



# **Communications in Algebra**

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

# Cocycles in commutative semigroup cohomology

# **Pierre Antoine Grillet**

To cite this article: Pierre Antoine Grillet (1997) Cocycles in commutative semigroup cohomology, Communications in Algebra, 25:11, 3427-3462, DOI: 10.1080/00927879708826061

To link to this article: https://doi.org/10.1080/00927879708826061

Published online: 27 Jun 2007.



Submit your article to this journal 🕑



Article views: 46



View related articles



Citing articles: 3 View citing articles

# COCYCLES IN COMMUTATIVE SEMIGROUP COHOMOLOGY

## **Pierre Antoine Grillet**

Tulane University, New Orleans LA 70118, U.S.A.

**Abstract.** An alternate description of triple cohomology for commutative semigroups is given in dimensions 1, 2, and 3.

## Introduction.

1. Commutative semigroup cohomology refers to triple cohomology in the variety of commutative semigroups (Beck [2]; see also [1]). In [4] we gave a concrete description of this cohomology and showed that it coincides with the cohomology in [3] in dimension 2; the second cohomology group  $H^2(S, \mathcal{A})$  thus classifies commutative group coextensions of S by  $\mathcal{A}$ .

The description of commutative cohomology in [4] is derived from its definition by triples and does not lend itself to the computation of examples. Cochains in dimensions  $n \geq 2$  are indexed by an unbounded number of elements of S; this makes the computation of cohomology groups an infinite task, even for a finite semigroup.

In dimension 2 one can use the equivalent computable description in [3], in which cochains are indexed by pairs of elements of S. In section 1 we prove a stronger result: the cocycle and coboundary groups for triple cohomology coincide with the groups of symmetric cocycles and coboundaries in [3]. (A sharper description is given in [6].)

In Section 2 we prove a similar but more difficult result for dimension 3, which describes  $H^3(S, \mathcal{A})$  using symmetric cochains indexed (as in Leech cohomology) by three elements of S. It is an open question whether these

3427

Copyright © 1997 by Marcel Dekker, Inc.

results extend to higher dimensions; if so, the main result in Section 2 might be proved as in [2] or [8].

Sections 1 and 2 also contain normalization results for symmetric 2- and 3-cocycles.

The major results in this article were announced in [5].

2. We keep the notation in [4]. In what follows S is a commutative semigroup. The Leech category  $\mathscr{H}(S)$  is defined after [7] as follows. The objects of  $\mathscr{H}(S)$  are the elements of S. The morphisms of  $\mathscr{H}(S)$  are the elements of  $S \times S^1$ ; when  $x \in S$ ,  $t \in S^1$ , then (x,t) is a morphism from x to xt. The composition of  $(x,t): x \longrightarrow xt$  and  $(xt,u): xt \longrightarrow xtu$  is  $(x,tu): x \longrightarrow xtu$ ; the identity on  $x \in S$  is (x,1). An abelian group valued functor  $\mathcal{A}$  on  $\mathscr{H}(S)$  thus assigns to each  $x \in S$  an abelian group  $\mathcal{A}_x$ , and to each pair  $(x,t) \in S \times S^1$  a homomorphism  $\alpha_{x,t}: \mathcal{A}_x \longrightarrow \mathcal{A}_x t$  (written on the left), so that  $\alpha_{x,1}$  is the identity on  $\mathcal{A}_x$  and  $\alpha_{xt,u}\alpha_{x,t} = \alpha_{x,tu}$  for all x, t, u.

In longer calculations it is convenient to write

$$\alpha_{x,t}g = g^t \in \mathcal{A}_{xt} \quad \text{when} \quad g \in \mathcal{A}_x;$$

then

$$g^1 = g , \quad (g^t)^u = g^{tu}$$

whenever  $x \in S$ ,  $a \in \mathcal{A}_x$ ,  $t, u \in S^1$ .

