Chapter XII.

COMMUTATIVE SEMIGROUP COHOMOLOGY.

Commutative semigroup cohomology assigns abelian groups H™(S,G) to a
commutative semigroup S and an abelian group valued functor G on S.

Other cohomology theories have been considered for commutative semigroups
(see the introduction to Section 4). The theory we call commutative semigroup

cohomology is of particular interest because H%(S,G) classifies commutative
group coextensions of S by G, that is, H?(S,G) coincides with the extension
group Ext (S,G) in Chapter V; moreover, if S is complete group-free and G
is Schiitzenberger, then, as we saw in Chapter V, H?(S,G) classifies complete
commutative semigroups 7' with T'//H = S and Schiitzenberger functor isomor-
phic to G. These results make cohomology an important part of the structure
theory of commutative semigroups.

Commutative semigroup cohomology is an instance of triple cohomology,
which provides a definition in dimensions n = 3 as well as valuable properties.

After a brief account of triple cohomology and two sections of preliminary re-
sults, this chapter defines commutative semigroup cohomology, and gives simpler
definitions in low dimensions.

1. TRIPLE COHOMOLOGY.

This section gives, without proofs, the definition and main properties of triple
cohomology. We follow Beck [1967] and Barr & Beck [1969] but have renum-
bered cohomology groups in the more traditional fashion. We assume a general
knowledge of category theory and triples, from, say, MacLane [1971]; Grillet
[1999] also has a short account of triples and the tripleability of varieties.

1. The minimal requirements for cohomology are: a category C; a functor
V : € — C (normally denoted by G, but we use G for abelian group valued
functors); a natural transformation € : V — 1o; and a contravariant functor A
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296 XII. COMMUTATIVE SEMIGROUP COHOMOLOGY.

from C to the category Ab of abelian groups and homomorphisms.

For every 0 = i < n the natural transformation € : V. — 1, induces a

natural transformation €™ = V" ¢ e V¢ : V"*1 5 Y™ To each object C of
C can then be assigned a complex of abelian groups

0 — AVC —— - —— AV?C 225 AV
where 8, = Y <;<, (—1)'Aeg’ : AV?C — AV™HIC. That 6,106, =0

for all n > 1 follows by a standard argument from the equalities €™ o e®t1:¢ =

€™ o1 IHL which hold for all 0 < ¢ < 5 < n. The n-th cohomology group
of C with coefficients in A is

H™(C,A) = Ker§, /Imé,_; if n2>2, and HY(C,A) = Kerd,.

(In Beck [1967], Barr & Beck [1969], these groups are H™ ! and HO.)

In what follows V and e arise from an adjunction (F,U,7n,e) : U — €,
where F : U —> € is a left adjoint of U : € — U, and 7 : 1, — UF,
€ : FU — 1 are the corresponding natural transformations. Then T = UF, 5,
and p = UeF constitute a triple on U; V = FU, €, and v = FyU constitute a
cotriple on C.

If for example € is the category of commutative semigroups and homomor-
phisms, and U is the category of Sets of sets and mappings, then the free c.s.
functor F : Sets — C is a left adjoint of the forgetful or underlying set functor
U : € — Sets; ny embeds a set X into the free c.s. on X'; € is described by
Lemma 4.1 below. Like all varieties, C is tripleable over Sets.

2. To obtain the Beck cohomology groups of an object S of €, one applies
the above to the category C = C|S of objects over S; abelian group objects of
© provide coefficient functors (Beck [1967]). The details are as follows.

Recall that an object over S in C is an ordered pair (C,7) of an object
C of € and a morphism 7 : C — §. A morphism ~ : (C,7) — (D, p) of
objects over S is a morphism 7 : C — D in C such that poy = 7.

c 215D

1A

S

Every adjunction (IF,U,7n,¢) : U —» C lifts to an adjunction (F,U,7,¢) :
U = ULUS — €LS = €; namely,



1. TrRIPLE COHOMOLOGY. 297

F(X?ﬂ-) = (FX’ﬁ)’ E(C,p) = (UC, Up)) ﬁ(X’ﬂ-) =MNx; E(C,p) = €0,

where 7 : FX — S is the morphism such that U7 o 5y = m. In particular,
the cotriple (V = FU, ¢, v = FnU) induced by (F,U,7,¢) lifts to the cotriple
(V = FU, €, v = FjU) induced by (F,U,7,€) on C = CLS. By definition,

V(C,n) = F(UC,Ur) = (VC,T), where UT o nyy» = U

€ = €0 and Vicm) = Fﬁ(UC,Uﬁ) = Fnyc = V. In particular, E?g’ﬂ) =
eg.’i. If @ is tripleable over U (if the adjunction (IF,U,7,€) is tripleable), then
€ is tripleable over U ((F,U,7,€) is tripleable).

3. An abelian group object of a category C is an object G of C such that
every Hom (C,G) is a set, together with an abelian group operation + on every

set Home (C,G), such that A = Homg (—,G) is a (contravariant) abelian group
valued functor on C; equivalently, such that

(g+h)oy = (goy)+ (how)
for all morphisms g,h: D — G and v : C — D of C.

A morphism ¢ : G — G’ of abelian group objects of € is a morphism of
€ such that the mapping Homg (C,¢) : Home (C,G) — Homg (C,G') is a
homomorphism of abelian groups for every object C' of C; equivalently,

po(g+h) = (pog)+(poh)

for all C and g,h : C — G. Then Homg (—, ) is a natural transformation of
abelian group valued functors.

When € has finite products, abelian group objects of € can also be defined
by means of suitable morphisms m: G xG — G,e: 0 — G, i: G — G,
as in MacLane [1971, first edition] (see also Lemma 2.2 below).

If for example G is an abelian group in the usual sense, then every Homg,,
(C,G) is an abelian group under pointwise addition, and this makes G an abelian
group object of Sets since (g+h)oy=(go7y)+ (hovy) forall gh:C — G
and v : D — C. If conversely G is an abelian group object of Sets, then
Homg,, ({1}, G) is an abelian group, and the bijection Homg,, ({1}, G) — G
is readily used to make G an abelian group so that pointwise addition on every
Homg,, (C,G) is the given operation.

In general, an action . of an abelian group object G of € on an object A of
C assigns to every object C' of € a group action

Hom, (C,G) x Home (C,A) — Homg (C,4), (g9,a) — g.a
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of the abelian group Homp (C,G) on Homg (C, A) which is natural in C;
equivalently,

(g-a)oy = (g07).(a07)
forallv:C — D,g:D—G,anda: D — A.

If for instance G is an abelian group which acts on a set X in the usual
sense, then, for every set C, the abelian group Homg,, (C,G) acts pointwise
on Homg,, (X,G), and this is an abelian group object action in Sets since
(g.a)oy = (go).(aoxy) forall g : C — G, a: C — X, and
v:D— C.

4. The ingredients for Beck cohomology are: an adjunction (F,U,n,e¢) :
U —> €; an object S of C; and an abelian group object G = (G, p) of
C = @JS. For any object T = (T, 7) of €, the Beck cohomology groups or
triple cohomology groups of T with coefficients in G are its cohomology groups
calculated from the cotriple V above and coefficient functor A = Hom@(——,a).
The triple cohomology groups of S are those of (S, 1g).

For a more detailed definition, let T, = (T, n,) = V"T. Then CZ}) =T,
mg =7, and (T, 1, m,1) = V(T},,7,), so that T,, ., = FUT,, and =,
1,,.1 — S is the morphism such that Ur ;o g, = Um,.

n

An n-cochain is an element of
C™(T,G) = AV'(T) = Homg(T,,G),
that is, a morphism u : 7, — G of C such that pou = 7. Next, ET = eT. :
T,., — T, and Aeg’i = Hom-(eTTL’i, G): CY(T,G) — C™*YT,G) sends
u:T, — G to uoeT Hence
8, = Yo<icn (1A : CY(T,G) — C™tY(T,G)
sends v : T, — G to
du = Zogén (=1)*(uo ).
By definition, H™(T,G) is the n-th homology group of the cochain complex
0 — CY(T,G) — ... — C™T,G) 22 C"(T,0) —

An n-cocycle is an element of Z™(T,G) = Ker §, C C™(T,
coboundary is an element of B™(T ,G) =Imé6__ TG
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BY(T,G) = 0 if n = 1. The Beck cohomology groups of T' are the groups
H“(T,G) = z™(T,G)/B™(T,G).
The Beck cohomology groups of S are H™(S,G) = H"((S,1g),G).
A morphism 7: T — T in C induces a homomorphism
™ = Homgz(V'r,G) : C*(T',G) — C™(T,G)
which sends v € C™(T,G) to u o V"7. Since composition with V"7 pre-
serves sums and e’}’i is natural in T', we have 71 (0,u) = 0, (T"u) for all
u € C”(T’,-é); that is, (7™),,>; is a chain transformation. Hence 7" takes
Z™MT @) into Z™(T,G), takes B"(T_I,Z}'—) into B"(T,G), and induces a ho-
momorphism H™(r,G) : H*T ,G) — H™(T,G). Thus H"(—,G) is a
contravariant abelian group valued functor on €.

