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Errata to subsection 6.6.

6. Free multirings on multisets. The free commutative multiring over S on
a multiset X over S is the free commutative multiring Z[X] = Z 4 H(X) over S
on the free commutative multimonoid H(X) over S on X.

As in Section 4, H(X) is the half-free commutative monoid

H(X) = F(X)/~

on X, where ~ is the smallest congruence on F(X) such that X} X, ~ X, X
for all z,y € X and t € S. The typical element Y of H(X) is the equivalence
class Y = [X1 X3 - - X,;] of a commutative product X7 X5 --- X, of elements of
X ={X, | x € X }; equivalently, Y = [X"] for some X" € F(X).

Accordingly, the typical element of Z 4 H(X) is a homogeneous linear com-
bination

p :Z(pyY|Y€H(X), vV =pV).

If X only has one element, or if ' = x for all z,¢, then H(X) = F(X);
otherwise ~ is not the equality on F(X), hence an element Y of H(X) cannot
be written in the form ¥ = [X™] for some unique monomial X™.

1 Derivations

In all that follows, S is a commutative monoid.

1. Multimonoids. In this section, M is a commutative multimonoid over S.
A multi-M -module over S is an abelian multigroup A over S together with



an action of M on A such that
ra)Y =z¥aY,
ra)' =xad' =2'a,

(
(

—~

(ya) = (zy)a, and
(a+b)=xa+xb if a+b is defined
forall z,y € M,t € S, and a,b € A.

For example, if R is a commutative multiring over .S, then every multi-R-
module over S remains an multi- R-module over S when R is viewed as a commu-
tative multimonoid over S. Conversely, if A is a multi-M-module over S, then
A is a multi-(Z 4 M )-module over S, on which p =3 (pyz |z €M) €ZAM
acts by
pa = Z(pwa:a’xeM).

The categories of multi-M-modules over S and multi-(Z - M)-modules over S
are therefore (thereby?) isomorphic.

A prederivation of a commutative multimonoid M over S into a multi-M-
module A over S is a mapping D: M — A such that

D(z)Y =2V,
D(z") = D(z)", and
D(zy) =z D(y) + y D(z) € A.

for all z,y € M and t € S. In particular, D is a morphism of multisets over S.
Also, D(1) = D(11) = D(1)+ D(1), so that D(1) = 0, whence D(1%) = D(1)* =
0 for all t € S.

The set PDer (M, A) of all derivations of M into A is an abelian group under
pointwise addition, on which M acts (pointwise) by:

(zD)(y) = = D(y)

for all z,y € M. Then z (D' 4+ D”) = 2D’ + 2D”) and z (yD) = (zy) D for
all z,y € M and D,D’, D" € Der (M, A). OK, that makes Der (M, A) an M-
module, but there are enough new structures already, so I'll skip the formal
definition of M-modules.

2. Half-free multimonoids. When X is a multiset over .S, recall that H(X)
is the (half)free commutative multimonoid over S over X. In describing H(X)
we dispense with X = { X, | z € X } and write the elements of the free com-
mutative monoid F(X) on the set X as commutative products of elements of

X. As a monoid,
H(X) = F(X)/~,

where = is the smallest congruence on F(X) such that

zty ~zyt



for all z,y € X and ¢ € S. This writes the elements of H(X) as equivalence
classes [z1x2 - - - ] of commutative products of elements of X. Concatenation
yields products in H(X), and, for every x1, xo,..., z, € X and t € S,

[xle"'mn}v = 1‘1\/ xzv a’;nv

and

[.’L’leQ"‘ﬁrn]t = xlxt

7 xna

for any 1.
The canonical map n: X — H(X) sends ¢ € X to [z] € H(X). It is a
morphism of multisets over S.

3. Theorem. For every multiset X over S and multi-H(X )-module A over S
there is a natural isomorphism

©: PDer (H(X), A) = Map (X, A)
that sends a prederivation D of H(X) into A to

d= 0D = Don: X LX) 4,
so that dz = D|x].
Proof: First note that d = D o7 is a morphism of multisets over S.
© is injective. For every D € PDer (H(X), A), induction yields

Dzize--xn) =, ([:vy-wi,l Xyl T D[xl])
for all n > 0 and 1, z9,..., , € X (with 122 2, = 1 if n = 0 so that
Dzix9- - Tp, 1]20).7Ifal:6)(D):07 then D [z129---2,]) =0 for alln >0
and x1, £2,..., T, € X and D = 0.

In what follows we denote
Ty Tyeq Tig1 Ty DY T1To- - Tp(—1).

© is surjective. Let d € Map (X, A), so that (dz)Y = 2V and d(z') = (dz)*
forall z € X and t € S. We want

Dlzixe---xy] =3, ([1"1152 oy (1)) d(xs) -

Let j <k, let 1, x2,..., x, € X, and let t € S, so that

ml'.'xz-."xk".xn ~ 1’1..-"1’;‘]—.-.1’2-..‘%”.
Let
t . . .
yj = x;, yi = x; if i#j and
ZE = Iz, Zi = Xy le%k,



so that

[Y1y2 - Yn] [

[2122 - 2n] = |

[1y2 -+ yn] = [2122- - 2],
(Y192 - Yn(—Fk)] [
[y1y2-~~yn(—j)}t [

In the multi-H(X)-module A over S, we have (pw)t = ptw = p2t for all p €
Z[X],we M, and t € S. Hence

S (w2 - yn(—1)] d(yi)
i)

— Zz#],k ([2122 e Z’IL(_Z)] d(Z;))
+ [2122 cee Zn(*])] d(Zj) + [2122 e Zn(*k)] d(x};)
=3, ([zlzg - zp(—1)] d(zl)) :

Therefore y1ys - - - yp & 2122 - - - 2, implies

Zi ([?le2 : "yn(—i)] d(yi)) = Zi ([2122 s Zn(—i)] d(Zi))
and a mapping D: H(X) — M is well defined by

Dlzizy-z,) = Y, ([w1me - 2y (—i)] d(z)) -

In particular, D[z] = dz for all x € X.