Define semigroups  $T_n$  by induction as follows:  $T_0 = S$ ;  $T_{n+1}$  is the free commutative semigroup on the set  $T_n$ . An element of  $T_{n+1}$  is a nonempty product of elements of  $T_n$ , the factors of which are unique up to order. In what follows it would be very confusing to write the elements of  $T_{n+1}$  as the usual products of generators; hence we shall write the elements of  $T_{n+1}$  as nonempty unordered sequences  $t = [x_1, \ldots, x_m]$  of elements of  $T_n$  (so that  $m \ge 1$  and  $t^{\sigma} = [x_{\sigma 1}, \ldots, x_{\sigma m}] = [x_1, \ldots, x_m] = t$  for every permutation  $\sigma \in S_m$  of  $1, 2, \ldots, m$ ). Multiplication in  $T_{n+1}$  is given by concatenation:

$$[x_1,\ldots,x_m][y_1,\ldots,y_n] = [x_1,\ldots,x_m,y_1,\ldots,y_n].$$

A homomorphism  $p: T_n \longrightarrow S$  is defined by induction by

$$p[x_1, x_2, \dots, x_m] = (px_1)(px_2)\cdots(px_m),$$

starting with px = x for all  $x \in S$ ; in general,  $p[x_1, \ldots, x_m]$  is the product of all the elements of S which appear as components of  $[x_1, \ldots, x_m]$ . Similarly, homomorphisms  $\pi_i^n: T_{n+1} \longrightarrow T_n$  are defined by induction by

$$\begin{aligned} &\pi_n^n \left[ x_1, x_2, \dots, x_m \right] \; = \; x_1 x_2 \cdots x_m \\ &\pi_i^n \left[ x_1, x_2, \dots, x_m \right] \; = \; \left[ \pi_i^{n-1} x_1, \, \pi_i^{n-1} x_2, \dots, \pi_i^{n-1} x_m \right] \; \text{if} \; \; i < n \end{aligned}$$

for all  $x_1, \ldots, x_m \in T_n$ . This implies  $p(\pi_i^n t) = pt$  for all  $t \in T_{n+1}$ . (Commutative semigroups are tripleable over sets; in the corresponding cotriple,  $GS = T_1$ ,  $\epsilon = \pi_0^0$ , and  $\pi_i^n = G^{n-i} \epsilon G^i$ .)

Let  $\mathcal{A}$  be an abelian group valued functor on  $\mathscr{H}(S)$ . For each  $n \geq 1$ , a long *n*-cochain on S with coefficients in  $\mathcal{A}$  is a family  $c = (c_t)_{t \in T_{n-1}}$ such that  $c_t \in \mathcal{A}_{pt}$  for all  $t \in T_{n-1}$ . Under pointwise addition, long *n*cochains form an abelian group  $C^n(S, \mathcal{A}) = \prod_{t \in T_{n-1}} \mathcal{A}_{pt}$ . Coboundary homomorphisms  $\delta_n : C^n(S, \mathcal{A}) \longrightarrow C^{n+1}(S, \mathcal{A})$  such that  $\delta_n \delta_{n-1} = 0$  are defined by

(C) 
$$(\delta_n c)_t = \sum_{i=0}^{n-1} (-1)^i c_{\pi_i^{n-1}t} + (-1)^n \sum_{j=1}^m c_{x_j}^{pt_j^{\wedge}}$$

for all  $c \in C^n(S, \mathcal{A})$  and  $t = [x_1, \dots, x_m] \in T_n$ , with

$$t_j^{\wedge} = [x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_m]$$

(so that  $px_j pt_j^{\wedge} = pt$ ). A long *n*-cocycle is an element of  $Z^n(S, \mathcal{A}) =$ Ker  $\delta_n \subseteq C^n(S, \mathcal{A})$ . A long *n*-coboundary is an element of  $B^n(S, \mathcal{A}) =$ Im  $\delta_{n-1} \subseteq Z^n(S, \mathcal{A})$  (with  $B^1(S, \mathcal{A}) = 0$ ).

It is shown in [4] that the triple cohomology group  $H^n(S, \mathcal{A})$  (called  $H^{n-1}(S, \mathcal{A})$  in [1], [2]) is naturally isomorphic to  $Z^n(S, \mathcal{A})/B^n(S, \mathcal{A})$ .

