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Abstract
Complexes of symmetric chains are constructed for commutative monoids, whose
cohomology is the commutative cohomology.
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Introduction

Commutative semigroups are tripleable over sets and thus have their own cohomo-
logy, whose importance stems from the second cohomology group, which classifies
the ways in which finite commutative semigroups can be reconstructed from group-
free semigroups and abelian groups. Every finite commutative semigroup S is a group
coextension of T = S/H by the Schützenberger functor G of S, which is an abelian
group valued functor on T . The second cohomology group H2(T ,G) classifies com-
mutative group coextensions of T by G, thereby classifying the ways in which S can
be reconstructed from G and T [2,7,11].

In the cohomology of a commutative semigroup S, coefficients are abelian group
valued functors on S, meaning on the Leech category H(S) [7,11]. Thus, an abelian
group valued functor G = (G, γ ) on S assigns to each a ∈ S an abelian group Ga ,
and to each a ∈ S and t ∈ S1 a homomorphism γa,t : Ga −→ Gat , in such a way that
γa,1 is the identity on Ga and γa,tu = γat,u ◦ γa,t .

Two particular cases of abelian group valued functors on S are of interest. In the
above G is thin if γa,t = γa,u whenever at = au. Schützenberger functors have this
property [2].
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496 P. A. Grillet

G is semiconstant over a subset B of S if there is an abelian groupG such thatGa =
G for all a ∈ B, Ga = 0 for all a /∈ B, and γa,t is the identity on G whenever a and
at ∈ B. Cohomologywith coefficients that are constant over all of S classifies commu-
tative Rédei extensions [13] and is the commutative analogue of Eilenberg–MacLane
cohomology [1] (see also [12]). For semigroups with a zero element, cohomologywith
coefficients that are constant over S\{0} is a more appropriate commutative analogue
of Eilenberg–MacLane cohomology; if S is a nilmonoid (a nilsemigroup with an
identity element adjoined), then this cohomology classifies homogeneous elementary
semigroups [2].

As a triple cohomology, Hn(S,G) is defined in all dimensions and classifies commu-
tative group coextensions of S byG, among other good properties, but its cochains have
unbounded numbers of variables. The triple cohomology of groups suffers from the
samedefect but the bar resolutionprovides an equivalent definition inwhichn-cochains
have only n variables. Commutative semigroups allow an equivalent definition for their
cohomology in which n-cochains have only n variables but must satisfy ‘symmetry’
conditions [7]; unfortunately, the appropriate conditions have only been determined
in dimensions n � 4 [9].

The triple cohomology of commutative semigroups is also the cohomology of a
chain complex of projective functors [7], but it too suffers from overlarge chains. This
paper constructs a chain complex of projective objects, similar to the bar resolution,
whose cohomology in dimension n � 3 is the symmetric cohomology, and in which
much simpler n-chains satisfy symmetry conditions. This takes place in the coeffi-
cient category and depends on it. Hence we actually have three constructions: one for
general coefficients; one for thin coefficients; and one for semiconstant coefficients
over a given subset. This last yields a universal coefficients theorem that calculates a
commutative semigroup cohomology from its homology, when the coefficient functor
is semiconstant.

We consider commutative monoids only, since adjunction of an identity element
does not affect commutative cohomology.

The paper is organized as follows. Given a commutative monoid S, Sect. 1 defines
semiconstant abelian group valued functors, recalls the definition of symmetric
cochains, and gives a general definition and basic properties of symmetric maps.

Section 2 defines symmetric chains and constructs a chain complex of free abelian
groups whose cohomology in dimensions n � 3 is the commutative cohomology of
S when the coefficient functor is semiconstant. This yields commutative homology
groups and a universal coefficients theorem with various corollaries. (A different u-
niversal coefficients theorem for dimension n = 2 was obtained in [10] by another
method.) Sect. 4 constructs a similar chain complex of thin projective abelian group
valued functors, which serves for thin coefficient functors, and Sect. 5 constructs a
similar complex that serves for arbitrary coefficients. These sections bring no univer-
sal coefficients theorem, as a crucial hypothesis of the latter fails to hold.

Section 6 studies one example, for which constructions in previous sections are
carried out in some detail, also providing a counterexample for Sect. 5. Relegated to
Sect. 7 is the rather lengthy proof of some technical properties of symmetric mappings
that are used to prove projectivity in previous sections. An index of notations concludes
the paper.
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Commutative monoid homology 497

1 Preliminaries

1. Coefficients in the commutative cohomology of a commutative monoid S are pro-
vided by an abelian group valued functor G = (G, γ ) on S (actually, on the Leech
category H(S) [11]), which assigns an abelian group Ga to each a ∈ S and a homo-
morphism γa,t : Ga −→ Gat to each pair (a, t) ∈ S × S, so that γa,1 = 1Ga (the
identity on Ga) and γat,u ◦ γa,t = γa,tu , for all a, t, u ∈ S. Subscripts in γa,t will be
omitted if they are clear from context.

An abelian group valued functor G = (G, γ ) is thin if γa,t = γa,u whenever
at = au in S. Schützenberger functors have this property [2]. If G is thin, then γ a

b
is well-defined by γ a

b = γa,at whenever b = at ∈ aS in S (whenever a � b in the
divisibility preorder), and then γ a

a = 1Ga and γ b
c ◦ γ a

b = γ a
c , whenever defined; this

makes G a functor over S, regarded as a preordered set.
An abelian group valued functor G = (G, γ ) is constant on S if there is an abelian

group G such that Ga = G for all a ∈ S and γa,t = 1G for all a, t ∈ S.
More generally, an abelian group valued functorG = F(B,G)might be constructed

from any abelian group G and suitable subset B as follows: let Ga = G for all a ∈ B,
Ga = 0 for all a /∈ B, γa,t = 1G if a, at ∈ B, and γa at = 0 if a /∈ B or at /∈ B.

Lemma 1.1 If G �= 0, then G = F(B,G) is an abelian group valued functor on S if
and only if B has the following property: if a ∈ B and abc ∈ B, then ab ∈ B.

Proof If in the above a ∈ B, abc ∈ B, and ab /∈ B, then γa,bc = 1G �= 0 = γab,c◦γa,b

and G is not a functor. On the other hand, if a ∈ B, abc ∈ B implies ab ∈ B, then

γat,atu ◦ γa,t = 0 = γa,atu if a /∈ B or if atu /∈ B, and

γat,atu ◦ γa,t = 1G = γa,atu if a ∈ B and atu ∈ B,

for then at ∈ B. ��
Wecall a subset B of S convex if a ∈ B, abc ∈ B implies ab ∈ B. Examples of con-

vex subsets of S include S itself, and, if S has a zero element 0, S\{0}. More generally,
every ideal I of S is convex (since a ∈ I implies ab ∈ I ), and its complement S\I is
also convex (since abc /∈ I implies ab /∈ I ).

An abelian group valued functorG is semiconstant ifG = F(B,G) for some abelian
group G and convex subset B of S; then G is semiconstant on B at G. An abelian
group valued functor G is constant if G = F(S,G) for some abelian group G; then
G is constant at G. If S has a zero element, then an abelian group valued functor G
is almost constant if G = F(S\{0}, G) for some abelian group G; then G is almost
constant at G.

2. In dimensions n � 4, Hn(S,G) can be calculated from symmetric cochains,
cocycles, and coboundaries [6,7,9]. With coefficients in G, a symmetric 2-cochain u
on S with values in G = (G, γ ) assigns u (a, b) ∈ Gab to each a, b ∈ S so that the
condition

u (b, a) = u (a, b) (S2)
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498 P. A. Grillet

holds for every a, b ∈ S. A symmetric 3-cochain u on S with values in G assigns
u (a, b, c) ∈ Gabc to each a, b, c ∈ S so that all three parts of condition (S3):

u (a, b, a) = 0, (S3a)

u (c, b, a) = − u (a, b, c), and (S3b)

u (a, b, c) + u (b, c, a) + u (c, a, b) = 0, (S3c)

hold for all a, b, c ∈ S. A symmetric 4-cochain u on S with values in G assigns
u (a, b, c, d) ∈ Gabcd to each a, b, c, d ∈ S so that all four parts of condition (S4):

u (a, b, b, a) = 0, (S4a)

u (d, c, b, a) = − u (a, b, c, d), (S4b)

u (a, b, c, d) − u (b, c, d, a) + u (c, d, a, b) − u (d, a, b, c) = 0, (S4c)

u (a, b, c, d) − u (b, a, c, d) + u (b, c, a, d) − u (b, c, d, a) = 0. (S4d)

hold for all a, b, c, d ∈ S [9] (in fact, (S4c) follows from (S4b) and (S4d), by Lemma
1.3 below). For the sake of completeness, a symmetric 1-cochain u on S assigns
u (a) ∈ Ga to each a ∈ S, and condition (S1) is empty. Under pointwise addition,
symmetric n-cochains constitute abelian groups Cn(S,G) (n � 4).

Symmetric cochains are not defined in dimensions n � 5 for lack of appropriate
symmetry conditions. For the sake of completeness we denote by ̂Cn(S,G) the group
of all n-cochains on S with values in G (an n-cochain u assigns u (a1, . . . , an) ∈ Ga

to each a1, . . . , an ∈ S, where a = a1 a2 · · · an).
The coboundary homomorphisms

C1(S,G)
δ−→C2(S,G)

δ−→C3(S,G)
δ−→C4(S,G)

δ−→ ̂C5(S,G)

are:

(δu)(a, b) = γb,a u (b) − u (ab) + γa,b u (a) ∈ Gab,

(δu)(a, b, c) = γbc,a u (b, c) − u (ab, c) + u (a, bc) − γab,c u (a, b) ∈ Gabc,

(δu)(a, b, c, d) = γbcd,a u (b, c, d) − u (ab, c, d) + u (a, bc, d)

− u (a, b, cd) + γabc,d u (a, b, c) ∈ Gabcd ,

(δu)(a, b, c, d, e) = γbcde,a u (b, c, d, e) − u (ab, c, d, e) + u (a, bc, d, e)

− u (a, b, cd, e) + u (a, b, c, de) − γabcd,e u (a, b, c, d) ∈ Gabcde,
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Commutative monoid homology 499

for all a, b, c, d, e ∈ S. Then symmetric n-cocycles and n-coboundaries constitute
subgroups

Zn(S,G) = Ker δ ⊆ Cn(S,G) for n = 1, 2, 3, 4, and

Bn(S,G) = Im δ ⊆ Zn(S,G) for n = 2, 3, 4

of Cn(S,G) (with B1(S,G) = 0 ⊆ C1(S,G)); and

Hn(S,G) ∼= Zn(S,G) / Bn(S,G)

when n = 1, 2, 3, 4 [6,7,9].
If τ : G −→ G′ is a natural transformation and u ∈ Cn(S,G) is a symmetric

cochain, then the cochain τ ∗u ∈ ̂Cn(S,G) defined by

τ ∗u (a1, . . . , an) = τa
(

u (a1, . . . , an)
) ∈ G ′

a, where a = a1 a2 · · · an,

is a symmetric cochain, which inherits all parts of (Cn) from u. Thus τ : G −→ G′
induces a homomorphism τ ∗ = Cn(S, τ ) : Cn(S,G) −→ Cn(S,G ′). If every τa is
injective, then so is τ ∗. (Surjectivity also transfers; this is proved in Sect. 4).

3. Symmetry (as considered here) appliesmore generally to functions f : X −→ G
of n � 4 variables, where G is an abelian group and X is a subset of the cartesian
product Sn = S × · · · × S of some set S, which is symmetric in the sense that

(x1, . . . , xn) ∈ X implies (xσ1, . . . , xσn) ∈ X

for all x1, . . . , xn ∈ S and every permutation σ of 1, 2, . . . , n. If n = 1, then every
mapping of X into G is symmetric. If n = 2, then a mapping f : X −→ G is
symmetric if and only if condition (S2):

f (b, a) = f (a, b) (S2)

holds for all a, b ∈ S. If n = 3, then f : X −→ G is symmetric if and only if all three
parts of condition (S3):

f (a, b, a) = 0, (S3a)

f (c, b, a) = − f (a, b, c), and (S3b)

f (a, b, c) + f (b, c, a) + f (c, a, b) = 0, (S3c)

hold for all a, b, c ∈ S. If n = 4, then f : X −→ G is symmetric if and only if all
four parts of condition (S4):

f (a, b, b, a) = 0, (S4a)

f (d, c, b, a) = − f (a, b, c, d), (S4b)
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f (a, b, c, d) − f (b, c, d, a) + f (c, d, a, b) − f (d, a, b, c) = 0, and (S4c)

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0. (S4d)

hold for all a, b, c, d ∈ S.
If, for example, S is a commutative monoid, then a symmetric 4-cochain u ∈

C4(S,G) consists of symmetric functions (a, b, c, d) �−→ u (a, b, c, d) : Xs −→ Gs ,
one for each s ∈ S, where Xs = { (a, b, c, d) ∈ S × S × S × S

∣

∣ abcd = s } is a
symmetric set, since S is commutative; and similarly for 2- and 3-cochains.

The general definition of symmetric maps can be shortened if n = 3 or n = 4.

Lemma 1.2 Condition (S3) is equivalent to the single condition

f (a, b, c) = f (b, a, c) − f (b, c, a). (S3d)

Proof This generalizes the similar result in [6]. Conditions (S3c) and (S3b) imply
(S3d):

f (a, b, c) = − f (c, a, b) − f (b, c, a) = f (b, a, c) − f (b, c, a).

Conversely, if (S3d) holds, then, for all a, b, c ∈ S,

f (a, b, a) = f (b, a, a) − f (b, a, a) = 0,

f (c, b, a) = f (b, c, a) − f (b, a, c) = − f (a, b, c), and

f (a, b, c) + f (b, c, a) + f (c, a, b)

= f (b, a, c) − f (b, c, a) + f (b, c, a) − f (b, a, c) = 0.

��
Lemma 1.3 Conditions (S4b) and (S4d) imply (S4c).

Proof For all a, b, c, d ∈ S, conditions (S4b) and (S4d) imply

f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d) + f (b, c, d, a),

f (a, b, c, d) = − f (d, c, b, a)

= − f (c, d, b, a) + f (c, b, d, a) − f (c, b, a, d), and

f (a, b, c, d) − f (b, c, d, a) + f (c, d, a, b) − f (d, a, b, c)

= f (a, b, c, d) + f (a, d, c, b)

− f (a, b, d, c) + f (a, d, b, c) − f (a, d, c, b)

− f (a, d, b, c) + f (a, b, d, c) − f (a, b, c, d) = 0.

��
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4. With respect to symmetric maps, every symmetric subset X ⊆ Sn has a basis: a
subset Y of X such that every mapping of Y into an abelian group G extends uniquely
to a symmetric mapping of X into G.

If S is a totally ordered set, then X has an explicit basis:

Lemma 1.4 Let X be a symmetric subset of Sn, where n � 4 and S is a totally ordered
set.

If n = 2, then the set Y of all (a, b) ∈ X such that a � b is a basis of X .
If n = 3, then the set Y of all (a, b, c) ∈ X such that a � b and a < c is a basis

of X .
If n = 4, then the set Y of all (a, b, c, d) ∈ X such that either a < b, c, d, or

a � b, c and b < d, or both, is a basis of X .
Moreover, if f is a mapping of Y into an abelian group G and g is the symmetric

mapping of X into G that extends f , then every value of g is a sum of values of f
and opposites of values of f .

The set Y in Lemma 1.4 is the standard basis of X (given the total order on S).
Lemma 1.4 is vital for what follows. Its proof is straightforward but rather lengthy,

due to the case n = 4, and has been moved to Sect. 7.

2 Symmetric chains

1. First we construct abelian groups Cn(S/B) such that Cn(S,G) ∼= Hom
(Cn(S/B), G) when n � 4 and G is semiconstant at G on a convex subset B of
S.

Let C0(S/B) = 0. For n = 1, 2, 3, 4 let

X = { (a1, . . . , an) ∈ Sn = S × · · · × S
∣

∣ a1 a2 · · · an ∈ B }.
If n = 1, 2, 3, 4, then Cn(S/B) is generated by X subject to the defining relations
given below. We denote by

ι : (a1, . . . , an) �−→ 〈 a1, . . . , an 〉
the canonical map of X into Cn(S/B). If n = 1, then X = B, the set of defining
relations is empty, and C1(S/B) is free on B.

The defining relations of C2(S/B) are all

〈 b, a 〉 = 〈 a, b 〉, (C2)

where a, b ∈ S and ab ∈ B (so that (a, b) ∈ X ). The defining relations of C3(S/B),
collectively denoted by (C3), are all

〈 a, b, a 〉 = 0, (C3a)

〈 c, b, a 〉 = − 〈 a, b, c 〉, and (C3b)
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〈 a, b, c 〉 + 〈 b, c, a 〉 + 〈 c, a, b 〉 = 0, (C3c)

wherea, b, c ∈ S andabc ∈ B (aba ∈ B in (C3a)). The defining relations ofC4(S/B),
collectively denoted by (C4), are all

〈 a, b, b, a 〉 = 0, (C4a)

〈 d, c, b, a 〉 = − 〈 a, b, c, d 〉, (C4b)

〈 a, b, c, d 〉 − 〈 b, c, d, a 〉 + 〈 c, d, a, b 〉 − 〈 d, a, b, c 〉 = 0, (C4c)

〈 a, b, c, d 〉 − 〈 b, a, c, d 〉 + 〈 b, c, a, d 〉 − 〈 b, c, d, a 〉 = 0, (C4d)

where a, b, c, d ∈ S and abcd ∈ B (abba ∈ B in (C4a)).
For later use it is convenient to define 〈 a1, . . . , an 〉 for all a1, . . . , an (where

n � 4): let
〈 a 〉 = 0 if a /∈ B,

〈 a, b 〉 = 0 if ab /∈ B,

〈 a, b, c 〉 = 0 if abc /∈ B, and

〈 a, b, c, d 〉 = 0 if abcd /∈ B.

If n = 2, 3, 4, then X is a symmetric set and ι is a symmetric mapping of X into
Cn(S/B). In particular, it follows from Lemmas 1.3 and 1.2 that the defining relations
(C4c) can be omitted from (C4), and that (C3) can be replaced by

〈 a, b, c 〉 = 〈 b, a, c 〉 − 〈 b, c, a 〉. (C3d)

A symmetric n-chain on S relative to B is an element of Cn(S/B). In particular,
Cn(S) = Cn(S/S) is the group of symmetric n-chains on S.

The use of the arbitrary convex subset B in these definitions has two advantages:
it covers the important cases B = S and B = S\{0}, avoiding duplicate proofs and
constructions; and it might allow future proofs by induction, as in [8]. Some of the
generality disappears if S\B is an ideal:

Proposition 2.1 If S\B = I �= S is an ideal of S, then Cn(S/B) = Cn(T / T \{0}),
where T = S/I .

Proof If a1, . . . , an ∈ S, then a1 . . . an ∈ B in S implies a1, . . . , an ∈ B in S and
a1, . . . , an ∈ S/I ; hence a1 . . . an ∈ B in S if and only if a1 . . . an �= 0 in T = S/I .
Thus Cn(S/B) and Cn(T / T \{0}) have the same generators, and these are subject to
the same defining relations. ��
Theorem 2.2 Cn(S/B) is a free abelian group. In particular, Cn(S) is a free abelian
group. If n = 2, 3, 4, then, relative to any total order on S, Cn(S/B) is free on the
standard basis of X.
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Proof ThegroupsC0(S/B) andC1(S/B) are already free by definition. Let n = 2, 3, 4
and let Y be a standard basis of X from Lemma 1.4, so that every mapping f of X
into an abelian group G extends uniquely to a symmetric mapping g of X into G;
moreover, every value of g is a sum of values of f and opposites of values of f .

If f is the restriction of ι toY , then g = ι; hence the subgroup ofCn(S/B) generated
by ι (Y ) contains all values of ι and is all of Cn(S/B).

Now let f be any mapping of Y into an abelian group G, which extends uniquely
to a symmetric mapping g of X into G. The values g (a1, . . . , an) of the symmetric
mapping g satisfy all the defining relations (Cn) ofCn(S/B). Hence g factors uniquely
through ι: there is a homomorphism ϕ : Cn(S/B) −→ G such that ϕ ◦ ι = g. In
particular, ϕ (ι (y)) = f (y) for all y ∈ Y , and ϕ is unique with this property since
Cn(S/B) is generated by ι (Y ). Thus Cn(S/B) is free on Y (via ι). ��

Given the (arbitrary) total order on S, Lemma 1.4 provides an explicit description
of Y :

if n = 2, then Y is the set of all (a, b) such that a, b ∈ S, ab ∈ B, and a � b;
if n = 3, then Y is the set of all (a, b, c) such that a, b, c ∈ S, abc ∈ B, a � b,

and a < c;
if n = 4, then Y is the set of all (a, b, c, d) such that a, b, c, d ∈ S, abcd ∈ B, and

either a < b, c, d, or a � b, c and b < d, or both.
In the above, Y is the standard basis of Cn(S/B) (given the total order on S).
The definition of symmetric chains was cooked up so that the next result would

hold:

Proposition 2.3 If G = F(B,G) is semiconstant, then for n = 1, 2, 3, 4 there is an
isomorphism U : Hom (Cn(S/B), G) ∼= Cn(S,G) which is natural in G, and assigns
to ϕ : Cn(S/B) −→ G the cochain u = U (ϕ) defined by:

u (a1, . . . , an) =
{

ϕ 〈 a1, . . . , an 〉 ∈ G if a1 . . . an ∈ B,

= 0 ∈ Ga1... an if a1 . . . an /∈ B,

for all a1, . . . , an ∈ S.

