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Abstract
Cochains in commutative semigroup cohomology satisfy symmetry conditions that
have only been ascertained in dimensions n ≤ 4. This article studies how symmetry
conditions are passed from one dimension to the next, and proposes two conjectures
about the appropriate conditions for dimensions 5 and 6.
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1 Introduction

1. When S is a commutative semigroup, Green’s relation H is a congruence and the
Schützenberger groups of S arrange themselves into an abelian group valued functor
G = (G, γ ) on the quotient T = S/H: thus G assigns an abelian group Ga to every
a ∈ T and a homomorphism γa,t : Ga −→ Gat to every a ∈ S and every t ∈ S1,
such that γa,1 is the identity on Ga and γat,u ◦ γa,t = γa,tu for every a, t, u. We call
S a group coextension of T by G. As in a group extension, the multiplication on S is
completely determined by T , G, and a factor set s, which assigns s(a, b) ∈ Gab to
each a, b ∈ T so that (in the additive notation)

s(b, a) = s(a, b) (for commutativity) and

γbc,a s(b, c) + s(a, bc) = s(ab, c) + γab,c s(a, b) (for associativity),
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for all a, b, c ∈ T . Moreover, the projection S −→ T splits if and only if there exists
u(a) ∈ Ga to each a ∈ T such that

s(a, b) = γb,a u(b) − u(ab) + γa,b u(a), for all a, b ∈ T ;

and two group coextensions of T by G are equivalent if and only if their factor sets
differ by some γb,a u(b) − u(ab) + γa,b u(a) [5].

Thus begins the cohomology of commutative semigroups.
One way to define commutative semigroup cohomology was devised by Beck [2]

(see also [1]) for any monadic (tripleable) category. (Calvo-Cervera and Cegarra [3],
Kurdiani and Pirashvili [10] also have good alternative definitions.) Beck cohomo-
logy has excellent properties but, in the case of commutative semigroups, suffers from
overweight cochains, so that H2(S,G) is not computable even if S is finite, and how
H2(S,G) relates to group coextensions is not immediately obvious [7].

It seems more natural to have a 1-cochain u assign u (a) ∈ Ga to each a ∈ S, each
2-cochain s assign s (a, b) ∈ Gab to each a, b ∈ S, with coboundaries

(δu)(a, b) = γb,a u(b) − u(ab) + γa,b u(a) and

(δs)(a, b, c) = γbc,a s (b, c) − s (ab, c) + s (a, bc) − γab,c s (a, b) ;

commutativity also requires that s (b, a) = s (a, b), for all a, b ∈ S. This approach
yields an equivalent cohomology in dimensions n ≤ 4, in which n-cochains are func-
tions of n variables [7], but in dimensions n ≥ 5 runs into difficulties that are caused
by the subject of this article.

When a 2-cochain s satisfies the commutativity property (S2): s (b, a) = s (a, b),
its coboundary t = δs is readily seen to have the following properties, collectively
denoted by (S3):

t (c, b, a) = −t (a, b, c) and (S3a)

t (a, b, c) = t (b, a, c) − t (b, c, a) , (S3b)

for all a, b, c. We call (S2), (S3a), and (S3b) symmetry conditions; conditions (S3a)
and (S3b) can then be used to define symmetric 3-cochains [6], [7]. In turn the co-
boundaries of symmetric 3-cochains have symmetry properties, collectively denoted
by (S4):

u (d, c, b, a) = −u (a, b, c, d) , (S4a)

u (a, b, c, d) = u (b, a, c, d) − u (b, c, a, d) + u (b, c, d, a) , and (S4b)

u (a, b, b, a) = 0 , (S4c)

that are used to define symmetric 4-cochains [8].
We call inheritance the process by which symmetry conditions propagate from one

dimension to the next higher.
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2. To continue this process beyond dimension 4, one must find the appropriate sym-
metry conditions for dimension 5, and one must prove that they yield the right group
H5(S,G), either by a homeric calculation in the style of [6] and [8], or by inventing
a smarter method of proof. (Kurdiani and Pirashvili [10] write that they have solved
the author’s ‘cocycle problem’ but do not provide symmetry conditions.)

This article finds what seems to be appropriate conditions but does not prove that
they are. We have a miraculous method that yields all the symmetry properties that
symmetric n-cochains bequeath their coboundaries. Thus we found that the symmetry
properties that are inherited from (S2) are precisely all the consequences of (S3); the
symmetry properties that are inherited from (S3) are precisely all the consequences
of (S4); and the symmetry properties that are inherited from (S4) are precisely all the
consequences of

u (e, d, c, b, a) = u (a, b, c, d, e), (S5a)

u (a, b, c, d, e) = u (b, a, c, d, e) − u (b, c, a, d, e) (S5b)

+ u (b, c, d, a, e) − u (b, c, d, e, a) .