3. In dimension 1,  $H^1(S, \mathcal{A}) \cong Z^1(S, \mathcal{A})$ . A long 1-cochain is a family  $c = (c_x)_{x \in S} \in \prod_{x \in S} \mathcal{A}_x$ , with coboundary

(C1) 
$$(\delta c)_t = c_{x_1 \cdots x_m} - \sum_{j=1}^m c_{x_j}^{pt_j^{\wedge}}$$

for all  $t = [x_1, \ldots, x_m] \in T_1$  (since  $\pi_0^0 t = pt = a_1 \cdots a_m$ ). Hence c is a long 1-cocycle if and only if

(Z1) 
$$c_{x_1\cdots x_m} = \sum_{j=1}^m c_{x_j}^{x_j^{\wedge}}$$

for all  $x_1, \ldots, x_m \in S$ ,  $m \geq 1$ , with  $x_j^{\wedge} = x_1 \cdots x_{j-1} x_{j+1} \cdots x_m$ . By induction on m, (Z1) is equivalent to

$$(A1) c_{xy} = c_x^y + c_y^x$$

for all  $x, y \in S$ . Thus  $Z^{1}(S, \mathcal{A})$  and  $H^{1}(S, \mathcal{A})$  are the same as in [3].

Condition (A1) implies that 1-cocycles are normalized (  $c_e=0$  whenever  $e^2=e~{\rm in}~S$  ).

## Section 1. Triple cohomology in dimension 2.

1. We call the 2-cochains defined in [3] symmetric 2-cochains to distinguish them from long 2-cochains. In detail, a short 2-cochain is a family  $c = (c_{x,y})_{x,y\in S}$  such that  $c_{x,y} \in \mathcal{A}_{xy}$  for all  $x, y \in S$ . Under pointwise addition, short 2-cochains form an abelian group  $\prod_{x,y\in S} \mathcal{A}_{xy}$ . A symmetric 2-cochain is a short 2-cochain  $c = (c_{x,y})_{x,y\in S} \in \prod_{x,y\in S} \mathcal{A}_{xy}$  such that

$$(S2) c_{y,x} = c_{x,y}$$

for all  $x, y \in S$ . For example, the coboundary of a 1-cochain u yields a short 2-cochain, also denoted by  $\delta u$ :

$$(\delta u)_{x,y} = u_{xy} - u_x^y - u_y^x,$$

which is symmetric.

A symmetric 2-cocycle or factor set is a symmetric 2-cochain s such that

(A2) 
$$s_{x,y}^{z} + s_{xy,z} = s_{x,yz} + s_{y,z}^{x}$$

for all  $x, y, z \in S$ . A symmetric 2-coboundary is a symmetric 2-cochain (necessarily a cocycle) s for which there exists a 1-cochain  $u = (u_x)_{x \in S}$  (with  $u_x \in \mathcal{A}_x$ ) such that  $s = \delta u$ , that is,

$$(B2) s_{x,y} = u_{xy} - u_{x}^{y} - u_{y}^{x}$$

for all  $x, y \in S$ . Under pointwise addition these form groups  $SC^2(S, \mathcal{A}) \subseteq \prod_{x,y \in S} \mathcal{A}_{xy}$ ,  $SZ^2(S, \mathcal{A})$ , and  $SB^2(S, \mathcal{A})$ . In [3] these groups are denoted by  $C^2(S, \mathcal{A})$ ,  $Z^2(S, \mathcal{A})$ ,  $B^2(S, \mathcal{A})$ , and defined only when  $\mathcal{A}$  is thin  $(\alpha_{x,t} = \alpha_{x,u}$  whenever xt = xu).

It is shown in [3] that  $SZ^2(S,\mathcal{A})/SB^2(S,\mathcal{A})$  classifies commutative group coextensions of S by  $\mathcal{A}$ ; therefore  $SZ^2(S,\mathcal{A})/SB^2(S,\mathcal{A}) \cong H^2(S,\mathcal{A})$ . We now prove (Theorem 1.3) that in fact  $Z^2(S,\mathcal{A}) \cong SZ^2(S,\mathcal{A})$ , with  $B^2(S,\mathcal{A}) \cong SB^2(S,\mathcal{A})$ .