Proof One may assume that Ga = 0 ⊆ G when a /∈ B, so that u (a1, . . . , an) =
ϕ 〈 a1, . . . , an 〉 for all a1, . . . , an in the above.

Let ϕ : Cn(S/B) −→ G be a homomorphism. For the elements ϕ 〈 a1, . . . , an 〉 of
G such that a1 a2 · · · an ∈ B, property (Sn) follows from (Cn). This is also the case,
trivially, if a1 a2 · · · an /∈ B. Thus U (ϕ) is a symmetric n-cochain.

Conversely, let u ∈ Cn(S,G). The elements u (a1, . . . , an) of G, where
a1, . . . , an ∈ S and a1 a2 · · · an ∈ B, satisfy all defining relations (Cn) of
Cn(S/B). Therefore there is a unique homomorphism ϕ : Cn(S/B) −→ G such that
ϕ 〈 a1, . . . , an 〉 = u (a1, . . . , an) for all a1, . . . , an ∈ S such that a1 a2 · · · an ∈ B.
This sets up a one-to-one correspondence betweenCn(S,G) and Hom (Cn(S/B), G),
which preserves pointwise addition and is natural in G. ��

2. Boundaries are defined as follows (so that Lemma 2.7 will hold).
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Proposition 2.4 Let B be a convex subset of S. For each n = 1, 2, 3, 4 there exists a
unique homomorphism ∂n : Cn(S/B) −→ Cn−1(S/B) such that, for all a, b, c, d ∈ S,

∂1〈 a 〉 = 0, (B1)

∂2〈 a, b 〉 = 〈 b 〉 − 〈 ab 〉 + 〈 a 〉 if ab ∈ B, (B2)

∂3〈 a, b, c 〉 = 〈 b, c 〉 − 〈 ab, c 〉 + 〈 a, bc 〉 − 〈 a, b 〉 if abc ∈ B, (B3)

∂4〈 a, b, c, d 〉 = 〈 b, c, d 〉 − 〈 ab, c, d 〉 + 〈 a, bc, d 〉 − 〈 a, b, cd 〉 + 〈 a, b, c 〉
if abcd ∈ B. (B4)

Moreover, ∂n−1 ◦ ∂n = 0 (n = 2, 3, 4).

Proof First, ∂1 = 0. Next, if a, b ∈ S, then 〈 a 〉 − 〈 ba 〉 + 〈 b 〉 = 〈 b 〉 − 〈 ab 〉 + 〈 a 〉,
since S is commutative. Hence the 1-chains 〈 b 〉 − 〈 ab 〉 + 〈 a 〉, where a, b ∈ S
and ab ∈ B, have property (C2). Therefore there is a unique homomorphism ∂2 :
C2(S/B) −→ C1(S/B) such that ∂2〈 a, b 〉 = 〈 b 〉 − 〈 ab 〉 + 〈 a 〉 for all a, b ∈ S
such that ab ∈ B.

Similarly, if a, b, c ∈ S, then it follows from (C2) and commutativity in S that

〈 b, a 〉 − 〈 ab, a 〉 + 〈 a, ba 〉 − 〈 a, b 〉 = 0,

〈 b, a 〉 − 〈 cb, a 〉 + 〈 c, ba 〉 − 〈 c, b 〉
= − (〈 b, c 〉 − 〈 ab, c 〉 + 〈 a, bc 〉 − 〈 a, b 〉), and

〈 b, c 〉 − 〈 ab, c 〉 + 〈 a, bc 〉 − 〈 a, b 〉
+ 〈 c, a 〉 − 〈 bc, a 〉 + 〈 b, ca 〉 − 〈 b, c 〉
+ 〈 a, b 〉 − 〈 ca, b 〉 + 〈 c, ab 〉 − 〈 c, a 〉 = 0.

Hence the 2-chains 〈 b, c 〉 − 〈 ab, c 〉 + 〈 a, bc 〉 − 〈 a, b 〉, where a, b, c ∈ S
and abc ∈ B, have properties (C3a), (C3b), and (C3c). Therefore there is a unique
homomorphism ∂3 : C3(S/B) −→ C2(S/B) such that (B3) holds.

Similarly, if a, b, c, d ∈ S, then it follows from (C3a), (C3b), (C3c), (C3d), and
commutativity in S that

〈 b, b, a 〉 − 〈 ab, b, a 〉 + 〈 a, bb, a 〉 − 〈 a, b, ba 〉 + 〈 a, b, b 〉 = 0,

〈 c, b, a 〉 − 〈 dc, b, a 〉 + 〈 d, cb, a 〉 − 〈 d, c, ba 〉 + 〈 d, c, b 〉
= − (〈 b, c, d 〉 − 〈 ab, c, d 〉 + 〈 a, bc, d 〉 − 〈 a, b, cd 〉 + 〈 a, b, c 〉),
(〈 b, c, d 〉 − 〈 ab, c, d 〉 + 〈 a, bc, d 〉 − 〈 a, b, cd 〉 + 〈 a, b, c 〉)

− (〈 c, d, a 〉 − 〈 bc, d, a 〉 + 〈 b, cd, a 〉 − 〈 b, c, da 〉 + 〈 b, c, d 〉)
+ (〈 d, a, b 〉 − 〈 cd, a, b 〉 + 〈 c, da, b 〉 − 〈 c, d, ab 〉 + 〈 c, d, a 〉)
− (〈 a, b, c 〉 − 〈 da, b, c 〉 + 〈 d, ab, c 〉 − 〈 d, a, bc 〉 + 〈 d, a, b 〉) = 0,

and
(〈 b, c, d 〉 − 〈 ab, c, d 〉 + 〈 a, bc, d 〉 − 〈 a, b, cd 〉 + 〈 a, b, c 〉)

− (〈 a, c, d 〉 − 〈 ba, c, d 〉 + 〈 b, ac, d 〉 − 〈 b, a, cd 〉 + 〈 b, a, c 〉)
+ (〈 c, a, d 〉 − 〈 bc, a, d 〉 + 〈 b, ca, d 〉 − 〈 b, c, ad 〉 + 〈 b, c, a 〉)
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− (〈 c, d, a 〉 − 〈 bc, d, a 〉 + 〈 b, cd, a 〉 − 〈 b, c, da 〉 + 〈 b, c, d 〉) = 0.

Thus the 3-chains 〈 b, c, d 〉 − 〈 ab, c, d 〉 + 〈 a, bc, d 〉 − 〈 a, b, cd 〉 + 〈 a, b, c 〉,
where a, b, c, d ∈ S and abcd ∈ B, have properties (C4a), (C4b), (C4c) and (C4d).
Therefore there is a unique homomorphism ∂4 : C4(S/B) −→ C3(S/B) such that
(B4) holds.

Finally, we have ∂1 ◦ ∂2 = 0. Let a, b, c ∈ S, abc ∈ B. If ab, bc ∈ B, then

∂2 ∂3〈 a, b, c 〉 = ∂2
(〈 b, c 〉 − 〈 ab, c 〉 + 〈 a, bc 〉 − 〈 a, b 〉)

= 〈 c 〉 − 〈 bc 〉 + 〈 b 〉 − 〈 c 〉 + 〈 abc 〉 − 〈 ab 〉
+〈 bc 〉 − 〈 abc 〉 + 〈 a 〉 − 〈 b 〉 + 〈 ab 〉 − 〈 a 〉 = 0.

If ab /∈ B and bc ∈ B, then a /∈ B, since B is convex; b /∈ B, since ba /∈ B and
bac ∈ B; ∂2 〈 a, b 〉 = 0; and

∂2 ∂3〈 a, b, c 〉 = ∂2
(〈 b, c 〉 − 〈 ab, c 〉 + 〈 a, bc 〉 − 〈 a, b 〉)

= 〈 c 〉 − 〈 bc 〉 + 〈 b 〉 − 〈 c 〉 + 〈 abc 〉 − 〈 ab 〉
+〈 bc 〉 − 〈 abc 〉 + 〈 a 〉 = 0.

Exchanging a and c yields ∂2 ∂3〈 a, b, c 〉 = 0 if ab ∈ B and bc /∈ B. Finally, if
ab, bc /∈ B, then, as above, a, b /∈ B and ∂2 ∂3〈 a, b, c 〉 = 0. Hence ∂2 ◦ ∂3 = 0.

Similarly, let a, b, c, d ∈ S, abcd ∈ B. If abc, bcd ∈ B, then

∂3 ∂4〈 a, b, c, d 〉
= ∂3

(〈 b, c, d 〉 − 〈 ab, c, d 〉 + 〈 a, bc, d 〉 − 〈 a, b, cd 〉 + 〈 a, b, c 〉)
= (〈 c, d 〉 − 〈 bc, d 〉 + 〈 b, cd 〉 − 〈 b, c 〉)

−(〈 c, d 〉 + 〈 abc, d 〉 − 〈 ab, cd 〉 + 〈 ab, c 〉)
+(〈 bc, d 〉 − 〈 abc, d 〉 + 〈 a, bcd 〉 − 〈 a, bc 〉)
−(〈 b, cd 〉 + 〈 ab, cd 〉 − 〈 a, bcd 〉 + 〈 a, b 〉)
+(〈 b, c 〉 − 〈 ab, c 〉 + 〈 a, bc 〉 − 〈 a, b 〉) = 0.

If abc /∈ B and bcd ∈ B, then a /∈ B, since B is convex and abcd ∈ B; b /∈ B,
since bac /∈ B and bacd ∈ B; ab /∈ B, since abc /∈ B and abcd ∈ B; bc /∈ B since
bca /∈ B and bcad ∈ B; ∂3 〈 a, b, c 〉 = 0; and

∂3 ∂4〈 a, b, c, d 〉
= ∂3

(〈 b, c, d 〉 − 〈 ab, c, d 〉 + 〈 a, bc, d 〉 − 〈 a, b, cd 〉 + 〈 a, b, c 〉)
= (〈 c, d 〉 − 〈 bc, d 〉 + 〈 b, cd 〉 − 〈 b, c 〉)

−(〈 c, d 〉 − 〈 abc, d 〉 + 〈 ab, cd 〉 − 〈 ab, c 〉)
+(〈 bc, d 〉 − 〈 abc, d 〉 + 〈 a, bcd 〉 − 〈 a, bc 〉)
−(〈 b, cd 〉 − 〈 ab, cd 〉 + 〈 a, bcd 〉 − 〈 a, b 〉) = 0.
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Exchanging a and d yields ∂2 ∂3〈 a, b, c, d 〉 = 0 if abc ∈ B and bcd /∈ B. Finally, if
abd, bcd /∈ B, then, as above, a, b, ab, bc /∈ B and ∂3 ∂4〈 a, b, c, d 〉 = 0. Therefore
∂3 ◦ ∂4 = 0. ��

Relative to a convex subset B of S, a symmetric n-cycle is an element of

Zn(S/B) = Ker ∂n ⊆ Cn(S/B)

(where n = 1, 2, 3, 4); a symmetric n-boundary is an element of

Bn(S/B) = Im ∂n+1 ⊆ Cn(S/B)

(wheren = 0, 1, 2, 3). In Proposition 2.4, ∂n◦∂n+1 = 0 implies Bn(S/B) ⊆ Zn(S/B).
The commutative homology groups of S relative to B are the abelian groups

Hn(S/B) = Zn(S/B) / Bn(S/B),

where n = 1, 2, 3. In particular, the commutative homology groups of S are the groups
Hn(S) = Hn(S/S) (n = 1, 2, 3).

We take a closer look at H1(S/B). First we note that every subset P of S can be
viewed as a commutative partial semigroup in which the product ab of two elements
a, b of P is defined if and only if their product in S lies in P , in which case the two
products are equal. In a classic case of adjoint functors, P has a universal abelian
group F(P) and a partial homomorphism ι : P −→ F(P), such that for every partial
homomorphism f of P into an abelian group G there is a unique homomorphism ϕ of
F(P) intoG such that ϕ ◦ ι = f . It is readily seen that F(P) can be described as the a-
belian group generated by all [a] (= ι (a))with a ∈ P , subject to all defining relations
[ab] = [a] + [b], where a, b, ab ∈ P . Under pointwise addition, the partial homo-
morphisms of P into an abelian group G constitute an abelian group PHom(P,G),
and the adjunction provides an isomorphism ϕ �−→ ϕ ◦ ι of Hom (F(P), G) onto
PHom(P,G), which is natural in G.

Proposition 2.5 If S\B �= S is an ideal of S, then H1(S/B) is the universal abelian
group of the commutative partial monoid B, and H1(S,G) ∼= PHom(B,G) whenever
G = F(B,G) is semiconstant on B. In particular, H1(S) is the universal abelian
group of S and H1(S,G) ∼= Hom (S,G) whenever G is constant at G.

Proof We saw that C0(S/B) = 0, so that Z1(S/B) = C1(S/B) and H0(S/B) = 0,
and that ∂2 : C2(S/B) −→ C1(S/B) sends every generator 〈 a, b 〉 ofC2(S/B), where
ab ∈ B, to 〈 b 〉−〈 ab 〉+〈 a 〉. Since S\B is an ideal, ab ∈ B implies a, b ∈ B. Hence
H1(S/B) is the abelian group generated by all 〈 a 〉 with a ∈ B, subject to all defining
relations 〈 ab 〉 = 〈 a 〉 + 〈 b 〉, where a, b ∈ S and ab ∈ B; in other words, H1(S/B)

is the universal abelian group of the commutative partial monoid B. The partial ho-
momorphism ι : B −→ H1(S/B) sends each a ∈ B to the coset of 〈 a 〉 in H1(S/B).
The isomorphism H1(S,G) ∼= PHom(B,G) then follows from Proposition 2.3. ��

The homology groups Hn(S) (with B = S) tell us nothing if S has a zero element
(hence Hn(S / S\{0}).
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Proposition 2.6 If S has a zero element, then Hn(S) = 0 for n = 1, 2, 3.

Proof For every a ∈ S, ∂2 〈 a, 0 〉 = 〈 0 〉 − 〈 a0 〉 + 〈 a 〉 = 〈 a 〉; hence every 1-chain
is a boundary and H1(S) = 0. (This also follows from Proposition 2.5, since 0 is the
only homomorphism of S into G.)

Place an arbitrary total order � on S. For every a, b ∈ S, homomorphisms σ :
C2(S) −→ C3(S) and τ : C2(S) −→ C3(S) are well-defined by:

σ 〈 a 〉 = 〈 a, 0 〉 and

τ 〈 a, b 〉 =
{

〈 a, b, 0 〉 if a � b,

〈 b, a, 0 〉 if a � b.

Indeed the two definitions of τ 〈 a, b 〉 agree if a = b, and τ 〈 b, a 〉 = τ 〈 a, b 〉 for all
a, b.

We show that 〈 a, b 〉 = σ ∂2 〈 a, b 〉 − ∂3 τ 〈 a, b 〉 for all a, b ∈ S (so that σ, τ are
the beginning of a contracting homotopy). If a � b, then

σ ∂2 〈 a, b 〉 − ∂3 τ 〈 a, b 〉
= σ 〈 b 〉 − σ 〈 ab 〉 + σ 〈 a 〉 − ∂3 〈 a, b, 0 〉
= 〈 b, 0 〉 − 〈 ab, 0 〉 + 〈 a, 0 〉 − 〈 b, 0 〉 + 〈 ab, 0 〉 − 〈 a, b0 〉 + 〈 a, b 〉
= 〈 a, b 〉.

If a � b, then

σ ∂2 〈 a, b 〉 − ∂3 τ 〈 a, b 〉
= σ 〈 b 〉 − σ 〈 ab 〉 + σ 〈 a 〉 − ∂3 〈 b, a, 0 〉
= 〈 b, 0 〉 − 〈 ab, 0 〉 + 〈 a, 0 〉 − 〈 a, 0 〉 + 〈 ab, 0 〉 − 〈 b, a0 〉 + 〈 b, a 〉
= 〈 a, b 〉.

It follows thatσ ∂2 u−∂3 τ u = u for every u ∈ C2(S). If ∂2 u = 0, then u = ∂3 (−τu).
Thus every 2-cycle is a 2-boundary, and H2(S) = 0.

Next we show that, for every a, b, c ∈ S, we have

〈 a, b, c 〉 + τ ∂3 〈 a, b, c 〉 = ∂4 v

for some v ∈ C4(S). First, for all x, y ∈ S,

∂4 〈 x, 0, y, 0 〉 = 〈 0, y, 0 〉 − 〈 x0, y, 0 〉 + 〈 x, 0y, 0 〉 − 〈 x, 0, y0 〉
+〈 x, 0, y 〉 = 〈 x, 0, y 〉,

so that

〈 y, x, 0 〉 = 〈 x, y, 0 〉 − 〈 x, 0, y 〉 = 〈 x, y, 0 〉 − ∂4 〈 x, 0, y, 0 〉
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by (C3d). Hence

τ 〈 x, y 〉 = 〈 x, y, 0 〉 + ∂4 v,

where v = 0 if x � y and v = − 〈 x, 0, y, 0 〉 if x � y. Now

τ ∂3 〈 a, b, c 〉 = τ 〈 b, c 〉 − τ 〈 ab, c 〉 + τ 〈 a, bc 〉 − τ 〈 a, b 〉
= 〈 b, c, 0 〉 − 〈 ab, c, 0 〉 + 〈 a, bc, 0 〉 − 〈 a, b, 0 〉 + ∂4v

= ∂4 〈 a, b, c, 0 〉 − 〈 a, b, c 〉 + ∂4v

for some v ∈ C4(S), whence 〈 a, b, c 〉 + τ ∂3 〈 a, b, c 〉 ∈ Im ∂4. Hence u + τ ∂3 u ∈
Im ∂4 for every u ∈ C3(S). If ∂3 u = 0, then u ∈ Im ∂4. Hence H3(S) = 0. ��

3. If G = F(B,G) is semiconstant, then, in dimensions n = 1, 2, 3, the commuta-
tive cohomology groups Hn(S,G) are the cohomology groups of the symmetric chain
complex

C∗(S/B) : 0
∂1←−C1(S/B)

∂2←−C2(S/B)
∂3←−C3(S/B)

∂4←−C4(S/B).

This is proved as follows, using the isomorphism U in Proposition 2.3.

Lemma 2.7 If n = 1, 2, 3, 4, G = F(B,G), ϕ : Cn−1(S/B) −→ G is a homomor-
phism, and u = U (ϕ) ∈ Cn−1(S,G), then δu = U (ϕ ◦ ∂n).

Proof If n = 1, then u = 0, δu = 0, ∂n = 0, and δu = U (ϕ ◦∂n). In general, one may
assume that Ga = 0 ⊆ G when a ∈ N , so thatU (ϕ)(a1, . . . , an) = ϕ 〈 a1, . . . , an 〉
for all a1, . . . , an .

Let n = 2. If a, b ∈ S and ab ∈ B, then

(δu)(a, b) = u (b) − u (ab) + u (a) = ϕ
(〈 b 〉 − 〈 ab 〉 + 〈 a 〉) = ϕ (∂2〈 a, b 〉).

If ab /∈ B, then 〈 a, b 〉 = 0 and (δu)(a, b) = 0, since (δu)(a, b) ∈ Gab. Hence
δu = U (ϕ ◦ ∂2).

If n = 3, then u (a, b) = ϕ 〈 a, b 〉 and, for all a, b, c ∈ S such that abc ∈ B,

(δu)(a, b, c) = u (b, c) − u (ab, c) + u (a, bc) − u (a, b)

= ϕ
(〈 b, c 〉 − 〈 ab, c 〉 + 〈 a, bc 〉 − 〈 a, b 〉) = ϕ (∂3〈 a, b, c 〉).

If abc /∈ B, then 〈 a, b, c 〉 = 0 and (δu)(a, b, c) = 0, since (δu)(a, b, c) ∈ Gabc.
Hence δu = U (ϕ ◦ ∂3).

If n = 4, then u (a, b, c) = ϕ 〈 a, b, c 〉 and, for all a, b, c, d ∈ S such that abcd ∈
B,

(δu)(a, b, c, d) = u (b, c, d)−u (ab, c, d)+u (a, bc, d)= − u (a, b, cd) + u (a, b, c)

= ϕ
(〈 b, c, d 〉 − 〈 ab, c, d 〉 + 〈 a, bc, d 〉 − 〈 a, b, cd 〉 + 〈 a, b, c 〉)

= ϕ (∂4〈 a, b, c, d 〉).