Hence we conjecture that (S5a) and (S5b) are the appropriate symmetry conditions
for dimension 5. In turn, the symmetry properties that are inherited from (S5a) and
(S5b) are precisely all the consequences of

u (a, b, c, d, e, f ) = u ( f , e, d, c, b, a) , (S6a)

u (a, b, c, d, e, f ) = u (b, a, c, d, e, f ) − u (b, c, a, d, e, f ) (S6b)

+ u (b, c, d, a, e, f ) − u (b, c, d, e, a, f ) − u (b, c, d, e, f , a)

u (a, b, c, d, e, f ) = −u (c, b, a, d, e, f ) + u (c, b, d, a, e, f ) (S6c)

− u (c, b, d, e, a, f ) + u (c, b, d, e, f , a)

− u (c, d, b, a, e, f ) + u (c, d, b, e, a, f )

− u (c, d, b, e, f , a) − u (c, d, e, b, a, f )

+ u (c, d, e, b, f , a) − u (c, d, e, f , b, a) , and

u (a, b, a, b, a, b) = 0 . (S6d)

Again we conjecture that (S6a), (S6b), (S6c), and (S6d) constitute an appropriate
definition of symmetric 6-cochains.

Due to extensive use of computers, these results are to a large extent experimental
and will require independent confirmation.

3. Section 2 recalls the basic definitions and properties of symmetric cochains [7],
symmetric mappings (as defined in [9]), and generalizes the symmetric chains in [9].

Section 3 constructs a marvelous universal coboundary d that maps to the cobound-
ary of every symmetric 4-cochain, and thereby transmits its own symmetry properties
to it. Conversely, d is itself the coboundary of a symmetric 4-cochain, but its variables
are distinct by construction; hence every symmetry property inherited from (S4) is a
symmetry property of d, as long as it does not require equalities between variables.
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Condition (S4c) above shows that equalities between variables can result in addi-
tional symmetry properties. Section 4 adjusts the arguments in Sect. 3 to find all the
symmetry properties that are inherited from (S4) and require exactly one equality
between variables.

Section 5 provides, without details (which have been sent to the referee), further
adjustments that suit every possible pattern of equalities between variables, together
with the elementary linear algebra that, in each case, finds all the symmetry properties
inherited from (S4) and shows them to be consequences of (S5).

The author wishes to thank his referee for his or her suggestions and support.

2 Symmetry

1. Cochains on a commutative semigroup S take their values in an abelian group valued
functor G = (G, γ ) on S (actually, on the Leech category H(S) [11]), which assigns
to each a ∈ S an abelian group Ga , and to each a ∈ S and t ∈ S1 a homomorphism
γa,t : Ga −→ Gat , conveniently denoted by γa,t g = gt , in such a way that γa,1 is the
identity on Ga and γat,u ◦ γa,t = γa,tu ; equivalently, g1 = g and (gt )u = gtu .

An n-cochain on S with values in G assigns to each a1, . . . , an ∈ S an element
u (a1, . . . , an) of Gs , where s = a1 a2 · · · an .

A 4-cochain u on S is symmetric if and only if it has the following properties,
collectively denoted by (S4):

u (d, c, b, a) = −u (a, b, c, d) , (S4a)

u (a, b, c, d) = u (b, a, c, d) − u (b, c, a, d) + u (b, c, d, a) , and (S4b)

u (a, b, b, a) = 0 , (S4c)

for all a, b, c, d ∈ S. These properties are numbered differently here than in [8] and
[7], in order to show the analogy between (S3) and (S4). The original definition in [8]
also included a fourth condition

u (a, b, c, d) − u (b, c, d, a) + u (c, d, a, b) − u (d, a, b, c) = 0,

which was shown in [9] to follow from (S4a) and (S4b).
Symmetric 2- and 3-cochains are defined similarly by (S2) and (S3) in [5], [7], and

[6].
The coboundary of a 4-cochain u is the 5-cochain δu defined by:

(δu)(a, b, c, d, e) = u (b, c, d, e)a − u (ab, c, d, e) + u (a, bc, d, e)

− u (a, b, cd, e) + u (a, b, c, de) − u (a, b, c, d)e ∈ Gabcde

for all a, b, c, d, e ∈ S.
2. Symmetry (in this article) can be defined more generally, following [7]. Given

a set S, a symmetric set on S of order n is a subset X of the cartesian product
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Sn = S × . . . × S such that

(x1, x2, . . . , xn) ∈ X implies (xσ1 , xσ2 , . . . , xσn) ∈ X

for every x1, x2, . . . , xn ∈ S and every permutation σ of 1, 2, . . . , n. If n ≤ 4, then
a mapping f of X into an abelian group G is symmetric of order n if and only if it
satisfies (Sn), where (S2) is the condition

f (b, a) = f (a, b) (S2)

for all (a, b) ∈ X ; (S3) consists of

f (c, b, a) = − f (a, b, c) and (S3a)

f (a, b, c) = f (b, a, c) − f (b, c, a) , (S3b)

for all (a, b, c) ∈ X ; and (S4) consists of

f (d, c, b, a) = − f (a, b, c, d) , (S4a)

f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d) + f (b, c, d, a) , and (S4b)

f (a, b, b, a) = 0 , (S4c)

for all (a, b, c, d) ∈ S [7].
For example, if S is a commutative semigroup and s ∈ S, then

Xs = { (a, b, c, d) ∈ S × S × S × S | abcd = s }

is a symmetric set of order 4, and a symmetric 4-cochain u on S consists of symmetric
mappings (a, b, c, d) �−→ u (a, b, c, d) : Xs −→ Gs , one for each s ∈ S.

