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Introduction

Commutative semigroups are tripleable over sets and thus have their own cohomo-
logy, whose importance stems from the second cohomology group, which classifies
the ways in which finite commutative semigroups can be reconstructed from group-
free semigroups and abelian groups. Every finite commutative semigroup S is a group
coextension of T = §/XH by the Schiitzenberger functor G of S, which is an abelian
group valued functor on 7. The second cohomology group H*(T', G) classifies com-
mutative group coextensions of 7" by G, thereby classifying the ways in which S can
be reconstructed from G and T [2,7,11].

In the cohomology of a commutative semigroup S, coefficients are abelian group
valued functors on S, meaning on the Leech category J((S) [7,11]. Thus, an abelian
group valued functor § = (G, y) on § assigns to each a € § an abelian group G,
andtoeacha € Sand¢ € S' ahomomorphism Yat . Ga — Gy, in such a way that
Ya.1 1s the identity on G, and ¥, 1y = Var,u © Va.r-

Two particular cases of abelian group valued functors on S are of interest. In the
above § is thin if y,, = ya.u Whenever at = au. Schiitzenberger functors have this
property [2].
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G is semiconstant over a subset B of S if there is an abelian group G such that G, =
G foralla € B, G, =0foralla ¢ B, and y, ; is the identity on G whenever a and
at € B.Cohomology with coefficients that are constant over all of S classifies commu-
tative Rédei extensions [13] and is the commutative analogue of Eilenberg—MacLane
cohomology [1] (see also [12]). For semigroups with a zero element, cohomology with
coefficients that are constant over S\{0} is a more appropriate commutative analogue
of Eilenberg-MacLane cohomology; if S is a nilmonoid (a nilsemigroup with an
identity element adjoined), then this cohomology classifies homogeneous elementary
semigroups [2].

Asatriple cohomology, H" (S, §) is defined in all dimensions and classifies commu-
tative group coextensions of S by G, among other good properties, but its cochains have
unbounded numbers of variables. The triple cohomology of groups suffers from the
same defect but the bar resolution provides an equivalent definition in which n-cochains
have only n variables. Commutative semigroups allow an equivalent definition for their
cohomology in which n-cochains have only n variables but must satisfy ‘symmetry’
conditions [7]; unfortunately, the appropriate conditions have only been determined
in dimensions n < 4 [9].

The triple cohomology of commutative semigroups is also the cohomology of a
chain complex of projective functors [7], but it too suffers from overlarge chains. This
paper constructs a chain complex of projective objects, similar to the bar resolution,
whose cohomology in dimension n < 3 is the symmetric cohomology, and in which
much simpler n-chains satisfy symmetry conditions. This takes place in the coeffi-
cient category and depends on it. Hence we actually have three constructions: one for
general coefficients; one for thin coefficients; and one for semiconstant coefficients
over a given subset. This last yields a universal coefficients theorem that calculates a
commutative semigroup cohomology from its homology, when the coefficient functor
is semiconstant.

We consider commutative monoids only, since adjunction of an identity element
does not affect commutative cohomology.

The paper is organized as follows. Given a commutative monoid S, Sect. | defines
semiconstant abelian group valued functors, recalls the definition of symmetric
cochains, and gives a general definition and basic properties of symmetric maps.

Section 2 defines symmetric chains and constructs a chain complex of free abelian
groups whose cohomology in dimensions n < 3 is the commutative cohomology of
S when the coefficient functor is semiconstant. This yields commutative homology
groups and a universal coefficients theorem with various corollaries. (A different u-
niversal coefficients theorem for dimension n = 2 was obtained in [10] by another
method.) Sect.4 constructs a similar chain complex of thin projective abelian group
valued functors, which serves for thin coefficient functors, and Sect.5 constructs a
similar complex that serves for arbitrary coefficients. These sections bring no univer-
sal coefficients theorem, as a crucial hypothesis of the latter fails to hold.

Section 6 studies one example, for which constructions in previous sections are
carried out in some detail, also providing a counterexample for Sect.5. Relegated to
Sect. 7 is the rather lengthy proof of some technical properties of symmetric mappings
that are used to prove projectivity in previous sections. An index of notations concludes
the paper.
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1 Preliminaries

1. Coefficients in the commutative cohomology of a commutative monoid S are pro-
vided by an abelian group valued functor § = (G, y) on S (actually, on the Leech
category JH(S) [11]), which assigns an abelian group G, to each @ € S and a homo-
morphism y,; : G, —> Gy to each pair (a,1) € § x §, so that y,1 = 1g, (the
identity on G,) and Yar.u © Ya.t = Va.tu» forall a, t, u € S. Subscripts in y, ; will be
omitted if they are clear from context.

An abelian group valued functor § = (G, y) is thin if y,; = Y., whenever
at = au in S. Schiitzenberger functors have this property [2]. If § is thin, then y;
is well-defined by yb“ = Ya.ar Whenever b = at € a8 in S (whenever a = b in the
divisibility preorder), and then ¢ = 15, and ycb oyy =y, whenever defined; this
makes G a functor over S, regarded as a preordered set.

An abelian group valued functor § = (G, y) is constant on S if there is an abelian
group G such that G, = G foralla € Sand y,; = 1 foralla,t € S.

More generally, an abelian group valued functor § = F(B, G) might be constructed
from any abelian group G and suitable subset B as follows: let G, = G foralla € B,
G,=0foralla ¢ B,y,,=1¢gifa, at € B,and y,4s =0ifa ¢ Borat ¢ B.

Lemma 1.1 IfG # 0, then § = F(B, G) is an abelian group valued functor on S if
and only if B has the following property: ifa € B and abc € B, then ab € B.

Proof Ifinthe abovea € B,abc € B,andab ¢ B,theny, pc = 16 # 0 = Yub.coVa.b
and G is not a functor. On the other hand, if a € B, abc € B implies ab € B, then

Yat.atu © Yar = 0 = Vaam if a ¢ B orif atu ¢ B, and
Yat,atu © Ya,r = 1G = Ya,atu if a € B and atu € B,

for then at € B. O

We call asubset B of S convexifa € B,abc € Bimpliesab € B. Examples of con-
vex subsets of S include S itself, and, if S has a zero element 0, S\ {0}. More generally,
every ideal I of S is convex (since a € I implies ab € I), and its complement S\/ is
also convex (since abc ¢ I implies ab ¢ I).

An abelian group valued functor G is semiconstant it § = F(B, G) for some abelian
group G and convex subset B of S; then G is semiconstant on B at G. An abelian
group valued functor G is constant if § = F(S, G) for some abelian group G; then
G is constant ar G. If S has a zero element, then an abelian group valued functor §
is almost constant if § = F(S\{0}, G) for some abelian group G; then G is almost
constant at G.

2. In dimensions n < 4, H"(S, §) can be calculated from symmetric cochains,
cocycles, and coboundaries [6,7,9]. With coefficients in G, a symmetric 2-cochain u
on S with values in § = (G, y) assigns u (a, b) € Ggp to each a, b € S so that the
condition

u((b,a) =ua,b) (S2)
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498 P.A. Grillet

holds for every a,b € S. A symmetric 3-cochain u# on S with values in G assigns
u(a,b,c) € Ggpe toeach a, b, c € § so that all three parts of condition (S3):

u(a,b,a) = 0, (S3a)
u(c,b,a) = — uf(a,b,c), and (S3b)
u(a,b,c) + ub,c,a) + u(c,a,b) = 0, (S3c¢)

hold for all a,b,c € S. A symmetric 4-cochain u# on S with values in G assigns
u(a,b,c,d) € Gypeq toeacha, b, c,d € S so that all four parts of condition (S4):

u(a,b,b,a) = 0, (S4a)

u(d,c,b,a) = — u(a,b,c,d)), (S84b)

u(a,b,c,d) — u,c,d,a) + u(c,d,a,b) — u(d,a,b,c) = 0, (S4c¢)
u(a,b,c,dy — u,a,c,d) + u,c,a,d) — ub,c,d,a) = 0. (84d)

hold for all a, b, ¢, d € S [9] (in fact, (S4c) follows from (S4b) and (S4d), by Lemma
1.3 below). For the sake of completeness, a symmetric 1-cochain u on § assigns
u(a) € G, toeach a € S, and condition (S1) is empty. Under pointwise addition,
symmetric n-cochains constitute abelian groups C"(S, §) (n < 4).

Symmetric cochains are not defined in dimensions n = 5 for lack of appropriate
symmetry conditions. For the sake of completeness we denote by cr (S, 9) the group
of all n-cochains on S with values in G (an n-cochain u assigns u (ay, ..., a,) € Gq
toeachay, ..., a, € S, wherea =ajay --- ay).

The coboundary homomorphisms

Cl(s,9) -2 €8, 9) -2 €35, 9) - ¢*(5. 9) = C5(5. 9)

are:

(6u)(a, b) = ypqub) — u(ab) + yapu(a) € Gap,
(6u)(a, b, ¢) = ypc,au (b,¢) — ulab,c) + u(a,be) — vapcu(a,b) € Gape,
(Bu)(a,b,c,d) = ypegqu (b,c,d) — u(ab,c,d) + u(a,bc,d)
—uf(a,b,cd) + Vape,au (@, b,c) € Gapeds
(bu)(a,b,c,d,e) = yYpede,au (b,c,d,e) — u(ab,c,d,e) + u(a,bc,d,e)
—u(a,b,cd,e) + u(a,b,c,de) — yypedg,eu(a,b,c,d) € Gapede-
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Commutative monoid homology 499

for all a, b, c,d, e € S. Then symmetric n-cocycles and n-coboundaries constitute
subgroups

Z"(S, ) = Ker$
B"(S,G) =Im$

C C"(S,9) for n=1,23,4, and
C 7"(S,9) for n=2,3,4

of C"(S, §) (with B1(S,G) =0 C C1(S, 9)); and
H"(S,9) = Z"(5,9/B"(S,9)

whenn =1,2,3,4[6,7,9].
Ift : § — G is a natural lransformation and u € C"(S,9G) is a symmetric
cochain, then the cochain t*u € C"(S, G) defined by

™ulay, ..., ay) = ra(u(al, ...,an)) eG’a, where a =ajap --- a,,

is a symmetric cochain, which inherits all parts of (Cn) from u. Thus t : § — ¢’
induces a homomorphism t* = C"(S, ) : C"(S,9) — C"(S, G’). If every 1, is
injective, then so is T*. (Surjectivity also transfers; this is proved in Sect. 4).

3. Symmetry (as considered here) applies more generally to functions f : X — G
of n < 4 variables, where G is an abelian group and X is a subset of the cartesian
product §* = § x --- x S of some set S, which is symmetric in the sense that

(x1, ..., xp) € X implies (x51, ..., Xgn) € X
for all xy, ..., x, € S and every permutation o of 1, 2, ..., n.If n = 1, then every

mapping of X into G is symmetric. If n = 2, then a mapping f : X — G is
symmetric if and only if condition (S2):

fb,a) = f(a,b) (82)

holds foralla, b € S.If n = 3, then f : X — G is symmetric if and only if all three
parts of condition (S3):

fla,b,a) =0, (S3a)
f(c,b,a) = — f(a,b,c), and (S3b)
fa,b,c)+ f(b,c,a)+ f (c,a,b) =0, (S3c¢)

hold for all @, b,c € S.If n = 4, then f : X — G is symmetric if and only if all
four parts of condition (S4):
fla,b,b,a) =0, (S4a)

fdd,c,b,a) = — f(a,b,c,d), (S84b)
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fa,b,c,d)— f(b,c,da)+ f(c,d,a,b)— f(d,a,b,c) = 0, and (S4c)

f(a,b,c,d)— f(b,a,c,d)y+ f (b,c,a,d)— f(b,c,d,a) = 0. (S4d)

hold for all a, b, c,d € S.

If, for example, S is a commutative monoid, then a symmetric 4-cochain u €
C4(S, 9) consists of symmetric functions (a, b, ¢,d) —> u (a, b, c,d) : X; — Gy,
one for each s € S, where X; = {(a,b,c,d) € Sx S xS xS | abcd =s}isa
symmetric set, since S is commutative; and similarly for 2- and 3-cochains.

The general definition of symmetric maps can be shortened if » = 3 orn = 4.

Lemma 1.2 Condition (S3) is equivalent to the single condition

f(a,b,c) = f(b,a,c)— f(b,c,a). (83d)

Proof This generalizes the similar result in [6]. Conditions (S3c¢) and (S3b) imply
(S3d):

fla,b,c) = — f(c,a,b)— f(b,c,a) = f(b,a,c)— f(b,c,a).
Conversely, if (S3d) holds, then, for all a, b, ¢ € S,

f(a,b,a)=f (b,a,a)— f(b,a,a) = 0,
f(c,b,a)=fb,c,a)— f(b,a,c) = — f(a,b,c), and
fla,b,c)+ f(b,c,a)+ f(c,a,b)

= fW,a,c)— fb,c,a)+ f(b,c,a)— f(b,a,c) = 0.

O
Lemma 1.3 Conditions (S4b) and (S4d) imply (S4c).
Proof For all a, b, ¢, d € S, conditions (S4b) and (S4d) imply
fla,b,c,d) = f(bya,c,d)— f(b,c,a,d)+ f(b,c,d,a),
f(a,b,c,d) = — f(d,c,b,a)
= —f(C,d,b,a)+f(C,b,d,a) —f(c,b,a,d), and
f(a7b7c7d)_f(bac7d5a)+f(cad9avb)_f(daa’bac)
= f(a,b,c,d)+ f(a,d,c,b)
—f(a,b,d,c)+f(a,d,b,c)_f(a,d,c,b)
— f(a,d,b,c)+ f(a,b,d,c)— f(a,b,c,d) = 0.
O
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4. With respect to symmetric maps, every symmetric subset X € S” has a basis: a
subset Y of X such that every mapping of Y into an abelian group G extends uniquely
to a symmetric mapping of X into G.

If S is a totally ordered set, then X has an explicit basis:

Lemma 1.4 Let X be a symmetric subset of S", where n < 4 and S is a totally ordered
set.

If n =2, then the set Y of all (a, b) € X such that a < b is a basis of X.

If n = 3, then the set Y of all (a, b, c) € X such that a < b and a < c is a basis
of X.

If n = 4, then the set Y of all (a, b, c,d) € X such that either a < b, c,d, or
a < b,cand b < d, or both, is a basis of X.

Moreover, if f is a mapping of Y into an abelian group G and g is the symmetric
mapping of X into G that extends f, then every value of g is a sum of values of f
and opposites of values of f.

The set Y in Lemma 1.4 is the standard basis of X (given the total order on S).

Lemma 1.4 is vital for what follows. Its proof is straightforward but rather lengthy,
due to the case n = 4, and has been moved to Sect.7.

2 Symmetric chains

~

1. First we construct abelian groups C,(S/B) such that C"(S,9) = Hom
(Cr(S/B), G) when n < 4 and § is semiconstant at G on a convex subset B of
S.
Let Co(S/B) =0.Forn =1,2,3,4 let
X ={(@i,....,ap) €eS"=8S%x---xS|ajay ---a, € B}.

Iftn =1,2,3,4, then C,(S/B) is generated by X subject to the defining relations
given below. We denote by

t:(ay, ..., ap) —> (ay, ..., ap)
the canonical map of X into C,,(S/B). If n = 1, then X = B, the set of defining
relations is empty, and C(S/B) is free on B.
The defining relations of C»>(S/B) are all
(b,a) = (a,b), (C2)

where a, b € S and ab € B (so that (a, b) € X). The defining relations of C3(S/B),
collectively denoted by (C3), are all

(avb’a> = 07 (C3a)

(c,b,a) = — (a,b,c), and (C3b)
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502 P.A. Grillet

(a,b,c) + (b,c,a) + {(c,a,b) = 0, (C3c)

wherea, b, c € Sandabc € B (aba € Bin(C3a)). The defining relations of C4(S/B),
collectively denoted by (C4), are all

(a,b,b,a) = 0, (C4a)

(d,c,b,a) = — (a,b,c,d), (C4b)

(a,b,c,d) — (b,c,d,a) + (c,d,a,b) — (d,a,b,c) = 0, (C4o)
(a,b,c,d) — {(b,a,c,d) + (b,c,a,d) — {(b,c,d,a) = 0, (C44d)

where a, b, ¢, d € S and abcd € B (abba € B in (C4a)).

For later use it is convenient to define (ay, ..., a,) for all ay, ..., a, (where
n < 4): let
(a)=0if a ¢ B,
(a,b) =0 if ab ¢ B,
(a,b,c)y =0 if abc ¢ B, and
(a,b,c,d) =0 if abcd ¢ B.

If n = 2, 3,4, then X is a symmetric set and ¢ is a symmetric mapping of X into
C,,(S/B). In particular, it follows from Lemmas 1.3 and 1.2 that the defining relations
(C4c) can be omitted from (C4), and that (C3) can be replaced by

(a,b,c) = (b,a,c) — (b,c,a). (C3d)

A symmetric n-chain on S relative to B is an element of C,,(S/B). In particular,
Cn(S) = C,(S§/S) is the group of symmetric n-chains on S.

The use of the arbitrary convex subset B in these definitions has two advantages:
it covers the important cases B = S and B = S\{0}, avoiding duplicate proofs and
constructions; and it might allow future proofs by induction, as in [8]. Some of the
generality disappears if S\ B is an ideal:

Proposition 2.1 If S\B = [ # S is an ideal of S, then C,(S/B) = C, (T / T\{0}),
where T = S/1.