Similarly, a morphism ¢ : G — G’ of abelian group objects induces a
homomorphism ¢" = Homg (T,,,¢) : C*(T,G) — C™(T,G') which sends
ue CYT,G) to pou. Again "1 (5 u) =6, (¢™u) for all u € C™(T,G),
and ¢ induces a homomorphism H™(T,¢) : H"(T,G) — H n(T,é’). Thus

H™(T,-) is a functor. In fact H™(T,¢) is natural in T, so H"(—,—) is a
bifunctor.

5. The main properties of Beck cohomology are as follows.

Theorem 1.1. When T =F X for some object X of U, then H™"(T,G) =0
for all n = 2; also H(VC,G) = C(C,G) for every object C of C.

A sequence G —> G — G of abelian group objects and morphisms of
C is short V-exact in case

0 — Homg (VC,G) — Homé—(V5,—§/) — Homg (VC,G"y — 0

is a short exact sequence (in Ab) for every object C of C.

Theorem 1.2. Every short V-exact sequence & : G —» G —d of
abelian group objects of ClS induces an exact sequence

... HY(T,G) — H™(T,G) — H'(T,G") — H"TY(T,G) ---
which is natural in €.

Theorems 1.1 and 1.2 constitute Theorem 2 of Beck [1967].
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Up to natural isomorphisms, H™(T,—) is the only sequence for which The-
orems 1.1 and 1.2 hold (Barr and Beck [1969], Theorem 3.3). Another useful

characterization of H™(T,G) was given by Barr and Beck [1969] (Proposition
11.2). We give the contravariant version in Wells [1978]:

Theorem 1.3. Let

C: 0 — Homg(—,G) — ¢! ... -C" — Ml — ...

be a complex of abelian group valued contravariant functors on C and H" be
the n-th homology functor of C. Assume that H*(VT) =0 forall T and n > 2,
that W (VT) is naturally isomorphic to CY(T,G), and that there is for each
n 2 1 a natural transformation " : C" oV — C™ such that 7™ o C"e = 1.
Then H" is naturally isomorphic to H"(—,G).

6. The fourth property of Beck cohomology requires additional definitions.
As above, let (F,U,n,e) : U — C be an adjunction, S be an object of C, and
G be an abelian group object of €|.S. A Beck extension of G by S (called a
G-module in Beck [1967], Definition 6) is an object E = (E,7) of C = €|S
together with an action . of G on E such that

(BE1l) Ur oo = lyg for some o : US — UE;

(BE2) for every object C of €, the action of Homg(C,G) on Homg (C, E)
preserves projection to S: mo (g.e) = woe whenever g : C — G and
e:C — E in C;

(BE3) for every object C of €, Homg (C,G) acts simply and transitively
on Homg (C,E): for every e,f : C — E, there exists a unique g : C — G
such that g.e = f.

A morphism ¢ : E — F of Beck extensions of G by S is a morphism in
C which preserves the action of G: po(g.e) = g.(poe) forall g: C — G
ande:C — E.

Beck ([1967], Theorem 6) proved that H 2(S, @) classifies Beck extensions
of G by S in the following sense:

Theorem 1.4. When C is tripleable over U, there is a one-to-one correspon-
dence between elements of H 2(5’, G) and isomorphy classes of Beck extensions
of G by S, which is natural in G.
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2. ABELIAN GROUP OBJECTS.

For a more concrete definition of triple cohomology for commutative semi-
groups we investigate abelian group objects in the category of commutative semi-
groups over a given commutative semigroup. The main result is from Grillet
[1991C], [1995C]; a similar result for monoids was proved by Wells [1978].

1. Let S be a commutative semigroup.

Proposition 2.1. Let C be the category of commutative semigroups. An
abelian group object of ClS is a split commutative group coextension of S. The
category O of abelian group objects of CLS is equivalent to the category A of
abelian group valued functors on H(S).

Proof. First we show:

Lemma 2.2. Let G be an abelian group object of a category C with finite
products. Let py, py : G x G — G be the projections and

m = p;+py:GxG—G.
Then g+ h = mo(g,h) whenever g,h: C — G.

Proof. (g,h) : C — G x G is the morphism such that p; o (g,h) = g and

py0(g,h) = h. Then g+ h = (p; o (g,h)) + (py 0 (9,h)) = (p; +pg) 0 (g,h) =
mo(g,h). O

To probe c.s. over S we use the additive semigroup N7 and the following
construction. For every a € S let m, : N* — S be the unique homomorphism
such that 7, (1) = a, namely 7 (n) = a™; then N: = (N*,7,) isacs. over S.

Lemma 2.3. Let T = (T,T) be a commutative semigroup over S. For every
a€SletT,={teT|rt=a}. Evaluation atlis a bijection p — ¢(1)
of Homg (Nj, T) onto T,.

Proof. If ¢ : NI — T is a morphism, then 7o = 7, and ¢(1) € T,.
Conversely there is for every ¢ € T, a unique semigroup homomorphism t:
Nt — T such that #(1) = t, namely, t —> t"; then Tof = 7, and t is a
morphism I-\I-: — T in C. This defines mutually inverse bijections. [J

2. Now let © be the category of c.s. and € = C|S. Let G = (G,p) be

an abelian group object of C = €|.S; in particular, G is a c.s., which we write
multiplicatively, and p is a multiplicative homomorphism.
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We use Lemma 2.2 to construct a partial addition on G such that addition on
every Homg (C,G) is pointwise. In €, the direct product P = (P,7) = G x G
and its projections p;, p, : P — @ are given by the pullback

PG
P2 p
G— S
P
where P = {(z,y) € G x G ! pr = py}, pi(z,y) = =, and py(z,y) = y.
Then m = p; + py : P — G is a partial addition on G; = +y = m(z,y) is

defined if and only if px = py, if and only if z and y belong to the same set
G, = p_la. Thus m provides an addition on every G, .

Lemma 2.4. When G = (G,p) is an abelian group object of C:
(z+y)(z+w) = zz+yw (1)
whenever pr = py and pz = pw; addition on Homg (C,G) is pointwise; every
G, is an abelian group under addition; for every a € S, § +— G(1) is an
additive isomorphism of Homg (N:, G) onto G,; and p is surjective.
Proof. Since m is a multiplicative homomorphism, (z + y)(z + w) =
m(z,y) m(z,w) = m(zz,yw) = zz + yw whenever pr = py and pz = pw.

Let C = (C,7) and g,h:C — G. ByLemma 2.2, g+h=mo(g,h). Now
(9,h)(¢) = (9(c), h(c)) € P for every c € C, and (g+h)(c) = m(g(c), h(c)) =
g(c) + h(c). Thus, addition on Homg (C,G) is pointwise. Then the bijection
Homg (_N—:,é) — G, ¢ — (1) in Lemma 2.3 is an additive isomorphism.
Hence G, is an abelian group under addition. In particular, G, # @ and p is
surjective. [

Lemma 2.5. Let p, be the identity element of G, under addition. An
abelian group valued functor AG = (G,~) on H(S) is defined by

Va9 = 9P (2)

foreveryac S, te St ge G, where p, =1 € Gl ift=1¢e S. Moreover,
G is a split group coextension of S by AG.

