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Errata to subsection 6.6.

6. Free multirings on multisets. The free commutative multiring over S on
a multiset X over S is the free commutative multiring Z[X] = Z ⊣ H(X) over S
on the free commutative multimonoid H(X) over S on X.

As in Section 4, H(X) is the half-free commutative monoid

H(X) = F(X)/ ≈

on X, where ≈ is the smallest congruence on F(X) such that Xt
x Xy ≈ Xx X

t
y

for all x, y ∈ X and t ∈ S. The typical element Y of H(X) is the equivalence
class Y = [X1X2 · · ·Xn] of a commutative product X1X2 · · ·Xn of elements of
X = {Xx | x ∈ X }; equivalently, Y = [Xm] for some Xm ∈ F(X).

Accordingly, the typical element of Z ⊣ H(X) is a homogeneous linear com-
bination

p =
∑(

pY Y
∣∣ Y ∈ H(X), Y ∨ = p∨

)
.

If X only has one element, or if xt = x for all x, t, then H(X) = F(X);
otherwise ≈ is not the equality on F(X), hence an element Y of H(X) cannot
be written in the form Y = [Xm] for some unique monomial Xm.

1 Derivations

In all that follows, S is a commutative monoid.

1. Multimonoids. In this section, M is a commutative multimonoid over S.
A multi-M -module over S is an abelian multigroup A over S together with
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an action of M on A such that

(xa)∨ = x∨ a∨ ,

(xa)t = x at = xt a ,

x (ya) = (xy) a , and

x (a+ b) = xa+ xb if a+ b is defined

for all x, y ∈M , t ∈ S, and a, b ∈ A.
For example, if R is a commutative multiring over S, then every multi-R-

module over S remains an multi-R-module over S when R is viewed as a commu-
tative multimonoid over S. Conversely, if A is a multi-M -module over S, then
A is a multi-(Z ⊣M)-module over S, on which p =

∑(
px x

∣∣ x ∈M
)
∈ Z ⊣M

acts by
pa =

∑(
px xa

∣∣ x ∈M
)
.

The categories of multi-M -modules over S and multi-(Z ⊣ M)-modules over S
are therefore (thereby?) isomorphic.

A prederivation of a commutative multimonoid M over S into a multi-M -
module A over S is a mapping D : M −→ A such that

D(x)∨ = x∨ ,

D(xt) = D(x)t , and

D(xy) = xD(y) + y D(x) ∈ A.

for all x, y ∈M and t ∈ S. In particular, D is a morphism of multisets over S.
Also, D(1) = D(11) = D(1)+D(1), so that D(1) = 0, whence D(1t) = D(1)t =
0 for all t ∈ S.

The set PDer (M,A) of all derivations of M into A is an abelian group under
pointwise addition, on which M acts (pointwise) by:

(xD)(y) = xD(y)

for all x, y ∈ M . Then x (D′ + D”) = xD′ + xD”) and x (yD) = (xy)D for
all x, y ∈ M and D,D′, D” ∈ Der (M,A). OK, that makes Der (M,A) an M -
module, but there are enough new structures already, so I’ll skip the formal
definition of M -modules.

2. Half-free multimonoids. When X is a multiset over S, recall that H(X)
is the (half)free commutative multimonoid over S over X. In describing H(X)
we dispense with X = {Xx | x ∈ X } and write the elements of the free com-
mutative monoid F(X) on the set X as commutative products of elements of
X. As a monoid,

H(X) = F(X)/ ≈ ,

where ≈ is the smallest congruence on F(X) such that

xt y ≈ x yt
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for all x, y ∈ X and t ∈ S. This writes the elements of H(X) as equivalence
classes [x1x2 · · ·xn] of commutative products of elements of X. Concatenation
yields products in H(X), and, for every x1, x2, . . . , xn ∈ X and t ∈ S,

[x1x2 · · ·xn]
∨ = x1

∨ x2
∨ · · · xn

∨

and
[x1x2 · · ·xn]

t = x1 · · ·xt
i · · ·xn ,

for any i.
The canonical map η : X −→ H(X) sends x ∈ X to [x] ∈ H(X). It is a

morphism of multisets over S.

3. Theorem. For every multiset X over S and multi-H(X)-module A over S
there is a natural isomorphism

Θ: PDer (H(X), A) ∼= Map (X,A)

that sends a prederivation D of H(X) into A to

d = Θ(D) = D ◦ η : X η−→ H(X)
D−→ A ,

so that dx = D[x].
Proof: First note that d = D ◦ η is a morphism of multisets over S.
Θ is injective. For every D ∈ PDer (H(X), A), induction yields

D [x1x2 · · ·xn] =
∑

i

(
[x1 · · ·xi−1 xi+1 · · ·xn] D [xi]

)
for all n ≥ 0 and x1, x2, . . . , xn ∈ X (with x1x2 · · ·xn = 1 if n = 0 so that
D [x1x2 · · ·xn, 1] = 0). If d = Θ(D) = 0, then D [x1x2 · · ·xn]) = 0 for all n ≥ 0
and x1, x2, . . . , xn ∈ X and D = 0.

In what follows we denote

x1 · · ·xi−1 xi+1 · · ·xn by x1x2 · · ·xn(−i) .

Θ is surjective. Let d ∈ Map (X,A), so that (dx)∨ = x∨ and d(xt) = (dx)t

for all x ∈ X and t ∈ S. We want

D [x1x2 · · ·xn] =
∑

i

(
[x1x2 · · ·xn(−i)] d(xi) .

Let j < k, let x1, x2, . . . , xn ∈ X, and let t ∈ S, so that

x1 · · ·xt
j · · ·xk · · ·xn ≈ x1 · · ·xj · · ·xt

k · · ·xn .

Let

yj = xt
j , yi = xi if i ̸= j and

zk = xt
k , zi = xi if i ̸= k ,
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so that

[y1y2 · · · yn] = [x1 · · ·xt
j · · ·xk · · ·xn] ,

[z1z2 · · · zn] = [x1 · · ·xj · · ·xt
k · · ·xn] ,

[y1y2 · · · yn] = [z1z2 · · · zn] ,
[y1y2 · · · yn(−k)] = [z1z2 · · · zn(−k)]t , and

[y1y2 · · · yn(−j)]t = [z1z2 · · · zn(−j)] .

