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Abstract

This article introduces abelian multigroups, multirings, and multi-
modules over a commutative semigroup, with applications to cohomology.
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1 Introduction

This article originates in an unknown referee’s remark that the cohomology of
commutative semigroups refines André-Quillen cohomology and should therefore
be studied by the same methods.

Indeed this is the approach used by Kurdiani and Pirashvili in [7], using
modules as coefficients. Unfortunately, the cohomology of a commutative semi-
group S requires its coefficients to include one abelian group for each element of
S [6], whereas a module can only assign the same abelian group to all elements of
S. Applying André-Quillen methods ([1, 10, 11]; see also [12]) to the commuta-
tive semigroup S requires structures, such as the abelian group valued functors
in [6], whose contents are spread among elements of S.

In Sections 2 through 12 we develop the rather boring basic algebra, adjunc-
tions, and operations, of six such structures: multisets, abelian multigroups, and
multimodules, which parallel sets, abelian groups, and modules; commutative
multimonoids, multirings, and multialgebras, which parallel commutative mon-
oids, rings, and algebras. It is clear that there are multimonoids, multirings, and
multialgebras that are not necessarily commutative, but André-Quillen methods
require commutativity.

We found that André-Quillen cohomology also requires a comonad (V, ϵ, ν)
in which the elements of V (X) can be written uniquely in more or less polyno-
mial form. For technical reasons this rules out most of the comonads in Sections
2 to 12, including commutative multi-R-algebras, and Sections 13 through 16
develop the theory for commutative multirings only (without any input from
Sections 9 to 12).
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2 Multisets

In what follows, S is a given commutative semigroup or commutative mono-
id, and S1 is the commutative monoid defined as follows: if S has an identity
element, then S1 = S; otherwise, S1 = S ∪ {1}.

Recall that a set X over S consists of a set X and a projection mapping of
X into S, denoted regardless of X by x 7−→ x∨. Projection to S decomposes X
into a disjoint union X =

⋃
a∈S Xa, where Xa = {x ∈ X | x∨ = a }.

Every subset Y of X inherits a projection to S which makes it a set over S,
with a decomposition Y =

⋃
a∈S Ya, where Ya = Y ∩Xa.

A morphism f : X −→ Y of sets over S is a mapping f : X −→ Y such that
(fx)∨ = x∨ for all x ∈ X; equivalently, f (Xa) ⊆ Ya for all a ∈ S.

1. Definition. A multiset over S is a set X over S together with an action
(x, t) 7−→ xt of S1 on X such that

(xt)∨ = x∨ t ,

x1 = x for all x , and

(xt)u = xtu for all x, t, u .

For example, if S has just one element, then a multiset over S is just a set.
In general, S begets a multiset S on itself, in which Sa = {a} and at = at.

Multisets over S have an equivalent definition as functors on the Leech cate-
gory H(S), which is the small category (originally denoted by R(S) in [8]) whose
objects are the elements of S, with one morphism (a, t) : a −→ at for each a ∈ S
and t ∈ S1. Composition is by (at, u) ◦ (a, t) = (a, tu); the identity morphism
on a ∈ S is (a, 1).

Hence, a set-valued functor (X,χ) on H(S) assigns a set Xa to each a ∈ S
and a mapping χa,t : Xa −→ Xat to each a ∈ S and t ∈ S1, so that χa,1 is the
identity on Xa and χat,u ◦ χa,t = χa,tu for all a ∈ S and t, u ∈ S1. We regard
the sets Xa as pairwise disjoint, so that X =

⋃(
Xa | a ∈ S

)
, together with

the projection x∨ = a whenever x ∈ Xa, is a set over S. An action of S1 on X
is then defined by

xt = χa,t x

and makesX a multiset over S. Conversely, a multisetX over S can be regarded
as a set-valued functor on H(S), that assigns Xa to a ∈ S and χa,t : x 7−→ xt,
Xa −→ Xat, to a ∈ SZ and t ∈ S1.

A morphism f : X −→ Y of multisets is a morphism of sets over S ((fx)∨ =
x∨ for all x) that preserves the action of S: f(xt) = (fx)t for all x and t.
Equivalently, the restrictions fa : Xa −→ Ya of f constitute a natural transfor-
mation f = (fa)a∈S from X to Y .

2. Submultisets. A submultiset Y of a multiset X is a subset Y of X that
inherits the action of S: x ∈ Y implies xt ∈ Y . The action of S on X then
induces an action of S on Y , which makes Y a multiset over S. Equivalently, a
submultiset of X is a subfunctor.
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For example, if f : X −→ Y is a morphism of multisets, then Im f = f(X)
is a submultiset of Y .

Given a multiset X and a subset Y of X, the submultiset Y of X generated
by Y is the least submultiset of X that contains Y :

Y = { yt | y ∈ Y, t ∈ S1 } .

For every a ∈ S,

Ya =
⋃

(Y t
c | c ∈ S, t ∈ S1, ct = a ) .

3. Congruences. A congruence on a multiset X over S is an equivalence
relation C on the set X such that

x C y implies x∨ = y∨ and

x C y implies xt = yt for all t ∈ S1 .

For example, if f : X −→ Y is a morphism of multisets over S, then the equiv-
alence relation ker f on X induced by f is a congruence on X.

Conversely, if C is a congruence on a multiset X over S, then the quotient
set X/C is a multiset over S, on which the projection to S and action of S1 are
well defined by C(x)∨ = x∨ and C(x)t = C(xt), where C(x) denotes the C-class
of x, so that the projection X −→ X/C is a morphism of multisets over S.

If f : X −→ Y is a morphism of multisets over S, then X/ ker f ∼= Im f .

4. Free multisets. There is in general no adjunction of sets to sets over S.
Indeed the category of sets over S has products; the product of X and Y is
given by the pullback (of sets) on the projections to S. Hence the forgetful
functor from sets over S to sets does not preserve products (unless S has just
one element), and has no left adjoint.

Similarly, in the category of multisets over S, the product of X and Y is
given by the pullback (of sets) on p and q, which yields a multiset over S

P = { (x, y) ∈ X × Y | x∨ = y∨ }

with projection (x, y) 7−→ x∨ = y∨ to S and action (x, y)t = (xt, yt) of S, so
that the maps (x, y) 7−→ x and (x, y) 7−→ y are morphisms of multisets over S.
Hence there is no adjunction of sets to multisets over S.

If S is a commutative monoid, however, there is an adjunction of sets over S
to multisets over S. The free multiset X+ over S on a set X over S is

X+ = X × S ,

with projection (x, a)∨ = x∨ a to S and action (x, a)t = (x, at) of S. Thus, for
each a ∈ S,

(X+)a = { (x, t) | x ∈ X, t ∈ S, x∨ t = a } .

For example, Z+ is a multiset over S whose elements (n, a) are the integers
over S.
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There is a canonical mapping η : X −→ X+, x 7−→ (x, 1), which is a mor-
phism of sets over S. Moreover η is injective. Hence we may identify x ∈ X
and ηx = (x, a) ∈ X+. Then (x, t) = (x, 1)t = xt (in X+, not in X).

Every morphism f of sets over S of X into a multiset Y over S lifts uniquely
to a morphism of multisets over S from X+ to Y , meaning that there is a
unique morphism g : X+ −→ Y of multisets over S such that g ◦ η = f . Indeed
g is unique: g (x, 1) = fx implies g (x, a) = g

(
(x, 1)a

)
=

(
g (x, 1)

)
a = (fx)a.

Conversely, define g : X+ −→ Y by

g (x, a) = (fx)a .

Then g is a morphism of multisets over S: (x, a) and (fx)a both project to x∨ a,
and g

(
(x, a)t

)
= g (x, at) = (fx)at =

(
g (x, a)

)
t.

In the adjunction of sets over S to multisets over S, the counit ϵ is found
as follows. Let X be a multiset over S; let X+ be the free multiset on the
underlying set over S of X. Then ϵ assigns to X the morphism ϵX : X+ −→ X
of sets over S that lifts the identity 1X on X. By the above, ϵX (x, a) = xa, as
calculated in the multiset X.

3 Monoids over S

In this section we assume that S is a commutative monoid.

1. Monoids over S. Recall that a commutative monoid M over S consists
of a commutative monoid M and a projection x 7−→ x∨ which is a monoid ho-
momorphism (1∨ = 1 and (xy)∨ = x∨ y∨ for all x, y). In particular, a monoid
over S is a set over S.

A morphism f : M −→ N of commutative monoids over S is a morphism of
sets over S ((fx)∨ = x∨) which is also a monoid homomorphism.

For every subset X of a commutative monoidM over S there is a submonoid
X of M (such that 1 ∈ X and xy ∈ X for all x, y ∈ X) generated by X, which
is the least submonoid of M that contains X: namely

X = {x1x2 · · ·xn | n ≥ 0, x1, x2, . . . , xn ∈ X } ,

it being understood that x1x2 · · ·xn = 1 ∈M if n = 0.

2. Free commutative monoids. The free commutative monoid F = F(X)
on a set X consists of monomials in X. To avoid confusion between products
in F and products in other monoids we replace every element x of X by an
indeterminate Xx (so that X = {Xx | x ∈ X } is a set with a bijection x 7−→ Xx

of X to X).

Accordingly, a monomial on a set X is a formal product Xm =
∏

x∈X X
m(x)
x

of powers of elements of X (more rigorously, a mapping m of X into N =
{0, 1, . . . , n, . . . }, written as a product of powers, in which any term X0

x is re-
garded as an identity element and is ignored), with exponents m(x) that are
almost all zero, meaning that the set {x ∈ X | m(x) > 0 } is finite.
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The monomials on X, multiplied by Xm Xn = Xm+n, constitute the free
commutative monoid F = F(X) on the set X. The identity element of F has
m(x) = 0 for all x ∈ X.

The canonical map η : X −→ F sends x ∈ X to Xx, viewed as the monomial
Xm ∈ F in which m(x) = 1 and m(y) = 0 for all y ̸= x. Every monomial is now
an actual product in F:

xm =
∏

x∈XX
m(x)
x =

∏
x∈X(ηx)m(x) .

Since η is injective we may identify x ∈ X and ηx ∈ F.
The universal property of F(X) and η states that every mapping f of X

into a commutative monoid M extends to a unique monoid homomorphism φ
of F into M : there is a unique monoid homomorphism φ : F −→ M such that

φ ◦ η = f , namely φ
(∏

x∈XX
m(x)
x

)
=

∏
x∈X(fx)m(x).

In the adjunction of sets to commutative monoids, the counit ϵ assigns to
a commutative monoid M the monoid homomorphism ϵM : F(M) −→ M that

extends the identity on M (ϵM ◦ η = 1M ): ϵM
(∏

x∈M X
m(x)
x =

∏
x∈M xm(x),

as calculated in M .

3. Free monoids over S on sets over S. The adjunction of sets to commuta-
tive monoids lifts to an adjunction of sets over S to commutative monoids over S.
Given a set X over S, the free commutative monoid over S on X is the free
commutative monoid F = F(X) on the set X together with the unique monoid
homomorphism that extends the projection ofX to S: (Xm)∨ =

∏
x∈X(x∨)m(x).

The unit of this adjunction, η : X −→ F is inherited from F and sends y ∈ X
to the monomial Xy: Xy = Xm, where m(y) = 1 and m(x) = 0 if x ̸= y. Since
X∨

y = y∨, η is a morphism of sets over S. Again η is injective and we may
identify x ∈ X and ηx ∈ F.

The universal property of the commutative monoid F(X) over S is inherited
from that of the commutative monoid F: if f is a morphism of sets over S of X
into a commutative monoid M over S, then the unique monoid homomorphism
of F to M that extends f is a morphism of commutative monoids over S.

The counit ϵ assigns to a commutative monoid M over S the morphism
ϵM : F(M) −→M of commutative monoids over S that extends the identity on

M : the evaluation map
∏

x∈M X
m(x)
x 7−→

∏
x∈M xm(x) ∈M .

4 Multimonoids

In this section we assume that S is a commutative monoid.
1. Definition. A commutative multimonoid over S is a commutative monoid
M over S together with an action (x, t) 7−→ xt of S on M such that M is also a
multiset over S ((xt)∨ = x∨ t, x1 = x, and (xt)u = xtu, for all x, t, u), x 7−→ x∨

is a monoid homomorphism (1∨ = 1 and (xy)∨ = x∨ y∨ for all x, y), and

(xy)t = xt y = x yt for all x, y ∈M and t ∈ S.
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For example, if S has just one element, then a commutative multimonoid
over S is just a commutative monoid. In general, S begets a trivial multimonoid
S on itself, in which Sa = {a}, at = at, and ab is the given product in S.

The action of S on a commutative monoid M over S is determined by its
action on 1 and the multiplication:

xt = (x1)t = x 1t .

In particular, 1t 1u = 1 (1u)t = 1tu and e : t 7−→ 1t is a monoid homomorphism.
Moreover, e splits the projection to S, since (1t)∨ = 1∨ t = t, and

xt yu = x 1t y 1u = xy 1tu = (xy)tu .

Conversely, if M is a commutative monoid over S and e : S −→M splits its
projection to S, then S acts on M by: xt = e(t)x, and this action makes M
a commutative multimonoid over S. Thus a commutative multimonoid over S
can be regarded as a commutative monoid over S with a split projection to S.

A morphism φ : M −→ N of multimonoids over S is a morphism φ of mul-
tisets ((φx)∨ = x∨ for all x and φ (xt) = (φx)t for all x, t) which is also a
morphism of commutative monoids over S (φ 1 = 1 and φ (xy) = (φx)(φy) for
all x, y).

2. Submultimonoids. A submultimonoid of a commutative multimonoidM is
a submultiset N of M (x ∈ N implies xt ∈ N for all t) that is also a submonoid
of M (1 ∈ N , and x, y ∈ N implies xy ∈ N). The multiplication on M then
induces a multiplication on N , which makes N a commutative multimonoid
over S.

For example, if f : M −→ N is a morphism of commutative multimonoids,
then Im f is a submultimonoid of N .

Every submultimonoid of M contains Im e, where e(t) = 1t splits the pro-
jection to S. Conversely, a submonoid N of M that contains Im e is a submul-
timonoid of M , since x ∈ N implies xt = e(t)x ∈ N .

Given a multimonoid M and a subset X of M , the submultimonoid X of M
generated by X is the least submultimonoid ofM that contains X. Equivalently,
X is the submonoid of M generated by X ∪ Im e. Since Im e is a submonoid,

X = {x1x2 · · ·xn | n ≥ 0, x1, x2, . . . , xn ∈ X ∪ Im e }
= { (x1x2 · · ·xn) 1t | n ≥ 0, x1, x2, . . . , xn ∈ X, t ∈ S }

(with x1x2 · · ·xn = 1 ∈M if n = 0).

3. Congruences. A congruence on a commutative multimonoid M over S is
an equivalence relation C on the set X such that

x C y implies x∨ = y∨ ,

x C y implies xt = yt for all t ∈ S1 , and

x C y implies xz C yz for all z ∈M .
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For example, if φ : M −→ N is a morphism of multisets over S, then the equiv-
alence relation kerφ on M induced by f is a congruence on M .

Conversely, if C is a congruence on a commutative multimonoid M over S,
then the quotient set M/C is a commutative multimonoid over S, on which the
projection to S, action of S1, and multiplication are well defined by C(x)∨ = x∨,
C(x)t = C(xt), and C(x)C(y) = C(xy), where C(x) denotes the C-class of x, so
that the projection M −→ M/C is a morphism of commutative multimonoids
over S.

If φ : M −→ N is a morphism of commutative multimonoids over S, then
M/ ker f ∼= Im f .

4. Free multimonoids on monoids over S. There is an adjunction of com-
mutative monoids over S to commutative multimonoids over S. Indeed, if M is
a commutative monoid over S, then the free multiset over S on the set M from
Section 2,

M+ = M × S

(with projection (x, a)∨ = x∨ a to S and action (x, a)t = (x, at) of S) inherits
from M and S a multiplication, namely the componentwise multiplication

(x, a)(y, b) = (xy, ab) ,

which makes M+ a commutative multimonoid over S, since(
(x, a)(y, b)

)
t = (xy, abt) = (x, a) (y, b)t = (x, a)t (y, b) .

For example, the integers over S constitute a commutative multimonoid Z+

over S.
The canonical map η : x 7−→ (x, 1) is now a morphism of commutative mul-

timonoids over S of M into M+. Since η is injective we may identify x ∈ M
and ηx ∈M+. Then (x, a) = (x, 1)a = xa in M+ (but not in M).

Since M+ is the free multiset over S on M , every morphism f of multisets
over S from M to a commutative multimonoid N over S lifts uniquely to a
morphism g : (x, a) 7−→ (fx)a of multisets over S from M+ to N . If f is a
morphism of commutative monoids over S, then

g (xy, ab) = (f(xy))ab = ((fx)(fy))ab = (fx)a (fy)b

and g is a morphism of commutative multimonoids over S. Hence M+ is the
free commutative multimonoid over S on M .

In the adjunction of commutative monoids over S to commutative multi-
monoids over S, the counit assigns to a commutative multimonoid M over S
the morphism ϵM : M+ −→ M that lifts the identity on M : ϵM (x, a) = xa, as
calculated in M .