Proof. If t =1 € S, then V..t 18 the identity on G ; otherwise v, ,g € G,
since p is a homomorphism, and 7, , is an additive homomorphism, since
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gp, +hp, = (g+h)(p, +p) = (9+h)p
for all g,h € G, by (1). For all t,u € S we have

PPy = (Pe+0)(Py+Py) = PiDy T PPy
by (1), which in the abelian group G,,, implies p,p, = p,,, . This also holds if
t=1oru=1. Hence v, , © Vgt = Yo tu forall t,u € S. Thus AG = (G,7)
is an abelian group valued functor on H(S).

The abelian group G, acts simply and transitively on itself by left addition:
g.zr=g+z. By (),

(9.2)y = (g+2)(pp +y) = gpp + 7y = (V439) - TY
forall g,z € G, and y € G. Thus (G, p,.) is a commutative group coextension
of S by AG, which splits since PPy = Pgp forall a,b € §. [

Lemma 2.6. Let ¢ : G — H = (H,0) be a morphism of abelian group
objects. Then ¢(G,) C H, for every a € S and Ap = (‘PlGa)aeS is a natural

transformation from AG to AH.

Proof. By definition, ¢ is a multiplicative homomorphism, o o ¢ = p, and
¢, = Homg (C,) is a homomorphism for every C. In particular ¢(G,) C H,
forevery a € S. Let ¢, = PG G, — H, be the restriction of ¢ to G,,. For
every a € S, Lemma 2.4 provides additive isomorphisms Homg (N:,@) =G,
Homg (N+ H) = H_ . The square

a’

HomE(N:,ﬁ) =, G,

.| b

_+ —
HomE(N H) — H,

a’

commutes, since (¢,(9))(1) = (v 0g)(1) = ¢(G(1)) = »,(g(1)) for all 7 :
—N:r —s G. Since ¢, is an additive homomorphism, it follows that ¢, is an

additive homomorphism. In particular ¢, (p,) = q,, the identity element of
the abelian group H,. Since ¢ is a multiplicative homomorphism, we have

©a(gpy) = (p,9) g, for all a,t € S and g € G,; thus Ap = (p,)cq is 2
natural transformation from AG to AH. O

We now have a functor A : O — A.

3. Conversely let (G,7) be an abelian group valued functor on H(S). Let
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g' denote v, ,g when g € G, and t € S1. As in Theorem V.4.1, there is a
split commutative group coextension (E,p,.) of § by (G,7), in which E is the
disjoint union {J,cg (G, x {a}) with multiplication

(9,0)(hb) = (¢"+1°, ab),
projection p : (g,a) — a to S, and action g. (h,a) = (g + h, a) of G, on
E, =G, x{a}. Then G = (E,p) isac.s. over S.
Let C = (C,7) be an object of € and g,h : C — G be morphisms in C.
Then pog = poh = 7. For every c € C there exist unique g,,h, € G, such
that g(c) = (g,,a) and h(c) = (h,,a), where a = mc. Define

@+ h)(c) = (g, + he, a).

Lemma 2.7. With the addition defined above, G is an abelian group object
over S. Moreover, AG = (G,7).

Proof. Let g,k : C — G be morphisms in €. Since § and h are multi-
plicative homomorphisms, we have

(gcda ab) = g(Cd) = _g(c) g(d) = (gc7a) (gd7b> = (92 + gga ab))
where a = 7c and b = nd, and g_; = gg + g5 similarly h_; = hZ + hj. Hence

G+h)(e) @+R)(d) = (g, +he, a)(gy + hg, )
= (g'c’ + hlc’ + g + hy, ab)
= (gcd + h’cd’ ab) = (g + —H)(Cd)

and g + h is a multiplicative homomorphism. We now have an addition on
Homg (C,A). It is immediate that Homg (C,A) is an abelian group, in which
the identity element is ¢ — (0,7c) and the opposite of g : ¢ — (g,, 7c) is
¢ —> (—g,, mc). Moreover (g+h)od = (god)+ (hod) for every morphism
§:D —> C. Thus G is an abelian group object of C.

We show that AG = (G, ). Since G is an abelian group object, it induces, as
in the first part of the proof, an abelian group addition on every E_. For every a €
S, Lemma 2.4 provides an additive isomorphism g — g(1) of Homg (Nj,@)
onto E_ . For every (g,a),(h,a) € E, we now have homomorphisms g,k :

a

Nj —> G such that g(1) = (g,a) and h(1) = (h,a); since addition on
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Homz (N, G) is pointwise
e\ar ’

(g,0) + (h,a) = g()+h(1) = G+A)(1) = (g+ha).
Thus g — (g,a) is an isomorphism of G, onto E_ .

In particular, the identity element of F is p, = (0,a). The homomorphism
€, ¢ in the functor AG = (E,e¢) is then given by (2): €, 4(g,a) = (9,a)(0,t) =
(g%, at) for all t € S. Thus AG is naturally isomorphic to (G,7). O

Lemma 2.8. Let (p,),cg be a natural transformation from (G,7) to
(H,8). Then ¢ : G — H, defined by ¢(g,a) = (v,9, a), is a morphism of

abelian group objects.

Proof. Since (¢, ),cg is a natural transformation, we have (¢, 9)l=yv, (g)
whenever g € G,. Hence ¢ is a multiplicative homomorphism:

@ ((g,0)(h,0)) = @(g® +h% ab) = (pgp9° + Paph®, ab)
= ((p,9)" + (pyh)% ab) = o(g,a) o(h,b)

and a morphism in €. Moreover, for any g,h : C — G, we have, with the
notation as above, ¢ (g(c)) = (¢, 9., a), ¢ (h(c)) = (¢, h,,a), and

(pog+poh)(c) = (P9c+Pahe @) = @(ge+he a) = @((@+h)(0));
thus ¢ is a morphism of abelian group objects.

We now have a functor O : A — O; O(G,7) is G in Lemma 2.7, and
Lemma 2.8 constructs Q(yp,),cq = ©-

4. We saw that AOG is isomorphic to G. If conversely G = (G,7) is any
abelian group object of €, then G is a split group coextension of S by AG and
G is isomorphic to QAG as a semigroup over S and as an abelian group object.
If not exhausted our reader will verify that these isomorphisms are natural, which
completes the proof of Proposition 2.1. [

3. BECK EXTENSIONS.

Continuing Section 2 we now investigate Beck extensions in the category of
commutative semigroups over a given commutative semigroup. The main result
is from Grillet [1991C], [1995C]; a similar result for monoids was proved by
Wells [1978].
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1. Let S be ac.s. and € be the category of c.s. and homomorphisms.

Proposition 3.1. Let G = (G,p) be an abelian group object of ClS and
G = AG = (G,) be the corresponding abelian group valued functor on H(S).
A Beck extension of G by S is a commutative group coextension of S by G.
The category B of Beck extensions of G by S is isomorphic to the category &
of commutative group coextensions of S by G.

A morphism in € (necessarily an isomorphism) is an equivalence of commu-
tative group coextensions.

Proof. The proof is rather similar to that of Proposition 2.1. First we show:

Lemma 3.2. Let G be an abelian group object of a category C with finite
products and . be an action of G on an object E of C. Let p; : G x E — G,
Dy : G X E — E be the projections and

q = p,.py:GXE —E.
Then g.e =no(g,e) forall g:C — G and e: C — E.

Proof. (g,e) : C — G x E is the morphism such that p; o (g,e) = g¢
and py o (g,e) = e. Since . is an action, g.e = (p; o (g,€)) . (py 0 (g,€)) =
(P -py) 0 (g9,€) =mo(g,e). O

2. Now let G be an abelian group object over a c.s. S and E = (E, ) be

a Beck extension of G by S, so that there is an action of G on E and (BE1),
(BE2), (BE3) hold. In particular, E is a c.s., which we write multiplicatively,
and 7 is a multiplicative homomorphism. By (BEl), w o 0 = 1y;g for some
mapping o : S —> E; hence 7 is surjective, and (E,7) is a coextension of S.

We use Lemma 3.2 to construct a partial action of G on E such that
Homg (C,G) acts pointwise on Homg (C, E) for every C € C. In €, the direct
product P = (P,r) = G x E and its projections p,: P — G, py: P —E
are given by the pullback

p-2,q

A ]

E— 5
iy

where P = {(g9,2) e GX E | pg =7z}, pi(g,x) =g, and py(g,z) = . Then

q =py.py: P — E is a partial action of G on E, for which g.z = q(g,z) is

defined if and only if pg =7z, ifand only if g € G, = plaand z € E, = 7 la

for some a € S; thus g provides a set action of G, on E_, for every a € S.
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Lemma 3.3. When E = (E,n) is a Beck extension of S by G = (G,p):
(g-2)(h.y) = gh.zy (3)

whenever pg =z and ph=ny; Homg (C,G) acts on Homg (C,E) pointwise;
the action of G, on E, is a simply transitive group action; and EE = (E,T,.)
is a commutative group coextension of S by G.

