
Chapter XIV. 

SEMIGROUPS WITH ZERO COHOMOLOGY. 

Like other cohomology theories, commutative semigroup cohomology gives 

rise to the following problem: 

(1) For which commutative semi groups S does Hn ( S, IG) = 0 for all n ~ 2 

and all IG? 

By Theorem XII.4.4, free commutative semigroups have this property. 

The special role of H 2 suggests two additional problems: 

(2) For which commutative semigroups S does H 2 (S,IG) = 0 for all IG? 

(3) For which finite (more generally, complete) group-free semigroups S does 

H 2 ( S, IG) = 0 whenever IG is thin and surjecting (or thin, finite, and surjecting)? 

Since H 2 (S,IG) ~ Ext(S,IG), H 2 (S,IG) vanishes for all IG if and only if 

every commutative group coextension of S splits. Free commutative semigroups 

and free commutative monoids have this property; so do semilattices, by Propo

sition V.4.4, and free abelian groups, by Proposition V.4.6. Problem (2) asks if 

there are any other semigroups with this property. 

When Sis complete group-free, then H 2 (S,IG) vanishes whenever IG is thin 

and surjecting if and only if every exact J-C-coextension of S splits; equivalently, 

if every complete semigroup T with T jJ-C ~ S splits as a coextension of S. By 

Proposition V.4.4, semilattices have this property. Problem (3) asks what other 

complete group-free semigroups have this property. 

From the point of view of the structure and construction of commutative 

semigroups, problem (2) is at this time more interesting than problem (1), and 

problem (3) is most interesting of all. 

Problem (1) is still unsolved, but problems (2) and (3) have been solved in 

some major particular cases. In this chapter we solve problem (2) when S is finite 

group-free and, after some preliminary results, we solve problem (3) when S is 

a finite nilmonoid. The results are due to the author [1997Z], [2001Z]. Problem 
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362 XIV. SEMIGROUPS WITH ZERO CoHOMOLOGY. 

(3) was also solved by the author [2000T] for semigroups with two generators, 
in which case the solutions are nilmonoids or semilattices. 

1. GROUP-FREE MONOIDS. 

In this section, S is a finite commutative group-free monoid. We show that 

H 2 (S, G) = 0 for all G if and only if S is a semilattice. This was proved by 
the author [1997Z]. 

1. If S is a semilattice, then H 2 ( S, G) = 0 for all G by Proposition V.4.4. 
We now let S be a finite commutative group-free semigroup, but not a semilattice, 

and cook up a functor G such that H 2 ( S, G) =I= 0. By Corollary XII.5 .5 we may 
assume that S is a monoid. 

Call an abelian group valued functor G on H(S) selective ifthere exists an 
element c of S such that Gc =/= 0 and G8 = 0 for all s =/= c. Then Is t = 0 

' 
unless s = st = c, in which case Is t is an endomorphism of Gc; and G is thin 

' 
if and only if Is t is the identity on Gc when s = st = c. 

' 
Lemma 1.1. If S is partially free, but not a semilattice, then H 2 ( S, G) =/= 0 

for some thin finite surjecting and selective functor G. 

Proof. By Theorem XIII.5.6 there is for every thin functor G = (G,1) an 
isomorphism 

H 2 (S,G) 9:! fficEirr(S) (Ge(c)/ lml~(c)), 

where Irr ( S) is the set of all irreducible elements of S and e (c) is the idempotent 
in the archimedean component of c. If S is not a semilattice, then Irr ( S), which 
generates S, contains an element c which is not idempotent. Then e = e( c) =I= c. 
Let G be the thin selective functor in which G e =/= 0 is any nontrivial finite abelian 
group and G 8 = 0 for all s =/= e. G is also finite and surjecting. Moreover 

H 2(S,G) =/= 0, since its direct summand Ge(c)/ Im1~(c) 9:! Ge =/= 0. D 

2. We now let the finite monoid S be group-free but not partially free. 
Green's preorder ~9i: is a partial order relation on S, which we denote as before 

by just ~. Let 7f : F = Fx ----+ S be the standard presentation of S and 

e = ker 1r. Then 1r induces a bijection of X onto Irr (S), and F is finitely 
generated. The direction set 1), extent cells EA, and trace congruences eA of e 
are as in Chapter X. 
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Since S is not partially free, one of the trace congruences e B is not a Rees 

congruence and has a nontrivial class other than the ideal B\H B ; then there is 

a e-class C ~ EB whose projection pkC ~ HB is not trivial. Let c E S be 

maximal (under ;£) such that the e-class C = n-1 c has a nontrivial projection 

pkC ~ H B (where B E 'D is determined by C ~ EB ). 

Lemma 1.2. C does not contain elements a, b such that pka < pkb; 

hence 0 't pkC. 

Proof. If a,b E C and p~a < p~b, then p~a eB p~b = p~a + t for some 

t E B', t > 0; hence 

p~a e B p~a + t e B p~a + 2t e B · · · e B p~a + kt 

for all k > 0 and p~ C ~ H B contains p~ a + kt for all k > 0. This contradicts 
the finiteness of H B (Lemma X.4.1 ). 

