
Chapter I. 

ELEMENTARY PROPERTIES. 

This chapter contains basic first properties of commutative semigroups: idem
patents, subsemigroups, homomorphisms and congruences, ideals, ideal exten
sions, JC-classes and Schiitzenberger groups, free commutative semigroups, pre

sentations. It is written for readers who are not familiar with semigroups and can 
therefore expect a few surprises. 

Many results in this chapter are stated for commutative semigroups but extend 
to all semigroups (with suitable modifications); interested readers should consult 
Clifford & Preston [1961], Howie [1976], [1995], or Grillet [1995]. 

1. FIRST RESULTS. 

1. A semigroup is a set S together with an associative binary operation on 
S. (This is the only axiom.) 

The name "semigroup" suggests a generalization of groups. To disabuse the 
reader of this erroneous belief we compare the number of distinct (not isomorphic) 
groups of order n with the number of distinct (not isomorphic or antiisomorphic) 
semigroups of order n, which has been determined for n :£ 8 (JOrgensen & Wick 
[1977]; Sato, Yama, & Tokizawa [1991]): 

All Semigroups 

n Groups Semi groups 

2 1 4 
3 1 18 
4 2 126 
5 1 1160 
6 2 15,973 
7 1 836,021 
8 5 1 ,843, 120,128 
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2 I. ELEMENTARY PROPERTIES. 

The number of semigroups of order 9 has not been determined; it is known to 
exceed 52,952,000,000,000, but probably not by much (JUrgensen, Migliorini, & 
Szep [1991]). 

A semigroup is commutative when its operation is commutative. (Commu
tative groups are called abelian.) Commutative semigroups are not as numerous 
as general semigroups but are still much more numerous than abelian groups: 

Commutative Semigroups 

n Groups Semigroups 

2 1 3 
3 1 12 
4 2 58 
5 1 325 
6 1 2143 
7 1 17,291 
8 3 221,805 
9 2 11,545,843 

The number of commutative semigroups of order 9 is from Grillet [ 1996N]. 

These large numbers suggest that even commutative semigroups are quite 
unlike groups and constitute a wholly different kind of algebraic object. 

2. There are some natural examples of commutative semigroups. 

We denote by N = { 0, 1, 2, ... , n, ... } the additive semigroup of natural 
numbers. N is a commutative semigroup under multiplication as well. We also 

denote by N+ = {1, 2, ... , n, .. . } the additive semigroup of all positive natural 

numbers, by Q+ the additive semigroup of all positive rational numbers, and by 

JR+ the additive semigroup of all positive real numbers. 

Abelian groups are commutative semigroups. 

A semilattice (short for lower semilattice) is a partially ordered set in which 
any two elements a and b have a greatest lower bound (or meet, or infimum) 
a 1\ b. Every lower semilattice is a commutative semigroup under the binary 
operation 1\. 

Groups and semilattices lie wholly outside semigroup theory. By well-estab
lished tradition, we regard as solved any problem which can be stated in terms of 
groups or semilattices (we dump it onto other unsuspecting mathematicians). 

Every commutative ring or algebra is a commutative semigroup under multi
plication. In fact, many arithmetic properties of rings are now studied in purely 
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multiplicative terms. (Constructing rings from semigroups is even more fruitful; 
semigroup algebras are a major employer of commutative semigroups.) 

3. The operation S x S --+ S on a semi group S is usually written like 
a multiplication (x,y) 1-----+ xy; sometimes (for instance, in N) like an addition 
(x,y) 1-----+ x + y. In the multiplicative notation, associativity is the property 

x (y z) = ( xy) z for all x, y, z E S; 

commutativity is the property 

xy = y z for all x, y E S. 

Associativity and commutativity have a number of consequences which we 
hope are well known to the reader. Associativity allows products of three or more 
elements to be written without parentheses. Commutativity implies that a product 
does not depend on the order of its terms: 

for every permutation a- of {1, 2, ... , n}. 

Powers are particular cases of products. When a is an element of a semi group 
S and n is a positive integer, then an is the product of n elements of S all 
equal to a (with an = a if n = 1 ). If S has an identity element 1 one can also 

define a0 = 1. In a commutative semigroup S, the equalities 

hold for all x, y E S and m, n > 0 ( m, n ~ 0 if S has an identity element). 

In the additive notation, products x1 x2 · · · xn become sums x1 + x2 + · · · + xn 

and powers xn become positive integer multiples nx. 

4. An identity element of a semigroup S is an element e of S such that 
ea = ae = a for all a E S. When an identity element exists, it is unique, and 
we normally denote it by 1 (by 0 in the additive notation). A semigroup with an 
identity element is a monoid. 

In a monoid, empty products (= products a 1 a 2 · · · an of elements of S in 
which n = 0) are, by definition, equal to the identity element; for instance, zero 

powers a0 = 1. 

An identity element can be adjoined to any semigroup S: given 1 ¢: S, 
define an operation on S U {1} as follows: 1 is an identity element and xy is 

the same in S and S U {1} for all x, y E S. Then S U {1} is a monoid, which 
is commutative if S is commutative. 

The identity element of S U {1} is not the same as the identity element of S 



4 I. ELEMENTARY PROPERTIES. 

in case the latter exists. Hence the following construction: 

1 { S if S has an identity element, 
s = 

S U { 1} if S does not have an identity element, 

which adjoins an identity element only when necessary. 

A zero element of a semigroup S is an element z of S such that za = az = z 
for all a E S. When a zero element exists, it is unique, and we normally denote 
it by 0 (by oo in the additive notation). 

A zero element can be adjoined to any semigroup S: given 0 ~ S, define 
an operation on S U { 0} as follows: 0 is a zero element and xy is the same in 
S and S U {0} for all x, y E S. Then S U {0} is a semigroup with zero, which 
is commutative if S is commutative. 

5. More generally, an idempotent of a semigroup S is an element e of S 
such that e2 = e; then en= e for all n > 0. We denote by E(S) the set of all 
idempotents of S. 

When S is commutative the Rees order on E(S) is defined for all e,J E 
E(S) by: 

e ~ f if and only if ef =e. 

If an identity element (a zero element) exists, then it is the greatest (the least) 
element of E(S) under the Rees order. 

Proposition 1.1. When S is a commutative semigroup, then E(S) is a 
(possibly empty) semilattice under the Rees order, in which e A f = ef for all e 
and f. 

Proof. First the Rees order is a partial order relation: for all e,J,g E E(S), 
e ~ e since e is idempotent; e ~ f ~ e implies e = ef = fe = f; and e ~ f ~ g 
implies e = ef = efg = eg and e ~g. Also e(e!) = ef and (e!)f = ef, so 
that ef ~ e,J. If conversely g ~ e and g ~ f, then efg = ef and g ~ ef. 
Thus ef is the infimum of e and f in E(S). 0 

The Rees order can be defined in any semigroup S and is always a par
tial order relation on E(S) (Rees [1940]); but then E(S) is not necessarily a 
semilattice. It was generalized to arbitrary elements by Mitsch [1986], [1994]. 

Corollary 1.2. Let S be a commutative semigroup. If every element of S 
is idempotent, then S is a semilattice under the Rees order, in which a A b = ab 
for all a and b. If conversely Y is a semilattice, then (Y, A) is a commutative 
semi group in which every element is idempotent, and the Rees order on (Y, A) 
is the given partial order on Y. 
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Accordingly, commutative semigroups in which every element is idempotent 
may be identified with (lower) semilattices, and are, in fact, called semilattices. 

6. Subsets A, B ~ S of a semigroup S are multiplied by: 

AB = { ab I a E A, b E B}. 