Proof If ay, ..., a, € S,thenay...a, € Bin S implies a1, ..., a, € B in S and
ay, ..., an € S/I;henceay...a, € BinSifandonlyifa;...a, #0inT = S/I.
Thus C,,(S/B) and C,, (T / T\{0}) have the same generators, and these are subject to
the same defining relations. O

Theorem 2.2 C,(S/B) is a free abelian group. In particular, C,(S) is a free abelian
group. If n = 2,3, 4, then, relative to any total order on S, C,,(S/B) is free on the
standard basis of X.
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Proof The groups Co(S/B) and C(S/B) are already free by definition. Letn = 2, 3, 4
and let Y be a standard basis of X from Lemma 1.4, so that every mapping f of X
into an abelian group G extends uniquely to a symmetric mapping g of X into G;
moreover, every value of g is a sum of values of f and opposites of values of f.

If f istherestriction of ¢ to Y, then g = ¢; hence the subgroup of C,,(S/B) generated
by ¢ (Y) contains all values of ¢ and is all of C,,(S/B).

Now let f be any mapping of Y into an abelian group G, which extends uniquely
to a symmetric mapping g of X into G. The values g (ay, ..., a,) of the symmetric
mapping g satisfy all the defining relations (Cn) of C,,(S/B). Hence g factors uniquely
through ¢: there is a homomorphism ¢ : C,,(S/B) — G suchthat g ot = g. In
particular, ¢ (¢ (v)) = f(y) forall y € Y, and ¢ is unique with this property since
C,(S/B) is generated by ¢ (Y). Thus C,(S/B) is free on Y (via t). O

Given the (arbitrary) total order on S, Lemma 1.4 provides an explicit description
of Y:

if n = 2, then Y is the set of all (a, b) such thata,b € S, ab € B,anda < b;

if n = 3, then Y is the set of all (a, b, ¢) such thata, b,c € S, abc € B,a < b,
anda < c;

if n = 4, then Y is the set of all (a, b, ¢, d) such thata, b, c,d € S, abcd € B, and
eithera < b,c,d,ora < b,cand b < d, or both.

In the above, Y is the standard basis of C,(S/B) (given the total order on §).

The definition of symmetric chains was cooked up so that the next result would
hold:

Proposition 2.3 If § = F(B, G) is semiconstant, then forn = 1,2, 3, 4 there is an
isomorphism U : Hom (C,(S/B), G) = C"(S, §) which is natural in G, and assigns
to g : Cy(S/B) —> G the cochain u = U (p) defined by:

_ Jelal, ...,ay) €Gifay...ay € B,
u(alv .y an) - {ZOGGal,.,an l:fa]...an¢B,
forallay, ..., a, € S.
Proof One may assume that G, = 0 € G whena ¢ B, so thatu (ay, ..., ay) =
pl{ay, ..., ay)forall ay, ..., a, in the above.
Letg : C,(S/B) —> G be ahomomorphism. For the elements ¢ (ay, ..., a, ) of

G such thataj ay - - - a, € B, property (Sn) follows from (Cn). This is also the case,
trivially, if ajaz - -- a, ¢ B. Thus U () is a symmetric n-cochain.

Conversely, let u € C"(S,G). The elements u (ay, ..., a,) of G, where
ay, ...,a, € S and ajay ---a, € B, satisfy all defining relations (Cn) of
C,,(S/B). Therefore there is a unique homomorphism ¢ : C,(S/B) —> G such that
play, ...,ap)=u(ay, ..., ay) forallay, ..., a, € Ssuchthata;a; --- a, € B.
This sets up a one-to-one correspondence between C" (S, §) and Hom (C,,(S/B), G),
which preserves pointwise addition and is natural in G. O

2. Boundaries are defined as follows (so that Lemma 2.7 will hold).
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504 P. A. Grillet

Proposition 2.4 Let B be a convex subset of S. For eachn = 1,2, 3, 4 there exists a
unique homomorphismd, : C,,(S/B) — C,_1(S/B) suchthat, foralla, b, c,d € S,

di{a) = 0, (B1)
0{a,b) = (b) — (ab) + (a) if ab € B, (B2)

i(a,b,c)y = (b,c) — (ab,c) + (a,bc) — (a,b) if abc € B, (B3)
d4{a,b,c,d) = (b,c,d) — (ab,c,d) + (a,bc,d) — (a,b,cd) + (a,b,c)
if abed € B. (B4)

Moreover, 9,109, =0 (n =2,3,4).

Proof First, 9; = 0. Next, ifa, b € S,then (a) —(ba)+ (b)) =(b)—{ab)+{a),
since S is commutative. Hence the 1-chains (b) — (ab) + (a), where a,b € S
and ab € B, have property (C2). Therefore there is a unique homomorphism 9, :
C>(S/B) —> C1(S/B) such that 92(a,b) = (b) — (ab) + (a) foralla,b € §
such that ab € B.

Similarly, if a, b, ¢ € S, then it follows from (C2) and commutativity in S that

(b,a) — (ab,a) + (a,ba) — (a,b) = 0,
(b,a) — (cb,a) + (c,ba) — (c,b)
= — ({(b,c) — (ab,c) + (a,bc) — (a,b)), and
(b,c) — (ab,c) + {(a,bc) — {(a,b)
+ (c,a) — (bc,a) + (b,ca) — (b,c)
+ (a,b) — {(ca,b) 4+ {(c,ab) — {(c,a) = 0.
Hence the 2-chains (b,c) — (ab,c) + (a,bc) — (a,b), wherea,b,c € S
and abc € B, have properties (C3a), (C3b), and (C3c). Therefore there is a unique
homomorphism 93 : C3(S/B) —> C2(S/B) such that (B3) holds.

Similarly, if @, b, ¢, d € S, then it follows from (C3a), (C3b), (C3c), (C3d), and
commutativity in S that

(b,b,a) — (ab,b,a) + {(a,bb,a) — {(a,b,ba) + (a,b,b) = 0,

(c,b,a) — (dc,b,a) + {(d,cb,a) — {(d,c,ba) + {(d,c,b)

= — ((b,c,d) — (ab,c,d) + (a,bc,d) — (a,b,cd) + (a,b,c)),

((b,c,d) — (ab,c,d) + (a,bc,d) — (a,b,cd) + (a,b,c))
—((c,d,a) — (be,d,a) + (b,cd,a) — (b,c,da) + (b,c,d))
+((d,a,b) — (cd,a,b) + (c,da,b) — {(c,d,ab) + (c,d,a))
—((a,b,c} — (da,b,c) + (d,ab,c) — (d,a,bc) + (d,a,b)) =0,
and

((b,c,d} — (ab,c,d) + (a,bc,d) — (a,b,cd) + (a,b,c))
—((a,c,d) — (ba,c,d) + (b,ac,d) — (b,a,cd) + (b,a,c))
+ ((c,a,d) — (bc,a,d) + (b,ca,d) — (b,c,ad) + (b,c,a))
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—((c,d,a) — (be,d,a) + (b,cd,a) — (b,c,da) + (b,c,d)) = 0.

Thus the 3-chains (b, c,d) — (ab,c,d) + (a,bc,d) — (a,b,cd) + {(a,b,c),
where a, b, ¢, d € S and abcd € B, have properties (C4a), (C4b), (C4c) and (C4d).
Therefore there is a unique homomorphism d4 : C4(S/B) —> C3(S/B) such that
(B4) holds.

Finally, we have d; 0 3, = 0. Leta, b, c € S, abc € B.If ab, bc € B, then

8283(a,b,c)=82((b,c) — (ab,c) + (a,bc) — (a,b))
=(c) — (bc) + (b) — (c) + (abc) — (ab)
+(bc) — (abc) + {(a) — (b) + (ab) — (a) = O.

Ifab ¢ B and bc € B, then a ¢ B, since B is convex; b ¢ B, since ba ¢ B and
bac € B; 9 {(a,b) = 0; and

8283(a,b,c):82((b,c) — {ab,c) + (a,bc) — (a,b))
=(c) — (bc) + (b) — (c) + (abc) — (ab)
+(bc) — (abc) + (a) = 0.
Exchanging a and c yields 92 d3(a,b,c) = 0if ab € B and bc ¢ B. Finally, if
ab, bc ¢ B, then, as above, a,b ¢ B and 0 93(a, b, c) = 0. Hence 9 0 93 = 0.
Similarly, leta, b, c¢,d € S, abcd € B.If abc, bed € B, then

3334(61 b c, d)

83(bcd —(abcd)+(a,bc,d)—(a,b,cd}—i—(a,b,c))
= ((c,d (be,d) + (b,cd) — (b,c))
((c ) (abc,d) — (ab,cd) + (ab,c))
+((b d) — (abc,d) + {(a,bcd) — (a,bc))
((b cd) (ab,cd) — (a,bcd) + (a,b))
+((b.c) — (ab,c) + (a,bc) — (a,b)) = 0.

If abc ¢ B and bed € B, then a ¢ B, since B is convex and abcd € B; b ¢ B,
since bac ¢ B and bacd € B;ab ¢ B, since abc ¢ B and abcd € B; bc ¢ B since
bca ¢ B and bcad € B; 33 (a,b,c) = 0; and

3334(61 b c, d)

83(bcd —(abcd)+(a,bc,d)—(a,b,cd}—i—(a,b,c))
((c (bc,d) + (b,cd) — (b,c))

(( — (abc,d) + (ab,cd) — (ab,c))
+((bc d — (abc,d) + (a,bcd) — (a,bc))

((b cd) — (ab,cd) + {(a,bcd) — (a,b)) = 0.
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Exchanging a and d yields 0, d3(a, b,c,d) = 0if abc € B and bcd ¢ B. Finally, if
abd, bcd ¢ B, then, as above, a, b, ab, bc ¢ B and 03 d4(a, b, c,d ) = 0. Therefore
03004 =0. O

Relative to a convex subset B of S, a symmetric n-cycle is an element of
Z,(S/B) = Kerd, S Cy(S/B)
(where n = 1, 2, 3, 4); a symmetric n-boundary is an element of

By(S/B) = Imd,+1 S Cu(S/B)
(wheren = 0, 1, 2, 3). In Proposition 2.4, 3,,09,4+1 = Oimplies B,(S/B) C Z,(S/B).
The commutative homology groups of S relative to B are the abelian groups

H,(S/B) = Zu(S/B)/ Bn(S/B),

where n = 1, 2, 3. In particular, the commutative homology groups of S are the groups
Hy(S) = Hy(S/S) (n =1,2,3).

We take a closer look at H1(S/B). First we note that every subset P of S can be
viewed as a commutative partial semigroup in which the product ab of two elements
a, b of P is defined if and only if their product in S lies in P, in which case the two
products are equal. In a classic case of adjoint functors, P has a universal abelian
group F(P) and a partial homomorphism ¢ : P —> F(P), such that for every partial
homomorphism f of P into an abelian group G there is a unique homomorphism ¢ of
F(P)into G suchthat pot = f.Itisreadily seen that F (P) can be described as the a-
belian group generated by all [a] (= ¢ (a)) witha € P, subject to all defining relations
[ab] = [a] + [b], where a, b, ab € P. Under pointwise addition, the partial homo-
morphisms of P into an abelian group G constitute an abelian group PHom(P, G),
and the adjunction provides an isomorphism ¢ —— ¢ o ¢ of Hom (F(P), G) onto
PHom(P, G), which is natural in G.

Proposition 2.5 If S\B # S is an ideal of S, then Hi(S/B) is the universal abelian
group of the commutative partial monoid B, and H' (S, G) = PHom(B, G) whenever
§ = F(B, G) is semiconstant on B. In particular, Hi(S) is the universal abelian
group of S and H! (S, 9) = Hom (S, G) whenever G is constant at G.

Proof We saw that Co(S/B) = 0, so that Z;(S§/B) = C{(S/B) and Hy(S/B) = 0,
and that 9, : C2(S/B) —> C1(S/B) sends every generator (a, b ) of C2(S/B), where
ab e B,to(b)—(ab)+(a).Since S\ B isanideal,ab € B impliesa, b € B. Hence
Hi(S/B) is the abelian group generated by all (a ) witha € B, subject to all defining
relations (ab) = (a) + (b ), where a, b € S and ab € B; in other words, H{(S/B)
is the universal abelian group of the commutative partial monoid B. The partial ho-
momorphism ¢ : B —> Hj(S/B) sends each a € B to the coset of (a ) in H{(S/B).
The isomorphism H'(S, §) = PHom(B, G) then follows from Proposition 2.3. O

The homology groups H, (S) (with B = §) tell us nothing if S has a zero element
(hence H, (S / S\{0}).
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Proposition 2.6 If S has a zero element, then H,(S) =0 forn = 1,2, 3.

Proof Foreverya € S, 9> (a,0) = (0) — (a0) + (a) = (a); hence every 1-chain
is a boundary and H;(S) = 0. (This also follows from Proposition 2.5, since 0 is the
only homomorphism of § into G.)

Place an arbitrary total order < on S. For every a, b € S, homomorphisms o :
Ca2(S) — C3(S) and 7 : C2(S) —> C3(S) are well-defined by:

o(a)=1(a,0) and
(a,b,0) if a < b,
(

b
by =0 00y ifazb.

Indeed the two definitions of t (a, b ) agreeifa = b,and t (b,a) = t {a, b) for all
a,b.

We show that (a,b) =0 d» (a,b) — 33t (a,b) foralla,b € S (so that o, T are
the beginning of a contracting homotopy). If a < b, then

od{a,by—09t{a,b)
=o(b) —o{ab)y4+o{a) — 93(a,b,0)
=(b,0) — (ab,0) + (a,0) — (b,0) + (ab,0) — (a,b0) + (a,b)
={a,b).

Ifa = b, then

ocd{a,b)y — d3t{a,b)
=o(b) —o{ab) + o{a) — 303(b,a,0)
=(b,0) — (ab,0) + (a,0) — (a,0) + (ab,0) — (b,a0) + (b,a)
={(a,b).

Itfollows thato 9, u—9d3 T u = uforeveryu € C»(S).1f 9, u = 0, thenu = 93 (—tu).
Thus every 2-cycle is a 2-boundary, and H>(S) = 0.
Next we show that, for every a, b, ¢ € S, we have
(a,b,c) + td3(a,b,c) = 04v

for some v € C4(S). First, forall x, y € S,

d4(x,0,¥y,0) = (0,y,0) —(x0,y,0)+ (x,0y,0) — (x,0,y0)
+(x,0,y) = (x,0,y),

so that
<y’x70> = <x’y’0> - <x,07)’> = <x’y’0) - 84<x707y’0)
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by (C3d). Hence
T(x,y) = (x,5,0) + 940,

where v =0ifx < yandv = — (x,0,y,0) if x = y. Now
td3{(a,b,c)=t(b,c) — t{ab,c) + t{a,bc) — t{a,b)
={(b,c,0) — (ab,c,0) + {(a,bc,0) — (a,b,0) + 04v
=04(a,b,c,0) — {(a,b,c) + 04v

for some v € C4(S), whence (a,b,c)+1t03{(a,b,c) € Imads. Henceu + t d3u €
Im 94 for every u € C3(S).If d3u = 0, then u € Im d4. Hence H3(S) = 0. O

3.If § = F(B, G) is semiconstant, then, in dimensions n = 1, 2, 3, the commuta-
tive cohomology groups H" (S, §) are the cohomology groups of the symmetric chain
complex

C.(S/B): 0L C\(S/B) <= Ca(S/B) <= C5(S/B) <= C4(S/B).

This is proved as follows, using the isomorphism U in Proposition 2.3.
Lemma2.7 Ifn =1,2,3,4, G =3F(B,G), ¢ : C,—1(S/B) —> G is a homomor-
phism, and u = U (p) € C"~1(S, G), then 8u = U (¢ o 9,).

Proof If n = 1,thenu = 0,8u = 0,9, = 0,and du = U (¢ 0 dy). In general, one may
assume that G, = 0 € G whena € N,sothatU (¢)(ay, ..., ay) =@ {ai, ..., a)
forall ay, ..., a,.

Letn =2.Ifa,b € S and ab € B, then

Su)(a,b) = u(b) — ulab) + u(a) = ¢ ((b) — (ab)+ (a)) = ¢ (3(a,b)).

If ab ¢ B, then (a,b) = 0 and (§u)(a, b) = 0, since (§u)(a, b) € G4p. Hence
du = U (¢ o ).
If n =3, thenu (a,b) = ¢ (a, b) and, for all a, b, c € S such that abc € B,
(bu)(a,b,c) =u((b,c) — u(ab,c) + u(a,bc) — u(a,b)
— ¢ ((b,c) = (ab,c) +{a,be) — (a,b)) = ¢ (@3(a,b,c)).

If abc ¢ B, then (a,b,c) = 0 and (Su)(a, b, c) = 0, since (Su)(a, b, c) € Gape.
Hence éu = U (¢ o0 03).
Ifn=4,thenu (a,b,c) =¢{a,b,c)and, foralla, b, c,d € S such that abcd €
B7
(bu)(a,b,c,d) =u (b, c,d)—u(ab, c,d)+u (a,bc,d)=—u(a,b,cd) +u(a,b,c)
:(p((b,c,d)—(ab,c,d)+(a,bc,d)—(a,b,cd)+(a,b,c))
= ¢ (04(a, b,c,d)).

If abcd ¢ B, then (a,b,c,d) = 0 and (§u)(a, b, c,d) = 0, since (Su)(a, b, c,d) €
Gabed- Hence du = U (¢ o 04). O
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Theorem 2.8 Let n = 1,2,3. If G is semiconstant at G on B, then U induces an
isomorphism H" (S, G) = H"(C.(S/B), G) which is natural in G.

Proof In the cohomology of C.(S/B) with coefficients in G, an n-cochain is
a homomorphism ¢ : C,(S/B) —> G; an n-cocycle is a homomorphism
¢ : Cy(S/B) —> G such that ¢ o 9,41 = 0; an n-coboundary is a homomorphism
Y od, : C,(S/B) —> G for some homomorphism ¢ : C,_1(S/B) —> G. These
constitute abelian groups C", Z", and B", such that B" C Z, since 9, 0 d,+1 = 0. By
Lemma 2.7, the isomorphism U in Proposition 2.3 sends Z" onto Z" (S, G), sends B"
onto B"(S, 9), and induces an isomorphism H"(C.(S/B), G) = H"(S, 9), which,
like U, is natural in G. O

3 The universal coefficients theorem

Since C, (S/B) is a free abelian group when n = 0, 1, 2, 3, 4, and subgroups of free
abelian groups are also free, Theorem 2.8 yields a universal coefficients theorem:

Theorem 3.1 If G = F(B, G) is semiconstant at G, then there is an isomorphism
H"(S,9) = Ext(H,—1(S/B), G) ® Hom (H,(S/B), G) (n=1,2,3)

whichisnaturalin G. In particular, H" (S, §) = Ext (H,—1(S), G)®Hom (H,(S), G)
if G is constant at G.