Assume 0 E p~C. Since p~C is nontrivial, C contains elements a, b such 

that p~a = 0 =F p~b; then p~a < p~b, which we just saw is impossible. D 

Lemma 1.3. The element c is not idempotent and is not irreducible; hence 
cnx = 0. 

Proof. If c is idempotent, then c, 2c E C with either p~c < p~(2c) or 

p~c = 0, which is impossible by Lemma 1.2. 

Since 1r : F ----+ S is the standard presentation, c is irreducible if and only if 
c = ny for some y E X, if and only if C n X =1- 0 . Assume that C contains some 
y E X. Then y 't B, otherwise 0 = p~y E pkC. Since p~C is nontrivial there 

is some a = LxEX ax x E C with p~a =1- y. By Lemma 1.2 we cannot have 

y = p~y < p~a; therefore y ~ p~a, y ~a, ay = 0, and a= LxEX,x¥yaxx. 

Also a =1- 0 by Lemma 1.2. Since 1r is injective on X this makes c = na a 
product of irreducible elements nx =1- ny. If Ia I = LxEX ax > 1, then c = ny 

is not irreducible; otherwise Ia I = 1, a = x =1- y, and 1r is not injective on X; 
this is the required contradiction. D 

3. We now call upon the overpath method. Let :;< be any total order on X 
in which X\B precedes X n B (x -< y for all x E X\B and y E X n B). 
Order G = Gx lexicographically: let I:xEX ax x C:: I:xEX bx x if and only 

if there exists t E X such that ax = bx for all x -< t but at < bt. (Then 
x c:: y in G if and only if x ~ y in X.) Then !;;;; is a compatible total order on 
G, and induces a compatible well order on F. Since X\B precedes X n B, 

pka C p~b implies a C b. 
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Let E( c) be the least idempotent e ~J-C c of S. 

Lemma 1.4. If mE M and m ~a E C, then either pkm = pkq(m), or 

mE C and pkm ::::Jpkq(m). Jfm EM and m ~a E F, where c < 1ra ~ E(c) 
in S, then pkm = Pkq(m). 

Proof. In either case E(c) = e(1ra) and a E EB (Proposition X.3.4). Assume 

pkm =/= pkq(m). Then pkm ::::J pkq(m) (otherwise m C q(m) ). Since m ~a E 

EB, we have m E Ev for some D E 'D, D ~ B by (E2). Then X\B ~ X\D; 

since X\B precedes X n B, pkm ::::J pkq(m) implies Pbm ::::J pbq(m). Thus 

the e-class Cm ~ Ev has a nontrivial projection pbC. Since 1rm ~ c the 
choice of c implies 1rm = c, and mE C. Then c <j.1ra, since 1ra ~ 1rm. D 

In what follows 

MB {mE M I pkm = pkq(m)} and 

Me = {mE MImE C and pkm ::::J pkq(m)}. 

By Lemma 1.4, when mE M and m ~a, then mE MB UMe if a E C, and 

m E MB if c < 1ra ~ E(c). 

Lemma 1.5. Let p be an overpathfrom a E C to b. If pka = pkb, then 

p consists solely of elements of MB. If pka =/= pkb, then p consists of elements 

of MB and one element m of Me such that p~v(m) = p~(a- b). 

Proof. Let p : m 1, ... , mk be an overpath from a E C to b and 

0 ml 1 m2 mk k 
a = p -----+ p -----+ .. . -----+ p = b 

be the corresponding path, so that pi-1 ~ mi and pi - pi-1 = v(mi) for all 

i > 0. Since a E C, then mi ~ pi-1 E C and mi E MB UMe for all i, by 
Lemma 1.4. Also 

a- b = Ei v(mi); 

since pkv(mi) = 0 when mi E MB, 

I I I i 
PEa- PBb = EmiEMc PBV(m) • 

with pkv(mi) ::::J 0 in G since pkmi ::::J pkq(mi) for all mi E Me. 

If pka = Pkb, then 0 = EmiEMc pkv(mi) is a sum of positive elements 

of G (ordered by ~ ), which is not possible unless the sum is empty; hence p 

consists solely of elements of MB. 
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If pka # pkb, then I:miEMc pkv(mi) # 0 and there is some mi E Me. Let 

j be the least i such that mi E Me. For all i < j we have mi E M8 for all i < j 
and PkPi -PkPi-1 = pkv(mi) = 0. Therefore pka = PkP0 = pkr)-l ~pkmj. 

Since mj E C this implies pka = pkmj, by Lemma 1.2. Also q(mj) = q(a) ~ b, 

so that pkq(mj) !::; pkb (otherwise q(mj) ::J b) and pkq(mj) = Pkb by Lemma 

1.2. (In fact, pkq(mj) = pkq(a) .) Hence pka- Pkb = pkv(mj) and 

I:miEMc, mi=f.rrJ pkv(mi) = 0. 

As before, this sum must be empty. Hence mj is the only element of Me which 
appears in p. D 

Corollary 1.6. Me i 0. 