5. Free multimonoids on sets over S. Composing the adjunction of sets
over S to commutative monoids over S and the adjunction of commutative mon-
oids over S to commutative multimonoids over S yields an adjunction of sets
over S to commutative multimonoids over S.
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Accordingly, the free commutative multimonoid over S on a set X over S
is the free commutative multimonoid F+ = F(X)+ over S on the free commu-
tative monoid F = F(X) over S on X. We saw in Section 3 that F consists
of all monomials Xm =

∏
x∈X xm(x) on X, multiplied by Xm Xn = Xm+n, and

projection (Xm)∨ =
∏

x∈X(x∨)m(x).
Hence F+ consists of all ordered pairs (Xm, a), where a ∈ S and Xm ∈ F,

with projection (Xm, a)∨ = (Xm)∨ a to S, action (Xm, a)t = (Xm, at) of S,
and multiplication (Xm, a)(Xn, b) = (Xm+n, ab).

The canonical map η : X −→ F+ sends x ∈ X to (Xx, 1) ∈ F+, where

Xx ∈ F stands for the monomial
∏

y∈X X
m(y)
y in which m(x) = 1 and m(y) = 0

for all y ̸= x. Every element (Xm, a) of F+ is now a product

(Xm, a) =
(∏

x∈X(η x)m(x)
)
(1, a) .

We see that η is a morphism of sets over S. Moreover, η is injective, and we
may identify x ∈ X and ηx ∈ F+; then

(Xm, a) =
(∏

x∈X(η x)m(x)
)
(1, a) =

(∏
x∈Xx

m(x)
)
a

in F+ (not in F).
Every morphism f of sets over S from X to a commutative multimonoid M

over S extends uniquely to a morphism g of commutative monoids over S from

F to M , which sends Xm =
∏

x∈X X
m(x)
x to

∏
x∈X(fx)m(x) and in turn lifts

uniquely to a morphism φ of commutative multimonoids over S from F+ to M ,
namely

φ (Xm, a) = (gXm)a =
(∏

x∈X(fx)m(x)
)
a .

In the adjunction of sets over S to commutative multimonoids over S,
the counit ϵ assigns to a commutative multimonoid M over S the morphism
ϵM : F(M)+ −→M of commutative monoids over S that lifts the identity onM :

ϵM
(∏

x∈MX
m(x)
x , a

)
=

(∏
x∈Mx

m(x)
)
a ,

as calculated in M .

6. Free multimonoids on multisets over S. There is also an adjunction of
multisets over S to commutative multimonoids over S.

Given a multiset X over S, the free commutative multimonoids over S on
X is constructed as follows. Let X = {Xx | x ∈ X } be an isomorphic copy of
X, with X∨

x = x∨ and Xt
x = Xxt . The half free commutative monoid on X is

the commutative monoid

H(X) = ⟨X | Xt
xXy = XxX

t
y for all x, y ∈ X, t ∈ S ⟩

generated by X subject to all defining relations Xt
xXy = XxX

t
y, where x, y ∈ X

and t ∈ S. Equivalently, H(X) = F(X)/ ≈, where ≈ is the smallest congruence
on F(X) such that Xt

xXy ≈ XxX
t
y for all x, y ∈ X and t ∈ S.
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Every element of H is the equivalence class [X1X2 · · ·Xn] of a commutative
product X1X2 · · ·Xn of elements of X. The action of S on H is well defined by

[X1X2 · · ·Xn]
t = [Xt

1X2 · · · Xn]

= [X1X
t
2 · · · Xn] = · · · = [X1X2 · · · Xt

n] .

Projection to S is well defined by

[X1X2 · · ·Xn]
∨ = X∨

1 X∨
2 · · · X∨

n .

With this action of S and projection to S, H is a commutative multimonoids
over S.

In F(X), the equivalence class [Xx] of Xx consists of only Xx. The canonical
mapping η : X −→ H(X) sends x ∈ X to [Xx].

Every morphism f of multisets over S from X to a commutative monoid M
over S extends uniquely to a monoid homomorphism φ of F(X) into M . Since
xt y = x yt for all x, y ∈M we have φ (Xt

xXy) = φ (XxX
t
y) for all x, y ∈ X and

t ∈ S. Therefore φ induces a monoid homomorphism ψ of H(X) into M such
that

ψ [X1 · · ·Xn] = φ (X1 · · ·Xn)

for all X1, . . . , Xn ∈ X. Then ψ is a morphism of commutative multimonoids
over S, ψ ◦ η = f , and ψ is unique with these properties.

Composing the adjunction X 7−→ X+ of sets over S to multisets over S and
the adjunction X+ 7−→ H(X+) of multisets over S to commutative multimon-
oids over S yields the adjunction X 7−→ F(X)+ of sets over S to commutative
multimonoids over S. Therefore there is a natural isomorphism

H(X+) ∼= F(X)+ .

5 Multigroups

In this section S is any commutative semigroup.

1. Definition. An abelian multigroup over S is a multiset G over S (with a
projection to S and an action of S1 on G such that (xt)∨ = (x∨) t, x1 = x, and
(xt)u = xtu, for all x, t, u) together with an addition on each Ga = {x ∈ G |
x∨ = a }, such that

every Ga is an abelian group under addition, and

(x+ y)t = xt + yt whenever x∨ = y∨.

For example, if S has just one element, then a abelian multigroup over S
is just an abelian group. Conversely, any abelian group G can be turned into
a constant abelian multigroup over any commutative semigroup S, in which
Ga = G and xt = x for all a, t, x. A commutative semigroup S also begets
a trivial abelian multigroup over itself, in which every Ga = {0a} is a trivial
group and 0ta = 0at.
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If G is an abelian group, then

G+ = G× S ,

with projection (x, a)∨ = a to S, action (x, a)t = (x, at) of S1, and addition
(x, a) + (y, a) = (x + y, a) on each (G+)a, is an abelian multigroup over S.
(The projection (x, a)∨ = a differs from the projection (x, a)∨ = (x∨) a in the
similar constructions in Sections 2 and 4, since G lacks a projection to S.) For
example,

Z+ = Z× S ,

is an abelian multigroup over S; the elements of Z+ are the integers over S.
Abelian multigroups over S have an equivalent definition as functors on the

Leech category H(S). An abelian group valued functor (G, γ) on H(S) (called
an H(S)-module in [4]) assigns an abelian group Ga to each a ∈ S and a ho-
momorphism γa,t : Ga −→ Gat to each a ∈ S and t ∈ S1, so that γa,1 is the
identity on Ga and γat,u ◦ γa,t = γa,tu for all a ∈ S and t, u ∈ S1. We regard
the groups Ga as pairwise disjoint, so that G =

⋃(
Ga | a ∈ S

)
, together with

the projection x 7−→ a whenever x ∈ Ga, is a set over S. As in Section 2, an
action of S1 on G is then defined by

xt = γa,t x

and makes G an abelian multigroup over S. Conversely, an abelian multigroup
G over S can be regarded as an abelian group valued functor on H(S), that
assigns Ga to a ∈ S and γa,t : x 7−→ xt to a ∈ S and t ∈ S1.

In general, the additions on the groups Ga constitute a partial addition
on G, under which x + y is defined if and only if x∨ = y∨, in which case
(x+ y)∨ = x∨ = y∨. Generally, a sum x1 + · · ·+ xn of elements of G (actually,
the sequence x1, . . . , xn) is homogeneous if x1, . . . , xn all project to the same
element of S; then the sum x1 + · · · + xn is defined in G and projects to that
element.

Denote the identity element of Ga by 0a (by 0, if a can be retrieved from
context). Since x 7−→ xt is a homomorphism of Ga into Gat we have

0ta = 0at (or 0t = 0),

for all a, t.
A morphism φ of abelian multigroups over S from G to H is a morphism of

multisets over S (a mapping of G into H such that (φx)∨ = x∨ and φ (xt) =
(φx)t, for all x, t) such that φ (x + y) = φx + φy whenever x + y is defined.
Equivalently, the restrictions φa : Ga −→ Ha constitute a natural transforma-
tion. Hence the category of abelian multigroups over S is isomorphic to the
category of abelian group valued functors on H(S), and is an abelian category.

If G and H are abelian multigroups over S, then multigroup morphisms from
G to H can be added pointwise. If φ and ψ are morphisms from G to H, then
the pointwise sum φ + ψ is defined, since (φx)∨ = x∨ = (ψx)∨ for all x ∈ G.
This makes the set Hom (G,H) of all such morphisms an abelian group. Now
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Hom(G,H) is not a multigroup; its elements, however, are basically families of
homomorphisms indexed by S, and in this sense are already spread over S.

2. Submultigroups. A submultigroup K of an abelian multigroup G over S is
a submultiset of G (a subset K of G such that x ∈ K implies xt ∈ K) such that
Ka = K ∩Ga is a subgroup of Ga for every a ∈ S; equivalently, a subfunctor of
G. Then K, together with the projection to S, action of S1, and additions that
it inherits from G, is an abelian multigroup over S, and the inclusion mapping
K −→ G is a morphism of abelian multigroups over S.

For example, if φ : G −→ H is a morphism of abelian multigroups, then
Imφ = φ (G) is a submultigroup of H, and Kerφ = {x ∈ G | φx = 0 } is
a submultigroup of G; these are the image and kernel of φ in the category of
abelian multigroups over S.

In general, if K is a submultigroup of G = (G, γ), then the inclusion mor-
phism K −→ G has a cokernel G −→ G/K, which can be described as follows.
As a set, G/K is the disjoint union G/K =

⋃(
Ga/Ka | a ∈ S

)
. The action of

S1 on G induces an action of S1 on G/K, under which (x +Ka)
t = xt +Kat

whenever x ∈ Ga. This makes G/K an abelian multigroup over S, the quotient
multigroup of G by K, that comes with a morphism G −→ G/K of abelian
multigroups over S, and a short exact sequence 0 −→ K −→ G −→ G/K −→ 0
of abelian multigroups over S.

Equivalently, G/K is the quotient of G by the congruence C on G (in the
obvious sense) defined by

x C y if and only if x∨ = y∨ and x− y ∈ K .

If φ : G −→ H is a morphism of multigroups, then G/Kerφ ∼= Imφ.
Given a multigroup G and a subset X of G, there is a submultigroup X of

G generated by X, which is the least submultigroup X of G that contains X.
For each a ∈ S let Xa = X ∩ Ga and let Y be the submultiset of G generated
by X,

Y = {xt | x ∈ X, t ∈ S1 } .

For each a ∈ S, Xa is the subgroup of Ga generated by Ya; its elements are
(necessarily homogeneous) linear combinations

∑(
ny y

∣∣ y ∈ Ya
)
of elements

of Ya with integer coefficients that are almost all zero. Indeed, x ∈ X implies
xt ∈ X, since y ∈ Y implies yt ∈ Y .

3. Free abelian multigroups over multisets. Let X be a set and let C
be a set with en element 0 ∈ C. A formal linear combination of elements of X
with coefficients in C that are almost all zero is a finite sum

c =
∑(

cxx
∣∣ x ∈ C

)
;

equivalently, a mapping c : X −→ C such that { cx | cx ̸= 0 } is finite, written as
a sum in which every term 0x is ignored. For example, the free abelian group
on X is the set of all linear combinations of elements of X with coefficients in
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Z, under pointwise addition∑(
mxx

∣∣ x ∈ X
)

+
∑(

nxx
∣∣ x ∈ X

)
=

∑(
(mx + nx)x

∣∣ x ∈ X
)
.

If X is a set over S, then a linear combination c =
∑(

cxx
∣∣ x ∈ C

)
is

homogeneous if all x ∈ X such that cx ̸= 0 have the same projection to S,
which is then the projection of c. We denote by

C ⊣ X

the set over S of all such homogeneous linear combinations of elements of X
with coefficients in C.

The free abelian multigroup over S on a multiset X over S is Z ⊣ X. Ad-
dition is pointwise: if g =

∑(
gx x

∣∣ x ∈ X, x∨ = g∨
)
, h =

∑(
hx x

∣∣ x ∈
X, x∨ = g∨

)
, and g∨ = h∨, then

g + h =
∑(

(gx + hx)x
∣∣ x ∈ X, x∨ = g∨ = h∨

)
.

If g =
∑(

gx x
∣∣ x ∈ X, x∨ = g∨

)
, then gt is well defined for any t ∈ S1 by

gt =
∑(

gx x
t
∣∣ x ∈ X, x∨ = g∨

)
;

this sum can be put in standard form
∑(

hy y
∣∣ y ∈ X, y∨ = (gt)∨

)
, where

hy =
∑(

gx | x ∈ X, x∨ = g∨, xt = y
)
.

With this partial addition and action of S, the set Z ⊣ X over S becomes
an abelian multigroup over S.

For each a ∈ S, g ∈ (Z ⊣ X)a if and only if g =
∑(

gx x
∣∣ x ∈ X, x∨ = a

)
.

Thus (Z ⊣ X)a = Z ⊣ Xa is the free abelian group on Xa and is isomorphic
to a subgroup of the free abelian group on the set X; but (Z ⊣ X)a cannot be
defined as a subgroup of the latter since the pairwise disjoint groups (Z ⊣ X)a
cannot have a common zero element.

The canonical map η : X −→ Z ⊣ X is inherited from the adjunction of sets
to abelian groups, and sends x ∈ X to

∑(
ny y

∣∣ y ∈ X
)
, where nx = 1 and

ny = 0 if y ̸= x. Since η is injective, we may identify x ∈ X and ηx ∈ Z ⊣ X.
Then g =

∑(
gx x

∣∣ x ∈ X, x∨ = g∨
)
is a linear combination within Z ⊣ X,

g =
∑(

gx (η x)
∣∣ x ∈ X, x∨ = g∨

)
. Moreover, η is a morphism of multisets

over S.
Every morphism f of multisets over S from X to an abelian multigroup G

over S extends uniquely to a morphism φ of abelian multigroups over S from
Z ⊣ X to G such that φ ◦ η = f , which sends

g =
∑(

gx x
∣∣ x ∈ X, x∨ = g∨

)
=

∑(
gx (η x)

∣∣ x ∈ X, x∨ = g∨
)
∈ Z ⊣ X

to
φg =

∑(
gx (fx)

∣∣ x ∈ X, x∨ = g∨
)
∈ G .
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In the adjunction of multisets over S to abelian multigroups over S, the
counit ϵ assigns to an abelian multigroup G over S the morphism ϵG : Z ⊣ G −→
G that extends the identity on G. By the above,

ϵG
(∑(

nxx
∣∣ x ∈ Ga

))
=

∑(
nxx

∣∣ x ∈ Ga

)
,

where the second sum is calculated in Ga.

4. Free abelian multigroups on sets over S. If S is a commutative monoid,
then composing the adjunction of sets over S to multisets over S in Section 2
with the adjunction of multisets over S to abelian multigroups over S yields
an adjunction of sets over S to abelian multigroups over S. Accordingly, the
free abelian multigroup over S on a set X = (X, p) over S is the free abelian
multigroup Z ⊣ X+ over S on X+, where X+ = X × S is the free multiset
over S on X in Section 2, with projection (x, a)∨ = (x∨) a to S and action
(x, a)t = (x, at) of S.

Thus F is the set of all homogeneous linear combinations

p =
∑(

px,t (x, t)
∣∣ x ∈ X, t ∈ S, (x∨) t = p∨

)
of elements of Z+, with integer coefficients that are almost all zero. The action
of S is

pt =
(∑(

py y
∣∣ y ∈ X+, y∨ = p∨

))
t =

∑(
py y

t
∣∣ y ∈ X+, y∨ = p∨

)
;

and addition in Z ⊣ X+ is pointwise

p+ q =
∑(

py y
∣∣ y ∈ X+, y∨ = p∨

)
+

∑(
qy y

∣∣ y ∈ X+, y∨ = q∨
)

=
∑(

(py + qy) y
∣∣ y ∈ X+, y∨ = p∨

)
,

defined if p∨ = q∨.
The canonical map η : X −→ F sends x ∈ X to (x, 1) =

∑(
ny y | y ∈ X+

)
,

where ny = 1 if y = (x, 1) and ny = 0 otherwise. Then (x, t) = (ηx)t and
the typical element p of Z ⊣ X+ is a homogeneous linear combination within
Z ⊣ X+:

p =
∑(

px,t (ηx)
t
∣∣ x ∈ X, t ∈ S, (x∨) t = p∨

)
.

If f : X −→ G is a morphism of sets over S from X to an abelian multigroup
G over S, then f extends uniquely to a morphism g : X+ −→ G of sets over S,
(x, a) 7−→ (fx)a, which in turn extends uniquely to a morphism φ : F −→ G of
abelian multigroups over S such that φ ◦ η = f , which sends

p =
∑(

px,t (ηx)
t
∣∣ x ∈ X, t ∈ S, (x∨) t = p∨

)
.

to
φp =

∑(
px,t (fx)

t
∣∣ x ∈ X, t ∈ S, (x∨) t = p∨

)
.
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The counit assigns to an abelian multigroup G over S the morphism ϵG from
Z ⊣ G+ to G that extends the identity on G:

ϵG p = ϵG

(∑(
px,t (x, t)

∣∣ x ∈ G, t ∈ S, (x∨) t = p∨
))

=
∑(

px,t x
t
∣∣ x ∈ G, t ∈ S, (x∨) t = p∨

)
,

where the second sum is calculated in G.

