Addition to Multigroups over a commutative semigroup

Pierre Antoine Grillet Palm Bay, Florida pierreantg@gmail.com

July 15, 2022

Errata to subsection 6.6.

6. Free multirings on multisets. The free commutative multiring over S on a multiset X over S is the free commutative multiring $\mathbb{Z}[X] = \mathbb{Z} \dashv \mathbb{H}(X)$ over S on the free commutative multimonoid $\mathbb{H}(X)$ over S on X.

As in Section 4, $\mathbb{H}(X)$ is the half-free commutative monoid

$$\mathbb{H}(X) = \mathbb{F}(X)/\approx$$

on X, where \approx is the smallest congruence on $\mathbb{F}(X)$ such that $X_x^t X_y \approx X_x X_y^t$ for all $x, y \in X$ and $t \in S$. The typical element Y of $\mathbb{H}(X)$ is the equivalence class $Y = [X_1 X_2 \cdots X_n]$ of a commutative product $X_1 X_2 \cdots X_n$ of elements of $\overline{X} = \{X_x \mid x \in X\}$; equivalently, $Y = [X^m]$ for some $X^m \in \mathbb{F}(X)$.

Accordingly, the typical element of $\mathbb{Z} \dashv \mathbb{H}(X)$ is a homogeneous linear combination

$$p = \sum (p_Y Y \mid Y \in \mathbb{H}(X), Y^{\vee} = p^{\vee}).$$

If X only has one element, or if $x^t = x$ for all x, t, then $\mathbb{H}(X) = \mathbb{F}(X)$; otherwise \approx is not the equality on $\mathbb{F}(X)$, hence an element Y of $\mathbb{H}(X)$ cannot be written in the form $Y = [X^m]$ for some unique monomial X^m .

1 Derivations

In all that follows, S is a commutative monoid.

1. Multimonoids. In this section, M is a commutative multimonoid over S. A multi-M-module over S is an abelian multigroup A over S together with

an action of M on A such that

$$(xa)^{\vee} = x^{\vee} a^{\vee},$$

 $(xa)^t = x a^t = x^t a,$
 $x(ya) = (xy) a,$ and
 $x(a+b) = xa + xb$ if $a+b$ is defined

for all $x, y \in M$, $t \in S$, and $a, b \in A$.

For example, if R is a commutative multiring over S, then every multi-R-module over S remains an multi-R-module over S when R is viewed as a commutative multimonoid over S. Conversely, if A is a multi-M-module over S, then A is a multi- $(\mathbb{Z} \dashv M)$ -module over S, on which $p = \sum (p_x x \mid x \in M) \in \mathbb{Z} \dashv M$ acts by

$$pa = \sum (p_x xa \mid x \in M).$$

The categories of multi-M-modules over S and multi- $(\mathbb{Z} \dashv M)$ -modules over S are therefore (thereby?) isomorphic.

A prederivation of a commutative multimonoid M over S into a multi-M-module A over S is a mapping $D: M \longrightarrow A$ such that

$$D(x)^{\vee} = x^{\vee}$$
,
 $D(x^t) = D(x)^t$, and
 $D(xy) = x D(y) + y D(x) \in A$.

for all $x, y \in M$ and $t \in S$. In particular, D is a morphism of multisets over S. Also, D(1) = D(11) = D(1) + D(1), so that D(1) = 0, whence $D(1^t) = D(1)^t = 0$ for all $t \in S$.

The set PDer (M, A) of all derivations of M into A is an abelian group under pointwise addition, on which M acts (pointwise) by:

$$(xD)(y) = xD(y)$$

for all $x, y \in M$. Then x(D' + D") = xD' + xD") and x(yD) = (xy)D for all $x, y \in M$ and $D, D', D" \in Der(M, A)$. OK, that makes Der(M, A) an M-module, but there are enough new structures already, so I'll skip the formal definition of M-modules.

2. Half-free multimonoids. When X is a multiset over S, recall that $\mathbb{H}(X)$ is the (half)free commutative multimonoid over S over X. In describing $\mathbb{H}(X)$ we dispense with $\overline{X} = \{X_x \mid x \in X\}$ and write the elements of the free commutative monoid $\mathbb{F}(X)$ on the set X as commutative products of elements of X. As a monoid,

$$\mathbb{H}(X) = \mathbb{F}(X)/\approx$$

where \approx is the smallest congruence on $\mathbb{F}(X)$ such that

$$x^t y \approx x y^t$$

for all $x, y \in X$ and $t \in S$. This writes the elements of $\mathbb{H}(X)$ as equivalence classes $[x_1x_2\cdots x_n]$ of commutative products of elements of X. Concatenation yields products in $\mathbb{H}(X)$, and, for every $x_1, x_2, \ldots, x_n \in X$ and $t \in S$,

$$[x_1x_2\cdots x_n]^{\vee} = x_1^{\vee}x_2^{\vee}\cdots x_n^{\vee}$$

and

$$[x_1 x_2 \cdots x_n]^t = x_1 \cdots x_i^t \cdots x_n,$$

for any i.

The canonical map $\eta: X \longrightarrow \mathbb{H}(X)$ sends $x \in X$ to $[x] \in \mathbb{H}(X)$. It is a morphism of multisets over S.

3. Theorem. For every multiset X over S and multi- $\mathbb{H}(X)$ -module A over S there is a natural isomorphism

$$\Theta$$
: PDer ($\mathbb{H}(X)$, A) \cong Map (X , A)

that sends a prederivation D of $\mathbb{H}(X)$ into A to

$$d = \Theta(D) = D \circ \eta \colon X \xrightarrow{\eta} \mathbb{H}(X) \xrightarrow{D} A$$

so that dx = D[x].

Proof: First note that $d = D \circ \eta$ is a morphism of multisets over S. Θ is injective. For every $D \in \operatorname{PDer}(\mathbb{H}(X), A)$, induction yields

$$D[x_1x_2\cdots x_n] = \sum_i ([x_1\cdots x_{i-1} \ x_{i+1}\cdots x_n] \ D[x_i])$$

for all $n \geq 0$ and $x_1, x_2, \ldots, x_n \in X$ (with $x_1 x_2 \cdots x_n = 1$ if n = 0 so that $D[x_1 x_2 \cdots x_n, 1] = 0$). If $d = \Theta(D) = 0$, then $D[x_1 x_2 \cdots x_n] = 0$ for all $n \geq 0$ and $x_1, x_2, \ldots, x_n \in \overline{X}$ and D = 0.

In what follows we denote

$$x_1 \cdots x_{i-1} \ x_{i+1} \cdots x_n$$
 by $x_1 x_2 \cdots x_n(-i)$.

 Θ is surjective. Let $d \in \text{Map}(X, A)$, so that $(dx)^{\vee} = x^{\vee}$ and $d(x^t) = (dx)^t$ for all $x \in X$ and $t \in S$. We want

$$D[x_1x_2\cdots x_n] = \sum_i ([x_1x_2\cdots x_n(-i)] d(x_i).$$

Let j < k, let $x_1, x_2, \ldots, x_n \in X$, and let $t \in S$, so that

$$x_1 \cdots x_j^t \cdots x_k \cdots x_n \approx x_1 \cdots x_j \cdots x_k^t \cdots x_n$$
.

Let

$$y_j = x_j^t$$
, $y_i = x_i$ if $i \neq j$ and $z_k = x_k^t$, $z_i = x_i$ if $i \neq k$,

so that

$$[y_1 y_2 \cdots y_n] = [x_1 \cdots x_j^t \cdots x_k \cdots x_n],$$

$$[z_1 z_2 \cdots z_n] = [x_1 \cdots x_j \cdots x_k^t \cdots x_n],$$

$$[y_1 y_2 \cdots y_n] = [z_1 z_2 \cdots z_n],$$

$$[y_1 y_2 \cdots y_n(-k)] = [z_1 z_2 \cdots z_n(-k)]^t, \text{ and}$$

$$[y_1 y_2 \cdots y_n(-j)]^t = [z_1 z_2 \cdots z_n(-j)].$$

In the multi- $\mathbb{H}(X)$ -module A over S, we have $(pw)^t = p^t w = p z^t$ for all $p \in \mathbb{Z}[X], w \in M$, and $t \in S$. Hence

$$\sum_{i} ([y_{1}y_{2} \cdots y_{n}(-i)] d(y_{i}))$$

$$= \sum_{i \neq j,k} ([y_{1}y_{2} \cdots y_{n}(-i)] d(x_{i}))$$

$$+ [y_{1}y_{2} \cdots y_{n}(-j)] d(x_{j}^{t}) + [y_{1}y_{2} \cdots y_{n}(-k)] d(x_{k})$$

$$= \sum_{i \neq j,k} ([z_{1}z_{2} \cdots z_{n}(-i)] d(x_{i}))$$

$$+ [y_{1}y_{2} \cdots y_{n}(-j)]^{t} d(x_{j}) + [z_{1}z_{2} \cdots z_{n}(-k)]^{t} d(x_{k})$$

$$= \sum_{i \neq j,k} ([z_{1}z_{2} \cdots z_{n}(-i)] d(z_{i}))$$

$$+ [z_{1}z_{2} \cdots z_{n}(-j)] d(z_{j}) + [z_{1}z_{2} \cdots z_{n}(-k)] d(x_{k}^{t})$$

$$= \sum_{i} ([z_{1}z_{2} \cdots z_{n}(-i)] d(z_{i})).$$

Therefore $y_1y_2\cdots y_n\approx z_1z_2\cdots z_n$ implies

$$\sum_{i} ([y_1 y_2 \cdots y_n(-i)] d(y_i)) = \sum_{i} ([z_1 z_2 \cdots z_n(-i)] d(z_i))$$

and a mapping $D \colon \mathbb{H}(X) \longrightarrow M$ is well defined by

$$D[x_1x_2\cdots x_n] = \sum_i ([x_1x_2\cdots x_n(-i)] d(x_i)).$$

In particular, D[x] = dx for all $x \in X$.