D is a prederivation; this will complete the proof. Since d is a morphism
of multisets over S we have (dr)Y = zV and d(2') = (dz)* for all z,t. Hence
([wr@g -+ @y (—0)] d(z;))Y = [w122 - 2] and

Dlzizy - xy))Y = [w122- - 3,] Y.

Moreover,
D ([xlxg i xn]t) = Drzo- -2y 2L
=Y ien ([T122 -z 2y, (<)) d(2i) + w122 2p ] d(2,)

= ien ([r1ze - w12 (=) d(2:))" + ([122- - 201] d(20))")
= (D[$1afz~-~xn])t,



so that D (y*) = (D(y))* for all y € H(X), and

D([mmxm][yl'“yn})
= 3 (o1 wm (=01 -+ yal d(:))

+ 3 ([ zmllyr - yn (=) d(y;))
= [wr-ap] Dlyr---yn] + [y1---yn] Dlxr---am],

so that D (yz) =y D(z) + z D(y) for all y, z € H(X).
Thus D is a prederivation.

4. Multirings. As before, a derivation of a commutative multiring R over S
into a multi-R-module M over S is a mapping D: R — M such that

D(z)Y =2V forall z,

D(z') = D(x)" for all z,t,

D(z+y) = D(x) 4+ D(y) whenever x4y is defined, and
D(zy) =2 D(y) +yD(zx) forall z,y € A;

In particular, D is a morphism of abelian multigroups over S, and a prederiva-
tion of R, viewed as a commutative multimonoid over S, into M, viewed as a
multi-M-module over S. As before, D(1) = 0 and D(1*) = D(1)* = 0, so that
D(rl)=rD(1) =0, forallr € Rand t € S.

The set Der (R, M) of all derivations of R into M is an R-module under
pointwise addition and action of R ((rD)(z) = r D(z) for all z,y € R).

Now let X be a multiset over .S and let

Z[X] = Z4H(X)

denote the free commutative multiring over S on the multiset X, which is also
the free commutative multiring over S on the commutative multimonoid H(X)
over S. The typical element of Z[X] is a homogeneous linear combination

p =Y (pyy|yecH(X), y¥=p")

of elements of H(X).
The multiring comes with a canonical map

n: X 5 H(X) L 7[X]

which is a morphism of multisets over S and sends z € X to [z] € H(X) C Z[X].

5. Theorem. For every set X over S and multi-Z[X]-module M over S there
is a natural isomorphism

©: Der (Z[X], M) = Map (X, M)



that sends a derivation D of Z[X] into M to

d =0 = Don: X Lzix] 2 M,

so that dz = Dl[z].
This is proved by composing the isomorphism

PDer (H(X), M) = Map (X, M)
in Theorem 1.3 with a similar isomorphism
U: Der (Z[X], M) = PDer (H(X), M) .

Note that every multi-Z[X]-module M is in particular a multi-H(X )-module.
If D: Z|X] — M is a derivation of Z[X], then ¥D is the restriction of D
to H(X) C Z[X], which is a prederivation of H(X).
U is injective. Indeed, if D(y) = 0 for all y € H(X), and p =Y (pyy ‘ y €
H(X), y¥ =pV) € Z[X], then
D(p) = > (pyD(y) |y e H(X), y¥ =p¥) = 0.

U is surjective. Let M be a multi-Z[X]-module over S and let d: H(X) —
M be a prederivation of H(X). For each p =" (pyy ‘ y e H(X), yV =pV) €
Z[X], define

D(p) = Y (pydly) |y e H(X), y¥ =pY).

In particular, D[z] = d[z] for all z € X. We have D(p)Y = pV, since d(y)¥ = y¥
for all y € H(X), and

D) = > (pyd(y') |y € H(X), y¥ =p")
= > (py(dw)' |y € H(X), ¥ =p¥) = (D(p))".
Moreover, if

p=> (pyy|yecH(X), y¥=p") and
q = Z(qzz|z€H(X), zV:qv)GZ[X],



then D(p+q) = D(p) + D(q) (if p¥ = ¢") and

D(pg) = D[> (pya-(2) |y,z € H(X), y¥ =p¥, 2¥ =¢")]
> (pya=dyz) |y, 2 € H(X), y¥ =pY, 2¥ =¢")

= —_ Vv v _ V

= y 4z , , — , _
Z(pq(yd()+zd \yzeH(X) PV, 2V =qY)
+ Z Py g zd(y ‘y,ZGH(X) V=pV, Z\/Zq\/)

= [Z(pyy\yeH(X% =p”)]
[>_(a:d(2) | 2 € H(X), 2V =q")]
+ [Z(qzz\zeH(X), 2V =q")]
[>_ (pyd(y) |y e HX), y¥ =p¥)]
= pD(g) + qD(p)~

Thus D is a derivation.

2 Cohomology of multirings
In this section, S is a commutative monoid and R is a commutative multiring
over S.

1. The comonad. The adjunction of multisets over S to commutative multi-
rings over S begets a comonad (V) e, v) in which V sends a commutative multi-
ring R over S to the free commutative multiring VR = Z[R] = Z 4 H(R) over S
on the multiset R over S.