2. We denote the typical element of  $T_1$  by  $X = [x_1, \ldots, x_\ell]$ ;  $\ell$  is the length  $\ell = |X|$  of the commutative word X. By definition,

$$X^{\sigma} = \begin{bmatrix} x_{\sigma 1}, \dots, x_{\sigma \ell} \end{bmatrix} = \begin{bmatrix} x_1, \dots, x_\ell \end{bmatrix} = X$$

for every permutation  $\sigma \in S_{\ell}$  of  $1, 2, \ldots, \ell$ . We also let

$$x = pX = x_1 \cdots x_\ell, \quad x'_i = x_1 \cdots x_i, \quad x''_i = x_{i+1} \cdots x_\ell,$$

and  $x_i^{\wedge} = x_1 \cdots x_{i-1} x_{i+1} \cdots x_{\ell}$ ; in these formulas, any empty product is read as  $1 \in S^1$ . When  $c \in S^2(S, \mathcal{A})$  we write  $c_X = c_{x_1, \dots, x_{\ell}}$  (without brackets). Since c depends only on X, we have  $c_{x_{\sigma_1}, \dots, x_{\sigma_{\ell}}} = c_{x_1, \dots, x_{\ell}}$  for every  $\sigma \in S_{\ell}$ ; we write this property as  $c_{X\sigma} = c_X$ .

For every  $\mathbf{X} = [X_1, \dots, X_m] \in T_2$  we have

$$\pi_1^1 \mathbf{X} = X_1 \cdots X_m, \quad \pi_0^1 \mathbf{X} = [pX_1, \dots, pX_m] = [x_1, \dots, x_m],$$

 $\operatorname{and}$ 

(C2) 
$$(\delta c)_{\mathbf{X}} = c_{x_1,\dots,x_m} - c_{X_1\cdots X_m} + \sum_{j=1}^m c_{X_j}^{x_j^{(j)}}$$

for every  $c \in C^2(S, \mathcal{A})$  (with  $x_j^{\wedge} = x_1 \cdots x_{j-1} x_{j+1} \cdots x_m$ ). Thus long 2-cocycles are families  $s = (s_X)_{X \in T_1} \in \prod_{X \in T_1} \mathcal{A}_{pX}$  such that

$$(P2) s_{X\sigma} = s_X$$

for all  $X \in T_1$ ,  $\sigma \in S_{|X|}$ , and

(Z2) 
$$s_{X_1 \cdots X_m} = s_{x_1, \dots, x_m} + \sum_{j=1}^m c_{X_j}^{x_j^{\wedge}}$$

 $\text{for all } m \geq 1 \text{ and } X_1, \dots, X_m \in T_1.$ 

3. LEMMA 1.1. When s is a long 2-cocycle,  $s_x = 0$  for all  $x \in S$ , and

$$(Z2') s_X = \sum_{i=1}^{\ell-1} s_{x_i, x_{i+1}}^{x_{i+1}'}$$

for all  $X \in T_1$  of length  $\ell$ .

PROOF. Let  $x \in S$ . With m = 1 and  $X_1 = [x]$ , (Z2) yields  $s_x = 0$ . Hence (Z2') holds when  $\ell = 1$ . Let  $\ell \ge 2$ .

With 
$$m = 2$$
,  $X_1 = [x_1, ..., x_{\ell-1}]$ , and  $X_2 = [x_{\ell}]$ , (Z2) reads

$$(X2) s_X = s_{x'_{\ell-1}, x_{\ell}} + s^{x_{\ell}}_{x_1, \dots, x_{\ell-1}}$$

(since  $s_{X_2} = 0$ ). Hence (Z2') holds if  $\ell = 2$  or  $\ell = 3$ . If  $\ell > 3$  and (Z2') holds for  $\ell - 1$ , then with  $y = x_{i+1} \cdots x_{\ell-1}$  we have  $yx_{\ell} = x''_{i+1}$  and (X2) yields

$$s_X = s_{x_1, \dots, x_{\ell-1}}^{\star\ell} + s_{x_{\ell-1}', x_{\ell}}$$
  
=  $\left(\sum_{i=1}^{\ell-2} s_{x_i', x_{i+1}}^y\right)^{x_{\ell}} + s_{x_{\ell-1}', x_{\ell}}$   
=  $\sum_{i=1}^{\ell-2} s_{x_i', x_{i+1}}^{x_{i+1}'} + s_{x_{\ell-1}', x_{\ell}}$   
=  $\sum_{i=1}^{\ell-1} s_{x_i', x_{i+1}}^{x_{i+1}'};$ 

thus (Z2') holds for  $\ell$ .