Proof. pka # pkq(a) for some a E C, since pkC is nontrivial; there exists 

an overpath from a to q( a), which by Lemma 1.5 includes some m E Me. D 

4. Now let G be the thin selective functor in which Gc is any finite abelian 
group and G8 = 0 for all s # c. Then G is finite, but not surjecting since 

Im 'Y~(c) = 0. By Lemma 1.3, G8 = 0 when s is idempotent and when s is 

irreducible. Hence IlxEX G-rrx = 0 and MB1(S,G) = 0. We use Lemma 1.5 
to construct nontrivial minimal cocycles. 

Lemma 1.7. Given 9x E Gc for every x E X\B let 

{
0 E G-rrm ifm ~ M0 

um = Z:xEX\B v(m)x9x E Gc ifm E Me. 

Then u is a minimal cocycle. 

Proof. Let a E F and p be an overpath from a to b. We show that 

is independent of path (where Pm is the number of appearances of m in p ). 

If a ~ C, then G-rra = 0 and ua·p·b = 0. Now let a E C. Since um = 0 
' ' 

when m ~ Me and nm = na when m E Me we have 

We now invoke Lemma 1.5. If pka = pkb, then p consists solely of elements 

of M8 and ua;p;b = 0. If pka =/= pkb, then p consists of elements of M8 and 

one element n of Me such that pkv(n) = Pk(a- b). Then v(n)x = ax- bx 
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for all x E X\B and 

ua;p;b = Un = L:xEX\B (ax- bx) 9x · 

In either case ua·p·b depends only on a and b. D 
' ' 

5. Since Me i= 0 (Corollary 1.6) it is possible to choose the finite abelian 
group Gc and 9x E Gc so that um i= 0 for some m E Me. (For instance take 
any n E Me; then v(n)x i= 0 for some x E X\B; let Gc be cyclic of order 
p, where p does not divide v(n)x, and let 9x i= 0, 9y = 0 for all y i= x; then 

un = v(n)x 9x i= 0.) Then MZ 1(S,G) i= 0; since we saw that MB1 (S,G) = 0 

it follows that H 2 ( S, G) i= 0, and we have proved that H 2 ( S, G) i= 0 for some 
G if S is not partially free. Since G is thin finite and selective we have in fact 
proved: 

Theorem 1.8. For a finite group-free commutative semigroup S the follow
ing conditions are equivalent: 

(1) H 2 (S, G) = 0 for all G; 

( 2) H 2 ( S, G) = 0 whenever G is thin, finite, and selective; 

(3) S is a semilattice. 

2. THE ZERO GROUP. 

In this section we assume that S has a zero element; for instance, that S is 
finite group-free. We study how H 2 ( S, G) depends on the zero group G0 . This 

yields necessary conditions that H 2 ( S, G) vanish when G is Schtitzenberger. 

1. When S has a zero element, an abelian group valued functor G on H ( S) 
is almost null if Ga = 0 for all a i= 0 and reduced if G0 = 0. 

When G is thin and almost null, Proposition V.4. 7 provides isomorphisms 
H 2 (S,G) ~ PHom(S\0, G0 ) ~ Hom(G(S\0), G0 ); the partial homomorphism 

<p which corresponds to the cohomology class cis s of s E S Z2 ( S, G) sends 
a E S\0 to c.p(a) = sa,O. 

Proposition 2.1. LetS have a zero element. For every abelian group valued 
fonctor G on H ( S) there is a short exact sequence 

0 ----+ G' ----+ G ----+ G" ----+ 0 
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which is natural in CG, in which CG' is almost null and CG" is reduced. If CG is 
thin, then CG' and CG" are thin. If CG is finite, then CG' and CG" are finite. If S 
is complete group-free and CG is thin and surjecting, then CG' and CG" are thin 
and surjecting. 

Proof. CG' = ( G', 1') and CG" = ( G", 1") are defined as follows. Let G~ = 0 

for all a 1- 0 and Gb = G0 ; let l~,t = 0 if a f. 0 and 1b,t = lo,t. Then CG' 

is almost null, and CG' is thin if CG is thin (so that lo,t is the identity on G0 for 

all t ), and is finite if CG is finite. If S is complete group-free and CG is thin and 
surjecting, then CG' is thin and surjecting. 

Let G~ = G a for all a f. 0 and G~ = 0; let ~~ t = 0 if at = 0, ~~ t = 1 a t 
' ' ' 

if at f. 0. Then CG" is reduced, and is thin (finite, surjecting) if CG is thin (finite, 
surjecting). 

The exact sequence CG' ~ CG ~ CG" is defined as follows: if a f. 0, 
then aa = 0 and f3a = lea; a0 = le0 and {30 = 0. The following diagrams 

commute: 

G' = 0 G G" a ----+ a a 

l~,tl la,tl l~~,t 
G~t = 0 ----+ Gat = G~t 

whenever a, at f. 0; 

G~ = 0 ----+ Ga G" a 

l~,tl la,tl 1,, a,t 
G~t Go ----+ 0 = G~ 

whenever a f. 0 and at = 0; and 

Gb=Go 

lb,tl IO,tl 
Gb=Go 

----+ 0 = G~ 

l~~.t 
----+ 0 = G~. 