It is clear from (Sn) that some values of a symmetric mapping are determined by
other values. Formally, a basis of X is a subset Y of X such that every mapping of Y
into an abelian group G extends uniquely to a symmetric mapping of X into G (so
that the values of a symmetric mapping on Y determine all its other values).

Theorem 2.1 Every symmetric set X of order n ≤ 4 has a basis.

Theorem 2.1 is proved by placing an arbitrary total order on the set S. An explicit
basis, the standard basis of X , can then be constructed in the following fashion:

Lemma 2.2 Let X be a symmetric subset of order n = 1, 2, 3, 4 on a totally ordered
set S. Define Y as follows: if n = 1, then Y = X;

if n = 2, then Y = {(a, b) ∈ X | a ≤ b};
if n = 3, then Y = {(a, b, c) ∈ X | a ≤ b and a < c};
if n = 4, then Y is the set of all (a, b, c, d) ∈ X such that either a < b, c, d, or

a ≤ b, c and b < d, or both.
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Then Y is a basis of X: every mapping f of Y into an abelian group G extends
uniquely to a symmetric mapping ̂f of X into G; moreover, every value of ̂f is a sum
of values of f and opposites of values of f .

The reader is referred to [9] for the proof of Lemma 2.2, which is straightforward
but rather long if n = 4.

3. The definition of symmetric chains in [7] extends readily to every symmetric set.
Let X be a symmetric set of order n ≤ 4 on a set S (perhaps Sn itself). A symmetric
n-chain on X is an element of the abelian group C(X) generated by all 〈a1, . . . , an〉
such that (a1, . . . , an) ∈ X , subject to all defining relations (Cn), where (C2) is the
condition

〈b, a〉 = 〈a, b〉 (C2)

for all (a, b) ∈ X ; (C3) consists of

〈c, b, a〉 = − 〈a, b, c〉 and (C3a)

〈a, b, c〉 = 〈b, a, c〉 − 〈b, c, a〉 , (C3b)

for all (a, b, c) ∈ X ; and (C4) consists of

〈d, c, b, a〉 = − 〈a, b, c, d〉 , (C4a)

〈a, b, c, d〉 = 〈b, a, c, d〉 − 〈b, c, a, d〉 + 〈b, c, d, a〉 , and (C4b)

〈a, b, b, a〉 = 0 , (C4c)

for all (a, b, c, d) ∈ X .
A symmetric n-chain on a commutative semigroup S is an element of the abelian

group Cn(S) = C(Sn).
In general, the group C(X) comes with a mapping ι : X −→ C(X) which sends

(a1, . . . , an) to 〈a1, . . . , an〉. The defining relations of C(X) show that ι is a symmet-
ric mapping. In fact, ι is a universal symmetric mapping:

Proposition 2.3 Every symmetric mapping of X extends uniquely (via ι) to a homo-
morphism of C(X).

Proof Let G be an abelian group and let f : X −→ G be a symmetric mapping.
Since f is symmetric, the values f (a1, . . . , an) ∈ G such that (a1, . . . , an) ∈ X
satisfy all the defining relations of C(X). Therefore there is a unique homomorphism
ϕ : C(X) −→ G such that ϕ 〈a1, . . . , an〉 = f (a1, . . . , an) for all (a1, . . . , an) ∈ X ,
that is, such that ϕ ◦ ι = f . 
�
Combining Proposition 2.3 and Theorem 2.1 yields

Theorem 2.4 If X is a symmetric set of order n = 1, 2, 3, 4, then C(X) is a free a-
belian group. Moreover, if Y is a basis of X, then ι(Y ) is a basis of C(X), and ι is
injective on Y (if x, y ∈ Y and ι (x) = ι (y), then x = y).
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78 P. A. Grillet

Proof Every mapping of Y into an abelian group G extends uniquely to X and thence
extends uniquely (via ι) to C(X). 
�
The next result shows that C(X) and ι are faithfully inherited by subsets. Let X ⊆ X ′
be symmetric sets of order n on the same set S, with standard bases Y and Y ′ relative
to the same total order on S.

If a = (a1, . . . , an) ∈ X , then a satisfies the inequalities that define Y in Lemma
2.2 if and only if it satisfies the same inequalities that define Y ′. Hence Y = Y ′ ∩ X .
In particular, Y ⊆ Y ′.