4. By 1.1, a long 2-cocycle is uniquely determined by its values on commutative words of length 2. More precisely, let  $\Gamma: Z^2(S, \mathcal{A}) \longrightarrow SC^2(S, \mathcal{A})$ be the trimming homomorphism defined by  $(\Gamma s)_{x,y} = s_{x,y} \in \mathcal{A}_{xy}$  for all  $x, y \in S$  (note that  $s_{x,y} = s_{y,x}$  by (P2)). Lemma 1.1 implies that  $\Gamma$  is injective.

LEMMA 1.2. Im  $\Gamma = SZ^2(S, \mathcal{A})$ .

PROOF. Let  $s \in Z^2$ ,  $x, y, z \in S$ . With m = 2,  $X_1 = [x]$ , and  $X_2 = [y, z]$ , (Z2) reads:  $s_{x,y,z} = s_{x,yz} + s_{y,z}^x$  (since  $s_x = 0$ ). With  $X_1 = [x, y]$  and  $X_2 = [z]$ , (Z2) reads:  $s_{x,y,z} = s_{xy,z} + s_{x,y}^z$  (since  $s_z = 0$ ). Hence  $s_{x,y}^z + s_{xy,z} = s_{x,yz} + s_{y,z}^x$  and  $\Gamma s \in SZ^2$ .

Conversely let  $s\in SZ^2.$  We use (Z2') to define  $s_X$  for all  $X\in T_1.$  In detail, let

$$t_{x_1,...,x_{\ell}} = \sum_{i=1}^{\ell-1} s_{x'_i,x_{i+1}}^{x''_{i+1}}$$

for all  $\ell \geq 1$  and  $x_1, \ldots, x_\ell \in S$ . If  $\ell = 1$ , then the right hand side is empty, and  $t_x = 0$  for all  $x \in S$ . If  $\ell = 2$  we obtain  $t_{x,y} = s_{x,y}$ , so that  $\Gamma t = s$ . It

remains to prove (P2) and (Z2), so that  $t \in Z^2$ .

First we note that

$$\begin{split} t_{x_1,\dots,x_{\ell},y} &= \sum_{i=1}^{\ell-1} s_{x'_i,x_{i+1}}^{x''_{i+1}y} + s_{x'_{\ell},y} \\ &= \left( \sum_{i=1}^{\ell-1} s_{x'_i,x_{i+1}}^{x''_{i+1}} \right)^y + s_{x'_{\ell},y} = t_{x_1,\dots,x_{\ell}}^y + s_{x'_{\ell},y} \end{split}$$

so that (X2) holds for t.

We prove (P2):  $t_{X\sigma} = t_X$  for all  $X = [x_1, \ldots, x_\ell]$  by induction on  $\ell$ . For  $\ell \leq 2$ , (P2) follows from (S2). For  $\ell > 2$  it suffices to show that  $t_{X\tau} = t_X$  for every transposition  $\tau = (i \ i+1)$  with  $i < \ell$ . For  $i < \ell - 1$ ,  $t_{X\tau} = t_X$  follows from the induction hypothesis, since

$$t_{x_1, \dots, x_{\ell}} = t_{x_1, \dots, x_{\ell-1}}^{x_{\ell}} + s_{x'_{\ell-1}, x_{\ell}}$$

by (X2). For  $i = \ell - 1$  we have, with  $x'_{\ell-2} = b$ ,  $x_{\ell-1} = c$ ,  $x_{\ell} = d$ :

$$\begin{aligned} t_X &= \sum_{i=1}^{\ell-3} s_{x'_i, x_{i+1}}^{x''_{i+1}} + s_{b,c}^d + s_{bc,d} \\ t_{X^{\tau}} &= \sum_{i=1}^{\ell-3} s_{x'_i, x_{i+1}}^{x''_{i+1}} + s_{b,d}^c + s_{bd,c} \end{aligned}$$

and it follows from (A2) and (S2) that

$$s^d_{b,c} + s_{bc,d} = s^d_{c,b} + s_{cb,d} = s_{c,bd} + s^c_{b,d} = s^c_{b,d} + s_{bd,c} \,.$$

Therefore (P2) holds.

