G1r) ----+ SC2 (S,!G) is well defined by 

(.6.u)1ra 7rc = u~- ua+c + u~ = (8u)a c 
' ' 

for all a, c E F. It is immediate that .6. is natural in !G. 

Lemma 3.2. Im .6. = SZ2 ( S, !G) . 

Proof . .6.u is a symmetric 2-cocycle, since 8u is a cocycle and 

(.6.u);~,1rb + (.6.u)c1ra)(1rb), 1rc = (8u)~,b + (8u)a+b, c 

= (8u)a, b+c + (8u)b,c = (.6.u)1ra, (1rb)(1rc) + (.6.u);b,7rc" 

Conversely lets E SZ2(S,!G). Then 1r*s E SZ2(F,!G1r). Since H 2 (F,!G1r) 
= 0 we have 1r* s = 8u for some u E C1 (F, !G1r), so that 

c + a 8 1ra,1rc = ua- ua+c uc 

for all a,c E F. If 1ra = 1rb, then 
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'"'f1rc, 1rb = '"'f1rc, 1ra, u~ = u~, and u~- ua+c = ub- ub+c. Thus u E K 1 (F, <G?T). 

We see that .6.u = s. D 

3. Lemma 3.2 shows that H 2 ( S, <G) is determined by consistent cochains. 

Lemma 3.3. When u E K 1 ( F, <G?T), then .6. u E SB2 ( S, <G) if and only if 
u E Z 1(F,<G1r) + 1r*C1(S,<G). 

Proof. If u = v + 1r*w, where v E Z 1(F,<G1r) and w E C1(S,<G), then 

u E K 1 (F,<G1r) by Lemma 3.1 and 

(.6.u)1ra,1rb = v~- va+b + vb' + w;~- w(1ra)(1rb) + w;g = (8w)1ra,1rb 

for all a,b E F, since v E Z 1(F,<G1r), so that .6.u = 8w E SB2 (S,<G). 

Conversely assume .6. u = 8w E SB2 ( S, <G), where w E C 1 ( S, <G) . Then 

b a 1rb 1ra ( * ) b ( * ) ( * )a ua- ua+b + ub = w1ra- w(1ra)(1rb) + w1rb = 7T w a- 7T w a+b + 7T w b 

for all a,b E F, and v = U-?T*w E Z 1(F,<G7T). D 

Corollary 3.4. There is an isomorphism 

H 2 (s, <G) ~ K 1 (F, <G1r) 1 (Z1 (F,<G1r) + 7T*C1(S, <G)) 

which is natural in <G. 

Proof. The isomorphism follows from Lemmas 3.2 and 3.3, since H 2 (S,<G) 

~ SZ2 ( s, <G) I SB2 ( S, <G) ; it is natural in <G since .6. is natural in <G. D 

4. Now let [;;;; be any compatible well order on F and ~ = ker 7T. We use 

P, Q, M, q from Section 1 to trim consistent cochains. 

A partiall-cochain on F with values in <G is a 1-cochain u = (ua)aEF E 

C1 (F,<G1r) such that uc = 0 for all c E Q. (Thus u is, in effect, a cochain 

on P only.) Under pointwise addition, partial 1-cochains constitute a subgroup 

P 1 ( F, <G?T) ~ ITaEP G Jra of C1 ( F, <G?T) . Consistent partial 1-cochains constitute 

an abelian group KP1 (F,<G1r) = K 1(F,<G1r) n P 1(F,<G1r). 

When u E C1(F,<G1r), define IIu by 

(IIu)a = ua - uq(a) E G1ra 

for all a E F. If a E Q, then a = q(a) and (IIu)a = 0. Thus II is a 

homomorphism of C1(F, <G1r) into P 1(F, <G1r). In fact Im II = P 1(F, <G1r), 

since every partial cochain v satisfies vq(a) = 0 and IIv = v. We see that II is 

natural in <G . 
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Lemma 3.5. When u E C 1 ( F, Gn), then u E K 1 ( F, Gn) if and only if 
IIu E KP1(F,Gn). 

Proof. Let u E C1(F,Gn) and v = IIu. Let a,b,c E F satisfy na = nb. 
Let r = q(a) = q(b) and s = q(a+c) = q(b+c). Then 

(ua+c- u~) - (us- u~), and 

(ub+c- ug) - (us- u~). 

If . . h c - c d c - c . u IS consistent, t en ua+c- ua - ub+c- ub an va+c- va - vb+c- vb, 
hence v is consistent. If conversely v is consistent, then v a+c - v~ = vb+c - vg 

d c c h . . 0 an ua+c - ua = ub+c - ub; ence u IS consistent. 

5. Given a family g = (gx)xEX E IlxEX G1rx (with gx E G1rx for all 

X EX), define Dg E C1(F,Gn) by 

(D ) _ """ a-x _ """ ( ) q(a)-x g a - L.JxEX, x~a axgx L.JxEX, x~q(a) q a x 9x 

for all a= L:xEX axx E F. We see that (Dg)a E G1ra = G1rq(a)• and that D 

is a homomorphism of IlxEX G1rX into C1(F,Gn) and is natural in G. 

Lemma 3.6. Im D ~ KP1(F,Gn). When u E C1(F,Gn), then u E 

Z 1(F,Gn) + n*C1(S,G) if and only if IIu E Im D. 

Proof. If a E Q, then a= q(a) and (Dg)a = 0; thus Dg E P 1(F,Gn). 

That Dg E K 1(F,Gn) can be proved directly but follows from Lemma 3.1 and 

the rest of the statement, as u E Im D implies IIu = u and u E Z 1 ( F, Gn) + 
n*C1(S,G) ~ K 1(F,Gn). 