5. Presentations. Abelian multigroups over S can be presented as generated
by the elements of a set over S (if S is a commutative monoid) or the elements
of a multiset over S, subject to defining relations. A defining relation between
the elements of a set or multiset X over S is a pair (A,B) of elements of the
free abelian multigroup F on X, normally written as an equality A = B, which
is homogeneous, meaning that A and B project to the same element A∨ = B∨

of S.
A defining relation (A,B) between the elements of X holds in an abelian

multigroup G over S via a morphism of sets over S or multisets over S from X
to G if and only if φA = φB, where φ : F −→ G is the morphism of abelian
multigroups over S that extends f .

Let X be either a set over S or a multiset over S. The abelian multigroup
over S generated by X subject to a set R of defining relations is the quotient

⟨X | R ⟩ ∼= F/K ,

where F is the free abelian multigroup over S on X and K is the submulti-
group of F generated by all A−B with (A,B) ∈ R (which are defined since all
(A,B) ∈ R are homogeneous).

The abelian multigroup ⟨X | R ⟩ comes with a map η from X, which is the
composition

η : X
ηF−→ F −→ F/K .

If S is a commutative monoid and X is a set over S, then the typical element
p of F = Z ⊣ X+ is a homogeneous linear combination

p =
∑(

px,t (η
Fx)t

∣∣ x ∈ X, t ∈ S, (x∨) t = p∨
)
.

Hence the typical element q of ⟨X | R ⟩ is a homogeneous linear combination

q =
∑(

qx,t (ηx)
t
∣∣ x ∈ X, t ∈ S, (x∨) t = q∨

)
.

If X is a multiset over S, then the typical element p of F = Z ⊣ X is a
homogeneous linear combination p =

∑(
px η

Fx
∣∣ x ∈ X, x∨ = p∨

)
, and the

typical element q of ⟨X | R ⟩ is a homogeneous linear combination

q =
∑(

qx ηx
∣∣ x ∈ X, x∨ = p∨

)
.

In either case, every (A,B) ∈ R holds in ⟨X | R ⟩ via η, by definition.
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The universal property of ⟨X | R ⟩ and η is: if f is a morphism of sets
over S, or multisets over S, from X to a abelian multigroup G over S and every
(A,B) ∈ R holds in G via f , then there is a unique morphism φ of abelian
multigroups over S from ⟨X | R ⟩ to G such that φ ◦ η = f .

6 Multirings.

In this section, S is a commutative monoid.

1. Definition. A commutative multiring over S is an abelian multigroup
R over S (with a projection to S, an action of S on R, and an abelian group
addition on each Ra, such that (xt)∨ = x∨ t, x1 = x, (xt)u = xtu, and (x+y)t =
xt + yt for all x, y, t, u) with a commutative monoid multiplication on R such
that R is a commutative monoid over S ((xy)∨ = x∨ y∨ and (xy)t = xt y = x yt

for all x, y, t), and such that

(x+ y) z = xz + yz whenever x+ y is defined.

For example, if S has just one element, then a commutative multiring over S
is just a commutative ring with an identity element. In general, S begets a
commutative multiring R over itself, in which Ra = {0a} is the trivial group,
0ta = 0at, and 0a 0b = 0ab.

If R is any commutative ring with an identity element, then

R+ = R× S ,

with projection (r, a)∨ = a to S, action (r, a)t = (r, at) of S, partial addition
(r, a) + (s, a) = (r + s, a) (as in Section 5) and multiplication (r, a)(s, b) =
(rs, ab), is a commutative multiring over S. In particular, Z+ is a commutative
multiring over S.

In general, if R is a multiring, then we denote the (additive) identity element
of the abelian group Ra by 0a, or just 0. If x ∈ Rb, then 0ax = (0a + 0a)x =
(0ax) + (0ax), which in the abelian group Rab implies

0ax = 0ab , for all x ∈ Rb .

In particular, 0a 0b = 0ab. Since the projection R −→ S is surjective, the iden-
tity element 1 of R projects to the identity element of S: 1∨ = 1. In particular,
R1 is a commutative ring with an identity element.

Since R is also a commutative monoid over S, the identity element provides
another monoid homomorphism that splits the projection, namely t 7−→ 1t. As
in Section 2, this map and the multiplication on R completely determine the
action of S, as xt = x 1t for all x, t.

A morphism Q −→ R of commutative multirings over S is a mapping
φ : Q −→ R that preserves projection to S, action of S1, sums, products, and
identity elements; equivalently, is both a morphism of commutative multimon-
oids over S and a morphism of abelian multigroups over S.
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2. Ideals. An ideal of a commutative multiring R over S is a submultigroup
I of R (Ia = I ∩ Ra is a subgroup of Ra for every a ∈ S, and x ∈ I implies
xt ∈ I), such that x ∈ I implies xy ∈ I for all y ∈ R. A proper ideal is an ideal
I such that 1 /∈ I; equivalently, I ̸= R.

For example, if φ : Q −→ R is a morphism of commutative multirings, then
Kerφ = {x ∈ Q | φx = 0 } is an ideal of Q, which is proper if φ(1) ̸= 0 in R.

In general, the quotient multigroup R/I inherits a multiplication from R,
which is well defined by: (x + Ia)(y + Ib) = xy + Iab whenever x ∈ Ra and
y ∈ Rb, since x− x′ ∈ Ia, y − y′) ∈ Ib implies

xy − x′y′ = x (y − y′) + (x− x′) y′ ∈ Iab .

With this multiplication R/I becomes a commutative multiring over S, and the
projection R −→ R/I becomes a morphism of commutative multirings over S.

Equivalently, R/I is the quotient of R by the congruence C on R (in the
obvious sense) defined by

x C y if and only if x∨ = y∨ and x− y ∈ I .

Given a commutative multiring R and a subset X of R, the ideal (X) of R
generated by X is the least ideal of R that contains X. Let Y be the submultiset
of G generated by X:

Y = {xt | x ∈ X, t ∈ S } .

Let Z be the monoid ideal of R generated by Y :

Z = { ry | r ∈ R, y ∈ Y } .

Then z ∈ Z implies zt ∈ Z and −z = (−1) z ∈ I. Hence (X) = Z is
the submultigroup of R generated by Z: for each a ∈ S, Za is the set of all
homogeneous sums z1 + · · ·+ zn (= 0 if n = 0) of elements z1, . . . , zn of Za.

Indeed any ideal of R that contains X must also contain Y , Z, and Z.
Conversely, X ⊆ Z ⊆ Z. If x = z1+ · · ·+ zn ∈ Za, where z1, . . . , zn ∈ Za, then
xt = zt1 + · · ·+ ztn ∈ Zat. If r ∈ Ra and x = z1 + · · ·+ zn ∈ Zb, then rzi ∈ Zab

for all i and rx = rz1 + · · ·+ rzn ∈ Zab. Thus Z is an ideal of R.

3. Submultirings. A submultiring of a commutative multiring R over S is a
subset Q of R which is both a submultimonoid of R (xt ∈ Q, 1 ∈ Q, and xy ∈ Q,
for all x, y ∈ Q and all t) and a submultigroup of R (Qa = Q∩Ra is a subgroup
of Ra for every a ∈ S, and x ∈ Q implies xt ∈ Q); in particular, Q contains
Im e, where e(t) = 1t splits the projection to S. Then Q, together with the
projection to S, action of S, additions, and multiplication that it inherits from
R, is an commutative multiring over S, and the inclusion mapping Q −→ G is
a morphism of commutative multirings over S.

For example, if φ : T −→ R is a morphism of commutative multirings, then
Imφ = φ (T ) is a submultiring of R.

If X is a (multiplicative) submultimonoid of R, then the (additive) submul-
tigroup X of R generated by X is a submultiring of R. Indeed X is the set of
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all homogeneous sums ±x1 ± · · · ± xn of elements x1, . . . , xn of X. Hence X is
a submultimonoid of R: if x = ±x1±· · ·±xm ∈ X and y = ±y1±· · ·±yn ∈ X,
where x1, . . . , xm, y1, . . . , yn ∈ X, then xy =

∑
i,j ±xi yj ∈ X.

Given a commutative multiring R and a subset X of R, the submultiring
X of R generated by X is the least submultiring of R that contains X. By the
above, X is the submultigroup of R generated by the submultimonoid Y of R
generated by X: the set of all homogeneous sums ±y1 ± · · · ± yn of elements
y1, . . . , yn of

Y = { (x1x2 · · ·xn) 1t | n ≥ 0, x1, x2, . . . , xn ∈ X, t ∈ S } .

4. Free multirings on multimonoids. There is an adjunction of commuta-
tive multimonoids over S to commutative multirings over S. If M is a commu-
tative multimonoid over S, then the free abelian multigroup Z ⊣ M over S on
the multiset M serves as the free commutative multiring over S on M .

Indeed we saw in Section 5 that, for each a ∈ S, an element p of Z ⊣ M is
uniquely a homogeneous linear combination p =

∑(
px x

∣∣ x ∈ M, x∨ = p∨
)
;

that t ∈ S acts on p by pt =
∑(

px x
t
∣∣ x ∈ M, x∨ = p∨

)
; and p + q =∑(

(px + qx)x
∣∣ x ∈M, x∨ = p∨

)
if p∨ = q∨.

The multiplication on M extends to a multiplication on Z ⊣ M , under
which the product of p =

∑(
px x

∣∣ x ∈ M, x∨ = p∨
)
and q =

∑(
qx x

∣∣ x ∈
M, x∨ = q∨

)
is

pq =
∑(

px qy xy
∣∣ x, y ∈M, x∨ = p∨, y∨ = q∨

)
,

where the homogeneous sum
∑(

px qy xy
∣∣ x, y ∈ M, x∨ = p∨, y∨ = q∨

)
can

be put in standard form

pq =
∑(

rz z
∣∣ z ∈M, z∨ = (pq)∨

)
, where

rz =
∑(

px qy
∣∣ x, y ∈M, x∨ = p∨, y∨ = q∨, xy = z

)
.

With this multiplication, the abelian multigroup Z ⊣ M over S becomes a
commutative multiring over S; its identity element is that of M .

The canonical map η : M −→ Z ⊣ M in Section 5 that sends x ∈ M to
x ∈ Z ⊣ M (short for the linear combination x =

∑(
ny y

∣∣ y ∈ M
)
where

nx = 1 and ny = 0 if y ̸= x) is now a morphism of commutative multimonoids
over S. Moreover, every p ∈ Z ⊣M now is a linear combination within Z ⊣M :∑(

px x
∣∣ x ∈M, x∨ = p∨

)
=

∑(
px (ηx)

∣∣ x ∈M, x∨ = p∨
)
.

Since η is injective we may identify x ∈M and ηx ∈ Z ⊣M . Then
∑(

px x
∣∣ x ∈

M, x∨ = p∨
)
is a linear combination within Z ⊣M .

Every morphism φ : M −→ R of commutative multimonoids over S from
M to a commutative multiring R over S extends uniquely to a morphism
ψ : Z ⊣M −→ R of abelian multigroups over S,

ψ
(∑(

px x
∣∣ x ∈M, x∨ = p∨

)
=

∑(
px (φx)

∣∣ x ∈M, x∨ = p∨
)
,

18



which preserves products and is therefore a morphism of commutative multirings
over S. Thus Z ⊣M is the free commutative multiring over S on M .

In the adjunction of commutative multimonoids over S to commutative mul-
tirings over S, the counit ϵ assigns to an commutative multiring R the morphism
ϵR : Z ⊣ R −→ R of commutative multirings over S that extends the identity
on R (ϵR ◦ η = 1R). By the above, ϵR is the evaluation map

ϵR
(∑(

pr r
∣∣ r ∈ R, r∨ = p∨

)
=

∑(
pr r

∣∣ r ∈ R, r∨ = p∨
)
,

where the first sum is an element of Z ⊣ R and the second sum is calculated
in R.

5. Free multirings on sets over S. The free commutative multiring over S
on a set X over S is the free commutative multiring Z[X] = Z ⊣ F(X)+ over S
on the free commutative multimonoid F(X)+ over S on X.

As in Section 4 we regard F(X) as the commutative multimonoid of monomi-

als Xm =
∏

x∈X X
m(x)
x on a set X = {Xx | x ∈ X } over S with an isomorphism

x 7−→ Xx from X. The typical element of Z ⊣ F(X)+ is a homogeneous linear
combination

p =
∑(

pm,t (X
m, t)

∣∣ Xm ∈ F(X), t ∈ S, (Xm)∨ t = p∨
)
,

where (Xm)∨ =
∏

x∈X(x∨)m(x).
The canonical map ηF : X −→ F(X) sends x ∈ X to the monomial Xm =∏

y∈X X
m(y)
y in which m(x) = 1 and m(y) = 0 if y ̸= x, which we identify

with Xx. Hence the canonical map η : X −→ Z[X] sends x ∈ X to the linear
combination

ηx =
∑(

nm,t (X
m, 1)

∣∣ Xm ∈ F(X)
)

in which nm,t = 1 if Xm = Xx and t = 1 ∈ S, otherwise nm,t = 0. Since η is
injective we may identify Xx ∈ X and ηx ∈ Z[X]. Every Xm ∈ F(X) is now a

product Xm =
∏

x∈X X
m(x)
x of elements of F(X). Hence every element of Z[X]

is uniquely a homogeneous linear combination

p =
∑(

pm,t (
∏

x∈XX
m(x)
x , t)

∣∣ ∏
x∈XX

m(x)
x ∈ F(X), t ∈ S, (Xm)∨ t = p∨

)
,

of elements of Z[X].
Every morphism f of sets over S fromX to a commutative multiringR over S

then extends uniquely to a morphism of commutative multimonoids over S from

F(X)+ to R that sends (
∏

x∈X X
m(x)
x , t) to

(∏
x∈X(fx)m(x)

)
t, thence extends

uniquely to a morphism φ of commutative multirings over S from Z[X] to R
that sends

p =
∑(

pm,t (
∏

x∈XX
m(x)
x , t)

∣∣ Xm ∈ F(X), t ∈ S, (Xm)∨ t = p∨
)
,

to

φp =
∑(

pm,t

(∏
x∈X(fx)m(x)

)
t
∣∣∣ Xm ∈ F(X), t ∈ S, (Xm)∨ t = p∨

)
,
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as calculated in R.
The counit ϵ in this adjunction sends a commutative multiring R over S to

the morphism ϵR of commutative multirings over S from Z[R] to R that extends
the identity on R. By the above, ϵR sends

p =
∑(

pm,t (
∏

r∈RX
m(r)
r , t)

∣∣ Xm ∈ F(R), t ∈ S, (Xm)∨ t = p∨
)
,

to

ϵRp =
∑(

pm,t

(∏
r∈Rr

m(r)
)
t
∣∣∣ Xm ∈ F(R), t ∈ S, (Xm)∨ t = p∨

)
,

as calculated in R.

6. Free multirings on multisets. The free commutative multiring over S on
a multiset X over S is the free commutative multiring Z ⊣ H(X)+ over S on
the free commutative multimonoid H(X)+ over S on X.

As in Section 4, H(X) = F(X)/ ≈, where ≈ is the smallest congruence on
F(X) such that Xt

xXy ≈ XxX
t
y for all x, y ∈ X and t ∈ S. The typical element

Y of H(X) is the equivalence class Y = [X1X2 · · ·Xn] of a commutative product
X1X2 · · ·Xn of elements ofX = {Xx | x ∈ X }; equivalently, Y = [Xm] for some
Xm ∈ F(X).

Accordingly, the typical element of Z ⊣ H(X)+ is a homogeneous linear
combination

p =
∑(

pY,t (Y, t)
∣∣ Y ∈ H(X), t ∈ S, Y ∨ t = p∨

)
.

If X only has one element, or if xt = x for all x, t, then H(X) = F(X);
otherwise ≈ is not the equality on F(X), hence an element Y of H(X) cannot
be written in the form Y = [Xm] for some unique monomial Xm.

7 Multimodules

In this section, S is a commutative monoid and R is a given commutative mul-
tiring over S with an identity element.

1. Multimodules. A multi-R-module over S is an abelian multigroup M over
S on which R acts so that

(rx)∨ = r∨ x∨ for all r, x ,

1x = x for all x ,

(rx)t = rt x = r xt for all r, x, t ,

(r + s)x = rx+ sx whenever r + s is defined ,

r (x+ y) = rx+ ry whenever x+ y is defined , and

r (sx) = (rs)x for all r, s, x .

For example, if S has just one element, then R is just a commutative ring
and a multi-R-module over S is just an R-module. In general, the trivial abelian
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multigroup over S (in which Ma = {0a} for all a ∈ S) is a trivial multi-R-mod-
ule over S for any multiring R over S. Every commutative multiring R on S is
also a multi-R-module over S, in which R acts on itself by multiplication in R.

Every abelian multigroup G over S is a multi-Z+-module over S, where
Z+ = Z × S is the multiring of integers over S (with projection (n, t) −→ t to
S and (n, t)u = (n, tu), (n, t) + (m, t) = (n +m, t), (n, t)(m,u) = (nt,mu), as
in Section 6). Indeed Z already acts on G since every abelian group Ga is a
Z-module; then Z+ acts on G by

(n, t)x = nxt = (nx)t

for all x, n, t.
If R is a commutative ring with an identity element and M is an R-module,

then M+ is a multi-R+-module, in which R+ acts on M+ by (r, a)(x, b) =
(rx, ab).