Thus a and {3 are natural transformations. Naturality in CG is similar. D 

2. By Theorem XII.4.5 there is an exact sequence 

H 2 ( S, CG') -----* H 2 ( S, CG) -----* H 2 ( S, CG") 

which is natural in CG, in which the homomorphisms are induced by a and {3. 
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Proposition 2.2. If S has a zero element, then H 2 (S, G) = 0 whenever G 
is thin and surjecting if and only if 

(N) H 2 (S,G) = 0 whenever G is thin and almost null, and 

(R) H 2 (S,G) = 0 whenever G is thin, surjecting, and reduced; 

also, H 2 ( S, G) = 0 whenever G is thin finite and surjecting if and only if 

(Nf) H 2 (S,G) = 0 whenever G is thin finite and almost null, and 

(Rf) H 2 ( S, G) = 0 whenever G is thin finite surjecting and reduced. 

Proof. In the exact sequence 

0 --+ G' --+ G --+ G" --+ 0 

in Proposition 2.1, if G is thin (finite, surjecting), then G' and G" are thin (finite, 

surjecting). If therefore H 2 ( S, G) = 0 whenever G is thin and surjecting, then 

(N) and (R) hold; if H 2 (S, G) = 0 whenever G is thin finite and surjecting, 
then (Nf) and (Rf) hold. 

If conversely (N) and (R) hold, and G is thin and surjecting, then H 2 (S, G') 

= 0, H 2 ( S, G") = 0, and the exact sequence 

H 2 (S,G') --+ H 2 (S,G) --+ H 2 (S,G") 

shows that H 2 (S,G) = 0. Conditions (Nf) and (Rf) similarly imply H 2 (S,G) = 0 
whenever G is thin finite and surjecting. 0 

Conditions (N) and (Nf) are easily settled when S is finite. Let 1r : F = 
Fx --+ S be a presentation of S, e be the congruence induced by 1r, and 

Z = 1r-1o be the zero class. In the following result, K is the subgroup of 
G generated by all differences a - b with a e b and a, b 1. Z; relative to any 
compatible well order on F, K is also generated by all defining vectors v( m) 
with m 1. Z. 

Proposition 2.3. Let S be a finite commutative semigroup with a zero 
element. The following conditions on S are equivalent: 

(N) H 2 ( S, G) = 0 whenever G is thin and almost null; 

(Nf) H 2 (S,G) = 0 whenever G is thin finite and almost null; 

(K) there is a presentation of S in which K = G; 

(K +) K = G in every presentation of S. 

Proof. By Proposition V.4.7, H 2(S,G) ~ Hom(G(S\0), G0 ) whenever G 
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is thin and almost null. Now G(S\0) ~ G I K by Proposition XIII.4.2, in any 

presentation of S. Hence (K) implies (N), which in tum implies (Nf). If on the 

other hand S is finite and G I K f. 0, then G I K ~ G ( S\ 0) is finitely generated, 

there exists a finite abelian group A such that Hom ( G I K, A) f. 0, and (Nf) 

does not hold; therefore (Nf) implies (K+). D 

3. NILMONOIDS. 

In this section, we characterize finite commutative nilmonoids S such that 

H 2 (S, G) = 0 whenever G is thin finite and surjecting; equivalently, every 

elementary semigroup T such that T I'J{ ~ S splits as a coextension of S. This 

result is due to the author [200 1 Z]. 

1. To explore nilmonoids we use certain simple coefficient functors. When 

J is an ideal of a commutative semigroup S, an abelian group valued functor 

G = ( G, "Y) on H ( S) is semiconstant over J when there is an abelian group 

A such that 

G8 = A for all s E S\J, G8 = 0 for all s E J, 

"'(8 t = lA if st ~ J, and "'(8 t = 0 if st E J. If J = 0, then G is constant. 
' ' 

If S has a zero element, then almost constant functors are semi constant over 0; 

conversely one can view a semiconstant functor G on S over an ideal J f. 0 

as an almost constant functor on S I J. In general, a semiconstant functor is thin, 

surjecting, and (if S has a zero element and J f. 0) reduced. 

Let 1r : F ----+ S be any presentation of S, ~ = ker 1r be the congruence 

induced by 1r, and ~ be a compatible well order on F. Let J be an ideal of 

S. Let MJ and X J be the sets 

MJ = {mE M J1rm ~ J}, XJ = {x EX J1rx ~ J}. 

Lemma 3.1. When G is semiconstant over J, then: 

(1) a minimal cochain u is determined by its values (um)mEMJ on MJ; 

(2) u is a minimal cocycle if and only if 

for every positive relation L:mEMJ r m v(m) = L:mEMJ sm v(m) which is 

realized in a ~-class C ~ 1r-l J; 



370 XIV. SEMIGROUPS WITH ZERO COHOMOLOGY. 

(3) u is a minimal coboundary if and only if there exists g = (gx)xEXJ such 

that 9x E A for all x E XJ and 

um = l:xEXJ v(m)x 9x 

for all mE MJ; 

( 4) when u is a minimal coboundary, then 

l:mEMJ rm um = 0 

for every vector relation l:mEMJ r m v(m) = 0 which holds in G. 