Proof This follows from more general Universal Coefficient Theorems (e.g. Theorem
3.6.5 of [14]). O

Corollary 3.2 If S has a zero element and G is constant, then H"(S,G) = 0 for
n=1,2,3.

Proof By Proposition 2.6, H, (S) = 0 foralln < 3. O
This extends the similar result for nilmonoids, obtained in [10] by different methods.

Corollary 3.3 If S has a zero element, J is an ideal of S, and G = F(G / S\J), then
H'(S.9) = 0, H*(S,9) = H'(S,9) and H*(S,9) = H*(S.9)), where §' =
F(G/JT).
Proof Let §” = F(G/S) be constant at G. The short exact sequences

0— Go=0— G'=G—G,=G—>0if aeS\J,

0— G,=G—G/=G—G,=0—0ifacl,
yield a short exact sequence

0—§—>96¢ —>G¢ —50
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that induces exact sequences

0— HY(S,5) — H'(S,9")
H'(S,9") — H'(S,9) — H*(S,9) — H*(S,9")
H*(S,9") — H*(S,8) — H3(S,G) — H(S,9")

in which H'(S, §") = H?(S,§") = H3(S,9”) = 0 by Corollary 3.2. o
Corollary 3.4 If S is free, then H2(S) = H3(S) = 0.

Proof LetS = IF be free on X. It is a property of commutative semigroup cohomology
that H"(IF, §) = 0 for all n = 2 and all G [7]. Now the universal abelian group of F
is the free abelian group G; hence H;(F) = G, by Proposition 2.5. If G is constant on
F at G, then Theorem 3.1 yields

Hom (H>(F), G) = Ext(G, G) @ Hom (Hy(F), G) = H*(F,$) = 0;

hence Hom (H (F), G) = 0 for every abelian group G, and it follows that H,(F) = 0.
Then Theorem 3.1 also yields

Hom (H3(F), G) = Ext (Hy(F), G) ® Hom (H3(F), G) = H*(F,$) = 0;

hence Hom (H3(FF), G) = 0 for every abelian group G, and it follows that H3(IF) = 0.
O

2. We now look at H'.

Proposition 3.5 If S\B # S is an ideal of S and § = F(B, G) is semiconstant, then

H'(S,8) = PHom(B, G),

~

the group of partial homomorphisms of B into G. In particular, H'(S, 9)
Hom (S, G) whenever G is constant at G.

Proof By Proposition 2.5, H;(S/B) is the universal abelian group of the commuta-
tive partial monoid B; hence Theorem 3.1 yields HY(S, 9) = Hom (H; (S/B), G) =
PHom(B, G). In fact, if S\B # S is an ideal of S, then 1-cocycles u € Zl(S, 9

coincide with partial homomorphisms of B into G. In particular, if B = S, then
H{(S) = H(S/B) ZHom (S, G). O

Example 3.6 is the commutative nilmonoid
S = (x,y !xs :x3y=x2y2=y4=0, x4=x2y=xy3)

(thisis Example 3.3 of [10]). A partial homomorphism ¢ : $\{0} — G into an abelian
group G is determined by g = ¢ (x) and h = ¢ (y) such that4g =2g+h = g + 3h,
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equivalently, 2g = h and g = 2h; thus ¢ is determined by ¢ € G such that 3g = 0.
If G is almost constant at G, then

H'(S,9) = PHom(S\{0}, G) = {g € G |3g=0) = Hom (Zs, G)

and H; (S / S\{0}) is cyclic of order 3. m]

Example 3.7 is the commutative nilmonoid
S = (x,y ’xs _ x5y2 _ x3y4 =xy6 _ y7 =0, x4y2 =x2y4, x3y3 _ xy5 ).

A partial homomorphism ¢ : S\{0} — G into an abelian group G is determined
by g = ¢ (x) and i = ¢ (y) such that 4g 4+ 2h = 2g + 4h and 3g + 3h = g + 5h,
equivalently, 2g = 2h; thus ¢ is determined 2 and r (= g — h) such that 2t = 0.If §
is almost constant at G, then

H'(S,9) = PHom(S\{0}, G) = G@{reG |2t =0} = Hom(Z & Z, G)

and Hi (S / S\{0}) = Z & Z». O

An example that is not a nilmonoid is given in Sect. 6.

4 Cohomology with thin coefficients

1. In this section, T is the category of thin abelian group valued functors on S; we con-
struct a projective chain complex A, (S) in the category T such that H" (A.(S), §) =
H"(S,9) when § is thin. First we analyze the chain groups C, (S) as follows.

Lemmad4.1 Letn = 1,2,3,4. For each s € S let C,(s) be the subgroup of C,(S)
generatedbyall (ay, ..., ay ) suchthatay ay --- a, = s. Then Cy,(s) is, up to isomor-
phism, the abelian group generated by all (ay, ..., ap) such that ayay --- a, = s,
subject to all defining relations (Cn). Moreover, C, (S) = ®seS Cr(s).

Proof Letn = 2,3, 4. Foreach s € S let B, = B, (s) be the abelian group generated
by the symmetric set

Xy = {(a, ....,a) e S" |arar - ay =5},

subject to all defining relations (Cn). As in the proof of Theorem 2.2 we show that B,
is free and that, relative to any total order on S, B, is free on the standard basis Y of
Xs. Every mapping f of Y, into an abelian group G extends uniquely to a symmet-
ric mapping g of X into G; moreover, every value of g is a sum of values of f and
opposites of values of f.

Let« : (ai, ..., ay) —> lai, ..., a,] denote the canonical mapping of X, into
B,,. The defining relations of B, show that « is a symmetric mapping. If f is the
restriction of k to Y, then « is the symmetric mapping that extends f; hence every
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[a1, ..., a,]isasum of elements of k (Yy) and their opposites. Hence B,, is generated
by « (Ys).

Now let f be any mapping of Y into an abelian group G, which extends uniquely to a
symmetric mapping g : X; —> G. Since g is symmetric, the elements g (ay, ..., a,)
with (ay, ..., a,) € X, satisfy all defining relations of B, ; therefore g factors through
k: there is a unique homomorphism ¢ : B, —> G such that pok = g. In particular,
elai, ..., apl = f (a1, ..., ay) forall (a1, ..., a,) € Y, and ¢ extends f. More-
over, ¢ is unique with this property, since B, is generated by « (Y;). Thus B, is free
on Yy (via k).

The set X is a disjoint union X = | J,¢ X;. Relative to the same (arbitrary) total
order on S, its standard basis Y is the disjoint union ¥ = US cs Ys, as shown by the
description of standard bases in Lemma 1.4. As above, every ¢ (aj, ..., a,) is a sum
of elements of ¢ (Y) and their opposites; hence Cy,(s) is generated by ¢ (¥). Since
C,(S) is free on Y, it follows that Cy, (s) is free on Yy (via t). Therefore C, (s) = B,,.
Also, C,,(S) = 5 Cu(s), since Y is the disjoint union ¥ = | J;g ¥s. O

In what follows, < now denotes the divisibility preorder on S, under whicha < b
if and only if a = bt for some ¢ € S; equivalently, aS C bS.

Proposition4.2 Letn = 1,2,3,4. For each a € S let A,(a) = @seS,sZa C,(s),

where C,(s) is the subgroup of C,(S) generated by all {(ay, ..., a,) such that
ayray --- a, = s, equivalently, A,(a) is the subgroup of C,(S) generated by all
(ay, ..., ay) suchthatayay --- a, = a. For each a 2 b in S (under divisibility) let

ap 2 Ay(a) —> Ay (b) be the inclusion homomorphism. Then A, (S) = (A, a) is a
thin abelian group valued functor on S. Moreover, for every thin abelian group valued
Sfunctor functor G on S there is a isomorphism

U : Homt (A,(S), %) = C"(S,9)

which sends each natural transformation t : A, (S) — G = (G, y) to the n-cochain
u defined by

u@a, ..., ayp) = t4{ay, ..., ay), where a=ajay --- ay,

andis naturalin G. (Thus the functor C" (S, —) of T to abelian groups is representable.)
Then tg (ay, ..., an) =ySul(ai, ..., an) whenevers =ajaz --- a, = a.

Proof Ifa = bin S,thenajay -+ a, 2 aimpliesaja --- a, = b, so that A, (a) C
A, (b) and there is an inclusion homomorphism ey, : A, (a) — A, (b). Then o =
14, (), aé’an =af whena 2 b 2 ¢, and A, (S) is a thin functor.

Let§ = (G, y) be athin abelian group valued functoron S,andlett : A, (S) — §

be a natural transformation. If aya> --- a, = a, then (ay, ..., a,) € A,(a) and
o {ai, ..., a,) € G,. Moreover, the elements 7, (aj, ..., a,) of G, inherit
all properties (Cn) from the chains (ay, ..., a, ). Hence u : (ay, ..., ay) —>
T, {ai, ..., a, ) is a symmetric n-cochain and U (t) = u € C"(S, 9).
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Conversely, let u € C"(S, G). For each s € S the values u (ay, ..., a,) of u
such that aj ap - -+ a, = s inherit from the symmetric cochain u all the defining re-
lations (Cn) of C, (s) in Lemma 4.1. Therefore there is a unique homomorphism g :
C,(s) — Gy suchthatgs(ay, ..., a,) =u(ay, ..., a,) wheneverayaz --- a, =
s. Since A, (a) = @SE& >4 Cn(s) there is a unique homomorphism 7, : A,(a) —
G, such that -

Tg X = V; Ps X
forall s = a and x € C,,(s). In particular,

alal, ..., an) = vieslay, ..., an) = you(ai, ..., a)

whenever s =aja --- a, = a.If a 2 b, then

Yo Talal, ..., an) =yy yyulai, ..., ap)

zygu(als "'7al’l) = tb<a11 "'7a}’l> = TbaZ<a19 -«-,an>

whenever aj ap - -- a, = s 2 a. Therefore T (u) = v = (t,)4es 1s a natural transfor-
mation. Moreover, U (t) = u.

The maps T and U preserve pointwise addition, and are mutually inverse isomor-
phisms: if t : A,(S) —> § is a natural transformation, and © = U (t), then
e {ay, ..., ay) =0aula, ..., a,) wheneverajas --- a, =s,sothat T(u) = 7.

Finally, let 0 : § —> G’ be a natural transformation. We saw in Sect. 1 that
o induces a homomorphism ¢* = C"(S,0) : C"(S,9) — C"(S5,9);ifu €
Cc"(S,9), then

(c*u)(ay, ..., a,) = oqau(ai, ..., a,), where a=ajas --- a,.

If r : A, —> §Gis anatural transformation, then sois o o T = Homt (C,,(S), o)(7) :
A, — G, and

U@ot)(al, ..., an) = oatqu(ay, ..., ay) = (*Ut))(ai, ..., a,)

whenever ajay -+ a, = a; hence U’ o Homt (A, (S), ) = 0* o U. Thus U is
natural in G. O

2. We note some properties of A, (S).

First, C,(S) is a directed union C,(S) = (J;cg An(s). Indeed (J .5 An(s) is a
directed union, since A,(a) € A,(ab), A,(b) C A,(ab), for all a,b € S. Then
(Uses An(s) is a subgroup of C,,(S), which contains every generator of C,,(S) and is
therefore all of C;,(S). In particular, C,,(S) = li_r)nAn (S).

The abelian groups A, (a) are subgroups of C, (S), which is a free abelian group
by Theorem 2.2, and are therefore free.
Next we show that the functors A, (S) are projective in T.
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Lemmad.3 Letn = 1,2,3,4. Ifo : § —> G is an epimorphism in T, then o* =
C"(S, o) is surjective.

Proof Recallthat (c*u)(ay, ..., an) =oqu(ai, ..., a,) € G, forallay, ..., a, €
S, where u € C"(S,G) anda = ajay --- ay. Let o : § —> G’ be an epimorphism.
Since cokernels in T are pointwise, every o, : G, —> G, is surjective.

Letu' € C"(S,9).Ifn =0,thenu’ =0 =0%0.If n = 1, then foreacha € S we
have u), = o, u, forsome u, € G,, which provides u € C(S, 9) such thatu’ = o*u.
Now letn = 2, 3, 4.

As a set of ordered pairs, 4 is a disjoint union of mappings u; (s € S), where
u:(ay, ..., ap) —> u'(ai, ..., a,) is a symmetric mapping of

Xs = {(ay, ..., an)|a1’ e a €S8, a1ay - ap =5}

into G,. By Lemma 1.4, X has a basis ¥y C X;: every mapping of Y into an a-
belian group G extends uniquely to a symmetric mapping of X into G. Since oy is
surjective there exists for each (aj, ..., a,) € Y5 some v (ay, ..., a,) € Gy such
that o5 v (ay, ..., ay) = u'(ay, ..., ay). This mapping v of Y into G, extends
uniquely to a symmetric mapping u, of X into Gy. Then o o uy and u), agree on Y,
whence oy o ug = u,. Since each u, is symmetric, the union u of all u is a symmetric
n-cochain. Forallay, ..., a, € S,

(O*M)(Cll, cooy ay) =ogulay, ..., ap) =osug(ay, ..., a,) = u/(ala .., ap),

where s = ajay --- a,. Thus o*u = u'. O
Theorem 4.4 A, (S) is projective in T, forn =1, 2, 3, 4.

Proof By Lemma 4.3, C" (S, —) preserves epimorphisms. Hence Hom (A, (S), —),
which is naturally isomorphic to C" (S, —) by Proposition 4.2, also preserves epimor-
phisms. O

3. Boundaries are inherited from C,,(S).

Lemma 4.5 The boundary homomorphisms 9, : C,(S) —> C,,—1(S) in Proposition
2.4 induce natural transformations 9, : A, (S) —> An—1(S) such that 9,,—1 o 3, = 0.

Proof If (ay, ..., a,) € A,(a), then 3, (ay, ..., a,) € A,_1(a): indeed if n = 2
and (x,y) € As(a),thenxy Z a,x 2 xy Za,y = xy = a, and

n(x,y) = (y)—(xy)+({x) € Ai(a);
ifn=3and (x,y,z) € A3(a), thenxyz = a, xy = xyz =2 a, yz = xyz = a, and
93 (x,y,z2) = (y,z2) —(x,yz) +(xy,2) = (x,y) € Ax(a);

ifn=4and (x,y,z,t) € A4(a), then xyzt = a, xyz = xyzt = a, yzt = xyzt 2 a,
and
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34(-x7y7z’t) = (vaaf)_(x»y’Zf)
+(x»yzat)_(XY’Z’”"'(xayaZ) €A3(a)

In each case, 9, induces a homomorphism (9,), : Ay(a) — An—1(a).
Since ¢, is an inclusion homomorphism, @ = b implies

OéZ (On)a (@, ..., an) = (3n)bOéZ(al, sy ap)

whenever a; as --- a, = a; hence 9,, = ((a”)“)ae s is a natural transformation. Then
Op—1 o dy = 0 follows from Proposition 2.4. O

Lemmad.6 Ifn=1,2,3,4, Gis thin, and Tt : A,—1(S) —> G is a natural transfor-
mation, then U (t 0 9,) = § (U (‘L')).

Proof U is the isomorphism in Proposition 4.2: ifu = U (7),thent, (ay, ..., an—1)
= yS u(a, ..., ap—1) whenever ajax ---ap—1 = ¢ 2 a; in particular,
u(ay, ..., ap—1) =14,(ay, ..., ap—1 )yifaray --- a,—1 = a.Letv = U (1t 0 9dy), SO
thatv (ay, ..., ay) =1, 0, (a1, ..., ay)ifayar --- a, = a. We show that v = éu.
This is trivial if n = 1.

If n = 2, then

U(x7y)=fxy32(x,y) = Txy'<y)_7:xy(XY)+7:xy(x>
=yhu(y) — u@y) + yux) = @u)x,y).

If n = 3, then

VX, Y, 2) = Txyz 03(X, ¥, 2) = Tayz (Y, 2) — Tayz (X, ¥2) + Tuyz (XY, 2) — Tayz (X, 9)
=¥zt (3,2 — u (@, y2) + u(xy,2) — iz u (X, y) = @Gu)(x,y,2).

If n = 4, then

V(X,y,2, 1) = Tayze 04 (X, 9,2, 1)
=Txyzt()’vz,t)_Txyzt(xv)’9zt>+'cxyzt(xvyz9t>
—Txyzr (XY, 2, 1) + Tayze (X, ¥, 2)
o yat xXyz
- xyz[u(yvz’t) - u(-xayvzt) + u(-x’yzvt) - nyzt”(x’)’az)

= (bu)(x,y,z,1).

3. Let A, (S) be the chain complex
A(S) 1 0 —— A1 (S) <= Ax(S) <= A3(S) < AL(S) «— 0 «— - -
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Theorem 4.7 Ifn = 1,2, 3 and § is thin, then there is an isomorphism

which is natural in G.