In the multi-H(X)-module A over S, we have (pw)t = pt w = p zt for all p ∈
Z[X], w ∈M , and t ∈ S. Hence∑

i

(
[y1y2 · · · yn(−i)] d(yi)

)
=

∑
i̸=j,k

(
[y1y2 · · · yn(−i)] d(xi)

)
+ [y1y2 · · · yn(−j)] d(xt

j) + [y1y2 · · · yn(−k)] d(xk)

=
∑

i ̸=j,k

(
[z1z2 · · · zn(−i)] d(xi)

)
+ [y1y2 · · · yn(−j)]t d(xj) + [z1z2 · · · zn(−k)]t d(xk)

=
∑

i ̸=j,k

(
[z1z2 · · · zn(−i)] d(zi)

)
+ [z1z2 · · · zn(−j)] d(zj) + [z1z2 · · · zn(−k)] d(xt

k)

=
∑

i

(
[z1z2 · · · zn(−i)] d(zi)

)
.

Therefore y1y2 · · · yn ≈ z1z2 · · · zn implies∑
i

(
[y1y2 · · · yn(−i)] d(yi)

)
=

∑
i

(
[z1z2 · · · zn(−i)] d(zi)

)
and a mapping D : H(X) −→M is well defined by

D [x1x2 · · ·xn] =
∑

i

(
[x1x2 · · ·xn(−i)] d(xi)

)
.

In particular, D[x] = dx for all x ∈ X.
D is a prederivation; this will complete the proof. Since d is a morphism

of multisets over S we have (dx)∨ = x∨ and d(xt) = (dx)t for all x, t. Hence(
[x1x2 · · ·xn(−i)] d(xi)

)∨ = [x1x2 · · ·xn]
∨ and

D [x1x2 · · ·xn]
)∨ = [x1x2 · · ·xn]

∨ .

Moreover,

D
(
[x1x2 · · ·xn]

t
)

= D [x1x2 · · ·xn−1 x
t
n]

=
∑

i<n

(
[x1x2 · · ·xn−1 x

t
n (−i)] d(xi)

)
+ [x1x2 · · ·xn−1] d (x

t
n)

=
∑

i<n

(
[x1x2 · · ·xn−1 xn (−i)] d(xi)

)
t +

(
[x1x2 · · ·xn−1] d (xn)

)
t)

=
(
D [x1x2 · · ·xn]

)
t ,
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so that D (yt) = (D(y))t for all y ∈ H(X), and

D
(
[x1 · · ·xm][y1 · · · yn]

)
=

∑
i

(
[x1 · · ·xm(−i)][y1 · · · yn] d(xi)

)
+

∑
j

(
[x1 · · ·xm][y1 · · · yn(−j)] d(yj)

)
= [x1 · · ·xm]D [y1 · · · yn] + [y1 · · · yn]D [x1 · · ·xm] ,

so that D (yz) = y D(z) + z D(y) for all y, z ∈ H(X).
Thus D is a prederivation.

4. Multirings. As before, a derivation of a commutative multiring R over S
into a multi-R-module M over S is a mapping D : R −→M such that

D(x)∨ = x∨ for all x ,

D(xt) = D(x)t for all x, t ,

D(x+ y) = D(x) +D(y) whenever x+ y is defined, and

D(xy) = xD(y) + y D(x) for all x, y ∈ A ;

In particular, D is a morphism of abelian multigroups over S, and a prederiva-
tion of R, viewed as a commutative multimonoid over S, into M , viewed as a
multi-M -module over S. As before, D(1) = 0 and D(1t) = D(1)t = 0, so that
D(r1) = r D(1) = 0, for all r ∈ R and t ∈ S.

The set Der (R,M) of all derivations of R into M is an R-module under
pointwise addition and action of R ((rD)(x) = r D(x) for all x, y ∈ R).

Now let X be a multiset over S and let

Z[X] = Z ⊣ H(X)

denote the free commutative multiring over S on the multiset X, which is also
the free commutative multiring over S on the commutative multimonoid H(X)
over S. The typical element of Z[X] is a homogeneous linear combination

p =
∑(

py y
∣∣ y ∈ H(X), y∨ = p∨

)
of elements of H(X).

The multiring comes with a canonical map

η : X
η−→ H(X)

η−→ Z[X]

which is a morphism of multisets over S and sends x ∈ X to [x] ∈ H(X) ⊆ Z[X].

5. Theorem. For every set X over S and multi-Z[X]-module M over S there
is a natural isomorphism

Θ: Der (Z[X], M) ∼= Map (X,M)
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that sends a derivation D of Z[X] into M to

d = Θ(D) = D ◦ η : X η−→ Z[X]
D−→M ,

so that dx = D[x].
This is proved by composing the isomorphism

PDer (H(X), M) ∼= Map (X,M)

in Theorem 1.3 with a similar isomorphism

Ψ: Der (Z[X], M) ∼= PDer (H(X), M) .

Note that every multi-Z[X]-module M is in particular a multi-H(X)-module.
If D : Z[X] −→ M is a derivation of Z[X], then ΨD is the restriction of D

to H(X) ⊆ Z[X], which is a prederivation of H(X).
Ψ is injective. Indeed, if D(y) = 0 for all y ∈ H(X), and p =

∑(
py y

∣∣ y ∈
H(X), y∨ = p∨

)
∈ Z[X], then

D(p) =
∑(

py D(y)
∣∣ y ∈ H(X), y∨ = p∨

)
= 0 .

Ψ is surjective. Let M be a multi-Z[X]-module over S and let d : H(X) −→
M be a prederivation of H(X). For each p =

∑(
py y

∣∣ y ∈ H(X), y∨ = p∨
)
∈

Z[X], define

D(p) =
∑(

py d(y)
∣∣ y ∈ H(X), y∨ = p∨

)
.

In particular, D[x] = d[x] for all x ∈ X. We have D(p)∨ = p∨, since d(y)∨ = y∨

for all y ∈ H(X), and

D(pt) =
∑(

py d(y
t)

∣∣ y ∈ H(X), y∨ = p∨
)

=
∑(

py (d(y))
t
∣∣ y ∈ H(X), y∨ = p∨

)
= (D(p))t .

Moreover, if

p =
∑(

py y
∣∣ y ∈ H(X), y∨ = p∨

)
and

q =
∑(

qz z
∣∣ z ∈ H(X), z∨ = q∨

)
∈ Z[X],
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then D(p+ q) = D(p) +D(q) (if p∨ = q∨) and

D(pq) = D
[∑(

py qz (yz)
∣∣ y, z ∈ H(X), y∨ = p∨, z∨ = q∨

)]
=

∑(
py qz d(yz)

∣∣ y, z ∈ H(X), y∨ = p∨, z∨ = q∨
)

=
∑(

py qz (y d(z) + z d(y))
∣∣ y, z ∈ H(X), y∨ = p∨, z∨ = q∨

)
=

∑(
py qz y d(z)

∣∣ y, z ∈ H(X), y∨ = p∨, z∨ = q∨
)

+
∑(

py qz z d(y)
∣∣ y, z ∈ H(X), y∨ = p∨, z∨ = q∨

)
=

[∑(
py y

∣∣ y ∈ H(X), y∨ = p∨
)]

[∑(
qz d(z)

∣∣ z ∈ H(X), z∨ = q∨
)]

+
[∑(

qz z
∣∣ z ∈ H(X), z∨ = q∨

)]
[∑(

py d(y)
∣∣ y ∈ H(X), y∨ = p∨

)]
= pD(q) + q D(p) .