In particular, 

Ac = { ac I a E A} and cB = { cb I b E B} 

for all A, B ~ S and c E S. Multiplication of subsets inherits associativity and 
commutativity from S. 

A subsemigroup of a semi group S is a subset T of S which is closed under 
the operation on S ( xy E T for all x, y E T ); equivalently, such that TT ~ T. 
For instance, S and the empty set are subsemigroups of S. 

Every subsemigroup T of S inherits a semigroup operation T x T --* 
T from S; this semi group T is also called a subsemigroup of S. If S is 
commutative, then so is T. 

Every intersection of subsemigroups of S is a subsemigroup of S. Hence 
there is for every subset X of S a smallest subsemigroup T of S which contains 
X ; T is the intersection of all the subsemigroups of S which contain X, and is 
the subsemigroup (sometimes denoted by (X) or by X*) generated by X. 

Proposition 1.3. The subsemigroup generated by a subset X is the set 
of all products of one or more elements of X. In a commutative semi group, 
the subsemigroup generated by a subset X is the set of all products of positive 
powers of one or more distinct elements of X. 

Proof. A subsemigroup which contains X must by induction contain all 
nonempty products of elements of X. Conversely the set T of all nonempty 
products of elements of X is closed under multiplication and contains all products 
of one element of X, i.e. contains X . 

Every sequence x 1 , x 2 , ... , xn of elements of X can be permuted into a 
sequence y1, ... , y1 , y2 , ... , y2 , ... , yk, ... , yk, where y1 , y2 , ... , Yk are the 

distinct elements of { x1, x 2, ... , xn}. In a commutative semigroup, the products 

x 1 x 2 · · · xn and y1 · · · y1 y2 · · · y2 · · · Yk · · · Yk are equal; the latter is a product 
of positive powers of distinct elements of X. D 

For example, the cyclic subsemigroup generated by X = { x} consists of all 
the positive powers of x. 

If the subsemigroup generated by X is S itself, then X generates S and 
the elements of X are generators of S; this means that every element of S is 
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the product of one or more elements of X. A semigroup is finitely generated 
when it is generated by a finite subset, cyclic when it is generated by a single 
element. 

Proposition 1.3 has an analogue for monoids. When S is a monoid, a sub
monoid of S is a subsemigroup T of S which contains the identity element of 
S; then T is a monoid in its own right, with the same identity element as S. 

Proposition 1.4. In a monoid, the submonoid generated by a subset X is the 
set of all products of elements of X. In a commutative monoid, the sub monoid 
generated by a subset X is the set of all products of positive powers ofdistinct 
elements of X. 

This works since empty products yield the identity element. 

2. HOMOMORPHISMS AND CONGRUENCES. 

1. Let S and T be semigroups. A homomorphism of semigroups of S into 
T is a mapping c.p : S ---+ T such that c.p ( ab) = c.p( a) c.p(b) for all a, b E S. 
Semigroup homomorphisms preserve all nonempty products: 

c.p (a1 a2 ···an) = c.p(a1) c.p(a2 ) · · · c.p(an) 

and preserve positive powers: c.p (an) = c.p( a )n. 

The identity mapping 18 on a semigroup S is a homomorphism of S onto 
S. If c.p : S ---+ T and '1/J : T ---+ U are homomorphisms, then so is '1/J o c.p : 
S ---+ U. An isomorphism of semigroups is a bijective homomorphism; the 
inverse bijection is also an isomorphism. 

When T is commutative, the pointwise product 

(c.p.'lj;)(a) = c.p(a) 'lj;(a) 

of two homomorphisms c.p, '1/J : S ---+ T is a homomorphism c.p. '1/J : S ---+ T. With 
this operation the set Hom ( S, T) of all homomorphisms of S into T becomes 
a commutative semigroup. 

2. Semigroup homomorphisms share a number of basic properties with map
pings and with homomorphisms of algebraic systems in general. 

When S and T are sets, a mapping c.p : S ---+ T has a range or image 
im c.p = c.p(S) ~ T and induces an equivalence relation ker c.p on S, 

ker c.p = {(a, b) E S x S I c.p(a) = c.p(b)}. 
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This provides a quotient set S /ker cp (the set of all equivalence classes) and a 
projection or canonical mapping S --+ S /ker cp, which sends x E S to its 
equivalence class. Then cp induces a bijection S/ker cp --+ im cp, which sends 
the equivalence class of x E S to cp( x), and cp can be reconstructed by composing 
the projection S --+ S /ker cp, the bijection S /ker cp --+ im cp, and the inclusion 
mapping im cp --+ T. 

S~T 

1 r 
S /ker cp -----t im cp 

Homomorphisms of groups have similar properties, with the important differ
ence that quotient groups are constructed from subgroups. As we shall see, semi
groups are more like sets than like groups in that, in general, quotient semigroups 
cannot be constructed from subsets and must be constructed from equivalence 
relations. 

3. First, given a semigroup S and an equivalence relation c on S, how can 
we induce an operation on the quotient set S / c ? The answer is: 

Proposition 2.1. Let S be a semigroup and c be an equivalence relation 
on S. The following conditions are equivalent: 

(1) there exists an associative operation on Sf£ such that the projection 
S --+ S / c is a homomorphism; 

(2) for all a,b,c,d E S, if a c c and b c d, then abc cd. 

When either condition holds, there is only one associative operation on S / c such 
that the projection a 1---1- Ea is a homomorphism; the product of Ea and Eb 
in Sf£ is the equivalence class which contains their product as subsets of S, 
namely Eab· If S is commutative, then so is Sf£. 

Ea denotes the £-class of a (=the equivalence class of a modulo c). 

Proof. If a 1----t Ea is a homomorphism, then Ea = Eb, Ec = Ed implies 
Eac = Ea.Ec = Eb.Ed = Ebd; thus (1) implies (2). 

Conversely let (2) hold. By (2), c E Ea, d E Eb implies cd E Eab; thus 
the product Ea Eb of Ea and Eb as subsets of S is contained in the single 
equivalence class E ab . If the projection a 1---1- E a is a homomorphism, then the 

product Ea.Eb = Eab of Ea and Eb in Sf£ is the equivalence class which 
contains their product E a Eb as subsets of S; there is only one operation on S / c 
with this property, and it is the operation described in the statement. With this 
operation, Ea.Eb = Eab holds in Sf£; hence Sf£ is a semigroup: 
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Ea.(Eb.Ec) = Ea.Ebc = Ea(bc) = E(ab)c = Eab·Ec = (Ea.Eb).Ec 

and the projection s -----+ s I e is a homomorphism. Thus (2) implies ( 1 ). If s 
is commutative, then 

Eb.Ea = Eba = Eab = Ea .Eb 

and S I e is commutative. 0 

A congruence on a semigroup S is an equivalence relation e on S which 
satisfies condition (2) in Proposition 2.1; then the quotient semigroup of S by 
e is the semi group s I e in Proposition 2.1' such that the projection s -----+ s I e 
is a homomorphism. The equivalence relation on S induced by the projection 
s -----+ s 1 e is e itself. 

A congruence on a group is completely determined by the equivalence class 
of the identity element, so that quotient groups can be constructed from normal 
subgroups. This nice property does not extend to semigroups; not even to com
mutative monoids with a zero element. For instance let S be the semilattice (also 
a monoid) S = { 0, e, 1} in which 0 < e < 1. The equivalence relation whose 
classes are { e, 0} and {1} is a congruence; so is the equality (whose classes are 
{ 0}, { e}, and { 1} ); thus a congruence on S is not determined by the class of 
the identity element. Similarly, the equivalence relation whose classes are { 1, e} 
and {0} is a congruence; hence a congruence on S is not determined by the class 
of the zero element. 