In general, if M is a multi-R-module, where R is a commutative multiring
over S, then we denote the identity element of the abelian group Ma by 0a or
just 0 (like the identity element of Ra). If x ∈ Mb, then 0a x = (0a + 0a)x =
(0a x) + (0a x), which in the abelian group Mab implies

0a x = 0ab , whenever x ∈Mb .

Similarly,
r 0b = 0ab , whenever r ∈ Ra .

A morphism φ : M −→ N of multi-R-modules is a morphism of multigroups
((φx)∨ = x∨, φ (xt) = (φx)t, and φ (x + y) = φx + φy whenever x + y is
defined) that preserves the action of R:

φ (rx) = r (φx) for all r ∈ R and x ∈M .

Under pointwise addition the morphisms from M to N constitute an abe-
lian group HomR (M,N). If R = Z+, then a morphism of multi-R-modules
over S is just a morphism of abelian multigroups over S, and HomR (M,N) =
Hom (M,N).

2. Submultimodules. A submultimodule N of a multi-R-module M is a sub-
multigroup ofM that admits the action of R: if r ∈ R and x ∈ N , then rx ∈ N .
Then N inherits the action of R and is a multi-R-module.

For example, if φ : M −→ N is a morphism of multi-R-modules, then Imφ
is a submultimodule of N and Kerφ is a submultimodule of M .

In general, if N is a submultimodule of M , then the action Mb −→ Mab of
r ∈ Ra induces an action Mb/Nb −→Mab/Nab, which makes the quotient mul-
tigroup M/N a multi-R-module and the projection M −→ M/N a morphism
of multi-R-modules. This results in a short exact sequence 0 −→ N −→M −→
M/N −→ 0 of multi-R-modules.

If φ : M −→ N is a morphism of multi-R-modules, then M/Kerφ ∼= Imφ.
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Given a multi-R-module M and a subset X of M , there is a least submul-
timodule X of M that contains X, the submultimodule of M generated by X,
which is constructed as follows.

Let Y = {xt | x ∈ X, t ∈ S } be the submultiset of M generated by X, as
in Section 2. Then y ∈ Y implies yt ∈ Y for all t ∈ S.

Let Z = RY = { ry | r ∈ R, y ∈ Y }, so that z ∈ Z implies zt ∈ Z for all
t ∈ S and rz ∈ Z for all r ∈ R, in particular −z = (−1) z ∈ Z.

Then X is the submultigroup of M generated by Z: for each a ∈ S, the
elements of Xa are all (possibly empty, but necessarily homogeneous) sums
z1 + · · ·+ zn of elements z1, . . . , zn of Za.

Indeed any submultimodule of M that contains X must also contain Y , Z,
and X. Conversely, X is a submultimodule of M . Indeed, X is a submulti-
group of M , since z ∈ Za implies −z ∈ Za. If x is a sum x = z1 + · · · + zn of
elements z1, . . . , zn of Za, then x

t = zt1 + · · ·+ ztn is a sum of elements of Zat,
and rx = rz1 + · · ·+ rzn is a sum of elements of Zr∨a.

8 Modules

In this section R is a commutative multiring over a commutative monoid S.

1. Definition. Commutative multirings also act on ordinary abelian groups.
In detail, an R-module M is an abelian group on which R acts so that

1x = x for all x ∈M ,

r (x+ y) = rx+ ry for all r ∈ R and x, y ∈M ,

(r + s)x = rx+ sx whenever r + s is defined, and

r (sx) = (rs)x for all r, s ∈ R and x ∈M .

An action of S on every R-module M is then defined by

xt = 1t x for all x ∈M and t ∈ S

and satisfies

(x+ y)t = xt + yt ,

x1 = x ,

(xt)u = (1u 1t)x = 1ut x = xtu , and

(rx)t = rt x = r (xt) ,

for all r, x, y, t, u, where the last equalities hold since

(rx)t = (1tr)x = (1 rt)x

= (r 1t)x = r (xt) .

This makes M an S-module (and a Z[S]-module, where Z[S] is the ordinary
semigroup ring), but not a multimodule.
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A homomorphism φ : M −→ N of R-modules is homomorphism of abelian
groups (φ (x + y) = φ (x) + φ (y) for all x, y ∈ M) that preserves the action
of R:

φ (rx) = r φ (x)

for all r ∈ R and x ∈M . The homomorphisms of M into N then constitute an
R-module HomR (M,N), in which addition and action of R are pointwise.

2. Hom sets. If G and H are abelian multigroups over S, then we saw
in Section 5 that the morphisms from G to H constitute an abelian group
Hom (G,H) under pointwise addition.

More generally, the set or multiset morphisms of a set or multiset X over S
into an abelian multigroup G over S constitute an abelian group Map (X,G)
under pointwise addition. The universal property of the free multigroup F on X
yields a natural isomorphism Map (X,G) ∼= Hom(F,G), part of the adjunction
in Section 5.

R-modules are even more similar to ordinary modules than multi-R-modules
over S, which makes them of little interest as far as this paper is concerned,
except that Hom sets of multi-R-modules over S are R-modules.

Indeed let M and N be multi-R-modules over S. If φ and ψ are mor-
phisms from M to N , then the pointwise sum φ+ψ : x 7−→ φx+ψx is defined,
since (φx)∨ = x∨ = (ψx)∨ for all x ∈ M . Moreover, (φ + ψ)(x + y) =
(φ+ψ)(x) + (φ+ψ)(y) whenever x+ y is defined; (φ+ψ)(xt) =

(
(φ+ψ)(x)

)
t

for all x, t; and (φ+ψ)(rx) = r (φ+ψ)(x) for all r, x. Thus φ+ψ is a morphism
from M to N . This addition makes HomR (M,N) an abelian group.

Furthermore, R acts pointwise on HomR (M,N): if r ∈ R and φ : M −→ N
is a morphism, then rφ is defined by

(rφ)(x) = r φ(x)

for all x ∈M . Then

(rφ)(x+ y) = (rφ)(x) + (rφ)(y) whenever x+ y is defined,

(rφ)(xt) = r φ (xt) = r (φx)t =
(
(rφ)(x)

)
t for all x, t , and

(rφ)(sx) = r φ (sx) = rsφ(x) = s
(
(rφ)(x)

)
for all s, x ,

so that rφ is a morphism from M to N . With this action of R, HomR (M,N)
becomes an R-module.

There is also an action of S on HomR (M,N), defined by φt = 1t φ; then

φt(x) = (1t φ)(x) = 1t (φ (x)) = (φ (x))t

for all x, t.
More generally, the morphisms or multiset morphisms of a set or multiset X

over S into a multi-R-module M over S constitute an R-module Map (X,M)
under pointwise addition and action of R, which also has an action of S. The
universal property of the free multi-R-module F on M yields a natural isomor-
phism Map (X,M) ∼= HomR (F,M) of R-modules, part of the adjunction in
Section 12.
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9 Multialgebras.

In this section S is a commutative monoid and R is a commutative multiring
over S.

1. Definition. A commutative multi-R-algebra over S is a multi-R-module A
over S: a multigroup A over S on which R acts so that

(rx)∨ = r∨ x∨ for all r ∈ R and x ∈ A ,

1x = x for all x ∈ A ,

(rx)t = rt x = r xt for all r ∈ R and x ∈ A ,

(r + s)x = rx+ sx whenever r + s is defined in R and x ∈ A ,

r (x+ y) = rx+ ry whenever r ∈ R and x+ y is defined in A, and

r (sx) = (rs)x for all r, s ∈ R and x ∈ A ,

together with a commutative and associative monoid multiplication on A such
that

(xy)∨ = x∨ y∨ whenever x ∈ Aa and y ∈ Ab ,

(xy)t = xt y = x yt for all x, y ∈ A and t ∈ S ,

(x+ y) z = xz + yz whenever x+ y is defined in A, and

r (xy) = (rx) y = x (ry) for all r ∈ R and x, y ∈ A .

In particular, a commutative multi-R-algebra over S is both a multi-R-module
over S and a commutative multiring over S.

If S has only one element, then R is an ordinary ring and a commutative
multi-R-algebra over S is an ordinary commutative R-algebra. Any commuta-
tive multiring R over S is a commutative multi-R-algebra over S, in which R
acts on itself by multiplication in R. Any commutative multiring R over S is
also a commutative multi-Z+-algebra, in which the action of Z+ on R is the
action that makes the abelian multigroup R a multi-Z+-module, (n, t) r = nrt.

In general, the multiplication on a commutative multi-R-algebra A over S
and the actions e : t 7−→ 1t and r 7−→ r1 of S and R on the identity element 1
of A determine their actions on all of A: for all x, t, r,

xt = (1x)t = 1t x and rx = r (1x) = (r1)x .

If A is a commutative multi-R-algebra over S, then every multi-A-module
M over S is also a multi-R-module, in which r ∈ R acts on M by rx = (r1)x
for all x ∈M , where 1 ∈ A (so that r1 ∈ A).

A morphism φ : A −→ B of commutative multi-R-algebras over S is a map-
ping that preserves the actions of S and R, existing sums, and products; equiv-
alently, a morphism of multi-R-modules over S which is also a morphism of
commutative multirings over S.

2. Ideals. An ideal of a commutative multi-R-algebra A over S is a submul-
timodule I of A (closed under existing additions and the actions of S and R)
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which is also an ideal of the commutative multiring A (x ∈ I implies xy ∈ I for
all y ∈ A). A proper ideal is an ideal I such that 1 /∈ I; equivalently, I ̸= A.

For example, if φ : A −→ B is a morphism of commutative multi-R-algebras,
then Kerφ = {x ∈ A | φx = 0 } is an ideal of A, which is proper if φ(1) ̸= 0.

In general, the quotient multigroup A/I is both a quotient multimodule and
a quotient multiring and is therefore a commutative multi-R-algebra over S;
the map A −→ A/I is a morphism of commutative multi-R-algebras over S.
If φ : A −→ B is a morphism of commutative multi-R-algebras over S, then
Imφ ∼= A/Kerφ.

Given a commutative multi-R-algebra A and a subset X of A, the ideal (X)
of A generated by X is the least ideal of A that contains X. Let

Y = AX = { zx | z ∈ A, x ∈ X } .

If y = zx ∈ Y , then −y = (−z)x ∈ Y , yt = zt y ∈ Y , and ry = (rz)x ∈ Y .
Then (X) is the set of all possibly empty homogeneous sum y1 + · · ·+ yn of

elements y1, . . . , yn of Y (that all project to the same element of S). Indeed
if x = y1 + · · · + yn is a homogeneous sum of elements of Y , then so are xt =
yt1+ · · ·+ytn, rx = ry1+ · · ·+ryn, and zx = zy1+ · · ·+zyn, for all t ∈ S, r ∈ R,
and z ∈ A.

3. Submultialgebras. A submultialgebra of a commutative multi-R-algebra
A over S is a subset of A which is closed under the actions of S and R, existing
sums, and products; equivalently, a subset of A which is both a submultimodule
and a submultiring of A.

For example, if φ : A −→ B is a morphism of commutative multi-R-algebras
over S, then Imφ is a submultialgebra of B.

If X is a subset of A, the submultialgebra X of A generated by X is the least
submultialgebra of A that contains X. It can be described as follows.

Let Y be the submonoid of A generated by X:

Y = {x1x2 · · ·xn | x1, x2, . . . , xn ∈ X } ,

with x1x2 · · ·xn = 1 if n = 0. Let

V = RY = { ry | r ∈ R, y ∈ Y } .

If v = ry ∈ V , then vt = rt y ∈ V and sv = (sr) y ∈ V , in particular −v ∈ V . If
v = ry and w = sz ∈ V , where y, z ∈ Y , then

vw = (ry)(sz) = r (y (sz)) = r ((sz)y) = r (s (zy)) = (rs)(yz) ∈ V .

Then X is the submultigroup of A generated by V : the set of all possibly
empty homogeneous sums of elements of V . Indeed if x = v1 + · · · + vn ∈ X
is a homogeneous sum of elements of V , then so are xt = vt1 + · · · + vtn and
rx = rv1 + · · ·+ rvn; if x = v1 + · · ·+ vn ∈ X and y = w1 + · · ·+ wm ∈ X are
homogeneous sums of elements of V , then so is xy =

∑
i,j vi wj .
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10 The box product

This section defines a basic construction for multistructures with no additivity.

1. Definition. The cartesian product X × Y of two multisets over S is a set
over S, with projection (x, y)∨ = x∨ y∨, but it lacks an adequate action of S.
That honor is reserved for the box product X □Y , which is basically a tensor
product of S-sets.

Let X and Y be multisets over S. Let ≈ be the smallest equivalence relation
on X × Y such that (xt, y) ≈ (x, yt) for all x ∈ X, y ∈ Y , and t ∈ S1. The box
product of X and Y is the set

X □Y = (X × Y )/ ≈ .

The box map β : X × Y −→ X □Y is the surjection that sends (x, y) ∈ X × Y
to its equivalence class x□ y.

The universal property of X □Y and β is as follows. A mapping f of X×Y
into a set Z is balanced if and only if

f(xt, y) = f(x, yt)

for all x ∈ X, y ∈ Y , and t ∈ S1; equivalently, the equivalence relation induced
by f on X × Y contains ≈. The box map β is balanced, by definition of ≈.
Conversely, every balanced mapping f : X × Y −→ Z factors uniquely through
β (there exists a unique mapping g : X □Y −→ Z such that g ◦ β = f), since
the equivalence relation induced by f contains ≈.

We use this universal property to make X □Y a multiset over S. The pro-
jection X × Y −→ S of X × Y is balanced, since

(xt)∨ y∨ = x∨ t y∨ = x∨ (yt)∨

for all x, y, t, and induces a projection of X □Y to S, which is the unique
mapping such that

(x□ y)∨ = x∨ y∨

for all x, y. Next, for any t ∈ S1, the mapping (x, y) 7−→ xt □ y is balanced,
since

(xu)t □ y = (xt)u □ y = xt □ yu

for all x, y, u. Hence there is a unique mapping x□ y 7−→ (x□ y)t such that

(x□ y)t = xt □ y (= x□ yt)

for all x, y. Uniqueness implies (x□ y)1 = x□ y and
(
(x□ y)t

)
u = (x□ y)tu for

all x, y. With this projection to S and action of S1, X □Y is now an multiset
over S.

If f : X −→ X ′ and g : Y −→ Y ′ are morphisms of multisets over S, then
(x, y) 7−→ fx□ gy is balanced, and there is a unique mapping f □ g : X □Y −→
X ′ □Y ′ such that

(f □ g)(x□ y) = fx□ gy for all x ∈ X and y ∈ Y .
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Moreover, f □ g is a morphism of multisets over S, since(
(f □ g)(x□ y)

)∨ = (fx)∨ (gy)∨ = x∨ y∨ = (x□ y)∨

and (
(f □ g)(x□ y)

)
t = (fx)t □ gy = f(xt)□ gy = (f □ g)

(
(x□ y)t

)
,

for all x, y, t. This makes the box product a bifunctor to multisets over S.
Finally, if S is a commutative monoid, then there is for each multiset X

over S a natural isomorphism S□X ∼= X, where S is the trivial multiset over S,
with projection a∨ = a and action at = at of S. Indeed (a, x) 7−→ xa is a
balanced mapping of S × X into X, and induces a mapping of S□X into X
that sends a□x to xa and is in fact a morphism of multisets over S. The inverse
isomorphism sends x ∈ X to 1□x ∈ S□X.

2. Associativity. More generally, the box product X1 □X2 □ · · ·□Xn of a
sequence X1, X2, . . . , Xn of multisets over S is the quotient set

X1 □X2 □ · · ·□Xn =
(
X1 ×X2 × · · · ×Xn

)
/ ≈ ,

where ≈ is the smallest equivalence relation on the cartesian product X1×· · ·×
Xn such that

(xt1, x2, . . . , xn) ≈ (x1, x
t
2, . . . , xn) ≈ · · · ≈ (x1, x2, . . . , x

t
n)

for all xi ∈ Xi and t ∈ S1.
The box map

β : X1 ×X2 × · · · ×Xn −→ X1 □X2 □ · · ·□Xn

is the surjection that sends (x1, . . . , xn) ∈ X1×· · ·×Xn to its equivalence class
x1 □ · · ·□xn.

The universal property ofX1 □X2 □ · · ·□Xn and β is as follows. A mapping
f of X1 □X2 □ · · ·□Xn into a set Y is balanced if and only if

f(xt1, x2, . . . , xn) = f(x1, x
t
2, . . . , xn) = · · · = f(x1, x2, . . . , x

t
n)

for all xi ∈ Xi and t ∈ S1; equivalently, the equivalence relation induced by f
on X1 × · · · ×Xn contains ≈. The box map β is balanced, by definition of ≈.
Conversely, every balanced mapping f : X1 × · · · ×Xn −→ Y factors uniquely
through β (there exists a unique mapping g : X1 □ · · ·□Xn −→ Y such that
g ◦ β = f), since the equivalence relation induced by f contains ≈.