Thus D is a derivation.

2 Cohomology of multirings

In this section, S is a commutative monoid and R is a commutative multiring
over S.

1. The comonad. The adjunction of multisets over S to commutative multi-
rings over S begets a comonad (V, ϵ, ν) in which V sends a commutative multi-
ring R over S to the free commutative multiring V R = Z[R] = Z ⊣ H(R) over S
on the multiset R over S.

Every morphism φ : R −→ T of multisets over S induces a morphism V φ of
commutative multirings over S from Z[R] to Z[T ] that sends

p =
∑(

py y
∣∣ y ∈ H(R), y∨ = p∨

)
to

(V φ)(p) =
∑(

py (V φ)(y)
∣∣ y ∈ H(R), y∨ = p∨

)
,

where
(V φ) [r1r2 · · · rn] = [(φr1)(φr2) · · · (φrn)] ,

as calculated in Z[T ], for all r1, r2, . . . , rn ∈ R. In particular,

(V φ) [r] = [φr]

for all r ∈ R.
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The counit ϵ : V R −→ R is the evaluation morphism of commutative multi-
rings over S that sends [r] to r, sends y = [r1r2 · · · rn] to

ϵ [r1r2 · · · rn] = r1r2 · · · rn

as calculated in R, and sends p =
∑(

py y
∣∣ y ∈ H(R), y∨ = p∨

)
to

ϵ (p) =
∑(

py ϵ(y)
∣∣ y ∈ H(R), y∨ = p∨

)
.

The comultiplication ν assigns to R the morphism νR = V η : V R −→ V V R
induced by the adjunction unit η : R −→ V R, viewed as a morphism of multisets
over S.

If M is a multi-R-module over S, then the action of R on M induces an
action of V R on M in which

px = ϵ(p)x

for every p ∈ V R and x ∈ M , which makes M a multi-V R-module since ϵ is a
morphism of commutative multirings over S.

2. The resolution. For every commutative multiring R over S there is now
an augmented simplicial commutative multiring R∗ with objects R0 = R and
Rn = V nR (where n ≥ 0 and V n = V ◦ V ◦ · · · ◦ V ), face maps

ϵn,i = V i ϵ V n−i R : Rn+1 −→ Rn (i = 0, 1, . . . , n),

augmentation ϵ = ϵ0,0 : V R −→ R, and degeneracy maps

νn,i = V i ν V n−i−1R : Rn−1 −→ Rn (i = 0, 1, . . . , n− 1),

that satisfy the simplicial identities.
Let M be a multi-R-module over S, hence also a multi-V R-module over S

and a multi-Rn-module over S for every n ≥ 0. Applying to R∗ the contravariant
functor Der (−,M) yields an augmented cosimplicial R-module Der (R∗, M)
with objects Der (R0,M) = Der (R,M) and Der (Rn, M) = Der (V nR, M) if
n > 0, face maps

dn,i = ϵ∗n,i = Der (ϵn,i, M) : Der (Rn, M) −→ Der (Rn+1, M)

for i = 0, 1, . . . , n, augmentation

d0,0 = ϵ∗ = Der (ϵ,M) : Der (R,M) −→ Der (V R,M) ,

and degeneracy maps Der (νn,i, M) (i = 0, 1, . . . , n− 1), that satisfy the cosim-
plicial identities.

A coboundary homomorphism

δn : Der (Rn, M) −→ Der (Rn+1, M)
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is then defined by

δn = dn,0 − dn,1 + dn,2 − · · ·+ (−1)n dn,n .

In particular, δ0 = d0,0. The simplicial identities imply δn+1 ◦ δn = 0 for all
n ≥ 0. This yields an augmented cochain complex of R-modules

0 −→Der (R,M)
ϵ∗−→ Der (V R, M)

δ1−→ . . .

−→ Der (V nR, M)
δn−→ Der (V n+1R, M) . . .

The André-Quillen cohomology of the commutative multiring R over S with
coefficients in the multi-R-module M over S assigns to R and M the R-modules
H0(R,M) = Ker δ0 / Im e and Hn(R,M) = Ker δn / Im δn−1, where n > 0.

Since V R = Z[R], the natural isomorphisms Der (Z[X],M) ∼= Map (X,M)
yield an isomorphic complex of R-modules

0 −→ Der (R,M)
e−→ Map (R,M)

d1−→ . . .

−→ Map (V n−1R, M)
dn−→ Map (V nR, M) . . .

whose homology modules are natural isomorphic to the André-Quillen cohomo-
logy modules of R with coefficients in the multi-R-module M . In particular,
H1(R,M) ∼= Ker d1 / Im e. Without the augmentation, H1(R,M) would be
simply Ker d1.

3. Maps. The augmentation e : Der (R,M) −→ Map (R,M) is the composite

e : Der (R,M)
ϵ∗−→ Der (V R,M)

∼=−→ Map (R,M)

of ϵ∗ = Der (ϵ,M), which sends D ∈ Der (R,M) to D ◦ ϵ, and the isomor-
phism Der (V R,M) −→ Map (R,M), which sends D ◦ ϵ to the mapping r 7−→
(D ◦ ϵ)[r] = D(r). Thus e (D) is D viewed as simply a mapping of R into M .

Next, dn,i : Map (V n−1R, M) −→ Map (V nR, M) is the composite

dn,i : Map (V n−1R, M)
∼=−→ Der (V nR, M)

ϵ∗n,i−→ Der (V n+1R, M)
∼=−→ Map (V nR, M)

and sends a map u from V n−1R to M to the derivation û of V nR such that
û[x] = u(x) for all x ∈ V n−1R, thence to ϵ∗n,i (û) = û ◦ ϵn,i, thence to the
corresponding map from V nR to M .

If i = 0, then ϵn,0 = eV nR and

(û ◦ ϵV nR)[x] = û (ϵV nR [x]) = û(x)

for every x ∈ V nR. Hence dn,0 u sends x ∈ V R to û(x) and

dn,0 u = û .
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If i > 0, then ϵn,i = V ϵn−1, i−1 and

(û ◦ V ϵn−1, i−1)[x] = û (V ϵn−1, i−1 [x]) = û [ϵn−1, i−1(x)] = u (ϵn−1, i−1(x))

for every x ∈ V nR. Hence dn,i u sends x ∈ V nR to u (ϵn−1, i−1(x)) and

dn,i u = u ◦ ϵn−1, i−1 .