Proof. Since ¢ is a multiplicative homomorphism, we have (g.z)(h.y) =
q(g,x) q(h,y) = q(gh,ry) = gh.zy whenever pg = nx and ph = 7y.

Let C = (C,0) and g : C — G, e : C — E be morphisms in €.
Then (g,e)(c) = (g(c),e(c)) € P for every ¢ € C, and Lemma 3.2 yields
g.e =no(g,e) and

(9-€)(c) = q(g(c),e(c)) = gle).h(c).
Thus Hom@(a,ﬁ) acts on Homg (C,E) pointwise.

For every a € S, Lemmas 2.4 and 2.3 provide an additive isomorphism g +—
g(1) of Hom@(N:,-@) onto G, and a bijection € — &(1) of Hom§(~l\—I:,E)
onto E,. Moreover (g.e€)(1) = g(1).2e(1), since Homg (C,G) acts on
Homg (C,E) pointwise. Therefore the action of G, on E, is a group action,
since the action of Homg (C,G) on Homg (C,E) is a group action; and G,
acts simply and transitively on E_, by (BE3).

Let p, be the identity element of G,. Then p,.z = z for all z € E_, and
(3), (2) yield

(9-2)y = (9-2)(Pp-y) = gPp-TY = Vo9 - TY
whenever g € G,, z € E_, and y € E,. Thus EF = (E,,.) is a commutative
group coextension of S by G. J

Lemma 3.4. Every morphism ¢ : E — E = (E',7') of Beck extensions
of S by G is an equivalence of commutative group coextensions of EE to EE .

Proof. By definition, ¢ is a multiplicative homomorphism of E into E’;
mop=mn;and po(g.€) =g.(poe) forallg:C — Gande:C — E.
In particular, ¢(E,) C E, for every a € S. Forevery g € G, and z € E,,
Lemma 2.3 yields morphisms g : —N-: — G and T : N:— — E such that
g(1) =g and T(1) = z. Then 9o (g.ZT) =7.(poT) and evaluation at 1 yields
w(g.x) = g.p(zx). Thus ¢ preserves the action of G,. Then ¢ is a bijection
of E, onto E., since G, acts simply and transitively on E, and on E,, and



308 XI1I. COMMUTATIVE SEMIGROUP COHOMOLOGY.

¢ is an equivalence of commutative group coextensions. []
We now have a functor E : B — €.

3. Conversely let (E,m,.) be a commutative group coextension of S by G.
Then E = (E,7) is a c.s. over S. By (1), (2),

gh = (g+P)Ps+h) = P +Dh = Yapg +Wah = ¢+ A
for all g € G, and h € Gy; then

(g.2)(h.y) = ¢ (z(h.y)) = (@ +h") ay = gh.zy  (4)
forall ge G,, h € Gy, z € E,, and y € G, since E is a group coextension.
Let C = (C,7) be an object of € and g : C — G, € : C — E be

morphisms in C. Then pog = moe = 7 and g(c) . €(c) is defined in E for
every ¢ € C. Define

@-28)(c) = g(c).2(c).
Lemma 3.5. With the action defined above, B(E,n,.) = E is a Beck
extension of S by G. Moreover, EE is the given coextension (E,m,.).

Proof. Since § and € are multiplicative homomorphisms, we have, by (4),
(5(0)-2(0)) (3(d) - 2(d) = F()7(d) - &()e(d) = F(ed) .2(cd)
where @ = 7¢, b = 7d; hence g.e€ is a multiplicative homomorphism. Now
Homg (C, G) acts on Homg (C, E); this is a group action since addition on

Homg (C,G) is pointwise. (BE1) holds since  is surjective. Also

m(@-2)() = 7(@()-2c) = w(el0)
for all ¢ € C and (BE2) holds.
We show that Homg (C,G) acts simply and transitively on Homg (C,E).
Let €, f : C — E. For every ¢ € C there exists a unique g(c) € G, such
that f(c) = g(c) . €(c), where a = 7c. Since € and f are multiplicative

homomorphisms, we have

glcd) .e(cd) = fled) = f(c) f(d)
= (g(c).2(0)) (9(d) - €(d)) = F(c)g(d) . &(cd)
for all ¢,d € C, by (4). Hence g is a homomorphism. Then g is the unique

morphism C — G such that g.e = f. Thus E (with the action . of G on
E) is a Beck extension of S by G.
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Since F is a Beck extension, it induces, as in the first part of the proof,
a simply transitive group action of G, on E_, which makes E a commutative
group coextension EE of S by G. Let a € S. Forevery g € G, and e € E_,
Lemma 2.3 yields morphisms g: C, — G and €: C, — G such that g(1) =g
and &(1) = e. Then the action of G, on E, in EE satisfies

g.e = g(1).e(1) = (g.8)(1);
so does the action of G, on E, in the given coextension (E,,.). Hence the
two actions coincide and EE = (E,7,.). O

Lemma 3.6. FEvery equivalence of commutative group coextensions from
(E,m,.) to (E',n',.) is a morphism of Beck extensions from B(E,m,.) to
B(E',7',.).

Proof. Let ¢ be an equivalence of commutative group coextensions from
(E,n,.) to (E',7',.). Then ¢ is a multiplicative homomorphism and preserves
projection to S and action of G. Forevery g: C — G and e: C — FE we
then have ¢ (g(c) .e(c)) = g(c).¢(€(c)) and 9o (g.€) =g.(poe). Thus ¢
is a morphism of Beck extensions. [

4. We now have a functor B : £ — B. We saw (Lemma 3.5) that EB = 1.
If conversely E is a Beck extension of G by S, then the action of Homg (C,G)
on Homg (C,E) is the pointwise action induced by the action of G on EE
and coincides with the action of Homg (C,G) on Homg (C,BEE). Hence

BEE = E. Thus B and E are mutually inverse isomorphisms. O

4. COMMUTATIVE SEMIGROUP COHOMOLOGY.

Triple cohomology in the category € of commutative semigroups provides
a good definition of commutative semigroup cohomology. This section brings a
more concrete definition, based on the results in Sections 2 and 3. The results
are from Grillet [1991C], [1995C].

Other cohomology theories have been considered for commutative semigroups.
Inasaridze extended the construction of n-extensions and Ext™ from abelian
groups to commutative cancellative monoids [1964], [1965] and to commutative
Clifford semigroups [1964], [1967]. Kruming [1982] characterized finite com-
mutative semigroups whose Eilenberg-MacLane cohomology vanishes; Novikov
[1990] showed that cancellative c.s. with this property are subsemigroups of N.
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See also Carbonne [1983]. For a survey of semigroup cohomology in general, see
Grillet & Novikov [2002].

1. Let Fy be the free c.s. on a set X, which we write multiplicatively. For
what follows it is best to regard the elements of Fy as commutative words in

X, which are nonempty unordered sequences [z;,...,z,,] of elements of X;
unordered means

[To1r T = [T1ser T
for every permutation o. It is customary to write [r,...,Z,,] as a product

Ty T,,, but this would quickly become very confusing in what follows. Mul-
tiplication in Fy is by concatenation:

[Ty 2] Wi U] = [T Yoo Ul
The injection 1y : X — Fy takes z € X to [z] € Fy . Every mapping of a
set X into a c.s. factors uniquely through 7y .

The free c.s. functor F : Sets — C assigns to a set X the free c.s. FX = Fy
on X, and assigns to a mapping f : X — Y the unique homomorphism
Ff : FX — FY such that Ffony = ny o f; Ff sends [z, 25, ..., 7,,]
[z,]xy] -+ [2,,] € FX to [fty, ftg, -, ft,,] € FY. F is a left adjoint of the
forgetful functor U : € — Sets.