4. Armed with quotient semigroups we can now state the Homomorphism 
Theorem (also known as the First Isomorphism Theorem): 

Theorem 2.2. When <p : S -----+ T is a homomorphism of semigroups: 

( 1) Im <p = <p ( S) is a subsemigroup ofT; 

( 2) ker <p is a congruence on S; 

(3) there exists an isomorphism Slker <p -----+ Im <p such that the diagram 

S~T 

1 r 
Slker <p ~ Im <p 

commutes; in particular Slker <p ~ Im <p. If S and T are commutative, then 
so are Im <p and S lker <p. 

Proof. When <p : S -----+ T is a homomorphism, Im <p = <p ( S) is a sub
semigroup ofT, since <p(a) <p(b) = <p(ab) for all a,b E S; e = ker<p is a 
congruence on S, since <p(a) = <p(b), <p(c) = <p(d) implies <p(ac) = <p(a) <p(c) = 



2. HOMOMORPHISMS AND CONGRUENCES. 9 

<p(b) <p(d) = <p (bd); and the bijection Ea ~ <p(a) is a homomorphism, since 

it sends Ea.Eb = Eab to <p(ab) = <p(a) <p(b). 0 

Let S and T be semigroups. By Theorem 2.2, S is isomorphic to a subsemi
group ofT if and only if there exists an injective homomorphism (an embedding) 
of S into T; then S can be embedded into T. Similarly, T is isomorphic to 
a quotient semi group of S if and only if there exists a surjective homomorphism 
of S onto T; then T is a homomorphic image of S. 

5. Theorem 2.2 can be deduced from more general results which allow one 
homomorphism to factor through another and help construct diagrams of semi
groups and homomorphisms. 

Proposition 2.3. Let <p : S ----+ T and 'ljJ : U ----+ T be homomorphisms 
of semi groups. If <p is injective, then '1/J factors through <p ( '1/J = <p 0 e for some 
homomorphism e : U ----+ S) if and only if Im 'ljJ ~ Im <p; and then '1jJ factors 
uniquely through <p (e is unique). If <p and '1jJ are injective and Im 'ljJ = Im <p, 
then e is an isomorphism. 

This is clear. 

Proposition 2.4. Let <p : S ----+ T and 'ljJ : S ----+ U be homomorphisms of 
semi groups. If <p is surjective, then '1/J factors through <p ( '1/J = e 0 <p for some 
homomorphism e : T ----+ U) if and only if ker <p ~ ker '1jJ; and then '1jJ factors 
uniquely through <p (t;, is unique). If <p and 'ljJ are surjective and ker <p = ker 'ljJ, 
then t;, is an isomorphism. 

S~T 

~1 ~ 
u 

Proof. If 'ljJ = eo<p, then <p(a) = <p(b) implies 'tj;(a) = e(<p(a)) = e(<p(b)) = 
'tj;(b), and ker <p ~ ker 'ljJ. 

Conversely, assume that <p is surjective and that ker <p ~ ker 'ljJ. Let e be 
the set of ordered pairs 

e = { (<p(a), 'tj;(a)) E T Xu I a E S}. 

For every t E T, there exists u E U such that ( t, u) E e, since <p is surjective; if 

moreover (t,u) E ~' (t1,u1) E e, and t = t', then u = u', since ker<p ~ ker'lj;. 
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Thus ~ is a mapping ofT into U. Also ~ (cp(a)) = 1/J(a) for all a E S by 
definition and 

~(cp(a) cp(b)) = ~(cp(ab)) = 1/J(ab) = 1/J(a) 1/J(b) = ~(cp(a)) ~(cp(b)) 

for all a, b E S, so that ~ is a homomorphism. Thus 1/J factors through cp; 1/J 
factors uniquely through cp since any mapping x such that 1/J = x o cp must contain 
all ordered pairs (cp(a), 1/J(a)) and must coincide with ~· If moreover 1/J is 
surjective and ker cp = ker 1/J, then ~ is injective, since ~ ( cp( a)) = ~ ( cp(b)) implies 
1/J(a) = 1/J(b) and cp(a) = cp(b), is surjective, since Im~ = Im(~ocp) = Im'ljJ, 
and is an isomorphism. D 

Analogues of the (other) two Isomorphism Theorems also hold for semigroups. 
The most useful employ the following constructions. Let cp : S --+ T be a 
semigroup homomorphism. The direct image under cp of a subsemigroup S' of 
S is the subset cp( S') = { cp( x) I s E S'} of T. The inverse image under cp of 

a subsemigroup T 1 of T is 

cp-1(T1) = {xES I cp(x) E T} 

Proposition 2.5. Let cp : S --+ T be a homomorphism of semigroups and 
e = ker cp. 

If S' is a subsemigroup of S, then cp( S') is a subsemigroup of T. 

lfT' is a subsemigroup ofT, then cp-1 (T1) is a subsemigroup of Sand a 
union of e-classes. 

If cp is surjective this defines an order preserving one-to-one correspondence 
between subsemigroups ofT and subsemigroups of S that are unions of e-clas
ses. 

Proof. If S' is a subsemigroup of S, then cp( S') is a subsemigroup of T, 
since cp(x) cp(y) = cp(xy) E cp(S') for all x,y E S'. 

If T' is a subsemigroup of T, then cp -l (T') is a union of e-classes and is 

a subsemigroup of S since cp( x), cp(y) E T' implies cp ( xy) = cp( x) cp(y) E T'. 

If cp is surjective, then cp(cp- 1(T')) = T' for every T' ~ T. Also S' ~ 
cp-1(cp(S')) for every S' ~ S; conversely, x E cp- 1(cp(S')) implies cp(x) = cp(s) 
for some s E S' and x E S' if S' ~ S is a union of e-classes. D 

Similarly, the direct image under a semigroup homomorphism cp : S --+ T 
of a congruence e on S is the binary relation 

cp(e) = { (cp(a), cp(b)) E TxT I (a, b) E e }; 
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equivalently, the direct image of c ~ S x S under cp x cp : S x S ---+ T x T. 
The inverse image under cp of a congruence :r on T is the binary relation 

cp-1(:!) = {(a, b) E S x S I (cp(a), cp(b)) E :!}; 

equivalently, the inverse image of :r under cp x cp . We also say that cp (c) , 

cp - 1 ( :J) are induced by c and :J. 

Proposition 2.6. Let cp : S ---+ T be a homomorphism of semigroups and 

e = ker cp. 

If :r is a congruence on T, then cp-1(:!) is a congruence on S which 

contains e; if cp is surjective, then Slcp- 1(:!) ~ TI:J. 

If cp is surjective and c is a congruence on S which contains e, then cp (c) 
is a congruence on T, and Tlcp(c) ~Sic. 

If cp is surjective this defines an order preserving one-to-one correspondence 

between congruences on T and congruences on S that contain e. 
Proof. Let :r be a congruence on T and p : T ---+ T I:J be the projection, 

so that :r = ker p. We see that cp - 1 ( :J) = ker (p o cp) . Therefore cp - 1 ( :J) is a 

congruence on S. If cp is surjective, then S I cp - 1 ( :J) ~ Im (p o cp) = Imp = T I :r 
by Theorem 2.2. 