In particular, d1,1 u = u ◦ ϵR.

4. Theorem. H1
Q(R,M) = 0.

Indeed let u ∈ Map (R,M) be an André-Quillen 1-cocycle. By the above,
δu = d1,0 u − d1,1 u = û − (u ◦ ϵ) = 0, so that u ◦ ϵ is a derivation. Since
ϵ : V R −→ R is surjective it follows that u is a derivation: for instance, for all
r, s ∈ R,

u (rs) = u (ϵ[r] ϵ[s]) = u (ϵ [rs])

= r u (ϵ[s]) + s u (ϵ[r]) = r u(s) + s u(r) .

Therefore u is an André-Quillen 1-coboundary.

5. What’s next? We want to get at the cohomology of S (in dimensions
n ≥ 2) by way of the cohomology of R = Z ⊣ H(X) for some suitable multiset
X that depends on S.

There are two obvious candidates for X: one is the multiset S over itself,
with projection a∨ = a and action at = at. The other is S+ = S × S, the free
multiset over S on S as a set over itself, with projection (a, t)∨ = at and action
(a, t)u = (a, tu).

Every abelian multigroup G over S can serve as coefficients in the coho-
mology of Z ⊣ H(S). Indeed H(S) acts on every abelian multigroup G over S
by

px = x(p∨)

for every x ∈ G and p ∈ H(S). In particular, [a]x = xa and 1x = x. Then

(px)∨ = (x(p∨))∨ = p∨ x∨ ,

(px)t = (x(p∨))t = xp∨ t = p xt ,

pt x = x(pt)∨ = xp∨ t = p xt ,

p (x+ y) = (x+ y)(p
∨) = x(p∨) + y(p

∨) = px+ py

whenever x+ y is defined , and

p (qx) = (x(q∨))(p
∨) = x(pq)∨ = pq • x ,

for all p, q ∈ H(S) and x, y ∈ G.
If now p ∈ Z ⊣ H(S),

p =
∑(

py y
∣∣ y ∈ H(S), y∨ = p∨

)
,
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then px is well defined by

px =
∑(

py (yx)
∣∣ y ∈ H(S), y∨ = p∨

)
= n(p)x(p∨) ,

where
n(p) =

∑(
py

∣∣ y ∈ H(S), y∨ = p∨
)
.

Then (p+ q)x = px+ qx whenever p∨ = q∨, since n (p+ q) = n(p) + n(q), and
the five properties above also hold for all p, q ∈ Z[S] and x, y ∈ S.

With this action of Z[S], the abelian multigroup G becomes a multi-Z[S]-
module over S.

For every abelian multigroup G over S there is a natural isomorphism

Map (S,G) ∼= G1 .

Indeed, if f : S −→ G is a morphism of multisets over S, then f(at) = (f(a))t

for all a, t ∈ S; since at = at we have

f(a) = f(1a) = (f(1))a ,

so that f is uniquely determined by f(1) ∈ G1. Conversely, if g ∈ G1, then

f : a 7−→ ga

is a morphism of multisets over S from S to G: indeed f(a)∨ = a and f(at) =
gat = (f(a))t for all a, t.

Theorem 1.5 then yields Der (Z ⊣ H(S), G) ∼= G1.
It follows that S is not a suitable choice for X.

6. What’s still next? The next choice is Z ⊣ H(S+).
Every abelian multigroup G over S can serve as coefficients in the cohomol-

ogy of Z ⊣ H(S+). Indeed H(S+) acts on every abelian multigroup G over S
by

px = x(p∨)

for every x ∈ G and p ∈ H(S+). In particular, [(a, t)]x = xat and [(1, 1)]x = x.
As before, (px)∨ = p∨ x∨, (px)t = pt x = p xt, p (qx) = (pq)x, and p (x+ y) =
px+ py if x+ y is defined, for all p, q ∈ H(S+), t ∈ S, and x, y ∈ G.

If now p ∈ Z ⊣ H(S+),

p =
∑(

py y
∣∣ y ∈ H(S), y∨ = p∨

)
,

then px is well defined by

px =
∑(

py (yx)
∣∣ y ∈ H(S), y∨ = p∨

)
= n(p)x(p∨) ,

where
n(p) =

∑(
py

∣∣ y ∈ H(S+), y∨ = p∨
)
.
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Then (p+ q)x = px+ qx whenever p∨ = q∨, since n (p+ q) = n(p) + n(q), and
the five properties above also hold for all p, q ∈ Z[S] and x, y ∈ S.

With this action of Z[S], the abelian multigroup G over S becomes a multi-
Z ⊣ H(S+)-module over S.

For every abelian multigroup G over S there is a natural isomorphism

Map (S+, G) ∼= C1
C (S,G) .

Indeed, if f : S+ −→ G is a morphism of multisets over S, then f(yt) = (f(y))t

for all y ∈ S+ and t ∈ S; since (a, t)u = (a, tu) we have

f(a, t) = f((a, 1)t) = (f(a, 1))t ,

so that f is uniquely determined by the (symmetric) 1-cochain g : a 7−→ f(a, 1) ∈
Ga. Conversely, given g ∈ C1

C (S,G), so that g(a) ∈ Ga for all a ∈ S, define

f(a, t) = g(a)t

for all a, t ∈ S. In particular, f(a, 1) = g(a). Then f(a, t)∨ = at = (a, t)∨ and

f((a, t)u) = f(a, tu) = g(a)tu = (f(a, t))u

for all a, t, u ∈ S, so that f is a morphism of multisets over S.
Theorem 1.5 then yields Der (Z ⊣ H(S+), G) ∼= C1

C (S,G).
It follows that S+ could be a suitable choice for X. But when I tried it I

obtained no result that was specific to S or Z ⊣ H(S+), only the results in the
next sections that apply to all commutative multirings.

3 Weak 2-cocycles

In this section, S is a commutative monoid, R is a commutative multiring over S,
and M is a multi-R-module over S.

1. Cochains. Like André-Quillen n-cochains, which are morphisms of soss
V n−1R −→ M , a (regular) n-cochain u of a set X over S with values in a set
G over S, where n ≥ 1, is a morphism u : X(n) −→ G of sets over S, where

X(n) = X ×X × · · · ×X (n times)

and assigns to each x1, x2, . . . , xn ∈ X some u (x1, x2, . . . , xn) ∈ G such that

u (x1, x2, . . . , xn)
∨ = (x∨

1 )(x
∨
2 ) · · · (x∨

n ) .

The n-cochains of X with values in G constitute a set

Cn(X,G) = Map (X(n), G) .