Let u = z + n*w E Z 1(F,Gn) + n*C1(S,G), where z E Z 1(F,Gn) and 

wE C 1(S,G), so that ua = za + w1ra for all a E F. Since z is a 1-cocycle 

we have za+b = z~ + zf: for all a,b E F; hence 

for every a = L:xEX ax x E F. Since 1l' q( a) = na, 

(IIu)a = za + w1ra - zq(a) - w1rq(a) 

= L:xEX, x~a ax Z~-x - L:xEX, x~q(a) q(a)x z~(a)-x 

where g = (zx)xEX. Thus IIu E Im D. 
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Conversely assume IIu E Im D, so that there exists g = (gx)xEX E 

f1xEX G 1rx such that 

ua - uq(a) = l:xEX,x~a axg~-x - l:xEX,x~q(a) q(a)xg~(a)-x 

for all a E F. For every a E F let 

"' a-x G za = ~xEX, x:S;a ax 9x E 1ra · 

If a,b E F, and x ~a+ b (equivalently, (a+ b)x > 0), then x ~a or x ~ b 
(or both); hence 

"' a ga+b-x 
za+b = ~xEX, x~a, x~b x x 

+ 2: b ga+b-x 
xEX, x~a, x~b x x 

+ "' (ax+ bx) 9xa+b-x = zab + zba; ~xEX, x:S;a, x:S;b 

thus z E Z 1 (F, G1r). Also ua- uq(a) = za- zq(a) for all a. Let va = ua- za. 

Then v E C 1(F,G1r) and va = vq(a) for all a. Hence 1ra = 1rb implies va = vb 

and v = 7r*w, where w E C 1(S,G) is well defined by WJra = va. Thus 

u = z+7r*w E Z 1(F,G7r) +7r*C1(S,G). 0 

Corollary 3.7. There is an isomorphism 

H 2 (S,G) ~ KP1(F,G1r) lim D 

which is natural in G. 

Proof. We saw that II: C 1 (F,G1r) ~ P 1 (F,G1r) is a surjective homomor

phism. Now K 1 (F,G1r) = II-1 KP1(F,G1r) by Lemma 3.5 and Z 1 (F,G1r) + 
1r*C1 (S,G) = II-1 Im D by Lemma 3.6; therefore 

K 1 (F,G1r) 1 (Z1 (F,G1r) + 1r*C1(S,G)) ~ KP1 (F,G1r) lim D. 

This isomorphism is natural in G since II and D are natural in G. The natural 

isomorphism H 2 ( S, G) ~ KP1 ( F, G1r) I Im D then follows from Corollary 3 .4. 0 

6. Recall that a minimal cochain on S with values in G is a family 
u = (um)mEM such that um E G1rm for all m E M. Under pointwise 

addition, minimal cochains constitute a subgroup M 1 ( F, G1r) ~ ITmEM G 1rm 

of C 1 (F,G1r). 

Every partial 1-cochain u = (ua)aEF has a restriction Ru = (um)mEM 
to M, which is a minimal cochain. This defines a restriction homomorphism 
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R: P 1 (F,G1r) ---t M 1 (F,G1r) which is natural in G. 

Lemma 3.8. R is injective on KP1 (F,G1r). 

Proof. Let u = ( ua)aEF be a consistent partial cochain such that Ru = 0 
(such that um = 0 for all m E M). We use artinian induction on a to prove 
that ua = 0 for all a E P (so that u = 0). Already ua = 0 for all a E Q and 
for all a E M. Let a E P\M. Then a > m for some m E M, a = m + c 
for some c E F, and b = q( m) + c satisfies 1rb = 1ra and b c a. Since u is 
consistent we have um+c- uq(m)+c = u~- u~(m), with um = 0, uq(m) = 0, 

and uq(m)+c = ub = 0 by the induction hypothesis; hence ua = um+c = 0. D 

7. Lemma 3.8 shows that a consistent partial cochain is determined by its 
restriction to M. Therefore Corollary 3.7 can be restated in terms of minimal 
cochains; this will yield the main result. First we reconstruct consistent partial 
cochains from their restrictions. 

Let u be a minimal cochain. When a ;;;;) b in F and p : m 1, ... , mk is an 
overpath from a to b, let 

E G1ra, 

where ti is obtained from the corresponding path 

by ti =pi- q(mi) = pi- 1 - mi. Recall that p0 , ... ,pk E Ca, so that 1rpi = 1ra 
ti . 

and umi E G1ra for all z. 

We denote ua;p;q(a) by ua;p. If a E Q, then p is empty and ua;p = 0. If 

a = m E M, then p = { m} and um;p = um . 

When p is an overpath from a to b, then p is an overpath from a+ c to 
b + c for any c E F; the corresponding path is 

0 ml 1 m2 mk k 
a + c = p + c -----t p + c -----t . . . -----t p + c = b + c, 

with pi+ c- q(mi) = pi-1 + c- mi = ti + c, and 

If a = b, then p is empty and ua·p·b = 0. If p : m 1 , ... , mk is an overpath 
' ' 

from a to b, and q : n 1, ... , nl is an overpath from b to c, then p + q : 
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m1, ... , mk, n 1, ... , nl is an overpath from a to c, and 

ua· p+q· c = ua·p·b + ub·q·c · ' ' ' ' , ' 
In particular, ua;p;b = ua;p+q- ub;q when q is an overpath from b to q(b) = q(a). 

8. Independence of path for ua·p·b means that ua·p·b = ua·q·b whenever p 
' ' , ' '' 

and q are overpaths from a to b; and similarly for ua;p· These properties are 

equivalent and characterize the restrictions of consistent partial cochains: 

Lemma 3.9. When u E M 1 ( F, G1r), then u E R ( KP1 ( F, G1r)) if and only 
if ua·p is independent of path; and then ua·p·b is independent of path. , , , 

Proof. First let v E KP1(F,G1r) and u = Rv. Let p: m 1, ... ,mk be an 
overpath from a to b; let 

be the corresponding path and ti = pi - q(mi) = pi-1 - mi. Since v E 

KP1(F,G1r) and 1rmi = 1rq(mi) we have 

ti and u i = v i-1 - vpi . Therefore m p 

Hence ua·p·b is independent of path. In particular ua·p is independent of path. , , , 

Conversely let u E M 1 ( F, G1r) . Assume that ua;p is independent of path. 