D is a prederivation; this will complete the proof. Since d is a morphism of multisets over S we have $(dx)^{\vee} = x^{\vee}$ and $d(x^t) = (dx)^t$ for all x, t. Hence $([x_1x_2\cdots x_n(-i)]\ d(x_i))^{\vee} = [x_1x_2\cdots x_n]^{\vee}$ and

$$D[x_1x_2\cdots x_n])^{\vee} = [x_1x_2\cdots x_n]^{\vee}.$$

Moreover,

$$D([x_1x_2\cdots x_n]^t) = D[x_1x_2\cdots x_{n-1}x_n^t]$$

$$= \sum_{i< n} ([x_1x_2\cdots x_{n-1}x_n^t(-i)]d(x_i)) + [x_1x_2\cdots x_{n-1}]d(x_n^t)$$

$$= \sum_{i< n} ([x_1x_2\cdots x_{n-1}x_n(-i)]d(x_i))^t + ([x_1x_2\cdots x_{n-1}]d(x_n))^t)$$

$$= (D[x_1x_2\cdots x_n])^t,$$

so that $D(y^t) = (D(y))^t$ for all $y \in \mathbb{H}(X)$, and

$$D([x_1 \cdots x_m][y_1 \cdots y_n])$$

$$= \sum_i ([x_1 \cdots x_m(-i)][y_1 \cdots y_n] d(x_i))$$

$$+ \sum_j ([x_1 \cdots x_m][y_1 \cdots y_n(-j)] d(y_j))$$

$$= [x_1 \cdots x_m] D[y_1 \cdots y_n] + [y_1 \cdots y_n] D[x_1 \cdots x_m],$$

so that D(yz) = y D(z) + z D(y) for all $y, z \in \mathbb{H}(X)$.

Thus D is a prederivation.

4. Multirings. As before, a *derivation* of a commutative multiring R over S into a multi-R-module M over S is a mapping $D: R \longrightarrow M$ such that

$$D(x)^{\vee} = x^{\vee}$$
 for all x ,
 $D(x^t) = D(x)^t$ for all x, t ,
 $D(x+y) = D(x) + D(y)$ whenever $x+y$ is defined, and
 $D(xy) = x D(y) + y D(x)$ for all $x, y \in A$;

In particular, D is a morphism of abelian multigroups over S, and a prederivation of R, viewed as a commutative multimonoid over S, into M, viewed as a multi-M-module over S. As before, D(1) = 0 and $D(1^t) = D(1)^t = 0$, so that D(r1) = r D(1) = 0, for all $r \in R$ and $t \in S$.

The set Der(R, M) of all derivations of R into M is an R-module under pointwise addition and action of R ((rD)(x) = r D(x) for all $x, y \in R$).

Now let X be a multiset over S and let

$$\mathbb{Z}[X] = \mathbb{Z} \dashv \mathbb{H}(X)$$

denote the free commutative multiring over S on the multiset X, which is also the free commutative multiring over S on the commutative multimonoid $\mathbb{H}(X)$ over S. The typical element of $\mathbb{Z}[X]$ is a homogeneous linear combination

$$p = \sum (p_y y \mid y \in \mathbb{H}(X), y^{\vee} = p^{\vee})$$

of elements of $\mathbb{H}(X)$.

The multiring comes with a canonical map

$$\eta \colon X \xrightarrow{\eta} \mathbb{H}(X) \xrightarrow{\eta} \mathbb{Z}[X]$$

which is a morphism of multisets over S and sends $x \in X$ to $[x] \in \mathbb{H}(X) \subseteq \mathbb{Z}[X]$.

5. Theorem. For every set X over S and multi- $\mathbb{Z}[X]$ -module M over S there is a natural isomorphism

$$\Theta \colon \operatorname{Der} (\mathbb{Z}[X], M) \cong \operatorname{Map} (X, M)$$

that sends a derivation D of $\mathbb{Z}[X]$ into M to

$$d = \Theta(D) = D \circ \eta \colon X \xrightarrow{\eta} \mathbb{Z}[X] \xrightarrow{D} M$$

so that dx = D[x].

This is proved by composing the isomorphism

$$\operatorname{PDer}(\mathbb{H}(X), M) \cong \operatorname{Map}(X, M)$$

in Theorem 1.3 with a similar isomorphism

$$\Psi \colon \operatorname{Der} (\mathbb{Z}[X], M) \cong \operatorname{PDer} (\mathbb{H}(X), M).$$

Note that every multi- $\mathbb{Z}[X]$ -module M is in particular a multi- $\mathbb{H}(X)$ -module.

If $D: \mathbb{Z}[X] \longrightarrow M$ is a derivation of $\mathbb{Z}[X]$, then ΨD is the restriction of D to $\mathbb{H}(X) \subseteq \mathbb{Z}[X]$, which is a prederivation of $\mathbb{H}(X)$.

 Ψ is injective. Indeed, if D(y) = 0 for all $y \in \mathbb{H}(X)$, and $p = \sum (p_y y \mid y \in \mathbb{H}(X), y^{\vee} = p^{\vee}) \in \mathbb{Z}[X]$, then

$$D(p) = \sum (p_y D(y) | y \in \mathbb{H}(X), y^{\vee} = p^{\vee}) = 0.$$

 Ψ is surjective. Let M be a multi- $\mathbb{Z}[X]$ -module over S and let $d: \mathbb{H}(X) \longrightarrow M$ be a prederivation of $\mathbb{H}(X)$. For each $p = \sum (p_y y \mid y \in \mathbb{H}(X), y^{\vee} = p^{\vee}) \in \mathbb{Z}[X]$, define

$$D(p) = \sum (p_y d(y) \mid y \in \mathbb{H}(X), y^{\vee} = p^{\vee}).$$

In particular, D[x] = d[x] for all $x \in X$. We have $D(p)^{\vee} = p^{\vee}$, since $d(y)^{\vee} = y^{\vee}$ for all $y \in \mathbb{H}(X)$, and

$$D(p^{t}) = \sum (p_{y} d(y^{t}) | y \in \mathbb{H}(X), y^{\vee} = p^{\vee})$$

=
$$\sum (p_{y} (d(y))^{t} | y \in \mathbb{H}(X), y^{\vee} = p^{\vee}) = (D(p))^{t}.$$

Moreover, if

$$p = \sum (p_y y \mid y \in \mathbb{H}(X), y^{\vee} = p^{\vee})$$
 and $q = \sum (q_z z \mid z \in \mathbb{H}(X), z^{\vee} = q^{\vee}) \in \mathbb{Z}[X],$

then
$$D(p+q) = D(p) + D(q)$$
 (if $p^{\vee} = q^{\vee}$) and

$$D(pq) = D\left[\sum (p_{y} q_{z} (yz) \mid y, z \in \mathbb{H}(X), \ y^{\vee} = p^{\vee}, \ z^{\vee} = q^{\vee})\right]$$

$$= \sum (p_{y} q_{z} d(yz) \mid y, z \in \mathbb{H}(X), \ y^{\vee} = p^{\vee}, \ z^{\vee} = q^{\vee})$$

$$= \sum (p_{y} q_{z} (y d(z) + z d(y)) \mid y, z \in \mathbb{H}(X), \ y^{\vee} = p^{\vee}, \ z^{\vee} = q^{\vee})$$

$$= \sum (p_{y} q_{z} y d(z) \mid y, z \in \mathbb{H}(X), \ y^{\vee} = p^{\vee}, \ z^{\vee} = q^{\vee})$$

$$+ \sum (p_{y} q_{z} z d(y) \mid y, z \in \mathbb{H}(X), \ y^{\vee} = p^{\vee}, \ z^{\vee} = q^{\vee})$$

$$= \left[\sum (p_{y} y \mid y \in \mathbb{H}(X), \ y^{\vee} = p^{\vee})\right]$$

$$= \left[\sum (q_{z} d(z) \mid z \in \mathbb{H}(X), \ z^{\vee} = q^{\vee})\right]$$

$$= \left[\sum (p_{y} d(y) \mid y \in \mathbb{H}(X), \ y^{\vee} = p^{\vee})\right]$$

$$= p D(q) + q D(p).$$

Thus D is a derivation.