Proof. ( 1) is clear since um = 0 whenever 1rm 1. J. 

(2) follows from Proposition XIII.4.6: u is a minimal cocycle if and only if 

whenever a E S and the positive relation l:mEM r m v(m) = l:mEM sm v(m) 

is realized in ca' where Ma = { m E M I 7rm ~9{ 7ra} . If 7ra E J' then 

Z(a,r,s) is trivial. If 1ra 1. J, then Ma ~ MJ and Z(a,r,s) is equivalent to 

since r m > 0 implies 1rm ~9-C 1ra and similarly for sm > 0. 

(3) follows from the definition of 8g: when g = (gx)xEX, then u = 8g is 
given by 

um = l:xEX, x~m mx 1;::n9x - l:xEX, x~q(m) q(m)x l;::n9x 

for all mE M. Again um = 0 if m 1. MJ. If mE MJ, then x ~ m implies 

x E XJ, and so does x ~ q(m), and 

um l:xEXJ, x~m mx 9x - l:xEXJ, x~q(m) q(m)x 9x 

l:xEXJ (mx- q(m)x) 9x = l:xEXJ v(m)x 9x' 

since mx > 0 implies x ~ m and similarly for q(m)x > 0. 

(4) follows from (3). Assume that l:mEMJ r m v(m) = 0 holds in G. Then 

l:mEMJ r m v(m)x = 0 for every x E X. If u is a minimal coboundary, then 

l:mEMJ r mum = l:mEMJ l:xEXJ r m v(m)x 9x = 0. D 

2. As a consequence of Lemma 3 .1, we prove: 

Lemma 3.2. Let J be a nonempty ideal of S which contains every element 
s E S such that a nontrivial positive relation is realized in C8 = 1r -l s. Jf (Rf) 
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holds, then the defining vectors v(m) with m E MJ are distinct and linearly 
independent. 

Proof. Let A be any finite abelian group and G be the corresponding semi
constant functor over J, which is thin finite surjecting and reduced. 

Every minimal cochain u = ( um)mEM is a minimal cocycle: if p and q 
are overpaths from a to b, then either p and q consist of the same elements of 

M, in which case ua;p;b = ua;q;b' or l:mEM Pm v(m) = l:mEM qm v(m) is 

a nontrivial relation which is realized in C a = C b, in which case 1ra = 1rb E J, 

G1ra = 0, and ua·p·b = ua·q·b = 0. Hence MZ1(S,G) = MC1(S,G) ~ 
, ' ' ' 

ITmEMJ A. 

If there is a nontrivial vector relation r: l:mEMJ r m v(m) = 0 between the 

vectors v(m) with mE MJ, then 

l:mEMJ r m um = 0 

for every minimal co boundary u, by Lemma 3 .1. If A is a cyclic group of suitable 
prime order p, then p does not divide every nonzero r m and there is a minimal 

cochain u such that l:mEMJ r mum i- 0; for instance, let um i- 0, where p 

does not divide r m, and un = 0 for all n i- m ). Then u is a minimal cocycle 

but not a minimal coboundary, H 2 (S,G) ~ MZ1(S,G) / MB1(S,G) i- 0, and 
(Rf) does not hold. D 

3. We now let S be a finite nilmonoid and assume that F is finitely generated. 
A thin abelian group valued functor G on S is surjecting if and only every 

homomorphism /'; is surjective. 

A vector relation l:mEM r m v( m) = 0 is reachable in a e-class C when it 
follows from relations that are realized in C (when it is a linear combination with 
integer coefficients of relations that are realized in C). By Proposition XIII.4.5, 
every vector relation is reachable in some e-class and is reachable in the zero 

class Z = 1r-1o. 
Let J be a nonempty ideal of S. Let KJ be the subgroup of G generated by 

all defining vectors v ( m) with m E M J . G is a finitely generated free abelian 
group and so is KJ ~ G. A defining basis of KJ (relative to J) is a subset B 
of MJ such that 

(1) the defining vectors v(m) with m E B are distinct and constitute a 
basis of KJ, so that for every m E MJ \B there is a unique vector relation 

v(m) = l:nEB r n v(n) (with integer coefficients); and 
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(2) for every m E MJ \B the relation v(m) = I:nEB r n v(n) is reachable 

in em. 
If m tt B and the relation v(m) = I:nEB r n v(n) is reachable in a e

class C8 = 1r-l s, then some vector relation containing m is realized in C8 and 

1rm ~:K s; thus (2) states that the relation v( m) = I:nEB r n v( n) is reachable 

in the highest possible e-class. 

Lemma 3.2 shows that in some cases MJ itself is a defining basis of KJ. 

Our main lemma is: 

Lemma 3.3. Let S be a finite nilmonoid and J be a non empty ideal of S. 

lf (Rf) holds, then KJ has a defining basis. 

Proof. We assume (Rt) and proceed by induction on IS\JI. Let J0 be the 

set of all s E S such that a nontrivial positive relation is realized in C8 = 1r-1 s. 

Then J0 is an ideal of S, since a relation which is realized in C8 is realized in 
every Cst. By Lemma 3.2, KJ has a defining basis whenever J contains J0 . 