Then v E C1 ( F, G1r) is well defined by 

whenever p is an overpath from a to q( a) . If a E Q, then p is empty and 

va = ua;p = 0; thus v E P 1(F,G1r). If a= m E M, then p = {m} and 

vm = um;p = um; thus u = Rv. It remains to show that v is consistent: 

va+c- vb+c = v~- vg whenever 1ra = 1rb and c E F. 

First let b = q( a) . Let p be an overpath from a to b and q be an overpath 
from b + c to q(b +c) = q(a +c). Then p is an overpath from a+ c to b + c 
and p + q is an overpath from a+ c to q(a +c). Hence 
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va+c ua+c; p+q 

ua+c; p; b+c + ub+c; q = u~;p + ub+c; q = v~ + Vb.f.c 

and v~ - va+c = -vb+c = -vq(a)+c. If now we assume only 1ra = 1rb, then 

q(a) = q(b) and 

-vq(a)+c -vq(b)+c 

Thus v is consistent. D 

9. Finally, recall that a minimal cocycle is a minimal cochain u such that ua;p 

is independent of path. Under pointwise addition minimal cocycles constitute a 

subgroup MZ1(F,G1r) of MC1(F,G1r). 

A minimal coboundary is a minimal cochain u for which there exists g = 
(gx)xEX E flxEX G1rx such that u = RDg; equivalently, 

_ """"' m-x _ """"' ( ) q(m)-x um - uxEX, x~m mxgx uxEX, x~q(m) q m X 9x 

for all m E M . Under pointwise addition minimal coboundaries constitute a 

subgroup MB1(F,G1r) of MC1(F,G1r). 

Lemma 3.9 shows that R induces an isomorphism of KP1 (F, G1r) onto 

MZ1(F, G1r). Since Im D ~ KP1(F, G1r) it follows that MB1(F, G1r) 
Im RD ~ MZ1(F,G1r). Then Corollary 3.7 yields 

H 2 (S,G) ~ KP1(F,G1r)jlmD ~ MZ1(F,G1r) / MB 1(F,G1r) 

which is natural in G since R is natural in G. This proves Theorem 2.1. D 

4. DEFINING VECTORS. 

In this section we show that minimal cocycles are determined by relations 

between certain integer vectors, and that the computation of H 2 ( S, G) is a finite 
task when S is finitely generated and G is thin. 

1. As before, S is a commutative monoid, F = Fx is the free commutative 
semigroup on a set X, and 1r: F---+ S is a surjective homomorphism; G = Gx 
is the free abelian group on X, whose elements are finite linear combinations 
a = l:xEX ax x with integer coefficients and can be regarded as integer vectors. 

By Proposition 1.4, e is generated by all pairs ( m, q( m)) with m E M, 
which may be regarded as defining relations of S. The defining vectors of e 
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(or of S) are the integer vectors 

v(m) = m - q(m) E G 

with mE M. 

Proposition 4.1. The subgroup of G generated by the defining vectors is 
the Redei group R of e; the universal group of s is isomorphic to G I R. 

Proof. Recall that the Redei group of e is 

R = {a- b E G I a e b }. 

Since e is generated by all pairs ( m, q( m)) with m E M, it follows from 
Proposition 1.2.9 that a- b is a sum of differences m- q( m) and q( m) - m when 
a e b, so that a- b belongs to the subgroup K of G generated by the defining 
vectors. Hence R s;;; K. Conversely every defining vector v(m) = m- q(m) is 
in R, since me q(m); hence K s;;; R. 

Since e is generated by all pairs (m, q(m)) with m E M, S U {0} is 
generated, as a commutative monoid with zero, by the set X subject to all relations 
m = q(m) (mE M), with m, q(m) =/= 0 in S U {0}. By Proposition 111.3.4, 
G(S) is the abelian group generated by X subject to all relations m = q(m); 
that is, G(S) ~ GIK. D 

Proposition 4.2. Let S have a zero element and Z = 7T -l 0 s;;; F be the 
zero class. Let K be the subgroup of G generated by all defining vectors v(m) 
with m f:. Z. Then G I K is the universal abelian group G ( S\ 0) of the partial 
semigroup S\ 0. 

Proof. Since Z is a e-class, mE Z implies q(m) E Z. Since e is generated 
by all pairs ( m, q( m)) with m E M, S is generated, as a commutative monoid 
with zero, by the set X subject to all relations m = q( m) ( m E M\ Z) and m = 0 
( m E M n Z ). By Proposition Ill.3 .4, G ( S\ 0) is the abelian group generated by 
X subject to all relations m = q(m) (mE M\Z); that is, G(S\0) ~ GIK. D 

2. We now consider relations between defining vectors. We distinguish vector 
relations 

R(r) : 

in which every r m is an integer and r m = 0 for almost all m, and positive 
relations 

R(r,s): L:":mEM r m v(m) = L:":mEM 8 m v(m), 

in which every r m and every sm is a nonnegative integer and r m = sm = 0 
for almost all m. The two types are essentially equivalent. 
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Lemma 4.3. Every positive relation is a trivial consequence of a finite sum 

of minimal positive relations; if X is finite, then there are only finitely many 

minimal positive relations. 

Proof. When R = R(r, s) : I:mEM r m v(m) = I:mEM sm v(m) is a 

positive relation, let the weight of R be I:mEM (r m + sm); call R nontrivial 

when r m -1- sm for some m, and essential when it is nontrivial but there is 

no m such that r m > 0 and sm > 0 (so that no cancellation is possible in 

R(r, s) ). Every nontrivial positive relation can be simplified by cancellation in G 

into an essential positive relation; hence every nontrivial positive relation R(r, s) 

is a trivial consequence of an essential positive relation R( e, f) ( r m - em 

sm -fm ~ 0 for all m). 