If abcd /∈ B, then 〈 a, b, c, d 〉 = 0 and (δu)(a, b, c, d) = 0, since (δu)(a, b, c, d) ∈
Gabcd . Hence δu = U (ϕ ◦ ∂4). ��
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Theorem 2.8 Let n = 1, 2, 3. If G is semiconstant at G on B, then U induces an
isomorphism Hn(S,G) ∼= Hn(C∗(S/B), G) which is natural in G.

Proof In the cohomology of C∗(S/B) with coefficients in G, an n-cochain is
a homomorphism ϕ : Cn(S/B) −→ G; an n-cocycle is a homomorphism
ϕ : Cn(S/B) −→ G such that ϕ ◦ ∂n+1 = 0; an n-coboundary is a homomorphism
ψ ◦ ∂n : Cn(S/B) −→ G for some homomorphism ψ : Cn−1(S/B) −→ G. These
constitute abelian groups Cn , Zn , and Bn , such that Bn ⊆ Zn since ∂n ◦ ∂n+1 = 0. By
Lemma 2.7, the isomorphismU in Proposition 2.3 sends Zn onto Zn(S,G), sends Bn

onto Bn(S,G), and induces an isomorphism Hn(C∗(S/B), G) ∼= Hn(S,G), which,
like U , is natural in G. ��

3 The universal coefficients theorem

Since Cn(S/B) is a free abelian group when n = 0, 1, 2, 3, 4, and subgroups of free
abelian groups are also free, Theorem 2.8 yields a universal coefficients theorem:

Theorem 3.1 If G = F(B,G) is semiconstant at G, then there is an isomorphism

Hn(S,G) ∼= Ext (Hn−1(S/B), G) ⊕ Hom (Hn(S/B), G) (n = 1, 2, 3)

which is natural inG. Inparticular, Hn(S,G) ∼= Ext (Hn−1(S), G)⊕Hom (Hn(S), G)

if G is constant at G.

Proof This follows from more general Universal Coefficient Theorems (e.g. Theorem
3.6.5 of [14]). ��
Corollary 3.2 If S has a zero element and G is constant, then Hn(S,G) = 0 for
n = 1, 2, 3.

Proof By Proposition 2.6, Hn(S) = 0 for all n � 3. ��
This extends the similar result for nilmonoids, obtained in [10] by differentmethods.

Corollary 3.3 If S has a zero element, J is an ideal of S, and G = F(G / S\J ), then
H1(S,G) = 0, H2(S,G) ∼= H1(S,G′) and H3(S,G) ∼= H2(S,G′), where G′ =
F(G/J ).

Proof Let G′′ = F(G/S) be constant at G. The short exact sequences

0 −→ Ga = 0 −→ G ′′
a = G

=−→G ′
a = G −→ 0 if a ∈ S\J ,

0 −→ Ga = G
=−→G ′′

a = G −→ G ′
a = 0 −→ 0 if a ∈ J ,

yield a short exact sequence

0 −→ G −→ G′′ −→ G′ −→ 0
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that induces exact sequences

0 −→ H1(S,G) −→ H1(S,G′′)
H1(S,G′′) −→ H1(S,G′) −→ H2(S,G) −→ H2(S,G′′)
H2(S,G′′) −→ H2(S,G′) −→ H3(S,G) −→ H3(S,G′′)

in which H1(S,G′′) = H2(S,G′′) = H3(S,G′′) = 0 by Corollary 3.2. ��
Corollary 3.4 If S is free, then H2(S) = H3(S) = 0.

Proof Let S = F be free on X . It is a property of commutative semigroup cohomology
that Hn(F,G) = 0 for all n � 2 and all G [7]. Now the universal abelian group of F
is the free abelian group G; hence H1(F) ∼= G, by Proposition 2.5. If G is constant on
F at G, then Theorem 3.1 yields

Hom (H2(F),G) ∼= Ext (G,G) ⊕ Hom (H2(F),G) ∼= H2(F,G) = 0 ;

hence Hom (H2(F),G) = 0 for every abelian groupG, and it follows that H2(F) = 0.
Then Theorem 3.1 also yields

Hom (H3(F),G) ∼= Ext (H2(F), G) ⊕ Hom (H3(F),G) ∼= H3(F,G) = 0 ;

hence Hom (H3(F),G) = 0 for every abelian groupG, and it follows that H3(F) = 0.
��

2. We now look at H1.

Proposition 3.5 If S\B �= S is an ideal of S and G = F(B,G) is semiconstant, then

H1(S,G) ∼= PHom(B,G),

the group of partial homomorphisms of B into G. In particular, H1(S,G) ∼=
Hom (S,G) whenever G is constant at G.

Proof By Proposition 2.5, H1(S/B) is the universal abelian group of the commuta-
tive partial monoid B; hence Theorem 3.1 yields H1(S,G) ∼= Hom (H1(S/B), G) ∼=
PHom(B,G). In fact, if S\B �= S is an ideal of S, then 1-cocycles u ∈ Z1(S,G)

coincide with partial homomorphisms of B into G. In particular, if B = S, then
H1(S) = H1(S/B) ∼= Hom (S,G). ��
Example 3.6 is the commutative nilmonoid

S ∼= 〈 x, y ∣

∣ x5 = x3y = x2y2 = y4 = 0, x4 = x2y = xy3 〉

(this isExample3.3 of [10]).Apartial homomorphismϕ : S\{0} −→ G into an abelian
group G is determined by g = ϕ (x) and h = ϕ (y) such that 4g = 2g + h = g + 3h,
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equivalently, 2g = h and g = 2h; thus ϕ is determined by g ∈ G such that 3g = 0.
If G is almost constant at G, then

H1(S,G) ∼= PHom(S\{0}, G) ∼= { g ∈ G
∣

∣ 3g = 0 } ∼= Hom (Z3, G)

and H1(S / S\{0}) is cyclic of order 3. ��
Example 3.7 is the commutative nilmonoid

S ∼= 〈 x, y ∣

∣ x8 = x5y2 = x3y4 = xy6 = y7 = 0, x4y2 = x2y4, x3y3 = xy5 〉.

A partial homomorphism ϕ : S\{0} −→ G into an abelian group G is determined
by g = ϕ (x) and h = ϕ (y) such that 4g + 2h = 2g + 4h and 3g + 3h = g + 5h,
equivalently, 2g = 2h; thus ϕ is determined h and t (= g − h) such that 2t = 0. If G
is almost constant at G, then

H1(S,G) ∼= PHom(S\{0}, G) ∼= G ⊕ { t ∈ G
∣

∣ 2t = 0 } ∼= Hom (Z ⊕ Z2, G)

and H1(S / S\{0}) ∼= Z ⊕ Z2. ��
An example that is not a nilmonoid is given in Sect. 6.

4 Cohomology with thin coefficients

1. In this section, T is the category of thin abelian group valued functors on S; we con-
struct a projective chain complexA∗(S) in the category T such that Hn(A∗(S),G) ∼=
Hn(S,G) when G is thin. First we analyze the chain groups Cn(S) as follows.

Lemma 4.1 Let n = 1, 2, 3, 4. For each s ∈ S let Cn(s) be the subgroup of Cn(S)

generated by all 〈 a1, . . . , an 〉 such that a1 a2 · · · an = s. ThenCn(s) is, up to isomor-
phism, the abelian group generated by all (a1, . . . , an) such that a1 a2 · · · an = s,
subject to all defining relations (Cn). Moreover, Cn(S) = ⊕

s∈S Cn(s).

Proof Let n = 2, 3, 4. For each s ∈ S let Bn = Bn(s) be the abelian group generated
by the symmetric set

Xs = { (a1, . . . , an) ∈ Sn
∣

∣ a1 a2 · · · an = s },

subject to all defining relations (Cn). As in the proof of Theorem 2.2 we show that Bn

is free and that, relative to any total order on S, Bn is free on the standard basis Ys of
Xs . Every mapping f of Ys into an abelian group G extends uniquely to a symmet-
ric mapping g of X into G; moreover, every value of g is a sum of values of f and
opposites of values of f .

Let κ : (a1, . . . , an) �−→ [a1, . . . , an] denote the canonical mapping of Xs into
Bn . The defining relations of Bn show that κ is a symmetric mapping. If f is the
restriction of κ to Ys , then κ is the symmetric mapping that extends f ; hence every
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[a1, . . . , an] is a sum of elements of κ (Ys) and their opposites. Hence Bn is generated
by κ (Ys).

Now let f be anymappingofYs into an abelian groupG,which extends uniquely to a
symmetricmapping g : Xs −→ G. Since g is symmetric, the elements g (a1, . . . , an)
with (a1, . . . , an) ∈ Xs satisfy all defining relations of Bn ; therefore g factors through
κ: there is a unique homomorphism ϕ : Bn −→ G such that ϕ◦κ = g. In particular,
ϕ [a1, . . . , an] = f (a1, . . . , an) for all (a1, . . . , an) ∈ Ys , and ϕ extends f . More-
over, ϕ is unique with this property, since Bn is generated by κ (Ys). Thus Bn is free
on Ys (via κ).

The set X is a disjoint union X = ⋃

s∈S Xs . Relative to the same (arbitrary) total
order on S, its standard basis Y is the disjoint union Y = ⋃

s∈S Ys , as shown by the
description of standard bases in Lemma 1.4. As above, every ι (a1, . . . , an) is a sum
of elements of ι (Ys) and their opposites; hence Cn(s) is generated by ι (Ys). Since
Cn(S) is free on Y , it follows that Cn(s) is free on Ys (via ι). Therefore Cn(s) ∼= Bn .
Also, Cn(S) = ⊕

s∈S Cn(s), since Y is the disjoint union Y = ⋃

s∈S Ys . ��

In what follows, � now denotes the divisibility preorder on S, under which a � b
if and only if a = bt for some t ∈ S; equivalently, aS ⊆ bS.

Proposition 4.2 Let n = 1, 2, 3, 4. For each a ∈ S let An(a) = ⊕

s∈S, s�a Cn(s),
where Cn(s) is the subgroup of Cn(S) generated by all 〈 a1, . . . , an 〉 such that
a1 a2 · · · an = s; equivalently, An(a) is the subgroup of Cn(S) generated by all
〈 a1, . . . , an 〉 such that a1 a2 · · · an � a. For each a � b in S (under divisibility) let
αa
b : An(a) −→ An(b) be the inclusion homomorphism. Then An(S) = (An, α) is a

thin abelian group valued functor on S. Moreover, for every thin abelian group valued
functor functor G on S there is a isomorphism

U : HomT (An(S),G) ∼= Cn(S,G)

which sends each natural transformation τ : An(S) −→ G = (G, γ ) to the n-cochain
u defined by

u (a1, . . . , an) = τa 〈 a1, . . . , an 〉, where a = a1 a2 · · · an,

and is natural inG. (Thus the functorCn(S,−)of T to abeliangroups is representable.)
Then τa 〈 a1, . . . , an 〉 = γ s

a u (a1, . . . , an) whenever s = a1 a2 · · · an � a.

Proof If a � b in S, then a1 a2 · · · an � a implies a1 a2 · · · an � b, so that An(a) ⊆
An(b) and there is an inclusion homomorphism αa

b : An(a) −→ An(b). Then αa
a =

1An(a), αb
c◦αa

b = αa
c when a � b � c, and An(S) is a thin functor.

LetG = (G, γ )be a thin abelian groupvalued functor on S, and let τ : An(S) −→ G

be a natural transformation. If a1 a2 · · · an = a, then 〈 a1, . . . , an 〉 ∈ An(a) and
τa 〈 a1, . . . , an 〉 ∈ Ga . Moreover, the elements τa 〈 a1, . . . , an 〉 of Ga inherit
all properties (Cn) from the chains 〈 a1, . . . , an 〉. Hence u : (a1, . . . , an) −→
τa 〈 a1, . . . , an 〉 is a symmetric n-cochain and U (τ ) = u ∈ Cn(S,G).
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Conversely, let u ∈ Cn(S,G). For each s ∈ S the values u (a1, . . . , an) of u
such that a1 a2 · · · an = s inherit from the symmetric cochain u all the defining re-
lations (Cn) of Cn(s) in Lemma 4.1. Therefore there is a unique homomorphism ϕs :
Cn(s) −→ Gs such that ϕs〈 a1, . . . , an 〉 = u (a1, . . . , an) whenever a1 a2 · · · an =
s. Since An(a) = ⊕

s∈S, s�a Cn(s) there is a unique homomorphism τa : An(a) −→
Ga such that

τa x = γ s
a ϕs x

for all s � a and x ∈ Cn(s). In particular,

τa 〈 a1, . . . , an 〉 = γ s
a ϕs 〈 a1, . . . , an 〉 = γ s

a u (a1, . . . , an)

whenever s = a1 a2 · · · an � a. If a � b, then

γ a
b τa 〈 a1, . . . , an 〉 = γ a

b γ s
a u (a1, . . . , an)

= γ s
b u (a1, . . . , an) = τb 〈 a1, . . . , an 〉 = τb αa

b 〈 a1, . . . , an 〉

whenever a1 a2 · · · an = s � a. Therefore T (u) = τ = (τa)a∈S is a natural transfor-
mation. Moreover, U (τ ) = u.

The maps T and U preserve pointwise addition, and are mutually inverse isomor-
phisms: if τ : An(S) −→ G is a natural transformation, and u = U (τ ), then
τa 〈 a1, . . . , an 〉 = αs

a u (a1, . . . , an) whenever a1 a2 · · · an = s, so that T (u) = τ .
Finally, let σ : G −→ G′ be a natural transformation. We saw in Sect. 1 that

σ induces a homomorphism σ ∗ = Cn(S, σ ) : Cn(S,G) −→ Cn(S,G′); if u ∈
Cn(S,G), then

(σ ∗u)(a1, . . . , an) = σa u (a1, . . . , an), where a = a1 a2 · · · an .

If τ : An −→ G is a natural transformation, then so is σ ◦ τ = HomT (Cn(S), σ )(τ ) :
An −→ G′, and

U ′(σ ◦ τ) (a1, . . . , an) = σa τa u (a1, . . . , an) = (σ ∗ (Uτ))(a1, . . . , an)

whenever a1 a2 · · · an = a; hence U ′ ◦ HomT (An(S), σ ) = σ ∗ ◦ U . Thus U is
natural in G. ��

2. We note some properties of An(S).
First, Cn(S) is a directed union Cn(S) = ⋃

s∈S An(s). Indeed
⋃

s∈S An(s) is a
directed union, since An(a) ⊆ An(ab), An(b) ⊆ An(ab), for all a, b ∈ S. Then
⋃

s∈S An(s) is a subgroup of Cn(S), which contains every generator of Cn(S) and is
therefore all of Cn(S). In particular, Cn(S) = lim−→ An(S).

The abelian groups An(a) are subgroups of Cn(S), which is a free abelian group
by Theorem 2.2, and are therefore free.

Next we show that the functors An(S) are projective in T.
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Lemma 4.3 Let n = 1, 2, 3, 4. If σ : G −→ G′ is an epimorphism in T, then σ ∗ =
Cn(S, σ ) is surjective.

Proof Recall that (σ ∗u)(a1, . . . , an) = σa u (a1, . . . , an) ∈ G ′
a for all a1, . . . , an ∈

S, where u ∈ Cn(S,G) and a = a1 a2 · · · an . Let σ : G −→ G′ be an epimorphism.
Since cokernels in T are pointwise, every σa : Ga −→ G ′

a is surjective.
Let u′ ∈ Cn(S,G′). If n = 0, then u′ = 0 = σ ∗0. If n = 1, then for each a ∈ S we

have u′
a = σa ua for some ua ∈ Ga , which provides u ∈ C1(S,G) such that u′ = σ ∗u.

Now let n = 2, 3, 4.
As a set of ordered pairs, u′ is a disjoint union of mappings u′

s (s ∈ S), where
u′
s : (a1, . . . , an) �−→ u′ (a1, . . . , an) is a symmetric mapping of

Xs = { (a1, . . . , an)
∣

∣ a1, . . . , an ∈ S, a1 a2 · · · an = s }

into G ′
s . By Lemma 1.4, Xs has a basis Ys ⊆ Xs : every mapping of Ys into an a-

belian group G extends uniquely to a symmetric mapping of Xs into G. Since σs is
surjective there exists for each (a1, . . . , an) ∈ Ys some v (a1, . . . , an) ∈ Gs such
that σs v (a1, . . . , an) = u′ (a1, . . . , an). This mapping v of Ys into Gs extends
uniquely to a symmetric mapping us of Xs into Gs . Then σs ◦ us and u′

s agree on Ys ,
whence σs ◦ us = u′

s . Since each us is symmetric, the union u of all us is a symmetric
n-cochain. For all a1, . . . , an ∈ S,

(σ ∗u)(a1, . . . , an) = σsu(a1, . . . , an) = σsus(a1, . . . , an) = u′(a1, . . . , an),

where s = a1 a2 · · · an . Thus σ ∗u = u′. ��
Theorem 4.4 An(S) is projective in T, for n = 1, 2, 3, 4.

Proof By Lemma 4.3, Cn(S,−) preserves epimorphisms. Hence HomT (An(S),−),
which is naturally isomorphic to Cn(S,−) by Proposition 4.2, also preserves epimor-
phisms. ��

3. Boundaries are inherited from Cn(S).

Lemma 4.5 The boundary homomorphisms ∂n : Cn(S) −→ Cn−1(S) in Proposition
2.4 induce natural transformations ∂n : An(S) −→ An−1(S) such that ∂n−1 ◦ ∂n = 0.

Proof If 〈 a1, . . . , an 〉 ∈ An(a), then ∂n 〈 a1, . . . , an 〉 ∈ An−1(a): indeed if n = 2
and 〈 x, y 〉 ∈ A2(a), then xy � a, x � xy � a, y � xy � a, and

∂2 〈 x, y 〉 = 〈 y 〉 − 〈 xy 〉 + 〈 x 〉 ∈ A1(a) ;

if n = 3 and 〈 x, y, z 〉 ∈ A3(a), then xyz � a, xy � xyz � a, yz � xyz � a, and

∂3 〈 x, y, z 〉 = 〈 y, z 〉 − 〈 x, yz 〉 + 〈 xy, z 〉 − 〈 x, y 〉 ∈ A2(a) ;

if n = 4 and 〈 x, y, z, t 〉 ∈ A4(a), then xyzt � a, xyz � xyzt � a, yzt � xyzt � a,
and
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∂4 〈 x, y, z, t 〉 = 〈 y, z, t 〉 − 〈 x, y, zt 〉
+〈 x, yz, t 〉 − 〈 xy, z, t 〉 + 〈 x, y, z 〉 ∈ A3(a).

In each case, ∂n induces a homomorphism (∂n)a : An(a) −→ An−1(a).
Since αa

b is an inclusion homomorphism, a � b implies

αa
b (∂n)a 〈 a1, . . . , an 〉 = (∂n)b αa

b 〈 a1, . . . , an 〉

whenever a1 a2 · · · an = a; hence ∂n = (

(∂n)a
)

a∈S is a natural transformation. Then
∂n−1 ◦ ∂n = 0 follows from Proposition 2.4. ��
Lemma 4.6 If n = 1, 2, 3, 4, G is thin, and τ : An−1(S) −→ G is a natural transfor-
mation, then U (τ ◦ ∂n) = δ

(

U (τ )
)

.

Proof U is the isomorphism in Proposition 4.2: if u = U (τ ), then τa 〈 a1, . . . , an−1 〉
= γ c

a u (a1, . . . , an−1) whenever a1 a2 · · · an−1 = c � a; in particular,
u (a1, . . . , an−1) = τa 〈 a1, . . . , an−1 〉 if a1 a2 · · · an−1 = a. Let v = U (τ ◦ ∂n), so
that v (a1, . . . , an) = τa ∂n 〈 a1, . . . , an 〉 if a1 a2 · · · an = a. We show that v = δu.
This is trivial if n = 1.

If n = 2, then

v (x, y) = τxy ∂2 〈 x, y 〉 = τxy 〈 y 〉 − τxy 〈 xy 〉 + τxy 〈 x 〉
= γ

y
xy u (y) − u (xy) + γ x

xy u (x) = (δu)(x, y).

If n = 3, then

v (x, y, z) = τxyz ∂3 〈 x, y, z 〉 = τxyz 〈 y, z 〉 − τxyz 〈 x, yz 〉 + τxyz 〈 xy, z 〉 − τxyz 〈 x, y 〉
= γ

yz
xyz u (y, z) − u (x, yz) + u (xy, z) − γ

xy
xyz u (x, y) = (δu)(x, y, z).

If n = 4, then

v (x, y, z, t) = τxyzt ∂4 〈 x, y, z, t 〉
= τxyzt 〈 y, z, t 〉 − τxyzt 〈 x, y, zt 〉 + τxyzt 〈 x, yz, t 〉

−τxyzt 〈 xy, z, t 〉 + τxyzt 〈 x, y, z 〉
= γ

yzt
xyzt u (y, z, t) − u (x, y, zt) + u (x, yz, t) − γ

xyz
xyzt u (x, y, z)

= (δu)(x, y, z, t).