Every morphism ¢: R — T of multisets over S induces a morphism Vi of
commutative multirings over S from Z[R] to Z[T] that sends

p=> (pyy|ycHR), y¥=p")

to
Ve)p) = (py (Vo)) |y € H(R), y¥ =p),

where
(Vo) [rira---ra] = [(er1)(pr2) - (pra)l,

as calculated in Z[T], for all r1, ra,..., r, € R. In particular,

Vo) Ir] = ler]

for all r € R.



The counit e: VR — R is the evaluation morphism of commutative multi-
rings over S that sends [r] to r, sends y = [rq7r2 - - 7,] to

6[7’17’2"'7’71} = riro---Tpn

as calculated in R, and sends p =" (py y | y € H(R), y¥ =pY) to

e() =Y (pyey) |y €H(R), y¥ =pY).

The comultiplication v assigns to R the morphism vg =Vn: VR — VVR
induced by the adjunction unit n: R — V R, viewed as a morphism of multisets
over S.

If M is a multi-R-module over S, then the action of R on M induces an
action of VR on M in which

for every p € VR and x € M, which makes M a multi-V R-module since € is a
morphism of commutative multirings over S.

2. The resolution. For every commutative multiring R over S there is now
an augmented simplicial commutative multiring R* with objects R = R and
R"=V"R (wheren >0 and V" =V oV o.-.0V), face maps

€ni = VeV 'R: R"™ — R" (i=0,1,...,n),
augmentation € = ¢po: VR — R, and degeneracy maps
Upi = VvV IR R R™ (i=0,1,...,n—1),

that satisfy the simplicial identities.

Let M be a multi-R-module over S, hence also a multi-V R-module over S
and a multi- R"-module over S for every n > 0. Applying to R* the contravariant
functor Der (—, M) yields an augmented cosimplicial R-module Der (R*, M)
with objects Der (R, M) = Der (R, M) and Der (R", M) = Der (V"R, M) if
n > 0, face maps

dni = €,; = Der(enq, M): Der (R", M) — Der (R™1, M)
for i =0,1,...,n, augmentation
doo = € = Der(e,M): Der (R,M) — Der (VR, M),
and degeneracy maps Der (v, 4, M) (i =0,1,...,n— 1), that satisfy the cosim-
plicial identities.

A coboundary homomorphism

8n: Der (R™, M) — Der (R™ !, M)



is then defined by
6n = dn,O - dn,l + dn,2 — et (_1)n dn,n .

In particular, 6y = do,o. The simplicial identities imply 6,41 o 6,, = 0 for all
n > 0. This yields an augmented cochain complex of R-modules

0 —Der (R, M) < Der (VR, M) I
— Der (V"R, M) On, Der (V"R M) ...

The André-Quillen cohomology of the commutative multiring R over S with
coefficients in the multi- R-module M over S assigns to R and M the R-modules
HO(R,M) = Kerdy /Ime and H"(R, M) = Ker ,, / Im §,,_1, where n > 0.

Since VR = Z[R], the natural isomorphisms Der (Z[X], M) = Map (X, M)
yield an isomorphic complex of R-modules

0 — Der (R, M) -% Map (B, M) 3 .
— Map (V" 'R, M) n, Map (V"R, M) ...

whose homology modules are natural isomorphic to the André-Quillen cohomo-
logy modules of R with coefficients in the multi-R-module M. In particular,
H'(R,M) = Kerd; /Ime. Without the augmentation, H'(R, M) would be
simply Kerd;.

3. Maps. The augmentation e: Der (R, M) — Map (R, M) is the composite

e: Der (R, M) - Der (VR, M) —3 Map (R, M)

of € = Der (¢, M), which sends D € Der (R, M) to D o€, and the isomor-

phism Der (VR, M) — Map (R, M), which sends D o € to the mapping r —

(Doe)[r] = D(r). Thus e (D) is D viewed as simply a mapping of R into M.
Next, d,, ;: Map (V*"1R, M) — Map (V" R, M) is the composite

dpi: Map (V" 'R, M) — Der (V"R, M)

*

€ . ~
2% Der (V*'R, M) —s Map (V"R, M)

and sends a map v from V" 'R to M to the derivation 7 of V™R such that
ulz] = u(x) for all z € V™ 'R, thence to € ; (@) = U o €y, thence to the
corresponding map from V"R to M.

If i =0, then €, o = eynpg and

(Woeyrg)lz] = U(eyng(z]) = u(x)
for every z € V™ R. Hence dp o u sends z € VR to u(x) and

dn,ou = ﬂ



If i >0, then €, ; = Vep—1,5—1 and
(woVen—1,i-1)[x] = u(Vep—1,i-1[z]) = wlen—1,i-1(z)] = ul(en—1,i-1())
for every x € V" R. Hence d,, ; u sends x € V"R to u (ep—1,;—1(z)) and
dpst = UO €p_1,i—1.

In particular, dyju = wuoeg.

4. Theorem. H}(R,M) = 0.

Indeed let u € Map (R, M) be an André-Quillen 1-cocycle. By the above,
ou = dipu—diiu =u— (uoe) = 0, so that uwo e is a derivation. Since
e: VR — R is surjective it follows that u is a derivation: for instance, for all
r,s € R,

u(rs) = ul(elr]efs]) = u(e[rs])
= ru(els]) + su(e[r]) = ru(s) + su(r).

Therefore u is an André-Quillen 1-coboundary.

5. What’s next? We want to get at the cohomology of S (in dimensions
n > 2) by way of the cohomology of R = Z - H(X) for some suitable multiset
X that depends on S.