Positive relations are ordered coefficientwise: R(p, q) :;:; R(r, s) if and only 

if Pm :;:; r m and qm :;:; sm for all m. A minimal positive relation is a minimal 

nontrivial positive relation. Minimal positive relations are essential. 

When R(p,q) < R(r,s), then "L:mEM Pm v(m) = I:mEM qm v(m) and 

"L:mEM r m v(m) = I:mEM sm v(m) imply 

"L:mEM (r m- Pm) v(m) = "L:mEM (sm- qm) v(m), 

so that R( r - p, s - q) is a positive relation; then R( r, s) is the sum of R(p, q) 

and R(r - p, s - q). If R(r, s) is essential, then so are R(p, q) and R(r -

p, s - q). Thus an essential positive relation which is not minimal is a sum 

of essential positive relations of Jesser weight. Therefore every essential positive 

relation is a finite sum of minimal positive relations, and every positive relation 

is a consequence of a finite sum of minimal positive relations. 

Under pointwise addition, pairs (r, s) of families r = (r m)mEM, s = 

( sm)mEM of nonnegative integers constitute a finitely generated free commu

tative monoid F'. Minimal positive relations constitute an antichain of F'. If 

X is finite, then, by Dickson's Theorem, M is finite, all antichains of F 1 are 

finite, and there are only finitely many minimal positive relations. D 

3. Relations between defining vectors arise when there is more than one path 

from an element ofF to another. When p : m 1, ... , mk is an overpath from a 

to b, we saw that 

a-b 

We write this equality as 

a- b L:mEM Pm v(m), 
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where Pm is the number of appearances of m in the sequence p : m 1, ... , mk. 

When p and q are two overpaths from a to b, then 

R(p,q) : L:mEM Pm v(m) =a- b = L:mEM qm v(m) 

is a positive relation and there is a vector relation 

R(p- q) : L:mEM (Pm- qm) v(m) = 0. 

A relation between defining vectors is realized at a E F when it arises in this 
fashion from a pair of overpaths from a to some b. Thus a vector relation R(r) : 
L:mEM r m v(m) = 0 is realized at a when there exist bE F and overpaths p 

and q from a to b such that r m = Pm- qm for all m (so that R(r) = R(p- q) ); 

a positive relation R(r,s): L:mEM rm v(m) = L:mEM sm v(m) is realized at 
a E F when there exist b E F and overpaths p and q from a to b such that 
r m - Pm = sm - qm ~ 0 for all m (so that R( r, s) is a trivial consequence 

of R(p,q)). 

Lemma 4.4. When R(r, s) is realized at a, then r m = sm whenever 

1rm ~']{ 1ra. 

Proof. Let bE F and p, q be overpaths from a to b such that r m- Pm = 
sm - qm ~ 0 for all m E M. If Pm > 0 or qm > 0 (if m appears in p or 

in q ), then m ~ c for some c E Ca and 1rm ~']{ 1ra. Therefore 1rm ~']{ 1ra 

implies Pm = qm = 0 and rm =sm. D 

A relation of either kind is realized in a e-class C when it is realized at 
some a E C (then bE C in the above). In the case of a vector relation it may be 
assumed that b = q(a), since an overpath from b to q(a) = q(b) can be added 
to p and q if necessary, without changing Pm - qm. 

The trivial relation 0 = 0 is realized at every a E F. A relation which is 
realized at a is realized at a + c for every c E F, since overpaths from a to b 
are also overpaths from a + c to b + c. More surprisingly: 

Proposition 4.5. Every relation between defining vectors is realized in some 
e-class (in the zero class, if S has a zero element). 

Proof. First we prove the following: for every family r = (r m)mEM of 
nonnegative integers (with r m = 0 for almost all m E M) there exists an 
overpath p such that Pm = r m for all m. This is shown by induction on 

lrl = "EmEM r m. If lrl = 0, then the empty ovepath from any a to a serves. 

If lrl > 0, then r n > 0 for some n EM, and the induction hypothesis yields an 

overpath p : m 1, ... , mk from some a E F to some b E F such that Pm = r m 
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for all m "/= n and Pn = r n - 1. In F there is an element c such that c ~ b 

and c ~ n (for instance, b V n). Then p : ml, ... , mk is an overpath from 
a + ( c - b) to b + ( c - b) = c, { n} is an overpath from n + ( c - n) = c to 

q( n) + ( c- n), and q = p + { n} : m 1, ... , mk, n is an overpath from a+ ( c- b) 
to q(n) + (c- n). We see that qm = r m for all m. 

If now R(r, s) is a positive relation, then the above provides an overpath p 

from some a to some b such that Pm = r m for all m and an overpath q from 
some c to some d such that qm = sm for all m. Then 

a-b .L:mEM Pm v(m) 

.L:mEM sm v(m) 

.L:mEM r m v(m) 

.L:mEM qm v(m) = c- d . 

In F there is an element e such that e ~ a and e ~ c; if S has a zero element, 
then the zero class Z is an ideal of F and we can arrange that e E Z. Let 
f = ( e - a) + b = ( e - c) + d. Then p and q are overpaths from e to f, and 
Pm = r m, qm = sm for all m. In particular R( r, s) is realized in C e. Thus 
every positive relation is realized in some ~-class (in the zero class, if S has a 
zero element). Then so is every vector relation. D 

4. We now show that minimal cocycles are determined by relations between 
the defining vectors, when the coefficient functor is thin. 

Let G = (G,')') be an abelian group valued functor on H(S). When u = 
( ) ... l h' d 1 k· he: um mEM IS a mmima coc am an p : m , ... , m IS as overpat trom a to 

b, then 

where ti =pi- q(mi) = pi-1 - mi is provided by the corresponding path 

If G is thin, then 1'1rmi 1rti depends only on mi and 1r(mi + ti) = 1rpi-1 = 1ra 
' 

and is denoted by 1';;: i ; hence 

where 

Ma {mE M l1rm ~9{ 1ra}. 
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Recall that nm ~9-C na when m appears in p (when Pm > 0). Thus u is a 
minimal cocycle if and only if 

Z(p,q,a) : 

whenever p and q are overpaths from a E F to q( a) . 