We use this universal property to makeX1 □X2 □ · · ·□Xn a multiset over S.
The projection X1 × X2 × · · · × Xn −→ S that sends (x1, x2, . . . , xn) to
x∨1 x

∨
2 · · · x∨n is balanced, since (xt)∨ = x∨t for every x ∈ Xi. Therefore it

induces a projection of X1 □X2 □ · · ·□Xn to S, which is the unique mapping
such that

(x1 □x2 □ · · ·□xn)
∨ = x∨1 x

∨
2 · · · x∨n
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for all xi ∈ Xi. Next, for any t ∈ S1, the mapping (x1, x2, . . . , xn) 7−→
xt1 □x2 □ · · ·□xn is balanced. Hence there is a unique mapping

x1 □x2 □ · · ·□xn 7−→ (x1 □x2 □ · · ·□xn)
t

such that

(x1 □x2 □ · · ·□xn)
t = xt1 □x2 □ · · ·□xn (= x1 □xt2 □ · · ·□xn = · · · )

for all x, y. Uniqueness implies (x1 □ · · ·□xn)
1 = x1 □ · · ·□xn and(

(x1 □ · · ·□xn)
t
)
u = (x1 □ · · ·□xn)

tu

for all xi, t, u. With this projection to S and action of S1, X1 □ · · ·□Xn is now
an multiset over S.

Now letX, Y , and Z be multisets over S. For each z ∈ Z, (x, y) 7−→ x□ y□ z
is a balanced map of X × Y into X □Y □Z and induces a mapping of X □Y
into X □Y □Z that sends x□ y to x□ y□ z; then (x□ y, z) 7−→ x□ y□ z is
a balanced map of (X □Y ) × Z into X □Y □Z and induces a mapping of
(X □Y )□Z into X □Y □Z that sends (x□ y)□ z to x□ y□ z, and is in fact a
morphism of multisets over S. Conversely, (x, y, z) 7−→ (x□ y)□ z is a balanced
map of X × Y × Z into (X □Y )□Z and induces the inverse isomorphism.

Thus there are natural isomorphisms

(X □Y )□Z ∼= X □Y □Z ∼= X □(Y □Z) .

There are also natural isomorphisms Y □X ∼= X □Y . In fact, multisets over S
constitute a symmetric monoidal category (as defined in [9]); the identity object
is the trivial multiset S over S.

3. Multimonoids. If S is a commutative monoid and X, Y are commuta-
tive multimonoids over S, then X □Y inherits a multiplication from X and
Y . The multiplication on X is a balanced mapping of X × X into X, since
xt y = (xy)t = x yt for all x, y, t. Hence the multiplications on X and Y induce
a map

(X □Y )□(X □Y )
∼=−→ (X □X)□(Y □Y ) −→ X □Y

and a multiplication on X □Y such that

(x□ y)(x′ □ y′) = xx′ □ yy′

for all x, x′, y, y′, which makes X □Y a commutative multimonoid over S.
The commutative multimonoid X □Y comes with canonical morphisms of

commutative multimonoids over S

λ : X −→ X □Y, x 7−→ x = x□ 1 and ρ : Y −→ X □Y, y 7−→ y = 1□ y .

Then
x□ y = (x□ 1)(1□ y) = x y ,

so that X □Y = X Y , where X = Imλ and Y = Im ρ.
Unfortunately there is no evidence that λ and ρ are injective.
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11 The mixed product

The mixed product is similar to the box product but allows an addition in its
first variable.

1. Definition. Let G be an abelian multigroup over S and X be a multiset
over S. The mixed product G □∠ X of G and X is the abelian multigroup over S
generated by G×X, subject to all homogeneous defining relations

(gt, x) = (g, xt) for all g, x, t, and

(g + h, x) = (g, x) + (h, x) whenever g + h is defined ,

in the statement of which each (g, x) ∈ G×X has been identified with its image
η (g, x) in the free abelian multigroup Z ⊣ (G×X) over S on the multiset G×X.

Equivalently, G □∠ X is the abelian multigroup over S generated by the
multiset G□X over S, subject to all homogeneous defining relations

(g + h)□x = (g□x) + (h□x) whenever g + h is defined ,

in the statement of which each g□x ∈ G□X has been identified with its image
η (g□x) in the free abelian multigroup F = Z ⊣ (G□X) over S on the multiset
G□X. Thus

G □∠ X = F/K ,

where K is the submultigroup of F generated by all

k(g, h, x) = (g + h)□x − (g□x) − (h□x)

such that g, h ∈ G, x ∈ X, and g + h is defined. The maps G□X
η−→ F −→

G □∠ X are morphisms of multisets over S.
The abelian multigroup G □∠ X comes with a canonical mixed map

µ : G×X
β−→ G□X

η−→ F −→ G □∠ X , (g, x) 7−→ g □∠ x .

The universal property of G □∠ X and µ is as follows. Recall that G×X is a
set over S with projection (g, x)∨ = g∨ x∨ to S. A morphism f of sets over S
from G ×X to an abelian multigroup K over S is balanced and left additive if
and only if

f(gt, x) = f(g, xt) for all g, x, t, and

f(g + h, x) = f(g, x) + f(h, x) whenever g + h is defined ;

equivalently, the defining relations of G □∠ X hold in K via f . The mixed map
µ is balanced and left additive by definition of G □∠ X:

gt □∠ x = g □∠ xt for all g, x, t, and

(g + h) □∠ x = (g □∠ x) + (h □∠ x) whenever g + h is defined .
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In fact,
gt □∠ x = g □∠ xt = (g □∠ x)t for all g, x, t ,

since gt □x = g□xt = (g□x)t in G□X and G□X −→ G □∠ X is a morphism
of multisets over S. Conversely, every balanced and left additive morphism f
of sets over S from G×X to an abelian multigroup H over S factors uniquely
through µ (there exists a unique morphism φ : G □∠ X −→ H of abelian multi-
groups over S such that φ ◦ µ = f).

Since F is the free abelian multigroup over S on the multiset G□X, every
p ∈ F is uniquely a homogeneous linear combination with integer coefficients

p =
∑(

py y | y = g□x, g∨ x∨ = a
)

for some a = p∨ ∈ S. Hence every element of G □∠ X is a homogeneous linear
combination with integer coefficients

p =
∑(

pg,x (g □∠ x) | g ∈ G, x ∈ X, g∨ x∨ = a
)

for some a = p∨ ∈ S. Since □∠ is left additive we also have n (g □∠ x) = ng □∠ x
for all n ∈ Z, with (ng)∨ = g∨. Therefore every element z of G □∠ X is a
homogeneous sum

z = (g1 □∠ x1) + · · ·+ (gn □∠ xn) ,

where n ≥ 0 and g∨i x
∨
i = a = z∨ for all i. Then

zt = (gt1 □∠ x1) + · · ·+ (gtn □∠ xn) = (g1 □∠ xt1) + · · ·+ (gn □∠ xtn)

for all t ∈ S1.
If φ : G −→ H is a morphism of abelian multigroups over S and ψ : X −→ Y

is a morphism of multisets over S, then (g, x) 7−→ φg □∠ ψx is balanced and left
additive and there is a unique morphism φ □∠ ψ : G □∠ X −→ H □∠ Y of abelian
multigroups over S such that

(φ □∠ ψ)(g □∠ x) = φg □∠ ψx for all g ∈ G and x ∈ X .

This makes the mixed product a bifunctor.

2. Associativity. For any abelian multigroup G and multisets X, Y over S,
there is a natural isomorphism

(G □∠ X) □∠ Y ∼= G □∠ (X □Y ) .

Indeed for each g ∈ G, (x, y) 7−→ (g □∠ x)□ y is a balanced mapping of X × Y
into (G □∠ X)□Y and induces a morphism φg : X □Y −→ (G □∠ X)□Y of
abelian multigroups over S such that

φg (x□ y) = (g □∠ x)□ y
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for all x, y. In turn, (g, z) 7−→ φg z is a balanced and left additive mapping of
G × (X □Y ) into (G □∠ X)□Y and induces a morphism θ : G □∠ (X □Y ) −→
(G □∠ X) □∠ Y of abelian multigroups over S such that

θ
(
g □∠ (x□ y)

)
= (g □∠ x)□ y

for all g, x, y.
Conversely, for each y ∈ Y , (g, x) 7−→ g □∠ (x□ y) is a balanced and

left additive mapping of G × X into G □∠ (X □Y ) and induces a morphism
ψy : G □∠ X −→ G □∠ (X □Y ) of abelian multigroups over S such that

ψy (g □∠ x) = g □∠ (x□ y)

for all g, x. In turn, (z, y) 7−→ ψy z is a balanced and left additive mapping of
(G □∠ X)× Y into G □∠ (X □Y ) and induces a morphism ζ : (G □∠ X) □∠ Y −→
G □∠ (X □Y ) of abelian multigroups over S such that

ζ
(
(g □∠ x) □∠ y

)
= g □∠ (x□ y)

for all g, x, y. Then θ and ζ are mutually inverse isomorphisms.

3. Multimonoid rings. If S is a commutative monoid, then there is an
adjunction of commutative multimonoids over S to commutative multi-R-alge-
bras over S, for any R over S. The free multi-R-algebra over S on a commu-
tative multimonoid M over S is constructed as follows.

Since both R and M are commutative multimonoids over S, their box prod-
uct R□M as multisets over S is also a commutative multimonoid over S,
in which (r□x)(s□ y) = rs□xy. Then the free abelian multigroup F =
Z ⊣ (R□M) over S on the multiset R□M is also the free commutative mul-
tiring over S on the commutative multimonoid R□M , as in Section 6. The
identity element of R□M and F is 1□ 1.

As an abelian multigroup over S, R □∠M = F/K, where K is the submulti-
group of F generated by all

k(r, s, x) = (r + s)□x − r□x − s□x

such that r, s ∈ R, x ∈M , and r + s is defined (so that k(r, s, x) is defined). If
t□ y ∈ R□M , then

k(r, s, x)(t□ y) = k(rt, st, xy) .

Therefore K is an ideal of F ; R □∠ M = F/K is a commutative multiring
over S; and the projection F −→ R □∠M is a morphism of commutative multi-
ring over S, in particular

(r □∠ x)(s □∠ y) = rs □∠ xy

for all r, s, x, y. The identity element of R □∠M is 1 □∠ 1.
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Every r ∈ R now acts on R □∠ M by: rp = (r □∠ 1) p for all p ∈ R □∠ M , in
particular

r (s □∠ x) = (r □∠ 1)(s □∠ x) = rs □∠ x .

With this action, R □∠ M becomes a commutative multi-R-algebra over S. In
fact, R □∠M is the free commutative multi-R-algebra over S on the commutative
multimonoid M over S.

Indeed R □∠M comes with a canonical map η : M −→ R □∠M , x 7−→ 1 □∠ x,
which is a morphism of commutative multimonoids over S.

The universal property of R □∠ M and η is proved as follows. Let φ be
a morphism of commutative multimonoids over S from M to a commutative
multi-R-algebra A over S. If ψ : R □∠ M −→ A is a morphism of commutative
multi-R-algebras over S and ψ ◦ η = φ, then ψ (r □∠ x) = r φx for all r and x.
Conversely,

(r, x) 7−→ r (φx)

is a balanced and left additive morphism of multisets over S from R×M to A
and induces a unique morphism ψ of abelian multigroups over S from R □∠ M
to A such that

ψ (r □∠ x) = r (φx)

for all r and x. Then

ψ
(
(r □∠ x)(s □∠ y)

)
= rsφ (xy) =

(
ψ (r □∠ x)

)(
ψ (s □∠ y)

)
and

ψ
(
r (s □∠ y)

)
= rsφy = r ψ (s □∠ y) ,

for all r, s, x, y; hence ψ is a morphism of commutative multi-R-algebras over S.
In this adjunction of commutative multimonoids to commutative multi-R-

algebras, the counit ϵ assigns to a commutative multi-R-algebra A over S the
morphism ϵA : R □∠ A −→ A induced by the identity on A. By the above,

ϵA (r □∠ a) = ra

as calculated in A, for all r ∈ R and a ∈ A.
Since a commutative multi-Z+-algebra over S is the same as a commutative

multiring over S, the above yields an adjunction of commutative multimonoids
over S to commutative multirings over S, in which the free commutative multi-
ring over S on a commutative multimonoidM over S is Z+ □∠M . From Section
6 it follows that Z+ □∠M ∼= Z ⊣M .

A natural isomorphism Z+ □∠M ∼= Z ⊣M is found as follows. The mapping
((n, a), x) 7−→ nxa of Z+ ×M into Z ⊣ M is balanced and left additive and
induces a morphism of commutative multirings over S from Z+ □∠M to Z ⊣M
such that

(n, a) □∠ x 7−→ nxa

for all n, a, x. Since every p ∈ Z ⊣ M is uniquely a homogeneous linear combi-
nation p =

∑(
pxx

∣∣ x ∈Ma

)
, where a = p∨, the map that sends

p =
∑(

pxx
∣∣ x ∈Ma

)
=

∑(
px x | x ∈Ma, px ̸= 0

)
∈ Z ⊣M
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to
∑(

(px, 1) □∠ x | x ∈Ma, px ̸= 0
)
∈ Z+ □∠M , where a = p∨, is well defined,

and provides the inverse isomorphism.

4. Free multialgebras over sets over S. If S is a commutative monoid
and R is a commutative multiring over S, then composing the adjunction of
sets over S to commutative multimonoids over S with the adjunction of com-
mutative multimonoids over S to commutative multi-R-algebras over S yields
an adjunction of sets over S to commutative multi-R-algebras over S.

If R is a commutative multiring over S and X is a set over S, then the free
commutative multimonoid over S on X is F(X)+ = F × S, where F = F(X)
is the free commutative monoid on the set X. When every element x of X
is replaced by an indeterminate Xx, the elements of F(X) are all monomials

Xm =
∏

x∈X X
m(x)
x ). In F(X)+ = F× S,

(Xm, a)∨ =
(∏

x∈X(x∨)m(x)
)
a and (Xm, a)t = (Xm, at) .

Accordingly, the free commutative multi-R-algebra over S on the set X
over S is the free commutative multi-R-algebra R □∠ F(X)+ over S on the
free commutative multimonoid F(X)+ over S.

It comes with a canonical map

η : X −→ R □∠ F(X)+, x 7−→ 1 □∠ (x, 1) ,

which is a morphism of sets over S. There is no general evidence that η is
injective. However, there is a simpler canonical map that is injective, which
sends x ∈ X to (x, 1) ∈ F(X)+, where x is short for the monomial Xm in which
m(x) = 1 and m(y) = 0 for all y ̸= x. Hence we can identify x and (x, 1). Then

ηx = 1 □∠ x, (Xm, 1) =
∏

x∈X X
m(x)
x in F+, and

1 □∠ (Xm, 1) = 1 □∠
∏

x∈XX
m(x)
x =

∏
x∈X(ηx)m(x) = (ηx)m

in R □∠ F(X)+, for every Xm ∈ F(X), where (ηx)m =
∏

x∈X(ηx)m(x).
The typical element of R □∠ F(X)+ is a homogeneous sum

P = r1 □∠ (Xm1 , a1) + · · · + rn □∠ (Xmn , an)

where n ≥ 0, r1, . . . , rn ∈ R, Xm1 , . . . , Xmn ∈ F(X), a1, . . . , an ∈ S, and
r∨i (Xmi)∨ a∨i = P∨ for all i. This simplifies to a polynomial-like form. Indeed

r □∠ (Xm, a) = ra □∠ (Xm, 1) =
(
ra □∠ (1, 1)

)(
1 □∠ (Xm, 1)

)
= ra

(
1 □∠ (1, 1)

)(
1 □∠ (Xm, 1)

)
= ra (ηx)m ,

since 1 □∠ (1, 1) is the identity element of R □∠ F(X)+; hence the typical element
P of R □∠ F(X)+ is now a homogeneous polynomial with coefficients in R and
variables in Im η:

P = r1
∏

x∈X(ηx)m1(x) + · · · + rn
∏

x∈X(ηx)mn(x) ,
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where n ≥ 0, r1, . . . , rn ∈ R, Xm1 , . . . , Xmn ∈ F(X), and r∨i (xmi)∨ = P∨ for
all i. However, there is no evidence that P can be written uniquely in this form,
or that η is injective.

The universal property of R □∠ F(X)+ and η is: every morphism f of sets
over S from X to a commutative multi-R-algebra A over S induces a unique
morphism φ : R □∠ F(X)+ −→ A of commutative multi-R-algebras over S such
that φ ◦ η = f . If

P = r1
∏

x∈X(ηx)m1(x) + · · · + rn
∏

x∈X(ηx)mn(x) ,

then
φP = r1

∏
x∈X(fx)m1(x) + · · · + rn

∏
x∈X(fx)mn(x) ,

as calculated in A.
In the adjunction of sets over S to commutative multi-R-algebras over S,

the counit ϵ assigns to a commutative multi-R-algebra A over S the morphism
ϵA : R □∠ F(A)+ −→ A of commutative multi-R-algebras over S induced by the
identity on A: if

P = r1
∏

a∈A(ηa)
m1(a) + · · · + rn

∏
a∈A(ηa)

mn(a) ∈ R[A] ,

then
ϵAP = r1

∏
a∈Aa

m1(a) + · · · + rn
∏

a∈Aa
mn(a) ,

as calculated in A.