The restriction of ι′ : X ′ −→ C(X ′) to X is a symmetric mapping of X into C(X ′);
by Proposition 2.3 there is a unique homomorphism κ : C(X) −→ C(X ′) such that
κ ◦ ι = ι′; κ sends 〈a1, . . . , an〉 ∈ C(X) to 〈a1, . . . , an〉 ∈ C(X ′). Now C(X) is
generated by ι(Y ), hence κ(C(X)) is generated by κ(ι(Y )) = ι′(Y ), which is a subset
of the basis ι′(Y ′) of C(X ′). Therefore κ(C(X)) is a free abelian group and κ(ι(Y ))

is a basis of κ(C(X)). Moreover, κ is injective on ι(Y ), since κ ◦ ι = ι′ is injective on
Y ′. Hence κ is an isomorphism of C(X) onto κ(C(X)). In particular, κ is injective.

In what follows we treat the canonical injection κ as an inclusion homomorphism,
so that C(X) ⊆ C(X ′) and 〈a1, . . . , an〉 is the same in C(X) and C(X ′) when
(a1, . . . , an) ∈ X . This amounts to defining C(X) as a subgroup of C(Fn), with
ι inherited from C(Fn). The above can then be stated as follows:

Proposition 2.5 Let X and X ′ be symmetric sets of order n ≤ 4 on the same set
S. If X ⊆ X ′, then C(X) ⊆ C(X ′); the canonical mappings ι : X −→ C(X) and
ι′ : X ′ −→ C(X ′) agree on X; if Y and Y ′ are the standard bases of X and X ′ relative
to the same total order on S, then Y = Y ′ ∩ X. 
�

4. Let X ⊆ Sn be a symmetric set and f any mapping of X into an abelian group
G. A symmetry property P of f at (x1, . . . , xn) ∈ X is an equality

∑

σ∈Sn
pσ f (xσ1 , xσ2 , . . . , xσn) = 0 ,

between permuted values of f , with integer coefficients pσ . More abstractly, a symme-
try property of order n is a mapping P : Sn −→ Z, σ �−→ pσ ; and P is a symmetry
property of a mapping f : X −→ G at (x1, . . . , xn), when

∑

σ∈Sn
pσ f (xσ1 , xσ2 , . . . , xσn) = 0 .

Thus an n-cochain u on a commutative semigroup S has property P at
(a1, a2, . . . , an), where a1, a2, . . . , an ∈ S, if and only if

∑

σ∈Sn
pσ u (aσ1 , aσ2 , . . . , aσn) = 0.

This definition allows the same symmetry property to hold for several mappings or
cochains. Moreover, symmetry properties of order n constitute a free Z-module P.
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To each symmetry property P : Sn −→ Z, σ �−→ pσ corresponds a sym-
metry condition that states that

∑

σ∈Sn pσ f (xσ1 , xσ2 , . . . , xσn) = 0 for all
(x1, x2, . . . , xn) ∈ X ; if u is an n-cochain on a commutative semigroup S, that
∑

σ∈Sn pσ u (aσ1 , aσ2 , . . . , aσn) = 0 for all a1, a2, . . . , an ∈ S. For example, the
conditions (S4a), (S4b), and (S4c) that define symmetric mappings of order 4 are
symmetry conditions of order 4.

A symmetry property P of order n is inherited from a set (S) of symmetry condi-
tions of order n−1 if and only if it is a property of all coboundaries of (n−1)-cochains
that satisfy (S).

Our precise, somewhat pedantic definitions of symmetry properties and conditions
will be useful in the next sections when we determine all symmetry properties that are
inherited from (S4).

3 The universal coboundary

1. The universal coboundary is constructed as follows. Let F be the free abelian group
on a set {X1, . . . , X5} of five distinct indeterminates. Let i denote the canonical ι

mapping of F4 into C4(F):

i(A, B,C, D) = 〈A, B,C, D〉.

The symmetric mapping i is a symmetric 4-cochain on F with values in C4(F) (more
precisely, in the constant abelian group valued functor onF that assignsC4(F) to every
A ∈ F.) The universal coboundary is d = δ i.

By definition,

d(A, B,C, D, E) = 〈B,C, D, E〉 − 〈AB,C, D, E〉 + 〈A, BC, D, E〉
− 〈A, B,CD, E〉 + 〈A, B,C, DE〉 − 〈A, B,C, D〉 ,

for all A, B,C, D, E ∈ F. Properties (C4b) and (C4a) then yield the longer expansion
which is used thereafter:

d(A, B,C, D, E) = 〈B,C, D, E〉 − 〈AB,C, D, E〉
+ 〈BC, A, D, E〉 − 〈BC, D, A, E〉 + 〈BC, D, E, A〉
+ 〈CD, E, B, A〉 − 〈CD, B, E, A〉 + 〈CD, B, A, E〉
− 〈DE,C, B, A〉 − 〈A, B,C, D〉 .