Proof Proposition 4.2 provides an isomorphism U : Homrt (A,(S), §) = C"(S, 9)
which is natural in G. In the cohomology of A, with coefficients in G, an n-cochain
t: A, — Gisacocycleifand onlyif 0 8,41 = 0, if and only if § (U (7)) = 0, by
Lemma 4.4; hence U sends Z" (A, 9) onto Z"(S, G). Similarly, a cochaint : A, —
G is a coboundary if and only if T = o o 9, for some cochaino : €, —> G, if and
only if U (t) = 8u forsome u = U (o) € C"~'(S, G), by Lemma 4.4; hence U sends
B"(A, 9) onto B"(S, 9). Therefore U induces an isomorphism of H" (A.(S), §) =
Z"(Ax(S),9) / B"(A«(S),9) onto H"(S,9) = Z"(S,9) / B"(S, G), which, like U,
is natural in G. O
5 Cohomology with arbitrary coefficients
1. We now turn to the general case, when coefficient functors are not necessarily thin,
and show that the commutative cohomology of S with thin coefficients is the coho-
mology of a chain complex in the category A of all abelian group valued functors on
S. This turns out to require slightly longer chains, which are defined as follows.

Let £Lo(S) = 0.

Let £1(S) assign to each a € S the free abelian group L|(a) generated by

Xi(a) = {{(x,1) |x,t eS, xt=al}.

Let £,(S) assign to a € S the abelian group L, (a) generated by
Xo(a) = {{(x,y,1) |x,y,t €S, xyt=al}l,
subject to all defining relations
(y,x,1) = (x,y,1). (C2)

Let £3(S) assign to a € S the abelian group L3(a) generated by
X3(a) = {(x,y,2,1) | X,y,z,t €8, xyzt =a},

subject to all defining relations, collectively denoted by (C3):

(x,y,2,1) =0, (C3a)

(z,y,x,t)y = — (x,y,z,t), and (C3b)
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(x,y,z,t) + (y,z,x,t) + (z,x,y,t) = 0. (C3c)
Let £4(S) assign to a € S the abelian group L4(a) generated by

X4(a) = {((w,x,y,2,1) | w,x,y,2,t €S, wxyzt =a},
subject to all defining relations, collectively denoted by (C4):
(w, x,x,w,t) = 0, (C3a)
(z,y,x,w,t) = — (w,x,y,2,1), (C3b)
(w,x,y,z,t) — (x,y,z,w,t) + (y,z,w,x,t) — (z,w,x,y,t) = 0, and
(C3c¢)

(w,x,y,z,t) — (x,w,y,z,t) + (x,y,w,z,1) — (x,y,z,w,t) = 0. (C3d)

Thus the typical generator of L, (a) consists of a symmetric n-chain plus an extra
element ¢. In fact, foreach t € S, (x1, ..., xp) —> (X1, ..., X», 1) is @ symmetric
mapping into L,(a). Hence it follows from Lemma 1.3 that the defining relations
(C4c) may be dropped from the definition of L4(a), and it follows from Lemma 1.2
that (C3) may be replaced by the single defining relation

(x,y,2,t) = (y,x,z2,t) — (y,2,x,1). (C3d)

The groups L, (a) can be analysed as follows, much as in Lemma 4.1.

Lemma5.1 Let n = 1,2,3,4. Given s,t € S, let L,(s;t) be the subgroup of
L, (st) generated by all {x1, ..., Xy, t) such that x1 x3 --+- x, = 5. Then L,(s; 1)
is, up to isomorphism, the abelian group generated by all (x1, ..., x,, t) such that
X1 X2 -+ Xp = 8, subject to all defining relations (Cn). Moreover, L, (s;t) is a free
abelian group, and Ly, (a) = @y ;5. s1—q Ln(s;1).

Proof Let B, be the abelian group generated by all [x, ..., x,], wherex, ..., x, €
S and x1xp ---x, = s, subject to all defining relations (Cn). The elements
(x1, ..., xn, t) of L,(s;¢) satisfy all the defining relations (Cn) of B,; hence
there is a unique homomorphism 6 : B, —> L, (s; t) such that 6 [x1, ..., x,] =
(x1, ..., xu, t)forallxy, ..., x, suchthatx; xp --- x, = s. Similarly the elements
[x1, ..., x,] of B, satisfy all the defining relations (Cn) of L, (s; t); therefore there
is a unique homomorphism ¢ : L,(s;t) —> B, such that ¢ (x1, ..., x,, t) =
[x1, ..., xplforall x, ..., x, suchthatx; x --- x, = s. Now 0 and ¢ are mutually

inverse isomorphisms; hence L, (s; t) = B,. By Lemma 4.1, B, = A, (s) and B, is
free.
For each s, t € S such that st = a, let ¢;.; be a homomorphism of L,(s; ¢) into an

abelian group G. The elements ¢;.; (X1, ..., x5, t) of G, where x; x3 --- x, = s,
inherit from each L, (s;t) all the defining relations (Cn) of L,(a); hence there
is a unique homomorphism ¢ : L,(a) —> G such that ¢ (x1, ..., x,, 1) =
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@s:r (X1, ..., Xp, t) whenever x;x2 --- x, = s and st = a. Therefore L,(a) =
@s,tes, st=a L"(S; t)' o

Theorem 5.2 Letn =1,2,3,4. Foreverya € S, L, (a) is a free abelian group.
Proof By Lemma 5.1, L, (a) is a direct sum of free abelian groups. O
2. Next we arrange the groups L, (a) into an abelian group valued functor on S.

Lemma5.3 Foralln =1,2,3,4and a,u € S, a homomorphism Ay, : L,(a) —
L, (au) is well-defined by:

Ka,u<x17 ey Xy B) = (X1, ..., Xp, tu)

wheneverxy xa --- x, t = a. Moreover, A, 1 is the identityon L,(a) and hgy 0 hg,y =
Aauv foralla,u, v € S, so that L,(S) = (Ly, A) is an abelian group valued functor
on S.

Proof If x;xy ---x,t = a, then x;xp --- x,tu = au and the elements
(x1, ..., Xn, tu) of L,(a) satisfy all conditions (Cn). Therefore there is a unique
homomorphism A,, : L,(a) —> Lp(au) such that A, , (x1, ..., x4, 1)
= (x1, ..., X, tu) forall x;, ..., x,¢t € S such that x; x --- x,t = a. More-
over, A, 1 is the identity on L, (a) and

)Vau,v)\a,u<x1a e X, 1) = )\au,v<x1a ceos Xpy tu) = (X1, ..., Xp, tUV),

so that Agyv © Aau = Aauv- .

Proposition 5.4 For n = 1,2,3,4 there is for every abelian group valued functor
G = (G, y) on S an isomorphism

U : Homa (£4(S), 9 —> C"(S, 9)
which sends each natural transformation t : £,(S) —> G to the n-cochain u defined
by
U(xy, ..., Xn) = Ta (X1, ..., Xp, 1), where a =x1x2 --- Xy,

and is natural in G. Then t, (X1, ..., Xn, t) = Yer u (X1, ..., X,) whenever ¢ =
X1 X2 --+ X, and ct = a.

Proof Let T : L,(S) —> G be a natural transformation and let u = U (1), so
that u (x1, ..., x3) = To (X1, ..., X, 1) € G4, where a = x1x2 --- X, and u
is a cochain on § with values in G. The elements u (xy, ..., x,) of G, inherit all
properties (Cn) from the chains (x1, ..., x,, 1); hence u is a symmetric n-cochain
andu € C"(S, 9).

Ifc=x;x2 -+ x, and ¢t = a, then

Ta(.x], "'5~xn7 t>:t(l)"c,l<'x17 ""xl’h 1)
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=VerTelXt, oo, X, 1) = Veru(xy, ..o, Xp),

since T is a natural transformation. Therefore U () = 0 implies T = 0, and U is

injective.
Conversely, if u € C"(S,9) is a symmetric n-cochain, then the elements
Aesu (X1, ..., xp)of G4 (Withxy x2 - -+ X, = cand ¢t = a) inherit from u all proper-

ties (Cn); therefore there is foreacha € S aunique homomorphismz, : L,(a) — G,
such that

Ta (X1, ooy Xy, t) = Vc,tu(xlv ceey Xp)

whenever ¢ = x;x2 --- x, and ¢t = a.If v € §, then

Yaw Ta{ X1y ooy Xy L) = Yau Ver U (X1, ooy X)) = Verp b (X1, ..., Xp)

= Tap (X1, ..., Xp, tV) = Tav)m,v(xla ceey Xp, 1)

hence 7 is a natural transformation. Moreover, U (t) = u. Hence U is surjective.

Naturality is equally straightforward. We saw that every natural transformation
o : § —> ¢ induces a homomorphism o* = C"(S,0) : C"(S,9) — C"(S, 9),
given by

(0 u)(x1, ..., Xp) = oqu (X1, ..., Xp)

whenever x; xp -+ x, = a.If t : £,(§) —> § is a natural transformation, then so is
o001 :L,(8) — G ,and U’ : Homy (£, (S), §) — C"(S, §) yields

U'@ot) (X1, .y Xp) = 0a T (X1, .oy X, 1) = o™ (U(T) (x1, ..., xn))

whenever x; x2 --- x, = a, so that U’ o Homa (£,,(S), 0) = ¢* o U. Thus U is
natural in G. O

The natural isomorphism Homa (L£,(S), §) = C"(S,9) determines L,(S)
uniquely up to isomorphism. This justifies the longer symmetric chains in the con-
struction of £, (S).

Theorem 5.5 L,,(S) is projective in A, forn =1, 2,3, 4.

Proof By Lemma 4.3, C" (S, —) preserves epimorphisms. Hence Hom 5 (£,(S), —),
which is naturally isomorphic to C" (S, —) by Proposition 5.4, also preserves epimor-
phisms. O

2. Boundaries of longer chains are defined as follows.

Lemma5.6 Ifn = 1,2, 3,4, then there is a natural transformation 9,, : L,(S) —
L, _1(S) such that
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01 (x, 1)

0 (x, y,)

93 (x,y,2,1)
o4 (w,x,y,z,t) =

El

0
(y’)”)_<x)’,t>+<x’yt>,
(
(

V.2, xt) —(xy,z,t)+(x,yz,t) —(x,y,zt),
X, y,z,wt) —(wx,y,z,1t)
+(w,xy,z,t) —(w,x,yz,t) +(w,x,y,zt).

Proof Leta € S.1If (x,y,t) € Xa(a), then xyt = a, (y,xt), (xy,t), (x,yt) €
Xi(a),and (y,xt) — (xy,t) + (x, yt) € Li(a). Moreover,

(yoxt)—(xy,t)+(x,yr) = (x,yt) —{(yx,t)+{y, xt)

for all x, y, t; hence there is a unique homomorphism d>(a) : La(a) —> Li(a) such
that

82(a)<xay’t) = (yvxr)_<-xyvt)+<x5yt>

forall (x, y,t) € Xa2(a).
Ifu € S, then

)\a,u82(a)(x’yvt> )‘ <y XI> - )»a,u(xy’f) + )‘a,u(xvyt)
(y xtu) — (xy,tu) + (x, ytu) = 9(au) hau (X, y,1);

therefore A, , o 92(a) = d2(au) o Ay and 9y is a natural transformation.
Similarly, if (x, y, z,t) € X3(a),thenxyzt = a;(y, z,xt),(xy,z,t),{x,yz,1),
and (x, y, zt) € Xo(a); and

f&x,y,z2,t) = (y,z,xt)y—(xy,z,t)+{(x,yz,t) —(x,y,2t) € Lr(a).

Moreover, the elements f (x, y, z, t) of L3(a) have property (C3d):

fxz,0)— f(y,z,x,0)
=(x,z,yt) —(yx,z, 1) +(y, xz,1) = (y, x,21)
—(z,x,yt)+(yz, x,t) = (y,zx,t) +(y, 2z, xt)
={(y,z,xt) —(xy,z, t)+(x,yz, t) —(x,y,2t) = f(x,y,2,0),

due to (C2) and commutativity in S. By Lemma 1.2, all of (C3) holds; therefore there
is a unique homomorphism d3(a) : L3(a) —> La(a) such that d3(a) (x,y,z,t) =
fx,y,z,t)forall (x,y,z,t) € X3(a).

If u € S, then

haw 03(a) (x,y,2,1)
=dau (Y, 2, X)) = dau (Xy,2,0) + Aau (X, ¥, 20 ) — hau (X, ¥, 21)
=(y,z,xtu) —{(xy,z,tu) + (x, yz,tu) — (x,y, ztu)
= 03(au) hau (X, y,2,1);
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therefore A, , o 93(a) = d3(au) o A, and 93 is a natural transformation.
Finally, if (w, x, y, z,t) € X4(a), then wxyzt = a and

f(w7x7y5zvt) = <x’y’Zs wt)_(wxay’zvt>
Hw,xy,z,t) —(w,x,yz,t)+(w,x,y,zt) € L3(a).

Moreover, the elements f (w, x, y, z,t) of L3(a) (w, x, y, z, t ) satisfy (C4a), (C4b),
and (C4d): if wxyzt = a, then (C3a), (C3b), and (C3d) yield

fw,x,x,w, 1) = (x,x,w,wt) — (wx,x, w, 1)+ (w, xx,w, )
—(w, x,xw,t)+ (w,x,x,wt) = 0,
f@y,x,wt) = (y,x,w,zt)— (zy, x,w,t)+ (g, yx,w, 1)
—(z, y,xw,t)+(z,y,c,wt) = — f(w,x,y,2,1),
fw,x,y,z,t) = f(x,w,y,z,0)+ f(x,y,w,z,0) = f(x,y,2,w, 1)
= (x,y,z,wt) —(wx,y,z,t)+{(w,xy,z,t) —(w,x,yz,t) +{(w,x,y,zt)
—(w,y,z,xt)+ (xw,y,z,t) — (x,wy,z,t)+ (x,w, yz,t) — (x,w, y, 2t)
+(y,w,z,xt) —(xy,w,z,t)+ (x,yw,z,t) — (x,y, wz, t)+ (x,y,w, zt)
—(y,z,w,xt)+ (xy,z,w, t) — (x,yz,w, 1)+ (x,y,zw, 1)

—(x,y,z,wt) =0.

Hence there is a unique homomorphism d4(a) : La(a) —> Ls3(a) such that
og(a) (w,x,y,z,t) = f(w,x,y,z,¢t) forall (w, x,y,z,t) € X4(a).
If u € S, then
Aau 94(a) (w,x,y,z,1)
=Aau(xX,y,2,xt) —Agu{wx,y, z,t)
Hhau (W, xy,2,t) = Aau {w, X, yz,1) + Aau (w, x, y, 2t )
=(x,y,z, xtu) —(wx,y,z,tu) +{(w,xy,z,tu) — {(w, x, yz, tu) + {(w, x, y, ztu )
= 04(au) ha,u (w,x,y,2,1);

therefore A, , o 94(a) = d4(au) o Ay, and 94 is a natural transformation. m]

Lemmab5.7 Ifn =1,2,3,4andt : L,_1(S) —> G is a natural transformation, then
U(tody,) =6 (U (‘L’)). Hence, ifn = 2, 3, 4, then 9,—1 0 9, = 0.

Proof U is the isomorphism in Proposition 5.4: if u = U (t), x1x2 -+ Xp—1] =

¢, and a = ct, then 7, (x1, ..., Xp—1, ) = Ve u (X1, ..., Xp—1); in partic-
ular, u (x1, ..., xp—1) = Te{x1, ..., Xn—1, 1). Let v = U (t o 9,), so that
v(X1, ..., Xp) = Tg 0 (X1, ..., X, 1) when xy xo --- x, = a. We want to show

that v = Su. This is trivial if n = 1.
Ifn =2and (x,y,1) € Ly(a), where a = xy, then d» (x,y,1) = (y,x) —
(xy, 1)+ (x,1)and
v(x,y) =T,0(x,y, 1) = 14 (y,x) — w{xy,1) + 15(x,y)
Yyaxu () — uxy) + yryulx) = u)(x,y).
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If n = 3 and (x,y,z,1) € L3(a), where a = xyz, then 93 (x,y,z,1) =
(yozox) = (xy,z, 1)+ (x,yz, 1) = (x,y,2) and
v(x,y,2) =1403(x,y,2,1)
=t (y,2,x) — ta(xy,z, 1) + ta(x,yz, 1) — ta(x,y,2)
= Vyexh (¥,2) — u(xy,2) + u(x,y2) — Yxyzulx,y) = Bu)(x,y,2).

Finally, if n =4 and (w, x, y, z, 1) € L4(a), where a = wxyz, then

{w,x,y,z,1)=(x,y,z,w)
—(wx,y,z, 1)+ {(w,xy,z,1) = (w,x,yz, 1) +{(w,x,y,2)

and

v(w,x,y,2) =103 {w,x,y,z,1)
=t (x,y,z,w) — 1z {wx,y,z,1)

+ wa(w,xy,z,1) = a(w,x,yz,1) + 1 (w, x,y,2)
= Vayzw U (X,y,2) — u(wx,y,z)

+ u(w,xy,2) — u(w,x,yz) + Yuxy (W, x,y)
= (bu) (w, x,y, 2).

In each case, U (t 0 9,) = U (7).
Letn > 1,5 =L,_1(S),and 7 : £,_1(S) —> G be the identity. We have

U(@u_108) = U(Todpy_iody) = 8U(Todyt) = 88U(t) =0.

Therefore 9,1 o 9, = 0. (This can also be shown directly.) O

Let £,(S) be the chain complex

L2(S) 1 0 «— L1(S) <2= £a(S) <2 L3(S) <= L4(S) «— 0 «— - --

Theorem 5.8 Ifn = 1,2, 3, then there is an isomorphism H" (S, G) = H"(L.(S), 9)
which is natural in G.