(Z2) holds when m = 1; for m > 1 we proceed by induction on m. Assume that (Z2) holds for m and let  $Y_1, \ldots, Y_m, Z \in T_1, pY_j = y_j, pZ = z$ . Let  $Y_1 \cdots Y_m = X = [x_1, \ldots, x_q] \in T_1$  and  $Z = [z_1, \ldots, z_r]$ . By the induction hypothesis,

$$t_X = t_{y_1, \cdots, y_m} + \sum_{k=1}^m t_{Y_k}^{y_k^{\wedge}},$$

where  $y_k^{\wedge} = y_1 \cdots y_{k-1} y_{k+1} \cdots y_m$ ; we want to prove that

$$t_{XZ} = t_{y_1, \dots, y_m, z} + \sum_{k=1}^m t_{Y_k}^{y_k^{\wedge} z} + t_Z^z.$$

By definition,  $t_{XZ} = t_{x_1, \dots, x_q, z_1, \dots, z_r}$  equals

$$t_{XZ} = \sum_{i=1}^{q-1} s_{x_i',x_{i+1}}^{x_{i+1}'b} + \sum_{j=0}^{r-1} s_{xz_j',z_{j+1}}^{z_{j+1}'}$$
  
$$= t_X^z + s_{x,z_1}^{z_1'} + \sum_{j=1}^{r-1} s_{xz_j',z_{j+1}}^{z_{j+1}'}$$
  
$$= t_{y_1,\cdots,y_m}^z + \sum_{k=1}^m t_{Y_k}^{y_k^{-z}} + s_{x,z_1}^{z_1''}$$
  
$$+ \sum_{j=1}^{r-1} \left( -s_{x,z_j'}^{z_{j+1}} + s_{x,z_j'z_{j+1}} + s_{z_j',z_{j+1}}^{z} \right)^{z_{j+1}''}$$

by the induction hypothesis and (A2),

$$= t_{y_1,\cdots,y_m}^z + \sum_{k=1}^m t_{Y_k}^{y_k^{\prime}z} + s_{x,z_1'}^{z_1'} \\ - \sum_{j=1}^{r-1} s_{x,z_j'}^{z_j'} + \sum_{j=2}^r s_{x,z_j'}^{z_j'} + \left(\sum_{j=1}^{r-1} s_{z_j',z_{j+1}}^{z_{j+1}'}\right)^z \\ = t_{y_1,\cdots,y_m}^z + \sum_{k=1}^m t_{Y_k}^{y_k^{\prime}z} + s_{x,z} + t_Z^z \\ = t_{y_1,\cdots,y_m,z}^z + \sum_{k=1}^m t_{Y_k}^{y_k^{\prime}z} + t_Z^z$$

by (X2), and (Z2) is proved.

THEOREM 1.3. For every commutative semigroup S and abelian group valued functor  $\mathcal{A}$  on  $\mathcal{H}(S)$ :  $Z^2(S, \mathcal{A}) \cong SZ^2(S, \mathcal{A})$ ;  $B^2(S, \mathcal{A}) \cong SB^2(S, \mathcal{A})$ ; and  $H^2(S, \mathcal{A}) \cong SZ^2(S, \mathcal{A})/SB^2(S, \mathcal{A})$ .

PROOF. By 1.1, 1.2,  $\Gamma$  is an isomorphism  $Z^2 \longrightarrow SZ^2$ . When  $c \in C^1$ , (C1) implies  $(\delta c)_{x,y} = c_{xy} - c_x^y - c_y^x$ ; hence  $\Gamma(B^2) = SB^2$ .