12 The tensor product

The tensor product is similar to the mixed product but allows an addition in
both variables.

1. Definition. Let G andH be abelian multigroups over S. The tensor product
G⊗H of G and H is the abelian multigroup over S generated by the set G×H
over S, subject to all homogeneous defining relations

(xt, y) = (x, yt) for all x, y, t,

(x+ y, z) = (x, z) + (y, z) whenever x+ y is defined , and

(x, y + z) = (x, y) + (x, z) whenever y + z is defined ,

in the statement of which each (x, y) ∈ G×H has been identified with its image
η (x, y) in the free abelian multigroup Z ⊣ (G × H) over S on the set G × H
over S.

Equivalently, G⊗H is the abelian multigroup over S generated by the mul-
tiset G□H over S, subject to all homogeneous defining relations

(x+ y)□ z = (x□ z) + (y□ z) whenever x+ y is defined , and

x□(y + z) = (x□ y) + (x□ z) whenever y + z is defined ,
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in the statement of which each x□ y ∈ G□H has been identified with its image
η (x□ y) in the free abelian multigroup F = Z ⊣ (G□H) over S on the multiset
G□H. Thus

G⊗X = F/K ,

where K is the submultigroup of F generated by all

k(x, y, z) = (x+ y)□ z − (x□ z) − (y□ z)

such that x, y ∈ G, z ∈ H, and x+ y is defined, and all

l(x, y, z) = x□(y + z) − (x□ y) − (x□ z)

such that x ∈ G, y, z ∈ H, and y + z is defined. The maps G□H
η−→ F −→

G⊗H are morphisms of multisets over S.
The abelian multigroup G⊗H comes with a canonical tensor map

τ : G×H
β−→ G□H

η−→ F −→ G⊗H , (x, y) 7−→ x⊗ y .

The universal property of G⊗H and τ is as follows. Recall that G×H is a
set over S with projection (x, y)∨ = x∨ y∨ to S. A morphism f of sets over S
from G×H to an abelian multigroup K over S is balanced and biadditive if and
only if

f(xt, y) = f(x, yt) for all x, y, t,

f(x+ y, z) = f(x, z) + f(y, z) whenever x+ y is defined and

f(x, y + z) = f(x, y) + f(x, z) whenever y + z is defined ;

equivalently, the defining relations of G⊗H hold in K via f . The tensor map
τ is balanced and biadditive by definition of G⊗H:

xt ⊗ y = x⊗ yt for all x, y, t,

(x+ y)⊗ z = (x⊗ z) + (y ⊗ z) whenever x+ y is defined and

x⊗ (y + z) = (x⊗ z) + (y ⊗ z) whenever y + z is defined .

In fact,
xt ⊗ y = x⊗ yt = (x⊗ y)t for all x, y, t ,

since xt □ y = x□ yt = (x□ y)t in G□H and G□H −→ G⊗H is a morphism of
multisets over S. Conversely, every balanced and biadditive morphism f of sets
over S from G×H to an abelian multigroup K over S factors uniquely through
τ (there exists a unique morphism φ : G ⊗ H −→ K of abelian multigroups
over S such that φ ◦ τ = f).

For example, if R is a commutative multiring over S, then the multiplication
on R is a balanced and biadditive mapping of R×R into R and induces (in fact,
can be replaced by) a morphism R ⊗ R −→ R of abelian multigroups over S.
Similarly, if M is a multi-R-module over S, then the action of R on M induces
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(and can be replaced by) a morphism R ⊗M −→ M of abelian multigroups
over S.

For every abelian multigroup G over S there is a natural isomorphism

Z+ ⊗G ∼= G ,

where Z+ = Z × S with projection (n, a)∨ = a, addition (m, a) + (n, a) =
(m + na), and action (n, a)t = (n, at) of S. Indeed ((n, a), x) 7−→ nxa is a
balanced and biadditive mapping of Z+ × G into G, and induces a morphism
of abelian multigroups over S from Z+ ⊗ G to G that sends (n, a) ⊗ x to nxa

(namely, the action of Z+ on G as a multi-Z+-module). The inverse isomor-
phism sends x ∈ X to (0, 1)⊗ x ∈ Z+ ⊗G.

Since F = Z ⊣ (G□H) is the free abelian multigroup over S on the multiset
G□H, every p ∈ F is uniquely a homogeneous linear combination with integer
coefficients

p =
∑(

py y
∣∣ y = x□ y, x∨ y∨ = p∨

)
.

Hence every element of G⊗H is a homogeneous linear combination with integer
coefficients

p =
∑(

px,y (x⊗ y)
∣∣ x ∈ G, y ∈ H, x∨ y∨ = p∨

)
.

Since ⊗ is left additive we also have n (x ⊗ y) = nx ⊗ y for all n ∈ Z, with
(nx)∨ = x∨. Therefore every element z of G⊗H is a homogeneous sum

z = (x1 ⊗ y1) + · · ·+ (xn ⊗ yn) ,

where n ≥ 0 and x∨i y
∨
i = a = z∨ for all i. Then

zt = (xt1 ⊗ y1) + · · ·+ (xtn ⊗ yn) = (x1 ⊗ yt1) + · · ·+ (xn ⊗ ytn)

for all t ∈ S1.
If φ : G −→ H and ψ : G′ −→ H ′ are morphisms of multisets over S, then

(x, y) 7−→ φx⊗ ψy is balanced and biadditive and there is a unique morphism
φ⊗ ψ : G □∠ H −→ G′ ⊗H ′ of abelian multigroups over S such that

(φ⊗ ψ)(x⊗ y) = φx⊗ ψy for all x ∈ G and y ∈ H .

This makes the mixed product a bifunctor.

2. Associativity. For any abelian multigroups G, H, K and multiset X, there
are natural isomorphisms

(G⊗H) □∠ X ∼= G⊗ (H □∠ X) and (G⊗H)⊗K ∼= G⊗ (H ⊗K) .

This is proved like the previous associativity properties. There are also natural
isomorphisms H ⊗ G ∼= G ⊗H. Thus abelian multigroups over S constitute a
symmetric monoidal category (as defined in [9]); the identity object is Z+.
3. Multirings. The tensor product of commutative multirings over S is a
commutative multiring over S. Indeed, any two commutative multirings R and
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T have a tensor product R⊗ T as abelian multigroups over S, which is also an
abelian multigroup over S. Let

µ : R⊗R −→ R and ν : T ⊗ T −→ T

be the morphisms of abelian multigroups over S induced by the multiplications
on R and T , µ (r⊗ s) = rs and ν (t⊗ u) = tu. Then µ⊗ ν induces a morphism
of abelian multigroups over S

(R⊗ T )⊗ (R⊗ T )
∼=−→ (R⊗R)⊗ (T ⊗ T )

µ⊗ ν−→ R⊗ T

and a multiplication on R⊗ T , under which

(r ⊗ t)(s⊗ u) = rs⊗ tu

for all r, s ∈ R and t, u ∈ T . If v ∈ S, then(
(r ⊗ t)(s⊗ u)

)
v = (r ⊗ t)v (s⊗ u) = (r ⊗ t) (s⊗ u)v ,

which implies (pq)v = pv q = p qv for all p, q ∈ R ⊗ T . Hence R ⊗ T is a
commutative multiring over S.

4. Multimodules. Now let S be a commutative monoid and let R be a
commutative multiring over S.

If M is a multi-R-module over S and G is an abelian multigroup over S,
then M ⊗ G is a multi-R-module over S; the action α of R on M induces an
action of R on M ⊗G:

R⊗ (M ⊗G)
∼=−→ (R⊗M)⊗G

α⊗ 1−→ M ⊗G

such that r (x⊗ y) = rx⊗ y for all r, x, y.
In particular, R⊗G is a multi-R-module over S. In fact it is the free multi-R-

module over S on the abelian multigroup G. The canonical map η : G −→ R⊗G
sends x ∈ G to 1 ⊗ x. If f is a morphism of abelian multigroups over S from
G to a multi-R-module M over S, then (r, x) 7−→ r (fx) is a balanced and bi-
additive mapping of R × G into M and induces a morphism φ : R ⊗ G −→ M
of abelian multigroups over S such that φ (r ⊗ x) = r (fx) for all r, x. Then
φ
(
r (s⊗x)) = rs f(x) = r φ (r⊗x) for all r, s, x, so that φ is a morphism of multi-

R-modules over S, and φ◦η = f . Conversely, if ψ : R⊗G −→M is a morphism
of multi-R-modules over S, and ψ◦η = f , then ψ (r⊗x) = ψ

(
r (1⊗x)

)
= r (fx)

for all r, x, and ψ = φ.
For two multi-R-modules M and N over S, however, one needs a tensor

product of M and N such that rx⊗ y = x⊗ ry for all r, x, y. This is the tensor
product M ⊗R N over R: the abelian multigroup over S generated by M □N
subject to all defining relations

(x+ y)□ z = (x□ z) + (y□ z) whenever x+ y is defined ,

x□(y + z) = (x□ y) + (x□ z) whenever y + z is defined , and

rx□ y = x□ ry ,
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which comes with a canonical tensor map

τ : M ×N
β−→M □N

η−→M ⊗R N , (x, y) 7−→ x⊗ y .

Every element z of M ⊗R N is a homogeneous sum

z = (x1 ⊗ y1) + · · ·+ (xn ⊗ yn) ,

where n ≥ 0, x1, . . . , xn ∈M , y1, . . . , yn ∈ N , and x∨i y
∨
i = z∨ for all i.

If R = Z+, then multi-R-modules over S are just abelian multigroups over S
and ⊗R is the tensor product ⊗ of abelian multigroups over S.

A mapping f ofM×N into an abelian multigroup G over S is fully balanced
and biadditive if it is balanced and biadditive and

f(rx, y) = f(x, ry)

for all r, x, y. The tensor map τ to M ⊗R N is fully balanced and biadditive.
Conversely, if f : M ×N −→ G is fully balanced and biadditive, then f induces
a unique morphism φ : M ⊗R N −→ G of abelian multigroups over S such that
φ ◦ τ = f (such that f(x, y) = φ (x⊗ y) for all x, y).

In particular, for every r ∈ R, the mapping (x, y) 7−→ rx ⊗ y of M × N
into M ⊗R N is fully balanced and biadditive and induces an endomorphism of
abelian multigroups over S that sends x⊗y to rx⊗y. Hence R acts onM⊗RN
so that

r (x⊗ y) = rx⊗ y (= x⊗ ry)

for all r, x, y, whereby M ⊗R N becomes a multi-R-module over S.
There are natural isomorphisms R ⊗R M ∼= M , M ⊗R N ∼= N ⊗R M , and

(M ⊗R N)⊗R Q ∼=M ⊗R (N ⊗R Q). Thus, multi-R-modules over S constitute
a symmetric monoidal category.

5. Free multimodules. By the above, the free multi-R-module F over S on
a set X over S is the free multi-R-module over S on the free abelian multigroup
Z ⊣ X+ over S on X, that is F = R ⊗ (Z ⊣ X+). The canonical mapping
η : X −→ F sends x ∈ X to 1⊗ (x, 1).

The typical element z of F is a finite sum

z = (r1 ⊗ p1) + · · ·+ (rn ⊗ pn) ,

where n ≥ 0, r1, . . . , rn ∈ R, r∨i p
∨
i = z∨ for all i, and p1, . . . , pn ∈ Z ⊣ X+,

so that each pi is a homogeneous linear combination

p =
∑(

py y
∣∣ y ∈ X+, y∨ = p∨

)
=

∑(
px,c (x, c)

∣∣ (x, c) ∈ X+, (x, c)∨ = p∨
)
,

where a = y∨, of elements of (X+)a with integer coefficients. Now

r ⊗ p =
∑(

px,c (r ⊗ (x, c))
∣∣ (x, c) ∈ X+, (x, c)∨ = p∨

)
.
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Since
n (r ⊗ (x, c)) = n (rc ⊗ (x, 1)) = nrc ⊗ (x, 1)

for all n ∈ Z, it follows that every element of F is a homogeneous sum

z = (r1 ⊗ x1) + · · ·+ (rn ⊗ xn) = r1 (η x1) + · · ·+ rn (η xn) ,

where n ≥ 0, r1, . . . , rn ∈ R, x1, . . . , xn ∈ X, r∨i x
∨
i = z∨ for all i, each x ∈ X

has been identified with (x, 1) ∈ X+, and ηx = 1 ⊗X. Unfortunately there is
no evidence that z can be written in this form uniquely.

Multi-R-modules can now have presentations as generated by the elements
of a set over S subject to defining relations. A defining relation between the
elements of a set X over S is a pair (A,B) of elements of the free multi-R-mod-
ule F on X, normally written as an equality A = B, which is homogeneous,
meaning that A and B project to the same element A∨ = B∨ of S.

A defining relation (A,B) between the elements of Y holds in a multi-R-
module M via a morphism f of Y into M if and only if φA = φB, where
φ : F −→M is the morphism that extends f .

The multi-R-module generated by a setX over S subject to a set R of defining
relations is the quotient

⟨X | R ⟩ ∼= F/K ,

where F is the free multi-R-module on X and K is the submultimodule of F
generated by all A−B with (A,B) ∈ R (where A−B is defined since (A,B) ∈ R

is homogeneous).
The multi-R-module ⟨X | R ⟩ comes with a canonical map η from X, which

is the composition

η : X
η−→ F −→ F/K .

By definition, every (A,B) ∈ R holds in ⟨X | R ⟩ via η. The universal property
of ⟨X | R ⟩ and η is: if f is a morphism of sets over S from X to a multi-
R-module M and every (A,B) ∈ R holds in M via f , then there is a unique
multi-R-module morphism φ from ⟨X | R ⟩ to M such that φ ◦ η = f .

13 Derivations

In this section, S is a commutative monoid and R is a commutative multiring
over S (with an identity element).

1. Derivations. If A is a commutative multi-R-algebra over S and M is a
multi-A-module over S, then the action of A on M induces an action of R on
M , namely

rx = (r1)x , for all r ∈ R and x ∈M ,

which makes M a multi-R-module over S. Similarly, A-modules are, in partic-
ular, R-modules.
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A derivation of a commutative multi-R-algebra A over S into a multi-A-
module M over S is a mapping D : A −→M such that

D(x)∨ = x∨ for all x ,

D(xt) = D(x)t for all x, t ,

D(rx) = r D(x) for all r, x ,

D(x+ y) = D(x) +D(y) whenever x+ y is defined, and

D(xy) = xD(y) + y D(x) for all x, y ∈ A.

In particular, D is a morphism of multi-R-modules over S. Also, D(1) =
D(11) = D(1) + D(1), so that D(1) = 0. Hence D(r1) = r D(1) = 0 and
D(1t) = D(1)t = 0, for all r ∈ R and t ∈ S.

The set Der (A,M) of all derivations of A into M is an A-module under
pointwise addition and action of A ((yD)(x) = y D(x) for all x, y ∈ A). In
particular, Der (A,M) is an R-module.

If φ : M −→ N is a morphism of multi-A-modules over S and D : A −→ M
is a derivation, then φ ◦D : A −→ N is a derivation. This yields an A-module
homomorphism (in particular, an R-module homomorphism)

Der (A,φ) : Der (A,M) −→ Der (A,N) , D 7−→ φ ◦D .

If ψ : A −→ B is a morphism of commutative multi-R-algebras over S and
D : B −→ M is a derivation, then D ◦ ψ : A −→ N is a derivation. This yields
an A-module homomorphism

Der (ψ,M) : Der (B,M) −→ Der (A,M) , D 7−→ D ◦ ψ .

With these maps, Der (−,−) is now a bifunctor to A-modules.

2. The universal derivation. Let Y be a set over S with an isomorphism
d : A −→ Y of sets over S, and let Ω be the multi-A-module over S generated
by Y subject to

d (r + s) = dr + ds whenever r + s is defined in A, and

d (rs) = r ds+ s dr for all r, s ∈ A .

These defining relations are homogeneous. The elements of Ω are the Kähler
differentials of A.

The multi-A-module Ω comes with a derivation d : A −→ Ω. The universal
property of Ω yields a universal property of d: if D : A −→M is any derivation,
then the elements D(x) of M satisfy the defining relations of Ω and there is a
unique multi-A-module morphism φ : Ω −→M that sends dx to D(x) for every
x ∈ A; equivalently, D = φ ◦ d. Hence D 7−→ φ is a natural isomorphism

Der (A,M) ∼= HomA (Ω,M) .

In particular, Der (A,−) is a left exact functor.
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3. Redefinition. Next, we want for each set X over S a commutative multi-
R-algebra A over S such that, for every multi-A-module M over S, there is a
natural isomorphism of A-modules

Der (A,M) ∼= Map (X,M)

which is natural in X and M . This is where things go wrong with commuta-
tive multi-R-algebras. The free commutative multi-R-algebra over S on X in
Section 11 has a canonical map η which shows no inclination to be injective,
nor do its elements show any inclination to be put in polynomial form uniquely.

The free commutative multiring over S on X in Section 6 suffers none of
these defects. From here on therefore we deal with commutative multirings
over S rather than commutative multi-R-algebras over S. This amounts to
setting R = Z+ throughout.