2. To prove the main property of d we look at the permuted values

dσ (X1, X2, . . . , Xv) = d (Xσ1 , Xσ2 , . . . , Xσ5)

of d at X1, X2, . . . , X5, one for every permutation σ of 1,2,…,5, and at the subgroup
D of C4(F) defined below.
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Let T ′ = {X1, . . . , X5} and let T ′′ = {Xi X j | 1 ≤ i < j ≤ 5} ⊆ F. Totally order
F so that

AB < X1 < X2 < · · · < X5

for all AB ∈ T ′′. Let Y be the standard basis of F4, which consists of all (A, B,C, D)

such that A, B,C, D ∈ F and either A < B,C, D, or A ≤ B,C and B < D, or both.
Let Q′ be the set of all (A, B,C, D) ∈ Y such that A, B,C, D are distinct elements

of X1, X2, . . . , X5; equivalently, either A = X1, or A = X2 and B,C, D is a
permutation of X3, X4, X5.

Let Q′′ be the set of all (AB,C, D, E) ∈ C4(F) such that AB ∈ T ′′
and A, B,C, D, E are distinct elements of T ′ (i.e. constitute a permutation of
X1, X2, . . . , X5).

Let Q = Q′ ∪ Q′′, and let D be the subgroup of C4(F) generated by i(Q).

Lemma 3.1 D is a free abelian group; Q ⊆ Y ; i(Q) is a basis of D; and D contains
all terms of every permuted value of d at X1, X2, . . . , X5.

Proof The total order on F ensures that Q′ and Q′′ are contained in its standard basis
Y of F4. Since i(Y ) is a basis of C4(F), it follows that D is a free abelian group and
that i(Q) is a basis of D.

Next we show that D contains all 〈A, B,C, D〉 such that A, B,C, D are distinct
elements of X1, X2, . . . , X5. Indeed let X be the subset of F4 that consists of all
(A, B,C, D) such that A, B,C, D are distinct elements of X1, X2, . . . , X5. Then X
is a symmetric set. By Proposition 2.5, its standard basis is Y ∩ X . But Y ∩ X = Q′.
Hence i(Q′) is a basis of C(X) and C(X) ⊆ D. In particular, 〈A, B,C, D〉 ∈ D for
every (A, B,C, D) ∈ X . (This can also be proved directly, using (C4a) and (C4b).)

Let σ be a permutation of 1,2,…,5 and let Ai = Xσ i for all i , so that
dσ (X1, . . . , X5) = d (A1, . . . , A5). In the expansion of d (A1, . . . , A5), all
terms 〈Ai A j , Ak, Al , Am〉 belong to i(Q′′) ⊆ D. By the above, the terms
〈A2, A3, A4, A5〉 and −〈A1, A2, A3, A4〉 also belong to D. Thus, all terms in the
expansion of dσ (X1, X2, . . . , X5) belong to D. 
�
3. The next result maps d onto the coboundary of any symmetric 4-cochain.

Lemma 3.2 Let u be a symmetric 4-cochain on a commutative semigroup S with
values in an abelian group valued functor G = (G, γ ). Let a1, . . . , a5 ∈ S and let
s = a1 a2 · · · a5. There exists a homomorphism ϕ : D −→ Gs such that

ϕ
(

d (Xσ1 , Xσ2 , . . . , Xσ5)
) = (δu)(aσ1 , aσ2 , . . . , aσ5)

for every permutation σ of 1,2,…,5.

Proof Let u be a 4-cochain on S and let a1, a2, . . . , a5 ∈ S and s = a1 a2 · · · a5.
Since X1, X2, . . . , X5 are distinct there exists a mapping f : T ′ −→ S such that
f (Xi ) = ai for all i .
In the free commutative semigroup F, Xi X j = Xk X� implies ai a j = ak a�:

indeed, Xi X j = Xk X� implies either Xi = Xk and X j = X�, or Xi = X� and
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The inheritance of symmetry conditions… 81

X j = Xk ; then either ai = ak and a j = a�, or ai = a� and a j = ak ; in either case
ai a j = ak a�. Hence a mapping g : T ′′ −→ S is well defined by g (Xi X j ) = ai a j =
f (Xi ) f (X j ) for all Xi X j ∈ T ′′.
By Theorem 2.4, i is injective on Q: if (A1, A2, A3, A4), (B1, B2, B3, B4) ∈ Q

and 〈A1, A2, A3, A4〉 = 〈B1, B2, B3, B4〉, then

(A1, A2, A3, A4) = (B1, B2, B3, B4)

and Ai = Bi for all i . Therefore f and g induce a mapping h of i(Q) into Gs :
if 〈A, B,C, D〉 ∈ Q′, then A, B,C, D are all but one (say, Xi ) of X1, . . . , X5,
arranged in a different order, and

h 〈A, B,C, D〉 = u
(

( f (A), f (B), f (C), f (D)
) f (Xi ) ∈ Gs ;

if 〈A, B,C, D, E〉 ∈ Q′′, then A, B,C, D, E is a permutation of X1, . . . , X5,
g (AB) = f (A) f (B), and

h 〈AB,C, D, E〉 = u
(

f (A) f (B), f (C), f (D), f (E)
) ∈ Gs .