Now let cp be surjective and c be a congruence on S which contains e. 
Let p : S ---+ SIc be the projection. By Proposition 2.4, p factors through cp: 

p = ~ o cp for some homomorphism ~ : T ---+ SIc . We have cp (c) = ker ~ : indeed 

(a, b) E c implies ~(cp(a)) = p(a) = p(b) = ~(cp(b)) and (cp(a), cp(b)) E ker~; if 

conversely (t,u) E ker~, then t = cp(a), u = cp(b) for some a,b E S, (a,b) E c 
since p(a) = ~(t) = ~(u) = p(b), and (t,u) = (cp(a), cp(b)) E cp(c). Therefore 

cp (c) is a congruence; by Theorem 2.2, T I cp (c) ~ Im ~ = Imp = SIc, since 
cp is surjective. 

If cp is surjective, then cp x cp is surjective; therefore cp (cp-1(:!)) = :r for 

all :r ~ TxT. Similarly c ~ cp- 1 (cp(c)) for all c ~ S x S. If c is a 

congruence on Sande~ c, and (a,b) E cp-1(cp(c)), then (cp(a), cp(b)) E 

cp(c), (cp(a), cp(b)) = (cp(c), cp(d)) for some (c,d) E c, and, as above, (a, c) E c 

and (b,d) E c; hence (a,b) E c, so that cp-1 (cp(c)) =c. D 

It follows from Propositions 2.5, 2.6 that the subsemigroups of a quotient 

semi group S I e are precisely the sets of e-classes whose unions are subsemigroups 

of S; and that the congruences on Sle are precisely the congruences induced on 

s 1 e by congruences on s that contain e . 
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6. Similar results hold for monoids. When S and T are monoids, a 
homomorphism of monoids of S. into T is a homomorphism of semigroups 
<p: S-----+ T such that <p(l) = 1. Then <p preserves all products and nonnegative 
powers. 

When S is a monoid and C. is a congruence on S, then 

El.Ea = Ela = Ea = Eal = Ea.El 

for all a E S, so that SIC. is a monoid and the projection S -----+ SIC. is 
a homomorphism of monoids. If therefore <p : S -----+ T is a homomorphism 
of monoids, then, as in Theorem 2.2, Im <p is a submonoid of T, ker <p is a 
congruence on S, and there is an isomorphism S lker <p -----+ lm <p such that the 
diagram 

S~T 

1 r 
S lker <p ----+ Im <p 

commutes; in particular S lker <p 9:! Im <p. 

Results similar to Propositions 2.3, 2.4, 2.5, and 2.6 also hold for monoids; 
this is left to the reader. 

7. We complete this section with some properties of congruences. 

Proposition 2. 7. An equivalence relation e on a commutative semi group S 
is a congruence if and only if, for all a, b, e E S, a e b implies ae e be. 

Proof. If this condition holds, then a e b, e e d implies ae e be= eb e db= 
bd, and e is a congruence. The converse is clear. D 

For instance the equality = on a semigroup S is a congruence, and so is the 
universal congruence U, of which S is the only equivalence class; S I= ~ S, 
whereas S IU is trivial. 

Since congruences on a given semigroup S are subsets of S x S, we can form 
their unions and intersections in S x S. The following result is straightforward. 

Proposition 2.8. Let S be a semigroup. Every intersection of congruences 
on S is a congruence on S. The union of a chain of congruences on S is a 
congruence on S. 

In particular, the empty intersection niE0 ei of congruences on S can 

be defined as the universal congruence on S; the empty union UiE0 ei of 
congruences on S can be defined as the equality on S. 

By Proposition 2.8 there is for every binary relation ::R ~ S x S a smallest 
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congruence e on S which contains ~; e is the intersection of all the congruences 
which contain ~ and is the congruence generated by ~. 

Proposition 2.9. Let S be a commutative semigroup. The congruence e 
generated by ~ ~ S x S can be constructed as follows. Let 

s = {(xu, yu) I x,y E s, u E 8 1' and X~ y or y ~X }. 

Then a e b if and only if there exist n ~ 1 and s1 , ... , sn E S such that a = s1 , 

sn = b, and si S si+l for all 1 ~ i < n. 

Proof. We see that S contains ~ (let u = 1 E 8 1 in the definition of 
S ), is symmetric (a S b implies b S a), and admits multiplication (a S b implies 
ac S be). Hence e is symmetric (reverse the sequence s1, ... , sn in the definition 
of e) and admits multiplication. Moreover e contains the equality on S (let 
n = 1 in the definition), contains S (let n = 2), and is transitive. Thus e is a 
congruence and contains ~. 

Conversely, a congruence which contains ~ must contain S, since a congru
ence is symmetric and admits multiplication; and a congruence which contains S 
must contain e, since a congruence is reflexive and transitive. 0 

Proposition 2.9 can be stated more simply as follows: every relation a e b 
follows from relations x ~ y by finitely many applications of the following 
inference rules: a~ b implies a e b; a e b implies au e bu, for all u E S; 
a E 8 implies a e a; a e b implies be a; a e b, be c implies a e c. 

3. IDEALS. 

1. An ideal of a semigroup S is a subset I of S such that a E I implies 
ax E I and xa E I for all x E S; equivalently, such that IS ~ I and S I ~ I. 
For instance, S and the empty set are ideals of S. If S is commutative, the 
condition SI ~ I is sufficient. 

Proposition 3.1. Every union of ideals of S is an ideal of S. Every 
intersection of ideals of S is an ideal of S. 

By Proposition 3.1 there exists, for every subset X of S, an ideal of S which 
contains X and is contained in every ideal of S which contains X; this is the 
ideal of S generated by X . 

Proposition 3.2. In a commutative semi group S, the ideal generated by a 

subset X is the set 8 1 X of all multiples of elements of X. 
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Proof. 8 1 X is the product in 8 1 , which is contained in S since either 

S1 X = SX or 8 1 X = SX U lX = SX U X ~ S; contains lX = X; and 
is an ideal of S since SS1 X ~ 8 1 X. Conversely, an ideal which contains X 
also contains SX and 8 1 X. 0 

In particular (when S is commutative) the ideal generated by one element 
a E S is the set S 1a of all multiples of a; such ideals are called principal. 

Proposition 3.3. Let S be a commutative semigroup. If K is a minimal 
nonempty ideal of S, then K is a smallest nonempty ideal of S, and K is a 
group. 

Proof. Let I be a nonempty ideal. Since I and K are ideals, I K ~ In K 
and In K is a nonempty ideal. Since InK ~ K it follows that K ~ I. 

When a E K, then K a ~ K is an ideal of S; hence K a = K. In particular 
ea = a for some e E K. Since every element of K has the form ax for some 
x E K it follows that e is an identity element of K. Then every element a of 
K has an inverse in K, since ab = e for some b E K, and K is a group. 0 

The smallest nonempty ideal of S, when it exists, is the kernel of S. Every 
finite commutative semigroup has a kernel; N does not. 

Proposition 3.4. Let !.p : S -----+ T be a homomorphism of semigroups and 
e = ker !.p. 

lf cp is surjective and I is an ideal of S, then cp(I) is an ideal ofT. 

If J is an ideal ofT, then cp - 1 ( J) is an ideal of S and a union of e-classes. 

If !.p is surjective this defines an order preserving one-to-one correspondence 
between ideals of T and ideals of S that are unions of e-classes. 

Proof. If !.p is surjective and I is an ideal of S, then ~.p(I) is an ideal ofT, 
since ~.p(x) ~.p(y) = ~.p(xy) E ~.p(I) for all xES andy E I. 

If J is an ideal of T, then !.p - 1 ( J) is a union of e-classes and is an ideal 
of S since ~.p(y) E J implies ~.p(xy) = ~.p(x) ~.p(y) E J for all xES. 