Proposition 4.6. When G is thin, a minimal cochain u is a minimal cocycle 
if and only if 
Z(r,s,a) : 

holds whenever a E F and the positive relation R(r, s) is realized at a. 

Proof. If R(r, s) is realized at a, then R(r, s) is a trivial consequence of 
R(p,q) for some overpaths p and q from a to some bE Ca; then Z(r,s,a) is 

a trivial consequence of Z (p, q, a), since Pm = qm = 0 and r m = sm when 
m tj. Ma by Lemma 4.5. By cancellation in GTra' Z(r,s,a) holds if and only 
if Z(p,q,a) holds. Similarly, when an overpath from b to q(b) = q(a) is added 
to p and q (to obtain overpaths from a to q(a) ), then Z(p, q, a) is replaced 
by an equivalent condition. Hence u is a minimal cocycle if and only if every 
Z(r,s,a) holds. D 

On the other hand, minimal coboundaries satisfy relations between defining 
vectors regardless of whether they are realized. Call a positive relation R( r, s) 
verifiable at a E F when r m = sm whenever m tj. Ma (whenever nm ~9-C na ). 

By Lemma 4.4, every positive relation which is realized at a is verifiable at a. 

Proposition 4. 7. When G is thin and u is a minimal coboundary, then 

Z(r,s,a) : 

holds whenever a E F and the positive relation R(r, s) is verifiable at a. 

Proof. Let u be a minimal coboundary, so that 

um = L:xEX, x~m mx g;(m-x) - L:xEX, x~q(m) q(m)x g;(q(m)-x) 

for all m = L:xEX mx x E M, where 9x E G 1rx for all x E X. Since G is 

thin and nm = nq(m), 

"" 7rX "" ( ) 7rX um = L..JxEX, x~m mx f1rm9x - L..JxEX, x~q(m) q m x f7rm9x 

for all mE M. 

Let R(r,s): L:mEM r m v(m) = L:mEM sm v(m) be verifiable at a. Then 

L:m~Ma rm v(m) = L:m~Ma sm v(m), since rm = sm when m tj. Ma; 
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hence LmEMa r m v(m) = LmEMa sm v(m) and 

LmEMa r m v(m)x = LmEMa 8 m v(m)x 

for every X E X. Let xa = {X E X I JrX ~9-C Jra}. Then X ~ m E Ma implies 

JrX ~9-C 1rm ~9-C Jra and X E Xa; X ~ q(m) E Ma implies X E Xa; and 

'\" 7rm 
umEMa r m f1ra um 

LmEMa LxEX, x~m r m mx l;~gx 

- LmEMa LxEX, x~q(m) r m q(m)x l;~gx 

LmEMa LxEXa r m mx l;~gx 
- LmEMa LxEXa r m q(m)x l;~gx' 

since mx = 0 if x ~ m and q(m)x = 0 if x ~ q(m), 

LmEMa LxEXa r m v(m)x l;~gx 

LmEMa LxEXa 8m v(m)x l;~gx 

LmEMa LxEX, x~m 8m mx l;~gx 

- LmEMa LxEX, x~q(m) 8m q(m)x l;~gx 
'\" 7rm 
umEMa r m f1ra um ' 

since mx = 0 if x ~ m and q(m)x = 0 if x ~ q(m). Thus u satisfies 

Z(r,s,a). D 

5. Computing H 2 ( S, G) with Theorem 2.1 still looks like an infinite task 
even when S is finite, since independence of path must be established at every 
a E F. When F is finitely generated and G is thin, we show that minimal 
cocycles are characterized by finitely many conditions ua;p = ua;q; hence the 

computation of H 2 ( S, G) a finite task. It seems likely that this result holds even 
if G is not thin. 

Proposition 4.8. When G is thin and X is finite, a minimal cochain u is 
a minimal cocycle if and only if if satisfies finitely many conditions Z ( r, s, a), in 
which a E F and the positive relation (r, s) is realized at a. 

Proof. Let F" be the set of all ordered pairs (r, a) where r = (r m)mEM is 

a family of nonnegative integers and a E F. Under pointwise addition, F" ts a 
free commutative monoid F" 9:! F M x F. 

Realizability yields a binary relation ::R on F": 
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(r,a) ~ (s,b) -¢:::=:;> a= band R(r,s) is realized at a. 

We see that ~ is reflexive and symmetric. If moreover ( r, a) ~ ( s, b), so that 
R( r, s) is realized at a, then, for any t, R( r + t, s + t) is a trivial consequence 
of R(r, s) and is realized at a, R(r + t, s + t) is realized at a+ c for any 
c E F, and (r + t, a+ c) ~ (s + t, b +c); thus ~ admits addition. 

By Proposition 1.2.9, the congruence ~ on F" generated by ~ is given by: 

(r,a) ~ (s,b) if and only ifthere exist k ~ 0 and (r0,a0), ... ,(rk,ak) E F" 

such that (r,a) = (r0,a0), (ri- 1 ,ai- 1 )~(ri,ai) foralll ~ i ~ k, and 

(rk,ak) = (s,b). Then a= a0 = ... = ak =band the equalities 

L:mEM r~ v(m) = L:mEM r~ v(m) = ... = L:mEM r~ v(m) 

show that R(r, s) is a consequence of R(r0, r 1), R(r1, r 2), ... , R(rk-1, rk). 

By Proposition 4.6, a minimal cochain u is a minimal cocycle if and only if 

it satisfies Z(r, s, a) whenever (r, a)~ ( s, a). If (r, a) ~ ( s, a), then in the above 

Z(r0, r 1, a), Z(r1, r 2, a), ... , Z(rk- 1, rk,a) hold in G1ra; by the equalities 

Z(r,s,a) is a consequence of Z(r0, r 1 , a), Z(r1, r 2 , a), ... , Z(rk-1, rk, a) 
and holds in G1ra if u is a minimal cocycle. Hence a minimal cochain u is a 

minimal cocycle if and only if it satisfies Z(r,s,a) whenever (r,a) ~ (s,a). 