There are two obvious candidates for X: one is the multiset S over itself,
with projection a¥ = a and action a’ = at. The other is ST = S x S, the free
multiset over S on S as a set over itself, with projection (a, )Y = at and action
(a,t)" = (a, tu).

Every abelian multigroup G over S can serve as coefficients in the coho-
mology of Z 4 H(S). Indeed H(S) acts on every abelian multigroup G over S
by

pr = 2®)

for every € G and p € H(S). In particular, [a] 2 = 2* and 12 = . Then
(pa)Y = @)Y = p¥aV

(pz)t = @) = 2"t = pat,

t\V 4
ple = LD R = pat,

pa+y) = @+y®) = 2@ +y®) = pa4py
whenever x + y is defined, and

plgz) = (@@N@) = g7 = pg. g,

for all p,q € H(S) and z,y € G.
If now p € Z - H(S),

p =Y (pyy|yecH(S), y¥=p"),

10



then px is well defined by

pr =Y (py(yx) |y € H(S), y¥ =p¥) = n(p)a®"),

where

n(p) = (py |y € H(S), y¥ =pY).

Then (p+q) z = px + gz whenever p¥ = ¢V, since n (p+q) = n(p) +n(q), and
the five properties above also hold for all p,q € Z[S] and x,y € S.

With this action of Z[S], the abelian multigroup G becomes a multi-Z[S]-
module over S.

For every abelian multigroup G over S there is a natural isomorphism

Map (S5,G) = G;.

Indeed, if f: S — G is a morphism of multisets over S, then f(a’) = (f(a))*
for all a,t € S; since a' = at we have

so that f is uniquely determined by f(1) € G;. Conversely, if g € G, then
fra—g°

is a morphism of multisets over S from S to G: indeed f(a)Y = a and f(a!) =
g% = (f(a))t for all a,t.

Theorem 1.5 then yields Der (Z 4 H(S), G) = G;.

It follows that S is not a suitable choice for X.

6. What’s still next? The next choice is Z - H(ST).

Every abelian multigroup G over S can serve as coefficients in the cohomol-
ogy of Z 4 H(ST). Indeed H(ST) acts on every abelian multigroup G over S
by

pr = 2®)
for every z € G and p € H(ST). In particular, [(a,t)]x = 2% and [(1,1)]z = =.
As before, (pz)¥ =pYaV, (pz)' =p'z=pa’, p(qz) = (pq) =, and p(z +y) =
px + py if  + y is defined, for all p,q € H(ST), t € S, and x,y € G.
If now p € Z 4 H(ST),

p=> (pyy|yecH(S), y¥=p"),
then px is well defined by
V)

pr =Y (py(yx) |y € H(S), y¥ =p¥) = n(p)a®"),

where
n(p) =Y (py |y € H(ST), y¥ =pY).

11



Then (p+q) z = px + gz whenever p¥ = ¢V, since n (p+q) = n(p) +n(q), and
the five properties above also hold for all p,q € Z[S] and x,y € S.

With this action of Z[S], the abelian multigroup G over S becomes a multi-
Z A H(ST)-module over S.

For every abelian multigroup G over S there is a natural isomorphism

Map (ST,G) = CA(S,G).

Indeed, if f: ST — G is a morphism of multisets over S, then f(y') = (f(y))*
for all y € ST and ¢ € S; since (a,t)" = (a, tu) we have

fla,t) = f((@, 1)) = (f(a, 1)),
so that f is uniquely determined by the (symmetric) 1-cochain g: a — f(a,1) €
G,. Conversely, given g € CA(S,G), so that g(a) € G, for all a € S, define
f(avt) = g(a‘)t
for all a,t € S. In particular, f(a,1) = g(a). Then f(a,t)V = at = (a,t)¥ and

f((a,t)") = fla,tu) = gla)™ = (f(a,1))"

for all a,t,u € S, so that f is a morphism of multisets over S.

Theorem 1.5 then yields Der (Z 4 H(ST), G) = CA(S,G).

It follows that ST could be a suitable choice for X. But when I tried it I
obtained no result that was specific to S or Z 4 H(ST), only the results in the
next sections that apply to all commutative multirings.

3 Weak 2-cocycles

In this section, S is a commutative monoid, R is a commutative multiring over S,
and M is a multi- R-module over S.

1. Cochains. Like André-Quillen n-cochains, which are morphisms of soss
VP IR — M, a (regular) n-cochain u of a set X over S with values in a set
G over S, where n > 1, is a morphism u: X(™ — G of sets over S, where

XM = X x X x---x X (n times)

and assigns to each x1, xa, ..., , € X some u (x1, T3,..., T,) € G such that

w(xy, o2, wn)” = (27)(23) - (2)).

The n-cochains of X with values in G constitute a set
C™"(X,G) = Map(X™, G).

If G is an abelian multigroup over S (and not just a set over S), then n-
cochains of X with values in G can be added pointwise: if u,v € C"(X,G),

then

\

(e, ooy .., )Y = v(xy, Toy. .., Ty)Y

12



for all z1, zo,..., z, € X, so that

(u4v) (z1, T2y .., )Y = w(w1, 2oy..., 2,)Y + v (21, Toy..., Tp)Y
is defined in G. Then C™(X,G) is a abelian group under pointwise addition.
In what follows we do not venture beyond n =1 or n = 2.

2. Cocycles. In the André-Quillen cohomology of R we know from Part 2.3
that an André-Quillen 2-cocycle is a 2-cochain u: VR — M such that

~

uoeyr = (uoVer) + u,
equivalently,
uleyrA) = u((Ver)(A)) + u(A) forall Ac V2R, (Z)

where V2R = Z 4 H(VR). Like 2-cochains, André-Quillen 2-cocycles can be
added pointwise, and constitute an abelian group Z3(R, M).