If !.p is surjective, then !.p ( !.p - 1 ( J)) = J for every J ~ T, and tp - 1 ( ~.p( I)) = I 
for every I~ S that is a union of e-classes, as in the proof of Proposition 2.5. 0 

2. Congruences on a group are determined by normal subgroups. In a semi~ 
group, congruences are most easily constructed from ideals. The resulting quotient 
semigroups, discovered by Rees [ 1940], are peculiarly different from quotient 
groups and from quotient rings. 

Proposition 3.5. When I is an ideal of a semigroup S, the relation J' 
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defined by 

a :J b -¢:::::::} a = b or a, b E I 

is a congruence on S, the Rees congruence of the ideal I. 

Proof. :J is an equivalence relation, and is a congruence since a = b and 
c, d E I implies ac, bd E I; a, b E I and c = d implies ac, bd E I; and 
a,b,c,d E I implies ac,bd E I. 0 

The quotient semigroup S I I = S I:J is the Rees quotient of S by I. It is 
standard practice to identifY the :J -class { x} E S I I of each x ¢ I with x E S. 
If I= 0, then SII = S. If I i= 0, the :J-class IE SII is a zero element and 
is denoted by 0; then S I I = ( S\I) U { 0} with the multiplication . in which 0 
is a zero element and 

x.y = {~yES if xy ¢I 

if xy E I 

for all x, y E S\I. Thus the Rees quotient is obtained by squeezing I to a zero 
element (if I i= 0) and leaving S\I untouched. 

3. The Rees quotient can be viewed as the completion of a partial semi group 
into an authentic semigroup. In general a partial binary operation on a set P 
is a mapping f.L : D ----+ P whose domain D is a subset of P x P : when 
x, y E P, p(x, y) is defined when (x, y) E D and is undefined otherwise. In 
the multiplicative notation, p( x, y) is denoted by xy. A partial semigroup is 
a set P together with a partial binary operation on P which is associative in 
the sense that x(yz) = (xy)z holds whenever x, y, z E P and both x(yz) and 
( xy )z are defined. (Other associativity conditions have been considered; see the 
book by Lyapin & Evseev [1997].) 

When P and Q are partial semigroups, a partial homomorphism of P into 
Q is a mapping cp : P ----+ Q which preserves existing products: cp ( xy) = 
cp( x) cp(y) whenever xy is defined in P. If Q is a commutative semi group, then 
the set PRom (P, Q) of all partial homomorphisms of P into Q is closed under 

pointwise addition and is a commutative semigroup; if P is an actual semigroup, 

then PHom(P,Q) = Hom(P,Q). 

Every subset A of a semigroup S is a partial semigroup for the partial 
operation . induced by S in the obvious way: when x, y E A, then x. y is 

defined in A if and only if xy E A, and then x . y = xy. When I is a non empty 

ideal of S, the Rees quotient S I I is obtained from the partial semi group S\I 
by adjoining a zero element and setting all undefined products to 0. 

4. An ideal extension of a semigroup S by a semigroup Q with zero is a 
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semigroup E such that S is an ideal of E and Q is the Rees quotient Q = E / S. 
Ideal extensions were first studied by Clifford [ 1950]. 

The ideal extension problem, first considered by Clifford [ 1950], consists 
in constructing all ideal extensions of a given semigroup S by a given semigroup 
Q with zero; one may assume S n Q = 0. This difficult problem is discussed in 
some detail in Clifford & Preston [ 1961 ], Grillet [ 1995], and especially Petrich 
[ 1973]. The particular case of mono ids has a very nice solution, due to Clifford 
[ 1950]; another case will be seen in Chapter II. More general results are known 
but have had few applications to commutative semigroups. 

When S is a subsemigroup of E, a retraction of E onto S is a homomor
phism of E into S which is the identity on S. 

Proposition 3.6. Every ideal extension of a monoid S has a retraction 
a r-----+ ea = ae, where e is the identity element of S. 

Proof. Let e be the identity element of S. In E we have ea = ( ea) e = 
e (ae) = ae for all a E E, since ea and ae are in S. Let 

'!fJ(a) = ea = eae = ae E S 

for all a E E. Then '1/J(a) = a when a E S, and '1/J(ab) = eabe = '1/J(a) '1/J(b) 
for all a, b E E. D 

An ideal extension E of S by Q is a retract ideal extension when there 
exists a retraction 'ljJ of E onto S. Then the restriction <.p : Q\ 0 ---+ S of 'ljJ to 
Q\0 = E\S is a partial homomorphism, and the operation on E is determined 
as follows by the operation on S, the partial operation on Q\ 0, and the partial 
homomorphism <.p. If a,b E Q\0 and ab =F 0 in Q, then ab is the same in Q 
and E. If a,b E Q\0 and ab = 0 in Q = EjS, then, in E, abE Sand ab = 
'ljJ (ab) = <.p(a) <.p(b). If a E Q\0 and x E S, then, in E, ax= 'ljJ (ax) = <.p(a) x 
and xa = 'ljJ (xa) = x <.p(a). If x, y E S, then xy is the same in S and E. 

Lemma 3.7. Let S be a semigroup and Q be a semigroup with zero such 
that S n Q = 0. If <.p is a partial homomorphism of Q\0 into S, then the 
disjoint union E = S U (Q\0), with the multiplication * defined by 

a*b abE Q ifab # 0 in Q, 

a*b <.p( a) <.p(b) ifab = 0 in Q, 

a*y <.p(a) y, 

X*b x<.p(b), 

X*Y xy E S 
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for all a, bE Q\ 0 and x, y E S, is a retract ideal extension of S by Q, and every 
retract ideal extension of S by Q can be constructed in this fashion. Moreover, 
E is commutative if and only if S and Q are commutative. 

Proof. Associativity in E follows in a long but straightforward manner from 
associativity in S, associativity in Q, and the hypothesis that <p is a partial 
homomorphism. Then it is clear that S is an ideal of E and that E / S = Q. 
Moreover the mapping '1/J : E --+ S defined by 

'1/J(a) = <p(a) for all a E Q\{0}, '1/J(x) = x for all xES, 

is a retraction of E onto S. Conversely we saw that every retract ideal extension 
can be constructed as in the statement. D 

The ideal extension constructed in Lemma 3. 7 is determined by the partial 
homomorphism <p. Thus, an ideal extension is a retract ideal extension if and 
only if it is determined by a partial homomorphism: 

Proposition 3.8. Every ideal extension of a monoid S by a semigroup Q 
with zero is a retract ideal extension and is therefore determined by a partial 
homomorphism of Q\ {0} into S, namely a f---.+ ea = ae, where e is the identity 
element of S. 

This follows from Lemma 3.7 and Proposition 3.6. 

4. DIVISIBILITY. 

1. A preorder (also called quasiorder) is a binary relation which is reflexive 
and transitive; thus, a preorder which is also antisymmetric is an order relation. 

On a commutative semigroup S the Green's preorder ~:J-C (also called the 
divisibility preorder) is defined by 

a ~:J-C b ~ a= tb for some t E S 1 ~ S 1a ~ S 1b. 

if for example e and f are idempotents, then e ~:J-C f if and only if e ~ f in 

the Rees order: indeed ef = e implies e ~:J-C f; conversely, e = tf implies 
ef = tf f = tf = e. 

Green's relation JC is one of several relations introduced for semigroups in 
general by Green [1951]: 

a JC b ~ a ~:J-C b and b ~:J-C a ~ S 1a = S 1b. 