Lemma 4.1. In the adjunction (F,U,n,¢€) : Sets — €, ep : FUT — T
sends [ty,ty, ..., t,] € FUT to tity---t, €T, for everycs. T

Proof. Since (F,U,n,¢) : Sets — C is an adjunction, we have Uep oy =
1yr (see e.g. Theorem IV.1 in MacLane [1971]). Thus e : FUT' — T is the
homomorphism such that e [t] = e (nypt) =t forall ¢t € T. Hence ey sends
[ty,tes s byl = [t1][Ey) - [t,,] € FUT to ¢ty -+t € T. 0

In the cotriple (V,¢,v) induced by the adjunction (F,U,n,¢) : Sets — C,
V = FU sends a c.s. T to the freec.s. VI ' =FUT ontheset T. If f: T — T’
is a homomorphism, then Vf : [z,,...,z, | — [fz,..., fz,,]. Lemma 4.1
describes ey : VI' — T'; v will not be used.

For every c.s. S the cotriple (V,¢,v) lifts to a cotriple (V,€,7) on C= C|S;
if T = (T,7) is a cs. over S, then VT = (VT,7), where UT o nyp = Ur;
that is, 7[t| = 7t for every t € T and

Tley,..2,) = 12072, = T(TY 0T

m]

forall m > 0 and z,,...,7,, € T.

2. The next Lemma describes Homg (VT,G) when G is an abelian group
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object of €. When G = (G,7) is an abelian group valued functor on H(S),
and T = (T,7) is a c.s. over S, let

C(T,6) = Ilier G
C(T,G) consists of all families u = (u,);cp such that u, € G, forall t € T,

under pointwise addition (that is, 1-cochains on 7' with values in G).
Lemma 4.2. Let G = (G,p) be an abelian group object of C and G be

the corresponding abelian group valued functor on H(S). For every object T
of C there is a natural isomorphism Homg (VT,G) = C(T,G).

Proof. By Proposition 2.1 we may assume that G is the split commutative
group coextension |J,cg G, x {a} of S by the corresponding abelian group
valued functor G. Then addition on Homg (C,G) is as follows: if f,g:C — G
and f(c) = (f,a), g(c) = (g.,a), then (f +g)(c) = (f. + 9., a).

We have VT = (VT,7), where VT is the free c.s. on the set T and
Tlty,...,%,,] = 7(xy -+ x,,) forall m > 0 and z,,...,2,, € T, in particular
T[t) =7t forall t € T. If f : VT — G is a morphism in C, then po f =7
and there is for every ¢ € T' a unique u, € Gz = G, such that f[t] = (u,,7t).

Since VT is free on T there is for every u = (u,),cp € C(T,G) a unique
semigroup homomorphism f : VI' — G such that f[t] = (u,,7t). Then

fleg,..x,] = (u:vl,Txl)...(ua:m,T:L'm) = (Zléiému;?’, TT),
where ﬁj =Ly T Tigg Ty, and ¢ = x;---x,,, for all m > 0 and

Zy,..,T,, €T. (If m =1, then i?j is an empty product and ’m\j =1eT!)
This provides a bijection © : Homg (VT,G) — C(T,G). If f[t] = (u;,7t)
and g[t] = (v,,7t), then (f + g)[t| = (u, +v,, T7t); hence © is an isomorphism.
It is immediate that © is natural in T and G. O

3. The triple cohomology of T = (T,7) € C, and the triple cohomology of
S, which is that of (S,1g), can now be obtained as follows. Let G = (G, p) be
an abelian group object of C.

Let T, = (T,,,m,) = V"T. Then To=T,m1g=717(Ty =8, my = 1g for
the cohomology of S); T,, | = VI, is the semigroup of all commutative words
[zy,...,x,,] with m >0 and z,,...,z,, €7, and

Tpa1 [T T,] = T (T 2,) €S, (m)
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ni = =

For all 0 £ ¢ £ n the morphisms E%’i =ep Ty — T, inC,
e;’i =yt eyip may be defined by induction:
€V [2y,..., 8] = eynp [T1s--Ty) = Tz, €T, (e

for all [z,,...,x,,] € T, by Lemma 4.1; when i < n, e;’i = Ve’%_l’i and

et [Zq,..,2,,] = {en_l’iwl, e e”"l’imm] eT, (e
for all [z,...,z,,| €T, .
The equality
T, oMt = Tyl (me)
is proved by induction on n: for every [zy,...,z,.] € T} ,{,
m, €0 [2y,..2,] = W, (@) = T [T, T,
and
T, €t [€y,...,5,] = 7, [e"_l’i:cl, ey e"'l’ia:m]
= M, 3 (e”“l’i:cl P A B S enbi (zy--2,,)
= T, (zy2,) = T [Tq,...,%,,]

for all ¢ < n, since €™? is a homomorphism.

An n-cochain is an element of C™(T,G) = Homg (T, G). The coboundary
homomorphism

8, = Yogizn (—1)'Homg (e7",G) : C™(T,G) — C™*1(T,G)
sends v : T, — G to
0,0 = 3 0<i<n (-1)i (v o eg’i).
An n-cocycle is an element of Z"(T,G) = Ker §, C C™(T,G); if n = 2, an
n-coboundary is an element of B"(T,G) = Im§,_; € Z™(T,G). The Beck
cohomology groups of T are the groups
H"(T,G) = z™(T,G)/B"(T,G)
where n > 2, and HY(T,G) = ZY(T,G).

By Proposition 2.1, G is a split commutative group coextension of S by the
corresponding abelian group valued functor G. By Lemma 4.2, there is a natural
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isomorphism © of C™(T,G) = Homz (T G) onto
c"(8,G6) = C(T,_,,G) = HteTn~1 Gwn_lt;
when v : T, — G, then Qv = u = (“t)teTn_l € C™(S,G) is given by
v[t] = (up,m,_ ).

When v = (u;)ier, _, € C™(5,G), then O lu=v:T, — G is given by

v([Ty,...,x,,] = (Zlgjgm ’u,;r;l—lmj , ﬂ'n__l.’lf),
where ﬁj =Ty T Tjyq Ty, and & = @p--xp,, for all m > 0 and
Tyy.-T,, € T, 1 then & u = O(6,v) € C"T(S,G) is given for all t =

[ml,..., m] €T, by
((Gru)g mat) = (6,0) [f] = Logicn (-1) (v ™ [#])
= 2.0<i<n-1 (1) ([ ) + (1)t
= Yoicn-1 (=) (Uen-1,i g Mg € 7HH)
+ (=)™ (Xi<j<m ;T" 1% Tp1%),
= Yo<icn-1 (- 1) (U1, 4, Tpt)

+ ()" (Zi<i<m ﬂ]” 1% Tp_1Z),

i n—1 _ T o, — ...
since T, _; o€ ’—7rn,where:z:j—:c1 T; 1T z,adr=x---x,,

sothat m _,x = m_t. Thus

(Gpw)y = Sogign-1 ("1 a1y + (1) Dygjgp u5 1"
forall t = [z,...,2,,] € T,, and we have proved:

Theorem 4.3. Let S be a commutative semigroup. Up to natural isomor-
phisms, the Beck cohomology of S has coefficients in an abelian group valued
functor G on H(S), and H"(S,G) is the n-th homology group Kerd,, /Imé,,_;

of the complex

Sn—
0 — CYS,G) — -+ =25 C™(S,G) -2 C™L(8,G) —
where C*(5,G) = [lser, | Gr,_ ¢+ and
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(5n“)t = Eogign—l (—1)i Un-1,i; + (=)™ Zl<]<m gn 193 (%)
forall t = [:L'l,...,xm] € Tn’ where ;’fj =TT Ty Ty
If m = 1, then Z; is an empty product and z; =1¢€ T1 1

4. Theorem 4.3 describes H'(S,G) and H?(S,G) as follows.

A 1-cochain v € CY(S,G) is a family u = (tg)qes such that u, € G, for
all a € S (u € [[,eg G,)- When t = [ay,...,a,,] € Ty, so that m > 0 and
ay,..-,a,, €S,and a =a;---a,,, then m;t = my(a;---a,,) = a by () and
90t = a,---a,, =a=mt by (€'). Thus (§) reads

—~

(61u)t = Uy — Zléjgm “Z§

for all t = [aq,...,a,,] € T}, where a = a;---a,, and
Qj =@y Qi Qi Oy Hence u is a 1-cocycle if and only if

o~

o
Uy am = 21555 Yo
for all ay,...,a,, € S; equivalently, if v, = uz + uy forall a,b € S.