2 Cohomology of multirings

In this section, S is a commutative monoid and R is a commutative multiring over S.

1. The comonad. The adjunction of multisets over S to commutative multirings over S begets a comonad (V, ϵ, ν) in which V sends a commutative multiring R over S to the free commutative multiring $VR = \mathbb{Z}[R] = \mathbb{Z} \dashv \mathbb{H}(R)$ over S on the multiset R over S.

Every morphism $\varphi \colon R \longrightarrow T$ of multisets over S induces a morphism $V\varphi$ of commutative multirings over S from $\mathbb{Z}[R]$ to $\mathbb{Z}[T]$ that sends

$$p = \sum (p_y y \mid y \in \mathbb{H}(R), y^{\vee} = p^{\vee})$$

to

$$(V\varphi)(p) = \sum (p_y(V\varphi)(y) \mid y \in \mathbb{H}(R), y^{\vee} = p^{\vee}),$$

where

$$(V\varphi)[r_1r_2\cdots r_n] = [(\varphi r_1)(\varphi r_2)\cdots(\varphi r_n)],$$

as calculated in $\mathbb{Z}[T]$, for all $r_1, r_2, \ldots, r_n \in R$. In particular,

$$(V\varphi)[r] = [\varphi r]$$

for all $r \in R$.

The counit $\epsilon: VR \longrightarrow R$ is the evaluation morphism of commutative multirings over S that sends [r] to r, sends $y = [r_1r_2 \cdots r_n]$ to

$$\epsilon \left[r_1 r_2 \cdots r_n \right] = r_1 r_2 \cdots r_n$$

as calculated in R, and sends $p = \sum (p_y y \mid y \in \mathbb{H}(R), y^{\vee} = p^{\vee})$ to

$$\epsilon(p) = \sum (p_y \epsilon(y) \mid y \in \mathbb{H}(R), y^{\vee} = p^{\vee}).$$

The comultiplication ν assigns to R the morphism $\nu_R = V\eta \colon VR \longrightarrow VVR$ induced by the adjunction unit $\eta \colon R \longrightarrow VR$, viewed as a morphism of multisets over S.

If M is a multi-R-module over S, then the action of R on M induces an action of VR on M in which

$$px = \epsilon(p) x$$

for every $p \in VR$ and $x \in M$, which makes M a multi-VR-module since ϵ is a morphism of commutative multirings over S.

2. The resolution. For every commutative multiring R over S there is now an augmented simplicial commutative multiring R^* with objects $R^0 = R$ and $R^n = V^n R$ (where $n \ge 0$ and $V^n = V \circ V \circ \cdots \circ V$), face maps

$$\epsilon_{n,i} = V^i \epsilon V^{n-i} R \colon R^{n+1} \longrightarrow R^n \ (i = 0, 1, \dots, n),$$

augmentation $\epsilon = \epsilon_{0,0} \colon VR \longrightarrow R$, and degeneracy maps

$$\nu_{n,i} = V^i \nu V^{n-i-1} R : R^{n-1} \longrightarrow R^n \ (i = 0, 1, \dots, n-1),$$

that satisfy the simplicial identities.

Let M be a multi-R-module over S, hence also a multi-VR-module over S and a multi- R^n -module over S for every $n \geq 0$. Applying to R^* the contravariant functor $\operatorname{Der}(-,M)$ yields an augmented cosimplicial R-module $\operatorname{Der}(R^*,M)$ with objects $\operatorname{Der}(R^0,M) = \operatorname{Der}(R,M)$ and $\operatorname{Der}(R^n,M) = \operatorname{Der}(V^nR,M)$ if n > 0, face maps

$$d_{n,i} = \epsilon_{n,i}^* = \operatorname{Der}(\epsilon_{n,i}, M) : \operatorname{Der}(R^n, M) \longrightarrow \operatorname{Der}(R^{n+1}, M)$$

for $i = 0, 1, \ldots, n$, augmentation

$$d_{0,0} = \epsilon^* = \operatorname{Der}(\epsilon, M) : \operatorname{Der}(R, M) \longrightarrow \operatorname{Der}(VR, M),$$

and degeneracy maps $\operatorname{Der}(\nu_{n,i}, M)$ $(i = 0, 1, \dots, n-1)$, that satisfy the cosimplicial identities.

A coboundary homomorphism

$$\delta_n \colon \operatorname{Der}(\mathbb{R}^n, M) \longrightarrow \operatorname{Der}(\mathbb{R}^{n+1}, M)$$

is then defined by

$$\delta_n = d_{n,0} - d_{n,1} + d_{n,2} - \dots + (-1)^n d_{n,n}$$
.

In particular, $\delta_0 = d_{0,0}$. The simplicial identities imply $\delta_{n+1} \circ \delta_n = 0$ for all $n \geq 0$. This yields an augmented cochain complex of R-modules

$$0 \longrightarrow \operatorname{Der}(R, M) \xrightarrow{\epsilon^*} \operatorname{Der}(VR, M) \xrightarrow{\delta_1} \dots$$
$$\longrightarrow \operatorname{Der}(V^n R, M) \xrightarrow{\delta_n} \operatorname{Der}(V^{n+1} R, M) \dots$$

The André-Quillen cohomology of the commutative multiring R over S with coefficients in the multi-R-module M over S assigns to R and M the R-modules $H^0(R,M) = \operatorname{Ker} \delta_0 / \operatorname{Im} e$ and $H^n(R,M) = \operatorname{Ker} \delta_n / \operatorname{Im} \delta_{n-1}$, where n > 0.

Since $VR = \mathbb{Z}[R]$, the natural isomorphisms $\operatorname{Der}(\mathbb{Z}[X], M) \cong \operatorname{Map}(X, M)$ yield an isomorphic complex of R-modules

$$0 \longrightarrow \operatorname{Der}(R, M) \xrightarrow{e} \operatorname{Map}(R, M) \xrightarrow{d_1} \dots$$
$$\longrightarrow \operatorname{Map}(V^{n-1}R, M) \xrightarrow{d_n} \operatorname{Map}(V^nR, M) \dots$$

whose homology modules are natural isomorphic to the André-Quillen cohomology modules of R with coefficients in the multi-R-module M. In particular, $H^1(R,M) \cong \operatorname{Ker} d_1 / \operatorname{Im} e$. Without the augmentation, $H^1(R,M)$ would be simply $\operatorname{Ker} d_1$.

3. Maps. The augmentation $e: \operatorname{Der}(R,M) \longrightarrow \operatorname{Map}(R,M)$ is the composite

$$e \colon \operatorname{Der}(R, M) \xrightarrow{\epsilon^*} \operatorname{Der}(VR, M) \xrightarrow{\cong} \operatorname{Map}(R, M)$$

of $\epsilon^* = \operatorname{Der}(\epsilon, M)$, which sends $D \in \operatorname{Der}(R, M)$ to $D \circ \epsilon$, and the isomorphism $\operatorname{Der}(VR, M) \longrightarrow \operatorname{Map}(R, M)$, which sends $D \circ \epsilon$ to the mapping $r \longmapsto (D \circ \epsilon)[r] = D(r)$. Thus e(D) is D viewed as simply a mapping of R into M. Next, $d_{n,i} \colon \operatorname{Map}(V^{n-1}R, M) \longrightarrow \operatorname{Map}(V^nR, M)$ is the composite

$$d_{n,i} \colon \operatorname{Map}(V^{n-1}R, M) \xrightarrow{\cong} \operatorname{Der}(V^{n}R, M)$$
$$\xrightarrow{\epsilon_{n,i}^{*}} \operatorname{Der}(V^{n+1}R, M) \xrightarrow{\cong} \operatorname{Map}(V^{n}R, M)$$

and sends a map u from $V^{n-1}R$ to M to the derivation \widehat{u} of V^nR such that $\widehat{u}[x] = u(x)$ for all $x \in V^{n-1}R$, thence to $\epsilon_{n,i}^*(\widehat{u}) = \widehat{u} \circ \epsilon_{n,i}$, thence to the corresponding map from V^nR to M.