A weak 2-cocycle is an André-Quillen 2-cochain u such that (Z) only holds
for all A € H(VR):

u(evrA) = u((Ver)(A)) + a(A) forall AeH(VR). (Z-)

Under pointwise addition, weak 2-cocycles constitute a subgroup Z2(R, M) of
Z5(R, M).

We think that the results in this section make weak 2-cocycles more inter-
esting than full-blooded 2-cocycles.

Condition (Z-) can be analyzed as follows. Let m > 1, P, P, ..., P,, € VR,

and z; = eg P, € R, so that A = [Py, P»,..., Py] is the typical element of
H(VR). We have

evr ([P, Poy ..., Pl = (evr[P1]) (evr[P2]) -+ (evr[Pn])

= PPy Py,
(VER) [Pl, Pg,..., Pm} = [ERpl] [GRPQ] [ERPm}
= [z1, z2,..., Tm], and

a[Plv P27"‘7 Pm} Zz ([Pl} [P2] [Pm](_z))u(Pl)

Ei (.231332 co xm(_i)) U(Pz) .

Hence (Z-) is equivalent to
w(PiPy---Pp) = ulxy, T2,..., T + >, (x1x2 e xm(—i)) u(P;), (Z-)

for all P, Ps,..., P, € VR.
With m = 1, (Z-) reads u (P) = u[x] + u (P), where x = epP; since €p is
surjective, this implies
ulz] = 0 (21)

for all x € R.

13



For all n > 2 and x4, xa,..., , € R, (Z-) implies
U[-’L‘l, x27-"3 xn] = ZQSZS’!LZU[%“ xi]7 (Y)

where E =X1- - Xi_1, E =1ifi=1, ?l =11 Ty, and?i =1ifi=n.
Indeed (Y) holds, trivially, if n = 2. Also, eg [x1, Z2,..., Tn] = T122 -+ @y, If
Y holds for n > 2, then (Z-) and (Z1) imply

wlry, ooy Tny Tna1] = u(zr, o o] [Toa])
= ulrr Tn, Tny1] + (@1 2R)u[Tpt1] + Tpprulzr, ..., )
= U [331 Ty, xn—i—l] + Tpgq (E2§i§n 71 U [E) xz])
%
= 22§i§n+1 yiu [z, @],
where y; = Tiqy1 - Tpy1 = ?z Tn+1-
Moreover, (Y) implies
ulx,y,z] = ulzy,z] + zulz,y] and
ulz,y,x] = ulzy,x] + zulz,yl = ulz,yz] + zuly, 2],

for all ,y,z € R. Since [z,y, z] = [2,y, 2] in H(R), it follows that
wlz,yz] + zuly,z] = ulzy,z] + zulz,y] (72)

for all z,y,z € R, so that on R.

Let u: (z,y) — u[z,y] be the mapping of R X R into G induced by the
weak 2-cocycle u. It follows from (Z1) and (Y) that u completely determines
all values of u. Moreover, u is a symmetric 2-cocycle, by (Z2):

zu(y,z) — u(xy,z) + u(z,yz) — zu(z,y) = 0 forall z,y,2€ R, (Z2)

and is balanced:
(u(z,y)’ = u(a', y) = ulz,y") (Z3)

for all z,y € R and t € S, since [z,y]" = [z}, y] = [z, ¥] in H(R) and u is a
morphism of multisets over S.

Under pointwise addition, balanced symmetric 2-cocycles constitute a sub-
group Z2-(R, M) of Z2(R, M). The map u — u is a canonical homomorphism
of Z2(R, M) into Z2(R, M).

3. Theorem. The canonical homomorphism ©: v — u is a natural isomor-
phism
Zi(R, M) = Z5o(R,M).

To prove this it remains to show that © is surjective. Let v € Z2.(R, M) be
a balanced symmetric 2-cocycle on R, so that v (z,y) € M(,,)v and v (y,z) =
v (z,y) for all x,y € R, (Z22):

zv(y,z) — v(zy,z) + v(z,yz) — zv(z,y) = 0 forall z,y,2 € R, (Z2)
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holds for all z,y, z € R, and (Z3):

(v(z,y)" = v(z', y) = v(z, 9 (23)

holds for all z,y € Rand ¢t € S. Let v (z) =0 for all € R, so that (Z1) holds,
and let

’LL((El, Z2,. .., xn) = ZQS'LSTLEU(E’ xl) (Yi)
for all n > 2 and 1, z9,..., , € R. In particular u (z,y) = v (z,y) for all
x,y € R.

We show that u has property (P):

U(To1, To2y vy Ton) = w(T1, Tay..., Tp) (P)

for every permutation o of 1,2,...,n. Since every permutation o of 1,2,...,nis

a product of transpositions (¢ i+ 1), it suffices to prove (P) when o = (i i+1).
If n = 2, then (P) holds since u is symmetric: u (y,z) = u(x,y). Let n > 2. If
i+ 1 < n, then (P) follows from the induction hypothesis. Now let i = n — 1.
Then (Y-) and (Z2) yield
u (wala Lg2y - vy xo’n)
= u(z1, Ta,..., Tn_2, Tn, Tn_1)
= Z2gign_2 ?z v (%, $z‘)
+ Tp-1v (Yn—h xn) + (%n—l Tn, xn—l)
%
= Z2§i§n72 v (@i, ;)
+ Tn U (%nfly xnfl) + v (?nfl Tn—1, mn)
H
= Z2§i§n T (@i, ;)
= u(z1, Tay..., Ty) .