If G is an abelian multigroup over S (and not just a set over S), then n-
cochains of X with values in G can be added pointwise: if u, v ∈ Cn(X,G),
then

u (x1, x2, . . . , xn)
∨ = v (x1, x2, . . . , xn)

∨
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for all x1, x2, . . . , xn ∈ X, so that

(u+ v) (x1, x2, . . . , xn)
∨ = u (x1, x2, . . . , xn)

∨ + v (x1, x2, . . . , xn)
∨

is defined in G. Then Cn(X,G) is a abelian group under pointwise addition.
In what follows we do not venture beyond n = 1 or n = 2.

2. Cocycles. In the André-Quillen cohomology of R we know from Part 2.3
that an André-Quillen 2-cocycle is a 2-cochain u : V R −→M such that

u ◦ ϵV R = (u ◦ V ϵR) + û ,

equivalently,

u (ϵV RA) = u ((V ϵR)(A)) + û(A) for all A ∈ V 2R , (Z)

where V 2R = Z ⊣ H(V R). Like 2-cochains, André-Quillen 2-cocycles can be
added pointwise, and constitute an abelian group Z2

Q(R,M).
A weak 2-cocycle is an André-Quillen 2-cochain u such that (Z) only holds

for all A ∈ H(V R):

u (ϵV RA) = u ((V ϵR)(A)) + û(A) for all A ∈ H(V R) . (Z–)

Under pointwise addition, weak 2-cocycles constitute a subgroup Z2
W(R,M) of

Z2
Q(R,M).
We think that the results in this section make weak 2-cocycles more inter-

esting than full-blooded 2-cocycles.

Condition (Z–) can be analyzed as follows. Letm ≥ 1, P1, P2, . . . , Pm ∈ V R,
and xi = ϵR Pi ∈ R, so that A = [P1, P2, . . . , Pm] is the typical element of
H(V R). We have

ϵV R [P1, P2, . . . , Pm] = (ϵV R[P1]) (ϵV R[P2]) · · · (ϵV R[Pm])

= P1P2 · · ·Pm ,

(V ϵR) [P1, P2, . . . , Pm] = [ϵR P1] [ϵR P2] · · · [ϵR Pm]

= [x1, x2, . . . , xm] , and

û [P1, P2, . . . , Pm] =
∑

i

(
[P1] [P2] · · · [Pm](−i)

)
u(Pi)

=
∑

i

(
x1x2 · · ·xm(−i)

)
u(Pi) .

Hence (Z–) is equivalent to

u (P1P2 · · ·Pm) = u [x1, x2, . . . , xm] +
∑

i

(
x1x2 · · ·xm(−i)

)
u(Pi) , (Z–)

for all P1, P2, . . . , Pm ∈ V R.
With m = 1, (Z–) reads u (P ) = u [x] + u (P ), where x = ϵRP ; since ϵR is

surjective, this implies
u [x] = 0 (Z1)

for all x ∈ R.
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For all n ≥ 2 and x1, x2, . . . , xn ∈ R, (Z–) implies

u [x1, x2, . . . , xn] =
∑

2≤i≤n
−→xi u [←−xi, xi] , (Y)

where ←−xi = x1 · · ·xi−1,
←−xi = 1 if i = 1, −→xi = xi+1 · · · xn, and

−→xi = 1 if i = n.
Indeed (Y) holds, trivially, if n = 2. Also, ϵR [x1, x2, . . . , xn] = x1x2 · · ·xn. If
Y holds for n ≥ 2, then (Z–) and (Z1) imply

u [x1, . . . , xn, xn+1] = u ([x1, . . . , xn] [xn+1])

= u [x1 · · ·xn, xn+1] + (x1 · · ·xn)u [xn+1] + xn+1 u [x1, . . . , xn]

= u [x1 · · ·xn, xn+1] + xn+1

(∑
2≤i≤n

−→xi u [←−xi, xi]
)

=
∑

2≤i≤n+1 yi u [
←−xi, xi] ,

where yi = xi+1 · · · xn+1 = −→xi xn+1.
Moreover, (Y) implies

u [x, y, z] = u [xy, z] + z u [x, y] and

u [z, y, x] = u [zy, x] + xu [z, y] = u [x, yz] + xu [y, z] ,

for all x, y, z ∈ R. Since [x, y, z] = [z, y, x] in H(R), it follows that

u [x, yz] + xu [y, z] = u [xy, z] + z u [x, y] (Z2)

for all x, y, z ∈ R, so that on R.
Let u : (x, y) 7−→ u [x, y] be the mapping of R × R into G induced by the

weak 2-cocycle u. It follows from (Z1) and (Y) that u completely determines
all values of u. Moreover, u is a symmetric 2-cocycle, by (Z2):

xu(y, z) − u(xy, z) + u(x, yz) − z u(x, y) = 0 for all x, y, z ∈ R, (Z2)

and is balanced :
(u (x, y))t = u (xt, y) = u (x, yt) (Z3)

for all x, y ∈ R and t ∈ S, since [x, y]t = [xt, y] = [x, yt] in H(R) and u is a
morphism of multisets over S.

Under pointwise addition, balanced symmetric 2-cocycles constitute a sub-
group Z2

BC(R,M) of Z2
C (R,M). The map u 7−→ u is a canonical homomorphism

of Z2
W(R,M) into Z2

C (R,M).

3. Theorem. The canonical homomorphism Θ: u 7−→ u is a natural isomor-
phism

Z2
W(R,M) ∼= Z2

BC(R,M) .

To prove this it remains to show that Θ is surjective. Let v ∈ Z2
BC(R,M) be

a balanced symmetric 2-cocycle on R, so that v (x, y) ∈ M(xy)∨ and v (y, x) =
v (x, y) for all x, y ∈ R, (Z2):

x v(y, z) − v(xy, z) + v(x, yz) − z v(x, y) = 0 for all x, y, z ∈ R, (Z2)
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holds for all x, y, z ∈ R, and (Z3):

(v(x, y))t = v (xt, y) = v (x, yt) (Z3)

holds for all x, y ∈ R and t ∈ S. Let u (x) = 0 for all x ∈ R, so that (Z1) holds,
and let

u (x1, x2, . . . , xn) =
∑

2≤i≤n
−→xi v (←−xi, xi) (Y–)

for all n ≥ 2 and x1, x2, . . . , xn ∈ R. In particular u (x, y) = v (x, y) for all
x, y ∈ R.