If i = 0, then $\epsilon_{n,0} = e_{V^n R}$ and

$$(\widehat{u} \circ \epsilon_{V^n R})[x] = \widehat{u}(\epsilon_{V^n R}[x]) = \widehat{u}(x)$$

for every $x \in V^n R$. Hence $d_{n,0} u$ sends $x \in VR$ to $\widehat{u}(x)$ and

$$d_{n,0} u = \widehat{u}.$$

If i > 0, then $\epsilon_{n,i} = V \epsilon_{n-1,i-1}$ and

$$(\widehat{u} \circ V \epsilon_{n-1, i-1})[x] = \widehat{u}(V \epsilon_{n-1, i-1}[x]) = \widehat{u}[\epsilon_{n-1, i-1}(x)] = u(\epsilon_{n-1, i-1}(x))$$

for every $x \in V^n R$. Hence $d_{n,i} u$ sends $x \in V^n R$ to $u(\epsilon_{n-1,i-1}(x))$ and

$$d_{n,i} u = u \circ \epsilon_{n-1, i-1}.$$

In particular, $d_{1,1} u = u \circ \epsilon_R$.

4. Theorem. $H_{O}^{1}(R, M) = 0$.

Indeed let $u \in \operatorname{Map}(R, M)$ be an André-Quillen 1-cocycle. By the above, $\delta u = d_{1,0} u - d_{1,1} u = \widehat{u} - (u \circ \epsilon) = 0$, so that $u \circ \epsilon$ is a derivation. Since $\epsilon \colon VR \longrightarrow R$ is surjective it follows that u is a derivation: for instance, for all $r, s \in R$,

$$u(rs) = u(\epsilon[r] \epsilon[s]) = u(\epsilon[rs])$$

= $r u(\epsilon[s]) + s u(\epsilon[r]) = r u(s) + s u(r)$.

Therefore u is an André-Quillen 1-coboundary.

5. What's next? We want to get at the cohomology of S (in dimensions $n \geq 2$) by way of the cohomology of $R = \mathbb{Z} \dashv \mathbb{H}(X)$ for some suitable multiset X that depends on S.

There are two obvious candidates for X: one is the multiset S over itself, with projection $a^{\vee} = a$ and action $a^t = at$. The other is $S^+ = S \times S$, the free multiset over S on S as a set over itself, with projection $(a,t)^{\vee} = at$ and action $(a,t)^u = (a,tu)$.

Every abelian multigroup G over S can serve as coefficients in the cohomology of $\mathbb{Z} \dashv \mathbb{H}(S)$. Indeed $\mathbb{H}(S)$ acts on every abelian multigroup G over S by

$$px = x^{(p^{\vee})}$$

for every $x \in G$ and $p \in \mathbb{H}(S)$. In particular, $[a] x = x^a$ and 1x = x. Then

$$\begin{array}{lll} (px)^{\vee} &=& (x^{(p^{\vee})})^{\vee} &=& p^{\vee} \, x^{\vee} \,, \\ (px)^t &=& (x^{(p^{\vee})})^t &=& x^{p^{\vee} \, t} &=& p \, x^t \,, \\ p^t \, x &=& x^{(p^t)^{\vee}} &=& x^{p^{\vee} \, t} &=& p \, x^t \,, \\ p \, (x+y) &=& (x+y)^{(p^{\vee})} &=& x^{(p^{\vee})} + y^{(p^{\vee})} &=& p \, x + p \, y \\ & & \text{whenever} \ \, x+y \ \, \text{is defined} \,, \ \, \text{and} \\ p \, (qx) &=& (x^{(q^{\vee})})^{(p^{\vee})} &=& x^{(pq)^{\vee}} &=& p \, q \cdot x \,, \end{array}$$

for all $p, q \in \mathbb{H}(S)$ and $x, y \in G$.

If now $p \in \mathbb{Z} \dashv \mathbb{H}(S)$,

$$p = \sum (p_y y \mid y \in \mathbb{H}(S), y^{\vee} = p^{\vee}),$$

then px is well defined by

$$px = \sum (p_y(yx) | y \in \mathbb{H}(S), y^{\vee} = p^{\vee}) = n(p) x^{(p^{\vee})},$$

where

$$n(p) = \sum (p_y \mid y \in \mathbb{H}(S), \ y^{\vee} = p^{\vee}).$$

Then (p+q)x = px + qx whenever $p^{\vee} = q^{\vee}$, since n(p+q) = n(p) + n(q), and the five properties above also hold for all $p, q \in \mathbb{Z}[S]$ and $x, y \in S$.

With this action of $\mathbb{Z}[S]$, the abelian multigroup G becomes a multi- $\mathbb{Z}[S]$ -module over S.

For every abelian multigroup G over S there is a natural isomorphism

$$\operatorname{Map}(S,G) \cong G_1.$$

Indeed, if $f: S \longrightarrow G$ is a morphism of multisets over S, then $f(a^t) = (f(a))^t$ for all $a, t \in S$; since $a^t = at$ we have

$$f(a) = f(1^a) = (f(1))^a,$$

so that f is uniquely determined by $f(1) \in G_1$. Conversely, if $g \in G_1$, then

$$f: a \longmapsto q^a$$

is a morphism of multisets over S from S to G: indeed $f(a)^{\vee} = a$ and $f(a^t) = g^{at} = (f(a))^t$ for all a, t.

Theorem 1.5 then yields Der $(\mathbb{Z} \dashv \mathbb{H}(S), G) \cong G_1$.

It follows that S is not a suitable choice for X.

6. What's still next? The next choice is $\mathbb{Z} \dashv \mathbb{H}(S^+)$.

Every abelian multigroup G over S can serve as coefficients in the cohomology of $\mathbb{Z} \dashv \mathbb{H}(S^+)$. Indeed $\mathbb{H}(S^+)$ acts on every abelian multigroup G over S by

$$px = x^{(p^{\vee})}$$

for every $x \in G$ and $p \in \mathbb{H}(S^+)$. In particular, $[(a,t)]x = x^{at}$ and [(1,1)]x = x. As before, $(px)^{\vee} = p^{\vee}x^{\vee}$, $(px)^t = p^t x = px^t$, p(qx) = (pq)x, and p(x+y) = px + py if x + y is defined, for all $p, q \in \mathbb{H}(S^+)$, $t \in S$, and $x, y \in G$.

If now $p \in \mathbb{Z} \dashv \mathbb{H}(S^+)$,

$$p = \sum (p_y y \mid y \in \mathbb{H}(S), y^{\vee} = p^{\vee}),$$

then px is well defined by

$$px = \sum (p_y(yx) | y \in \mathbb{H}(S), y^{\vee} = p^{\vee}) = n(p) x^{(p^{\vee})},$$

where

$$n(p) = \sum (p_y \mid y \in \mathbb{H}(S^+), \ y^{\vee} = p^{\vee}).$$

Then (p+q)x = px + qx whenever $p^{\vee} = q^{\vee}$, since n(p+q) = n(p) + n(q), and the five properties above also hold for all $p, q \in \mathbb{Z}[S]$ and $x, y \in S$.

With this action of $\mathbb{Z}[S]$, the abelian multigroup G over S becomes a multi $\mathbb{Z} \dashv \mathbb{H}(S^+)$ -module over S.

For every abelian multigroup G over S there is a natural isomorphism

$$\operatorname{Map}(S^+, G) \cong C_C^1(S, G).$$

Indeed, if $f: S^+ \longrightarrow G$ is a morphism of multisets over S, then $f(y^t) = (f(y))^t$ for all $y \in S^+$ and $t \in S$; since $(a, t)^u = (a, tu)$ we have

$$f(a,t) = f((a,1)^t) = (f(a,1))^t,$$

so that f is uniquely determined by the (symmetric) 1-cochain $g: a \longmapsto f(a,1) \in G_a$. Conversely, given $g \in C^1_C(S,G)$, so that $g(a) \in G_a$ for all $a \in S$, define

$$f(a,t) = g(a)^t$$

for all $a, t \in S$. In particular, f(a, 1) = g(a). Then $f(a, t)^{\vee} = at = (a, t)^{\vee}$ and

$$f((a,t)^u) = f(a,tu) = g(a)^{tu} = (f(a,t))^u$$

for all $a, t, u \in S$, so that f is a morphism of multisets over S.

Theorem 1.5 then yields Der $(\mathbb{Z} \dashv \mathbb{H}(S^+), G) \cong C_C^1(S, G)$.

It follows that S^+ could be a suitable choice for X. But when I tried it I obtained no result that was specific to S or $\mathbb{Z} \dashv \mathbb{H}(S^+)$, only the results in the next sections that apply to all commutative multirings.

3 Weak 2-cocycles

In this section, S is a commutative monoid, R is a commutative multiring over S, and M is a multi-R-module over S.