Proof Proposition 5.4 provides isomorphisms U : Homa (£, (S), §) = C"(S,9)
which are natural in G. In the cohomology of L, = L, (S) with coefficients in G, an
n-cochain 7 : £,(S) — §is a cocycle if and only if t o 9,41 = O, if and only if
3 (Ut) = 0, by Lemma 5.5; hence U sends Z"(L,, §) onto Z"(S, G). Similarly, a
cochain 7 : £,(S) —> G is a coboundary if and only if T = ¢ o 9, for some cochain
0:Cy—1 —> G,ifandonly if Ut = du forsomeu = Uo € cn1(s, 9), by Lemma
5.5; hence U sends B" (L, G) onto B"(S, G). Therefore U induces an isomorphism
of H"(L4, 9) = Z"(Ly, §) / B"(L«(S), ) onto H"(S,G) = Z"(S,9)/ B"(S, 9),
which, like U, is natural in G. O

Unfortunately, the category A does not lend itself to universal coefficients theo-
rems; the next section gives a counterexample.
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6 An example

In this section, S is the commutative monoid M5 = { 1, a, e, b, 0 } with multiplication

1. We begin by computing the complex C. (M5 / Ms\0) and its homology groups:
the homology groups Hi(Ms / M5\0) and H»(M5 / M5\0) of M5 relative to M5\0.
(Since M5 has a zero element, H| (Ms) = Hy(Ms) = 0, by Proposition 2.6.)

Lemma 6.1 H{(Ms / M5\0) = Z and Hy(Ms | M5\0) = 0.

Proof Order M5 sothat 1 < a < e < b < 0. By Theorem 2.2, C2(Ms5 / Ms\0) is free
onall {x, y) suchthat x < yand xy # 0:

(1,1), (La), (le), (1,b),
(a,a), (a,e), (a,b), (e,e), (e,b);

and C3(Ms / M5\0) is free on all {x, y, z) such that x < y, x < z, and xyz # 0:
(L, La), (1,1,e), (1,1,b), (l,a,a), (l,a,e), (1,a,b),

(1,e,a), (l,e,e), {l,e,b), (1,b,a), {(1,b,e),
(a,a,e), {(a,a,b), (a,e,e), (a,e,b), (a,b,e), (e,e,b).

The 1-boundaries are determined by:

d (1 1) = (1) = (1) + (1) = (1)
0 (la)=(a)—(la)+(1) = (1);
0(le)={(e)—(le)+ (1) = (1);
B (1,b)=(b)—(1b)+(1) = (1);
d(a,a)=(a)—(aa)+(a) = 2(a) —(e);
¥ (a,e) = (e)—(ae)+(a) = (a);
d(a,b)=(b)—(ab)+(a) = (a);
d(e.e)=(e)—(ee)+(e) = (e):
a (e b)=(b)—(eb)+(e) = (e).

Hence Im 05 is generated by (1), (a ), and (e ). Since C;(Ms5 / M5\0) is freeon (1),
(a), (e),and (b), it follows that H| (M5 / Ms5\0) = C{ (M5 / M5\0) /Im 9, = Z.
The above also yields some obvious 2-cycles:

(Lia)—(1,1), (l,e)— (1, 1), (L,b)—(1,1),
(a,b)y —{a,e), {(e,b)—(e,e), and (a,a)—2(a,e)+ (e, e).

It is readily verified that these six 2-cycles constitute a basis of Ker d5.
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The 2-boundaries are determined by:

i(l,l,a) = (l,a)—(1,1)a+(1,1)a—(1,1) = (l,a)—(1,1),
3(1,1,e) = (Le)—(L1l)et (L 1)e—(11) = (l,e)—(1,1),
3(1,1,0) = (1,b)—(1,1)b+(1,1)b—(1,1) = (1,b) —(1,1),
i(l,a,a) = (a,a)—(l,a)a+(l,a)a—(l,a) = (l,e)—(1,a),
i(l,a,e) = (a,e)—(l,a)e+(1l,a)e—(1l,a) = (l,e)—(1l,a),
33(1ab)=( b)—(La)p+(l,a)pb—(l,a) = (1,b)—(l,a),
i(l,e,a) = (e,a)—(l,e)a+ (1l,e)a—(1l,e) = 0,
3 (l,e,e) = (e,e)—(l,e)e+(l,e)e—(1l,e) =0,
a3 (l,e,b) = (e,b)y—(l,e)b+(1l,e)b—{(1l,e) = (1,b)—(1,e),
03(1,b,a) = (b,a)—(1l,b)a+(1,b)a—(1,b) = 0,
03(1,b,e) = (b,e)—(1,b)e+(1,b)e—(1,b) = 0,
03(a,a,e) = (a,e)—{a,a)e+ (a,a)e—(a,a) = 2{a,e)—{(a,a)— (e, e),
83(a a,by = {(a,b)—(a,a)b+(a,a)b—{a,a) = 2{a,b)—(a,a)— (e, b),
93 (a,e,e) = (e,e) —(a,e)e+(a,e)e—(a,e) =0,
93 (a,e,b) = (e,b) —(a,e)b+(a,e)b—(a,e) = (a,b)—(a,e),
93 (a,b,e) = (b,e) —(a,ble+(a,b)e—(a,b) =0,
(ee ) = (e,b) —(e,e)b+ (e e)b—(e,e) = (e, b)— (e e).

Hence Im 93 is generated by

<1»a>_<171)1 <1,€>—<1,1>, (Lb)_(l’l)a
(a,b) —{a,e), {(e,b)—{(e,e), {(a,a)—2{a,e)+ (e, e),
and (a,a)—2(a,b)+ (e,b).

Thus Im a3 contains all the generators of Kerd,. Hence Imd; = Kerd, and
H>(Ms /| Ms\0) = 0. The size of this last computation reveals a need for more efficient
methods. O

It follows from Theorem 3.1 and Lemma 6.1 that H2(Ms, §) = Ext(Z, G) &
Hom (0, G) = 0 whenever G is almost constant at G.

2. Next we look at the homology functors of Ms. First note that an abelian group
valued functor § = (G, y) on M5 assigns to the elements 1, a, e, b,0 of M5 five
abelian groups G1, G4, G., Gp, and G, with maps as follows.

Since 1t = 1 only if # = 1 there is only one map y1,1 : G — G1.
Since 1t = a only if t = a there is only one map y1 , : G| — Gq.
Since at = a only if + = 1 there is only one map y, 1 : G, — G,.
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Since at = e if and only if ¥+ = a or t = e, there are two maps
Ya,as Ya,e - G, — G,.

Since et = eifand only if t = 1, = a, or t = e, there are three maps y. 1, Ve.qa,
Yee : Ge —> Go.

Since et = b only if ¢+ = b there is only one map y, p : Go —> Gp.

Since bt = b ifand only if t = 1, = a, or t = e, there are three maps 5.1, ¥b.4>
Ve : Gp —> Gp.

Since bt = 0 if and only if # = b or t = 0, there are two maps ¥ 5, ¥p.0 : Gp —
Go.

Since 0 = 0 for all ¢ € S, there are five maps 0.1, Y0.a> ¥0.¢> Y0.b> 0.0 : Go —>
Go.

All other maps arise from composition Y, :; = Yer.u © Ye.r; for instance there are
tWo maps Ye p © Va,a» Ye,b © Ya,e - Ga —> Gp.

Now L1(Ms5) = (L1, A) assigns to each s € Ms the free abelian group Li(s)
generated by { (x, t) | xt=s}:

Li(1) isfreeon (1,1
Li(a) isfreeon (1,a
Li(e) isfreeon (1,e
Li(b) isfreeon (1,b
L1(0) isfreeon (1,0
(b,b);

) >

)

), (a, 1)

). (a,a). (a,e), (e 1), (e a) (ece);

), (a,b), (e, b),(b,1),(b,a),(b,e);

), (a,0),(e,0),(b,0),(0,1),(0,a),(0,e),(0,b),(0,0),

il

k)

and A., (x,t) = (x, tu) whenever xt = c.
With S ordered sothat 1 < a < e < b < 0, L(Ms5) = (L2, 1) assigns to each
s € Ms the free abelian group La(s) on { (x, y, 1) | xSy, xyt=s}

Ly(1) isfreeon (1,1,1);

Ly(a) isfreeon (1,1,a),(1,a,1);

Ly(e) is free on (1,1,e), (l,a,a), (1l,a,e), (l,e,1), (1l,e,a), (1,e,e),
(a,a, 1),

(a,a,a),{a,a,e),{a,e,1),{a,e,a),{a,e,e) (e, e, 1), (e, e,a), (e e e);

Ly(b) is free on (1,1,b), (1,a,b), (1l,e,b), (1,b,1), (1,b,a), (1,b,e),
(a,a,b),{a,e,b),{a,b,1),{a,b,a),{a,b,e),{e,e,b),{e,b,1),(e, b a),
(e,b,e);

L>(0) is free on (1,1,0), (1,a,0), (1,e,0), (1,b,b), (1,b,0), (1,0,1),
(1,0,a),(1,0,¢e),(1,0,b),(1,0,0),{(a,a,0),{a,e,0),{a,b,b),{a,b,0),
(a,0,1),{a,0,a),{a,0,e),{(a,0,b),{a,0,0),{e,e,0),(e,b,b),{e,b,0),
(e,O,l),(e,O, Y,(e,0,e),(e,0,b),(e,0,0),(b,b,1),(b,b,a),{b,b,e),
(b,b,b),{(b,b,0),(b,0,1),(b,0,a),{(b,0,e),(b,0,b),(b,0,0),(0,0,1),
(0,0,a),(0,0,e),(0,0,b),(0,0,0);

3=

and Ac, (x,y)t = (x, y)tu whenever xyt = c.
The functor Z1(M5) = Ker 91 is isomorphism to L, since 9; = 0.

Lemma 6.2 B{(Ms) = Imd, = (B, B) assigns the following groups: B(1) is the free

abelian group on (1, 1); B(a) is the free abelian group on (1,a); B(e) is the free
abelian group on (1,¢e), (a,e), (e,a), (e, 1), (e,e), and2 (e, e); B(b) is the free
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abelian group on (1,b), (a,b), (e,b), (b,a)— (b, 1), and (b,e) — (b, 1); B(0)
is the free abelian group on (1,0), (a,0), (e,0), (b,0), (0,1), (0,a), (0,e),
(0,b0),{(0,0), and2 (b, b).

Proof The group B(s) is generated by all d (x, y, ), where x < y, xyt = s, and
d(x,y,t)=(y,xt)—(xy,t)+(x,yt).Notethatd (1, x,7) = (x, lt)—(1x, 1)+
(1,xt) = (1, xt). Hence
B(1) is generated by 9 (1,1, 1)
B(a) is generated by 0 (1, 1, a)
B(e) is generated by

a(l,1,e)=0(l,a,a) = 9 (l,a,e) = (1,e)
d(l,e,1)=0(1l,e,a) = 9 (l,e,e) = (1,e),
d{a,a,1)={(a,al) —(aa,1)+ (a,al) = 2(a,a)— (e, 1)
d{a,a,a) =(a,aa) — (aa,a)+ (a,aa) = 2{a,e)—(e,a)
d{a,a,e) = (a,ae)—(aa,e)+ {(a,ae) = 2{a,e)— (e, e)
d(a,e,1)=1{(e,al)—(ae, 1)+ (a,el) = (e,a)—(e,1)+(a,e)
d(a,e,a) = (e,aa)— (ae,a)+ (a,ea) = (e,e)—(e,a)+(a,e)
d(a,e,e) = (e,ae)—(ae,e)+ (a,ee) = (a,e)
d(e,e,1)={(e,el)—(ee, 1)+ (e,el) = 2(e,e)— (e, 1)
d(e,e,a) = (e,ea)—(ee,a)+ (e,ea) = 2{(e,e)— (e, a)
d{e,e,e) = (e,ee)— (ee,e)+ (e,ee) = (e,e);

hence B(e) is generatedby (1,¢e),(a,e),(e,e),and (e, 1) (fromd (e, e, 1)), (e, a)
(fromd {(e,e,a)),and 2 (a,a) (from d {(a, a, 1)).
B (D) is generated by

o(1,1,b) = 9(l,a,b) = d(l,e,b) = (1,b),

o0(l,b,1)y = 0(1,b,a) = 9(1,b,e) = (1,b),

d{a,a,b) = (a,ab)— (aa,b)+ (a,ab) = 2(a,b) — (e, b),
d0(a,e,b) = (e,ab) —(ae,b)+ (a,eb) = (a,b),

0(a,b,1) = (b,al)—{ab,1)+ {(a,bl) = (b,a)— (b,1)+ {a,b),
d(a,b,a) = (b,aa)— (ab,a)+ (a,ba) = (b,e)—(b,a)+ (a,b),
d(a,b,e) = (b,ae)— (ab,e)+ {(a,be) = (a,b),

d(e,e,b) = (e,eb) — (ee,b)+ {(e,eb) = (e, b),

d(e,b,1) = (b,el)—(eb,1)+ {(e,bl) = (b,e)—(b,1)+ (e, b),
d(e,b,a) = (b,ea)— (eb,a)+ {(e,ba) = (b,e)—(b,a)+ (e, b),
d(e,b,e) (b,ee) — (eb,e)+ (e,be) = (e,b);

hence B(D) is generated by (1,b),(a,b),{e,b),(b,a)— (b, 1) (fromad (a,b, 1)),
and (b,e) — (b, 1) (from 9 (e, b, 1) then (b,e) — (b,a) = ((b,e) — (b, 1)) —
({b,a)—(b,1))).
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Finally, B(0) is generated by

a(lL,y,0) = (1,0) (y=1,a,e,0,0),

0(1,0,t) = (1,0) (t=1,a,e,b,0),

d{a,a,0) = (a,a0) — (aa,0)+ (a,a0) = 2{(a,0) — (e,0),
d(a,e,0) = (e,a0) —(ae,0)+ (a,e0) = (a,0),

o(a,b,b)y = (b,ab)— (ab,b)+ (a,bb) = (a,0)

d(a,b,0) = (b,a0) — (ab,0) + (a,b0) = (a,0)
d0(a,0,1) = (0,al)—(a0,1)+ (a,01) = (0,a)—(0,1)+(a,0)

d(a,0,a) = (0,aa) —(a0,a)+ (a,0a) = (0,e)—(0,a)+ (a,0)
0(a,0,e) = (0,ae)—(a0,e)+ (a,0e) = (a,0),

d(a,0,b) = (0,ab) —(a0,b)+ (a,0b) = (a,0),

0(a,0,0) = (0,a0) —(a0,0) + (a,00) = (a,0),

d(e,e,0) = (e,e0) —(ee,0)+ (e,e0) = (e,0),

d(e,b,b) = (b,eb)— (eb,b)+ (e,bb) = (e,0)

d0(e,b,0) = (b,e0) — (eb,0)+ (e,b0) = (e,0),
0(e,0,1) = (0,el)—(e0,1)+(e,01) = (0,e)—(0,1)4+ (e,0)
d0(e,0,a) = (0,ea)—(e0,a)+ (e,0a) = (0,e)—(0,a)+ (e,0)
d(e,0,e) = (0,ee) —(e0,e)+ (e,0e) = (e,0),

0(e,0,b) = (0,eb) —(e0,b)+ (e,0b) = (e,0),

0(e,0,0) = (0,e0) — (€0,0) + (e,00) = (e,0),
a(b,b,1) = (b,bl)—(bb, 1)+ (b,bl) = 2(b,b)—(0,1)

0(b,b,a) = (b,ba)— (bb,a)+ (b,ba) = 2(b,b)—(0,a),
d(b,b,e)y = (b,be)— (bb,e)+ (b,be) = 2(b,b)—(0,¢e),

o(b,b,b) = (b,bb) —(bb,b)+ (b,bb) = 2(b,0) —(0,b),

a(b,b,0) = (b,b0) — (bb,0)+ (b,b0) = 2(b,0)—(0,0),
a(b,0,1) = (0,bl)—(b0,1)+(b,01) = (0,b)—(0,1)+(b,0),

d(b,0,a) = (0,ba)—(b0,a)+ (b,0a) = (0,b)—(0,a)+ (b,0),
0(b,0,e) = (0,be)—(b0,e)+ (b,0e) = (0,b)—(0,e)+ (b,0),

0(b,0,b) = (0,bb)—(b0,b)+ (b,0b) = (0,0)—(0,b)+(b,0),
0(b,0,0) = (0,b0) — (b0,0)+ (b,00) = (b,0),
0(0,0,1) = (0,01)—-(00,1)+(0,01) = 2(0,0)—(0,1),
(0,0,a) = (0,0a)—(00,a)+(0,0a) = 2(0,0) —(0,a),
9(0,0,e) = (0,0e)—(00,e)+(0,0e) = 2(0,0)—(0,e),
(0,0,b) = (0,0b) —(00,b)+(0,0b) = 2(0,0)—(0,b),
0(0,0,0) (0,00) —(00,0)+(0,00) = (0,0);
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hence B(0) is generated by (1,0), (a,0), (e,0), (b,0), (0,0); (0,1), (0,a),
(0,¢e),{(0,b) (from 0 (0,0,¢);and 2 (b, b) (from d (b, b, 1)).
These are free abelian subgroups of the free abelian group on all (x, 7). O

Comparing the generators of Bj(Ms) to the generators of L(S), we see that
Hi(Ms) = Z1(Ms)/B1(Ms) = (31, n) has

H(1)
Hy(b)

0; Hi(a) = 0; Hy(e) = (a,a)Z/2{a,a)l = 7)2Z;
Z: and H1(0) = (b,b)Z/2(b,b)Z = Z,)27.

12

It is interesting that some torsion appears in the homology functor 3 (Ms), but not
in the homology group H{(Ms) = Z.
Finding (> (M5s) from its definition is positively horrendous and will be skipped.