It follows from (P) that w(xy, 2,..., z,) depends only on [x122---2,] €
F(R), so that u is well defined on F(R) by

wlrize Ty = w1, T2,..., Tp).
Nowlet 1<j<k<n,tes,
_ t d
Y1, Y2, -5 Yn = xla"'vxj,"'axkv"’vxna an
t
21y 253 2n = Tly evey Ljy enny Ty ovovy T -

We show that

u(yla Y2ye0ey yn) = U(Zl, 22y ey Zn)
Since u (z1, xa,..., ¥,) depends only on [zixs---x,] € F(R) we may assume
that j =1 and kK = 2. Let a = 1 and b = x5, so that

_ t
Y, Y25+ Yn = a7b7$37"'7xn7 and

t
21y 295+, Zn a, b, r3, ..., Tp.
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Then

@1 =1, yz =a,
V=07,
?1 =1, Zy=a,
71 = bt s,

E:atbxg ceemy_q if i>2,

o= if i > 2,
?i:abtl'g"'xi,1 if 1> 2,
7= if i>2.

Hence

u(yla Y2, yn) = Zggignzv( i yz)
— Tgv(at7 b) + 22<i§n?iv(atbx3 cexi_y, @) and
s Zn) = EQSignzv(zv zi)

= Zouv(a, b') + 22<i§n7iv(abt$3 e Ty, ) -

u(z1, 22,. ..

Since a'b = ab’ in R and v (a’, b) = v (a, b*) by (Z3), this yields

u(ylay25-"ayn) = U(Zl,Zg,.-.,Zn).

Therefore [y1y2 - yn] = [2122- - 2,] in F(R) implies w (y1, Y2,..., Yn) =

u(z1, 22, .., zn); and w21, Ta, ..., z,] is well defined by
wlxy, Tayeony Tn) = w(Ty, Ta,..., Tp) = Z2§i§nzv(<§i’ x;),
for all n > 2 and x4, z2,..., T, € R.

. Yn] € VR, where z;, y; € R

Let P = |21, 22,..., m] and Q = [y1, Y2, .-

for all 7,j. Let

215 B2y -0y Bm4n = L1, T2y--vy Tmy Y1, Y25+ -5 Yn

so that PQ = [z1, 22, .., Zm+n]- Let

andy = y1y2---Yn = €rQ.

T = T1Xo--- Ty = €RP
We have
Gi=%m it i<m+1, G=2%,,, if i>m+1,
Zzﬁy if 1 <m, 71-: im i 12> m.
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Hence (Z2) yields

u(PQ) = ZQgigm-m?iU((?i, 2;)
= Zzgigmz‘yv(%, z;) + <

yu(P ) + Zl<]<n7jv(x<§j7yj)
yu(P) + 71 (=, 91) + Z2gjgn7jv($?jvyj)
= yu(P) + Yy v(x, v1)

+ Z2§j§n 73‘ (zo( ?j» y;) +v(z, ?j y;) —yjv(z, ?g))
= yu(P) + zu(Q) + Yo (z, y1)

+ Daci<n (7;‘”(% ?j—i—l) - 7j—1v(x7 (gj))
= yu(P) + zu(@Q) + ulz,y],

g
3
+
A
3
+
3
<]
|
3
(o4
=
<t
<
3

since the sum

Zz<3<n(7 (z, y]+1) 7;‘—1”(% ?]))

collapses to v (z,y) 71 (z, y1).
The equality

wPQ) = yu(P) + zu(Q) + ulz,y] (2T)

is the particular case of (Z-):
w(PiPy---Pp) = ulxy, T2,..., Tp| + >, (:cle .- ~xm(—i)) u(P;)  (Z-)

when m = 2. The general case then follows by induction. First, for all
X1, T2,y Tm, y € R, (ZT) and (Z1) yield, with P = [z, za,..., z,,] and
Q= [yl
'U/[.Tl, L2y .y Tmy,y y] = U(PQ)
= yu(P) + zu(Q) + ulx,y]
= yu[ml,x%...,xm} + U[l']wg"'l'm, y} (ZTi)
Now let m > 2, P, Ps,..., P41 € VR, and z; = egP; € R. Then
PPy Py = PQ, where P= PPy --- P, and Q = P,,,+1, and the induction
hypothesis yields, with x = egP = 2129+ - &y, and y = €gQ = Tpp41:
u(PrPy o Ppy1) = u(PQ) = yu(P) + zu(Q) + ulz,y]
= yulzy, x2,..., Tm]| + Zigm (y Ty T (—1) u(PZ))
+ 2u(Q) + ulriza Tm, Y]

= Zi§m+1 (mlfcg o Epgn (—1) u(PZ)) + ulz1, 22y .y Tt

by (ZT-).
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Thus w has property (Z-), and u is a weak 2-cocycle. We saw that u (x,y) =
v(z,y) for all x,y € R, so that u = v. This completes the proof.

Unfortunately, while @, €y g, and Veg are additive, there is no evidence that
u is; as a morphism of multisets over S from VR to G, u is not required to
be additive. Hence Theorem 3.3 does not readily extend to ZQZ(R, M). These
accursed additions are ruining everything.

4. Coboundaries. André-Quillen 2-coboundaries are, in particular, weak 2-
cocycles. We note that u = §9v for some v € C3(R, M) implies u = 6%v €
¢B2(R, M).

Indeed, v =70 — (voeg). Forall z,y € R,

[z,y] = 0([z]ly]) = 20yl +yv[z] = zv(y) +yv(z), and
er[z,y] = er([z]ly]) = (er[z])(erY]) = y.

Hence
(da®v)[z,y] = zv(y) +yv(z)—v(zy) = (6%)(z,y).