1. Cochains. Like André-Quillen *n*-cochains, which are morphisms of soss $V^{n-1}R \longrightarrow M$, a (regular) *n*-cochain u of a set X over S with values in a set G over S, where $n \ge 1$, is a morphism $u: X^{(n)} \longrightarrow G$ of sets over S, where

$$X^{(n)} = X \times X \times \cdots \times X \quad (n \text{ times})$$

and assigns to each $x_1, x_2, \ldots, x_n \in X$ some $u(x_1, x_2, \ldots, x_n) \in G$ such that

$$u(x_1, x_2, ..., x_n)^{\vee} = (x_1^{\vee})(x_2^{\vee}) \cdots (x_n^{\vee}).$$

The n-cochains of X with values in G constitute a set

$$C^{n}(X,G) = \operatorname{Map}(X^{(n)}, G).$$

If G is an abelian multigroup over S (and not just a set over S), then n-cochains of X with values in G can be added pointwise: if $u, v \in C^n(X, G)$, then

$$u(x_1, x_2, ..., x_n)^{\vee} = v(x_1, x_2, ..., x_n)^{\vee}$$

for all $x_1, x_2, \ldots, x_n \in X$, so that

$$(u+v)(x_1, x_2,..., x_n)^{\vee} = u(x_1, x_2,..., x_n)^{\vee} + v(x_1, x_2,..., x_n)^{\vee}$$

is defined in G. Then $C^n(X, G)$ is a abelian group under pointwise addition. In what follows we do not venture beyond n = 1 or n = 2.

2. Cocycles. In the André-Quillen cohomology of R we know from Part 2.3 that an André-Quillen 2-cocycle is a 2-cochain $u: VR \longrightarrow M$ such that

$$u \circ \epsilon_{VR} = (u \circ V \epsilon_R) + \widehat{u},$$

equivalently,

$$u(\epsilon_{VR}A) = u((V\epsilon_R)(A)) + \widehat{u}(A) \text{ for all } A \in V^2R,$$
 (Z)

where $V^2R=\mathbb{Z}\dashv \mathbb{H}(VR)$. Like 2-cochains, André-Quillen 2-cocycles can be added pointwise, and constitute an abelian group $Z^2_Q(R,M)$.

A weak 2-cocycle is an André-Quillen 2-cochain u such that (Z) only holds for all $A \in \mathbb{H}(VR)$:

$$u(\epsilon_{VR}A) = u((V\epsilon_R)(A)) + \widehat{u}(A) \text{ for all } A \in \mathbb{H}(VR).$$
 (Z-)

Under pointwise addition, weak 2-cocycles constitute a subgroup $Z_W^2(R,M)$ of $Z_Q^2(R,M)$.

We think that the results in this section make weak 2-cocycles more interesting than full-blooded 2-cocycles.

Condition (Z–) can be analyzed as follows. Let $m \geq 1, P_1, P_2, \ldots, P_m \in VR$, and $x_i = \epsilon_R P_i \in R$, so that $A = [P_1, P_2, \ldots, P_m]$ is the typical element of $\mathbb{H}(VR)$. We have

$$\begin{split} \epsilon_{VR} \left[P_1, \, P_2, \dots, \, P_m \right] &= \; \left(\epsilon_{VR} [P_1] \right) \left(\epsilon_{VR} [P_2] \right) \, \cdots \, \left(\epsilon_{VR} [P_m] \right) \\ &= \; P_1 P_2 \cdots P_m \, , \\ \left(V \epsilon_R \right) \left[P_1, \, P_2, \dots, \, P_m \right] &= \; \left[\epsilon_R \, P_1 \right] \left[\epsilon_R \, P_2 \right] \, \cdots \, \left[\epsilon_R \, P_m \right] \\ &= \; \left[x_1, \, x_2, \dots, \, x_m \right] , \; \; \text{and} \\ \widehat{u} \left[P_1, \, P_2, \dots, \, P_m \right] &= \; \sum_i \left(\left[P_1 \right] \left[P_2 \right] \, \cdots \, \left[P_m \right] (-i) \right) u(P_i) \\ &= \; \sum_i \left(x_1 x_2 \cdots x_m (-i) \right) u(P_i) \, . \end{split}$$

Hence (Z-) is equivalent to

$$u(P_1P_2\cdots P_m) = u[x_1, x_2, \dots, x_m] + \sum_i (x_1x_2\cdots x_m(-i)) u(P_i),$$
 (Z-)

for all $P_1, P_2, \ldots, P_m \in VR$.

With m = 1, (Z–) reads u(P) = u[x] + u(P), where $x = \epsilon_R P$; since ϵ_R is surjective, this implies

$$u\left[x\right] = 0 \tag{Z1}$$

for all $x \in R$.

For all $n \geq 2$ and $x_1, x_2, \ldots, x_n \in R$, (Z-) implies

$$u[x_1, x_2, \dots, x_n] = \sum_{2 \le i \le n} \overrightarrow{x_i} u[\overleftarrow{x_i}, x_i],$$
 (Y)

where $\overleftarrow{x_i} = x_1 \cdots x_{i-1}$, $\overleftarrow{x_i} = 1$ if i = 1, $\overrightarrow{x_i} = x_{i+1} \cdots x_n$, and $\overrightarrow{x_i} = 1$ if i = n. Indeed (Y) holds, trivially, if n = 2. Also, $\epsilon_R[x_1, x_2, \dots, x_n] = x_1 x_2 \cdots x_n$. If Y holds for $n \geq 2$, then (Z-) and (Z1) imply

$$u[x_{1}, ..., x_{n}, x_{n+1}] = u([x_{1}, ..., x_{n}][x_{n+1}])$$

$$= u[x_{1} ... x_{n}, x_{n+1}] + (x_{1} ... x_{n}) u[x_{n+1}] + x_{n+1} u[x_{1}, ..., x_{n}]$$

$$= u[x_{1} ... x_{n}, x_{n+1}] + x_{n+1} \left(\sum_{2 \le i \le n} \overrightarrow{x_{i}} u[\overleftarrow{x_{i}}, x_{i}]\right)$$

$$= \sum_{2 \le i \le n+1} y_{i} u[\overleftarrow{x_{i}}, x_{i}],$$

where $y_i = x_{i+1} \cdots x_{n+1} = \overrightarrow{x_i} x_{n+1}$. Moreover, (Y) implies

$$u[x, y, z] = u[xy, z] + zu[x, y]$$
 and
 $u[z, y, x] = u[zy, x] + xu[z, y] = u[x, yz] + xu[y, z],$

for all $x, y, z \in R$. Since [x, y, z] = [z, y, x] in $\mathbb{H}(R)$, it follows that

$$u[x, yz] + x u[y, z] = u[xy, z] + z u[x, y]$$
 (Z2)

for all $x, y, z \in R$, so that on R.

Let $\underline{u}: (x,y) \longmapsto u[x,y]$ be the mapping of $R \times R$ into G induced by the weak 2-cocycle u. It follows from (Z1) and (Y) that \underline{u} completely determines all values of u. Moreover, \underline{u} is a symmetric 2-cocycle, by (Z2):

$$x\,\underline{u}(y,z)\ -\ \underline{u}(xy,z)\ +\ \underline{u}(x,yz)\ -\ z\,\underline{u}(x,y)\ =\ 0\ \text{ for all }\ x,y,z\in R,\quad (\mathbf{Z2})$$

and is balanced:

$$(u(x,y))^t = u(x^t, y) = u(x, y^t)$$
 (Z3)

for all $x, y \in R$ and $t \in S$, since $[x, y]^t = [x^t, y] = [x, y^t]$ in $\mathbb{H}(R)$ and u is a morphism of multisets over S.

Under pointwise addition, balanced symmetric 2-cocycles constitute a subgroup $Z_{BC}^2(R,M)$ of $Z_C^2(R,M)$. The map $u \longmapsto \underline{u}$ is a canonical homomorphism of $Z_W^2(R,M)$ into $Z_C^2(R,M)$.

3. Theorem. The canonical homomorphism $\Theta \colon u \longmapsto \underline{u}$ is a natural isomorphism

$$Z_W^2(R,M) \cong Z_{RC}^2(R,M)$$
.

To prove this it remains to show that Θ is surjective. Let $v \in Z^2_{BC}(R,M)$ be a balanced symmetric 2-cocycle on R, so that $v(x,y) \in M_{(xy)^\vee}$ and v(y,x) = v(x,y) for all $x,y \in R$, (Z2):

$$x v(y, z) - v(xy, z) + v(x, yz) - z v(x, y) = 0$$
 for all $x, y, z \in R$, (Z2)

holds for all $x, y, z \in R$, and (Z3):

$$(v(x,y))^t = v(x^t, y) = v(x, y^t)$$
 (Z3)

holds for all $x, y \in R$ and $t \in S$. Let u(x) = 0 for all $x \in R$, so that (Z1) holds, and let

$$u(x_1, x_2, \dots, x_n) = \sum_{2 \le i \le n} \overrightarrow{x_i} v(\overleftarrow{x_i}, x_i)$$
 (Y-)

for all $n \geq 2$ and $x_1, x_2, \ldots, x_n \in R$. In particular u(x, y) = v(x, y) for all $x, y \in R$.