Since D is free on i(Q), h extends to a homomorphism ϕ : D −→ Gs .
Now let σ be a permutation of 1,2,…,5. Let Xσ1, Xσ2, Xσ3, Xσ4, Xσ5 =

A, B,C, D, E and aσ1, aσ2, aσ3, aσ4, aσ5 = a, b, c, d, e, so that f (A) = a,
f (B) = b, f (C) = c, f (D) = d, f (E) = e, and s = abcde. We have

ϕ 〈B,C, D, E〉 = h 〈B,C, D, E〉 = u (b, c, d, e)a ∈ Gs ,

ϕ 〈AB,C, D, E〉 = h 〈AB,C, D, E〉 = u (ab, c, d, e) ,

ϕ 〈BC, A, D, E〉 = h 〈BC, A, D, E〉 = u (bc, a, d, e) ,

· · ·
ϕ 〈DECBA〉 = h 〈DECBA〉 = u (de, c, b, a) , and

ϕ 〈ABCD〉 = h 〈ABCD〉 = u (a, b, c, d)e ∈ Gs .

Hence

ϕ
(

d (A, B,C, D, E)
)

= ϕ 〈B,C, D, E〉 − ϕ 〈AB,C, D, E〉
+ ϕ 〈BC, A, D, E〉 − ϕ 〈BC, D, A, E〉 + ϕ 〈BCDE A〉
+ ϕ 〈CD, E, B, A〉 − ϕ 〈CD, B, E, A〉 + ϕ 〈CDBAE〉
− ϕ 〈DE,C, B, A〉 − ϕ 〈A, B,C, D〉
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= u (b, c, d, e)a − u (ab, c, d, e)

+ u (bc, a, d, e) − u (bc, d, a, e) + u (bc, d, e, a)

+ u (cd, e, b, a) − u (cd, b, e, a) + u (cd, b, a, e)

− u (de, c, b, a) − u (a, b, c, d)e

= (δu)(a, b, c, d, e) ,

by (S4b) and (S4a). Thus ϕ
(

d (Xσ1 , . . . , Xσ5)
) = (δu)(aσ1 , . . . , aσ5). 
�

4. We can now prove:

Theorem 3.3 A symmetry property that does not require an equality between variables
is inherited from (S4) if and only if it is a property of d at X1, . . . , X5.

Proof If a symmetry property P is inherited from (S4), then P holds at every
a1, a2, . . . , a5 for the coboundary of every symmetric 4-cochain on any commutative
semigroup (without requiring any two of a1, a2, . . . , a5 to be equal), and in particular
holds for δ i = d at X1, X2, . . . , X5. (On the other hand, a symmetry property that
requires an equality between its variables cannot apply to d at X1, X2, . . . , X5, since
X1, X2, . . . , X5 are distinct.)

Conversely, let P : σ �−→ pσ hold for d at X1, X2, . . . , X5, so that

∑

σ∈S5
pσ d (Xσ1 , Xσ2 , . . . , Xσ5) = 0 .

Let u be a symmetric 4-cochain on a commutative semigroup S with values in
some abelian group valued functor G = (G, γ ). Let a1, a2, . . . , a5 ∈ S and let
s = a1 a2 · · · a5. By Lemma 3.2 there is a homomorphism ϕ : D −→ Gs such that

ϕ
(

d (Xσ1 , Xσ2 , . . . , Xσ5)
) = (δu)(aσ1 , aσ2 , . . . , aσ5)

for every permutation σ of 1,2,…,5. Then

∑

σ∈S5
pσ (δu)(aσ1 , . . . , aσ5) = ϕ

(
∑

σ∈S5
pσ d (Xσ1 , . . . , Xσ5)

) = 0

and P holds for δu at a1, a2, . . . , a5. 
�

4 One equality between variables

Theorem 3.3 specifically excludes symmetry properties that require one or more
equalities between variables, like the symmetry condition (S4c) which requires
two equalities between its four variables. If some of a1, a2, . . . , an are equal,
then there are fewer permutations of a1, a2, . . . , an and fewer permuted values
f (aσ1 , aσ2 , . . . , aσn); it is natural to expect different relationships between per-
muted values, and different symmetry properties.
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In this Section we consider symmetry properties that require exactly one equality
between variables. In this case a simple tweak of the variables of d yields a result
similar to Theorem 3.3. It should be clear from the proof that symmetry properties
that require more than one equality between variables can be handled with similar
adjustments.

1. Let a1, a2, . . . , a5 be the five variables of 5-coboundaries and symmetry prop-
erties of order 5. Let the required equality be ap = aq , where 1 ≤ p < q ≤ 5. A
symmetry property P that requires ap = aq is a property of f at a1, a2, . . . , an if
and only if

∑

σ∈S5 pσ f (aσ1, ..., aσ5) = 0 and ap = aq .
Using X1, X2, X3, X4 make a copy of the equality ap = aq : define Y1, . . . , Y5

so that {Y1, . . . , Y5} = {X1, X2, X3, X4} and Yp = Yq = X1; since X1, . . . , X5
are distinct, Yp = Yq is the only equality between Y1, . . . , Y5. For example, if the
required equality is a2 = a4, then X2, X1, X3, X1, X4 serve as Y1, . . . , Y5.