This kickstarts the induction. 

For the general case we expand S\J from the bottom, which matches what 
writing this book is doing to the author. Let J be a nonempty ideal of S. Assume 
that KJ has a defining basis B (relative to J) and that J o:l 0. Let s be a 

maximal element of J (under ~:K ), so that J' = J\ { s} is an ideal of S and s 

is a minimal element of S\J' = (S\J) U { s}. We construct a defining basis of 

KJ'. 

We have MJ' = MJ U M 8 , where 

M 8 = M n C8 = { m E M l1rm = s}. 

Since S is a nilmonoid, the e-class C8 , which is not the zero class, cannot 

contain comparable elements a< b. Therefore an overpath p: m 1, ... , mk from 

a E C8 to b E C8 contains at most one element of M8 which must be its last 

element mk: if a = p0, ... ,pk = b is the corresponding path and mj E M8 , 

then ~-1 ~ mj implies ~-1 = mj in C8 , and then~= q(mj), so that the 

path p0 , ... ,~ has reached the least element of C8 and continues no further. 

Therefore the positive relations which are realized in C8 contain at most two 
elements of M8 and are of three types: 

(a) relations I:nEMJ r n v(n) = I:mEMJ sm v(m) containing no element 

of M 8 ; 
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(b) relations v(m1) + LnEMJ r n v(n) = LmEMJ sm v(m) containing one 
element m 1 of M 8 , with coefficient 1; 

(c) relations v(m1) + .L:nEMJ r n v(n) = v(m2 ) + LmEMJ sm v(m) con
taining two elements m 1 =/= m 2 of M 8 , with coefficients 1. 

From B U M8 we extract a defining basis BUD of KJ'. Starting from 
D = M8 we trim D, one element at a time, as follows. If m 1 E D appears in 
a relation v( m1) = LnEMJ r n v( n) of type (b), then remove m1 from D and 

replace v(m1) by LnEMJ r n v(n) in every other relation (of type (b) or (c)) in 

which v(m1) appears; this yields relations of type (a) or (b) which are reachable 

in C8 • If m1 E D appears in a relation v(m1) = v(m2) + LnEMJ r n v(n) 
of type (c) (with m 1 i= m2 ), then remove m 1 from D and replace v( m 1) by 
v(m2 ) + LnEMJ r n v(n) in every other relation (of type (b) or (c)) in which 

v ( m 1) appears; this yields relations of type (b) or (c) which are reachable in C8 • 

This process terminates since M 8 is finite. Then all relations of type (b) or (c) 
have been used and D has the following properties: 

(A) no relation v(m1) + LnEMJ rn v(n) = LmEMJ sm v(m) with m1 ED, 

or v(m1) + LnEMJ rn v(n) = v(m2) + LnEMJ sn v(n) with m 1 , m 2 E D 
and m 1 i= m2 , can be realized in C8 ; 

(B) for every m E M8 \D there is a relation v(m) = LnEMJUD r n v(n) 
which is reachable in C8 ; in particular, 

(C) the defining vectors v(m) with m E MJ U D generate KJ'. 

These properties imply: 

(A*) If 1ra rt. J', then no nontrivial relation 

R: LmEBUD r m v(m) = .L:mEBUD 8 m v(m) 

can be realized in Ca. Indeed assume that R can be realized in Ca. If r m i= sm 

for some mE D, then 1rm ~9-C 1ra, 1ra = s since s is minimal in S\J', the given 

relation R is realized in C 8 , and R is ofthe form v(m1) + LnEMJ rn v(n) = 
LnEMJ sn v(n) with m1 E D, or of the form v(m1) + LnEMJ r n v(n) = 
v(m2) + LnEMJ sn v(n) with m1, m2 ED and m 1 i= m2 , which contradicts 

(A). Therefore r m = sm for all m E D; then r m = sm for all n E BUD, 
since the vectors v( n) with n E B are distinct and linearly independent, and R 
is trivial. 

(B*) for every m E MJ' \(BUD) there is a relation v(m) = LnEBUD 
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r n v(n) which is reachable in em. This follows from (B) if mE M8 ; if mE M1 
there is a relation v(m) = l:nEB rn v(n) which is reachable in em since B is 
a defining basis of K 1 . 

(C*) the defining vectors v(m) with m E BUD generate KJ'. 

We show that the defining vectors v ( m) with m E B U D are distinct and 
linearly independent; then (B*) and (C*) show that BUD is a defining basis of 

KJ' (relative to J'). 
As in the proof of Lemma 3.2, let A be any finite abelian group and G be 

the corresponding semiconstant functor over J', which is thin finite surjecting 
and reduced. 

By Lemma 3.1, a minimal cochain u = (um)mEM is determined by its 

values ( um)mEMJ' on MJ', and u = ( um)mEM is a minimal cocycle if and 

only if L:mEMJ' r mum = L:mEMJ' sm um whenever the positive relation 

l:mEMJ' r m v(m) = L:mEMJ' sm v(m) is realized in a e-class e 1;. 1r-l J'. 
Hence u is a minimal cocycle if and only if l:mEMJ' r mum = 0 whenever the 

vector relation l:mEMJ' r m v(m) = 0 is reachable in a e-class e 1;. 1r-l J'. 