A 2-cochain u € C?(S,G) = HmeTl Lo is a family u = (ug)zer, such
that u, € G, , forall z € T;. When A = [xl,...,mm] € T, so that m > 0
and zq,...,z,, € T}, and © = z,---c,,, then myt = my(z{---2,,) = ™7,
bl = z,-T,, = €Ty by (¢'), and

0 = [eo’oml, ey eo’oxm] = [mzq, ..., 1T,

by (¢’). Thus () reads

—~

— ML
(52u)[$1:~--7$m] - u[ﬂml,...,'/rwm] - umr"zm + Zl§j§m uij

forall z,,...,z,, €T, where 7 =m; and :?j =Ty T Tjyq Ly Hence
u is a 2-cocycle if and only if

—~

_ T ;
Ugiozm = Yrzy,.,mzm) + Zl§j§m uij

for all m > 0 and x,,...,2,, € T}; u is a 2-coboundary if and only if u = dv
for some 1-cochain v:

-~

_ Ta;
Yar,oam] = Yay-am — Zléjém ’UajJ
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In the above, m is unbounded; computing H 2(S,G) by Theorem 4.3 is
therefore an infinite task, even when S is finite. Fortunately, more effective
techniques are just around the corner.

5. Commutative semigroup cohomology inherits a number of properties from
triple cohomology in general. Theorems 1.1, 1.2, and 4.3 yield:

Theorem 4.4. When S is a free commutative semigroup, then H™(S,G) =0
for all n 2 2.

Theorem 4.5. Every short exact sequence G : G — G' — G” of abelian
group valued functors on H(S) induces an exact sequence

.« H™(S,G) — H™(S,G') — H"™(S,G") — H"1(S,G) ---
which is natural in §G.
Proposition 3.1 and Theorem 1.4 yield

Theorem 4.6. There is a one-to-one correspondence between elements of

H 2(5’, G) and equivalence classes of commutative group coextensions of S by
G, which is natural in G.

Theorem 4.6 provides a bijection between H 2(5, G) and the abelian group
Ext (S,G) from Chapter V. In the next section we shall prove that the two groups

are in fact isomorphic. Hence H2(S,G) can be calculated from factor sets and
split factor sets, which one may assume are normalized.

6. We conclude this section by constructing a projective complex of which
H™(S,G) is the cohomology; this takes place in the abelian category A of abelian
group valued functors on H(S).

Let T = (T,m) be ac.s. over S. For every a € S let K, = K_(T) be the
free abelian group generated by the set

X, = X,(T) = {(t,z) eTx S| (nt)z = a}.

a

When v € S1, (t,2) € X, implies (t,2v) € X, and there is a unique homo-

morphism %, : K, — K, such that

K o(t2) = (¢2v)
whenever (t,z) € X,. We see that 5, ; is the identity on K, and that «,,, , o
Kap = Kgpw- THUS KT = (K, ) is an abelian group valued functor on H(S).
If f: T — T isamorphism in C, then (t,2) € X,(T) implies (ft,z) €
/

X, (T") and f induces a homomorphism (Kf), : K, (T) — Ka(T/). It is

a
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immediate that Kf : KT —» KT is a natural transformation. This constructs a
functor K : € — A.

Lemma 4.7. For every object T = (T, =) of C and abelian group valued
functor G on H(S) there is an isomorphism Hom 4 (KT,G) = C(T,G) which

is natural in T and G. Hence KT is projective.

Lemma 4.7 shows that the functor C(T,—) is representable. Hence the
isomorphism Hom 4 (KT',G) = C(T,G) determines K uniquely up to natural
isomorphism.

Proof. Let p : K — G be a natural transformation, where K = KT. For
every t € T, (t,1) € X, and

Py = on(tl) € Gpy.
This constructs P € C(T,G) = [[,cr G- Since ¢ is natural we have
QOa(t, z) = @, ﬂwt,z(t’ 1) = ’77rt,z Qoﬂt(t’l) = 77rt,z @t
for all (t,z) € X,. Thus ¢ is uniquely determined by .
Conversely let u € C(T,G). Define ¢, : K, — G, by:
Qoa(t’ Z) = 77rt,z Uy
for all (¢,z) € X,. Then

Va,v <'Oa(t"z) = A/a,'u 77rt,z Uy = 77rt,vz Uy = (pav(t’vz) = Pav Ha,v(t7z)
for all (¢,z) € X,. Hence ¢ : K — G is a natural transformation. We see that
? = u. Thus Hom 4 (K,G) = C(T,G). It is immediate that this isomorphism
is natural in T' and G.

If ¢ : G — G’ is an epimorphism in A, then every o, : G, — G, is
surjective, C(T,0) = [T;er s : [lier Gut — [lier Goy is surjective, and
Hom 4 (K,0) is an epimorphism. Thus K is projective in A. [J

Proposition 4.8. H"(S,G) is the n-th cohomology group of the projective

complex

04— Cy(S) ¢— -+ +—C(S) +—C_ 1(S) «— -
where C_(S) = KT, _, and 9 : C,_(S) — C,(S) is given by

aa(t’z) = Zogién—l (_1)1 (en—l,i t’ Z) + (_1)n Zlgjgm (xj’ (ﬂn—l/x\j)z)
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for all (t,z) € X,, where t = [xy,...,z | €T, and T; =z T;_; T; 4
. xm .
Proof. By Lemma 4.7 there are natural isomorphisms
Hom 4 (C,,(S),G) = Homy (KT, 1,G) — C(T,,1,6) = C*(5,G).
We show that these isomorphisms take the coboundary homomorphism
Hom, (0,G) : Hom 4 (C,,G) — Hom, (C,, ;,G),
¢ — @00, to the coboundary homomorphism 4,, in Theorem 4.3.

Let u € C™(S,G). To u corresponds the natural transformation ¢ from
KTn_l to G defined by

Soa(t7z) = 77rt,z Uy = uf

forall (¢t,2) € X, (T, ;). Let v e C™*t1(S,G) correspond to @ o 8. For every
t = [$1,...,$m] € Tn,

U = P (O (t,1))
= 0 (Do<i<no1 (=1)% ("1 e, 1)
+ (1" Xigjsm (@55 (m,185)1))
- Zo§i§n—1 (—1)° Un-14, + (=1)" Zl§j§m u”;z—l;j

= (0,u),.
Thus v = ¢, u. O

The complex in Proposition 4.8 is not very barlike, since the generators (¢,v)
of C,(S) include sequences ¢ € T, _; of unbounded length when n 2 2. It is
not known in general whether there is a commutative “bar” complex in which ¢
is replaced by a sequence of length n. Results in the next section indicate how
the first groups of such a complex might be constructed.

7. Simpler chains can be used when coefficient functors are constant, or nearly
constant. We call an abelian group valued functor G = (G,7) on S constant
when there is an abelian group A such that G, = A and v, , =1, foralla € S

and t € S'. Then G and A may be identified, and we denote C™(S,G) by
C"(S,A), and similarly for B", Z", and H™. Constant functors are thin and
surjecting. Cohomology with constant coefficients is the commutative analogue
of the Eilenberg-MacLane cohomology for monoids.
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When T = (T,7) is a c.s. over S let K(T) be the free abelian group gen-
erated by the set T'. For every abelian group G we have Hom (K (T),G) =
[Tier G = C(T,G). Hence H™(S,G) is, as in Proposition 4.8, the n-th coho-
mology group of the complex

C(S) : 04— Cy(8) «— - = C(8) +— C, 1 1(S) +— -
where C, (S) = K(T,,_;) and 8 : C,,.1(S) — C,,(S) is given by

O = Fogizn1 CU I+ (1) Tigicm 7

forall t = [z,...,z_] € T, . Since C(S) is a complex of free abelian groups,
there is for every abelian group G a Universal Coefficient Theorem

H™(S,G) = Ext(H, ,(S),G)@® Hom (H,(S),G)

n—1

where H, (S) is the n-th homology group of C(S), with H, (S) = C1(S)/Im &'
and Hy(S) = 0 (MacLane [1963]). We leave the details to our tireless reader.