��
3. Let A∗(S) be the chain complex

A∗(S) : 0 ←− A1(S)
∂2←−A2(S)

∂3←−A3(S)
∂4←−A4(S) ←− 0 ←− · · ·

123



516 P. A. Grillet

Theorem 4.7 If n = 1, 2, 3 and G is thin, then there is an isomorphism

Hn(S,G) ∼= Hn(A∗(S),G)

which is natural in G.

Proof Proposition 4.2 provides an isomorphism U : HomT (An(S), G) ∼= Cn(S,G)

which is natural in G. In the cohomology of A∗ with coefficients in G, an n-cochain
τ : An −→ G is a cocycle if and only if τ ◦ ∂n+1 = 0, if and only if δ

(

U (τ )
) = 0, by

Lemma 4.4; henceU sends Zn(A, G) onto Zn(S,G). Similarly, a cochain τ : An −→
G is a coboundary if and only if τ = σ ◦ ∂n for some cochain σ : Cn−1 −→ G, if and
only ifU (τ ) = δu for some u = U (σ ) ∈ Cn−1(S,G), by Lemma 4.4; henceU sends
Bn(A, G) onto Bn(S,G). Therefore U induces an isomorphism of Hn(A∗(S),G) =
Zn(A∗(S),G) / Bn(A∗(S),G) onto Hn(S,G) = Zn(S,G) / Bn(S,G), which, like U ,
is natural in G. ��

5 Cohomology with arbitrary coefficients

1. We now turn to the general case, when coefficient functors are not necessarily thin,
and show that the commutative cohomology of S with thin coefficients is the coho-
mology of a chain complex in the category A of all abelian group valued functors on
S. This turns out to require slightly longer chains, which are defined as follows.

Let L0(S) = 0.
Let L1(S) assign to each a ∈ S the free abelian group L1(a) generated by

X1(a) = { 〈 x, t 〉 ∣

∣ x, t ∈ S, xt = a }.

Let L2(S) assign to a ∈ S the abelian group L2(a) generated by

X2(a) = { 〈 x, y, t 〉 ∣

∣ x, y, t ∈ S, xyt = a },

subject to all defining relations

〈 y, x, t 〉 = 〈 x, y, t 〉. (C2)

Let L3(S) assign to a ∈ S the abelian group L3(a) generated by

X3(a) = { 〈 x, y, z, t 〉 ∣

∣ x, y, z, t ∈ S, xyzt = a },

subject to all defining relations, collectively denoted by (C3):

〈 x, y, z, t 〉 = 0, (C3a)

〈 z, y, x, t 〉 = − 〈 x, y, z, t 〉, and (C3b)
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〈 x, y, z, t 〉 + 〈 y, z, x, t 〉 + 〈 z, x, y, t 〉 = 0. (C3c)

Let L4(S) assign to a ∈ S the abelian group L4(a) generated by

X4(a) = { 〈w, x, y, z, t 〉 ∣

∣ w, x, y, z, t ∈ S, wxyzt = a },

subject to all defining relations, collectively denoted by (C4):

〈w, x, x, w, t 〉 = 0, (C3a)

〈 z, y, x, w, t 〉 = − 〈w, x, y, z, t 〉, (C3b)

〈w, x, y, z, t 〉 − 〈 x, y, z, w, t 〉 + 〈 y, z, w, x, t 〉 − 〈 z, w, x, y, t 〉 = 0, and
(C3c)

〈w, x, y, z, t 〉 − 〈 x, w, y, z, t 〉 + 〈 x, y, w, z, t 〉 − 〈 x, y, z, w, t 〉 = 0. (C3d)

Thus the typical generator of Ln(a) consists of a symmetric n-chain plus an extra
element t . In fact, for each t ∈ S, (x1, . . . , xn) �−→ 〈 x1, . . . , xn, t 〉 is a symmetric
mapping into Ln(a). Hence it follows from Lemma 1.3 that the defining relations
(C4c) may be dropped from the definition of L4(a), and it follows from Lemma 1.2
that (C3) may be replaced by the single defining relation

〈 x, y, z, t 〉 = 〈 y, x, z, t 〉 − 〈 y, z, x, t 〉. (C3d)

The groups Ln(a) can be analysed as follows, much as in Lemma 4.1.

Lemma 5.1 Let n = 1, 2, 3, 4. Given s, t ∈ S, let Ln(s; t) be the subgroup of
Ln(st) generated by all 〈 x1, . . . , xn, t 〉 such that x1 x2 · · · xn = s. Then Ln(s; t)
is, up to isomorphism, the abelian group generated by all (x1, . . . , xn, t) such that
x1 x2 · · · xn = s, subject to all defining relations (Cn). Moreover, Ln(s; t) is a free
abelian group, and Ln(a) = ⊕

s,t∈S, st=a Ln(s; t).
Proof Let Bn be the abelian group generated by all [x1, . . . , xn], where x1, . . . , xn ∈
S and x1 x2 · · · xn = s, subject to all defining relations (Cn). The elements
〈 x1, . . . , xn, t 〉 of Ln(s; t) satisfy all the defining relations (Cn) of Bn ; hence
there is a unique homomorphism θ : Bn −→ Ln(s; t) such that θ [x1, . . . , xn] =
〈 x1, . . . , xn, t 〉 for all x1, . . . , xn such that x1 x2 · · · xn = s. Similarly the elements
[x1, . . . , xn] of Bn satisfy all the defining relations (Cn) of Ln(s; t); therefore there
is a unique homomorphism ζ : Ln(s; t) −→ Bn such that ζ 〈 x1, . . . , xn, t 〉 =
[x1, . . . , xn] for all x1, . . . , xn such that x1 x2 · · · xn = s. Now θ and ζ are mutually
inverse isomorphisms; hence Ln(s; t) ∼= Bn . By Lemma 4.1, Bn ∼= An(s) and Bn is
free.

For each s, t ∈ S such that st = a, let ϕs;t be a homomorphism of Ln(s; t) into an
abelian group G. The elements ϕs;t 〈 x1, . . . , xn, t 〉 of G, where x1 x2 · · · xn = s,
inherit from each Ln(s; t) all the defining relations (Cn) of Ln(a); hence there
is a unique homomorphism ϕ : Ln(a) −→ G such that ϕ 〈 x1, . . . , xn, t 〉 =
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ϕs;t 〈 x1, . . . , xn, t 〉 whenever x1 x2 · · · xn = s and st = a. Therefore Ln(a) =
⊕

s,t∈S, st=a Ln(s; t). ��
Theorem 5.2 Let n = 1, 2, 3, 4. For every a ∈ S, Ln(a) is a free abelian group.

Proof By Lemma 5.1, Ln(a) is a direct sum of free abelian groups. ��
2. Next we arrange the groups Ln(a) into an abelian group valued functor on S.

Lemma 5.3 For all n = 1, 2, 3, 4 and a, u ∈ S, a homomorphism λa,u : Ln(a) −→
Ln(au) is well-defined by:

λa,u 〈 x1, . . . , xn, t 〉 = 〈 x1, . . . , xn, tu 〉

whenever x1 x2 · · · xn t = a.Moreover,λa,1 is the identity on Ln(a)andλau,v ◦λa,u =
λa,uv , for all a, u, v ∈ S, so that Ln(S) = (Ln, λ) is an abelian group valued functor
on S.

Proof If x1 x2 · · · xn t = a, then x1 x2 · · · xn tu = au and the elements
〈 x1, . . . , xn, tu 〉 of Ln(a) satisfy all conditions (Cn). Therefore there is a unique
homomorphism λa,u : Ln(a) −→ Ln(au) such that λa,u 〈 x1, . . . , xn, t 〉
= 〈 x1, . . . , xn, tu 〉 for all x1, . . . , xn t ∈ S such that x1 x2 · · · xnt = a. More-
over, λa,1 is the identity on Ln(a) and

λau,v λa,u 〈 x1, . . . , xn, t 〉 = λau,v 〈 x1, . . . , xn, tu 〉 = 〈 x1, . . . , xn, tuv 〉,

so that λau,v ◦ λa,u = λa,uv . ��
Proposition 5.4 For n = 1, 2, 3, 4 there is for every abelian group valued functor
G = (G, γ ) on S an isomorphism

U : HomA (Ln(S), G) −→ Cn(S,G)

which sends each natural transformation τ : Ln(S) −→ G to the n-cochain u defined
by

u (x1, . . . , xn) = τa 〈 x1, . . . , xn, 1 〉, where a = x1 x2 · · · xn,

and is natural in G. Then τa 〈 x1, . . . , xn, t 〉 = γc,t u (x1, . . . , xn) whenever c =
x1 x2 · · · xn and ct = a.

Proof Let τ : Ln(S) −→ G be a natural transformation and let u = U (τ ), so
that u (x1, . . . , xn) = τa 〈 x1, . . . , xn, 1 〉 ∈ Ga , where a = x1 x2 · · · xn , and u
is a cochain on S with values in G. The elements u (x1, . . . , xn) of Ga inherit all
properties (Cn) from the chains 〈 x1, . . . , xn, 1 〉; hence u is a symmetric n-cochain
and u ∈ Cn(S,G).

If c = x1 x2 · · · xn and ct = a, then

τa 〈 x1, . . . , xn, t 〉 = τa λc,t 〈 x1, . . . , xn, 1 〉
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= γc,t τc 〈 x1, . . . , xn, 1 〉 = γc,t u (x1, . . . , xn),

since τ is a natural transformation. Therefore U (τ ) = 0 implies τ = 0, and U is
injective.

Conversely, if u ∈ Cn(S,G) is a symmetric n-cochain, then the elements
λc,t u (x1, . . . , xn) ofGa (with x1 x2 · · · xn = c and ct = a) inherit from u all proper-
ties (Cn); therefore there is for eacha ∈ S auniquehomomorphism τa : Ln(a) −→ Ga

such that

τa 〈 x1, . . . , xn, t 〉 = γc,t u (x1, . . . , xn)

whenever c = x1 x2 · · · xn and ct = a. If v ∈ S, then

γa,v τa 〈 x1, . . . , xn, t 〉 = γa,v γc,t u (x1, . . . , xn) = γc,tv u (x1, . . . , xn)

= τav 〈 x1, . . . , xn, tv 〉 = τav λa,v 〈 x1, . . . , xn, t 〉.

hence τ is a natural transformation. Moreover, U (τ ) = u. Hence U is surjective.
Naturality is equally straightforward. We saw that every natural transformation

σ : G −→ G′ induces a homomorphism σ ∗ = Cn(S, σ ) : Cn(S,G) −→ Cn(S,G′),
given by

(σ ∗u)(x1, . . . , xn) = σa u (x1, . . . , xn)

whenever x1 x2 · · · xn = a. If τ : Ln(S) −→ G is a natural transformation, then so is
σ ◦ τ : Ln(S) −→ G′, and U ′ : HomA (Ln(S), G′) −→ Cn(S,G′) yields

U ′ (σ ◦ τ) (x1, . . . , xn) = σa τa 〈 x1, . . . , xn, 1 〉 = σ ∗ (

U (τ ) (x1, . . . , xn)
)

whenever x1 x2 · · · xn = a, so that U ′ ◦ HomA (Ln(S), σ ) = σ ∗ ◦ U . Thus U is
natural in G. ��

The natural isomorphism HomA (Ln(S), G) ∼= Cn(S,G) determines Ln(S)

uniquely up to isomorphism. This justifies the longer symmetric chains in the con-
struction of Ln(S).

Theorem 5.5 Ln(S) is projective in A, for n = 1, 2, 3, 4.

Proof By Lemma 4.3, Cn(S,−) preserves epimorphisms. Hence HomA (Ln(S),−),
which is naturally isomorphic to Cn(S,−) by Proposition 5.4, also preserves epimor-
phisms. ��

2. Boundaries of longer chains are defined as follows.

Lemma 5.6 If n = 1, 2, 3, 4, then there is a natural transformation ∂n : Ln(S) −→
Ln−1(S) such that
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∂1 〈 x, t 〉 = 0,

∂2 〈 x, y, t 〉 = 〈 y, xt 〉 − 〈 xy, t 〉 + 〈 x, yt 〉,
∂3 〈 x, y, z, t 〉 = 〈 y, z, xt 〉 − 〈 xy, z, t 〉 + 〈 x, yz, t 〉 − 〈 x, y, zt 〉,

∂4 〈w, x, y, z, t 〉 = 〈 x, y, z, wt 〉 − 〈wx, y, z, t 〉
+〈w, xy, z, t 〉 − 〈w, x, yz, t 〉 + 〈w, x, y, zt 〉.

Proof Let a ∈ S. If 〈 x, y, t 〉 ∈ X2(a), then xyt = a, 〈 y, xt 〉, 〈 xy, t 〉, 〈 x, yt 〉 ∈
X1(a), and 〈 y, xt 〉 − 〈 xy, t 〉 + 〈 x, yt 〉 ∈ L1(a). Moreover,

〈 y, xt 〉 − 〈 xy, t 〉 + 〈 x, yt 〉 = 〈 x, yt 〉 − 〈 yx, t 〉 + 〈 y, xt 〉

for all x, y, t ; hence there is a unique homomorphism ∂2(a) : L2(a) −→ L1(a) such
that

∂2(a) 〈 x, y, t 〉 = 〈 y, xt 〉 − 〈 xy, t 〉 + 〈 x, yt 〉

for all 〈 x, y, t 〉 ∈ X2(a).
If u ∈ S, then

λa,u ∂2(a) 〈 x, y, t 〉 = λa,u 〈 y, xt 〉 − λa,u 〈 xy, t 〉 + λa,u 〈 x, yt 〉
= 〈 y, xtu 〉 − 〈 xy, tu 〉 + 〈 x, ytu 〉 = ∂2(au) λa,u 〈 x, y, t 〉 ;

therefore λa,u ◦ ∂2(a) = ∂2(au) ◦ λa,u and ∂2 is a natural transformation.
Similarly, if 〈 x, y, z, t 〉 ∈ X3(a), then xyzt = a; 〈 y, z, xt 〉, 〈 xy, z, t 〉, 〈 x, yz, t 〉,

and 〈 x, y, zt 〉 ∈ X2(a); and

f (x, y, z, t) = 〈 y, z, xt 〉 − 〈 xy, z, t 〉 + 〈 x, yz, t 〉 − 〈 x, y, zt 〉 ∈ L2(a).

Moreover, the elements f (x, y, z, t) of L3(a) have property (C3d):

f (y, x, z, t) − f (y, z, x, t)

= 〈 x, z, yt 〉 − 〈 yx, z, t 〉 + 〈 y, xz, t 〉 − 〈 y, x, zt 〉
−〈 z, x, yt 〉 + 〈 yz, x, t 〉 − 〈 y, zx, t 〉 + 〈 y, z, xt 〉

= 〈 y, z, xt 〉 − 〈 xy, z, t 〉 + 〈 x, yz, t 〉 − 〈 x, y, zt 〉 = f (x, y, z, t),

due to (C2) and commutativity in S. By Lemma 1.2, all of (C3) holds; therefore there
is a unique homomorphism ∂3(a) : L3(a) −→ L2(a) such that ∂3(a) 〈 x, y, z, t 〉 =
f (x, y, z, t) for all 〈 x, y, z, t 〉 ∈ X3(a).
If u ∈ S, then

λa,u ∂3(a) 〈 x, y, z, t 〉
= λa,u 〈 y, z, xt 〉 − λa,u 〈 xy, z, t 〉 + λa,u 〈 x, y, zt 〉 − λa,u 〈 x, y, zt 〉
= 〈 y, z, xtu 〉 − 〈 xy, z, tu 〉 + 〈 x, yz, tu 〉 − 〈 x, y, ztu 〉
= ∂3(au) λa,u 〈 x, y, z, t 〉 ;
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therefore λa,u ◦ ∂3(a) = ∂3(au) ◦ λa,u and ∂3 is a natural transformation.
Finally, if 〈w, x, y, z, t 〉 ∈ X4(a), then wxyzt = a and

f (w, x, y, z, t) = 〈 x, y, z, wt 〉 − 〈wx, y, z, t 〉
+〈w, xy, z, t 〉 − 〈w, x, yz, t 〉 + 〈w, x, y, zt 〉 ∈ L3(a).

Moreover, the elements f (w, x, y, z, t) of L3(a) 〈w, x, y, z, t 〉 satisfy (C4a), (C4b),
and (C4d): if wxyzt = a, then (C3a), (C3b), and (C3d) yield

f (w, x, x, w, t) = 〈 x, x, w,wt 〉 − 〈 wx, x, w, t 〉 + 〈w, xx, w, t 〉
−〈w, x, xw, t 〉 + 〈 w, x, x, wt 〉 = 0,

f (z, y, x, w, t) = 〈 y, x, w, zt 〉 − 〈 zy, x, w, t 〉 + 〈 z, yx, w, t 〉
−〈 z, y, xw, t 〉 + 〈 z, y, c, wt 〉 = − f (w, x, y, z, t),

f (w, x, y, z, t) − f (x, w, y, z, t) + f (x, y, w, z, t) − f (x, y, z, w, t)

= 〈 x, y, z, wt 〉 − 〈wx, y, z, t 〉 + 〈 w, xy, z, t 〉 − 〈w, x, yz, t 〉 + 〈w, x, y, zt 〉
−〈w, y, z, xt 〉 + 〈 xw, y, z, t 〉 − 〈 x, wy, z, t 〉 + 〈 x, w, yz, t 〉 − 〈 x, w, y, zt 〉
+〈 y, w, z, xt 〉 − 〈 xy, w, z, t 〉 + 〈 x, yw, z, t 〉 − 〈 x, y, wz, t 〉 + 〈 x, y, w, zt 〉
−〈 y, z, w, xt 〉 + 〈 xy, z, w, t 〉 − 〈 x, yz, w, t 〉 + 〈 x, y, zw, t 〉
−〈 x, y, z, wt 〉 = 0.

Hence there is a unique homomorphism ∂4(a) : L4(a) −→ L3(a) such that
∂4(a) 〈w, x, y, z, t 〉 = f (w, x, y, z, t) for all 〈w, x, y, z, t 〉 ∈ X4(a).

If u ∈ S, then

λa,u ∂4(a) 〈 w, x, y, z, t 〉
= λa,u 〈 x, y, z, xt 〉 − λa,u 〈 wx, y, z, t 〉

+λa,u 〈w, xy, z, t 〉 − λa,u 〈w, x, yz, t 〉 + λa,u 〈w, x, y, zt 〉
= 〈 x, y, z, xtu 〉 − 〈 wx, y, z, tu 〉 + 〈w, xy, z, tu 〉 − 〈 w, x, yz, tu 〉 + 〈w, x, y, ztu 〉
= ∂4(au) λa,u 〈w, x, y, z, t 〉 ;

therefore λa,u ◦ ∂4(a) = ∂4(au) ◦ λa,u and ∂4 is a natural transformation. ��
Lemma 5.7 If n = 1, 2, 3, 4 and τ : Ln−1(S) −→ G is a natural transformation, then
U (τ ◦ ∂n) = δ

(

U (τ )
)

. Hence, if n = 2, 3, 4, then ∂n−1 ◦ ∂n = 0.

Proof U is the isomorphism in Proposition 5.4: if u = U (τ ), x1 x2 · · · xn−1 =
c, and a = ct , then τa 〈 x1, . . . , xn−1, t 〉 = γc,t u (x1, . . . , xn−1); in partic-
ular, u (x1, . . . , xn−1) = τc 〈 x1, . . . , xn−1, 1 〉. Let v = U (τ ◦ ∂n), so that
v (x1, . . . , xn) = τa ∂n 〈 x1, . . . , xn, 1 〉 when x1 x2 · · · xn = a. We want to show
that v = δu. This is trivial if n = 1.

If n = 2 and 〈 x, y, 1 〉 ∈ L2(a), where a = xy, then ∂2 〈 x, y, 1 〉 = 〈 y, x 〉 −
〈 xy, 1 〉 + 〈 x, 1 〉 and

v (x, y) = τa ∂2 〈 x, y, 1 〉 = τa 〈 y, x 〉 − τa 〈 xy, 1 〉 + τa 〈 x, y 〉
= γy,x u (y) − u (xy) + γx,y u(x) = (δu)(x, y).
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If n = 3 and 〈 x, y, z, 1 〉 ∈ L3(a), where a = xyz, then ∂3 〈 x, y, z, 1 〉 =
〈 y, z, x 〉 − 〈 xy, z, 1 〉 + 〈 x, yz, 1 〉 − 〈 x, y, z 〉 and

v (x, y, z) = τa ∂3 〈 x, y, z, 1 〉
= τa 〈 y, z, x 〉 − τa 〈 xy, z, 1 〉 + τa 〈 x, yz, 1 〉 − τa 〈 x, y, z 〉
= γyz,x u (y, z) − u (xy, z) + u (x, yz) − γxy,z u (x, y) = (δu) (x, y, z).