For every m E MJ' there is by (B*) a relation v(m) = l:nEBUD r n v(n) 
which is reachable in em. Hence every minimal cocycle u satisfies um = 
L:nEBUD r n un. Therefore a minimal cocycle u is uniquely determined by its 

values ( un)nEBUD on BUD, which can be chosen arbitrarily since no nontrivial 

vector relation L:nEBUD r n v(n) = 0 can be realized in any e-class e 1;. 1r-l J', 

by (A*). Thus MZ1(S,G) ~ ITnEBUD A has IAIIBUDI elements. 

Ifthere is a nontrivial vector relation r: l:nEBUD r n v(n) = 0 between the 

vectors v(n) with nEB U D, then 

l:nEBUD r n un = 0 

holds for every minimal coboundary u, by Lemma 2.3. If A is a cyclic group of 

suitable prime order p, then p does not divide every r n and there is a minimal 

cocycle u such that L:nEBUD r nun i= 0; for instance, let um i= 0, where p does 

not divide r m, and un = 0 for all n i= m, n E BUD. Then u is not a minimal 

coboundary and H 2 (S, G) = MZ 1(S, G)/ M B 1(S, G) i= 0. If therefore (Rf) 

holds, then there can be no nontrivial relation L:nEBUD r n v(n) = 0. Hence 
BUD is a defining basis of KJ'. D 

4. We can now prove: 
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Theorem 3.4. For a finite commutative nilmonoid S the following condi-
tions are equivalent: 

(1) H 2 (S,G) = 0 whenever G is thin and surjecting; 

(2) H 2(S,G) = 0 whenever G is thin finite and surjecting; 

(3) in some presentation 1r : F ---t S (with F finitely generated), G has a 
defining basis (relative to 0); 

( 4) in every presentation 1r : F ---t S (with F finitely generated), G has a 
defining basis (relative to 0). 

If for example S is the Volkov nilmonoid (Example XII.4.9), we saw in 

Section XIII.4 that G has a defining basis; we also saw that H 2 ( S, G) = 0 
whenever G is thin finite and surjecting. 

Proof. If (2) holds, then G = K = K0 by Lemma 3.1 and G = K0 has a 
defining basis by Lemma 3.2, applied to the ideal J = {0}. Thus (2) implies 
(4). It remains to show that (3) implies (1). 

Assume that G has a defining basis B relative to 0, in some presentation 

1r : F ---t S where F is finitely generated. Then K = G and H 2 ( S, G) = 0 
whenever G is thin and almost null, by Proposition 2.2. Now let G be thin, 
surjecting, and reduced ( G0 = 0 ). 

Since B is a defining basis of G there is for every m E M0 \B a relation 

v(m) = l:nEB r n v(n) = l:nEB, rn#O r n v(n) 

which is reachable in Cm; in particular 1rn ~:J-C 1rm when r n #- 0. Then 

~ 7rn 
um = wnEB, Tn#O r n f7rm un 

for every minimal cocycle u. Also um = 0 whenever 1rm = 0 since G is reduced. 
Thus a minimal cocycle is determined by its values ( un)nEB on B. (The latter 

can be chosen arbitrarily, as readily shown, so that M Z 1 ( S, G) ~ IT nEB G 1rn.) 

Since the vectors v(n) with n E B constitute a basis of G, their co

ordinate matrix ( v(n)x)nEB, xEX has an inverse, which is an integer matrix 

(tn,x)nEB, xEX such that 

l:xEX v(m)x tn,x = 1 if m = n, 0 if m =/= n 

for all m, n E B. Let u be any minimal cocycle. Since G is surjecting there is 

for every n E B some hn E G1 such that un = 1J;.nhm. For every x EX let 
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9x = 2:::-:nEB tn,x 'Y!xhn E G1rx · 

Since v(m)x-=/= 0 implies x ~ m or x ~ q(m), and 1rx ~:H 1rm, we have 

2:::-:xEX, 1rx~1rm v(m)x 'Y;::ngx 

2:::-:xEX, 1rx~1rm 2:::-:nEB v(m)x tn,x 'Y!mhn 

2:::-:xEX 2:::-:nEB v(m)x tn,x 'Y!mhn = 'Y!mhm = um 

for every m E B. Since u and 8g are minimal cocycles, this implies u = 8g. 

Thus H 2(S,G) = 0 whenever G is thin, surjecting, and reduced. By Proposition 

2.1, H 2 ( S, G) = 0 whenever G is thin and surjecting. 0 

Theorem 3.4 does not extend immediately to every finite group-free semigroup 

S. If indeed S has two generators and H 2 ( S, G) = 0 whenever G is thin finite 
and surjecting, then S is a either a semilattice or a nilmonoid (Grillet [2000T]). 
Theorem XIII.5.6 also shows that a partially free semigroup S does not in general 

satisfy H 2 ( S, G) = 0 whenever G is thin finite and surjecting, even though G 
always has a defining basis, by Lemmas XIII.5.l and XIII.5.3. 