Proposition 4.1. In a commutative semigroup, JC is a congruence. 
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Proof. If a JC b, then a = tb and b = ua for some t, u E S 1, ae = tbe and 
be = uae for some t, u E S 1, and ae JC be. 0 

In a sense, JC measures the extent of group-like behavior in semigroups. Thus, 
multiplication by elements of a semigroup induces permutations of its JC-classes: 

Lemma 4.2. Let H be an JC -class and t E 8 1. If tH s;;; H, then the 
mapping 9t : x 1-----t tx of H into H is bijective. 

Proof. Let hE H. Then thE H, h = uth for some u E 8 1 , and uH s;;; H, 
since JC is a congruence. If a E H, then a = hv for some v E S 1 and 
tua = uta= uthv = hv = a; thus 9t and 9u are mutually inverse bijections of 
H onto H. 0 

2. Actual groups arise from JC in two ways. A subgroup of a semigroup S 
is a subsemigroup G of S which happens to be a group. Necessarily the identity 
element of G is an idempotent of S. Conversely, every idempotent e of S yields 
a trivial subgroup { e} of S. Less trivially: 

Proposition 4.3. For an JC-class H of a commutative semigroup S the 
following conditions are equivalent: 

(1) abE H for some a,b E H; 

( 2) H is a subsemigroup of S; 

( 3) H contains an idempotent; 

(4) H is a subgroup of S. 

Proof. (1) implies (2) since JC is a congruence: if a, b, and abE H, then 
x,y E H implies x JC a, y JC b, xy JC ab, and xy E H. 

Assume that H is a subsemigroup and let a E H. Then aH s;;; H; by 
Lemma 4.2, ga : x 1-----t ax is a permutation of H. In particular ae = a for 

some e E H. Then a = ae = aee and e2 = e, since ga is injective. Thus (2) 
implies (3). 

Now assume that H contains an idempotent e. Then a, b E H implies 
a JC e, b JC e, ab JC ee = e since JC is a congruence, and ab E H; thus H is 
a subsemigroup of S. For every a E H we have a= te for some t E 8 1 and 
ae = tee = te = a. Moreover aH s;;; H, ga : x 1-----t ax is a permutation of H 
by Lemma 4.2, and ab = e for some b E H. Hence H is a group. Thus (3) 
implies (4); and (4) implies (1). 0 

If for instance S is a monoid, then the elements of H 1 are the units of S 
and H 1 is the group of units of S. 
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Proposition 4.4. In a commutative monoid S, S\H1 is an ideal. 

Proof. If y E S is not a unit, then there cannot exist u E S such that uxy = 1, 
and xy is not a unit. D 

In general: 

Corollary 4.5. The maximal subgroups of a commutative semigroup S 
coincide with the 1-C -classes of S which contain idempotents. They are pairwise 
disjoint. Every subgroup of S is contained in exactly one maximal subgroup. 

Proof. If G is a subgroup of S and e is the identity element of G, then 

every x E G satisfies ex= x and xy = e for some y = x-1 E G ~ S; hence 
G ~He. D 

The history of Corollary 4.5 goes back to Schwarz [1943] for torsion semi
groups and to Wallace [1953] and Kimura [1954] for semigroups in general. 

3. In fact Lemma 4.2 yields a group for every 1-C-class H. Let 

st (H) = { t E s1 1 tH ~ H} 

denote the (left) stabilizer of H. For every t E St (H), Lemma 4.2 provides a 
bijection gt : H ---t H, x t----+ tx. 

Proposition 4.6. For every 1-C-class H, r(H) = {gt I t E St (H)} is a 
simply transitive group of permutations of H, and t t----+ gt is a homomorphism 

ofSt (H) onto r(H). If H =He is a maximal subgroup of S, then r(H) ~H. 

Proof. First gt(gu(x)) =tux= gtu(x) for all t,u E St(H) and x E H; 
thus t t----+ gt is a homomorphism and r(H) is a semigroup (under composition). 

Also 1 E St (H) ~ 8 1 and g1 = 1 H is the identity mapping on H. 

Let gt E r(H) and a E H. As in the proof of Lemma 4.2, a 1-C ta and 

a = uta for some u E 8 1 ; in fact u E St (H), since 1-C is a congruence. For 

every x E H we now have x = av and utx = utav = av = x for some v E 8 1 ; 

thus gt has an inverse in r(H), namely gu. 

If a, b E H, then b = ta for some t E 8 1 , t E St (H) since 1-C is a 
congruence, and gt(a) = b; thus r(H) is transitive. In fact r(H) is simply 

transitive: if gt (a) = gu (a), then ta = ua, tx = tav = uav = ux for every 
x = av E H, and gt = gu. 

If finally H = He is a maximal subgroup of S, with identity element e, then 

H ~ St (H) and the homomorphism h t-----t gh of H into r(H) is bijective, 

since gh(e) = h and r(H) is simply transitive. 0 
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r(H) is the (left) SchOtzenberger group of H; it was discovered by Schiit
zenberger [1957]. 

5. FREE COMMUTATIVE SEMIGROUPS. 

1. When a commutative semigroup S is generated by a subset X, every 
element of S is a product of positive powers of one or more distinct elements of 
X (Proposition 1.3) but can in general be written in this form in several ways. 
For example X = S generates S, and then every equality ab = c in S equates 
two distinct products of positive powers of one or more distinct elements of S. 

A commutative semigroup S is free on a subset X when every element of 
S can be written uniquely (up to the order of the terms) as a product of positive 
powers of one or more distinct elements of X. For example, the multiplicative 
semi group { 2, 3, ... , n, . .. } ~ N is free (as a commutative semigroup) on the set 
of all prime numbers. In the additive notation, powers become positive integer 

multiples; the additive semigroup N+ is free on {1}. 

2. For every set X we now construct a commutative semigroup Fx which 
is free on X. 

Fx is one of the few commutative semigroups that we prefer to denote addi
tively. Then products of positive powers of distinct elements of X become sums 
of positive integer multiples of distinct elements of X, that is, (finite) linear 

combinations of elements of X with coefficients in N+ . This suggests that we 
retrieve Fx from the free abelian group Gx on X, which consists of all linear 

combinations a = l::xEX ax x with integer coefficients ax E Z that are almost 

all zero (that is, { x E X I ax i= 0} is finite). (Linear combinations l::xEX ax x 

can be defined more formally as suitable families (ax)xEX of integers.) Addition 
on Gx is coordinatewise: 

l::xEX axx + l::xEX bxx = l::xEX (ax+ bx)x · 

G x is a partially ordered group, as the coordinatewise partial order 

'ExEX ax x ~ 'ExEX bx x if and only if ax ~ bx for all x E X 

is compatible with the operation (if a ~ b, then a+ c ~ b +c). 

Fx is the positive cone of Gx, which is a subsemigroup of Gx: 

Fx={aEGxla>O}; 
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equivalently, Fx is the set of all linear combinations a = l:xEX ax x with 

integer coefficients ax such that ax = 0 for almost all x, ax ~ 0 for all x, 
and ax > 0 for some x. Note that a ~:J-C b in Fx if and only if a ~ b in the 
coordinatewise partial order. 

Every y E X can be written as a linear combination y = I:xEX ax x E Fx 
in which ay = 1 and ax = 0 for all x #- y; thus X ~ Fx . Now every element 

of Fx can be written uniquely (up to the order of the terms) as a nonempty sum 
of positive integer multiples of distinct elements of X; hence 

Proposition 5.1. For every set X, Fx is a commutative semigroup which 
is free on X. 

Sometimes it is better to denote Fx multiplicatively; then every element of 

Fx is uniquely (up to the order of the terms) a non empty product a = ITxEX xax 
of positive integer powers of distinct elements of X (with ax = 0 for almost all 

x, ax ~ 0 for all x, and ax > 0 for some x). 