Accordingly, let R be a commutative multiring over S. A derivation of R
into a multi-R-module M over S is a mapping D : R −→M such that

D(x)∨ = x∨ for all x ,

D(xt) = D(x)t for all x, t ,

D(x+ y) = D(x) +D(y) whenever x+ y is defined, and

D(xy) = xD(y) + y D(x) for all x, y ∈ A.

In particular, D is a morphism of abelian multigroups over S. As before, D(1) =
D(11) = D(1) + D(1), so that D(1) = 0, D(r1) = r D(1) = 0, and D(1t) =
D(1)t = 0, for all r ∈ R and t ∈ S.

The set Der (R,M) of all derivations of R into M is an R-module under
pointwise addition and action of R ((rD)(x) = r D(x) for all x, y ∈ R).

If φ : M −→ N is a morphism of multi-R-modules over S and D : A −→ M
is a derivation, then φ ◦D : R −→ N is a derivation. This yields an R-module
homomorphism

Der (R,φ) : Der (R,M) −→ Der (R,N) , D 7−→ φ ◦D .

If ψ : Q −→ R is a morphism of commutative multirings over S andD : R −→M
is a derivation, then M is a multi-Q-module, on which Q acts by qx = (ψq)x,
and D ◦ ψ : Q −→M is a derivation. This yields an R-module homomorphism

ψ∗ = Der (ψ,M) : Der (R,M) −→ Der (Q,M) , D 7−→ D ◦ ψ .

With these maps, Der (−,−) becomes a bifunctor to R-modules. Moreover,
Der (R,−) is left exact.

4. Polynomials. In Section 6 we saw that the free commutative multiring
over S on a set X over S is Z[X] = Z ⊣ F(X)+, where F(X) is the free commu-
tative monoid on the set X and F(X)+ = F× S. An element y of F(X)+ is an
ordered pair

y = (Xm, t) =
( ∏
x∈X

(Xm(x)
x , 1)

)
t ,

41



in which t ∈ S and Xm =
∏

x∈X X
m(x)
x ∈ F(X) is a monomial on an isomor-

phic copy X = {Xx | x ∈ X } of X. Every element p of Z[X] is a unique
homogeneous linear combination of elements of F(X)+ with integer coefficients

p =
∑(

py y
∣∣ y ∈ F(X)+, y∨ = p∨

)
.

For every set X over S and multi-Z[X]-module M over S there is a natural
isomorphism

Θ: Der (Z[X], M) ∼= Map (X,M)

that sends a derivationD of Z[X] into M to

d = Θ(D) = D ◦ η : X η−→ Z[X]
D−→M ,

so that
dx = D(Xx, 1) .

Then d is a morphism of sets over S, since D is a derivation. Moreover, Θ
preserves pointwise sums and every action of r ∈ R on M , and is a homomor-
phism of R-modules.

We show that Θ is injective. For every D ∈ Der (Z[X], M), induction yields

D (X1X2 · · ·Xn, 1) = D
(
(Y1, 1)(Y2, 1) · · · (Yn, 1)

)
=

∑
i

(
(Y1, 1) · · · (Yi−1, 1) (Yi+1, 1) · · · (Yn, 1) D (Yi, 1)

)
for all n ≥ 0 and Y1, Y2, . . . , Yn ∈ X (with Y1Y2 · · ·Yn = 1 if n = 0 so that
D (Y1Y2 · · ·Yn, 1) = 0 since (1, 1) is the identity element of Z[X]). If d =
Θ(D) = 0, then D (Y1Y2 · · ·Yn, 1) = 0 for all n ≥ 0 and Y1, Y2, . . . , Yn ∈ X,

D (Xm, t) = D
(
(Xm, 1)t

)
=

(
D (Xm, 1)

)
t = 0

for all y = (Xm, t) ∈ F(X)+, and D(p) = 0 for all p ∈ Z[X].
Conversely, every morphism d : x 7−→ dx of sets over S of X intoM extends,

more or less willingly, to a derivation d̂ of Z[X] into M , so that Θ is surjective.
For every n > 0 and x ∈ X, define

d̂ (Y n) = nY n−1 dx ,

where Y = (Xx, 1), so that (Xn
x , 1) = Y n, and d̂ (Y n) = 01 if n = 0. In

particular, d̂ (Y ) = dx.
If n > 0, then

d̂ (Y n)∨ = (Y n−1)∨ (dx)∨ = (Y ∨)n = (Y n)∨ ,

since (dx)∨ = x∨ = Y ∨. The equality (d̂ (Y n))∨ = (Y n)∨ also holds if n = 0,
since (1, 1)∨ = 1 = 0∨1 .
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In addition,

d̂ (Y m Y n) = (m+ n)Y m+n−1 dx

= nY m Y n−1 dx + mY n Y m−1 dx

= Y m d̂ (Y n) + Y n d̂ (Y m) ,

for all m,n > 0. The equality

d̂ (Y m Y n) = Y m d̂ (Y n) + Y n d̂ (Y m)

also holds if m = 0 or n = 0, since (1, 1) is the identity element of Z[X].

For each p = (Xm, 1) =
∏

x∈X(X
m(x)
x , 1) define

d̂ (p) =
∑(

(
∏

x∈X, x ̸=yYx) d̂ (Yy)
∣∣ y ∈ X, m(y) > 0

)
,

where Yx = (X
m(x)
x , 1), so that (Xm, 1) =

∏
x∈XYx; this sum is homogeneous

since (d̂ Yx)
∨ = Y ∨

x = x∨. Then

d̂ (p)∨ =
(∏

x∈X, x ̸=y(x
∨)m(x)

)
(y∨)m(y) =

∏
x∈X(x∨)m(x) = p∨ .

If p = (Xm, 1) =
∏

x∈X Yx and q = (Xn, 1) =
∏

x∈X Zx, where Zx = (X
n(x)
x , 1),

then

d̂ (p) =
∑(∏

x∈X, x ̸=yYx) d̂ (Yy)
∣∣ y ∈ X, m(y) + n(y) > 0

)
,

since m(y) = 0 implies
∏

x∈X, x ̸=y Yx) d̂ (Yy) = 0; similarly,

d̂ (q) =
∑(∏

x∈X, x ̸=yZx) d̂ (Zy)
∣∣ y ∈ X, m(y) + n(y) > 0

)
.

Hence

d̂ (pq) = d̂ (Xm+n, 1)

=
∑(

(
∏

x∈X, x ̸=yYx Zx) d̂ (Yy Zy)
∣∣ y ∈ X, m(y) + n(y) > 0

)
=

∑(
(
∏

x∈X, x ̸=yYx Zx)Yy d̂ (Zy)
∣∣ y ∈ X, m(y) + n(y) > 0

)
+

∑(
(
∏

x∈X, x ̸=yYx Zx)Zy d̂ (Yy)
∣∣ y ∈ X, m(y) + n(y) > 0

)
=

(∏
x∈XYx

)∑(
(
∏

x∈X, x ̸=yZx) d̂ (Zy)
∣∣ y ∈ X, m(y) + n(y) > 0

)
+

(∏
x∈XZx

)∑(
(
∏

x∈X, x ̸=yYx) d̂ (Yy)
∣∣ y ∈ X, m(y) + n(y) > 0

)
= p d̂ (q) + q d̂ (p) .

For each r = (Xm, a) ∈ F(X)+, r = pa where p = (Xm, 1), define

d̂ (r) = d̂ (p)a .
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Then
d̂ (r)∨ = (d̂ (p))∨ a = p∨ a = r∨ .

If t ∈ S, then rt = (xm, at) = pat and

d̂ (rt) = d̂ (pat) = d̂ (p)at = (d̂ (p)a)t = d̂ (r)t .

If also s ∈ F(X)+, s = qb where q = (xn, 1), then rs = (xm+n, ab) = (pq)ab and

d̂ (rs) = d̂ (pq)ab =
(
p d̂ (q) + q d̂ (p)

)ab
= pa d̂ (q)b + qb d̂ (p)a = r d̂ (s) + s d̂ (r) .

Finally, if

p =
∑(

pr r
∣∣ r ∈ F(X)+, r∨ = p∨

)
,

then define
d̂ (p) =

∑(
pr d̂ (r)

∣∣ r ∈ F(X)+, r∨ = p∨
)
.

Then d̂ (p)∨ = p∨. If u ∈ S, then

pu =
∑(

pr r
u
∣∣ r ∈ F(X)+, r∨ = p∨

)
and

d̂ (pu) =
∑(

pr d̂ (r
u)

∣∣ r ∈ F(X)+, r∨ = p∨
)

=
∑(

pr d̂ (r)
u
∣∣ r ∈ F(X)+, r∨ = p∨

)
= d̂ (p)u .

If p+ q is defined (if p∨ = q∨), then

d̂ (p+ q) = d̂ (p) + d̂ (q) .

Finally, if also

q =
∑(

qs s
∣∣ s ∈ F(X)+, s∨ = q∨

)
,

then

pq =
∑(

pr qs rs
∣∣ r ∈ F(X)+, s ∈ F(X)+, r∨ = p∨, s∨ = q∨

)
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and

d̂ (pq) =
∑(

pr qs d̂ (rs)
∣∣ r ∈ F(X)+, s ∈ F(X)+, r∨ = p∨, s∨ = q∨

)
=

∑(
pr qs r d̂ (s) + s d̂ (r)

∣∣
r ∈ F(X)+, s ∈ F(X)+, r∨ = p∨, s∨ = q∨

)
=

[∑(
pr r

∣∣ r ∈ F(X)+, r∨ = p∨
)][∑(

qs d̂ (s)
∣∣ s ∈ F(X)+, s∨ = q∨

)]
+

[∑(
qs s

∣∣ s ∈ F(X)+, s∨ = q∨
)][∑(

pr d̂ (r)
∣∣ r ∈ F(X)+, r∨ = p∨

)]
= p d̂ (q) + q d̂ (r) .

Thus d̂ is a derivation.

14 Cohomology of multirings

In this section, S is a commutative monoid and R is a commutative multiring
over S.

1. The comonad. The adjunction of sets over S to commutative multirings
over S begets a comonad (V, ϵ, ν) in which V sends a commutative multiring R
over S to the free commutative multiring Z[R] over S on the set R over S.

As before we replace every element r of R with an indeterminate Xr, so that
X = {Xr | r ∈ R } is isomorphic to R as a set over S. Then the typical element
of F(R) is a monomial

Xm =
∏

r∈RX
m(r)
r

and every element of Z[R] is uniquely a homogeneous linear combination with
integer coefficients

p =
∑(

pz z
∣∣ z ∈ F(R)+, z∨ = p∨

)
=

∑(
pm,t (X

m, t)
∣∣ Xm ∈ F(R), t ∈ S, (Xm)∨ t = p∨

)
.

Every morphism φ : R −→ T of sets over S extends uniquely to a morphism
ψ = Z[φ] of commutative multirings over S from Z[R] to Z[T ] that sends

p =
∑(

pm,t (X
m, t)

∣∣ Xm ∈ F(R), t ∈ S, (Xm)∨ t = p∨
)

to

Z[φ] (p) =
∑(

pm,t (Z[φ] (Xm), t)
∣∣ Xm ∈ F(R), t ∈ S, (Xm)∨ t = p∨

)
,

where Z[T ] is written with one indeterminate Ys for each s ∈ T and

Z[φ] (Xm) = Z[φ]
(∏

r∈RX
m(r)
r

)
=

∏
r∈RY

m(r)
φ(r) ,
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as calculated in Z[T ].
If now φ : R −→ T is a morphism of commutative multirings over S, and

we write V T with one indeterminate Ys for each s ∈ T , then V φ = Z[φ] is
the morphism of commutative multirings over S from V R to V T such that
(V φ)(Xr) = Yφr for all r ∈ R.

In particular, ϵR : V R −→ R is the evaluation morphism of commutative
multirings over S that sends Xr to r and sends

p =
∑(

pm,t

(∏
r∈RX

m(r)
r , t

) ∣∣∣∏
r∈RX

m(r)
r ∈ F(R), t ∈ S,

(∏
r∈RX

m(r)
r

)∨ t = p∨
)

to

ϵ (p) =
∑(

pm,t

(∏
r∈Rr

m(r)
)
t
∣∣∣∏

r∈RX
m(r)
r ∈ F(R), t ∈ S,

(∏
r∈RX

m(r)
r

)∨ t = p∨
)
,

as calculated in R.
The comultiplication ν assigns to R the morphism νR = V η : V R −→ V V R

induced by the adjunction unit η : R −→ V R, viewed as a morphism of sets
over S.

We note that every multi-R-module M over S is also a multi-V R-module.
The action of R on M extends to an action of V R on M in which

px = ϵ(p)x

for every p ∈ V R and x ∈ M . This makes M a multi-V R-module since ϵ is a
morphism of commutative multirings over S.

2. The resolution. For every commutative multiring R over S there is now
an augmented simplicial commutative multi-R-algebra R∗ with objects R0 = R
and Rn = V nR (where n ≥ 0 and V n = V ◦ V ◦ · · · ◦ V ), face maps

ϵn,i = V i ϵ V n−iR : Rn+1 −→ Rn (i = 0, 1, . . . , n),

augmentation ϵ (R) = ϵ0,0 : V R −→ R, and degeneracy maps

νn,i = V i ν V n−i−1R : Rn−1 −→ Rn (i = 0, 1, . . . , n− 1),

that satisfy the simplicial identities.
Let M be a multi-R-module over S, hence also a multi-V R-module over S

and a multi-Rn-module over S for every n ≥ 0. Applying to R∗ the contravariant
functor Der (−,M) yields an augmented cosimplicial R-module Der (R∗, M)
with objects Der (R0,M) = Der (R,M) and Der (Rn, M) = Der (V nR, M) if
n > 0, face maps

dn,i = ϵ∗n,i = Der (ϵn,i, M) : Der (Rn, M) −→ Der (Rn+1, M)
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for i = 0, 1, . . . , n, augmentation

d0,0 = ϵ∗ = Der (ϵ,M) : Der (R,M) −→ Der (V R,M) ,

and degeneracy maps Der (νn,i, M) (i = 0, 1, . . . , n− 1), that satisfy the cosim-
plicial identities.

A coboundary homomorphism

δn : Der (Rn, M) −→ Der (Rn+1, M)

is then defined by

δn = dn,0 − dn,1 + dn,2 − · · ·+ (−1)n dn,n .

In particular, δ0 = d0,0. The simplicial identities imply δn+1 ◦ δn = 0 for all
n ≥ 0. This yields an augmented cochain complex of R-modules

0 −→Der (R,M)
ϵ∗−→ Der (V R, M)

δ1−→ . . .

−→ Der (V nR, M)
δn−→ Der (V n+1R, M) . . .

The André-Quillen cohomology of the commutative multiring R over S with
coefficients in the multi-R-moduleM over S assigns to R andM the R-modules
H0(R,M) = Ker δ0 / Im e and Hn(R,M) = Ker δn / Im δn−1, where n > 0.

The natural isomorphisms Der (R[X],M) ∼= Map (X,M) yield an isomorphic
complex of R-modules

0 −→Der (R,M)
e−→ Map (R,M)

d1−→ . . .

−→ Map (V n−1R, M)
dn−→ Map (V nR, M) . . .

whose homology modules are natural isomorphic to the André-Quillen cohomo-
logy modules of R with coefficients in the multi-R-module M . In particular,
H1(R,M) ∼= Ker d1 / Im e. Without the augmentation, H1(R,M) would be
simply Ker d1.

3. Three maps. The augmentation e : Der (R,M) −→ Map (R,M) is the
composite

e : Der (R,M)
ϵ∗−→ Der (V R,M)

∼=−→ Map (R,M)

of ϵ∗ = Der (ϵ,M), which sends D ∈ Der (R,M) to D ◦ ϵ, and the isomor-
phism Der (V R,M) −→ Map (R,M), which sends D ◦ ϵ to the mapping r 7−→
(D ◦ ϵ)(Xr) = D(r). Thus e (D) is D viewed as simply a mapping of R into M .

Next, d1,0 : Map (R,M) −→ Map (V R,M) is the composite

d1,0 : Map (R,M)
∼=−→ Der (V R,M)

ϵ∗1,0−→ Der (V 2R,M)
∼=−→ Map (V R,M)

and sends a map f from R toM to the derivation f̂ of V R such that f̂(Xa) = fa

for all a ∈ S, thence to the derivation ϵ∗1,0 (f̂) = f̂ ◦ ϵ1,0 = f̂ ◦ ϵV R, thence to the
corresponding map from V R to M .
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Let V 2R = Z[Y ] with one indeterminate Yp for every p ∈ V R. Then f̂ ◦ ϵV R

sends Yp ∈ V 2R to f̂(ϵ Yp) = f̂(p). Hence d1,0 f is the map from V R to M that

sends p ∈ V R to f̂(p); in other words,

d1,0 f = f̂ .

Similarly, d1,1 : Map (R,M) −→ Map (V R,M) is the composite

d1,1 : Map (R,M)
∼=−→ Der (V R,M)

ϵ∗1,1−→ Der (V 2R,M)
∼=−→ Map (V R,M)

and sends a map f from R to M to the derivation f̂ such that f̂(Xa) = fa for

all a ∈ S, thence to the derivation ϵ∗1,1 (f̂) = f̂ ◦ ϵ1,1 = f̂ ◦ V ϵR, thence to the
corresponding map from V R to M .