We show that u has property (P):

$$u(x_{\sigma 1}, x_{\sigma 2}, \dots, x_{\sigma n}) = u(x_1, x_2, \dots, x_n)$$
 (P)

for every permutation σ of $1, 2, \ldots, n$. Since every permutation σ of $1, 2, \ldots, n$ is a product of transpositions $(i \ i+1)$, it suffices to prove (P) when $\sigma=(i \ i+1)$. If n=2, then (P) holds since \underline{u} is symmetric: $\underline{u}(y,x)=\underline{u}(x,y)$. Let n>2. If i+1< n, then (P) follows from the induction hypothesis. Now let i=n-1. Then (Y-) and (Z2) yield

$$\begin{split} u\left(x_{\sigma 1}, x_{\sigma 2}, \dots, x_{\sigma n}\right) &= u\left(x_{1}, x_{2}, \dots, x_{n-2}, x_{n}, x_{n-1}\right) \\ &= \sum_{2 \leq i \leq n-2} \overrightarrow{x_{i}} v\left(\overleftarrow{x_{i}}, x_{i}\right) \\ &+ x_{n-1} v\left(\overleftarrow{x_{n-1}}, x_{n}\right) + v\left(\overleftarrow{x_{n-1}} x_{n}, x_{n-1}\right) \\ &= \sum_{2 \leq i \leq n-2} \overrightarrow{x_{i}} v\left(\overleftarrow{x_{i}}, x_{i}\right) \\ &+ x_{n} v\left(\overleftarrow{x_{n-1}}, x_{n-1}\right) + v\left(\overleftarrow{x_{n-1}} x_{n-1}, x_{n}\right) \\ &= \sum_{2 \leq i \leq n} \overrightarrow{x_{i}} v\left(\overleftarrow{x_{i}}, x_{i}\right) \\ &= u\left(x_{1}, x_{2}, \dots, x_{n}\right). \end{split}$$

It follows from (P) that $u(x_1, x_2, ..., x_n)$ depends only on $[x_1x_2 \cdots x_n] \in \mathbb{F}(R)$, so that u is well defined on $\mathbb{F}(R)$ by

$$u\left[x_1x_2\cdots x_n\right] = u\left(x_1, x_2, \dots, x_n\right).$$

Now let $1 \le j < k \le n, t \in S$,

$$y_1, y_2, \dots, y_n = x_1, \dots, x_j^t, \dots, x_k, \dots, x_n$$
, and $z_1, z_2, \dots, z_n = x_1, \dots, x_j, \dots, x_k^t, \dots, x_n$.

We show that

$$u(y_1, y_2, ..., y_n) = u(z_1, z_2, ..., z_n).$$

Since $u(x_1, x_2, ..., x_n)$ depends only on $[x_1x_2 \cdots x_n] \in \mathbb{F}(R)$ we may assume that j = 1 and k = 2. Let $a = x_1$ and $b = x_2$, so that

$$y_1, y_2, \dots, y_n = a^t, b, x_3, \dots, x_n$$
, and $z_1, z_2, \dots, z_n = a, b^t, x_3, \dots, x_n$.

Then

Hence

$$u(y_1, y_2, \dots, y_n) = \sum_{2 \le i \le n} \overrightarrow{y_i} v(\overleftarrow{y_i}, y_i)$$

$$= \overrightarrow{x_2} v(a^t, b) + \sum_{2 < i \le n} \overrightarrow{x_i} v(a^t b x_3 \cdots x_{i-1}, x_i) \text{ and }$$

$$u(z_1, z_2, \dots, z_n) = \sum_{2 \le i \le n} \overrightarrow{z_i} v(\overleftarrow{z_i}, z_i)$$

$$= \overrightarrow{x_2} v(a, b^t) + \sum_{2 < i \le n} \overrightarrow{x_i} v(a b^t x_3 \cdots x_{i-1}, x_i).$$

Since $a^t b = a b^t$ in R and $v(a^t, b) = v(a, b^t)$ by (Z3), this yields

$$u(y_1, y_2, \dots, y_n) = u(z_1, z_2, \dots, z_n).$$

Therefore $[y_1y_2\cdots y_n]\approx [z_1z_2\cdots z_n]$ in $\mathbb{F}(R)$ implies $u(y_1,y_2,\ldots,y_n)=u(z_1,z_2,\ldots,z_n)$; and $u[x_1,x_2,\ldots,x_n]$ is well defined by

$$u\left[x_1, x_2, \dots, x_n\right] = u\left(x_1, x_2, \dots, x_n\right) = \sum_{2 \leq i \leq n} \overrightarrow{x_i} v\left(\overleftarrow{x_i}, x_i\right),$$

for all $n \geq 2$ and $x_1, x_2, \ldots, x_n \in R$.

Let $P = [x_1, x_2, \dots, x_m]$ and $Q = [y_1, y_2, \dots, y_n] \in VR$, where $x_i, y_j \in R$ for all i, j. Let

$$z_1, z_2, \ldots, z_{m+n} = x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n,$$

so that $PQ = [z_1, z_2, ..., z_{m+n}]$. Let

$$x = x_1 x_2 \cdots x_m = \epsilon_R P$$
 and $y = y_1 y_2 \cdots y_n = \epsilon_R Q$.

We have

Hence (Z2) yields

$$\begin{split} u(PQ) &= \sum_{2 \leq i \leq m+n} \overrightarrow{z_i} \, v \, (\overleftarrow{z_i}, \, z_i) \\ &= \sum_{2 \leq i \leq m} \overrightarrow{x_i} \, y \, v \, (\overleftarrow{x_i}, \, x_i) \, + \sum_{m+1 \leq i \leq m+n} \overrightarrow{y}_{i-m} \, v \, (x \, \overleftarrow{y}_{i-m}, \, y_{i-m}) \\ &= y \, u(P) \, + \sum_{1 \leq j \leq n} \overrightarrow{y_j} \, v \, (x \, \overleftarrow{y_j}, \, y_j) \\ &= y \, u(P) \, + \, \overrightarrow{y_1} \, v \, (x, \, y_1) \, + \sum_{2 \leq j \leq n} \overrightarrow{y_j} \, v \, (x \, \overleftarrow{y_j}, \, y_j) \\ &= y \, u(P) \, + \, \overrightarrow{y_1} \, v \, (x, \, y_1) \\ &+ \sum_{2 \leq j \leq n} \overrightarrow{y_j} \, (x \, v \, (\overleftarrow{y_j}, \, y_j) + v \, (x, \, \overleftarrow{y_j} \, y_j) - y_j \, v \, (x, \, \overleftarrow{y_j})) \\ &= y \, u(P) \, + \, x \, u(Q) \, + \, \overrightarrow{y_1} \, v \, (x, \, y_1) \\ &+ \sum_{2 \leq j \leq n} \left(\overrightarrow{y_j} \, v \, (x, \, \overleftarrow{y_{j+1}}) - \overrightarrow{y_{j-1}} \, v \, (x, \, \overleftarrow{y_j}) \right) \\ &= y \, u(P) \, + \, x \, u(Q) \, + \, u \, [x, y] \, , \end{split}$$

since the sum

$$\sum\nolimits_{2 \le j \le n} \left(\overrightarrow{y}_{j} v\left(x, \overleftarrow{y}_{j+1}\right) - \overrightarrow{y}_{j-1} v\left(x, \overleftarrow{y}_{j}\right) \right)$$

collapses to $v(x,y) - \overrightarrow{y}_1 v(x,y_1)$.

The equality

$$u(PQ) = y u(P) + x u(Q) + u[x, y]$$
 (ZT)

is the particular case of (Z–):

$$u(P_1P_2\cdots P_m) = u[x_1, x_2, \dots, x_m] + \sum_i (x_1x_2\cdots x_m(-i)) u(P_i)$$
 (Z-)

when m=2. The general case then follows by induction. First, for all $x_1, x_2, \ldots, x_m, y \in R$, (ZT) and (Z1) yield, with $P=[x_1, x_2, \ldots, x_m]$ and Q=[y]:

$$u[x_1, x_2, ..., x_m, y] = u(PQ)$$

$$= y u(P) + x u(Q) + u[x, y]$$

$$= y u[x_1, x_2, ..., x_m] + u[x_1 x_2 ... x_m, y].$$
 (ZT-)

Now let $m \geq 2$, $P_1, P_2, \ldots, P_{m+1} \in VR$, and $x_i = \epsilon_R P_i \in R$. Then $P_1 P_2 \cdots P_{m+1} = PQ$, where $P = P_1 P_2 \cdots P_m$ and $Q = P_{m+1}$, and the induction hypothesis yields, with $x = \epsilon_R P = x_1 x_2 \cdots x_m$ and $y = \epsilon_R Q = x_{m+1}$:

$$\begin{split} u\left(P_{1}P_{2}\cdots P_{m+1}\right) &= u\left(PQ\right) = y\,u(P) + x\,u(Q) + u\left[x,y\right] \\ &= y\,u\left[x_{1},\,x_{2},\ldots,\,x_{m}\right] + \sum_{i\leq m}\left(y\,x_{1}x_{2}\cdots x_{m}(-i)\,u(P_{i})\right) \\ &+ x\,u(Q) + u\left[x_{1}x_{2}\cdots x_{m},\,y\right] \\ &= \sum_{i\leq m+1}\left(x_{1}x_{2}\cdots x_{m+1}(-i)\,u(P_{i})\right) + u\left[x_{1},\,x_{2},\ldots,\,x_{m+1}\right], \end{split}$$

by (ZT-).