3. The most important property of Fx is its universal property: 

Theorem 5.2. Every mapping f of X into a commutative semigroup S 
extends uniquely to a homomorphism <p of Fx into S, namely 

'P(l:xEX axx) = ITxEX f(xtx · 

The image of <p is the subsemigroup of S generated by f (X). If S is generated 
by f (X), then <p is surjective. If S is free on X, then S is isomorphic to Fx. 

x-SF X 

~ 1~ 
s 

If Fx is denoted multiplicatively, then <p (ITxEX xax) = ITxEX f(x )ax. 

Proof. A homomorphism <p transforms sums into products and transforms 
linear combinations into products of powers: 

<p (al xl + a2x2 + ... + anxn) = c.p(xltl c.p(x2t2 ... c.p(xn)an . 

If <p : Fx --+ S extends f (if c.p(x) = f(x) for all i), then, for every a = 
l:xEX axx E Fx, 

'P(l:xEX axx) = ITxEX c.p(xtx = ITxEX f(xtx 

( = ITxEX,ax#O f(xtx, which is a finite product). Hence <p is unique. 



22 I. ELEMENTARY PROPERTIES. 

Conversely define a mapping t.p : Fx ~ S by 

t.p(L:xEX axx) = flxEX f(xtx 

Then t.p extends f and is a homomorphism: 

(~ ~ ) = flxEX j(x)ax+bx t.p uxEX ax X + uxEX bx X 

= ITxEX f(xtx f(x)bx (ITxEX f(xtx) (ITxEX f(x)bx). 

By Proposition 1.3, 

Im t.p = {flxEX f(xtx I a E Fx} 

is the subsemigroup of S generated by f (X) . If S is free on X and f : X ~ S 
is the inclusion mapping, then t.p is an isomorphism. 0 

It follows from Theorem 5.2 that all commutative semigroups that are gener
ated by a set X are homomorphic images of Fx . Since every semigroup S is 
generated by some subset X S:: S (for instance, by X = S ), we have: 

Corollary 5.3. Every commutative semigroup is a homomorphic image of a 
free commutative semigroup. Every finitely generated commutative semigroup is 
a homomorphic image of a finitely generated free commutative semigroup. 

Commutative semigroups can thus be explored by means of congruences on 
free commutative semigroups. This approach was pioneered by Redei [ 1956] and 
will be explored in later chapters, and in Proposition 5.8 below. 

4. Free commutative semigroups have certain finiteness properties: 

Proposition 5.4. Every free commutative semigroup F satisfies the de
scending chain condition. lf F is finitely generated, then every antichain of F 
is finite. 

An antichain is a subset A which does not contain elements a < b. 

Proof. By the last part of Theorem 5.2 it suffices to prove these properties 

for Fx. 

When a = 2:xEX ax x E F the positive integer Ia I = 2:xEX ax is the 

length of a. If a < b in F, then ax ;£ bx for all x E X, ax < bx for 

some x E X, and Ia I < lbl. There cannot exist an infinite descending sequence 

a1 > a2 > · · · >an > an+l > ·· · of elements ofF, for then la11 > la21 > 
· · · > I an I > I an+ 11 > · · · would be an infinite descending sequence of positive 

integers. 

Now assume that X is finite. We prove by induction on the number of 
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elements of X that every antichain of Fx is finite. If X is empty, then Fx is 

empty and so is every anti chain of Fx. If X has just one element, then Fx ~ N+ 
is a chain and an antichain of Fx has at most one element. 

Let X have more than one element and A be an antichain of Fx. For every 

y E X and n ~ 0 let Ay,n = {a E A I ay = n}. Then 

r~=xEX\{y} axx I a E Ay,n} 

is an antichain of F X\ {y} and Ay,n is finite by the induction hypothesis. 

For every x EX let m(x) =min (ax I a E A) and Mx = {a E A I ax = 

m(x)}. By the above, M = UxEX Mx is finite. Let n(x) =max (ax I a EM). 
Then n(x) ~ m(x), since ax= m(x) for some a EM. If a E A, then ax~ m(x) 
for all x E X and ax ~ n(x) for some x E X, otherwise ax > n(x) for all 
x E X, a > b for all b E M ~ A, and A is not an antichain. Hence 

A ~ UxEX, m(x);Sn;Sn(x) Ax,n is finite. D 

The second half of Proposition 5.4 is known as Dickson's Theorem, after 
Dickson [ 1913] who proved it for the free multiplicative subsemigroups of N 
generated by finitely many primes. A different proof will be given in Chapter VI 
along with additional finiteness properties. 

5. A commutative monoid S is free on a subset X (as a monoid) when 
every element of S can be written uniquely (up to the order of the terms) as a 
product of positive powers of distinct elements of X (Proposition 1.4 ). 

The nonnegative cone of G x is 

Fx U { 0} = {a E G x I a ~ 0}; 

equivalently, Fx U {0} is the set of all linear combinations a= l:xEX axx with 
integer coefficients ax such that ax = 0 for almost all x and ax ~ 0 for all x. 
Every element of Fx U {0} can be written uniquely (up to the order of the terms) 
as a sum of positive integer multiples of distinct elements of X; hence Fx U { 0} 
is a free commutative monoid on X. If X is finite, with n elements, then Fx 
is isomorphic to the direct product Nn. The universal property of Fx U {0} is: 

Proposition 5.5. Every mapping f of X into a commutative monoid S 
extends uniquely to a monoid homomorphism cp of Fx U {0} into S. 

Corollary 5.6. Every (finitely generated) commutative monoid is a homo
morphic image of a (finitely generated) free commutative monoid. 

In later chapters it will be more convenient to denote the free commutative 
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monoid by Fx; then the free commutative semigroup on X is Fx \ {0}. 

Similarly we call Fx U { oo} the free commutative semigroup with zero on the 

set X, since every element of Fx U { oo} is either the zero element oo or uniquely 
a nonempty sum of positive integer multiples of distinct elements of X. Every 
mapping f of X into a commutative semigroup S with zero extends uniquely 

to a semigroup homomorphism cp : Fx U { oo} -----+ S such that c.p( oo) = 0. 

In the multiplicative notation, Fx U {0} and Fx U { oo} become Fx U {1} 

and Fx U { 0} , respectively. 

6. As an application of free commutative semigroups we construct all cyclic 

semigroups. By Proposition 1.3, a cyclic semigroup S consists of all the powers 
of its generator x, and is necessarily commutative; hence S is isomorphic to 

the quotient of F{x} by some congruence. Now every element of F{x} can be 

written uniquely in the form nx with n E w+ ; hence F{ X} ~ w+ . Thus a cyclic 

semigroup is isomorphic to the quotient of w+ by some congruence. 

Let e be a congruence on w+ . If e is not the equality on w+ , the least 

integer r > 0 such that r e t for some t of= r is the index of e. Then the least 

integer s > 0 such that r e r + s is the period of e. 
Lemma 5.7. When e is a congruence on w+ of index r and period s, 

then a e b if and only if either a = b < r, or a, b ~ r and a = b mod s. 

Proof. Since e is a congruence, r e r + s implies r e r + s e r + 
2s e . . . e r + ks for all k > 0' u + r e u + r + ks for all k > 0' u ~ 0' 
and a e b whenever r ;;:; a ;;:; b and a = b mod s . 