With V 2R = Z[Y ] as above, V ϵR : V 2R −→ V R is the morphism of commu-

tative multirings over S that sends Yp to Xϵp for every p ∈ V R. Hence f̂ ◦ V ϵR
sends Yp to f̂(Xϵp) for every p ∈ V R. Therefore d1,1 f is the map from V R to
M that sends p ∈ V R to f (ϵp); equivalently,

d1,1 f = f ◦ ϵR .

15 Cohomology of Z+

In this section, S is a commutative monoid and R = Z+, so that every abelian
multigroup G over S is a multi-R-module over S. The cohomology groups of
Z+ are the homology groups of the complex

0 −→Der (Z+, G)
e−→ Map (Z+, G)

d1−→ Map (V Z+, G) · · ·

−→ Map (V n−1Z+, G)
dn−→ Map (V nZ+, G) · · ·

First, Der (Z+, G) = 0. Indeed, if D ∈ Der (Z+, G), then D(1, 1) = 0, since
(1, 1) is the identity element of Z+, and

D(n, a) = D
(
n (1, 1)a

)
= nD(1, 1)a = 0

for every (n, a) ∈ Z+. This does not help crime scene investigations.
A 1-cochain u ∈ Map (Z+, G) assigns u(n, a) ∈ Ga to each (n, a) ∈ Z+.

From Section 14 we know that d1,0u = û is the derivation of V Z+ = Z[Z+] that
extends u, constructed in Section 13, whereas d1,1u = u ◦ ϵ.

With every (n, a) ∈ Z+ replaced by an indeterminate Xn,a, the typical
element p of Z[Z+] is a homogeneous linear combination

p =
∑(

pm,t (X
m, t)

∣∣ Xm ∈ F(Z+), t ∈ S, (Xm)∨ t = p∨
)
,

where Xm =
∏

(n,a)∈Z+X
m(n,a)
n,a , and (Xm)∨ =

∏
(n,a)∈Z+am(n,a). Then û is the

derivation of Z[Z+] such that

û (Xn,a, 1) = u(n, a)
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for all (n, a) ∈ Z+. On the other hand, ϵ is the morphism of commutative
multirings over S such that

ϵ (Xn,a, 1) = (n, a)

for all (n, a) ∈ Z+. Every multi-Z+-module G is a multi-Z[Z+]-module, in
which

p x = (ϵp)x

for every p ∈ Z[Z+] and x ∈ G; in particular,

(Xn,a, 1)x = (n, a)x = nxa

for every (n, a) ∈ Z+.
We show that Z1

Q(Z+, G) = 0. (So H1
Q(Z+, G) = 0; maybe HQ (Z+, G) = 0?)

By the above, u is a 1-cocycle if and only if (d1,0 − d1,1)u = d1u = 0, if and
only if u ◦ ϵ = û.

If u is a 1-cocycle, then u ◦ ϵ is a derivation. Hence

u (1, 1) = u
(
(1, 1)(1, 1)

)
= u (ϵ (X1,1, 1) ϵ (X1,1, 1)

= u
(
ϵ ((X1,1, 1) (X1,1), 1)

)
= û ((X1,1, 1) (X1,1, 1))

= (X1,1, 1) (û (X1,1, 1)) + (X1,1, 1) (û (X1,1, 1))

= (X1,1, 1) u (1, 1) + (X1,1, 1) u (1, 1) = u (1, 1) + u (1, 1) ,

and u (1, 1) = 0. Hence

u (1, a) = u ((1, 1)a) = u
(
(ϵ (X1,1, 1))

a
)

= u
(
ϵ ((X1,1, 1)

a)
)

= û ((X1,1, 1)
a) = (û (X1,1, 1))

a

= u (1, 1)a = 0

for all a ∈ S. Finally,

u (m+ n, a) = u (ϵ (Xm,a, 1) + ϵ (Xn,a, 1))

= u
(
ϵ ((Xm,a, 1) + (Xn,a, 1))

)
= û ((Xm,a, 1) + (Xn,a, 1))

= û (Xm,a, 1) + û (Xn,a, 1) = u (m, a) + u (n, a)

for all m,n ∈ Z and a ∈ S. Hence

u (n, a) = nu (1, a) = 0

for all n, a.

16 Cohomology of Z[S]
In this section, S is a commutative monoid and R = Z[S], where S is the set over
itself with projection a∨ = a. With every a ∈ S replaced by an indeterminate
Xa, the typical element of Z[S] is a homogeneous linear combination

p =
∑(

pm,t (X
m, t)

∣∣ Xm ∈ F(S), t ∈ S, (Xm)∨ t = p∨
)
,

49



where Xm =
∏

a∈SX
m(a)
a and (Xm)∨ =

∏
a∈Sa

m(a).

1. Coefficients. Every abelian multigroup over S can serve as coefficients in
the cohomology of Z[S]. Indeed every abelian multigroup G over S is canonically
a multi-Z[S]-module over S, in which

p • x = x(p
∨)

for every x ∈ G and p = (Xm, t) ∈ F(S)+. In particular, (Xa, 1) • x = xa and
(1, 1) • x = x. Then

(p • x)∨ = (x(p
∨))∨ = p∨ x∨ ,

(p • x)t = (x(p
∨))t = xp

∨ t = p • xt ,

pt • x = x(p
t)∨ = xp

∨ t = p • xt ,

p • (x+ y) = (x+ y)(p
∨) = x(p

∨) + y(p
∨) = (p • x) + (p • y)

whenever x+ y is defined , and

p • (q • x) = (x(q
∨))(p

∨) = x(pq)
∨

= pq • x ,

for all p, q ∈ F(S)+ and x, y ∈ G.
If now p ∈ Z[S] is a homogeneous linear combination

p =
∑(

py y
∣∣ y ∈ F(S)+, y∨ = p∨

)
,

then p • x is well defined by

p • x =
∑(

py (y • x)
∣∣ y ∈ F(S)+, y∨ = p∨

)
,

since this is a homogeneous sum. Then (p+ q) • x = (p • x) + (q • x) whenever
p∨ = q∨, and the five properties above also hold for all p, q ∈ Z[S] and x, y ∈ S.

2. Cochains. Since Der (Z[S], G) ∼= Map (S,G), the André-Quillen cohomo-
logy groups of S are the homology groups of the complex

0 −→Map (S,G)
e−→ Map (Z[S], G) d1−→ Map (V Z[S], G) −→ . . .

−→ Map (V n−1Z[S], G) dn−→ Map (V nZ[S], G) −→ . . .

Thus a 0-cochain u ∈ Map (S,G) assigns u(a) ∈ Ga to each a ∈ S (thus,
Map (S,G) = C1

C (S,G)); a 1-cochain u ∈ Map (Z[S], G) assigns u(p) ∈ Gp∨ to
each p ∈ Z[S]; and so forth.

From Section 14 we know that

e : Map (S,G)
∼=−→ Der (Z[S], G) e−→ Map (Z[S], G)

sends a 0-cochain u ∈ Map (S,G) to the derivation û of Z[S] that extends u, then
to û viewed as a morphism of sets over S from Z[S] to G. Hence a 1-coboundary
is a derivation: B2

Q(S,G) = Der (Z[S], G).
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Also, for each 1-cochain u ∈ Map (Z[S], G), d1,0 u = û, whereas d1,1 u =
u ◦ ϵZ[S]. Hence

δu = û − (u ◦ ϵ) .

We write V Z[S] = Z[Z[S]] with one indeterminate Yp for each p ∈ Z[S], so that
the typical element of V Z[S] is

q =
∑(

qm,t (Y
m, t)

∣∣ Ym ∈ F(Z[S]), t ∈ S, (Ym)∨ t = q∨
)
,

where Ym =
∏

p∈Z[S]Y
m(p)
p and (Ym)∨ =

∏
p∈Z[S](p

∨)m(p). Then

ϵq =
∑(

qm,t (
∏

p∈Z[S]p
m(p))t

∣∣ Ym ∈ F(Z[S]), t ∈ S, (Ym)∨ t = q∨
)
,

in particular
ϵ (Yp, 1) = p .

The multi-Z[S]-module G is also a multi-V Z[S]-module, on which

q • x = (ϵq) • x = x(q
∨)

for all q ∈ V Z[S] and x ∈ G.

3. 1-cocycles. We prove that Z1
Q(S,G)

∼= C1
C (S,G).

First, let u ∈ qZ2(S,G) be a 1-cocycle, so that

u ◦ ϵ = û .

Recall that
û (Yp, 1) = u (p)

for all p ∈ Z[S].
Since ϵ and û preserve existing sums and the action of S, then so does u. In

detail, for all p, q ∈ Z[S] and t ∈ S we have

u (pt) = u
(
(ϵ (Yp, 1)

t
)

= u ϵ
(
(Yp, 1)

t
)

= û
(
(Yp, 1)

t
)

=
(
û (Yp, 1)

)
t

= (u (p))t

and, if p∨ = q∨,

u (p+ q) = u
(
ϵ (Yp, 1) + ϵ (Yq, 1)

)
= u ϵ

(
(Yp, 1) + (Yq, 1)

)
= û

(
(Yp, 1) + (Yq, 1)

)
= û (Yp, 1) + û (Yq, 1)

= u (p) + u (q) .

Hence, if

p =
∑(

pm,t (X
m, t)

∣∣ Xm ∈ F(S), t ∈ S, (Xm)∨ t = p∨
)
,
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then

u (p) =
∑(

pm,t u (X
m, t)

∣∣ Xm ∈ F(S), t ∈ S, (Xm)∨ t = p∨
)
.

For all p, q ∈ Z[S] we also have

u (pq) = u
(
ϵ (Yp, 1) ϵ (Yq, 1)

)
= u ϵ

(
ϵ (Yp, 1) (Yq, 1)

)
= û

(
(Yp, 1) (Yq, 1)

)
= (Yp, 1) û (Yq, 1) + (Yq, 1) û (Yp, 1)

= (Yq, 1)u (p) + (Yp, 1)u (q) = u (p)(q
∨) + u (q)(p

∨) .

Since (1, 1)∨ = 1 ∈ S this implies u (1, 1) = u
(
(1, 1)(1, 1)

)
= u (1, 1) + u (1, 1)

and
u (1, 1) = 0 .

Hence
u (1, t) = u ((1, 1)t) = (u (1, 1))t = 0

for all t ∈ S. Moreover, for every p1, p2, . . . , pn ∈ Z[S], induction on n > 0
yields

u (p1p2 · · · pn) =
∑

i=1,...,n u (pi)
ci , where

ci = (p1 · · · pi−1 pi+1 · · · pn)∨ .

In particular,

u (Xn
a , 1) = nu (Xa, 1)

(an−1) ,

and

u (Xm, 1) = u
(∏

a∈S, m(a)>0X
m(a)
a , 1) =

∑
a∈S, m(a)>0m(a)u (Xa, 1)

ca ,

where

ca =
(
am(a)−1 ∏

b∈S, b ̸=a (X
m(b)
b , 1)

)∨ = am(a)−1
∏

b∈S, b ̸=a b
m(b) .

Then u (Xm, t) =
(
u (Xm)

)
t.

Thus u is completely determined by the 1-cochain u : a 7−→ u (Xa, 1). This
yields an injective homomorphism Θ: u 7−→ u of Z2

Q(S,G) into C
1
C (S,G).

We show that Θ is surjective. Let v ∈ C1
C (S,G). For each Xm ∈ F(S) let

u (Xm, 1) =
∑

a∈S, m(a)>0m(a) v (a)ca , where

ca = am(a)−1 ∏
b∈S, b ̸=a b

m(b) .

Then

u (Xn, 1) =
∑

a∈S, n(a)>0 n(a) v (a)
da , where

da = an(a)−1 ∏
b∈S, b ̸=a b

n(b) , and

u (Xm+n, 1) =
∑

a∈S, m(a)+n(a)>0 (m(a) + n(a)) v (a)ea , where

ea = am(a)+n(a)−1 ∏
b∈S, b ̸=a b

m(b)+n(b)

= c(a)
∏

b∈Sb
n(b) = d(a)

∏
b∈Sb

m(b)

= c(a) (Xn)∨ = d(a) (Xm)∨ .
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and

u
(
(Xm, 1)(Xn, 1)

)
= u (Xm+n, 1)

=
(∑

a∈S, m(a)>0m(a) v (a)ca
)
((Xn)∨)

+
(∑

a∈S, n(a)>0 n(a) v (a)
da
)
((Xm)∨)

= u (Xm, 1)((X
n, 1)∨) + u (Xn, 1)((X

m, 1)∨) .

Thus, if p = (Xm, 1) and q = (Xn, 1), then

u (pq) = (u (p))(q
∨) + (u (q))(p

∨) .

Next, define

u (Xm, t) =
(
u (Xm, 1)

)
t =

∑
a∈S, m(a)>0m(a) v (a)ca t

for all Xm ∈ F(S) and t ∈ S, where ca = am(a)−1
∏

b∈S, b ̸=a b
m(b) as above.

If y = (Xm, s) ∈ F(S)+ and t ∈ S, then

u (yt) = u (Xm, st) = u (Xm, 1)st

=
(
u (Xm, 1)s

)
t =

(
u (y)

)
t .

If y = (Xm, s) and z = (Xn, t) ∈ F(S)+, then

u (yz) = u
(
u (Xm+n, 1)

)
st

= u (Xm, 1)(s (X
n, 1)∨ t) + u (Xn, 1)(t (X

m, 1)∨ s)

= u (Xm, s)((X
n, t)∨) + u (Xn, t)(X

m, s)∨)

= u (y)(z
∨) + (u (z))(t

∨) .

Finally, for each p =
∑(

py y
∣∣ y ∈ F(S)+, y∨ = p∨

)
∈ Z[S], define

u (p) =
∑(

py u(y)
∣∣ y ∈ F(S)+, y∨ = p∨

)
.

Then (u(p))∨ = p∨, so that u ∈ Map (Z[S], G). Also,

u (p+ q) = u (p) + u (q)

for all p, q ∈ Z[S] such that p∨ = q∨;

u (pt) =
∑(

py u(y
t)

∣∣ y ∈ F(S)+, y∨ = p∨
)

=
∑(

py (u(y))
t
∣∣ y ∈ F(S)+, y∨ = p∨

)
= (u (p))t

for all p ∈ Z[S] and t ∈ S; and

u (pq) =
∑(

py q (z)u(yz)
∣∣ y, z ∈ F(S)+, y∨ = p∨, z∨ = q∨

)
=

∑(
py q (z)u (y)

(z∨) + (u (z))(y
∨)

∣∣
y, z ∈ F(S)+, y∨ = p∨, z∨ = q∨

)
=

[∑(
py u(y)

∣∣ y ∈ F(S)+, y∨ = p∨
)]

(q∨)

+
[∑(

qz u(z)
∣∣ z ∈ F(S)+, z∨ = q∨

)]
(p∨)

= u (p)(q
∨) + (u (q))(p

∨)
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for all p, q ∈ Z[S].
These properties imply that u ◦ ϵ is a derivation of V Z[S]. Indeed

(u ϵ (p))∨ = (ϵ (p))∨ = p∨

for every p ∈ V Z[S];

u ϵ (pt)) = u (((ϵ p)t) = (u ϵ p)t

for all p ∈ V Z[S] and t ∈ S;

u ϵ (p+ q) = u (ϵ p+ ϵq) = u ϵ p + u ϵ q

for all p, q ∈ V Z[S] such that p∨ = q∨; and

u ϵ (pq) = u
(
(ϵ p)(ϵq)

)
= u (ϵ p)((ϵ q)

∨) + (u (ϵ q))((ϵ p)
∨) = u (ϵ p)(q

∨) + (u (ϵ q))(p
∨)

for all p, q ∈ V Z[S].
Since u ϵ (Yp, 1) = u (p) = û (Yp, 1) for all p ∈ Z[S], it follows that u ◦ ϵ = û;

and u is a 1-cocycle. Moreover, u = v by definition. Thus Θ: Z1
Q(S,G) −→

C1
C (S,G) is surjective; and Z

1
Q(S,G)

∼= C1
C (S,G).
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Notation:

x∨: the projection of x to S

F(X): free commutative monoid on X

H(X): half free commutative monoid on X

X+: X × S

Map (X,Y ): the set of all morphisms of sets over S from X to Y

A ⊣ B: set of all homogeneous linear combinations of elements of B with
coefficients in A

A□B: box product of A and B

A □∠ B: mixed product of A and B

A⊗B: tensor product of A and B

CQ, ZQ, BQ, HQ: André-Quillen cohomology

CC, ZC, BC, HC: symmetric (commutative semigroup) cohomology

Adjunctions of commutative objects over S:

sets to multisets: X+

sets to multimonoids: F(X)+

sets to multigroups: Z ⊣ X+

sets to multirings: Z[X] = Z ⊣ F(X)+

sets to multi-R-modules: R⊗ (Z ⊣ X+)

sets to multi-R-algebras: R □∠ F(X)+

multisets to multimonoids: H(X)

multisets to multigroups: Z ⊣ X
multisets to multirings: Z ⊣ H(X)

multisets to multi-R-modules: R⊗ (Z ⊣ X)

multisets to multi-R-algebras: R □∠ H(X)+

multimonoids to multirings: Z ⊣M
multimonoids to multi-R-algebras: R □∠M

multigroups to multi-R-modules: R⊗G
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