Finally, if n = 4 and 〈w, x, y, z, 1 〉 ∈ L4(a), where a = wxyz, then

∂4 〈w, x, y, z, 1 〉 = 〈 x, y, z, w 〉
−〈wx, y, z, 1 〉 + 〈w, xy, z, 1 〉 − 〈w, x, yz, 1 〉 + 〈w, x, y, z 〉

and

v (w, x, y, z) = τa ∂3 〈w, x, y, z, 1 〉
= τa 〈 x, y, z, w 〉 − τa 〈wx, y, z, 1 〉

+ τa 〈w, xy, z, 1 〉 − τa 〈w, x, yz, 1 〉 + τa 〈w, x, y, z 〉
= γxyz,w u (x, y, z) − u (wx, y, z)

+ u (w, xy, z) − u (w, x, yz) + γwxy,z u (w, x, y)

= (δu) (w, x, y, z).

In each case, U (τ ◦ ∂n) = δU (τ ).
Let n > 1, G = Ln−1(S), and τ : Ln−1(S) −→ G be the identity. We have

U (∂n−1 ◦ ∂n) = U (τ ◦ ∂n−1 ◦ ∂n) = δU (τ ◦ ∂n−1) = δ δ U (τ ) = 0.

Therefore ∂n−1 ◦ ∂n = 0. (This can also be shown directly.) ��
Let L∗(S) be the chain complex

L∗(S) : 0 ←− L1(S)
∂2←−L2(S)

∂3←−L3(S)
∂3←−L4(S) ←− 0 ←− · · ·

Theorem 5.8 If n = 1, 2, 3, then there is an isomorphism Hn(S,G) ∼= Hn(L∗(S),G)

which is natural in G.

Proof Proposition 5.4 provides isomorphisms U : HomA (Ln(S), G) ∼= Cn(S,G)

which are natural in G. In the cohomology of L∗ = L∗(S) with coefficients in G, an
n-cochain τ : Ln(S) −→ G is a cocycle if and only if τ ◦ ∂n+1 = 0, if and only if
δ (Uτ) = 0, by Lemma 5.5; hence U sends Zn(L∗, G) onto Zn(S,G). Similarly, a
cochain τ : Ln(S) −→ G is a coboundary if and only if τ = σ ◦ ∂n for some cochain
σ : Cn−1 −→ G, if and only ifUτ = δu for some u = Uσ ∈ Cn−1(S,G), by Lemma
5.5; hence U sends Bn(L∗, G) onto Bn(S,G). Therefore U induces an isomorphism
of Hn(L∗,G) = Zn(L∗,G) / Bn(L∗(S),G) onto Hn(S,G) = Zn(S,G) / Bn(S,G),
which, like U , is natural in G. ��

Unfortunately, the category A does not lend itself to universal coefficients theo-
rems; the next section gives a counterexample.
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6 An example

In this section, S is the commutative monoid M5 = { 1, a, e, b, 0 } with multiplication

1 a e b 0
a e e b 0
e e e b 0
b b b 0 0
0 0 0 0 0

1. We begin by computing the complex C∗(M5 / M5\0) and its homology groups:
the homology groups H1(M5 / M5\0) and H2(M5 / M5\0) of M5 relative to M5\0.
(Since M5 has a zero element, H1(M5) = H2(M5) = 0, by Proposition 2.6.)

Lemma 6.1 H1(M5 / M5\0) ∼= Z and H2(M5 / M5\0) = 0.

Proof Order M5 so that 1 < a < e < b < 0. By Theorem 2.2, C2(M5 / M5\0) is free
on all 〈 x, y 〉 such that x � y and xy �= 0:

〈 1, 1 〉, 〈 1, a 〉, 〈 1, e 〉, 〈 1, b 〉,
〈 a, a 〉, 〈 a, e 〉, 〈 a, b 〉, 〈 e, e 〉, 〈 e, b 〉 ;

and C3(M5 / M5\0) is free on all 〈 x, y, z 〉 such that x � y, x < z, and xyz �= 0:
〈 1, 1, a 〉, 〈 1, 1, e 〉, 〈 1, 1, b 〉, 〈 1, a, a 〉, 〈 1, a, e 〉, 〈 1, a, b 〉,
〈 1, e, a 〉, 〈 1, e, e 〉, 〈 1, e, b 〉, 〈 1, b, a 〉, 〈 1, b, e 〉,
〈 a, a, e 〉, 〈 a, a, b 〉, 〈 a, e, e 〉, 〈 a, e, b 〉, 〈 a, b, e 〉, 〈 e, e, b 〉.

The 1-boundaries are determined by:

∂2 〈 1, 1 〉 = 〈 1 〉 − 〈 11 〉 + 〈 1 〉 = 〈 1 〉 ;
∂2 〈 1, a 〉 = 〈 a 〉 − 〈 1a 〉 + 〈 1 〉 = 〈 1 〉 ;
∂2 〈 1, e 〉 = 〈 e 〉 − 〈 1e 〉 + 〈 1 〉 = 〈 1 〉 ;
∂2 〈 1, b 〉 = 〈 b 〉 − 〈 1b 〉 + 〈 1 〉 = 〈 1 〉 ;
∂2 〈 a, a 〉 = 〈 a 〉 − 〈 aa 〉 + 〈 a 〉 = 2〈 a 〉 − 〈 e 〉 ;
∂2 〈 a, e 〉 = 〈 e 〉 − 〈 ae 〉 + 〈 a 〉 = 〈 a 〉 ;
∂2 〈 a, b 〉 = 〈 b 〉 − 〈 ab 〉 + 〈 a 〉 = 〈 a 〉 ;
∂2 〈 e, e 〉 = 〈 e 〉 − 〈 ee 〉 + 〈 e 〉 = 〈 e 〉 ;
∂2 〈 e, b 〉 = 〈 b 〉 − 〈 eb 〉 + 〈 e 〉 = 〈 e 〉.

Hence Im ∂2 is generated by 〈 1 〉, 〈 a 〉, and 〈 e 〉. Since C1(M5 / M5\0) is free on 〈 1 〉,
〈 a 〉, 〈 e 〉, and 〈 b 〉, it follows that H1(M5 / M5\0) = C1(M5 / M5\0) / Im ∂2 ∼= Z.

The above also yields some obvious 2-cycles:

〈 1, a 〉 − 〈 1, 1 〉, 〈 1, e 〉 − 〈 1, 1 〉, 〈 1, b 〉 − 〈 1, 1 〉,
〈 a, b 〉 − 〈 a, e 〉, 〈 e, b 〉 − 〈 e, e 〉, and 〈 a, a 〉 − 2 〈 a, e 〉 + 〈 e, e 〉.

It is readily verified that these six 2-cycles constitute a basis of Ker ∂2.
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The 2-boundaries are determined by:

∂3 〈 1, 1, a 〉 = 〈 1, a 〉 − 〈 1, 1 〉a + 〈 1, 1 〉a − 〈 1, 1 〉 = 〈 1, a 〉 − 〈 1, 1 〉,
∂3 〈 1, 1, e 〉 = 〈 1, e 〉 − 〈 1, 1 〉e + 〈 1, 1 〉e − 〈 1, 1 〉 = 〈 1, e 〉 − 〈 1, 1 〉,
∂3 〈 1, 1, b 〉 = 〈 1, b 〉 − 〈 1, 1 〉b + 〈 1, 1 〉b − 〈 1, 1 〉 = 〈 1, b 〉 − 〈 1, 1 〉,
∂3 〈 1, a, a 〉 = 〈 a, a 〉 − 〈 1, a 〉a + 〈 1, a 〉a − 〈 1, a 〉 = 〈 1, e 〉 − 〈 1, a 〉,
∂3 〈 1, a, e 〉 = 〈 a, e 〉 − 〈 1, a 〉e + 〈 1, a 〉e − 〈 1, a 〉 = 〈 1, e 〉 − 〈 1, a 〉,
∂3 〈 1, a, b 〉 = 〈 a, b 〉 − 〈 1, a 〉b + 〈 1, a 〉b − 〈 1, a 〉 = 〈 1, b 〉 − 〈 1, a 〉,
∂3 〈 1, e, a 〉 = 〈 e, a 〉 − 〈 1, e 〉a + 〈 1, e 〉a − 〈 1, e 〉 = 0,

∂3 〈 1, e, e 〉 = 〈 e, e 〉 − 〈 1, e 〉e + 〈 1, e 〉e − 〈 1, e 〉 = 0,

∂3 〈 1, e, b 〉 = 〈 e, b 〉 − 〈 1, e 〉b + 〈 1, e 〉b − 〈 1, e 〉 = 〈 1, b 〉 − 〈 1, e 〉,
∂3 〈 1, b, a 〉 = 〈 b, a 〉 − 〈 1, b 〉a + 〈 1, b 〉a − 〈 1, b 〉 = 0,

∂3 〈 1, b, e 〉 = 〈 b, e 〉 − 〈 1, b 〉e + 〈 1, b 〉e − 〈 1, b 〉 = 0,

∂3 〈 a, a, e 〉 = 〈 a, e 〉 − 〈 a, a 〉e + 〈 a, a 〉e − 〈 a, a 〉 = 2 〈 a, e 〉 − 〈 a, a 〉 − 〈 e, e 〉,
∂3 〈 a, a, b 〉 = 〈 a, b 〉 − 〈 a, a 〉b + 〈 a, a 〉b − 〈 a, a 〉 = 2 〈 a, b 〉 − 〈 a, a 〉 − 〈 e, b 〉,
∂3 〈 a, e, e 〉 = 〈 e, e 〉 − 〈 a, e 〉e + 〈 a, e 〉e − 〈 a, e 〉 = 0,

∂3 〈 a, e, b 〉 = 〈 e, b 〉 − 〈 a, e 〉b + 〈 a, e 〉b − 〈 a, e 〉 = 〈 a, b 〉 − 〈 a, e 〉,
∂3 〈 a, b, e 〉 = 〈 b, e 〉 − 〈 a, b 〉e + 〈 a, b 〉e − 〈 a, b 〉 = 0,

∂3 〈 e, e, b 〉 = 〈 e, b 〉 − 〈 e, e 〉b + 〈 e, e 〉b − 〈 e, e 〉 = 〈 e, b 〉 − 〈 e, e 〉.

Hence Im ∂3 is generated by

〈 1, a 〉 − 〈 1, 1 〉, 〈 1, e 〉 − 〈 1, 1 〉, 〈 1, b 〉 − 〈 1, 1 〉,
〈 a, b 〉 − 〈 a, e 〉, 〈 e, b 〉 − 〈 e, e 〉, 〈 a, a 〉 − 2 〈 a, e 〉 + 〈 e, e 〉,
and 〈 a, a 〉 − 2 〈 a, b 〉 + 〈 e, b 〉.

Thus Im ∂3 contains all the generators of Ker ∂2. Hence Im ∂3 = Ker ∂2 and
H2(M5 / M5\0) = 0. The size of this last computation reveals a need formore efficient
methods. ��

It follows from Theorem 3.1 and Lemma 6.1 that H2(M5, G) ∼= Ext (Z,G) ⊕
Hom (0,G) = 0 whenever G is almost constant at G.

2. Next we look at the homology functors of M5. First note that an abelian group
valued functor G = (G, γ ) on M5 assigns to the elements 1, a, e, b, 0 of M5 five
abelian groups G1, Ga , Ge, Gb, and G0, with maps as follows.

1 a e b 0
a e e b 0
e e e b 0
b b b 0 0
0 0 0 0 0

Since 1t = 1 only if t = 1 there is only one map γ1,1 : G1 −→ G1.
Since 1t = a only if t = a there is only one map γ1,a : G1 −→ Ga .
Since at = a only if t = 1 there is only one map γa,1 : Ga −→ Ga .

123



Commutative monoid homology 525

Since at = e if and only if t = a or t = e, there are two maps
γa,a , γa,e : Ga −→ Ge.

Since et = e if and only if t = 1, t = a, or t = e, there are three maps γe,1, γe,a ,
γe,e : Ge −→ Ge.

Since et = b only if t = b there is only one map γe,b : Ge −→ Gb.
Since bt = b if and only if t = 1, t = a, or t = e, there are three maps γb,1, γb,a ,

γb,e : Gb −→ Gb.
Since bt = 0 if and only if t = b or t = 0, there are two maps γb,b, γb,0 : Gb −→

G0.
Since 0t = 0 for all t ∈ S, there are five maps γ0,1, γ0,a , γ0,e, γ0,b, γ0,0 : G0 −→

G0.
All other maps arise from composition γc,tu = γct,u ◦ γc,t ; for instance there are

two maps γe,b ◦ γa,a , γe,b ◦ γa,e : Ga −→ Gb.
Now L1(M5) = (L1, λ) assigns to each s ∈ M5 the free abelian group L1(s)

generated by { 〈 x, t 〉 ∣

∣ xt = s }:
L1(1) is free on 〈 1, 1 〉;
L1(a) is free on 〈 1, a 〉, 〈 a, 1 〉;
L1(e) is free on 〈 1, e 〉, 〈 a, a 〉, 〈 a, e 〉, 〈 e, 1 〉, 〈 e, a 〉, 〈 e, e 〉;
L1(b) is free on 〈 1, b 〉, 〈 a, b 〉, 〈 e, b 〉, 〈 b, 1 〉, 〈 b, a 〉, 〈 b, e 〉;
L1(0) is free on 〈 1, 0 〉, 〈 a, 0 〉, 〈 e, 0 〉, 〈 b, 0 〉, 〈 0, 1 〉, 〈 0, a 〉, 〈 0, e 〉, 〈 0, b 〉, 〈 0, 0 〉,

〈 b, b 〉;
and λc,u 〈 x, t 〉 = 〈 x, tu 〉 whenever xt = c.

With S ordered so that 1 < a < e < b < 0, L2(M5) = (L2, λ) assigns to each
s ∈ M5 the free abelian group L2(s) on { 〈 x, y, t 〉 ∣

∣ x � y, xyt = s }:
L2(1) is free on 〈 1, 1, 1 〉;
L2(a) is free on 〈 1, 1, a 〉, 〈 1, a, 1 〉;
L2(e) is free on 〈 1, 1, e 〉, 〈 1, a, a 〉, 〈 1, a, e 〉, 〈 1, e, 1 〉, 〈 1, e, a 〉, 〈 1, e, e 〉,

〈 a, a, 1 〉,
〈 a, a, a 〉, 〈 a, a, e 〉, 〈 a, e, 1 〉, 〈 a, e, a 〉, 〈 a, e, e 〉, 〈 e, e, 1 〉, 〈 e, e, a 〉, 〈 e, e, e 〉;

L2(b) is free on 〈 1, 1, b 〉, 〈 1, a, b 〉, 〈 1, e, b 〉, 〈 1, b, 1 〉, 〈 1, b, a 〉, 〈 1, b, e 〉,
〈 a, a, b 〉, 〈 a, e, b 〉, 〈 a, b, 1 〉, 〈 a, b, a 〉, 〈 a, b, e 〉, 〈 e, e, b 〉, 〈 e, b, 1 〉, 〈 e, b, a 〉,
〈 e, b, e 〉;

L2(0) is free on 〈 1, 1, 0 〉, 〈 1, a, 0 〉, 〈 1, e, 0 〉, 〈 1, b, b 〉, 〈 1, b, 0 〉, 〈 1, 0, 1 〉,
〈 1, 0, a 〉, 〈 1, 0, e 〉, 〈 1, 0, b 〉, 〈 1, 0, 0 〉, 〈 a, a, 0 〉, 〈 a, e, 0 〉, 〈 a, b, b 〉, 〈 a, b, 0 〉,
〈 a, 0, 1 〉, 〈 a, 0, a 〉, 〈 a, 0, e 〉, 〈 a, 0, b 〉, 〈 a, 0, 0 〉, 〈 e, e, 0 〉, 〈 e, b, b 〉, 〈 e, b, 0 〉,
〈 e, 0, 1 〉, 〈 e, 0, a 〉, 〈 e, 0, e 〉, 〈 e, 0, b 〉, 〈 e, 0, 0 〉, 〈 b, b, 1 〉, 〈 b, b, a 〉, 〈 b, b, e 〉,
〈 b, b, b 〉, 〈 b, b, 0 〉, 〈 b, 0, 1 〉, 〈 b, 0, a 〉, 〈 b, 0, e 〉, 〈 b, 0, b 〉, 〈 b, 0, 0 〉, 〈 0, 0, 1 〉,
〈 0, 0, a 〉, 〈 0, 0, e 〉, 〈 0, 0, b 〉, 〈 0, 0, 0 〉;

and λc,u 〈 x, y 〉t = 〈 x, y 〉tu whenever xyt = c.
The functor Z1(M5) = Ker ∂1 is isomorphism to L1, since ∂1 = 0.

Lemma 6.2 B1(M5) = Im ∂2 = (B, β) assigns the following groups: B(1) is the free
abelian group on 〈 1, 1 〉; B(a) is the free abelian group on 〈 1, a 〉; B(e) is the free
abelian group on 〈 1, e 〉, 〈 a, e 〉, 〈 e, a 〉, 〈 e, 1 〉, 〈 e, e 〉, and 2 〈 e, e 〉; B(b) is the free
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abelian group on 〈 1, b 〉, 〈 a, b 〉, 〈 e, b 〉, 〈 b, a 〉 − 〈 b, 1 〉, and 〈 b, e 〉 − 〈 b, 1 〉; B(0)
is the free abelian group on 〈 1, 0 〉, 〈 a, 0 〉, 〈 e, 0 〉, 〈 b, 0 〉, 〈 0, 1 〉, 〈 0, a 〉, 〈 0, e 〉,
〈 0, b 〉, 〈 0, 0 〉, and 2 〈 b, b 〉.
Proof The group B(s) is generated by all ∂ 〈 x, y, t 〉, where x � y, xyt = s, and
∂ 〈 x, y, t 〉 = 〈 y, xt 〉−〈 xy, t 〉+〈 x, yt 〉. Note that ∂ 〈 1, x, t 〉 = 〈 x, 1t 〉−〈 1x, t 〉+
〈 1, xt 〉 = 〈 1, xt 〉. Hence

B(1) is generated by ∂ 〈 1, 1, 1 〉 = 〈 1, 1 〉;
B(a) is generated by ∂ 〈 1, 1, a 〉 = 〈 1, a 〉 = ∂ 〈 1, a, 1 〉;
B(e) is generated by

∂ 〈 1, 1, e 〉 = ∂ 〈 1, a, a 〉 = ∂ 〈 1, a, e 〉 = 〈 1, e 〉,
∂ 〈 1, e, 1 〉 = ∂ 〈 1, e, a 〉 = ∂ 〈 1, e, e 〉 = 〈 1, e 〉,
∂ 〈 a, a, 1 〉 = 〈 a, a1 〉 − 〈 aa, 1 〉 + 〈 a, a1 〉 = 2 〈 a, a 〉 − 〈 e, 1 〉,
∂ 〈 a, a, a 〉 = 〈 a, aa 〉 − 〈 aa, a 〉 + 〈 a, aa 〉 = 2 〈 a, e 〉 − 〈 e, a 〉,
∂ 〈 a, a, e 〉 = 〈 a, ae 〉 − 〈 aa, e 〉 + 〈 a, ae 〉 = 2 〈 a, e 〉 − 〈 e, e 〉,
∂ 〈 a, e, 1 〉 = 〈 e, a1 〉 − 〈 ae, 1 〉 + 〈 a, e1 〉 = 〈 e, a 〉 − 〈 e, 1 〉 + 〈 a, e 〉,
∂ 〈 a, e, a 〉 = 〈 e, aa 〉 − 〈 ae, a 〉 + 〈 a, ea 〉 = 〈 e, e 〉 − 〈 e, a 〉 + 〈 a, e 〉,
∂ 〈 a, e, e 〉 = 〈 e, ae 〉 − 〈 ae, e 〉 + 〈 a, ee 〉 = 〈 a, e 〉,
∂ 〈 e, e, 1 〉 = 〈 e, e1 〉 − 〈 ee, 1 〉 + 〈 e, e1 〉 = 2 〈 e, e 〉 − 〈 e, 1 〉,
∂ 〈 e, e, a 〉 = 〈 e, ea 〉 − 〈 ee, a 〉 + 〈 e, ea 〉 = 2 〈 e, e 〉 − 〈 e, a 〉,
∂ 〈 e, e, e 〉 = 〈 e, ee 〉 − 〈 ee, e 〉 + 〈 e, ee 〉 = 〈 e, e 〉 ;

hence B(e) is generated by 〈 1, e 〉, 〈 a, e 〉, 〈 e, e 〉, and 〈 e, 1 〉 (from ∂ 〈 e, e, 1 〉), 〈 e, a 〉
(from ∂ 〈 e, e, a 〉), and 2 〈 a, a 〉 (from ∂ 〈 a, a, 1 〉).