When S has a zero element, then H"(S,G) = 0 for every abelian group
G, at least when n < 3. This can be remedied by using functors that are not
quite constant. When S has a zero element, an abelian group valued functor
G on S is almost constant when there exists an abelian group A such that
G,=Aforall a#0, Gy =0, and Yo =14 whenever at # 0. Then G may

be identified with the abelian group A, and we denote the cohomology groups
H™(S,G) by Hy(S,A), and similarly for cochains, cocycles, and coboundaries.
Almost constant functors are thin and surjecting,

As noted in Grillet [1974], almost constant functors arise naturally in the
construction of homogeneous elementary semigroups. The Universal Coefficient

Theorem can be saved if in the above we replace K(T') by the almost constant
functor K°(T) in which the abelian group is the free abelian group generated by
{t € T | nt # 0}. Again we leave the details to our reader.

S. SYMMETRIC COCHAINS.

Commutative cohomology cries out for an equivalent description in which
n-cochains are functions of n variables. This has been found only for n < 4.

I-cochains already are functions u = (u,), g of one variable a € S.

1. In dimension 2, Theorem 4.6 provides a one-to-one correspondence be-
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tween the elements of H2(S,G) and the elements of the abelian group Ext (S,G)
of all equivalence classes of commutative group coextensions of S by G, which
is also the abelian group of all equivalence classes of commutative factor sets on
S with values in G.

We now construct a more direct connection between factor sets and 2-cocycles,
which induces an isomorphism H?(S,G) =~ Ext(S,G).

Let T be the free commutative semigroup on the set S and 7 =m; : T} —
S, so that way, ay, ..., a,,] = a;ay---a,, forall a;,...,a, € S. As we saw

. . . 2 _
in Section 4, a 2-cochain u € C*(S,G) = HmeTl G,
such that u, € G for all x € T} a 2-cocycle is a 2-cochain u such that

o isafamily u = (um)zETl

_ 7T,
uzl««-xm - U’[ﬂ'xl,...ﬂrwm] + Zl§j<m uij 2)

for all m > 0 and z,,...,z,, € T}, where EEj =Ty T Ty Ty A

2-coboundary is a 2-cochain u (necessarily a 2-cocycle) of the form u = dv,

PN

(09)fay,0)) = Vayoa ~ 21it Vay (B)
1

for some 1-cochain v, where @; = a;---a;_; A 100y
A symmetric 2-cochain on S with values in G is a family s = (s, 1), pes

such that s, , € G, and

Sb,a = Sa,b
for all a,b € S. Under pointwise addition, symmetric 2-cochains constitute an
abelian group SC?(S,G) = [opcs Gap- A symmetric 2-cocycle on S with
values in G is a symmetric 2-cochain s such that

C

— a
Sa,b + Sab,c - Sa,bc + Sb,c (A)

for all a,b,c € S; equivalently, a commutative factor set on S with values in G
as defined in Section V4. A symmetric 2-coboundary on S with values in G
is a symmetric 2-cochain (necessarily, a symmetric 2-cocycle) s of the form

_ b a
Sap = Vg T Uy g

for some 1-cochain v; equivalently, a split factor set. Under pointwise addition,
symmetric 2-coboundaries and 2-cocycles form abelian groups SB?(S,G) C
SZ%(S,G) C SC%(S,G).
We saw in Section V.4 that
Ext(S,G) = SZ%(S,G)/SB?*(S,G).
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2. Restriction to S x S yields a trimming homomorphism ¥ of CQ(S,G)
into SC?(S,G); when u is a 2-cochain, Zu is given by

Cu)gp = Ufgu
for all a,b € S; YTu is symmetric since [b,a] = [a,b] in T}.
Lemma 5.1. When u is a 2-cocycle, then Upg] = 0 forall a € S and

a!t
k3

Ylay,..q;] = Zl§i§l——1 Y

2

al,a;41]

forall 1 >0 and a,...,a; € S, where a; =ay---a; and a2'+1 =000

Proof. When m = 1 and z; = [a], then 7mzy = la], (Z) reads: u, =

1 _
Uy + Uz and Uy = 0.
Now let i 2 1 and ay,...,a;,1 € S. With m = 2, 2y = laj,...,q;], and
Ty = [ai+1]’ then 7z, = a;, Ty = Gy, Uy, = 0, and (Z) reads

N ai+1 17
Uapagi] = Ulahaiit] T Yagiad @)

(Z') is proved by induction on [, using (Z"). First, (Z') is trivial when [ =1
(then the right hand side is the empty sum 0) and when [ = 2 (then a’2' is the

empty product and aj = 1 € S1). If | = 3, then (Z") yields

a
prneny 3 —|—’u,

u[al7a27a3] u[a11a2] [al2,a3]

and (Z') holds. If [ > 3, then, with b}, | = a; 5---a;_;, (Z") and the induction
hypothesis yield
_
Yoy e = Yog,apog) T e el

1

b
— i+1 aj
(21§Z§Z—2 [ag,aﬂ_l]) T [a;_l,al]

a’

= . Uu .
E1gzgz—1 [a;,aiﬂ]

Lemma 5.1 shows that ¥ : Z2(S,G) — SC2(S,G) is injective.

Lemma 52. Im¥ = SZ%(S,G).

Proof. Let u be a 2-cocycle. With m = 2, z; = [a], and z, = [b,c], (Z)
reads

Ulabe = Yabd T “ﬁ),c]
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(since upy = 0). With m =2, ; = [a,b], and x4 = [c], (Z) reads

Ulg,be] = UYab,c] + u[ca,b] :
Therefore Tu € SZ2(S,G).

Conversely let s € SZ2(S, G). Since X is injective, there is at most one
u € Z%(S,G) such that Yu = s, and it is given by (Z'). Accordingly, define
t= (tal,...,al)l>0, ag,...,a €S by
"

%it1
tay, ey = 2a1Si<i-1 Sal aisn
forall I > 0 and ay,...,a; € S, where a} = a;---a; and aj | = a; 5 -q;.
In particular, t, = 0 (if [ = 1, then the right hand side is the empty sum 0) and
top = Sqp> forall a,b € S. Also

a!l 1b
_ i+
tal,...,al,b - Zl§i§l—1 Sa;,ai_’_l + Sai,b
a!!
i+1 b
= . S + S
(Zl§2§l—l a;7ai+1) a;,b

aj,...,aj
forall I >0 and a,...,q;,b € S; thus ¢ satisfies (Z").

We show by induction on [ > 0 that

tagt,magy = tai,..a (P)
for every a,,...,a; € S and permutation ¢. This is trivial if [ = 1 and follows
from £, , = s, if | =2. When [ > 2, ¢ is a product of transpositions of the
form (j j+ 1) and it suffices to prove (P) when 0 = (j j+1). If j <l—-1,
then (P) follows from the induction hypothesis and (Z”). If j = [ — 1, then, with
a_5="b,a_;=c,a =d, wehave ai_; = bc, af ; = d, and

"

" _ i1 d
agona = 21<i<1-85, 4. - T She T Sped>
1s---5Q] =t = ai,az 3 3

+1
iy
1 C
tagy,nag, = 2A1<i<I—3 Sal,ait1 t Spa T Sbdco
and (P) holds, since s € SZ%(S,G) yields

d . .d _ c _.C
She T Sbed = Scp T Scbd = Sepd T Sbd = Sbd T Sbde-
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By (P), a 2-cochain u € C?(S,G) is well defined by

u[al,...,al] = t

forall I > 0 and ay,...,a; € S. We show that u € Z2(5,G); that is,

ay,...,a

—~

B T 5
uxl-"$m = u[wwl,...,ﬂxm] + Zl§j§m uxj] (Z)
holds for all m > 0 and z,,...,z,, € 17, with &:\j =Ly T Ty Ty

(Z) is trivial if m = 1; for m > 1 we proceed by induction on m. Assume
that (Z) holds for m and let y,,...,y,,, 2 € T}. Let x =y, ---y,, = [a,...,q],
zz[cl,...,cn],ﬂyj:bj,mc:a—al n=by b ,and Tz=c=c;---c,
By the induction hypothesis,