Thus u has property (Z–), and u is a weak 2-cocycle. We saw that u(x,y) = v(x,y) for all $x,y \in R$, so that u = v. This completes the proof.

Unfortunately, while \widehat{u} , ϵ_{VR} , and $V\epsilon_R$ are additive, there is no evidence that u is; as a morphism of multisets over S from VR to G, u is not required to be additive. Hence Theorem 3.3 does not readily extend to $Z_Q^2(R,M)$. These accursed additions are ruining everything.

4. Coboundaries. André-Quillen 2-coboundaries are, in particular, weak 2-cocycles. We note that $u = \delta^Q v$ for some $v \in C^1_Q(R, M)$ implies $\underline{u} = \delta^C v \in cB^2(R, M)$.

Indeed, $\delta v = \hat{v} - (v \circ \epsilon_R)$. For all $x, y \in R$,

$$\widehat{v}[x,y] = \widehat{v}([x][y]) = x \widehat{v}[y] + y \widehat{v}[x] = x v(y) + y v(x), \text{ and } \epsilon_R[x,y] = \epsilon_R([x][y]) = (\epsilon_R[x])(\epsilon_R[y]) = y.$$

Hence

$$(da^{Q}v)[x,y] = x v(y) + y v(x) - v (xy) = (\delta^{C}v)(x,y).$$

4 Coextensions.

In this section, S is a commutative monoid.

1. Definition. A coextension of a commutative multiring R over S by a multi-R-module M over S is a commutative multimonoid E over S together with a surjection $\pi\colon E\longrightarrow R$ and, for each $a\in S$, a simply transitive action \cdot of M_a on E_a , such that

$$(\pi e)^{\vee} = e^{\vee},$$

 $(\pi e)^t = \pi (e^t), \text{ and}$
 $\pi (ef) = (\pi e)(\pi f),$

for all $e, f \in E$ and $t \in S$, so that π is a morphism of commutative multimonoids over S; there is a morphism $\mu \colon R \longrightarrow E$ of multisets over S (such that $(\mu r)^{\vee} = r^{\vee}$ and $\mu(r^t) = (\mu r)^t$) which splits π :

$$\pi \circ \mu = 1_R;$$

and

$$(x \cdot e)^t = x^t \cdot e^t$$
 whenever $x^{\vee} = e^{\vee}$,
 $\pi(x \cdot e) = \pi e$ whenever $x^{\vee} = e^{\vee}$,
 $0 \cdot e = e$,
 $x \cdot (y \cdot e) = (x + y) \cdot e$ whenever $x^{\vee} = y^{\vee} = e^{\vee}$, and
 $(x \cdot e) f = ((\pi f) x) \cdot e f$ whenever $x^{\vee} = e^{\vee}$,

for all $e, f \in E$, $t \in S$, and $x, y \in M$, so that each action of M_a on E_a is a group action of the additive abelian group M_a on the set E_a . Since M_a acts on E_a we also have

$$(x \cdot e)^{\vee} = x^{\vee} = e^{\vee}$$
 whenever $x \in M$, $e \in E$, and $x^{\vee} = e^{\vee}$.

Commutativity and the condition $(x \cdot e) f = ((\pi f) x) \cdot ef$ imply

$$e(x \cdot f) = (x \cdot f)e = ((\pi e)x) \cdot ef$$
.

This makes E a kind of group coextension of the commutative monoid R by M. (It could be further seasoned with additions, but this would require additive factor sets.)

Two coextensions E and F of R by M with surjections π and ρ to R are equivalent if and only if there exists an isomorphism $\theta \colon E \longrightarrow F$ of commutative multimonoids over S (an equivalence of coextensions) such that

$$\rho \theta e = \pi e$$
 for all $e \in E$ and $\theta(x \cdot e) = x \cdot \theta e$ whenever $x \in M$, $e \in E$, and $x^{\vee} = e^{\vee}$.

2. Construction. Coextensions of R by M are constructed up to equivalence by Schreier's method.

Let E be a coextension of R by M. For each $r \in R$ let $p_r = \mu r \in E$, where $\mu \colon R \longrightarrow E$ is the morphism of multisets over S that splits π . Then $\pi p_r = r$, $p_r^{\vee} = r^{\vee}$, and $p_{r^t} = p_r^t$. Since M_a acts simply and transitively on E_a , every element e of E can be written in the form

$$e = x \cdot p_r$$

for some unique $x \in M$ and $r = \pi e \in R$ such that $x^{\vee} = r^{\vee} = e^{\vee}$. In particular, for every $r, s \in R$, $\pi(p_r p_s) = rs$ and

$$p_r p_s = u(r,s) \cdot p_{rs}$$

for some unique $u(r,s) \in M$ such that $u(r,s)^{\vee} = (rs)^{\vee} = r^{\vee} s^{\vee}$.

The factor set u inherits three properties from the multiplication on R: for all $r, s \in R$,

$$u(s,r) = u(r,s)$$

since the multiplication on R is commutative; for all $q, r, s \in R$,

$$(p_{q} p_{r}) p_{s} = (u (q, r) \cdot p_{qr}) r_{s} = s u (q, r) \cdot (p_{qr}) r_{s})$$

$$= s u (q, r) \cdot (u (qr, s) \cdot p_{(qr)s} ,$$

$$p_{q} (p_{r} p_{s}) = p_{q} (u (r, s) \cdot p_{rs}) = q u (r, s) \cdot (p_{q} p_{rs})$$

$$= q u (r, s) \cdot (u (q, rs) \cdot p_{q(rs)}) ,$$

since the multiplication on R is associative; hence

$$s u(q,r) + u(qr,s) = q u(r,s) + u(q,rs).$$

Finally, for all $r, s \in R$ and $t \in S$,

$$p_r^t p_s = p_{r^t} p_s = u(r^t, s) \cdot p_{r^t s},$$

$$(p_r p_s)^t = (u(r, s) \cdot p_{r s})^t = u(r, s)^t \cdot p_{(r s)^t}, \text{ and}$$

$$p_r p_s^t = p_r p_{s^t} = u(r, s^t) \cdot p_{r s^t};$$

since $p_r^t p_s = (p_r p_s)^t = p_r p_s^t$ in E and $r^t s = (rs)^t = rs^t$ in R, it follows that

$$u(x^{t}, y) = (u(x, y))^{t} = u(x, y^{t}).$$

Thus u is a balanced symmetric 2-cocycle, $u \in Z_{BC}^2(R, M)$.

The multiplication on E is completely determined by R, M, and the factor set u:

$$(x \cdot p_r)(y \cdot p_s) = sx \cdot (p_r (y \cdot p_s)) = sx \cdot (ry \cdot (p_r p_s))$$
$$= sx \cdot (ry \cdot (u(r,s) \cdot p_{rs}))$$
$$= (sx + u(r,s) + ry) \cdot p_{rs}.$$

This provides a bijection $\theta \colon x \cdot p_r \longmapsto (x,r)$ of E onto the product E(R,M) of R and M in the category of multisets over S:

$$E(R, M) = \{ (x, r) \mid x \in M, r \in R, x^{\vee} = r^{\vee} \},$$

and suggests a multiplication

$$(x,r)(y,s) = (sx + u(r,s) + ry, rs)$$

on E(R, M).

Equip E(R, M) with this multiplication, projection $(x, r)^{\vee} = x^{\vee} = r^{\vee}$ to S, action $(x, r)^t = (x^t, r^t \text{ of } S, \text{ surjection } \pi \colon (x, r) \longmapsto r \text{ to } R, \text{ and, for each } a \in S,$ the action of M_a on

$$E_a = \{ (x, r) \in E(R, M) \mid x^{\vee} = r^{\vee} = a \}$$

defined by

$$x \cdot (y,r) = (x+y,r).$$

This makes E(R, M) into what Theorem 4.3 below asserts is a coextension E(R, M, u) of R by M:

3. Theorem. If u is a balanced symmetric 2-cocycle on R with values in M, then E(R, M, u) is a coextension E(R, M, u) of R by M, with factor set u. Moreover every coextension of R by M with factor set u is equivalent to E(R, M, u).