Lemma 6.3 The maps in B1(Ms) = (B, B) are determined by the following: B1.1 :
B(1) — B(1) is the identity on B(1); B1.a : B(1) — B(a) sends (1,1)to(1,a);
Ba.1 : B(a) —> B(a) is the identity on B(1); Ba.a = Pa.e : Bla) —> B(e) sends
(l,a)to(1,e);

B(e) —> B(e) |{1l,e) (a,e) (e,1) (e,a) (e,e) 2{(a,a)
Be [(l.e) (a,e) (e, 1) (e,a) (e, e) 2{a,a)

Bea |(1.e) (a,e) (e,a) (e.e) (e.e) 2(a,e)
Bee |(L.e) (a,e) (e,e) (e, e) (e.e) 2(a,e)

B(e) — B) |(1,e) (e, 1) (a,e) (e,a) (e,e) 2{(a,a)
Be |(1,b) (e, b) (a,b) (e,b) (e,b) 2{a,b)

B(b) — B(®b)|(1,b) (a,b) (e,b) (b,a)— (b, 1) (b,e)—(b,1)
Bva |(L.b) (a,b) (e, b) (b,a)—(b,1) (b,e)—(b,1)

Bva|(1.b) (a,b) (e,b) (b,e)—(b,a) (b,e)—(b,a)

Bo.e |(1.b) (a,b) (e b) 0 0
B(b) — B)|(1,b) (a,b) (e,b) (b,a)—(b,1) (b,e)— (b, 1)

Bo.p | (1,0) (a,0) (e, 0) 0 0

Br.o[(1,0) (a,0) (e, 0) 0 0
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BO) — B(0)|(x,0) (0,1) (0,a) (0,e) (0,b) 2(b,b)
Bo.1 |(x,0) (0,1) (0,a) (0,e) (0,b) 2(b,b)
Boa |(x,0) (0,a) (0,e) (0,e) (0,b) 2(b,b)
Po.e [(x.0) (0,e) (0,e) (0,e) (0,b) 2(b,D)
Bop | (x,0) (0,b) (0,b) (0,b) (0,0) 2(b,0)
Bo.o | (x,0) (0,0) (0,0) (0,0) (0,0) 2(b,0)

In particular, Bp.p = Pp,0. The remaining maps obtain by composition.

Proof We noted that a similar list of maps applies to every abelian group valued func-
tor on Ms. The particular values in the tables follow from B, , (x,t) = (x,tu),
whenever xt = c. O

3. We went into some detail regarding B (Ms) in order to prove the following
result.

Proposition 6.4 B (Ms) is not projective.

Proof We construct an epimorphism o : § — B = B (Ms) through which the
identity on B does not lift. This works because § = (G, y) and o can be rigged so
that y;, o is injective, whereas fp, ¢ is not.

The groups G are free abelian groups on generators denoted by [x¢], where x, t €
S, plus four generators [p], [¢], [r], and [s]: G is free on [11]; G is free on [1a]; G,
is free on [le], [ae], [ee], [el], [ea], and [aa]; G}, is free on [1b], [ab], [eb], [p], and
[¢]; Gg is free on [10], [a0], [¢0], [p0], [01], [Oa], [Oe], [0b], [00], [bb], [r], and [s].

The maps y. , are as follows: y, , [xt] = [xv], where xt = c and v = tu (compare
with 8., (x,t) = (x, v)), withone exception: y, ; [aa] = 2 [ac],ift # landat = c.
In particular, Y40 = Ya.e and ¥, = ¥p,0- In addition, y» 0 [p] = [r]; vb.0 [q] = [s];
vo..[r] = [r]forallt € S;and yp, [s] = [s] for all + € S. The remaining maps are
then obtained by composition. Note that y;, ¢ sends the generators of G; onto distinct
generators of G and is therefore injective.

Next, a homomorphism o, : G, —> B, is defined for each ¢ € § by oy [xt] =
(x,t) (where xt = c), with one exception: o, [aa] = 2 (a, a ); in addition, o} [p] =
(b,a)—(b,1);0plql =(b,e)—(b,1);00[r] =00[s]=0.

We show that 0 = (0¢)ces : § —> B is a natural transformation. Comparing the
values of 8. , and y, ,, where (c, u) = (1, 1), (1, a), (a, a), (a, e), (e, e), (e, b), (b, D),
or (b, 0), shows that B, o¢ [Xt] = Ocy Veu [xt] (Where ¢ = xt), unless [xt] = [aa];
for instance,

Bepoelael = Bepla,e) = (a,b) = oplab] = op yeplae].

In addition,

Be10elaal = Be1 (2(a,a)) = 2{a,a) = o,(2[aal) = o, Ve, laal;

if £ # 1 and at = c, then et = ac and

Beroelaal = Beyr 2(a,a)) = 2(a,c) = o4c 2lacl) = e Ve, laal;
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and

Bvooupl = Bro({b,a)—{b,1)) = 0 = oglr] = oovp0lpl
Bvoovlgl = Bpo((b,e)—(b,1)) =0 = ools] = ooypolql,
Bo.roolrl = 0 = oolr] = ooyo,[r] and

Porools] = 0 = ools] = ooyols], forall ¢t €S.

Thus B¢y 0 00 = ocy © Yeu : G¢ —> Bey when (c,u) = (1, 1), (1,a), (a,a),
(a,e), (e, e), (e, b), (b, D), or (b,0). Since the remaining maps are then obtained by
composition, it follows that 8., o o, = o¢y © gae,, for all ¢, u. Thus o is a natural
transformation.

Moreover, all oy are isomorphisms, except for og, which is surjective; hence o is
an epimorphism.

Now assume that B is projective. Then the identity on B lifts through o and there
is a natural transformation u : B — G such that o o w is the identity on B.
In particular, p is injective, for every s € S. Since p is a natural transformation,
we have (o Bp.0 = Vvb.0 b, and po PBpo is injective. But B, o is not injective. This
contradiction shows that B is not projective. O

Since Im 9; is not projective, the universal coefficients theorem (e.g. Theorem 3.6.5
of [14]) cannot be applied to L. (S). (But we do not have a counterexample for A (S).)

7 Proof of Lemma 1.4

Recall that a basis of a symmetric set X is a subset Y of X such that every mapping
of Y into an abelian group G extends uniquely to a symmetric mapping of X into G.

Lemma 1.4 states: Ler X be a symmetric subset of S", where n < 4 and S is a
totally ordered set.

Ifn =2, then the set Y of all (a, b) € X such that a < b is a basis of X.

If n = 3, then the set Y of all (a, b, ¢) € X such thata < b and a < c is a basis of
X.

If n = 4, then the set Y of all (a,b,c,d) € X such that either a < b, c,d, or
a <b,candb < d, or both, is a basis of X.

Moreover, if [ is a mapping of Y into an abelian group G and g is the symmetric
mapping of X into G that extends g, then every value of g is a sum of values of f and
opposites of values of f.

1. If n = 2, then a mapping f : X —> G is symmetric if and only if f (b, a) =
f (a, b) whenever b > a in S. Consequently, f is uniquely determined by its values
onY:{(a,b)eX|a§b}.

Now let f be a mapping of Y into an abelian group G. Extend f to a mapping g of
X into G, namely:

[y ifx Sy,

gy = {f(y,x) ifx > y.
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Then g is symmetric. Moreover, every value of g is a value of f. This proves Lemma
14ifn =2.
2. Now let n = 3; the symmetry conditions are:

f(a,b,a) =0, (S3a)

f(c,b,a) = — f(a,b,c), (S3b)
f(a,b,c) + f(b,c,a) + f(c,a,b) = 0, and (S3c¢)
fla,b,c) = f(b,a,c)— f(b,c,a). (S3d)

Lemma 7.1 If S is totally ordered, then for any given x,y,z € S exactly one of the
following holds:

() x=z,

@) x=y<z

B)x=y>z

@) x<y=z,

S)x>y=z,

6) x <y<zorx<z<y,

7N y<x<zory<z<u,

B z<x<yorz<y<ux.

Proof This is clear. |

Lemma?7.2 If S is totally ordered and n = 3, then a mapping f : X — G is
symmetric if and only if, for all (x,y,z) € X,

if x=12z, then f(x,y,z) = 0, P1)

ifx:y>z, thenf(x,y,z) = _f(Z’y,XL (P3)

if x>y=z, then f(x,v,2) = — f(y,2,%), (P5)
fy<x<zorify<z<x, then f(x,y,z2) = f(y,x,2) — f(y.2,%),

P7)

ifz<x<yorifz<y<x, then f(x,y,2) = — f(z,y,x). (P8)

Moreover,
Y = {(a,b,c)eX|a§b and a < ¢}

contains every (a, b, ¢) that appears in the right hand side of (PI), ..., (P8).
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Proof Any given x, y, z € S fall in exactly one of the cases (1) to (8) in Lemma 7.1.
In case (1), (S3a) yields f (x, y, z) = 0. In cases (3) and (8), (S3b) yields (P3) and
P8): f (x,y,2) = —f (z,y, x); moreover, (z, y, x) is in case (4) or (6). In case (5),
(S3d) and (S3a) yield (P5):

f(-xsy’Z) = f(J’sxsZ)_f(y,va) = _f(y’z9-x);

moreover, (y,z,x) is in case (2). In case (7), (S3d) yields (P7): f (x,y,2) =
f(,x,z2) — f (y,z,x); moreover, (y,x,z) and (y, z,x) are in case (6). Thus a
symmetric mapping has properties (P1) through (P8). Moreover, (a, b,c) € Y (a < b
and a < c)if and only if (a, b, c) is in case (2), (4), or (6); this includes every (a, b, c)
that appears in the right hand side of (P1) through (PS).

Conversely, assume that f has properties (P1) through (P8). We show that f has
property (S3d).

Ifa =c,then f (b,a,c)— f (b,c,a) =0= f (a, b, c), by (P1), and (S3d) holds.

Ifa=>b<c,orifa =>b > ¢, then f(b,c,a) = 0 by (Pl), f(b,a,c) =
f (a, b, c), and (S3d) holds.

Ifa < b = ¢, then f(b,a,c) = 0by (Pl), f(b,c,a) = — f(a,c,b) =
— f(a, b, ¢) by (P3), and (S3d) holds.

Ifa > b=c,then f (b,a,c) =0by(Pl), f (a,b,c) =— f (b, c,a)by (P5), and
(S3d) holds.

Ifa<b<c,orifa <c<b,then f (b,a,c)= f(a,b,c)— f (a,c,b)by P7),
fb,c,a)=— f(a,c,b) by (P8), and (S3d) holds.

Ifb<a<c,orifb<c<a,then f (a,b,c) = f (b,a,c) — f (b, c,a) by (P7),
and (S3d) holds.

Ifc <a < b,orifc <b <a,then f (b,a,c) =— f (c,a,b)by(P8), f (b,c,a) =
f(c,b,a)— f(c,a,b)by (P7), f(a,b,c) =— f (c,b,a)by (P8),and (S3d) holds.

In every case (S3d) holds; hence f is symmetric, by Lemma 1.2. O

We now prove Lemma 1.4 in case n = 3:

Lemma?7.3 (n = 3) Let S be a totally ordered set, let X be a symmetric subset of
S x § x 8, and let G be an abelian group. Every mapping f of

Y = {(a,b,c)eX|a§b and a < ¢}

into G extends uniquely to a symmetric mapping g of X into G. Moreover, every value
of g is a sum of values of f and opposites of values of f.
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Proof Given f : Y —> G, define fas follows:

(H o ifa =c,
2) f(a,b,c) ifa=0b<c,
3) — f(c,b,a) ifa=b>c,
Fab.c) = 4) f(a,b,c) %fa<b=c,
S) —fw,ca) ifa>b=c,
6) f(a,b,c) ifa<b<corifa<c<b,
7 fb,a,c)— fb,c,a) iftb<a<corifb<c<a,
®) — f(cb,a) ifc<a<borifc<b<a.

First (a,b,c) € Y (a £ b and a < c) if and only if a, b, c are in cases (2), (4), or
(6) in Lemma 7.1. By Lemma 7.2, a symmetric mapping g that extends f must have
properties (P1) through (P8), hence must coincide with f Conversely, f extends f
and has properties (P1) through (P8), hence is symmetric, by Lemma 7.2. ]

Note that the set Y in the above is not unique: it depends on the total order on S;
also Y ={(x,y,2) € X | z <y and z < x } would also serve.
3. Symmetric mappings of four variables are more complex. First the symmetry
conditions
f(a,b,b,a) =0, (S4a)

f,c,b,a) = — f(a,b,c,d), (S4b)
f(a,b,c,d)y— f(b,c,d,a)+ f(c,d,a,b)— f(d,a,b,c) = 0, and (S4c)

fa,b,c,d)— f(b,a,c,d)+ f (b,c,a,d)— f(b,c,d,a) = 0, (S44)

imply additional properties (some of which were noted in [9]). By (S4b), f (a, b, ¢, d) =
—f(d,c, b, a), whence (S4d) yields

f(a,b,c,d) = — f(c,d,b,a)+ f(c,b,d,a)— f (c,b,a,d). (S4e)

By (84d), f (a,b,c,a) = f(b,a,c,a) — f(b,c,a,a) + f(b,c,a,a), so that
f(a,b,c,a) = f (b,a,c,a),in particular

fb.a,b,a) =0, (S4f)
by (S4a); and then (S4b) yields f (a,b,a,c) = — f (c.a,b,a) = — f (a, ¢, b, a) and
fla.b,a,c) = f(a.b.c.a) = f(b.a,c, a). (S4g)

By (S4e), f (a,a,c,a) = —f (c.a,a,a) + f (c.a,a,a) — f (c.a,a,a) and

fla,a,c,a) = — f(c,a,a,a). (S4h)
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Properties (S4g) and (S4b) also imply

f(a,b,a,a) = f(b,a,a,a) = — f(a,a,a,b),
f(a,b,a,c) = f(a,b,c,a) = — f(a,c,a,b),
f(a,b,c,a) = f(b,a,c,a) = — f(c,a,b,a),

since f (a,b,c,a) = f (b, a,

Lemma 7.4 If S is totally ordered, then for any given x, y, z,t € S exactly one of the

following holds:

ey

@)

“

(6)

®)
(10)
12)
(14)
(16)
(18)
(20)
(22)
(24)
(26)
(28)
(30)
(32)
(34)
(36)
(38)
(40)
(42)
(44)
(46)
(48)
(50)
(52)
(53)

@ Springer

X=y=2z=I;
X=y=2z<t;
X=y=1<zg
XxX=z=1<y;
y=z=1<Xx;
X=y<z=tI;
X=z<y=I;
X=1t<y=2,
XxX=y<z<t
I<x=Yy<I;
I7<t<x=y;
XxX=z<y<t,
y<x=z<t,
y<t<x=zg;
X=1r<y<z
y<x=t<z
y<z<x=t;
y=z<x<t;
X <y=z<t
xX<t<y=g;
y=1t<x<zg;
X <y=t<z
X <z<y=t,
I=1<x<Yy;
xX<z=t<y;
X <y<z=t,
x <y,z,t and
y <x,z,t and

c,a)and f (a, b,

B)x=y=z>1
G)x=y=t>7zg
7 x=z=t>y;
Q) y=z=t>ux;
() x=y>z=t;
13) x=z>y=t;
15 x=t>y=g;
A7) x=y<t<z
19 t<x=y<z
2 t<z<x=Yy;
23)) x=z<t<y;
25 t<x=z<y;
QHht<y<x=zg
29) x=t<z<y;
G z<x=t<y;
33 z<y<x=t;
35 y=z<t<ux;
BNir<y=z<x;
BY) t<x<y=z
4l) y=t<z<x;
43) z<y=t<ux;
45 z<x<y=t;
@7 z=t<y<ux;
49) y<z=t<ux;
Bl y<x<z=1
y, z, t are distinct;

X, z,t are distinct;

c,a) = f(a,b,a,c), by (S4g).
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54) z<ux,y,t and x,y,t are distinct;
(55) t<ux,y,z and x,y, z are distinct.

Proof The 55 cases in this Lemma are arranged in decreasing numbers of equalities
between x, y, z, and z. Some of these cases could be merged, but it would not be as
clear that they are disjoint and cover all possibilities. O

Lemma7.5 Let n = 4 and let X be a symmetric subset of S x S x § x S. Let Y be
the set of all (a, b, c,d) € X such that either a < b,c,d, ora < b,cand b < d,
or both. Then (a, b, c,d) € Y ifand only if (a, b, c, d) is in case (2), (9), (10), (16),
(17), (22), (36), (38), (42), (44), (48), (50), or (52).

Proof. If (a, b, c, d) is in case (9), (22), (36), (38), (42), (44), (48), (50), or (52),
thena < b,c,d;ifincase Q) (a = b =c < d),(10) (a = b < ¢ = d), (16)
(a=b<c<d),(IT(a=b<d<c),or(22)(a=c <b <d),thena < b, cand
b <d.