5. We conclude this section with some examples. All examples have two 
generators c and d; in their standard presentation we let X = { x, y}, with 
1rx = c, 1ry = d, and order F lexicographically, with ix + jy C kx + ly if and 
only if either i < k, or i = k and j < l. 

Example 3.5. Let S be the nilmonoid with the presentation 

S S::! ( c,d I c3d = d5, c4 = c2d3 , c5 = c3d2 = c2d5 = r? = 0 ). 

The nontrivial e-classes (other than the zero class) are { 5y, 3x + y}, { 2x + 
3y, 4x }, and { x + 5y, 2x + 4y, 4x + y}. Hence M0 consists of m 1 = 3x + y, 

m 2 = 4x, m3 = 2x+4y. We have q1 = q(m1) = 5y, q2 = q(m2) = 2x+3y, 

q3 = q(m3 ) = x + 5y, and v(m1) = 3x- 4y, v(m2) = 2x- 3y, v(m3 ) = x- y. 

Thus v(m1) and v(m2) constitute a basis of G (since I~ =~I = -1). 

There are two paths from 4x + y to x + 5y : 

4x + y ~ x + 5y and 4x + y ~ 2x + 4y ~ x + 5y; 

the corresponding overpaths are m 1 and m 2 , m3 . Thus the relation v(m3 ) 

v(m1)- v(m2 ) is realized in Cm3 , and {m1 , m 2 } is a defining basis of G. 

Therefore H 2 ( S, G) = 0 whenever G is thin finite and surjecting. 0 
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Example 3.5 

Example 3.6. Let S be the nilmonoid with the presentation 

S ~ ( c,d I c3 = c2d2 = d3 , c4 = c3d = cd3 = d4 = 0 ). 

There is one nontrivial e-class (other than the zero class): { 3y, 2x + 2y, 3x}. 
Hence M0 consists of m 1 = 2x + 2y and m 2 = 3x, with q = q( m 1) = q( m 2) = 
3y and v(m1) = 2x- y and v(m2) = 3x- 3y. 

3 ~1 
0 . : :\ m2 

0 3 
Example 3.6 

The defining vectors v(m1) and v(m2) are linearly independent but do not 

constitute a basis of G (since 1
2 -l, = -3 ). Hence K =/=- G and (Nf) 
3 -3 

does not hold: there exists an almost null functor G such that H 2 ( S, G) =/=- 0. 

Since GjK ~ Z3 the almost null functor with G0 = Z3 has H 2(S,G) ~ 
Hom (Z3, Z3 ) ~ Z3 . However, { m 1, m 2 } is a defining basis of K. D 

Example 3.7. Let S be the nilmonoid with the presentation 

S ~ ( c,d I c6 = cd7 , c5d = c3~ = d8, c7 = c5d2 = c2d5 = rP = 0 ). 

The nontrivial e-classes (other than the zero class) are { 8y, 3x + 4y, 5x + y }, 
{ x + 7y, 6x }, and { x + 8y, 4x + 4y, 6x + y}. Hence M0 consists of m 1 = 
3x + 4y, m 2 = 5x + y, and m 3 = 6x. We have q = q(m1) = q(m2) = 8y, 
q3 = q(m3 ) = x + 7y, and v(m1) = 3x- 4y, v(m2) = 5x- 7y, v(m3 ) = 

5x- 7y; v(m1) and v(m2) constitute a basis of G, since 1
3 -4 ~ = -1. 
5 -7 
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Example 3.7 

The only e-class with two overpaths (other than the zero class) is C = 
{ x + 8y, 4x + 4y, 6x + y}, which does not contain m 2 or m3 . The relation 

v(m3 ) = v(m2 ) is realized in C but it is not reachable in Cm3 . Therefore 

{ m 1 , m 2 } is not a defining basis of G. Similarly { m 1, m 3 } is not a defining 

basis of G. Therefore G does not have a defining basis and (Rf) does not hold; 

H 2 (S,G) i 0 for some functor G which is thin finite surjecting and reduced. 

The proof of Lemma 3 .2 provides such a functor. Let t = c5 d = c3 d4 = d8 , 

so that J0 = {O,t} and 1rm1 , 1rm2 , 1rm3 ~ J0 . Since v(m1), v(m2), 

v(m3 ) are not linearly independent, there is a finite abelian group A such that 

H 2 (S,G) i 0 when G is semiconstant with G 0 = Gt = 0 and G8 =A for 
all other s E S. The proof of Lemma 3.2 shows that every minimal cochain is 

a minimal cocycle, whereas a minimal coboundary u must satisfy um2 = um3 ; 

accordingly H 2 ( S, G) ~ A and any finite abelian group A i 0 serves. D 

Example 3.8. If we delete the relation c6 = cd7 from the presentation of S 

in Example 3.7, we obtain a nilmonoid 

S ~ ( c, d I c5 d = c3 d4 = d8 , c 7 = c5 d2 = c2 d5 = d9 = 0 ) 

for which M0 consists only of m 1 = 3x + 4y and m2 = 5x + y, and is a defining 

basis of G. Then H 2 ( S, G) = 0 whenever G is thin finite and surjecting. 