The proof us straightforward. All the axioms of coextensions are satisfied. Indeed E(R, M, u) is a commutative multimonoid over S:

$$((x,r)^{t})^{\vee} = (x^{t}, r^{t})^{\vee} = (r^{t})^{\vee} = (r^{\vee}) t = ((x,r)^{\vee}) t;$$

$$(x,r)^{1} = (x,r);$$

$$((x,r)^{t})^{u} = ((x^{t})^{u}, (r^{t})^{u}) = (x^{tu}, r^{tu}) = (x,r)^{tu};$$

$$((x,r)(y,s))^{t} = (sx + u(r,s) + ry, rs)^{t}$$

$$= ((sx)^{t} + u(r,s)^{t} + (ry)^{t}, (rs)^{t})$$

$$= (sx^{t} + u(r^{t},s) + r^{t}y, r^{t}s)$$

$$= (x^{t}, r^{t})(s,y) = (x,r)^{t}(y,s)$$

$$= (s^{t}x + u(r,s^{t}) + ry^{t}, rs^{t})$$

$$= (x,r)(y^{t}, s^{t}) = (x,r)(y,s)^{t},$$

since u is balanced;

$$((x,r)(y,s))^{\vee} = (sx+u(r,s)+ry,rs)^{\vee} = (rs)^{\vee} = r^{\vee}s^{\vee} = (x,r)^{\vee}(y,s)^{\vee};$$

the multiplication on $E(R,M,u)$ is commutative:

$$(y,s)(x,r) = (ry + u(s,r) + sx, sr) = (sx + u(r,s) + ry, rs) = (x,r)(y,s),$$

since M_a is abelian, the multiplication on R is commutative, and u is symmetric; and the multiplication on E(R, M, u) is associative:

$$\begin{aligned} \big((x,q)(y,r) \big) (z,s) &= (rx + u\,(q,r) + qy\,,\,qr)(z,s) \\ &= (srx + s\,u(q,r) + sqy + u\,(qr,s) + qrz,\,qrs) \\ &= (rsx + u\,(q,rs) + qsy + qu\,(r,s) + qrz,\,qrs) \\ &= (x,q)(sy + u\,(r,s) + rz,\,rs) \\ &= (x,q)\big((y,r)(z,s) \big)\,, \end{aligned}$$

since u is a 2-cocycle.

Moreover,

$$(\pi(x,r))^{\vee} = r^{\vee} = (x,r)^{\vee};$$

 $(\pi(x,r))^t = r^t = \pi((x,r)^t);$ and
 $\pi((x,r)(y,s)) = rs = \pi(x,r)\pi(y,s);$

the map $\mu \colon r \longmapsto (0, r)$ is a morphism of multisets over $S \colon (\mu r)^{\vee} = (0, r)^{\vee} = r^{\vee}$ and $\mu(r^t) = (0, r^t) = (\mu r)^t$, and splits $\pi \colon \pi(\mu r) = r$;

$$(x \cdot (y,r))^t = (x+y,r)^t = (x^t+y^t,r^t) = x^t \cdot (y,r)^t$$

whenever $x^{\vee} = r^{\vee} = (y, r)^{\vee}$;

$$\pi(x \cdot (y,r)) = \pi(x+y, r) = \pi(y,r); 0 \cdot (x,r) = (0+x, r) = (x,r); x \cdot (y \cdot (z,r)) = (x+y+z, r) = (x+y) \cdot (z,r)$$

whenever $x^{\vee} = y^{\vee} = z^{\vee} = r^{\vee} = (z, r)^{\vee}$; and

$$(x \cdot (y,r))(z,s) = (x+y, r)(z,s)$$

= $(s(x+y) + u(r,s) + rz, rs)$
= $(sx + sy + u(r,s) + rz, rs)$
= $sx \cdot ((y,r)(z,s))$

whenever $x^{\vee} = (y, r)^{\vee} = y^{\vee}$. Thus E(R, M, u) is a coextension of R by M. Since (0, r)(0, s) = (u(r, s), rs), its factor set is u.

Finally let E be a coextension of R by M with surjection ρ to R and with $p_r = \mu r$ for every $r \in R$, where $\mu \colon R \longrightarrow E$ splits ρ , so that $p_r p_s = u(r,s) \cdot p_{rs}$ for all $r, s \in R$ and u is a factor set of E. We saw that

$$\theta \colon x \cdot p_r \longmapsto (x,r)$$

is a bijection of E onto E(R, M, u), and that $\theta(ef) = (\theta e)(\theta f)$ for all $e, f \in E$. Moreover

$$(\theta(x \cdot p_r))^{\vee} = r^{\vee} = (x \cdot p_r)^{\vee},$$

$$\theta((x \cdot p_r))^t) = \theta(x^t \cdot (p_r)^t) = \theta(x^t \cdot p_{r^t})$$

$$= (x^t, r^t) = (x, r)^t = (\theta(x \cdot p_r))^t, \text{ and }$$

$$\theta(x \cdot (y \cdot p_r)) = \theta((x + y) \cdot p_r))$$

$$= (x + y, r) = x \cdot (y, r) = x \cdot \theta(y \cdot p_r).$$

Thus θ is an equivalence of coextensions.

4. Proposition. Two coextensions of R by M with factor sets u and v are equivalent if and only if there exists $w(r) \in M_{r^{\vee}}$ for every $r \in R$ such that

$$w(r^t) = (w(r))^t \text{ and}$$

$$v(r,s) - u(r,s) = sw(r) - w(rs) + rw(s)$$

for all $r, s \in R$ and $t \in S$.

By Theorem 4.3, we may assume in the proof that the two coextensions are $\mathrm{E}(R,M,u)$ and $\mathrm{E}(R,M,v)$.

Let $\theta \colon \mathcal{E}(R,M,u) \longrightarrow \mathcal{E}(R,M,v)$ be an equivalence of coextensions. For each $r \in R$ we have $\pi \theta (0,r) = \pi (0,r) = r$ and

$$\theta\left(0,r\right) = \left(w(r),r\right)$$

for some unique $w(r) \in M$ such that $w(r)^{\vee} = r^{\vee}$. Then

$$(w(r^t), r^t) = \theta (0, r^t) = \theta ((0, r)^t)$$

= $(\theta (0, r))^t = (w(r)^t, r^t),$

and

$$w(r^t) = (w(r))^t.$$

Since θ preserves products and $\theta(x \cdot e) = x \cdot \theta e$, we also have

$$(u(r,s) + w(rs), rs) = u(r,s) \cdot \theta(0,rs) = \theta(u(r,s) \cdot (0,rs))$$

= $\theta(u(r,s), rs) = \theta((0,r)(0,s))$
= $(w(r),r)(w(s),s) = (rw(s) + v(r,s) + sw(r), rs),$

whence

$$v(r, s) - u(r, s) = s w(r) - w(rs) + r w(s)$$
.

Conversely, assume that v(r,s) - u(r,s) = s w(r) - w(rs) + r w(s). Define $\theta \colon \mathcal{E}(R,M,u) \longrightarrow \mathcal{E}(R,M,v)$ by

$$\theta(x,r) = (x + w(r), r).$$

Then θ is bijective. Moreover,

$$\pi \theta (x,r) = r = \pi (x,r),
(\theta (x,r))^{\vee} = r^{\vee} = (x,r)^{\vee},
\theta ((x,r)^{t}) = \theta (x^{t}, r^{t})
= (x^{t} + w (r^{t}), r^{t}) = (x^{t} + w(r)^{t}, r^{t})
= (\theta (x,r))^{t},
\theta (x \cdot (y,r)) = \theta (x + y, r)
= (x + y + w(r), r) = x \cdot (y + w(r), r)
= x \cdot \theta (y,r), \text{ and}
\theta ((x,r)(y,s)) = \theta (sx + u(r,s) + ry, rs)
= (sx + u(r,s) + ry + w(rs), rs)
= (sx + sw(r) + v(r,s) + ry + rw(s), rs)
= \theta (x,r) \theta (y,s).$$

Hence θ is an equivalence of coextensions.

Prop. 4.4 suggests that a balanced symmetric 1-cochain on R with values in M is a 1-cochain u (that assigns $u(r) \in M_a$ to $r \in R_a$) such that

$$u(r)^t = u(r^t)$$

for all $r \in R$ and $t \in T$. (It is balanced only to match the balanced symmetric 2-cocycles.) Under pointwise addition, balanced symmetric 1-cochains constitute a subgroup $C^1_{BC}(R,M)$ of $C^1_C(R,M)$.

The coboundary of a balanced symmetric 1-cochain \boldsymbol{u} is a balanced symmetric 2-cocycle:

$$\begin{aligned} (\delta u)(r^t, \, s) &= \, s \, u \, (r^t) \, - \, u \, (r^t \, s) \, + \, r^t \, u(s) \\ &= \, s \, (u(r))^t \, - \, u \, (r \, s^t) \, + \, r^t \, u(s) \\ &= \, s^t \, u(r) \, - \, u \, (r \, s^t) \, + \, r^t \, u(s) \, = \, (\delta u)(r, \, s^t) \, . \end{aligned}$$

Under pointwise addition, these balanced symmetric 2-coboundaries constitute a subgroup $B^2_{BC}(R,M)$ of $Z^1_{BC}(R,M)$.

It follows from Prop. 4.4 that the quotient group $Z_{BC}^2(R,M)/B_{BC}^2(R,M)$ classifies coextensions of R by M.