Conversely, if a < b, ¢, d, then either b = ¢ and (a, b, c, d) is in case (9), (36), or
(38); or b = d and (a, b, ¢, d) is in case (9), (42), or (44); or ¢ = d and (a, b, ¢, d)
is in case (9), (10), (48), or (50); or b, ¢, d are all distinct and (a, b, ¢, d) is in case
(52).If a £ b,cand b < d,butnot a < b, c, then eithera = b = ¢ < d and
(a,b,c,d)isincase (2);ora =b < ¢,d and (a, b, ¢, d) is in case (10), (16), or (17);
ora=c<b<dand(a,b,c,d)isin case (22). O
Lemma 7.6 Let S be atotally ordered set, let X be a symmetric subset of S x S x § x S,
and let G be an abelian group. Let Y be the set of all (a, b, ¢, d) € X in case (2), (9),
(10),(16),(17),(22), (36), (38), (42), (44), (48), (50), or (52). Amapping f : X — G
is symmetric if and only if it has the following properties:

(P1) ifx=y=z=t, then f(x,y,z,t) =0;

(P3) ifx=y=z>t, then f(x,y,z,t) =—f(t,z,y,%);

(P4) if x=y=t<z, then f(x,y,z,t)=f(x,y,t,2);

(P5) if x=y=t>z, then f(x,y,z,t) =—f(z,x,y,1);

(P6) if x=z=t<y, then f(x,y,2,1) = =f(x,2,1,);

(P7) if x=z=t>y, then f(x,y,2,1) = f(y,x,2,1);

(PS) if y=z=1t<x, then f(x,y,2,0) =—=f(y,2,1,%);

(P11) if x=y>z=t, then f(x,y,z,t) =—f(t,2,y,X);

(P12) if x=z<y=t, then f(x,y,z,1) =0;

(P13) ifx=z>y=t, then f(x,y,z,t) =0;

(P14) if x=t<y=z, then f(x,y,z,t)=0;

(P15) if x=t>y=z, then f(x,y,z,t) =0;

(P18) ifz<x=y<t, then f(x,y,2,0) =—f (2, t,y, )+ f (2 y,t,x) — f(z, y,x,1);
(P19) ift<x=y<gz then f(x,y,z,t) =—f(t,z,y,X);

(P20) fz<t<x=y, then f(x,y,z,0) =—f(z,t,y, )+ f (2 y,t,x) — f (2, y,x,1);
(P21) ift<z<x=y, then f(x,y,z,t) =—f(t,z,y,x);

= e e o
23
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(P23) ifx=z<t<y,
(P24) ify<x=z<t,
(P25) ift<x=z<y,
(P26) ify<t<x=z,
(P27) ift<y<x=zg,
(P28) fx=t<y<gz,
(P29) fx=t<z<y,
(P30) ify<x=t<zg,
(P31) ifz<x=t<y,
(P32) ify<z<x=t,
(P33) ifz<y<x=t,
(P34) ify=z<x<t,
(P35) ify=z<t<x,

(P37) ift<y=z<ax,
(P39) ft<x<y=z,
(P40) ify=t<x<gz,
(P41) ify=t<z<unx,
(P43) ifz<y=t<unx,
(P45) ifz<x<y=t,
(P46) ifz=t<x<y,
(P47) ifz=t<y<anx,
(P49) if y<z=t<ux,
(P51) ify<x<z=t,

then f(x,y,z,t) =—f(x,t,2,));
then [ (x,y,z,t) = f(y,2.t,x);
then f (x,y,z,t)=—f(t,z,y,X);
then f (x,y,z,t) = f(y,2.t,x);
then f (x,y,z,t)=—f(t,2,y,X);
then f(x,y,z,t) = f(x,y,1,2);
then f(x,y,z,t)=—f(t,2,x,);
then f(x,y,z,t) = f(y,x,2,1);
then f(x,y,z,t)=—f (2,1, y,x);
then f (x,y,z,t) = f(y,x,2,1);
then f (x,y,z,t) =—f(z,t,y,x);
then f(x,y,z.t) =f(y.x.2,0) = f (.2, %, 0) + f (¥, 2,1, %);
then f (x,y,z,t) =—f(z,t,y,x)

+ f(zy, t,x) = f(z, 5, x,1);

then f(x,y,z,t) =—f (1,2, y,%);

then f(x,y,z,t) =—f(t,z,y,X);

then f(x,y,z,1) = f (t.x.y.,2);

then f(x,y,z,t)=—f(t,2,y,%);

then f(x,y,z,t) = =f(z,y,x,1);

then f (x,y,z,t) =—f(z,y,x,1);

then f (x,y,z,t) =—f(t,2,y,x);

then f (x,y,z,t) =—f(t,2,y,x);

then f(x,y,z, ) =f(y,x,2,0) = f (v, 2, x,0) + f(y,2,1,%);
then f(x,y,z,0)=f (. x,2.0) = f(y, 5,6, 0+ f (¥ 2.1, %);

(P53) if y<x,z,t and x,z,t aredistinct, then
fGy,z=fxz,0 = fOzx,0+ 0, z,tx;
(P54) if z<x,y,t and x,y,t aredistinct, then
foy,o0)==f(ty, )+ @y 6,x) = f(zy,x10;
(P55) if t <x,y,z and x,y,z aredistinct, then f (x,y,z,t)=—f(t,2,5,%);

Moreover, Y contains every (a, b, c, d) that appears in the right hand side of (PI),

wous (P55).

Proof First, assume that f is symmetric. Leta, b, c,d € S.

(P1): ifa=b =c=d,then f (a, b, c,d) = 0 by (S4a).

P3).ifa = b = ¢ > d, then (d,c,b,a) is in case (9) and f (a,b,c,d) =
—f (,c, b, a) by (S4b).

(P4): if a = b = d < ¢, then (a,b,d,c) is in case (2) and f (a,b,c,d) =
f(a,b,d,c) by (54g).

PS):ifa = b = d > c, then (c,a,b,d) is in case (9) and f (a,b,c,d) =
—f (c,a, b, d) by (S4h).
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(P6):

P7):

(P8):
(P11):
(P12):
(P13):
(P14):
(P15):
(P18):
(P19):

(P20):

(P21):
(P23):
(P24):
(P25):
(P26):
(P27):
(P28):
(P29):
(P30):
(P31):
(P32):

(P33):

ifa =c¢c =d < b, then (a,c,d,b) is in case (2) and f (a, b, c,d)

—f (a,c,d, b) by (S41).

ifa =c¢c =d > b, then (b,a,c,d) is in case (9) and f (a,b,c,d)

f (b, a,c,d) by (S4i).

if b = ¢ = d < a, then (b,c,d,a) is in case (2) and f (a, b, c,d)

—f (b, c,d, a) by (S4b).
ifa =b > c = d, then (d,c,b,a) is
—f(,c, b, a) by (S4b).

in case (10) and f (a, b, c,d)

ifa=c<b=d,then f (a,b,c,d) =0 by (S4f).
ifa=c>b=d,then f (a, b, c,d) = 0 by (S4f).
ifa=d <b=c,then f (a,b, c,d) = 0by (S4a).
ifa=d > b=c,then f (a, b, c,d) = 0by (S4a).
if c < a = b < d, then (¢,d,b,a) and (c,d, b,a) are in case (50),
(¢, b,a,d)isincase (36),and f (a,b,c,d) = —f (c,d,b,a)+ f (c,b,d, a)

— f(c, b,a,d) by (S4e).
ifd <a =>b < c, then (d,c,b,a) is
—f(d,c, b, a) by (S4b).

if c < d < a = b, then (¢,d, b,a) is in case (50), (c,b,d,a) is

in case (48) and f (a, b, c,d)

in

case (44), (c,b,a,d) is in case (36), and f (a,b,c,d) = —f (c,d,b,a)

+ f(c,b,d,a) — f (c,b,a,d) by (S4e).
ifd < ¢ < a = b, then (d,c,b,a) is
—f(d,c, b, a) by (S4b).

ifa =c¢c < d < b, then (a,d,c,b) is
—f(a,d, c, b) by (S4j).

if b < a =c < d,then (b,c,d,a) is
f (b, c,d,a) by (54g).

ifd < a = c < b, then (d,c,b,a) is
—f(d,c, b, a) by (S4b).

ifb <d < a = c, then (b,c,d,a) is
f (b, c,d,a) by (S4g).

ifd < b < a = c, then (d,c,b,a) is
—f(,c, b, a) by (S4b).

ifa =d < b < c, then (a,b,d,c) is
f(a,b,d, c) by (S4g).

ifa =d < c¢ < b, then (d,c,a,b) is
—f(,c,a,Db) by (S4j).

if b < a =d < c, then (b,a,c,d) is
f (b, a,c,d) by (S4g).

if c < a =d < b, then (c,d,b,a) is
—f (c,d, b, a) by (S4k).

ifb < c¢c < a =d,then (b,a,c,d) is
f (b, a,c,d) by (S4g).

if c < b < a = d, then (¢,d,b,a) is
—f (c,d, b, a) by (S4k).

in case (50) and f (a, b, c,d)
in case (22) and f (a, b, c,d)
in case (42) and f (a, b, c,d)
in case (42) and f (a, b, c,d)
in case (44) and f (a,b,c,d)
in case (44) and f (a, b, c,d)
in case (22) and f (a, b, c,d)
in case (22) and f (a, b, c,d)
in case (42) and f (a, b, c,d)
in case (42) and f (a, b, c,d)
in case (44) and f (a, b, c,d)

in case (44) and f (a, b, c,d)
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(P34):

(P35):

(P37):
(P39):
(P40):
(P41):
(P43):
(P45):
(P46):
(P47):

(P49):

(P51):

(P53):

(P54):

(P55):

ifb=c <a <d,then (b,a,c,d) isin case (22), (b, ¢, a, d) is in case (16),
(b,c,d,a)isin case (17), and f (a,b,c,d) = f (b,a,c,d) — f (b,c,a,d)
+ f (b, c,d, a) by (54d).

if b = ¢ < d < a, then (¢,d, b, a) is in case (22), (c,b,d,a) is in
case (16), (¢, b,a,d) is in case (17), and f (a,b,c,d) = —f (c,d, b, a)
+ f(c,b,d,a) — f(c,b,a,d) by (S4e).

ifd < b =c < a,then (d,c,b,a) is in case (36) and f (a,b,c,d) =
—f(d,c, b, a) by (S§4b).

ifd <a < b = c, then (d,c,b,a) is in case (38) and f (a,b,c,d) =
—f(,c, b, a) by (S4b).

ifb =d < a < ¢, then (d,a,b,c) is in case (22) and f (a,b,c,d) =
f(d,a,b,c) by (S4g).

if b =d < ¢ < a, then (d,c,b,a) is in case (22) and f (a,b,c,d) =
—f(d,c, b, a) by (S4b).

ifc < b =d < a, then (c,d,a,b) is in case (42) and f (a,b,c,d) =
—f (c, b, a, d) by (S4k).

if c < a < b = d, then (c,b,a,d) is in case (44) and f (a,b,c,d) =
—f (¢, b, a,d) by (S4k).

ifc =d < a < b, then (d,c,b,a) is in case (17) and f (a,b,c,d) =
—f (,c, b, a) by (S4b).

ifc =d < b < a, then (d,c,b,a) is in case (17) and f (a,b,c,d) =
—f(d,c, b, a) by (S4b).

ifb <c=d < a,then (b,a,c,d) isin case (48), (b, c, a, d) is in case (42),
(b,c,d, a) is in case (36), and f (a,b,c,d) = f (b,a,c,d) — f(b,c,a,d)
+ f (b, c,d, a) by (54d).

ifb <a <c=d,then (b,a,c,d) isin case (50), (b, c, a, d) is in case (42),
(b, c,d, a) is in case (36), and f (a,b,c,d) = f (b,a,c,d) — f (b,c,a,d)
+ f (b, c,d, a) by (54d).

if b < a,c,d and a,c,d are distinct, then (b,a,c,d), (b,c,a,d), and
(b,c,d, a) arein case (52), and f (a,b,c,d) = f (b,a,c,d) — f (b,c,a,d)
+ f (b, c,d, a) by (54d).

if ¢ < a,b,d and a, b, d are distinct, then (c,d, b, a), (c,b,d, a), and
(c,b,a,d)areincase(52),and f (a,b,c,d) = —f (c,d,b,a)+ f (¢, b,d, a)
— f(c, b,a,d) by (S4e).

if d < a,b,c and a, b, ¢ are distinct, then (d, c, b, a) is in case (52) and
f(a,b,c,d)=—f(d,c,b,a)by (S4b).

Thus a symmetric mapping f has properties (P1) through (P55). In each case, every
(x, y, z, t) in the right hand side falls in case (2), (9), (10), (16), (17), (22), (36), (38),
(42), (44), (48), (50), or (52). O

Conversely, let f be a mapping with properties (P1) through (P55).

Property (S4a): f (a, b, b, a) = 0 follows from (P1), (P14), and (P15).

Property (S4b): f (d,c,b,a) = —f (a, b, c, d) is proved by considering all pos-
sible cases. Some cases follow from others, since (S4b) is not affected by reversing
a,b,c,dintod, c, b, a.

(). fa=b=c=d,then f(a,b,c,d) = f (d,c,b,a) =0by (P1).
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2). fa=b=c<d,then f(d,c,b,a) =— f(c,b,a,d) by (PS).

3). fa=b=c>d,then f(a,b,c,d) =— f(d,c,b,a) by (P3).

@). fa=b=d <c,then f (a,b,c,d) = f (a,b,d,c) by (P4)
and f (d,c,b,a) =— f(d,b,a,c) by (P6).

5). fa=b=d > c,then f (a,b,c,d) = — f (c,a,b,d) by (P5)
and f (d,c,b,a) = f (c,d, b, a) by (P7).

Reversing a, b, ¢, d into d, ¢, b, a yields (S4b) in cases (8): b = ¢ = d < a, (9):
b=c=d>a,6):a=c=d<b,and(7):a=c=d > b.(10).Ifa=b <c=d,
thenf (d,c,b,a) = — f (a,b,c,d) by (P11).

Reversal yields (S4b) incase (11):a =b > c =d.

Incases (12):a =c<b=d,(13):a=c>b=d,(14):a=d < b = c, and
(15):a=d>b=c, f(a,b,c,d) = f(d,c,b,a) =0 and (S4b) holds.

(16). Ifa=b < c <d, then f(d,c,b,a) = —f (a, b, c,d) by (P47).

(17). fa=b<d <c,then f(d,c,b,a) = —f (a, b, c,d) by (P46).

(18). If c < a =b < d, then f (a,b,c,d) = —f (¢c,d,b,a) + f (c,b,d,a) —
f (c,b,a,d) by (P18)
and f,c,b,a) = f(c,d,b,a)
— f(c,b,d,a)+ f (c,b,a,d) by (P49).

(19). Ifd <a=0b <c,then f (a,b,c,d) = —f (d,c, b, a) by (P19).

20). If c < d < a = b, then f(a,b,c,d) = —f (c,d,b,a) + f(c,b,d,a)
— f(c,b,a,d) by (P20)
and f (d,c,b,a) = f (c,d,b,a) — f (c,b,d,a) + f (c,b,a,d) by (P5]).

21). Ifd <c <a=b, then f(a,b,c,d) = —f (d,c, b, a) by (P21).

Reversal yields (S4b) in cases (47):c =d < b < a,(46):c =d < a < b,
“49):b <c=d<a,@8):a <c=d < b,(51):b <a < c =d, and (50):
a<b<c=d.

(22). Ifa=c<b <d,then f(d,c,b,a) = —f (a, b, c,d) by (P41).

(23). Ifa=c <d < b, then f (a,b,c,d) =—f (a,d, c,b) by (P23)
and f (d,c,b,a) = f (a,d, c, b) by (P40).

(24). If b <a=c <d,then f(a,b,c,d) = f (b,c,d,a) by (P24)
and f (d,c,b,a) = —f (b, c,d, a) by (P43).

(25). Ifd <a=c < b, then f(a,b,c,d) =—f (d,c, b, a) by (P25).

(26). If b <d <a=c,then f(a,b,c,d) = f (b,c,d,a) by (P26)
and f (d,c,b,a) = —f (b, c,d, a) by (P45).

27). Ifd <b <a=c,then f(a,b,c,d) =—f (d,c,b,a) by (P27).

Reversal yields (S4b) in cases (41): b =d < ¢ < a,(40):b =d < a < c, (43):
c<b=d<a,42):a<b=d<c,(45):c<a<b=d,and(44).a <c < b =d.

(28). Ifa=d < b < c,then f (a,b,c,d) = f (a,b,d,c) by (P28)
and f (d,c,b,a) = —f (a, b,d, c) by (P29).

(30). If b <a=d <c,then f(a,b,c,d) = f (b,a,c,d) by (P30)
and f (d,c,b,a) = —f (b,a,c,d) by (P31).

(32). If b <c<a=d,then f (a,b,c,d) = f (b,a,c,d) by (P32)
and f (d,c,b,a) = —f (b, a,c,d) by (P33).
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(B4). Ifb = c <a < d,then f(a,b,c,d) = f(b,a,c,d) — f(b,c,a,d)
+ f(b,c.d, a) by (P34)
and f (d,c,b,a) =—f (b,a,c,d)+ f (b,c,a,d) — f (b,c,d,a) by (P35).
(36). Ifa <b=c<d,then f(d,c,b,a) =—f (a, b, c,d) by (P37).
(38). Ifa <d <b=c,then f(d,c,b,a) =—f (a,b, c,d) by (P39).
Reversal yields (S4b) in cases (29):a =d < ¢ < b,(31):c <a =d < b, (33):
c<b<a=d,(35):b=c<d=a,37):d<b=c<a,and(39):d <a <b=c.

This covers cases (1) through (51). In the remaining cases, a, b, c, d are all distinct:

(52). Ifa < b,c,d,butnota <d <c < b, then f (d,c,b,a) =—f (a,b,c,d) by
(P55).

53). If b < a,cd, then f(a,b,c,d) = f(b,a,c,d) — f(b,c,a,d)
+ f (by C, d7 a) by (P53) and f (d7 C, b? a) = _f (b’ C, d5 a) + f (b’ c,a, d)
— f(b,a,c,d) by (P54).

Reversal yields (S4b) in cases (55): d < a, b, c and (54): ¢ < a, b, d. Thus (S4b)

holds in all cases.

In view of Lemma 1.3 it remains to prove that f has property (S4d). Using (S4b)
transforms (S4d): f (a,b,c,d) — f (b,a,c,d) + f (b,c,a,d) — f (b,c,d,a) =0
into—f (d,c,b,a)+f (d,c,a,b)—f (d,a,c,b)+ f (a,d, c,b) = 0,whichis (S4d)
applied to a, d, ¢, b, so that the latter follows from (S4b) and from (S4d) applied to
a, b, c,d. Exchanging b and d will thus make some of the cases below follow from
other cases.

(). Ifa =b =c =d,then f(a,b,c,d) = f(b,a,c,d) = f(b,c,a,d) =
f(b,c,d,a) =0.
2).Ifa=b=c <d,then
fla,b,c,d)= f(b,a,c,d)= f(b,c,a,d)= f(a,a,a,d),
fW,c,d,a)= f(a,a,a,d) by (P4), and
flaboe,d)— fboa,c.d)+ f(bcoa,d)— f(bc.d a)
= f(a,a,a,d)— f(a,a,a,d)+ f(a,a,a,d) - f(a,a,a,d) = 0.