4 Coextensions.

In this section, S is a commutative monoid.

1. Definition. A coeztension of a commutative multiring R over S by a mul-
ti-R-module M over S is a commutative multimonoid F over S together with a
surjection 7: E — R and, for each a € S, a simply transitive action . of M,
on E,, such that

(me)¥ = e,
(me)t = 7w (e'), and
m(ef) = (me)(nf),
forall e, f € F and t € S, so that 7 is a morphism of commutative multimon-

oids over S; there is a morphism u: R — E of multisets over S (such that
(ur)Y =7V and p(rt) = (ur)t) which splits

mop = lg;
and
(x-e)' = 2'.e" whenever z¥ =e",
7(r.e) = me whenever zV =eV,
0.e = e,
r.(y-e) = (x+vy) e whenever z¥ =y¥ =¢¥, and

(x-e)f = ((xf)z) - ef whenever z¥ =¢eV,
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foralle, f € E,t € S, and z,y € M, so that each action of M, on E, is a group
action of the additive abelian group M, on the set F,. Since M, acts on E, we
also have

\ Vv

(x-e)Y = a¥ = e¥Y whenever x € M, e€ E, and z¥ =¢eV.

Commutativity and the condition (z - €) f = ((7f)z) . ef imply
ew-f) = (x-fle = ((re)x) - ef .

This makes E a kind of group coextension of the commutative monoid R by M.
(It could be further seasoned with additions, but this would require additive
factor sets.)

Two coextensions F and F' of R by M with surjections 7 and p to R are
equivalent if and only if there exists an isomorphism 6: £ — F of commutative
multimonoids over S (an equivalence of coextensions) such that

pbe = me forall e€ E and

O(x -e) = x.0c whenever x € M, e€ E, and z¥ =¢e".
2. Construction. Coextensions of R by M are constructed up to equivalence
by Schreier’s method.

Let E be a coextension of R by M. For each r € R let p, = ur € E, where
: R — E is the morphism of multisets over S that splits 7. Then 7p, = r,
pY =Y, and p,.. = pl. Since M, acts simply and transitively on F,, every
element e of E can be written in the form

e =x-p,

\%

for some unique x € M and r = e € R such that zV¥ = rY = ¢V. In particular,

for every r,s € R, w (p, ps) = rs and
PrPs = U(HS) * Prs

for some unique u (r,s) € M such that u (r,s)¥ = (rs)¥V =rY sV.
The factor set u inherits three properties from the multiplication on R: for
allr,s € R,
u(s,r) = u(r,s)

since the multiplication on R is commutative; for all ¢,7, s € R,

(Pgpr)ps = (u(aq,7) « pgr) s = sulq,r) + (Pgr)7s)
su(q,r) - (u(qr,s) - Digrys s
Pq (Prps) = pq(u(r,s) - prs) = qu(r,s) - (pgprs)
qu(r,s) - (u(q,rs) - Py(rs)) s

since the multiplication on R is associative; hence

su(q,r) + u(qr,s) = qu(r,s) + u(q,rs).
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Finally, for all r,s € Rand t € S,

Prps = preps = u(rt, s) - pps,
(prps)t = (u <T75> _pm)t = u(r, S)t * P(rs)t and
prpt = prpst = u(r, ')« prges

since pl.ps = (prps)! = pr-pl in E and rts = (rs)! = rs’ in R, it follows that

u(@',y) = (u(z,y)" = u(z,y).

Thus u is a balanced symmetric 2-cocycle, u € ZZ2,(R, M).
The multiplication on E is completely determined by R, M, and the factor
set u:

(‘T . pr)(y . ps) = ST - (pr (y . ps)) = ST - (ry . (prps))
= ST - (Ty : (u (T’S) ° prs))
= (sx+u(r,s)+ry) . Drs -

This provides a bijection 8: x . p,, — (x,r) of E onto the product E(R, M) of
R and M in the category of multisets over S:

E(R,M) = {(z,r) |z €M, reR, z¥ =r"},
and suggests a multiplication
(@,7)(y,s) = (sz+u(rs)+ry,rs)

on E(R, M).

Equip E(R, M) with this multiplication, projection (z,r)¥Y =z =rV to S,
action (z,7)t = (xf, rt of S, surjection m: (z,r) — r to R, and, for each a € S,
the action of M, on

E. = {(z,r) eER,M) |2V =r¥ =a}
defined by
z.(y,r) = (x+y,r).

This makes E(R, M) into what Theorem 4.3 below asserts is a coextension
E(R,M,u) of R by M:

3. Theorem. If u is a balanced symmetric 2-cocycle on R with values in
M, then E(R, M,u) is a coextension E(R, M,u) of R by M, with factor set
u. Moreover every coextension of R by M with factor set w is equivalent to
E(R, M,u).
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The proof us straightforward. All the axioms of coextensions are satisfied.
Indeed E(R, M, u) is a commutative multimonoid over S:

(2. = @)Y = ()Y = ()t

(EtT

((x,r)v) t;

(z,r) = )
(@) = 0ey = (@™ ') = ()™
((z,7)(y,9))" = SIJFU(?” s) 4 ry, rs)t

(s2)" +u(r,s)" + (ry)', (rs)")
Eru(rt,s)+rty, rts)

r)(s,y) = (z,7)"(y, 5)

stx+u(r s +ryt, rsh)

ST

X

(,
((*
(
(
(sz
(a'
(
(

= (z,1)(y' s") = (z.7)(y.9)",
since u is balanced;
(z,7)(y,9)Y = (sz+u(r,s)+ry,rs)Y = (rs)¥ = rVs¥ = (z,r)" (y,5)";
the multiplicationon E(R, M, w) is commutative:
(y,8)(z,7) = (ry+u(s,r)+sx,sr) = (sc+u(r,s)+ry,rs) = (x,7)(y,$),

since M, is abelian, the multiplication on R is commutative, and u is symmetric;
and the multiplicationon E(R, M, u) is associative:

(2. @)y, 1) (2,8) = (rz+ulg,r)+ay. ar)(z,s)
srz + su(q,r) + sqy +u(gr,s) + qrz, qrs)
rse+u(q,rs) + qsy + qu(r,s) + qrz, qrs)
z,q)(sy+u(r,s)+rz, rs)

z,q)((y.7)(2,5))

~—~ o~~~

since u is a 2-cocycle.
Moreover,

(m (2,7))Y

o= (z,n)Yy

(7 (z,7)) = r* = 7 ((z,7)"); and

7 ((z,r)(y,8)) = rs = 7 (z,7)7(y,5);
the map p: r — (0, r) is a morphism of multisets over S: (ur)Y = (0,r)Y =V
and p (rt) = (0, rt) = (ur)?, and splits m: 7w (ur) = r;

(@- (@) = (@+y, ) = @ +y, ") =2 ()
whenever V¥ =rV = (y,r)V;
(@ (yr) = 7@ty r) = 7(yr);
0-(xzr) = O0+z,71) = (x,7);
z-(y-(ar) = (@+y+zr) = (@+y) - (27)
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whenever ¥ =yY =2V =rV = (z,7)V; and

(2 n)(z8) = (z+y, 1)(25)
= (s(z+y)+u(rs)+rz rs)
= (sz+sy+u(r,s)+rz, rs)

= ST - ((y,r)(z,s))

whenever Vv = (y,r)V = y¥. Thus E(R, M, u) is a coextension of R by M.
Since (0,7)(0,s) = (u (r, s), rs), its factor set is w.

Finally let E be a coextension of R by M with surjection p to R and with
pr = pr for every r € R, where pu: R — E splits p, so that p. ps = u (r,5) - prs
for all ,s € R and wu is a factor set of E. We saw that

0:x - p.—> (z,7)

is a bijection of E onto E(R, M,u), and that 0 (ef) = (0e)(0 f) for all e, f € E.
Moreover

( = - Dy

0((-p))) = 9($t < (pr)") = 0(z" - pye)

) = (z,r)" = (0(z-p.))", and
(rv+y) r)

= (z+y,r) =2x-(yr) =x-0(y-pr).

\
/-\
w

G(x * (y . pr))

Thus @ is an equivalence of coextensions.

4. Proposition. Two coextensions of R by M with factor sets u and v are
equivalent if and only if there exists w(r) € M,v for every r € R such that

w(r') = (w(r))" and
v(r,s) —u(r,s) = sw(r)—w(rs)+rw(s)

forall,s€ Rand t € S.

By Theorem 4.3, we may assume in the proof that the two coextensions are
E(R, M, u) and E(R, M, v).

Let 0: E(R, M,u) — E(R, M,v) be an equivalence of coextensions. For
each r € R we have 76 (0,7) = 7 (0,7) = r and

0(0,r) = (w(r),r

for some unique w(r) € M such that w(r)Y = rV. Then
=0(0,r") =

= (0(0,n)" = ( ()tﬂ“t),

and



Since 6 preserves products and 6 (x . ) = x . fe, we also have
(u(r,s) +w(rs), rs) = u(r,s).60(0,rs) = 6 (u(r,s) . (O,Ts))

= O(u(r,s), rs) = 9((0,7“)(0, s))

= (w(r),r)(w(s),s) = (rw(s)+wv(r,s)+sw(r), rs),
whence

v(r,s) —u(r,s) = sw(r)—w(rs)+rw(s).
Conversely, assume that v (r,s) —u (r,s) = sw(r) — w (rs) + rw(s). Define

0: E(R,M,u) — E(R, M,v) by

0(z,7) = (x4+w(r), r).

Then 6 is bijective. Moreover,

w0 (z,r) = r = w(x,r),
O (z,r)Y =17 = (z,1)"
0((z,r)) = ( ,7')
= Gl ) = @) )
= (0 x,T) ) ,
(- (y.7) = 0(z+y, r)

@+y+uw(r),r) = z-(y+wl),r)

= z.0(y,r), and

0 (s + u(r,s) +ry, rs)

(sz+u(r,s) +ry +w(rs), rs)

(sx + sw(r) +v(r,s) +ry + rw(s), rs)
= 0(z,7)0(y,s).

Hence 6 is an equivalence of coextensions.

Prop. 4.4 suggests that a balanced symmetric 1-cochain on R with values in
M is a 1-cochain u (that assigns u(r) € M, to r € R,) such that

u(r)’ = u(r)
forall € Rand ¢t € T. (It is balanced only to match the balanced symmetric 2-
cocycles.) Under pointwise addition, balanced symmetric 1-cochains constitute
a subgroup C2(R, M) of CX(R, M).
The coboundary of a balanced symmetric 1-cochain w is a balanced symmet-
ric 2-cocycle:
(du)(rt, s) = su(rt) — u(rts) + rfu(s)
= s(u(r))’ — u(rs’) + r'u(s)
) =

= stu(r) — u(rs’) + rtu(s

>
—~
—
<
~—
—
&
VA
~—
~—
|

(6u)(r, s').
Under pointwise addition, these balanced symmetric 2-coboundaries constitute
a subgroup B2.(R, M) of Z}, (R, M).

It follows from Prop. 4.4 that the quotient group Z3.(R, M)/ Bz.(R, M)
classifies coextensions of R by M.
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