Construct an abelian group D that is different from the similar group in Sect. 3,
using different sets T ′, T ′′, Q′, Q′′, and Q.

Let T ′ = {Y1, . . . , Y5} and let T ′′ = {Yi Y j | 1 ≤ i < j ≤ 5} ⊆ F. Totally order
F so that

AB < X1 < X2 < X3 < X4

for all AB ∈ T ′′. Let Y be the standard basis of F4, which as before consists of all
(A, B,C, D) such that A, B,C, D ∈ F and either A < B,C, D, or A ≤ B,C and
B < D, or both.

Let Q′ be the set of all (A, B,C, D) ∈ Y such that A, B,C, D is a partial permu-
tation of Y1, Y2, . . . , Y5; hence there is at most one equality between A, B,C, D.

Let Q′′ be the set of all (AB,C, D, E) such that AB ∈ T ′′ and A, B,C, D, E is a
permutation of Y1, Y2, . . . , Y5.

Let Q = Q′ ∪ Q′′, and let D be the subgroup of C4(F) generated by i(Q). This
new group D and its cousin in Sect. 3 have very similar properties.

Lemma 4.1 If A, B,C, D ∈ T ′ are distinct except perhaps for one equality, then
〈A, B,C, D〉 ∈ D.

Proof Let X be the subset of F4 that consists of all (A, B,C, D) such that A, B,C, D
are distinct elements of T ′ except perhaps for one equality. Then X is a symmetric set.
By Proposition 2.5, its standard basis is Y ∩X . But Q′ = Y ∩X . Hence i(Q′) is a basis
ofC(X) andC(X) ⊆ D. In particular, 〈A, B,C, D〉 ∈ D for every (A, B,C, D) ∈ X .

�
Lemma 4.2 D is a free abelian group; Q ⊆ Y ; i(Q) is a basis of D; and D contains
all terms of every permuted value of d at Y1, Y2, . . . , Y5.

Like Lemma 3.1 this follows from the choice of the total order on F and Lemma
4.1. 
�
Lemma 4.3 Let u be a symmetric 4-cochain on a commutative semigroup S with
values in an abelian group valued functor G = (G, γ ), and let 1 ≤ p < q ≤ 5. Let
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a1, . . . , a5 ∈ S and let s = a1 a2 · · · a5. If ap = aq , then there exists a homomorphism
ϕ : D −→ Gs such that

ϕ
(

d (Yσ1 , Yσ2 , . . . , Yσ5)
) = (δu)(aσ1 , aσ2 , . . . , aσ5)

for every permutation σ of 1,2,…,5.

This is proved like Lemma 3.2: since Yp = Yq and Y1, . . . , Y5 are otherwise
distinct, there is a mapping f : T ′ −→ S such that f (Yi ) = ai for all i ; as before, f
induces ϕ.

Theorem 4.4 A symmetry property that requires the equality ap = aq between its
variables, and requires no other equality, is inherited from (S4) if and only if it is a
property of d at Y1, . . . , Y5.

This is proved like Theorem 3.3. A symmetry property that is a property of the
coboundary of every symmetric 4-cochain on any commutative semigroup S at every
a1, . . . , a5 ∈ S such that ap = aq , without requiring any other equality between
a1, . . . , a5, must in particular hold for δ i = d at Y1, . . . , Y5. The converse follows
from Lemma 4.3.

To find all the symmetry properties inherited from (S4) that require one equal-
ities between variables, Theorem 4.4 would have us find the symmetry properties
of d at Y1, . . . , Y5 ten times over, one for every choice of 1 ≤ p < q ≤ 5. For-
tunately, only the simplest choice needs to be considered, p = 1 and q = 2, in
which case Y1, . . . , Y5 = X1, X1, X2, X3, X4: indeed Y1, . . . , Y5 is a permutation
of X1, X1, X2, X3, X4; hence d (Y1, . . . , Y5) and d (X1, X1, X2, X3, X4) have
the same permuted values (though in a different order); the same relationships exist
between these permuted values; and d has the same set of symmetry properties at
Y1, . . . , Y5 as at X1, X1, X2, X3, X4. Hence Theorem 4.4 yields

Theorem 4.5 A symmetry property that requires exactly one equalities between its var-
iables is inherited from (S4) if and only if it is a property of d at X1, X1, X2, X3, X4.

5 Results

1. Based on Theorems 3.3 and 4.5, a symmetry property of order n + 1 that requires
certain equalities between its variables (perhaps none) is inherited from (Sn) if and
only if it is a symmetry property of d at some suitable sequence (Y ) made from
X1, X2, . . . , Xn+1. The permuted values of d at (Y ) all belong to some freeZ-module
D with a basis i(Q). Hence linear relationships between permuted values are found
from their coordinate matrix in the basis i(Q).