Since M is finite it follows from Redei's Theorem that~ is finitely generated. 
Therefore a minimal cochain u is a minimal cocycle if and only if it satisfies 

finitely many conditions Z(r,s,a), with a E F and (r,a) ~ (s,a), each of 
which is a consequence of finitely many conditions Z(r,s,a), with a E F and 
(r, s) realized at a. D 

A more explicit choice of conditions to verifY is given in Grillet [ 1995F] but 
no longer seems particularly helpful. 

6. We conclude this section with an example. More general examples are 
given in Grillet [2000T]. 

Example 4.9. Let S be the commutative nilmonoid 

S = ( c,d I c3 = c2d = cd2 = d4 = 0, c2 = cd = d3 ); 

S is the Volkov semigroup (Example III.3.6) with an identity adjoined. 
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Let X = {X' y} and 1rX = c' 1rY = d. Then e = ker 1r has four one element 

classes, one three element class C = { 2x, x + y, 3y} = 1r-l ( cd), and one infinite 

class J = 1r-1o which is the ideal ofF generated by { 3x, 2x + y, x + 2y, 4y}. 

The lexicographic order ~ on F 

ix + jy C kx + ly ¢::::::? i < k, or i = k, j < l 

is a compatible well order on F. Under ~ the least element of C is 3y; the 
least element of J is 4y. 

.e 

Example 4.9 Q and M 

Thus Q is the coideal generated by 4y and x; M and the defining vectors are 
given by the table 

m 

l = 5y 

m=x+y 

q(m) 

4y 

3y 

v(m) 

y 

X- 2y 

n = 2x 3y 2x - 3y 

The defining vectors v(m) with m tJ. J are v(m) and v(n). They constitute 

a basis of G since 1
1 - 2

1 = 1. Hence the universal abelian group of S\ 0 is 
2 -3 

trivial, by Proposition 4.2. 

We see that v(n) = 2v(m) + v(l). The only e-class in which nontrivial 
positive relations are realized is J; by Proposition 4.5, every positive relation is 
realized in J. (More sophisticated examples are given in the next chapter.) 

Let G be a thin abelian group valued functor on H(S). A minimal cochain 

u consists of Uz E G0 , um E Gcd' and un E Gcd· 

n m m l 
In J, 2x + y -+ 4y and 2x + y -+ x + 3y -+ 5y -+ 4y are 

paths from a = 2x + y to q( a) = 4y. Hence p : n and q : m, m, l are overpaths 
from a to q(a) (and the relation v(n) = 2v(m) + v(l) is realized at 2x + y). 
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Therefore minimal cocycles satisfy 

0 
un = ua;p 2u~ + uz; 

this is according to Proposition 4.6. 

Conversely let u be a minimal cochain such that u~ = 2u~ + uz . Let 
a E F and let p and q be overpaths from a to q( a) . We may assume that a E J 
(otherwise p = q ). We have 

a -q(a) PzY + Pm (x- 2y) + Pn (2x- 3y) 

Qz Y + qm (X - 2y) + qn ( 2x - 3y); 

hence Pm + 2pn = qm + 2qn and Pz - 2pm - 3pn = Qz - 2qm - 3qn . Adding 
twice the first equality to the second yields Pz + Pn = Qz + qn . Hence 

0 0 
Pz Uz + Pm um + Pn un 

(Pz + Pn) Uz + (Pm + 2pn) u~ 

(qz + qn)uz + (qm + 2qn)u~ 
0 0 

Qz Uz + qm um + qn un = ua;q 

Thus minimal cocycles are characterized by the single condition u~ = 2u~ + uz ; 
this is according to Proposition 4.8. Hence there is an isomorphism u f---.+ 

(um, un) of MZ1(F,G1r) onto Gcd EfJ Ged' A peek at minimal coboundaries 
suggests that um and un are uniquely determined by g = un - 2um and h = 
2un - 3um (namely, um = h - 2g and un = 2h - 3g ), and provides a more 

useful isomorphism e : u f---.+ (un- 2um, 2un- 3um) of MZ1 (F,G1r) onto 
Ged EB Ged· 

Next, u is a minimal coboundary if and only if there exist g E G e and 

h E G d such that uz = 5g0 - 4g0 = g0 , um = (gd + he) - 3gd = he - 2gd, 

and un = 2he- 3gd. Then e(u) = (gd, he) and e sends MB1 (F,G1r) onto 

Im l'e dEB Im I'd e <;;; Ged EB Ged· Hence , , 

If G is surjecting (as well as thin), then ')'1 e, ')'1 d, and ')'1 ed are surjective; , , , 
hence /' e d, and /' d e are surjective and H 2 ( S, G) = 0. , , 
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5. PARTIALLY FREE SEMIGROUPS. 

Partially free semigroups were defined in Section X.6. At this time they 
constitute the only large class of finite commutative semigroups with a formula 

for H 2 ( S, G) : namely, 

H 2(S, G) ~ fficEirr (S) Ge(c)/lm 'Y~(c) ' 

where G is thin, Irr ( S) is the set of all irreducible elements of S, and e( c) 
is the idempotent in the archimedean component of c. This result is from Grit
let [ 1995P]. 

Other formulas yield H 2 ( S, G) when S has one defining relation (Proposition 
2.4) or is cyclic (Corollary 2.5). But no such formula seems to exist for semigroups 
with two generators (Grillet [2000T]). 

1. Let S be finite and partially free. By Corollary XII.5.5 we may assume 
that S is a monoid. Since S is group-free, ~:H: is a partial order relation on S, 
which we denote by ~ . 