3).Ifa=b =c > d, then

f(a,b,c,d)y=fb,a,c,d) = f(b,c,a,d)=—f(d,a,a,a) by (P3),
fW,c,d,a)=—f(d,a,a,a) by (P5), and

fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

= —fWd,a,a,a)+ fd,a,a,a)— f(d,a,a,a)+ f(d,a,a,a) = 0.

Exchanging b and d yields cases (6):a =d =c <band (7):a=d =c > b.
4).Ifa=b=d < c, then

fla,b,c,d)= f(b,a,c,d)= f(a,a,a,c) by (P4),
fb,c,a,d)= f(b,c,d,a) =—f (a,a,a,c) by (P6), and
f(a,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

= f(a,a,a,c)— f(a,a,a,c)— f(a,a,a,c)+ f(a,a,a,c) = 0.
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5).Ifa=b=d > c, then

f(a,b,c,d)= f(b,a,c,d)=—f(c,a,a,a) by (P5),

fb,c,a,d)= f(c,a,a,a) by (P7), and

f(a,b,c,d)— fb,a,c,d)+ f (b, c,a,d)— f(b,c,d,a)

= — f(c,a,a,a)+ fd,a,a,a)+ f(c,a,a,a)— f(c,a,a,a) = 0.

8).1If b =c=d < a, then

fa,b,c,d)=—f(b,b,b,a) by (P8),

fW,a,c,d)=—f(b,b,b,a) by (P6),

f,c,a,d)= f(b,b,b,a) by (P4), and

f(a,b,c,dy— f(b,a,c,d)+ f (b,c,a,d)— f(b,c,d,a)

= —fb,b,b,a)y+ fb,b,b,a)+ f(b,b,b,a)— f(b,b,b,a) = 0.

9).Ifb=c=d > a, then

fb,a,c,d)= f(a,b,b,b) by (P7),
fb,c,a,d)=—f(a,b,b,b) by (PS),

f,c,d,a)=—f (a,b,b,b) by (P3), and

f(a,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

= f(a,b,b,b)+ f(a,b,b,b) — f(a,b,b,b) — f(a,b,b,b) = O.

(10).Ifa = b < ¢ = d, then

f,c,a,d) =0 by (P12), f(b,c,d,a)=0 by (P14), and
f(a,b,c,d)— f(b,a,c,d)y+ f(b,c,a,d)— f(b,c,d,a) = 0.

(11).Ifa = b > ¢ = d, then

f(a,b,c,d)= f(b,a,c,d)=—f(c,c,a,a) by (P11),
f b, c,a,d) =0 by (P13),
f(b,c,d,a) =0 by (P15), and

fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

Il
e

Exchanging b and d yields cases (14):a =d <b =cand (15):a=d > b = c.
(12). If a = ¢ < b = d, then f(a,b,c,d) = 0 by (P12), f(b,a,c,d)
fb,c,a,d) =0by (P15),and f (b, c,d,a) = 0by (P13).
(13).Ifa = ¢ > b = d, then f (a,b,c,d) = 0 by (P13), f(b,a,c,d)
f(b,c,a,d) =0by (P14),and f (b, c,d,a) = 0 by (P12).
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(16).Ifa=b <c <d, then f (a,b,c,d) = f (b,a,c,d),

f,c,d,a)= f(b,c,a,d) by (P28), and
fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) = O.

(17).Ifa=b <d < c, then f (a,b,c,d) = f (b, a,c,d),

f,c,a,d)=—f(b,d,a,c) by (P23), and
fW,c,d,a)=—f(a,d,b,c)=—f (b,d,a,c) by (P29), and
fa,b,c,d)— f(b,a,c,d)+ f (b,c,a,d)— f(b,c,d,a) = O.

Exchanging b and d yields cases (29):a =d <c <band 28):a=d <c < b.
(18).Ifc <a=b <d,then f (a,b,c,d) = f (b,a,c,d),

fW,c,a,d)= f(c,a,d,b) by (P24), and
f,c,d,a)= f(c,b,d,a) = f(c,a,d,b) by (P30), and
fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) = 0.

(19).Ifd <a=b <c,then f(a,b,c,d) = f (b,a,c,d),

fb,c,a,d)y=—-f(d,a,c,b) by (P25), and
fW,c,d,a)=—f(d,a,c,b) by (P31), and
f(a,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) = 0.

Exchanging b and d yields cases 31):c <a=d <band 30):c <a=d <b.
(20).Ifc <d <a =b, then f (a,b,c,d) = f (b,a,c,d),

f,c,a,d)= f(c,a,d,b) by (P26), and
f,c,d,a)= f(c,b,d,a) = f(c,a,d,b) by (P32), and
fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) = O.

(21).1fd <c <a =c, then f (a,b,c,d) = f (b,a,c,d),

f,c,a,d)=—f(d,a,c,b) by (P27), and
f,c,d,a)=—f(d,a,c,b) by (P33), and
fla,b,c,d)— f(b,a,c,d)+ f (b,c,a,d)— f(b,c,d,a) = O.

Exchanging b and d yields cases (33):c <d <a=band 32):d <c <a=b.
22).Ifa=c<b <d,then f (b,a,c,d) = f (b,c,a,d),

f,c,d,a)= f(a,b,c,d) by (P40), and
fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) = 0.
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24).1ftb <a=c <d,then f (b,a,c,d) = f (b,c,a,d),

f(a,b,c,d)= f(b,c,d,a) by (P24), and
fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) = O.

Exchanging b and d yields cases (23): b < ¢ <a =d and (25):d <c <a =b.
(26).Ifb <d <a =c, then f (b,a,c,d) = f (b,c,a,d),

f(a,b,c,d)= f(b,c,d,a) by (P26), and
fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) = O.

Exchanging b and d yields case (27):d < b < a =c.
(B4).If b =c <a < d, then

fla,b,c,d)y = f(b,a,c,d)— f(b,c,a,d)+ f (b,c,d,a) by (P34), and
f(a,b,c,dy— fb,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) = 0.

35).If b=c <d < a, then

fla,b,c,d) = — f(c,d,b,a)+ f(c,b,d,a)— f (c,b,a,d) by (P35),
fW,a,c,d) = — f(b,d,c,a) by (P23), and

f(a,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

= —fledba)+ f(cb.d a)

— f(c,b,a,d)+ f(b,d,c,a)+ f (b,c,a,d)— f(b,c,d,a) = O,

since b = c. Exchanging b and d yields cases (46): ¢ = d < a < b and (47):
c=d<b<a.
(36).Ifa < b =c < d, then

f(b,a,c,d) f(a,c,d,b) by (P24), and
f(b,c,a,d) — f(a,d,c,b)+ f(a,c,d,b) — f(a,c,b,d) by (P18),
f,c,d,a) = — f(a,d,c,b) by (P19), and
fla,b,c,d)y— f(b,a,c,d)+ f (b,c,a,d)— f(b,c,d,a)
= f(a,b,c,d)— f(a,c,d,b)— f(a,d,c,Db)
+ f(a,c,d,b)— f(a,c,b,d)+ f(a,d,c,b) = O,

since b = c.
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37).1Ifd < b =c < a, then

f(a,b,c,d) = — f(d,c,b,a) by (P37),
fW,a,c,d) = — f(d,c,a,b) by (P25),
f,c,a,d) = — f(d,a,c,b) by (P19),

fWw,c,dya) = —fd,a,c,b)+ f(d,c,a,b)— f(d,c,b,a) by (P18), and
fla,b,c,d)y— fb,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

= —fd,c,b,a)+ f(d,c,a,b)— f(d,a,c,b)

4+ f,a,c,b)— f(d,c,a,b)+ f(d,c,b,a) = 0.

Exchanging b and d yields case (48):a <c=d <band (49): b <c=d < a.
(38).Ifa <d < b = c, then

fb,a,c,d) = f(a,c,d,b) by (P26),
fW,c,a,d) = — f(a,d,c,b)+ f (a,c,d,b) — f(a,c,b,d) by (P20),
f,c,d,a) = — f(a,d,c,b) by (P21), and
fla,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)
= f(a,b,c,d)— f(a,c,d,b)— f(a,d,c,Db)
+ f(a,c,d,b)— f(a,c,b,d)+ f(a,d,c,b) = O,

since b = c.
(39).Ifd <a < b =c, then

f(a,b,c,d) = — f(d,c,b,a) by (P39),

f(b,a,c,d) — f(d,c,a,b) by (P27),

f(b,c,a,d) — f(,a,c,b) by (P21),

fw,c,d,a) = — fd,a,c,b)+ fd,c,a,b)— f(d,c,b,a) by (P20), and
f(a,b,c,d)y— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

= —fd,e,b,a)+ fd,c,a,b)— f(d,a,c,b)

+ f(,a,c,b)— f(d,c,a,b)+ f(d,c,b,a) = 0.

Exchanging b and d yields cases (50):a <c=d <band (51):b<c=d < a.
40).If b=d < a < c, then

f(a,b,c,d) = f(d,a,b,c) by (P40),

f,a,c,d) = f(b,a,d,c) by (P28),

fW,c,a,d) = — f(d,a,b,c) by (P29),

fb,c,d,a) = — f(b,a,d,c) by (P23), and

fa,b,c,d)— f(b,a,c,d)+ f (b,c,a,d)— [ (b,c,d,a)

= fd,a,b,c)— f(b,a,d,c)— f(d,a,b,c)+ f(b,a,d,c) = O.
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41).Ifb=d < c < a, then
f(a,b,c,d) = — f(d,c,b,a) by (P41),
fW,a,c,d) = — f(d,c,b,a) by (P29),
fW,c,a,d) = f(b,c,d,a) by (P28), and
fa,b,c,d)— f(b,a,c,d)+ f (b,c,a,d)— f(b,c,d,a)
= fd,c,b,a)— f(d,c,b,a)+ f(b,c,d,a)— f(b,c,d,a) = O.

42).Ifa <b=d < c, then
fb,a,c,d) = f(a,b,c,d) by (P30),
fW,c,a,d) = — f(a,d,c,b) by (P31),
fW,c,d,a) = — f(a,d,c,b) by (P25), and
fa,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)
= f(a,b,c,d)— f(a,b,c,d)— f(a,d,c,b)+ f (a,d,c,b) = 0.

43).If b=d < ¢ < a, then
f(a,b,c,d) = — f(c,b,a,d) by (P43),
fW,a,c,d) = — f(c,d,a,b) by (P31),
f,c,a,d) = f(c,b,a,d) by (P30),
fW,c,d,a) = f(c,d,a,b) by (P24), and
f(a,b,c,d)y— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)
= f(c,b,a,d)— f(c,d,a,b)+ f(c,b,a,d)— f(c,d,a,b) = 0,

since b = d.
44).Ifa < b =d < c, then

f(b,a,c,d) = f(a,b,c,d) by (P32),

f(b,c,a,d) = — f(a,d,c,b) by (P33),

fW,c,d,a) = — f(a,d,c,b) by (P27), and

f(a,b,c,d)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

= f(a,b,c,d)— f(a,b,c,d)— f(a,d,c,b)+ f (a,d,c,b) = 0.

45).1f b =d < ¢ < a, then
f(a,b,c,d) = — f(c,b,a,d) by (P45),
f(b,a,c,d) — f(c,d,a,b) by (P33),
fW,c,a,d) = f(c,b,a,d) by (P32),
fW,c,d,a) = f(c,d,a,b) by (P26), and
f(a,b,c,d)y— fb,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)
= f(b,a,d)— f(c,d,a,b)+ f(c,b,a,d)— f(c,d,a,b) = 0,

since b = d.
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(52).Ifa < b, c,d and b, c, d are distinct, then

fb,a,c,d) = f(a,b,c,d)— f(a,c,b,d)+ [ (a,c,d,b) by (P53),
f(b,c,a,d) — f(a,c,b,d)+ f(a,c,d,b) — f (a,d, c,b) by (P54),
f,c,d,a) = — f(a,d,c,b) by (P55), and
fla,b,c,d)y— f(b,a,c,d)+ f (b,c,a,d)— f(b,c,d,a)
= f(a,b,c,d)— f(a,b,c,d)+ f(a,c,b,d)— f(a,c,d,Db)

— f(a,¢c,b,d)+ f(a,c,d,b) — f(a,d,c,b)+ f (a,d,c,b) =0.

(53).1If b < ¢,d, a and a, c, d are distinct, then

f(a,b,c,d) = f(b,a,c,d)— f(b,c,a,d)+ f (b,c,d,a) by (P53), and
f(a,b,c,d)y— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a)

= f(b,a,c,d)— f(b,c,a,d)

+ f(b,c,d,a)— f(b,a,c,d)+ f(b,c,a,d)— f(b,c,d,a) =0.

Exchanging b and d yields case (55): d < a, b, c and a, b, ¢ are distinct.
(54).If ¢ < a,b,d and a, b, d are distinct, then

fa,b,c,d) = — f(c,b,a,d)+ f(c,b,d,a)— f(c,d,b,a) by (P54),
fW,a,c,d) = — f(c,a,b,d)+ f(c,a,d,b)— f(c,d,a,b) by (P54),
fb,c,a,d) = f(c,b,a,d)— f(c,a,b,d)+ f(c,a,d,b) by (P53),
fb,c,d,a) = f(c,b,d,a)— f(c,d,b,a)+ f(c,d,a,b) by (P53), and
f(a,b,c,d)y— fb,a,c,d)+ f(b,c,a,d) — f(b,c,d,a)
= — f(c,b,a,d)+ f(c,b,d,a)— f(c,d,b,a)

+ f(c,a,b,d)— f(c,a,d,b)+ f(c,d,a,b)

+ f(c,b,a,d)— f(c,a,b,d)+ f(c,a,d,b)

— f(c,b,d,a)+ f (c,d,b,a) — f(c,d,a,b) = O.

Thus (S4d) holds in all cases. O
We now prove Lemma 1.4 in case n = 4:

Lemma7.7 (n = 4) Let S be a totally ordered set, let X be a symmetric subset of
Sx 8§ xS xS, andlet G be an abelian group. Let Y be the set of all (a, b, c,d) € X
such that either a < b, c,d, ora < b,c and b < d, or both. Every mapping f of Y
into G extends uniquely to a symmetric mapping g of X into G. Moreover, every value
of g is a sum of values of f and opposites of values of f.

Proof Given f : Y — G, define f as follows. If (a,b,c,d) € Y, then
f(a, b,c,d) = f(a,b,c,d). If (a,b,c,d) € X\Y, then a, b, c,d is in case (N)
#(2), (9), (10), (16), (17), (22), (36), (38), (42), (44), (48), (50), (52), by Lemma
7.5; all (x,y,z,t) in the right hand side of (PN) are in Y, by Lemma 7.6; define

f(a, b, c,d) so that (PN) holds. For example, if (a, b, c, d) is in case (N) = (54),
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then (¢, b, a,d), (c,b,d,a), (c,d,b,a) € Y;let f(a,b,c,d) = —f (c,b,a,d) +
f(eb,d,a)— f(c,d,b,a).

By Lemma 7.6, a symmetric mapping g that extends f must have properties (P1)
through (P55), hence must coincide with f Conversely, fextends f and has properties
(P1) through (P55), hence is symmetric, by Lemma 7.6; and every value of fis asum
of values of f and opposites of values of f. O

8 Index of notations

Lowercase Roman: elements of groups or sets; mappings
d: boundary homomorphism (Proposition 2.4, Lemmas 4.5, 5.6)
Uppercase Roman: sets and groups, mostly.

Ap(a): a group of symmetric chains (Proposition 4.2)
B: aconvex subset of S (Introduction, Sect. 1)
B™: a group of symmetric n-coboundaries
B,: a group of symmetric n-boundaries
B,: acertain abelian group
B(a): avalue of B (Sect.6)
C": group of symmetric n-cochains
cn: group of all n-cochains (symmetric or not) (Sect. 1)
C,,: a group of symmetric n-chains
C,,(S/B): the group of symmetric n-cochains relative to B (Sect.?2)
Cp(s): asubgroup of C,,(S) (Lemma 4.1)
(Cn): a symmetry condition for chains (Sect.2)
C,: achain complex of free symmetric chain groups (Sect. 2)
G,: avalueof G
H": acohomology group
H,: ahomology group
H, (S/B): the homology group of § relative to B (Sect.?2)
L,: a group of ’long’ symmetric n-chains
L,(a) (Sect.5)
L,(s;t) (Lemma5.1)
Ms: a certain commutative monoid (Sect. 6)
PHom: a group of partial homomorphisms
S: your typical long suffering commutative monoid; a set, perhaps totally
ordered
T, U: canonical isomorphisms (Propositions 2.3, 4.2, 5.4)
X: asymmetric set
X, (a): acertain symmetric set (Sect.5)
Y: abasis of X
Z™: a group of symmetric n-cocycles
Z,: a group of symmetric n-cycles
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Boldface uppercase Roman: categories.

A: the category of all abelian group valued functors on S
T: the category of thin, abelian group valued functors on S

Script uppercase: functors and sequences thereof.

A,: aprojective, thin symmetric n-chain functor (Proposition 4.2)
A,: achain complex of projective, thin symmetric chain functors
B: aboundary functor
F(B, G): asemiconstant abelian group valued functor (Sect. 1)
G: your typical idle abelian group valued functor
H: one of Green’s relations (Introduction)
H,,: ahomology functor
L,: aprojective symmetric, ‘long’ n-chain functor (Sect.5)
L achain complex of projective symmetric, ‘long’ chain functors (Sect.5)
Z: acycle functor

Lowercase Greek: homomorphisms, natural transformations.

o: avalue of A,

a value of B

a value of G

coboundary homomorphism (Sect. 1)

a canonical homomorphism or partial homomorphism
a value of £,, (Lemma 5.3)

your typical undistinguished natural transformation

: a cochain homomorphism induced by 7 (Sect. 1)

>N ™
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