We show that u has property (P):

u (xσ1, xσ2, . . . , xσn) = u (x1, x2, . . . , xn) (P)

for every permutation σ of 1, 2, . . . , n. Since every permutation σ of 1, 2, . . . , n is
a product of transpositions (i i+1), it suffices to prove (P) when σ = (i i+1).
If n = 2, then (P) holds since u is symmetric: u (y, x) = u (x, y). Let n > 2. If
i + 1 < n, then (P) follows from the induction hypothesis. Now let i = n − 1.
Then (Y–) and (Z2) yield

u (xσ1, xσ2, . . . , xσn)

= u (x1, x2, . . . , xn−2, xn, xn−1)

=
∑

2≤i≤n−2
−→xi v (←−xi, xi)

+ xn−1 v (
←−xn−1, xn) + v (←−xn−1 xn, xn−1)

=
∑

2≤i≤n−2
−→xi v (←−xi, xi)

+ xn v (
←−xn−1, xn−1) + v (←−xn−1 xn−1, xn)

=
∑

2≤i≤n
−→xi v (←−xi, xi)

= u (x1, x2, . . . , xn) .

It follows from (P) that u (x1, x2, . . . , xn) depends only on [x1x2 · · ·xn] ∈
F(R), so that u is well defined on F(R) by

u [x1x2 · · ·xn] = u (x1, x2, . . . , xn) .

Now let 1 ≤ j < k ≤ n, t ∈ S,

y1, y2, . . . , yn = x1, . . . , x
t
j , . . . , xk, . . . , xn , and

z1, z2, . . . , zn = x1, . . . , xj , . . . , x
t
k, . . . , xn .

We show that
u (y1, y2, . . . , yn) = u (z1, z2, . . . , zn) .

Since u (x1, x2, . . . , xn) depends only on [x1x2 · · ·xn] ∈ F(R) we may assume
that j = 1 and k = 2. Let a = x1 and b = x2, so that

y1, y2, . . . , yn = at, b, x3, . . . , xn , and

z1, z2, . . . , zn = a, bt, x3, . . . , xn .
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Then

←−y 1 = 1, ←−y 2 = at, ←−yi = at b x3 · · · xi−1 if i > 2,
−→y 1 = b−→x2,

−→yi = −→xi if i ≥ 2,
←−z 1 = 1, ←−z 2 = a, ←−zi = a bt x3 · · · xi−1 if i > 2,

−→z 1 = bt−→x2,
−→zi = −→xi if i ≥ 2.

Hence

u (y1, y2, . . . , yn) =
∑

2≤i≤n
−→yi v (←−yi, yi)

= −→x2 v (a
t, b) +

∑
2<i≤n

−→xi v (at b x3 · · · xi−1, xi) and

u (z1, z2, . . . , zn) =
∑

2≤i≤n
−→zi v (←−zi, zi)

= −→x2 v (a, b
t) +

∑
2<i≤n

−→xi v (a bt x3 · · · xi−1, xi) .

Since at b = a bt in R and v (at, b) = v (a, bt) by (Z3), this yields

u (y1, y2, . . . , yn) = u (z1, z2, . . . , zn) .

Therefore [y1y2 · · · yn] ≈ [z1z2 · · · zn] in F(R) implies u (y1, y2, . . . , yn) =
u (z1, z2, . . . , zn); and u [x1, x2, . . . , xn] is well defined by

u [x1, x2, . . . , xn] = u (x1, x2, . . . , xn) =
∑

2≤i≤n
−→xi v (←−xi, xi) ,

for all n ≥ 2 and x1, x2, . . . , xn ∈ R.
Let P = [x1, x2, . . . , xm] and Q = [y1, y2, . . . , yn] ∈ V R, where xi, yj ∈ R

for all i, j. Let

z1, z2, . . . , zm+n = x1, x2, . . . , xm, y1, y2, . . . , yn ,

so that PQ = [z1, z2, . . . , zm+n]. Let

x = x1x2 · · ·xm = ϵRP andy = y1y2 · · · yn = ϵRQ .

We have

←−zi =←−xi if i ≤ m+ 1, ←−zi = x←−y i−m if i ≥ m+ 1,
−→zi = −→xi y if i ≤ m, −→zi = −→y i−m if i ≥ m.
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Hence (Z2) yields

u(PQ) =
∑

2≤i≤m+n
−→zi v (←−zi, zi)

=
∑

2≤i≤m
−→xi y v (←−xi, xi) +

∑
m+1≤i≤m+n

−→y i−m v (x←−y i−m, yi−m)

= y u(P ) +
∑

1≤j≤n
−→y j v (x

←−y j , yj)

= y u(P ) + −→y 1 v (x, y1) +
∑

2≤j≤n
−→y j v (x

←−y j , yj)

= y u(P ) + −→y 1 v (x, y1)

+
∑

2≤j≤n
−→y j

(
x v (←−y j , yj) + v (x, ←−y j yj)− yj v (x,

←−y j)
)

= y u(P ) + xu(Q) + −→y 1 v (x, y1)

+
∑

2≤j≤n

(−→y j v (x,
←−y j+1)−−→y j−1 v (x,

←−y j)
)

= y u(P ) + xu(Q) + u [x, y] ,

since the sum ∑
2≤j≤n

(−→y j v (x,
←−y j+1)−−→y j−1 v (x,

←−y j)
)

collapses to v (x, y)−−→y 1 v (x, y1).
The equality

u(PQ) = y u(P ) + xu(Q) + u [x, y] (ZT)

is the particular case of (Z–):

u (P1P2 · · ·Pm) = u [x1, x2, . . . , xm] +
∑

i

(
x1x2 · · ·xm(−i)

)
u(Pi) (Z–)

when m = 2. The general case then follows by induction. First, for all
x1, x2, . . . , xm, y ∈ R, (ZT) and (Z1) yield, with P = [x1, x2, . . . , xm] and
Q = [y]:

u [x1, x2, . . . , xm, y] = u (PQ)

= y u(P ) + xu(Q) + u [x, y]

= y u [x1, x2, . . . , xm] + u [x1x2 · · ·xm, y] . (ZT–)

Now let m ≥ 2, P1, P2, . . . , Pm+1 ∈ V R, and xi = ϵRPi ∈ R. Then
P1P2 · · ·Pm+1 = PQ, where P = P1P2 · · ·Pm and Q = Pm+1, and the induction
hypothesis yields, with x = ϵRP = x1x2 · · ·xm and y = ϵRQ = xm+1:

u (P1P2 · · ·Pm+1) = u (PQ) = y u(P ) + xu(Q) + u [x, y]

= y u [x1, x2, . . . , xm] +
∑

i≤m

(
y x1x2 · · ·xm(−i)u(Pi)

)
+ xu(Q) + u [x1x2 · · ·xm, y]

=
∑

i≤m+1

(
x1x2 · · ·xm+1(−i)u(Pi)

)
+ u [x1, x2, . . . , xm+1] ,

by (ZT–).

17



Thus u has property (Z–), and u is a weak 2-cocycle. We saw that u (x, y) =
v (x, y) for all x, y ∈ R, so that u = v. This completes the proof.

Unfortunately, while û, ϵV R, and V ϵR are additive, there is no evidence that
u is; as a morphism of multisets over S from V R to G, u is not required to
be additive. Hence Theorem 3.3 does not readily extend to Z2

Q(R,M). These
accursed additions are ruining everything.