B(b) is generated by

∂ 〈 1, 1, b 〉 = ∂ 〈 1, a, b 〉 = ∂ 〈 1, e, b 〉 = 〈 1, b 〉,
∂ 〈 1, b, 1 〉 = ∂ 〈 1, b, a 〉 = ∂ 〈 1, b, e 〉 = 〈 1, b 〉,
∂ 〈 a, a, b 〉 = 〈 a, ab 〉 − 〈 aa, b 〉 + 〈 a, ab 〉 = 2 〈 a, b 〉 − 〈 e, b 〉,
∂ 〈 a, e, b 〉 = 〈 e, ab 〉 − 〈 ae, b 〉 + 〈 a, eb 〉 = 〈 a, b 〉,
∂ 〈 a, b, 1 〉 = 〈 b, a1 〉 − 〈 ab, 1 〉 + 〈 a, b1 〉 = 〈 b, a 〉 − 〈 b, 1 〉 + 〈 a, b 〉,
∂ 〈 a, b, a 〉 = 〈 b, aa 〉 − 〈 ab, a 〉 + 〈 a, ba 〉 = 〈 b, e 〉 − 〈 b, a 〉 + 〈 a, b 〉,
∂ 〈 a, b, e 〉 = 〈 b, ae 〉 − 〈 ab, e 〉 + 〈 a, be 〉 = 〈 a, b 〉,
∂ 〈 e, e, b 〉 = 〈 e, eb 〉 − 〈 ee, b 〉 + 〈 e, eb 〉 = 〈 e, b 〉,
∂ 〈 e, b, 1 〉 = 〈 b, e1 〉 − 〈 eb, 1 〉 + 〈 e, b1 〉 = 〈 b, e 〉 − 〈 b, 1 〉 + 〈 e, b 〉,
∂ 〈 e, b, a 〉 = 〈 b, ea 〉 − 〈 eb, a 〉 + 〈 e, ba 〉 = 〈 b, e 〉 − 〈 b, a 〉 + 〈 e, b 〉,
∂ 〈 e, b, e 〉 = 〈 b, ee 〉 − 〈 eb, e 〉 + 〈 e, be 〉 = 〈 e, b 〉 ;

hence B(b) is generated by 〈 1, b 〉, 〈 a, b 〉, 〈 e, b 〉, 〈 b, a 〉−〈 b, 1 〉 (from ∂ 〈 a, b, 1 〉),
and 〈 b, e 〉 − 〈 b, 1 〉 (from ∂ 〈 e, b, 1 〉; then 〈 b, e 〉 − 〈 b, a 〉 = (〈 b, e 〉 − 〈 b, 1 〉) −
(〈 b, a 〉 − 〈 b, 1 〉)).
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Finally, B(0) is generated by

∂ 〈 1, y, 0 〉 = 〈 1, 0 〉 (y = 1, a, e, b, 0),

∂ 〈 1, 0, t 〉 = 〈 1, 0 〉 (t = 1, a, e, b, 0),

∂ 〈 a, a, 0 〉 = 〈 a, a0 〉 − 〈 aa, 0 〉 + 〈 a, a0 〉 = 2 〈 a, 0 〉 − 〈 e, 0 〉,
∂ 〈 a, e, 0 〉 = 〈 e, a0 〉 − 〈 ae, 0 〉 + 〈 a, e0 〉 = 〈 a, 0 〉,
∂ 〈 a, b, b 〉 = 〈 b, ab 〉 − 〈 ab, b 〉 + 〈 a, bb 〉 = 〈 a, 0 〉,
∂ 〈 a, b, 0 〉 = 〈 b, a0 〉 − 〈 ab, 0 〉 + 〈 a, b0 〉 = 〈 a, 0 〉,
∂ 〈 a, 0, 1 〉 = 〈 0, a1 〉 − 〈 a0, 1 〉 + 〈 a, 01 〉 = 〈 0, a 〉 − 〈 0, 1 〉 + 〈 a, 0 〉,
∂ 〈 a, 0, a 〉 = 〈 0, aa 〉 − 〈 a0, a 〉 + 〈 a, 0a 〉 = 〈 0, e 〉 − 〈 0, a 〉 + 〈 a, 0 〉,
∂ 〈 a, 0, e 〉 = 〈 0, ae 〉 − 〈 a0, e 〉 + 〈 a, 0e 〉 = 〈 a, 0 〉,
∂ 〈 a, 0, b 〉 = 〈 0, ab 〉 − 〈 a0, b 〉 + 〈 a, 0b 〉 = 〈 a, 0 〉,
∂ 〈 a, 0, 0 〉 = 〈 0, a0 〉 − 〈 a0, 0 〉 + 〈 a, 00 〉 = 〈 a, 0 〉,
∂ 〈 e, e, 0 〉 = 〈 e, e0 〉 − 〈 ee, 0 〉 + 〈 e, e0 〉 = 〈 e, 0 〉,
∂ 〈 e, b, b 〉 = 〈 b, eb 〉 − 〈 eb, b 〉 + 〈 e, bb 〉 = 〈 e, 0 〉,
∂ 〈 e, b, 0 〉 = 〈 b, e0 〉 − 〈 eb, 0 〉 + 〈 e, b0 〉 = 〈 e, 0 〉,
∂ 〈 e, 0, 1 〉 = 〈 0, e1 〉 − 〈 e0, 1 〉 + 〈 e, 01 〉 = 〈 0, e 〉 − 〈 0, 1 〉 + 〈 e, 0 〉,
∂ 〈 e, 0, a 〉 = 〈 0, ea 〉 − 〈 e0, a 〉 + 〈 e, 0a 〉 = 〈 0, e 〉 − 〈 0, a 〉 + 〈 e, 0 〉,
∂ 〈 e, 0, e 〉 = 〈 0, ee 〉 − 〈 e0, e 〉 + 〈 e, 0e 〉 = 〈 e, 0 〉,
∂ 〈 e, 0, b 〉 = 〈 0, eb 〉 − 〈 e0, b 〉 + 〈 e, 0b 〉 = 〈 e, 0 〉,
∂ 〈 e, 0, 0 〉 = 〈 0, e0 〉 − 〈 e0, 0 〉 + 〈 e, 00 〉 = 〈 e, 0 〉,
∂ 〈 b, b, 1 〉 = 〈 b, b1 〉 − 〈 bb, 1 〉 + 〈 b, b1 〉 = 2 〈 b, b 〉 − 〈 0, 1 〉,
∂ 〈 b, b, a 〉 = 〈 b, ba 〉 − 〈 bb, a 〉 + 〈 b, ba 〉 = 2 〈 b, b 〉 − 〈 0, a 〉,
∂ 〈 b, b, e 〉 = 〈 b, be 〉 − 〈 bb, e 〉 + 〈 b, be 〉 = 2 〈 b, b 〉 − 〈 0, e 〉,
∂ 〈 b, b, b 〉 = 〈 b, bb 〉 − 〈 bb, b 〉 + 〈 b, bb 〉 = 2 〈 b, 0 〉 − 〈 0, b 〉,
∂ 〈 b, b, 0 〉 = 〈 b, b0 〉 − 〈 bb, 0 〉 + 〈 b, b0 〉 = 2 〈 b, 0 〉 − 〈 0, 0 〉,
∂ 〈 b, 0, 1 〉 = 〈 0, b1 〉 − 〈 b0, 1 〉 + 〈 b, 01 〉 = 〈 0, b 〉 − 〈 0, 1 〉 + 〈 b, 0 〉,
∂ 〈 b, 0, a 〉 = 〈 0, ba 〉 − 〈 b0, a 〉 + 〈 b, 0a 〉 = 〈 0, b 〉 − 〈 0, a 〉 + 〈 b, 0 〉,
∂ 〈 b, 0, e 〉 = 〈 0, be 〉 − 〈 b0, e 〉 + 〈 b, 0e 〉 = 〈 0, b 〉 − 〈 0, e 〉 + 〈 b, 0 〉,
∂ 〈 b, 0, b 〉 = 〈 0, bb 〉 − 〈 b0, b 〉 + 〈 b, 0b 〉 = 〈 0, 0 〉 − 〈 0, b 〉 + 〈 b, 0 〉,
∂ 〈 b, 0, 0 〉 = 〈 0, b0 〉 − 〈 b0, 0 〉 + 〈 b, 00 〉 = 〈 b, 0 〉,
∂ 〈 0, 0, 1 〉 = 〈 0, 01 〉 − 〈 00, 1 〉 + 〈 0, 01 〉 = 2 〈 0, 0 〉 − 〈 0, 1 〉,
∂ 〈 0, 0, a 〉 = 〈 0, 0a 〉 − 〈 00, a 〉 + 〈 0, 0a 〉 = 2 〈 0, 0 〉 − 〈 0, a 〉,
∂ 〈 0, 0, e 〉 = 〈 0, 0e 〉 − 〈 00, e 〉 + 〈 0, 0e 〉 = 2 〈 0, 0 〉 − 〈 0, e 〉,
∂ 〈 0, 0, b 〉 = 〈 0, 0b 〉 − 〈 00, b 〉 + 〈 0, 0b 〉 = 2 〈 0, 0 〉 − 〈 0, b 〉,
∂ 〈 0, 0, 0 〉 = 〈 0, 00 〉 − 〈 00, 0 〉 + 〈 0, 00 〉 = 〈 0, 0 〉 ;
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hence B(0) is generated by 〈 1, 0 〉, 〈 a, 0 〉, 〈 e, 0 〉, 〈 b, 0 〉, 〈 0, 0 〉; 〈 0, 1 〉, 〈 0, a 〉,
〈 0, e 〉, 〈 0, b 〉 (from ∂ 〈 0, 0, t 〉; and 2 〈 b, b 〉 (from ∂ 〈 b, b, 1 〉).

These are free abelian subgroups of the free abelian group on all 〈 x, t 〉. ��

Comparing the generators of B1(M5) to the generators of L1(S), we see that
H1(M5) = Z1(M5)/B1(M5) = (H1, η) has

H1(1) = 0; H1(a) = 0; H1(e) ∼= 〈 a, a 〉Z / 2 〈 a, a 〉Z ∼= Z/2Z;
H1(b) ∼= Z; and H1(0) ∼= 〈 b, b 〉Z / 2 〈 b, b 〉Z ∼= Z/2Z.

It is interesting that some torsion appears in the homology functor H1(M5), but not
in the homology group H1(M5) ∼= Z.

Finding H2(M5) from its definition is positively horrendous and will be skipped.

Lemma 6.3 The maps in B1(M5) = (B, β) are determined by the following: β1,1 :
B(1) −→ B(1) is the identity on B(1); β1,a : B(1) −→ B(a) sends 〈 1, 1 〉 to 〈 1, a 〉;
βa,1 : B(a) −→ B(a) is the identity on B(1); βa,a = βa,e : B(a) −→ B(e) sends
〈 1, a 〉 to 〈 1, e 〉;

B(e) −→ B(e) 〈 1, e 〉 〈 a, e 〉 〈 e, 1 〉 〈 e, a 〉 〈 e, e 〉 2 〈 a, a 〉
βe,1 〈 1, e 〉 〈 a, e 〉 〈 e, 1 〉 〈 e, a 〉 〈 e, e 〉 2 〈 a, a 〉

βe,a 〈 1, e 〉 〈 a, e 〉 〈 e, a 〉 〈 e, e 〉 〈 e, e 〉 2 〈 a, e 〉

βe,e 〈 1, e 〉 〈 a, e 〉 〈 e, e 〉 〈 e, e 〉 〈 e, e 〉 2 〈 a, e 〉

B(e) −→ B(b) 〈 1, e 〉 〈 e, 1 〉 〈 a, e 〉 〈 e, a 〉 〈 e, e 〉 2 〈 a, a 〉
βe,b 〈 1, b 〉 〈 e, b 〉 〈 a, b 〉 〈 e, b 〉 〈 e, b 〉 2 〈 a, b 〉

B(b) −→ B(b) 〈 1, b 〉 〈 a, b 〉 〈 e, b 〉 〈 b, a 〉 − 〈 b, 1 〉 〈 b, e 〉 − 〈 b, 1 〉
βb,1 〈 1, b 〉 〈 a, b 〉 〈 e, b 〉 〈 b, a 〉 − 〈 b, 1 〉 〈 b, e 〉 − 〈 b, 1 〉

βb,a 〈 1, b 〉 〈 a, b 〉 〈 e, b 〉 〈 b, e 〉 − 〈 b, a 〉 〈 b, e 〉 − 〈 b, a 〉

βb,e 〈 1, b 〉 〈 a, b 〉 〈 e, b 〉 0 0

B(b) −→ B(0) 〈 1, b 〉 〈 a, b 〉 〈 e, b 〉 〈 b, a 〉 − 〈 b, 1 〉 〈 b, e 〉 − 〈 b, 1 〉
βb,b 〈 1, 0 〉 〈 a, 0 〉 〈 e, 0 〉 0 0

βb,0 〈 1, 0 〉 〈 a, 0 〉 〈 e, 0 〉 0 0
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B(0) −→ B(0) 〈 x, 0 〉 〈 0, 1 〉 〈 0, a 〉 〈 0, e 〉 〈 0, b 〉 2 〈 b, b 〉
β0,1 〈 x, 0 〉 〈 0, 1 〉 〈 0, a 〉 〈 0, e 〉 〈 0, b 〉 2 〈 b, b 〉
β0,a 〈 x, 0 〉 〈 0, a 〉 〈 0, e 〉 〈 0, e 〉 〈 0, b 〉 2 〈 b, b 〉
β0,e 〈 x, 0 〉 〈 0, e 〉 〈 0, e 〉 〈 0, e 〉 〈 0, b 〉 2 〈 b, b 〉
β0,b 〈 x, 0 〉 〈 0, b 〉 〈 0, b 〉 〈 0, b 〉 〈 0, 0 〉 2 〈 b, 0 〉
β0,0 〈 x, 0 〉 〈 0, 0 〉 〈 0, 0 〉 〈 0, 0 〉 〈 0, 0 〉 2 〈 b, 0 〉

In particular, βb,b = βb,0. The remaining maps obtain by composition.

Proof We noted that a similar list of maps applies to every abelian group valued func-
tor on M5. The particular values in the tables follow from βc,u 〈 x, t 〉 = 〈 x, tu 〉,
whenever xt = c. ��

3. We went into some detail regarding B1(M5) in order to prove the following
result.

Proposition 6.4 B1(M5) is not projective.

Proof We construct an epimorphism σ : G −→ B = B1(M5) through which the
identity on B does not lift. This works because G = (G, γ ) and σ can be rigged so
that γb,0 is injective, whereas βb,0 is not.

The groups Gs are free abelian groups on generators denoted by [xt], where x, t ∈
S, plus four generators [p], [q], [r ], and [s]: G1 is free on [11]; Ga is free on [1a]; Ge

is free on [1e], [ae], [ee], [e1], [ea], and [aa]; Gb is free on [1b], [ab], [eb], [p], and
[q]; G0 is free on [10], [a0], [e0], [b0], [01], [0a], [0e], [0b], [00], [bb], [r ], and [s].

The maps γc,u are as follows: γc,u [xt] = [xv], where xt = c and v = tu (compare
withβc,u 〈 x, t 〉 = 〈 x, v 〉),with one exception:γe,t [aa] = 2 [ac], if t �= 1 andat = c.
In particular, γa,a = γa,e and γb,b = γb,0. In addition, γb,0 [p] = [r ]; γb,0 [q] = [s];
γ0,t [r ] = [r ] for all t ∈ S; and γ0,t [s] = [s] for all t ∈ S. The remaining maps are
then obtained by composition. Note that γb,0 sends the generators of Gb onto distinct
generators of G0 and is therefore injective.

Next, a homomorphism σc : Gc −→ Bc is defined for each c ∈ S by σxt [xt] =
〈 x, t 〉 (where xt = c), with one exception: σe [aa] = 2 〈 a, a 〉; in addition, σb [p] =
〈 b, a 〉 − 〈 b, 1 〉; σb [q] = 〈 b, e 〉 − 〈 b, 1 〉; σ0 [r ] = σ0 [s] = 0.

We show that σ = (σc)c∈S : G −→ B is a natural transformation. Comparing the
values ofβc,u and γc,u , where (c, u) = (1, 1), (1, a), (a, a), (a, e), (e, e), (e, b), (b, b),
or (b, 0), shows that βc,u σc [xt] = σcu γc,u [xt] (where c = xt), unless [xt] = [aa];
for instance,

βe,b σe [ae] = βe,b 〈 a, e 〉 = 〈 a, b 〉 = σb [ab] = σb γe,b [ae].

In addition,

βe,1 σe [aa] = βe,1 (2 〈 a, a 〉) = 2 〈 a, a 〉 = σe (2 [aa]) = σe γe,1 [aa] ;

if t �= 1 and at = c, then et = ac and

βe,t σe [aa] = βe,t (2 〈 a, a 〉) = 2 〈 a, c 〉 = σac (2 [ac]) = σet γe,t [aa] ;
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and

βb,0 σb [p] = βb,0 (〈 b, a 〉 − 〈 b, 1 〉) = 0 = σ0 [r ] = σ0 γb,0 [p],
βb,0 σb [q] = βb,0 (〈 b, e 〉 − 〈 b, 1 〉) = 0 = σ0 [s] = σ0 γb,0 [q],
β0,t σ0 [r ] = 0 = σ0 [r ] = σ0 γ0,t [r ] and

β0,t σ0 [s] = 0 = σ0 [s] = σ0 γ0,t [s], for all t ∈ S.

Thus βc,u ◦ σc = σcu ◦ γc,u : Gc −→ Bcu when (c, u) = (1, 1), (1, a), (a, a),
(a, e), (e, e), (e, b), (b, b), or (b, 0). Since the remaining maps are then obtained by
composition, it follows that βc,u ◦ σc = σcu ◦ gac,u for all c, u. Thus σ is a natural
transformation.

Moreover, all σs are isomorphisms, except for σ0, which is surjective; hence σ is
an epimorphism.

Now assume that B is projective. Then the identity on B lifts through σ and there
is a natural transformation μ : B −→ G such that σ ◦ μ is the identity on B.
In particular, μs is injective, for every s ∈ S. Since μ is a natural transformation,
we have μ0 βb,0 = γb,0 μb, and μ0 βb,0 is injective. But βb,0 is not injective. This
contradiction shows that B is not projective. ��

Since Im ∂2 is not projective, the universal coefficients theorem (e.g. Theorem 3.6.5
of [14]) cannot be applied toL∗(S). (But we do not have a counterexample forA∗(S).)

7 Proof of Lemma 1.4

Recall that a basis of a symmetric set X is a subset Y of X such that every mapping
of Y into an abelian group G extends uniquely to a symmetric mapping of X into G.

Lemma 1.4 states: Let X be a symmetric subset of Sn , where n � 4 and S is a
totally ordered set.

If n = 2, then the set Y of all (a, b) ∈ X such that a � b is a basis of X .
If n = 3, then the set Y of all (a, b, c) ∈ X such that a � b and a < c is a basis of

X .
If n = 4, then the set Y of all (a, b, c, d) ∈ X such that either a < b, c, d, or

a � b, c and b < d, or both, is a basis of X .
Moreover, if f is a mapping of Y into an abelian group G and g is the symmetric

mapping of X into G that extends g, then every value of g is a sum of values of f and
opposites of values of f .

1. If n = 2, then a mapping f : X −→ G is symmetric if and only if f (b, a) =
f (a, b) whenever b > a in S. Consequently, f is uniquely determined by its values
on Y = { (a, b) ∈ X

∣

∣ a � b }.
Now let f be a mapping of Y into an abelian group G. Extend f to a mapping g of

X into G, namely:

g (x, y) =
{

f (x, y) if x � y,

f (y, x) if x > y.
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Then g is symmetric. Moreover, every value of g is a value of f . This proves Lemma
1.4 if n = 2.

2. Now let n = 3; the symmetry conditions are:

f (a, b, a) = 0, (S3a)

f (c, b, a) = − f (a, b, c), (S3b)

f (a, b, c) + f (b, c, a) + f (c, a, b) = 0, and (S3c)

f (a, b, c) = f (b, a, c) − f (b, c, a). (S3d)

Lemma 7.1 If S is totally ordered, then for any given x, y, z ∈ S exactly one of the
following holds:

(1) x = z,

(2) x = y < z,

(3) x = y > z,

(4) x < y = z,

(5) x > y = z,

(6) x < y < z or x < z < y,

(7) y < x < z or y < z < x,

(8) z < x < y or z < y < x .