Conversely assume a e b with a < b. Then a ~ r by the choice of r. There 
is an integer u ~ 0 such that u + a = r mod s, and an integer k ~ 0 such 

that a + ks < b ;;:; a + ks + s. Then t = b - a - ks satisfies 0 < t ;;:; s and 

a + ks e a e b = a + ks + t; hence 

r e u + a e u + a+ ks e u + a + ks + t e r + t. 
Since 0 < t ;;:; s it follows from the choice of s that t = s. Then b = a+ ks + s = 
a mods. 0 

Proposition 5.8. Let S be a cyclic semi group, generated by x E S. Either 

S ~ w+, or S is finite and there exist integers r, s > 0 (the index and period 

of x) such that xi = xj if and only if either i = j < r, or i,j ~ r and 

i = j mod s; then every element of S can be written uniquely in the form xi 

with 1 ;;:; i < r + s and 



6. PRESENTATIONS. 25 

if i + j < r + s, 

if i + j ~ r + s, where 

r ~ k < r + s and k = i + j mod s; 

and { xr, xr+1 , ... , xr+s- 1} is a cyclic subgroup of S. 

Proof. We have S ~ N+ je for some congruence e on w+. If e is the 
equality, then S ~ w+. Now assume that e is not the equality. As before, e 
has index r > 0 and periods> 0. By Lemma 5.7, thee-class of a< r is {a}; 
thee-classes of r,r + l, ... ,r + s -1 are distinct (and infinite); and these are 
all the e -classes. Since a = b mod s implies a e b when a, b ~ r the operation 
on S is as described in the statement. 

Finally, G = { xr, xr+ 1, ... , xr+s- 1} is a subsemigroup of S and we see 
from the multiplication on S that G ~ Z/ s7l., the additive group of integers 
modulo s. 0 

Proposition 5.8 was first stated (for cyclic semigroups of subsets of a group) 
by Frobenius [1895], and its Corollary 5.9 below, in its present form, by Moore 
[1902]. Lemma 5.7 was rediscovered by Chacron [1982]. Tamura [1963] deter
mined all congruences on Q+ . 

Corollary 5.9. Every nonempty finite semigroup contains an idempotent. 

Proof. If S is finite nonempty, then S contains a finite cyclic subsemigroup, 
which by Proposition 5.8 contains a subgroup and its identity element. 0 

6. PRESENTATIONS. 

Corollary 5.4 suggests that commutative semigroups can be constructed by 
presentations (= by generators and relations). 

1. For this it is more convenient to denote free commutative semigroups 
multiplicatively. Formally, a commutative semigroup relation between elements 
of a set X is an ordered pair ( u, v), normally written as an equality u = v, 
of elements of Fx . (Relations are readily distinguished from actual equalities in 
Fx , since the latter are all trivial.) 

When f is a mapping of X into a commutative semigroup S, we say that 
the relation u = v holds in S via f in case the equality cp( u) = cp( v) holds in 
S, where cp : Fx ---t S is the homomorphism which extends f. 
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These somewhat abstract definitions make most sense when X is a subset of 

S and f : X ---+ S is the inclusion mapping; then cp sends a product I1xEX xax 

of elements of X as calculated in Fx to the same product I1xEX xax calculated 

in S; hence the relation I1xEX xux = I1xEX xvx holds in S if and only if the 

products I1xEX xux = I1xEX xvx are equal in S. 

2. When X is a set and ::R ~ Fx x Fx is a set of relations between the 

elements of X, we denote by (X I ::R) the quotient of the free commutative 

semigroup Fx by the congruence e generated by ::R. By Proposition 2.9, e 
consists of all the "obvious consequences" of the relations in ::R. 

(X I ::R) comes with a canonical mapping L : X ---+ (X I ::R) which is the 

composition 

~,: X ~ Fx ---+ Fxle =(X I ::R). 

Proposition 6.1. (X I ::R) is generated by L(X) and every relation ( u, v) E ::R 
holds in (X I ::R) via L. 

Proof. (X I ::R) is generated by L( X), since Fx is generated by X. Moreover 

the projection Fx ---7 Fx I e = (X I ::R) is the only homomorphism which extends 

L; since ::R ~ e, every relation ( u, v) E ::R holds in (X I ::R) via L. D 

Accordingly (X I ::R) is known as the commutative semigroup generated 
by X subject to ::R. This is somewhat misleading since X is not a subset of 

(X I ::R) (in fact, L need not even be injective) and every homomorphic image of 

(X I ::R) has the properties in Proposition 6.1. However, (X I ::R) is the "largest" 

semigroup with these properties: 

Proposition 6.2. Let X be a set and ::R be a set of relations between the 

elements of X. Let S be a commutative semigroup and f : X ---+ S be a 
mapping such that every relation u = v in ::R holds in S via f. There is a 

unique homomorphism cp : (X I ::R) ---+ S such that f = cp o L If S is generated 

by f(X), then cp is surjective. 

Proof. Let e be the congruence on Fx generated by ::R and 1r : Fx ---+ 

Fx I e = (X I ::R) be the projection. Let 'ljJ : Fx ---7 s be the homomorphism 

which extends f. Then '1/J(u) = '1/J(v) for every relation u = v in ::R, since 

u = v holds in S via f; hence ::R ~ ker 'ljJ and e ~ ker 'ljJ. By Proposition 2.4, 

'ljJ factors through 1r : 'ljJ = cp o 1r for some homomorphism cp : (X I ::R) ---+ S. 
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Then r.p o t = f. 

Let r.p1 : (X I ~) --+ S be another homomorphism such that r.p1 o t = f. Then 
T = {a E (X I ~) I r.p( a) = r.p1 (a)} is a subsemigroup of (X I ~) which contains 
t(X); since t(X) generates (XI~) it follows that r.p = r.p1 • 0 

3. A presentation of a commutative semi group S consists of a set X, a 
set ~ of commutative semigroup relations between the elements of X, and an 
isomorphism S ~ (X I~). By Corollary 5.4, every commutative semigroup S 
has a presentation, in which X can be any subset of S which generates S, and ~ 
can be any binary relation which generates the congruence induced by Fx --+ S. 

For example let e be the congruence on N+ of index r and period s. By 
Lemma 5.7, e is generated by (r, r + s). Therefore a finite cyclic semigroup S 
of index r and period s has the presentation S ~ ( x I xr = xr+s ) . 

Presentations are associated with a number of logical and computational prob
lems: the word problem (deciding when two products of generators are equal); 
the isomorphism problem (deciding when two presentations yield isomorphic 
semigroups); and recognition problems (recognizing additional properties from a 
presentation). Algorithms in Rosales & Garcia-Sanchez [ 1999] solve a number 
of these problems. 

4. Similar definitions apply to commutative monoids and to commutative 
semigroups with zero. A commutative monoid relation between the elements of 
a set X is an ordered pair ( u, v) (normally written as an equality u = v) of 
elements of the free commutative monoid Fx U {1} (written multiplicatively); the 
identity element of Fx U { 1} may appear as u or v. When S is a commutative 
monoid, a commutative monoid presentation of S consists of a set X, a set ~ of 
commutative monoid relations between the elements of X, and an isomorphism 
S ~ (X I~), where (X I~) now denotes the quotient of Fx U {1} by the 
congruence generated by ~. 

A commutative relation with zero between the elements of a set X is an 
ordered pair ( u, v) (normally written as an equality u = v) of elements of the 
free commutative semigroup with zero Fx U {0} (written multiplicatively); the 
zero element of Fx U { 0} may appear as u or v. When S is a commutative 
semigroup with zero, a presentation of S as a commutative semigroup with zero 
consists of a set X, a set ~ of commutative relations with zero between the 
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elements of X, and an isomorphism S ~ (X I ~) , where (X I ~) now denotes 

the quotient of Fx U {0} by the congruence generated by ~-