4. Coboundaries. André-Quillen 2-coboundaries are, in particular, weak 2-
cocycles. We note that u = δQv for some v ∈ C1

Q(R,M) implies u = δCv ∈
cB2(R,M).

Indeed, δv = v̂ − (v ◦ ϵR). For all x, y ∈ R,

v̂ [x, y] = v̂ ([x][y]) = x v̂[y] + y v̂[x] = x v(y) + y v(x) , and

ϵR [x, y] = ϵR ([x][y]) = (ϵR [x])(ϵR [y]) = y .

Hence
(daQv)[x, y] = x v(y) + y v(x)− v (xy) = (δCv)(x, y) .

4 Coextensions.

In this section, S is a commutative monoid.

1. Definition. A coextension of a commutative multiring R over S by a mul-
ti-R-module M over S is a commutative multimonoid E over S together with a
surjection π : E −→ R and, for each a ∈ S, a simply transitive action • of Ma

on Ea, such that

(πe)∨ = e∨ ,

(πe)t = π (et) , and

π (ef) = (πe)(πf) ,

for all e, f ∈ E and t ∈ S, so that π is a morphism of commutative multimon-
oids over S; there is a morphism µ : R −→ E of multisets over S (such that
(µr)∨ = r∨ and µ (rt) = (µr)t) which splits π:

π ◦ µ = 1R ;

and

(x • e)t = xt
• et whenever x∨ = e∨ ,

π (x • e) = πe whenever x∨ = e∨ ,

0 • e = e ,

x • (y • e) = (x+ y) • e whenever x∨ = y∨ = e∨ , and

(x • e) f = ((πf)x) • ef whenever x∨ = e∨ ,
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for all e, f ∈ E, t ∈ S, and x, y ∈M , so that each action of Ma on Ea is a group
action of the additive abelian group Ma on the set Ea. Since Ma acts on Ea we
also have

(x • e)∨ = x∨ = e∨ whenever x ∈M, e ∈ E, and x∨ = e∨ .

Commutativity and the condition (x • e) f = ((πf)x) • ef imply

e (x • f) = (x • f) e = ((πe)x) • ef .

This makes E a kind of group coextension of the commutative monoid R by M .
(It could be further seasoned with additions, but this would require additive
factor sets.)

Two coextensions E and F of R by M with surjections π and ρ to R are
equivalent if and only if there exists an isomorphism θ : E −→ F of commutative
multimonoids over S (an equivalence of coextensions) such that

ρ θ e = π e for all e ∈ E and

θ(x • e) = x • θe whenever x ∈M, e ∈ E, and x∨ = e∨ .

2. Construction. Coextensions of R by M are constructed up to equivalence
by Schreier’s method.

Let E be a coextension of R by M . For each r ∈ R let pr = µr ∈ E, where
µ : R −→ E is the morphism of multisets over S that splits π. Then πpr = r,
p∨r = r∨, and prt = ptr. Since Ma acts simply and transitively on Ea, every
element e of E can be written in the form

e = x • pr

for some unique x ∈M and r = πe ∈ R such that x∨ = r∨ = e∨. In particular,
for every r, s ∈ R, π (pr ps) = rs and

pr ps = u (r, s) • prs

for some unique u (r, s) ∈M such that u (r, s)∨ = (rs)∨ = r∨ s∨.
The factor set u inherits three properties from the multiplication on R: for

all r, s ∈ R,
u (s, r) = u (r, s)

since the multiplication on R is commutative; for all q, r, s ∈ R,

(pq pr) ps = (u (q, r) • pqr) rs = s u (q, r) • (pqr) rs)

= s u (q, r) • (u (qr, s) • p(qr)s ,

pq (pr ps) = pq (u (r, s) • prs) = q u (r, s) • (pq prs)

= q u (r, s) • (u (q, rs) • pq(rs)) ,

since the multiplication on R is associative; hence

s u (q, r) + u (qr, s) = q u (r, s) + u (q, rs) .
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Finally, for all r, s ∈ R and t ∈ S,

ptr ps = prt ps = u (rt, s) • prts ,

(pr ps)
t = (u (r, s) • prs)

t = u (r, s)t • p(rs)t , and

pr p
t
s = pr pst = u (r, st) • pr st ;

since ptr ps = (pr ps)
t = pr p

t
s in E and rt s = (rs)t = rst in R, it follows that

u (xt, y) = (u(x, y))t = u (x, yt) .

Thus u is a balanced symmetric 2-cocycle, u ∈ Z2
BC(R,M).

The multiplication on E is completely determined by R, M , and the factor
set u:

(x • pr)(y • ps) = sx •

(
pr (y • ps)

)
= sx •

(
ry • (pr ps)

)
= sx •

(
ry • (u (r, s) • prs)

)
=

(
sx+ u (r, s) + ry

)
• prs .

This provides a bijection θ : x • pr 7−→ (x, r) of E onto the product E(R,M) of
R and M in the category of multisets over S:

E(R,M) = { (x, r) | x ∈M, r ∈ R, x∨ = r∨ } ,

and suggests a multiplication

(x, r)(y, s) = (sx+ u (r, s) + ry , rs)

on E(R,M).
Equip E(R,M) with this multiplication, projection (x, r)∨ = x∨ = r∨ to S,

action (x, r)t = (xt, rt of S, surjection π : (x, r) 7−→ r to R, and, for each a ∈ S,
the action of Ma on

Ea = { (x, r) ∈ E(R,M) | x∨ = r∨ = a }

defined by
x • (y, r) = (x+ y, r) .

This makes E(R,M) into what Theorem 4.3 below asserts is a coextension
E(R,M, u) of R by M :

3. Theorem. If u is a balanced symmetric 2-cocycle on R with values in
M , then E(R,M, u) is a coextension E(R,M, u) of R by M , with factor set
u. Moreover every coextension of R by M with factor set u is equivalent to
E(R,M, u).
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The proof us straightforward. All the axioms of coextensions are satisfied.
Indeed E(R,M, u) is a commutative multimonoid over S:(

(x, r)t
)∨ = (xt, rt)∨ = (rt)∨ = (r∨) t =

(
(x, r)∨

)
t ;

(x, r)1 = (x, r) ;(
(x, r)t

)
u =

(
(xt)u, (rt)u

)
= (xtu, rtu) = (x, r)tu ;(

(x, r)(y, s)
)
t = (sx+ u (r, s) + ry, rs)t

= ((sx)t + u (r, s)t + (ry)t, (rs)t)

= (s xt + u (rt, s) + rt y, rt s)

= (xt, rt)(s, y) = (x, r)t(y, s)

= (st x+ u (r, st) + r yt, r st)