By Proposition X.2.2, S is generated by Irr (S) and has a standard pre
sentation 1r : F = Fx ----+ S, where X is finite, 1r is injective on X, and 

1r( X) = Irr ( S). The direction set 1), extent cells EA, co ideals HA, and trace 
congruences eA of the congruence e induced by 1r are as in Chapter X. The 

idempotents of S are all eA = 1r(IA) with A E 1), where IA = EA n A. Since 
S is partially free, all trace congruences are Rees congruences and 

a e b if and only if a,b E EA and p~a = p~b for some A E 1). 

Put any total order ~ on X and order F lexicographically: L:xEX ax x C 

L:xEX bx x if and only if there exists t E X such that ax = bx for all x -< t 

and at < bt. (Then x c y in F if and only if x >- y in X.) Since X is finite, 
G.:; is a compatible well order on F. 

We show that the defining vectors contain a basis of G. 

Lemma 5.1. Let x E X, c = 1rx, and D be the smallest element of 
1) that contains x. There exists m(x) E M such that: m(x) E En n D; 

1rm(x) = e(c); ifx E A E 1), then 1rm(x) ~ 1rajor all a E EA; and 

v(m(x)) = x + L:yEX tx,y Y 

with tx,y = 0 unless y -< x and y E D. 

Proof. First take any m E I D, so that 1rm = e D. 
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If A E 'D, A CD, then x ~ A by the choice of D. By (E2), kx E ED 

for some k > 0. Then ck = 1r (kx) = eD and 1rm = e(c). 

If x E A E 'D, then D ~ A, E(1ra) = eA for all a E EA by Proposition 

X.3 .4, and 1rm = e D ~ e A ~ 1ra by Proposition X.3 .3. 

We now choose m( x) = m E I D as follows. Let w be the least element 

of thee-class ID under~- Since XED= D(w) we have w +X E ID. Let 

m(x) = m be least under ~ such that mE ID and mx = wx + 1. In particular, 

wcm~w+x. 

We show that m E M. First m ~ Q = {a E F I q( a) = a}, since w e m 

and w C m. To prove that m is minimal with this property (under ~) it suffices 

to show that m - y E Q for every y E X, y ~ m. Note that y ~ m implies 

y ED. 

Assume m-y E ED. If y i x, then (m- y)x = mx = wx + 1; since 

m - y E I D and m - y C m this contradicts the choice of m. Therefore 

y = x. Hence m - x E I D, m - x ~ w, m ~ w + x, m = w + x, and 

m-y=m-x=wEQ. 

Now let m - y ~ ED. Then y of x. Also m - y E EB for some B E ']), 

B c D. Then D % B and x ~ B. Let q = q( m - y) . Then q ~ m - y 

and q e m - y; hence q E EB, and q E D since D is a union of e-clas

ses. Since S is partially free we also have p'eq = P'e ( m - y) . In particular 

qx = ( m - y) x = mx . Hence q + y has the following properties: q + y E D, 

q+y E ED (since q+y e m), q+y ~ m, and (q+y)x = qx = mx = wx + 1. 
By the choice of m, q + y = m, and m - y = q E Q. 

This proves mE M. We have w = q(m). Hence v(m)x = mx- wx = 1. 

Also v(m)y =my- wy = 0 if y ~ D, since m,w ED. Since w c m there 

exists t E X such that wy = my for all y -< t and wt < mt; in particular 

t ~ x. If t -< x, then wy = my for all y -< t and wt < mt implies w + x c m, 

whereas m ~ w + x; therefore t = x, and v(m)y = my- wy = 0 for all 

y-<x.D 

Lemma 5.1 implies that (v(m(x)))xEX is a basis of G. In fact: 

Corollary 5.2. For every A E 'D, (v(m(x)))xEXnA is a basis of GA" 

Proof. GA = G(A) ~ G is the free abelian group on X n A. When 

mE M n EA, then q(m) E EA and me q(m) implies p~m = p~ q(m) since 

S is partially free; hence v(m) E GA. In particular v(m(x)) E GA for all 
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X E X n A. When X E X n A' then D ~ A in Lemma 5.1 and 

v(m(x)) = X + I:yEXnA, y-<x tx,y Y· 
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Hence the defining vectors v(m(x)) with x EX n A constitute a basis of GA. 0 

2. By Corollary 5.2 there is for every m E M n EA an equality 

v(m) = I:xEA km,x v(m(x)) E GA 

with integer coefficients km x . 
' 

Lemma 5.3. For every m E M n EA the vector relation 

v(m) = I:xEA km,x v(m(x)) 

is realized in the e-class em of m. 

Proof. If m = m( x) for some x E A, then ( *) is trivial, and is realized in 
em. Hence we may assume that m # m(x) for all x E A. 

We have m +A ~ em, since m E EA. Let p : m 1, ... , mk consist of m 

and of -km x copies of m(x) for every x EX n A with km x < 0, arranged in 
' ' 

any order. Let q : n 1, ... , n1 similarly consist of km x copies of m( x) for every 
' 

x EX n A with km,x > 0, arranged in any order. Then I:i v(mi) = I:j v(ni), 

by(*). Also Pm- qm = 1 and qm(x)- Pm(x) = km,x for every x EX n A. 

If we can show that p and q are overpaths from some a E em to some b E em , 
then they will realize ( *). 

We have m(x) E A for all x E X n A, and mi E A for all i > 1. Also 

v(mi) EGA by Corollary 5.2. If a Em+ A has sufficiently large coordinates, we 

can arrange by induction on i that pi-1 ~ mi and pi- m =pi-1 -m+ v(mi) E 

A for all i. Then p is an overpath from a to b = a+ I:i v(mi) E m +A. 
Similarly, if a E m +A has sufficiently large coordinates, then q is an overpath 

from a to a+ I:j v(ni), and I:j v(ni) = b since I:i v(mi) = I:j v(ni) ). 0 

3. Now let G be a thin abelian group valued functor on H(S). 

Proposition 5.4. When S is partially free and G is thin, a minimal cochain 

u = (um)mEM is a minimal cocycle if and only if 

whenever A E 'D and mE M n EA. 