Proof This is clear. ��
Lemma 7.2 If S is totally ordered and n = 3, then a mapping f : X −→ G is
symmetric if and only if, for all (x, y, z) ∈ X,

if x = z, then f (x, y, z) = 0, (P1)

if x = y > z, then f (x, y, z) = − f (z, y, x), (P3)

if x > y = z, then f (x, y, z) = − f (y, z, x), (P5)

if y < x < z or if y < z < x, then f (x, y, z) = f (y, x, z) − f (y, z, x),
(P7)

if z < x < y or if z < y < x, then f (x, y, z) = − f (z, y, x). (P8)

Moreover,

Y = { (a, b, c) ∈ X
∣

∣ a � b and a < c }

contains every (a, b, c) that appears in the right hand side of (P1), …, (P8).
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Proof Any given x, y, z ∈ S fall in exactly one of the cases (1) to (8) in Lemma 7.1.
In case (1), (S3a) yields f (x, y, z) = 0. In cases (3) and (8), (S3b) yields (P3) and
(P8): f (x, y, z) = − f (z, y, x); moreover, (z, y, x) is in case (4) or (6). In case (5),
(S3d) and (S3a) yield (P5):

f (x, y, z) = f (y, x, z) − f (y, z, x) = − f (y, z, x) ;

moreover, (y, z, x) is in case (2). In case (7), (S3d) yields (P7): f (x, y, z) =
f (y, x, z) − f (y, z, x); moreover, (y, x, z) and (y, z, x) are in case (6). Thus a
symmetric mapping has properties (P1) through (P8). Moreover, (a, b, c) ∈ Y (a � b
and a < c) if and only if (a, b, c) is in case (2), (4), or (6); this includes every (a, b, c)
that appears in the right hand side of (P1) through (P8).

Conversely, assume that f has properties (P1) through (P8). We show that f has
property (S3d).

If a = c, then f (b, a, c)− f (b, c, a) = 0 = f (a, b, c), by (P1), and (S3d) holds.
If a = b < c, or if a = b > c, then f (b, c, a) = 0 by (P1), f (b, a, c) =

f (a, b, c), and (S3d) holds.
If a < b = c, then f (b, a, c) = 0 by (P1), f (b, c, a) = − f (a, c, b) =

− f (a, b, c) by (P3), and (S3d) holds.
If a > b = c, then f (b, a, c) = 0 by (P1), f (a, b, c) = − f (b, c, a) by (P5), and

(S3d) holds.
If a < b < c, or if a < c < b, then f (b, a, c) = f (a, b, c) − f (a, c, b) by (P7),

f (b, c, a) = − f (a, c, b) by (P8), and (S3d) holds.
If b < a < c, or if b < c < a, then f (a, b, c) = f (b, a, c) − f (b, c, a) by (P7),

and (S3d) holds.
If c < a < b, or if c < b < a, then f (b, a, c) = − f (c, a, b)by (P8), f (b, c, a) =

f (c, b, a) − f (c, a, b) by (P7), f (a, b, c) = − f (c, b, a) by (P8), and (S3d) holds.
In every case (S3d) holds; hence f is symmetric, by Lemma 1.2. ��

We now prove Lemma 1.4 in case n = 3:

Lemma 7.3 (n = 3) Let S be a totally ordered set, let X be a symmetric subset of
S × S × S, and let G be an abelian group. Every mapping f of

Y = { (a, b, c) ∈ X
∣

∣ a � b and a < c }

into G extends uniquely to a symmetric mapping g of X into G. Moreover, every value
of g is a sum of values of f and opposites of values of f .
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Proof Given f : Y −→ G, define ̂f as follows:

̂f (a, b, c) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1) 0 if a = c,

(2) f (a, b, c) if a = b < c,

(3) − f (c, b, a) if a = b > c,

(4) f (a, b, c) if a < b = c,

(5) − f (b, c, a) if a > b = c,

(6) f (a, b, c) if a < b < c or if a < c < b,

(7) f (b, a, c) − f (b, c, a) if b < a < c or if b < c < a,

(8) − f (c, b, a) if c < a < b or if c < b < a.

First (a, b, c) ∈ Y (a � b and a < c) if and only if a, b, c are in cases (2), (4), or
(6) in Lemma 7.1. By Lemma 7.2, a symmetric mapping g that extends f must have
properties (P1) through (P8), hence must coincide with ̂f . Conversely, ̂f extends f
and has properties (P1) through (P8), hence is symmetric, by Lemma 7.2. ��

Note that the set Y in the above is not unique: it depends on the total order on S;
also Y ′ = { (x, y, z) ∈ X

∣

∣ z � y and z < x } would also serve.
3. Symmetric mappings of four variables are more complex. First the symmetry

conditions
f (a, b, b, a) = 0, (S4a)

f (d, c, b, a) = − f (a, b, c, d), (S4b)

f (a, b, c, d) − f (b, c, d, a) + f (c, d, a, b) − f (d, a, b, c) = 0, and (S4c)

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0, (S4d)

imply additional properties (someofwhichwerenoted in [9]).By (S4b), f (a, b, c, d) =
− f (d, c, b, a), whence (S4d) yields

f (a, b, c, d) = − f (c, d, b, a) + f (c, b, d, a) − f (c, b, a, d). (S4e)

By (S4d), f (a, b, c, a) = f (b, a, c, a) − f (b, c, a, a) + f (b, c, a, a), so that
f (a, b, c, a) = f (b, a, c, a), in particular

f (b, a, b, a) = 0, (S4f)

by (S4a); and then (S4b) yields f (a, b, a, c) = − f (c, a, b, a) = − f (a, c, b, a) and

f (a, b, a, c) = f (a, b, c, a) = f (b, a, c, a). (S4g)

By (S4e), f (a, a, c, a) = − f (c, a, a, a) + f (c, a, a, a) − f (c, a, a, a) and

f (a, a, c, a) = − f (c, a, a, a). (S4h)
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Properties (S4g) and (S4b) also imply

f (a, b, a, a) = f (b, a, a, a) = − f (a, a, a, b), (S4i)

f (a, b, a, c) = f (a, b, c, a) = − f (a, c, a, b), (S4j)

f (a, b, c, a) = f (b, a, c, a) = − f (c, a, b, a), (S4k)

since f (a, b, c, a) = f (b, a, c, a) and f (a, b, c, a) = f (a, b, a, c), by (S4g).

Lemma 7.4 If S is totally ordered, then for any given x, y, z, t ∈ S exactly one of the
following holds:

(1) x = y = z = t;
(2) x = y = z < t; (3) x = y = z > t;
(4) x = y = t < z; (5) x = y = t > z;
(6) x = z = t < y; (7) x = z = t > y;
(8) y = z = t < x; (9) y = z = t > x;

(10) x = y < z = t; (11) x = y > z = t;
(12) x = z < y = t; (13) x = z > y = t;
(14) x = t < y = z; (15) x = t > y = z;
(16) x = y < z < t; (17) x = y < t < z;
(18) z < x = y < t; (19) t < x = y < z;
(20) z < t < x = y; (21) t < z < x = y;
(22) x = z < y < t; (23) x = z < t < y;
(24) y < x = z < t; (25) t < x = z < y;
(26) y < t < x = z; (27) t < y < x = z;
(28) x = t < y < z; (29) x = t < z < y;
(30) y < x = t < z; (31) z < x = t < y;
(32) y < z < x = t; (33) z < y < x = t;
(34) y = z < x < t; (35) y = z < t < x;
(36) x < y = z < t; (37) t < y = z < x;
(38) x < t < y = z; (39) t < x < y = z;
(40) y = t < x < z; (41) y = t < z < x;
(42) x < y = t < z; (43) z < y = t < x;
(44) x < z < y = t; (45) z < x < y = t;
(46) z = t < x < y; (47) z = t < y < x;
(48) x < z = t < y; (49) y < z = t < x;
(50) x < y < z = t; (51) y < x < z = t;
(52) x < y, z, t and y, z, t are distinct;
(53) y < x, z, t and x, z, t are distinct;
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(54) z < x, y, t and x, y, t are distinct;
(55) t < x, y, z and x, y, z are distinct.

Proof The 55 cases in this Lemma are arranged in decreasing numbers of equalities
between x , y, z, and t . Some of these cases could be merged, but it would not be as
clear that they are disjoint and cover all possibilities. ��
Lemma 7.5 Let n = 4 and let X be a symmetric subset of S × S × S × S. Let Y be
the set of all (a, b, c, d) ∈ X such that either a < b, c, d, or a � b, c and b < d,
or both. Then (a, b, c, d) ∈ Y if and only if (a, b, c, d) is in case (2), (9), (10), (16),
(17), (22), (36), (38), (42), (44), (48), (50), or (52).

Proof. If (a, b, c, d) is in case (9), (22), (36), (38), (42), (44), (48), (50), or (52),
then a < b, c, d; if in case (2) (a = b = c < d), (10) (a = b < c = d), (16)
(a = b < c < d), (17) (a = b < d < c), or (22) (a = c < b < d), then a � b, c and
b < d.

Conversely, if a < b, c, d, then either b = c and (a, b, c, d) is in case (9), (36), or
(38); or b = d and (a, b, c, d) is in case (9), (42), or (44); or c = d and (a, b, c, d)

is in case (9), (10), (48), or (50); or b, c, d are all distinct and (a, b, c, d) is in case
(52). If a � b, c and b < d, but not a < b, c, then either a = b = c < d and
(a, b, c, d) is in case (2); or a = b < c, d and (a, b, c, d) is in case (10), (16), or (17);
or a = c < b < d and (a, b, c, d) is in case (22). ��
Lemma 7.6 Let S be a totally ordered set, let X be a symmetric subset of S×S×S×S,
and let G be an abelian group. Let Y be the set of all (a, b, c, d) ∈ X in case (2), (9),
(10), (16), (17), (22), (36), (38), (42), (44), (48), (50), or (52). Amapping f : X −→ G
is symmetric if and only if it has the following properties:

(P1) if x = y = z = t, then f (x, y, z, t) = 0;
(P3) if x = y = z > t, then f (x, y, z, t) = − f (t, z, y, x);
(P4) if x = y = t < z, then f (x, y, z, t) = f (x, y, t, z);
(P5) if x = y = t > z, then f (x, y, z, t) = − f (z, x, y, t);
(P6) if x = z = t < y, then f (x, y, z, t) = − f (x, z, t, y);
(P7) if x = z = t > y, then f (x, y, z, t) = f (y, x, z, t);
(P8) if y = z = t < x, then f (x, y, z, t) = − f (y, z, t, x);
(P11) if x = y > z = t, then f (x, y, z, t) = − f (t, z, y, x);
(P12) if x = z < y = t, then f (x, y, z, t) = 0;
(P13) if x = z > y = t, then f (x, y, z, t) = 0;
(P14) if x = t < y = z, then f (x, y, z, t) = 0;
(P15) if x = t > y = z, then f (x, y, z, t) = 0;
(P18) if z < x = y < t, then f (x, y, z, t) = − f (z, t, y, x) + f (z, y, t, x) − f (z, y, x, t);
(P19) if t < x = y < z, then f (x, y, z, t) = − f (t, z, y, x);
(P20) if z < t < x = y, then f (x, y, z, t) = − f (z, t, y, x) + f (z, y, t, x) − f (z, y, x, t);
(P21) if t < z < x = y, then f (x, y, z, t) = − f (t, z, y, x);
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(P23) if x = z < t < y, then f (x, y, z, t) = − f (x, t, z, y);
(P24) if y < x = z < t, then f (x, y, z, t) = f (y, z, t, x);
(P25) if t < x = z < y, then f (x, y, z, t) = − f (t, z, y, x);
(P26) if y < t < x = z, then f (x, y, z, t) = f (y, z, t, x);
(P27) if t < y < x = z, then f (x, y, z, t) = − f (t, z, y, x);
(P28) if x = t < y < z, then f (x, y, z, t) = f (x, y, t, z);
(P29) if x = t < z < y, then f (x, y, z, t) = − f (t, z, x, y);
(P30) if y < x = t < z, then f (x, y, z, t) = f (y, x, z, t);
(P31) if z < x = t < y, then f (x, y, z, t) = − f (z, t, y, x);
(P32) if y < z < x = t, then f (x, y, z, t) = f (y, x, z, t);
(P33) if z < y < x = t, then f (x, y, z, t) = − f (z, t, y, x);
(P34) if y = z < x < t, then f (x, y, z, t) = f (y, x, z, t) − f (y, z, x, t) + f (y, z, t, x);
(P35) if y = z < t < x, then f (x, y, z, t) = − f (z, t, y, x)

′ + f (z, y, t, x) − f (z, y, x, t);
(P37) if t < y = z < x, then f (x, y, z, t) = − f (t, z, y, x);
(P39) if t < x < y = z, then f (x, y, z, t) = − f (t, z, y, x);
(P40) if y = t < x < z, then f (x, y, z, t) = f (t, x, y, z);
(P41) if y = t < z < x, then f (x, y, z, t) = − f (t, z, y, x);
(P43) if z < y = t < x, then f (x, y, z, t) = − f (z, y, x, t);
(P45) if z < x < y = t, then f (x, y, z, t) = − f (z, y, x, t);
(P46) if z = t < x < y, then f (x, y, z, t) = − f (t, z, y, x);
(P47) if z = t < y < x, then f (x, y, z, t) = − f (t, z, y, x);
(P49) if y < z = t < x, then f (x, y, z, t) = f (y, x, z, t) − f (y, z, x, t) + f (y, z, t, x);
(P51) if y < x < z = t, then f (x, y, z, t) = f (y, x, z, t) − f (y, z, x, t) + f (y, z, t, x);
(P53) if y < x, z, t and x, z, t are distinct, then

f (x, y, z, t) = f (y, x, z, t) − f (y, z, x, t) + f (y, z, t, x);
(P54) if z < x, y, t and x, y, t are distinct, then

f (x, y, z, t) = − f (z, t, y, x) + f (z, y, t, x) − f (z, y, x, t);
(P55) if t < x, y, z and x, y, z are distinct, then f (x, y, z, t) = − f (t, z, y, x);

Moreover, Y contains every (a, b, c, d) that appears in the right hand side of (P1),
…, (P55).

Proof First, assume that f is symmetric. Let a, b, c, d ∈ S.
(P1): if a = b = c = d, then f (a, b, c, d) = 0 by (S4a).
(P3): if a = b = c > d, then (d, c, b, a) is in case (9) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P4): if a = b = d < c, then (a, b, d, c) is in case (2) and f (a, b, c, d) =

f (a, b, d, c) by (S4g).
(P5): if a = b = d > c, then (c, a, b, d) is in case (9) and f (a, b, c, d) =

− f (c, a, b, d) by (S4h).
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(P6): if a = c = d < b, then (a, c, d, b) is in case (2) and f (a, b, c, d) =
− f (a, c, d, b) by (S4i).

(P7): if a = c = d > b, then (b, a, c, d) is in case (9) and f (a, b, c, d) =
f (b, a, c, d) by (S4i).

(P8): if b = c = d < a, then (b, c, d, a) is in case (2) and f (a, b, c, d) =
− f (b, c, d, a) by (S4b).

(P11): if a = b > c = d, then (d, c, b, a) is in case (10) and f (a, b, c, d) =
− f (d, c, b, a) by (S4b).

(P12): if a = c < b = d, then f (a, b, c, d) = 0 by (S4f).
(P13): if a = c > b = d, then f (a, b, c, d) = 0 by (S4f).
(P14): if a = d < b = c, then f (a, b, c, d) = 0 by (S4a).
(P15): if a = d > b = c, then f (a, b, c, d) = 0 by (S4a).
(P18): if c < a = b < d, then (c, d, b, a) and (c, d, b, a) are in case (50),

(c, b, a, d) is in case (36), and f (a, b, c, d) = − f (c, d, b, a)+ f (c, b, d, a)

− f (c, b, a, d) by (S4e).
(P19): if d < a = b < c, then (d, c, b, a) is in case (48) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P20): if c < d < a = b, then (c, d, b, a) is in case (50), (c, b, d, a) is in

case (44), (c, b, a, d) is in case (36), and f (a, b, c, d) = − f (c, d, b, a)

+ f (c, b, d, a) − f (c, b, a, d) by (S4e).
(P21): if d < c < a = b, then (d, c, b, a) is in case (50) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P23): if a = c < d < b, then (a, d, c, b) is in case (22) and f (a, b, c, d) =

− f (a, d, c, b) by (S4j).
(P24): if b < a = c < d, then (b, c, d, a) is in case (42) and f (a, b, c, d) =

f (b, c, d, a) by (S4g).
(P25): if d < a = c < b, then (d, c, b, a) is in case (42) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P26): if b < d < a = c, then (b, c, d, a) is in case (44) and f (a, b, c, d) =

f (b, c, d, a) by (S4g).
(P27): if d < b < a = c, then (d, c, b, a) is in case (44) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P28): if a = d < b < c, then (a, b, d, c) is in case (22) and f (a, b, c, d) =

f (a, b, d, c) by (S4g).
(P29): if a = d < c < b, then (d, c, a, b) is in case (22) and f (a, b, c, d) =

− f (d, c, a, b) by (S4j).
(P30): if b < a = d < c, then (b, a, c, d) is in case (42) and f (a, b, c, d) =

f (b, a, c, d) by (S4g).
(P31): if c < a = d < b, then (c, d, b, a) is in case (42) and f (a, b, c, d) =

− f (c, d, b, a) by (S4k).
(P32): if b < c < a = d, then (b, a, c, d) is in case (44) and f (a, b, c, d) =

f (b, a, c, d) by (S4g).
(P33): if c < b < a = d, then (c, d, b, a) is in case (44) and f (a, b, c, d) =

− f (c, d, b, a) by (S4k).
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(P34): if b = c < a < d, then (b, a, c, d) is in case (22), (b, c, a, d) is in case (16),
(b, c, d, a) is in case (17), and f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d)

+ f (b, c, d, a) by (S4d).
(P35): if b = c < d < a, then (c, d, b, a) is in case (22), (c, b, d, a) is in

case (16), (c, b, a, d) is in case (17), and f (a, b, c, d) = − f (c, d, b, a)

+ f (c, b, d, a) − f (c, b, a, d) by (S4e).
(P37): if d < b = c < a, then (d, c, b, a) is in case (36) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P39): if d < a < b = c, then (d, c, b, a) is in case (38) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P40): if b = d < a < c, then (d, a, b, c) is in case (22) and f (a, b, c, d) =

f (d, a, b, c) by (S4g).
(P41): if b = d < c < a, then (d, c, b, a) is in case (22) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P43): if c < b = d < a, then (c, d, a, b) is in case (42) and f (a, b, c, d) =

− f (c, b, a, d) by (S4k).
(P45): if c < a < b = d, then (c, b, a, d) is in case (44) and f (a, b, c, d) =

− f (c, b, a, d) by (S4k).
(P46): if c = d < a < b, then (d, c, b, a) is in case (17) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P47): if c = d < b < a, then (d, c, b, a) is in case (17) and f (a, b, c, d) =

− f (d, c, b, a) by (S4b).
(P49): if b < c = d < a, then (b, a, c, d) is in case (48), (b, c, a, d) is in case (42),

(b, c, d, a) is in case (36), and f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d)

+ f (b, c, d, a) by (S4d).
(P51): if b < a < c = d, then (b, a, c, d) is in case (50), (b, c, a, d) is in case (42),

(b, c, d, a) is in case (36), and f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d)

+ f (b, c, d, a) by (S4d).
(P53): if b < a, c, d and a, c, d are distinct, then (b, a, c, d), (b, c, a, d), and

(b, c, d, a) are in case (52), and f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d)

+ f (b, c, d, a) by (S4d).
(P54): if c < a, b, d and a, b, d are distinct, then (c, d, b, a), (c, b, d, a), and

(c, b, a, d) are in case (52), and f (a, b, c, d) = − f (c, d, b, a)+ f (c, b, d, a)

− f (c, b, a, d) by (S4e).
(P55): if d < a, b, c and a, b, c are distinct, then (d, c, b, a) is in case (52) and

f (a, b, c, d) = − f (d, c, b, a) by (S4b).

Thus a symmetric mapping f has properties (P1) through (P55). In each case, every
(x, y, z, t) in the right hand side falls in case (2), (9), (10), (16), (17), (22), (36), (38),
(42), (44), (48), (50), or (52). ��

Conversely, let f be a mapping with properties (P1) through (P55).
Property (S4a): f (a, b, b, a) = 0 follows from (P1), (P14), and (P15).
Property (S4b): f (d, c, b, a) = − f (a, b, c, d) is proved by considering all pos-

sible cases. Some cases follow from others, since (S4b) is not affected by reversing
a, b, c, d into d, c, b, a.

(1). If a = b = c = d, then f (a, b, c, d) = f (d, c, b, a) = 0 by (P1).
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(2). If a = b = c < d, then f (d, c, b, a) = − f (c, b, a, d) by (P8).
(3). If a = b = c > d, then f (a, b, c, d) = − f (d, c, b, a) by (P3).
(4). If a = b = d < c, then f (a, b, c, d) = f (a, b, d, c) by (P4)

and f (d, c, b, a) = − f (d, b, a, c) by (P6).
(5). If a = b = d > c, then f (a, b, c, d) = − f (c, a, b, d) by (P5)

and f (d, c, b, a) = f (c, d, b, a) by (P7).

Reversing a, b, c, d into d, c, b, a yields (S4b) in cases (8): b = c = d < a, (9):
b = c = d > a, (6): a = c = d < b, and (7): a = c = d > b. (10). If a = b < c = d,
then f (d, c, b, a) = − f (a, b, c, d) by (P11).

Reversal yields (S4b) in case (11): a = b > c = d.
In cases (12): a = c < b = d, (13): a = c > b = d, (14): a = d < b = c, and

(15): a = d > b = c, f (a, b, c, d) = f (d, c, b, a) = 0 and (S4b) holds.