Let V be the subgroup of D generated by the permuted values. It turns our that
some of the permuted values, the basic permuted values, constitute a basis of V.
Gauss–Jordan reduction of the coordinate matrix reveals these basic permuted values.
Writing the remaining permuted values as linear combinations of the basic permut-
ed values provides basic relationships, and basic symmetry properties. Every linear
relationship between permuted values is a consequence of these basic relationships;
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in other words, every symmetry property of d at the sequence (Y ) is a consequence of
the basic symmetry properties.

Gauss–Jordan reduction also reveals if a symmetry property follows from other
symmetry properties, or from symmetry conditions. In the Z-module P of symmetry
properties of order n, if a symmetry property is a linear combination of other symmetry
properties, then it is a consequence (as a property) of these other symmetry proper-
ties. A set (S) of symmetry condition of order n consists of symmetry properties (one
for each symmetry condition and each permutation of the n variables); a symmetry
property which is a linear combination of these symmetry properties is a consequence
of (S). Linear combinations of symmetry properties are revealed by Gauss–Jordan
reduction of their coordinate matrix in a basis of P. Thus it can be established that a
symmetry property is a consequence of (S).

2. We apply these methods to the inheritance of (S4).
We begin with symmetry properties that require no equalities between variables,

which, by Theorem 3.3, are the symmetry properties of d at X1, . . . , X5. Arranging
the coordinates of the permuted values of d(X1, . . . , X5) in rows, rather than columns,
eases displays and outputs. The resulting matrix has 120 rows, one for each permuted
value, and 90 columns, one for each element of Q. Computer column reduction found
its rank to be 24 and yielded 96 basic symmetry properties, including

d(X5, X4, X3, X2, X1) = d(X1, X2, X3, X4, X5) and

d(X2, X1, X3, X4, X5) = d(X1, X2, X3, X4, X5) − d(X1, X3, X2, X4, X5)

+ d(X1, X3, X4, X2, X5) − d(X1, X3, X4, X5, X2).

Every coboundary u of a symmetric 4-cochain satisfies the corresponding symmetry
conditions, which constitute a set (S5):

u(e, d, c, b, a) = u(a, b, c, d, e) and (S5a)

u(b, a, c, d, e) = u(a, b, c, d, e) − u(a, c, b, d, e) (S5b)

+ u(a, c, d, b, e) − u(a, c, d, e, b).

Then another Gauss–Jordan reduction established that all basic symmetry properties
(that require no equality) are consequences of (S5).

Between its five variables a, b, c, d, e a symmetry property of order 5 can require
either no equality, or one equality (e.g. a = b), or two equalities (e.g. a = b and
c = d), or three equalities (e.g. a = b = c), or four equalities (e.g. a = b = c, d = e),
or six equalities (e.g. a = b = c = d), or ten equalities (a = b = c = d = e). These
cases must be considered separately.

By Theorem 4.5 the symmetry properties that require exactly one equality are the
symmetry properties of d at X1, X1, X2, X3, X4. The coordinate matrix now has 60
rows, 48 columns, rank 12, and provides 48 basic symmetry properties, all of which
are consequences of (S5).

The remaining five cases are treated by the same method using similar theorems,
with the same results. Thus we obtain (or rather, the author’s computer obtained):
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Theorem 5.1 A symmetry property of order 5 is inherited from (S4) if and only if it is
a consequence of (S5).

3. The same method and similar theorems yield:

Theorem 5.2 A symmetry property of order 3 is inherited from (S2) if and only if it is
a consequence of (S3).

Theorem 5.3 A symmetry property of order 4 is inherited from (S3) if and only if it is
a consequence of (S4).

In view of this it seems reasonable to conjecture that (S5) is an appropriate set of
symmetry conditions for 5-cochains, meaning that it yields a symmetric cohomology
group H5 that is naturally isomorphic to the fifth Beck cohomology group. But this is
easier stated than proved.

However, (S5) lends itself to standard bases for symmetric sets of order 5, so that
the process can be continued, resulting in:

Theorem 5.4 A symmetry property of order 6 is inherited from (S5) if and only if it is
a consequence of (S6), which consists of four conditions:

u (a, b, a, b, a, b) = 0 , (S6a)

u (a, b, c, d, e, f ) = u ( f , e, d, c, b, a) , (S6b)

u (a, b, c, d, e, f ) = u (b, a, c, d, e, f ) − u (b, c, a, d, e, f ) (S6c)

+ u (b, c, d, a, e, f ) − u (b, c, d, e, a, f )

− u (b, c, d, e, f , a) , and

u (a, b, c, d, e, f ) = −u (c, b, a, d, e, f ) + u (c, b, d, a, e, f ) (S6d)

− u (c, b, d, e, a, f ) + u (c, b, d, e, f , a)

− u (c, d, b, a, e, f ) + u (c, d, b, e, a, f )

− u (c, d, b, e, f , a) − u (c, d, e, b, a, f )

+ u (c, d, e, b, f , a) − u (c, d, e, f , b, a) .

It seems reasonable to conjecture that (S6) is an appropriate definition of symmetric
6-cochains.s
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