Proof. By Proposition 4.6, a minimal cocycle u = ( um)mEM must satisfy 
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( **) for all A E 'D and m E M n EA, since ( *) is realized at Cm by Lemma 

5.3. (Note that 1rm(x) ~ 1rm for all x EX n A, by Lemma 5.1, since mE EA") 

Conversely assume that ( **) holds for all A E 'D and m E M n EA. 

Let p and q be overpaths from a to b. Then l:mEM Pm v(m) = b- a = 

l:mEM qm v(m), with mE Ma = {mE M I 1rm ~ 1ra} whenever Pm > 0 

or qm > 0. Also a e band a,b E EA for some A E 'D. 

If m appears in either p or q, then m ~ c for some c E C a ~ EA and 
m E En for some B ~ A by (E2). Then 

v(m) = l:xEXnn km,x v(m(x)) and um = L:xEXnn km,x "Y;:;:(x) um(x) · 

(By Lemma 5.1, 1rm(x) ~ 1rm when x EX n B and mE En). Let km x = 0 , 
when m E En and x E X\B. Then v(m) = L:xEXnA km,x v(m(x)) and 

L:mEM Pm v(m) 

L:mEM qm v(m) 

L:mEM,xEXnA Pm km,x v(m(x)), 

L:mEM,xEXnA qm km,x v(m(x)). 

Since the defining vectors v(m(x)) with x E X n A constitute a basis of GA 
(Corollary 5.2), this implies 

L:mEM Pm km,x = L:mEM qm km,x 

for all x E X n A and 

l:mEMa Pm km,x = L:mEMa qm km,x 

for all x E X n A, since m E Ma whenever Pm > 0 or qm > 0. Since 

1rm(x) ~ 1ra when x E A by Lemma 5.1, we now have 

" Jrm ua;p;b umEMa Pm "'!Ira um 

L:n~A L:mEEsnMa Pm "Y;;:um 

" " " k 1rm(x) un~A umEEsnMa uxEXnn Pm m,x "YJra um(x) 

" " " k 1rm(x) un~A umEEsnMa uxEXnA Pm m,x "YJra um(x) 

" " k 1rm(x) umEMa uxEXnA Pm m,x "'!Ira um(x) 

" " k 1rm(x) umEMa uxEXnA qm m,x "'i1ra um(x) 

ua;q;b · 

Thus ua;p;b is independent of path. 0 
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4. Proposition 5.4 shows that a minimal cocycle is determined by its values 
on all m( x) . Hence 

Mzl(S,G) ~ EBxEX G7rm(x); 

the isomorphism W : MZ1(S,G) ---+ EBxEX G1rm(x) sends u = (um)mEM E 

MZ1 (S,G) to (um(x))xEX· We now compute MB1 (S,G). 

Lemma 5.5. w(MB1(S, G)) = 8( EBxEX Im 'Y;~(x))' where 8 is the 

automorphism of EBxEX G1rm(x) defined for all v = (vx)xEX E EBxEX G1rm(x) 

by 

( ) "'""' 7rm(y) 
8v X = vx + L.JyEX, tx,yoiO tx,y 'Y7rm(x) vy . 

Proof. Let D be the smallest element of 'D containing x. By Lemma 5.1, 

1fX ~ 1rm(x) and v(m(x)) = x + L:yEX tx,y y, where tx,y-=/= 0 implies y-< x, 

y ED, and (by Lemma 5.1 applied toy) 1rm(y) ~ 1rm(x), since m(x) E ED. 

Hence 8 is well defined. Since tx,y I= 0 implies y -< x, the matrix of 8 ts 

triangular with 1 's on the diagonal and 8 is an isomorphism. 

Let u = 8g E MB1(S,G), where g = (gx)xEX E EBxEX G1rx· Then 

um = L:xEX, x~m mx 'Y;~gx - L:xEX, x~q(m) q(m)x 'Y;~(m) · 

Let x E X, D be the smallest element of 'D containing x, y E X, and m = m( x) . 

By Lemma 5.1, mE ID =ED n D, y ~ m implies y ED, q(m) E ID, and 

y ~ q(m) implies y E D. Since 1ry ~ 1rm(y) ~ 1rm(x) for all y E D and 

m- q(m) = v(m) = x + 2:yEX tx,y y, we have 

2:yEX, y~m my 'Y;lfngy - 2:yEX, y~q(m) q(m)y 'Y;~(m) 

L:yEXnD my 'Y;~9y - L:yEXnD q(m)y 'Y;~(m) 
"'""' ( ) 1ry _ 1rx "'""' t 1ry 6yEXnD V m y 'Y1rmgy - 'Y1rmgx + 6yED x,y 'Y1rmgy 

'Y;::ngx + 2:yEX, tx,yoiO tx,y 'Y;~9y = (8v)x' 

where v = ('Y;~(x)9x)xEX" Thus Wu = 8v. Hence w(MB1(S,G)) 

8 ( EBxEX Im 'Y;~(x)). 0 

We can now prove 

Theorem 5.6. When S is a finite partialy free commutative semigroup and 



360 XIII. THE OVERPATH METHOD. 

G is thin, there is an isomorphism 

H 2(S,G) 9'! E9cEirr(S) Ge(c}ilm')'~(c)' 

which is natural in G. 

Proof. We may assume that S is a monoid. Since 'l1 and 8 are isomorphisms, 

H 2 (S,G) C:,! MZIMB 9'! 8-1wMz 1 8-1wMB 

( ffixEX G1rm(x)) I ( ffixEX lm 'Y;~(x)) 

ffixEX ( G1rm(x) I lm 'Y;~(x)) 

fficEirr (S) Ge(c}ilm 'Y~(c)' 

since 1r : F ---+ S induces a bijection of X onto lrr (S) and x E X implies 
c = nx E Irr ( S) and 1r m( x) = e( c), by Lemma 5 .1. The isomorphism is natural 
in G, since 'l1 and 8 are natural in G. 0 