= (x, r)(yt, st) = (x, r)(y, s)t ,

since u is balanced;(
(x, r)(y, s)

)∨ = (sx+u (r, s)+ry, rs)∨ = (rs)∨ = r∨ s∨ = (x, r)∨ (y, s)∨ ;

the multiplicationon E(R,M, u) is commutative:

(y, s)(x, r) = (ry+u (s, r)+ sx , sr) = (sx+u (r, s)+ ry , rs) = (x, r)(y, s) ,

since Ma is abelian, the multiplication on R is commutative, and u is symmetric;
and the multiplicationon E(R,M, u) is associative:(

(x, q)(y, r)
)
(z, s) = (rx+ u (q, r) + qy , qr)(z, s)

= (srx+ s u(q, r) + sqy + u (qr, s) + qrz, qrs)

= (rsx+ u (q, rs) + qsy + qu (r, s) + qrz, qrs)

= (x, q)(sy + u (r, s) + rz, rs)

= (x, q)
(
(y, r)(z, s)

)
,

since u is a 2-cocycle.
Moreover,

(π (x, r))∨ = r∨ = (x, r)∨ ;

(π (x, r))t = rt = π ((x, r)t) ; and

π
(
(x, r)(y, s)

)
= rs = π (x, r) π (y, s) ;

the map µ : r 7−→ (0, r) is a morphism of multisets over S: (µr)∨ = (0, r)∨ = r∨

and µ (rt) = (0, rt) = (µr)t, and splits π: π (µr) = r;

(x • (y, r))t = (x+ y, r)t = (xt + yt, rt) = xt
• (y, r)t

whenever x∨ = r∨ = (y, r)∨;

π (x • (y, r)) = π (x+ y, r) = π (y, r) ;

0 • (x, r) = (0 + x, r) = (x, r) ;

x •

(
y • (z, r)

)
= (x+ y + z, r) = (x+ y) • (z, r)
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whenever x∨ = y∨ = z∨ = r∨ = (z, r)∨; and(
x • (y, r)

)
(z, s) = (x+ y, r)(z, s)

= (s (x+ y) + u (r, s) + rz, rs)

= (sx+ sy + u (r, s) + rz, rs)

= sx •

(
(y, r)(z, s)

)
whenever x∨ = (y, r)∨ = y∨. Thus E(R,M, u) is a coextension of R by M .
Since (0, r)(0, s) = (u (r, s), rs), its factor set is u.

Finally let E be a coextension of R by M with surjection ρ to R and with
pr = µr for every r ∈ R, where µ : R −→ E splits ρ, so that pr ps = u (r, s) • prs
for all r, s ∈ R and u is a factor set of E. We saw that

θ : x • pr 7−→ (x, r)

is a bijection of E onto E(R,M, u), and that θ (ef) = (θe)(θf) for all e, f ∈ E.
Moreover

(θ (x • pr))
∨ = r∨ = (x • pr)

∨ ,

θ
(
(x • pr))

t
)

= θ (xt
• (pr)

t) = θ (xt
• prt)

= (xt, rt) = (x, r)t =
(
θ (x • pr)

)
t , and

θ
(
x • (y • pr)

)
= θ

(
(x+ y) • pr)

)
= (x+ y, r) = x • (y, r) = x • θ (y • pr) .

Thus θ is an equivalence of coextensions.

4. Proposition. Two coextensions of R by M with factor sets u and v are
equivalent if and only if there exists w(r) ∈Mr∨ for every r ∈ R such that

w(rt) = (w(r))t and

v (r, s)− u (r, s) = sw(r)− w (rs) + r w(s)

for all r, s ∈ R and t ∈ S.
By Theorem 4.3, we may assume in the proof that the two coextensions are

E(R,M, u) and E(R,M, v).
Let θ : E(R,M, u) −→ E(R,M, v) be an equivalence of coextensions. For

each r ∈ R we have π θ (0, r) = π (0, r) = r and

θ (0, r) = (w(r), r)

for some unique w(r) ∈M such that w(r)∨ = r∨. Then

(w(rt), rt) = θ (0, rt) = θ
(
(0, r)t

)
=

(
θ (0, r)

)
t = (w(r)t, rt) ,

and
w(rt) = (w(r))t .
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Since θ preserves products and θ (x • e) = x • θe, we also have

(u (r, s) + w (rs), rs) = u (r, s) • θ (0, rs) = θ
(
u(r, s) • (0, rs)

)
= θ (u (r, s), rs) = θ

(
(0, r)(0, s)

)
= (w(r), r)(w(s), s) = (r w(s) + v (r, s) + sw(r), rs) ,

whence
v (r, s)− u (r, s) = sw(r)− w (rs) + r w(s) .

Conversely, assume that v (r, s)− u (r, s) = sw(r)− w (rs) + r w(s). Define
θ : E(R,M, u) −→ E(R,M, v) by

θ (x, r) = (x+ w(r), r) .

Then θ is bijective. Moreover,

π θ (x, r) = r = π (x, r) ,

(θ (x, r))∨ = r∨ = (x, r)∨ ,

θ
(
(x, r)t

)
= θ (xt, rt)

= (xt + w (rt), rt) = (xt + w(r)t, rt)

=
(
θ (x, r)

)
t ,

θ
(
x • (y, r)

)
= θ (x+ y, r)

= (x+ y + w(r), r) = x • (y + w(r), r)

= x • θ (y, r) , and

θ
(
(x, r)(y, s)

)
= θ (sx+ u(r, s) + ry, rs)

= (sx+ u(r, s) + ry + w(rs), rs)

= (sx+ sw(r) + v(r, s) + ry + r w(s), rs)

= θ (x, r) θ (y, s) .

Hence θ is an equivalence of coextensions.
Prop. 4.4 suggests that a balanced symmetric 1-cochain on R with values in

M is a 1-cochain u (that assigns u(r) ∈Ma to r ∈ Ra) such that

u(r)t = u (rt)

for all r ∈ R and t ∈ T . (It is balanced only to match the balanced symmetric 2-
cocycles.) Under pointwise addition, balanced symmetric 1-cochains constitute
a subgroup C1

BC(R,M) of C1
C (R,M).

The coboundary of a balanced symmetric 1-cochain u is a balanced symmet-
ric 2-cocycle:

(δu)(rt, s) = s u (rt) − u (rt s) + rt u(s)

= s (u(r))t − u (r st) + rt u(s)

= st u(r) − u (r st) + rt u(s) = (δu)(r, st) .

Under pointwise addition, these balanced symmetric 2-coboundaries constitute
a subgroup B2

BC(R,M) of Z1
BC(R,M).

It follows from Prop. 4.4 that the quotient group Z2
BC(R,M) /B2

BC(R,M)
classifies coextensions of R by M .
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