(16). If a = b < c < d, then f (d, c, b, a) = − f (a, b, c, d) by (P47).
(17). If a = b < d < c, then f (d, c, b, a) = − f (a, b, c, d) by (P46).
(18). If c < a = b < d, then f (a, b, c, d) = − f (c, d, b, a) + f (c, b, d, a) −

f (c, b, a, d) by (P18)
and f (d, c, b, a) = f (c, d, b, a)

− f (c, b, d, a) + f (c, b, a, d) by (P49).
(19). If d < a = b < c, then f (a, b, c, d) = − f (d, c, b, a) by (P19).
(20). If c < d < a = b, then f (a, b, c, d) = − f (c, d, b, a) + f (c, b, d, a)

− f (c, b, a, d) by (P20)
and f (d, c, b, a) = f (c, d, b, a) − f (c, b, d, a) + f (c, b, a, d) by (P51).

(21). If d < c < a = b, then f (a, b, c, d) = − f (d, c, b, a) by (P21).

Reversal yields (S4b) in cases (47): c = d < b < a, (46): c = d < a < b,
(49): b < c = d < a, (48): a < c = d < b, (51): b < a < c = d, and (50):
a < b < c = d.

(22). If a = c < b < d, then f (d, c, b, a) = − f (a, b, c, d) by (P41).
(23). If a = c < d < b, then f (a, b, c, d) = − f (a, d, c, b) by (P23)

and f (d, c, b, a) = f (a, d, c, b) by (P40).
(24). If b < a = c < d, then f (a, b, c, d) = f (b, c, d, a) by (P24)

and f (d, c, b, a) = − f (b, c, d, a) by (P43).

(25). If d < a = c < b, then f (a, b, c, d) = − f (d, c, b, a) by (P25).
(26). If b < d < a = c, then f (a, b, c, d) = f (b, c, d, a) by (P26)

and f (d, c, b, a) = − f (b, c, d, a) by (P45).
(27). If d < b < a = c, then f (a, b, c, d) = − f (d, c, b, a) by (P27).

Reversal yields (S4b) in cases (41): b = d < c < a, (40): b = d < a < c, (43):
c < b = d < a, (42): a < b = d < c, (45): c < a < b = d, and (44): a < c < b = d.

(28). If a = d < b < c, then f (a, b, c, d) = f (a, b, d, c) by (P28)
and f (d, c, b, a) = − f (a, b, d, c) by (P29).

(30). If b < a = d < c, then f (a, b, c, d) = f (b, a, c, d) by (P30)
and f (d, c, b, a) = − f (b, a, c, d) by (P31).

(32). If b < c < a = d, then f (a, b, c, d) = f (b, a, c, d) by (P32)
and f (d, c, b, a) = − f (b, a, c, d) by (P33).
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(34). If b = c < a < d, then f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d)

+ f (b, c, d, a) by (P34)
and f (d, c, b, a) = − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) by (P35).

(36). If a < b = c < d, then f (d, c, b, a) = − f (a, b, c, d) by (P37).
(38). If a < d < b = c, then f (d, c, b, a) = − f (a, b, c, d) by (P39).

Reversal yields (S4b) in cases (29): a = d < c < b, (31): c < a = d < b, (33):
c < b < a = d, (35): b = c < d = a, (37): d < b = c < a, and (39): d < a < b = c.

This covers cases (1) through (51). In the remaining cases, a, b, c, d are all distinct:

(52). If a < b, c, d, but not a < d < c < b, then f (d, c, b, a) = − f (a, b, c, d) by
(P55).

(53). If b < a, c, d, then f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d)

+ f (b, c, d, a) by (P53) and f (d, c, b, a) = − f (b, c, d, a) + f (b, c, a, d)

− f (b, a, c, d) by (P54).

Reversal yields (S4b) in cases (55): d < a, b, c and (54): c < a, b, d. Thus (S4b)
holds in all cases.

In view of Lemma 1.3 it remains to prove that f has property (S4d). Using (S4b)
transforms (S4d): f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0
into− f (d, c, b, a)+ f (d, c, a, b)− f (d, a, c, b)+ f (a, d, c, b) = 0,which is (S4d)
applied to a, d, c, b, so that the latter follows from (S4b) and from (S4d) applied to
a, b, c, d. Exchanging b and d will thus make some of the cases below follow from
other cases.
(1). If a = b = c = d, then f (a, b, c, d) = f (b, a, c, d) = f (b, c, a, d) =
f (b, c, d, a) = 0.
(2). If a = b = c < d, then

f (a, b, c, d) = f (b, a, c, d) = f (b, c, a, d) = f (a, a, a, d),

f (b, c, d, a) = f (a, a, a, d) by (P4), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (a, a, a, d) − f (a, a, a, d) + f (a, a, a, d) − f (a, a, a, d) = 0.

(3). If a = b = c > d, then

f (a, b, c, d) = f (b, a, c, d) = f (b, c, a, d) = − f (d, a, a, a) by (P3),

f (b, c, d, a) = − f (d, a, a, a) by (P5), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= − f (d, a, a, a) + f (d, a, a, a) − f (d, a, a, a) + f (d, a, a, a) = 0.

Exchanging b and d yields cases (6): a = d = c < b and (7): a = d = c > b.
(4). If a = b = d < c, then

f (a, b, c, d) = f (b, a, c, d) = f (a, a, a, c) by (P4),

f (b, c, a, d) = f (b, c, d, a) = − f (a, a, a, c) by (P6), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (a, a, a, c) − f (a, a, a, c) − f (a, a, a, c) + f (a, a, a, c) = 0.
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(5). If a = b = d > c, then

f (a, b, c, d) = f (b, a, c, d) = − f (c, a, a, a) by (P5),

f (b, c, a, d) = f (c, a, a, a) by (P7), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= − f (c, a, a, a) + f (d, a, a, a) + f (c, a, a, a) − f (c, a, a, a) = 0.

(8). If b = c = d < a, then

f (a, b, c, d) = − f (b, b, b, a) by (P8),

f (b, a, c, d) = − f (b, b, b, a) by (P6),

f (b, c, a, d) = f (b, b, b, a) by (P4), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= − f (b, b, b, a) + f (b, b, b, a) + f (b, b, b, a) − f (b, b, b, a) = 0.

(9). If b = c = d > a, then

f (b, a, c, d) = f (a, b, b, b) by (P7),

f (b, c, a, d) = − f (a, b, b, b) by (P5),

f (b, c, d, a) = − f (a, b, b, b) by (P3), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (a, b, b, b) + f (a, b, b, b) − f (a, b, b, b) − f (a, b, b, b) = 0.

(10). If a = b < c = d, then

f (b, c, a, d) = 0 by (P12), f (b, c, d, a) = 0 by (P14), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

(11). If a = b > c = d, then

f (a, b, c, d) = f (b, a, c, d) = − f (c, c, a, a) by (P11),

f (b, c, a, d) = 0 by (P13),

f (b, c, d, a) = 0 by (P15), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

Exchanging b and d yields cases (14): a = d < b = c and (15): a = d > b = c.
(12). If a = c < b = d, then f (a, b, c, d) = 0 by (P12), f (b, a, c, d) =
f (b, c, a, d) = 0 by (P15), and f (b, c, d, a) = 0 by (P13).
(13). If a = c > b = d, then f (a, b, c, d) = 0 by (P13), f (b, a, c, d) =
f (b, c, a, d) = 0 by (P14), and f (b, c, d, a) = 0 by (P12).
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(16). If a = b < c < d, then f (a, b, c, d) = f (b, a, c, d),

f (b, c, d, a) = f (b, c, a, d) by (P28), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

(17). If a = b < d < c, then f (a, b, c, d) = f (b, a, c, d),

f (b, c, a, d) = − f (b, d, a, c) by (P23), and

f (b, c, d, a) = − f (a, d, b, c) = − f (b, d, a, c) by (P29), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

Exchanging b and d yields cases (29): a = d < c < b and (28): a = d < c < b.
(18). If c < a = b < d, then f (a, b, c, d) = f (b, a, c, d),

f (b, c, a, d) = f (c, a, d, b) by (P24), and

f (b, c, d, a) = f (c, b, d, a) = f (c, a, d, b) by (P30), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

(19). If d < a = b < c, then f (a, b, c, d) = f (b, a, c, d),

f (b, c, a, d) = − f (d, a, c, b) by (P25), and

f (b, c, d, a) = − f (d, a, c, b) by (P31), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

Exchanging b and d yields cases (31): c < a = d < b and (30): c < a = d < b.
(20). If c < d < a = b, then f (a, b, c, d) = f (b, a, c, d),

f (b, c, a, d) = f (c, a, d, b) by (P26), and

f (b, c, d, a) = f (c, b, d, a) = f (c, a, d, b) by (P32), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

(21). If d < c < a = c, then f (a, b, c, d) = f (b, a, c, d),

f (b, c, a, d) = − f (d, a, c, b) by (P27), and

f (b, c, d, a) = − f (d, a, c, b) by (P33), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

Exchanging b and d yields cases (33): c < d < a = b and (32): d < c < a = b.
(22). If a = c < b < d, then f (b, a, c, d) = f (b, c, a, d),

f (b, c, d, a) = f (a, b, c, d) by (P40), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.
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(24). If b < a = c < d, then f (b, a, c, d) = f (b, c, a, d),

f (a, b, c, d) = f (b, c, d, a) by (P24), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

Exchanging b and d yields cases (23): b < c < a = d and (25): d < c < a = b.
(26). If b < d < a = c, then f (b, a, c, d) = f (b, c, a, d),

f (a, b, c, d) = f (b, c, d, a) by (P26), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

Exchanging b and d yields case (27): d < b < a = c.
(34). If b = c < a < d, then

f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d) + f (b, c, d, a) by (P34), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

(35). If b = c < d < a, then

f (a, b, c, d) = − f (c, d, b, a) + f (c, b, d, a) − f (c, b, a, d) by (P35),

f (b, a, c, d) = − f (b, d, c, a) by (P23), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= − f (c, d, b, a) + f (c, b, d, a)

− f (c, b, a, d) + f (b, d, c, a) + f (b, c, a, d) − f (b, c, d, a) = 0,

since b = c. Exchanging b and d yields cases (46): c = d < a < b and (47):
c = d < b < a.
(36). If a < b = c < d, then

f (b, a, c, d) = f (a, c, d, b) by (P24), and

f (b, c, a, d) = − f (a, d, c, b) + f (a, c, d, b) − f (a, c, b, d) by (P18),

f (b, c, d, a) = − f (a, d, c, b) by (P19), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (a, b, c, d) − f (a, c, d, b) − f (a, d, c, b)

+ f (a, c, d, b) − f (a, c, b, d) + f (a, d, c, b) = 0,

since b = c.
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(37). If d < b = c < a, then

f (a, b, c, d) = − f (d, c, b, a) by (P37),

f (b, a, c, d) = − f (d, c, a, b) by (P25),

f (b, c, a, d) = − f (d, a, c, b) by (P19),

f (b, c, d, a) = − f (d, a, c, b) + f (d, c, a, b) − f (d, c, b, a) by (P18), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= − f (d, c, b, a) + f (d, c, a, b) − f (d, a, c, b)

+ f (d, a, c, b) − f (d, c, a, b) + f (d, c, b, a) = 0.

Exchanging b and d yields case (48): a < c = d < b and (49): b < c = d < a.
(38). If a < d < b = c, then

f (b, a, c, d) = f (a, c, d, b) by (P26),

f (b, c, a, d) = − f (a, d, c, b) + f (a, c, d, b) − f (a, c, b, d) by (P20),

f (b, c, d, a) = − f (a, d, c, b) by (P21), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (a, b, c, d) − f (a, c, d, b) − f (a, d, c, b)

+ f (a, c, d, b) − f (a, c, b, d) + f (a, d, c, b) = 0,

since b = c.
(39). If d < a < b = c, then

f (a, b, c, d) = − f (d, c, b, a) by (P39),

f (b, a, c, d) = − f (d, c, a, b) by (P27),

f (b, c, a, d) = − f (d, a, c, b) by (P21),

f (b, c, d, a) = − f (d, a, c, b) + f (d, c, a, b) − f (d, c, b, a) by (P20), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= − f (d, c, b, a) + f (d, c, a, b) − f (d, a, c, b)

+ f (d, a, c, b) − f (d, c, a, b) + f (d, c, b, a) = 0.

Exchanging b and d yields cases (50): a < c = d < b and (51): b < c = d < a.
(40). If b = d < a < c, then

f (a, b, c, d) = f (d, a, b, c) by (P40),

f (b, a, c, d) = f (b, a, d, c) by (P28),

f (b, c, a, d) = − f (d, a, b, c) by (P29),

f (b, c, d, a) = − f (b, a, d, c) by (P23), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (d, a, b, c) − f (b, a, d, c) − f (d, a, b, c) + f (b, a, d, c) = 0.
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(41). If b = d < c < a, then

f (a, b, c, d) = − f (d, c, b, a) by (P41),

f (b, a, c, d) = − f (d, c, b, a) by (P29),

f (b, c, a, d) = f (b, c, d, a) by (P28), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (d, c, b, a) − f (d, c, b, a) + f (b, c, d, a) − f (b, c, d, a) = 0.

(42). If a < b = d < c, then

f (b, a, c, d) = f (a, b, c, d) by (P30),

f (b, c, a, d) = − f (a, d, c, b) by (P31),

f (b, c, d, a) = − f (a, d, c, b) by (P25), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (a, b, c, d) − f (a, b, c, d) − f (a, d, c, b) + f (a, d, c, b) = 0.

(43). If b = d < c < a, then

f (a, b, c, d) = − f (c, b, a, d) by (P43),

f (b, a, c, d) = − f (c, d, a, b) by (P31),

f (b, c, a, d) = f (c, b, a, d) by (P30),

f (b, c, d, a) = f (c, d, a, b) by (P24), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (c, b, a, d) − f (c, d, a, b) + f (c, b, a, d) − f (c, d, a, b) = 0,

since b = d.
(44). If a < b = d < c, then

f (b, a, c, d) = f (a, b, c, d) by (P32),

f (b, c, a, d) = − f (a, d, c, b) by (P33),

f (b, c, d, a) = − f (a, d, c, b) by (P27), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (a, b, c, d) − f (a, b, c, d) − f (a, d, c, b) + f (a, d, c, b) = 0.

(45). If b = d < c < a, then

f (a, b, c, d) = − f (c, b, a, d) by (P45),

f (b, a, c, d) = − f (c, d, a, b) by (P33),

f (b, c, a, d) = f (c, b, a, d) by (P32),

f (b, c, d, a) = f (c, d, a, b) by (P26), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (c, b, a, d) − f (c, d, a, b) + f (c, b, a, d) − f (c, d, a, b) = 0,

since b = d.
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(52). If a < b, c, d and b, c, d are distinct, then

f (b, a, c, d) = f (a, b, c, d) − f (a, c, b, d) + f (a, c, d, b) by (P53),

f (b, c, a, d) = − f (a, c, b, d) + f (a, c, d, b) − f (a, d, c, b) by (P54),

f (b, c, d, a) = − f (a, d, c, b) by (P55), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (a, b, c, d) − f (a, b, c, d) + f (a, c, b, d) − f (a, c, d, b)

− f (a, c, b, d) + f (a, c, d, b) − f (a, d, c, b) + f (a, d, c, b) = 0.

(53). If b < c, d, a and a, c, d are distinct, then

f (a, b, c, d) = f (b, a, c, d) − f (b, c, a, d) + f (b, c, d, a) by (P53), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= f (b, a, c, d) − f (b, c, a, d)

+ f (b, c, d, a) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a) = 0.

Exchanging b and d yields case (55): d < a, b, c and a, b, c are distinct.
(54). If c < a, b, d and a, b, d are distinct, then

f (a, b, c, d) = − f (c, b, a, d) + f (c, b, d, a) − f (c, d, b, a) by (P54),

f (b, a, c, d) = − f (c, a, b, d) + f (c, a, d, b) − f (c, d, a, b) by (P54),

f (b, c, a, d) = f (c, b, a, d) − f (c, a, b, d) + f (c, a, d, b) by (P53),

f (b, c, d, a) = f (c, b, d, a) − f (c, d, b, a) + f (c, d, a, b) by (P53), and

f (a, b, c, d) − f (b, a, c, d) + f (b, c, a, d) − f (b, c, d, a)

= − f (c, b, a, d) + f (c, b, d, a) − f (c, d, b, a)

+ f (c, a, b, d) − f (c, a, d, b) + f (c, d, a, b)

+ f (c, b, a, d) − f (c, a, b, d) + f (c, a, d, b)

− f (c, b, d, a) + f (c, d, b, a) − f (c, d, a, b) = 0.

Thus (S4d) holds in all cases. ��
We now prove Lemma 1.4 in case n = 4:

Lemma 7.7 (n = 4) Let S be a totally ordered set, let X be a symmetric subset of
S × S × S × S, and let G be an abelian group. Let Y be the set of all (a, b, c, d) ∈ X
such that either a < b, c, d, or a � b, c and b < d, or both. Every mapping f of Y
into G extends uniquely to a symmetric mapping g of X into G. Moreover, every value
of g is a sum of values of f and opposites of values of f .

Proof Given f : Y −→ G, define ̂f as follows. If (a, b, c, d) ∈ Y , then
̂f (a, b, c, d) = f (a, b, c, d). If (a, b, c, d) ∈ X\Y , then a, b, c, d is in case (N)
�=(2), (9), (10), (16), (17), (22), (36), (38), (42), (44), (48), (50), (52), by Lemma
7.5; all (x, y, z, t) in the right hand side of (PN) are in Y , by Lemma 7.6; define
̂f (a, b, c, d) so that (PN) holds. For example, if (a, b, c, d) is in case (N) = (54),
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then (c, b, a, d), (c, b, d, a), (c, d, b, a) ∈ Y ; let ̂f (a, b, c, d) = − f (c, b, a, d) +
f (c, b, d, a) − f (c, d, b, a).
By Lemma 7.6, a symmetric mapping g that extends f must have properties (P1)

through (P55), hencemust coincidewith ̂f . Conversely, ̂f extends f and has properties
(P1) through (P55), hence is symmetric, by Lemma 7.6; and every value of ̂f is a sum
of values of f and opposites of values of f . ��

8 Index of notations

Lowercase Roman: elements of groups or sets; mappings
∂: boundary homomorphism (Proposition 2.4, Lemmas 4.5, 5.6)

Uppercase Roman: sets and groups, mostly.

An(a): a group of symmetric chains (Proposition 4.2)
B: a convex subset of S (Introduction, Sect. 1)
Bn : a group of symmetric n-coboundaries
Bn : a group of symmetric n-boundaries
Bn : a certain abelian group

B(a): a value of B (Sect. 6)
Cn : group of symmetric n-cochains
̂Cn : group of all n-cochains (symmetric or not) (Sect. 1)
Cn : a group of symmetric n-chains

Cn(S/B): the group of symmetric n-cochains relative to B (Sect. 2)
Cn(s): a subgroup of Cn(S) (Lemma 4.1)
(Cn): a symmetry condition for chains (Sect. 2)
C∗: a chain complex of free symmetric chain groups (Sect. 2)
Ga : a value of G
Hn : a cohomology group
Hn : a homology group

Hn(S/B): the homology group of S relative to B (Sect. 2)
Ln : a group of ’long’ symmetric n-chains

Ln(a) (Sect. 5)
Ln(s; t) (Lemma 5.1)

M5: a certain commutative monoid (Sect. 6)
PHom: a group of partial homomorphisms

S: your typical long suffering commutative monoid; a set, perhaps totally
ordered

T , U : canonical isomorphisms (Propositions 2.3, 4.2, 5.4)
X : a symmetric set

Xn(a): a certain symmetric set (Sect. 5)
Y : a basis of X
Zn : a group of symmetric n-cocycles
Zn : a group of symmetric n-cycles
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Boldface uppercase Roman: categories.

A: the category of all abelian group valued functors on S
T: the category of thin, abelian group valued functors on S

Script uppercase: functors and sequences thereof.

An : a projective, thin symmetric n-chain functor (Proposition 4.2)
A∗: a chain complex of projective, thin symmetric chain functors
B: a boundary functor

F(B,G): a semiconstant abelian group valued functor (Sect. 1)
G: your typical idle abelian group valued functor
H: one of Green’s relations (Introduction)
Hn : a homology functor
Ln : a projective symmetric, ‘long’ n-chain functor (Sect. 5)
L∗: a chain complex of projective symmetric, ‘long’ chain functors (Sect. 5)
Z: a cycle functor

Lowercase Greek: homomorphisms, natural transformations.

α: a value of An

β: a value of B
γ : a value of G
δ: coboundary homomorphism (Sect. 1)
ι: a canonical homomorphism or partial homomorphism
λ: a value of Ln (Lemma 5.3)
τ : your typical undistinguished natural transformation

τ ∗: a cochain homomorphism induced by τ (Sect. 1)
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