—~

_ b,
Up = Uy p) T2 <m Uy
where bj =by--b._y bj+1---bm. Hence

Tz cees@] 5 €1 yeeesCn

CII

//
_ z—l—l _|_1
= 21<i<i-19 o, a; + 2o<k<n-1$ acl,
i+1 k41

! c;c’-é-l
_ €1
= u + Saye; T Zl<k<n 198 ac,, cpt1

0 o
— o
= Uyt Digigm U+ saie

Ck+1 a c
+ s s s k+1
Zl<k<n 1 ( ’C;c + a, Ckck+1 + C;c >Ck+l)
by the induction hypothesis and (A). Hence
- 11 7
_ aC bjc “ %k
Uy, = Uy, by T El§j§m “yj t Saep — Zlgkgn—l sa,c;c

1 cI/

[ k+1 a
+ 22§k§n Sal,cc;c (Zl<k<" 18 e Ck+1)

/\

= u[bl’ o) T 21<J<m C 4+ s, + us

b-c a
u[bl,...,bl,c] + 21§j§m uyj + u,

by (Z”), and (Z) holds for m + 1. Thus u € Z2(S,G). Then Su = s. O
Lemma 53. X (B*(S,G)) = SB%(S,G).
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Proof. When v € C*(S,G), then (B) yields (5v)[a7b] =V — vZ —vy. O

3. Lemmas 5.1, 5.2, and 5.3 provide an isomorphism Z2(S,G) = SZ%(S,G)
which is natural in G, sends B%(S,G) to SB%(S,G), and induces an isomor-
phism Z2(S,G) / B%(S,G) = SZ%(S,G) / SB?(S,G). This proves:

Theorem 5.4. For every commutative semigroup S there is an isomorphism
H?%(S,G) = Ext(S,G) which is natural in G.

The isomorphism H2(S,G) = SZ%(S,G) / SB?(S,G) can be refined, using
Proposition V.4.5, into an isomorphism

H*(S,G) =~ NSZ%*(S,G)/ NSB%(S,G),

where NSZ%(S,G) and NSB2(S,G) are the groups of symmetric 2-cocycles

2

and 2-coboundaries s that are normalized (s, , = 0 whenever e = e 24, a).

Normalization can be confined to a single idempotent; when applied to the identity
element, it yields:

Corollary 5.5. When the commutative semigroup S has no identity element,
then H%(S,G) = H?(S',G'), where G' extends G to S* so that G, = 0.

The study of H?(S,G) may therefore be limited to monoids. Theorems 5.6
and 5.7 below have similar corollaries for dimensions 3 and 4. It is probable that
Corollary 5.5 extends to all dimensions.

When S is finite, the computation of H2(S,G) using Theorem 5.4 is a
finite task, since a symmetric 2-cocycle consists of finitely many group elements
subject to finitely many conditions, and a symmetric 2-coboundary is determined
by finitely many group elements. Thus Theorem 5.4 is a marked improvement
upon Theorem 4.3. But further improvement would not hurt.

For example, let S be the Volkov nilsemigroup
S = (ab|la®=a’b=ab® =b*=0,a® =ab="0%).
(Example II1.3.6); the elements of S are a, b, ¢ = bz, d=a%?=ab= b3, and
0. A normalized symmetric 2-cochain s on S consists of Sa,a> Sab> Sacs Sad>

5,00 Sb,b* Sbe> Sbd> 56,00 See Sed> Sc00 Sdd> Sa0- and Sgo = 0 (since s
is normalized).
Then s is a symmetric 2-cocycle if and only if
&+ s = s + Sy A(z,y,2)

$1y wy’z m?yz

holds in G, , forall x,y,z € S. We note that A(z,y,z) is trivial if £ = z and
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remains unchanged if z and z are interchanged; moreover, A(z,y,z) follows
from

z _ Yy

Sya T Seyz = Syaz T Sz A(y,z,z)
and

T _ Yy

Syz T Syzg = Sysz T Sig Ay, z,x).

Hence it suffices to state A(z,y,z) when z < y and x < z in the lexicographic
order a <b<c<d<O0onS. If x = a, there are 5 choices for y and 4
choices for z; if £ = b, there are 4 choices for y and 3 choices for z; if x = ¢,
there are 3 choices for y and 2 choices for z; if z = d, there are 2 choices for
y and 1 choice for z; this yields 20 + 12 + 6 + 2 = 40 conditions.

We leave the actual conditions and their solutions to northern readers, who
are blessed with long winter evenings. H?(S,G) will be computed in the next
chapter when G is thin, using more efficient methods.

4. A symmetric 3-cochain on S with values in G is a family
t = (tapc)apees such that ¢ € G,y and

a,b,c c

t = _ta,b,c and ta,b,c + tb,c,a + tc,a,b =0

c,b,a
for all a,b,c € S. These conditions are satisfied by the coboundary

_ oC a
(6S)a,b,c = Sab ~ Sa,bc + Sab,c ~ Sb,e

of every symmetric 2-cochain s € SC2%(S,G). Under pointwise addition, sym-
metric 3-cochains constitute an abelian group SC3(S,G) C [abces Gabe-

A symmetric 3-cocycle on S with values in G is a symmetric 3-cochain ¢

such that
td -t + t — 1 + t¢ =0
a,b,c a,b,cd a,be,d ab,c,d b,c,d

for all a,b,c,d € S. This condition is satisfied by the coboundary ¢t = ds of
every symmetric 2-cochain s; such a coboundary is a symmetric 3-coboundary
on S with values in G. Under pointwise addition, symmetric 3-coboundaries and
3-cocycles form abelian groups SB3(S,G) C SZ3(S,G) C SC3(S,G). The
following result is due to Grillet [1991C], [1997C]:

Theorem 5.6. For every commutative semigroup S there is an isomorphism

H3(S,G) = SZ3(S,G) / SB3(S,G) which is natural in G.

A symmetric 4-cochain on S with values in G is a family
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u = (ta,b,c,d)a,b,c,dGS such that ua,b,c,d € Gabcd and

Ugbba = 0, Ud.cba = —ua,b,c,d’
Ug b,cd ~ Ubc,da + Ue dab ~ Udabe — 0,
Ug b d — ub,a,c,d + ub,c,a,d “Upeda = 0

for all a,b,c,d € S. These conditions are satisfied by the coboundary

_ q4d a
(6t)a,b,c,d - ta,b,c - ta,b,cd + ta,bc,d - tab,c,d + tb,c,d

of every symmetric 3-cochain s € SC3(S,G) (this is shown in the next sec-
tion). Under pointwise addition, symmetric 4-cochains constitute an abelian group

SC4(57 G) - Ha,b,c,dES Gabcd‘

A symmetric 4-cocycle on S with values in G is a symmetric 4-cochain u
such that

e a —
Ug bed — UYab,cde + Uy bede — Yabc,de + Ugbede ~ Ubcde ~— 0

for all a,b,c,d,e € S. A symmetric 4-coboundary on S with values in G is
the coboundary u = t of a symmetric 3-cochain ¢. Under pointwise addition,

symmetric 4-coboundaries and 4-cocycles form abelian groups SB4(S,G) C
SZ4(S,G) C SC*(S,G). The following result is due to Grillet [2001H]:

Theorem 5.7. For every commutative semigroup S there is an isomorphism
H*(S,G) = SZ%(S,G) / SB*(S,G) which is natural in G.

The author’s proofs of Theorem 5.6 and 5.7 are computational like the proof
of Theorem 5.4, but much longer, and very likely to tax the reader’s patience (even
during long winter evenings). Better proofs would rely on Theorem 1.3, or on the
underlying spectral sequence argument, to show that symmetric cochains define
the same cohomology. This requires a general definition of symmetric cochains
and a proof that SZ™(S,G) = SB™(S,G) when S is free. The author has proofs
of this last fact when n £ 3, which are, unfortunately, entirely comparable in
length and spirit to the proofs of Theorems 5.4 and 5.6.

Theorems 5.6 and 5.7 strongly suggest that symmetric cochains, cocycles,
and coboundaries can be defined in every dimension n so that H"(S,G) =
SZ™(S,G) / SB™(S,G). How to do this is still an open problem. In the
above, the coboundary homomorphisms for symmetric cochains are essentially
the same as in Leech cohomology and can be defined in all dimensions. The
symmetry conditions in dimension n + 1 can be defined by induction as all the
symmetry conditions inherited by coboundaries of symmetric n-cochains. The
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difficulty lies in proving that H™(S,G) = SZ™(S,G) / SB™(S,G) (or that
SZ™(S,G) = SB™(S,G) when S is free). There the matter rests, for now.