5. If  $\mathcal{A}$  is thin (if  $\alpha_{x,t} = \alpha_{x,u}$  whenever xt = xu in S), normalization can be used to sharpen Theorem 1.3. A symmetric 2-cochain c is normalized when  $c_{e,x} = 0$  whenever  $e^2 = e$  and ex = x in S. These cochains form a subgroup  $NSC^2(S, \mathcal{A})$  of  $SC^2(S, \mathcal{A})$ . Normalized symmetric 2-cocycles and 2-coboundaries form abelian groups  $NSZ^2(S, \mathcal{A}) = SZ^2(S, \mathcal{A}) \cap NSC^2(S, \mathcal{A})$ and  $NSB^2(S, \mathcal{A}) = SB^2(S, \mathcal{A}) \cap NSC^2(S, \mathcal{A})$ . If  $\mathcal{A}$  is thin, it is readily verified that a symmetric 2-coboundary is normalized if and only if it is the coboundary of a normalized 1-cochain.

PROPOSITION 1.4. If  $\mathcal{A}$  is thin,  $H^2(S, \mathcal{A}) \cong NSZ^2(S, \mathcal{A})/NSB^2(S, \mathcal{A})$ .

PROOF. We show that  $SZ^2 = NSZ^2 + SB^2$ ; then  $H^2 \cong NSZ^2 / NSB^2$ follows from  $H^2 \cong SZ^2 / SB^2$  and  $SB^2 \cap NSZ^2 = NSB^2$ .

Let  $s \in SZ^2$ . Take any  $u \in C^1(S, \mathcal{A})$  such that  $u_e = s_{e,e}$  whenever  $e^2 = e$  in S. Since  $\mathcal{A}$  is thin,  $\alpha_{e,e} = \alpha_{e,1}$  is the identity on  $\mathcal{A}_e$  and  $(\delta u)_{e,e} = -u_e$ . Hence  $t = s + \delta u \in SZ^2$  satisfies  $t_{e,e} = 0$  whenever  $e^2 = e$ . It follows from (A2) that t is normalized: if  $e^2 = e$  and ex = x, then  $\alpha_{x,e} = \alpha_{x,1}$  is the identity on  $\mathcal{A}_x$  and

 $\alpha_{e,x} t_{e,e} + t_{ee,x} = t_{e,ex} + \alpha_{ex,e} t_{e,x}$ 

yields  $t_{e,x} = 0$ . Thus  $s = t - \delta u \in NSZ^2 + SB^2$ .

#### Section 2. Cocycles in dimension 3.

1. A short 3-cochain on S with coefficients in  $\mathcal{A}$  is a family  $c = (c_{x,y,z})_{x,y,z\in S}$  such that  $c_{x,y,z} \in \mathcal{A}_{xyz}$  for all  $x, y, z \in S$ . Under pointwise addition, short 3-cochains form an abelian group  $\prod_{x,y,z\in S} \mathcal{A}_{xyz}$ . A symmetric 3-cochain on S with coefficients in  $\mathcal{A}$  is a short 3-cochain  $c = (c_{x,y,z})_{x,y,z\in S}$  such that

$$c_{z,y,x} = -c_{x,y,z}$$
, and  $c_{x,y,z} + c_{y,z,x} + c_{z,x,y} = 0$ 

for all  $x, y, z \in S$ . For example, the coboundary of a symmetric 2-cochain u, defined by

$$(\delta u)_{x,y,z} = u^x_{y,z} - u_{xy,z} + u_{x,yz} - u^z_{x,y},$$

is a symmetric 3-cochain.

A symmetric 3-cocycle is a symmetric 3-cochain t such that

$$t_{y,z,w}^x - t_{xy,z,w} + t_{x,yz,w} - t_{x,y,zw} + t_{x,y,z}^w = 0$$

for all  $x, y, z, w \in S$ . A symmetric 3-coboundary is a symmetric 3-cochain t (necessarily a 3-cocycle) for which there exists a symmetric 2-cochain u such that  $t = \delta u$ . Under pointwise addition, symmetric 3-cochains, 3-cocycles, and 3-coboundaries form abelian groups  $SC^3(S, \mathcal{A}) \subseteq \prod_{x,y,z \in S} \mathcal{A}_{xyz}$ ,  $SZ^3(S, \mathcal{A})$ , and  $SB^3(S, \mathcal{A})$ . The main result in this section (Theorem 2.11) is that  $H^3(S, \mathcal{A}) \cong SZ^3(S, \mathcal{A})$ .

2. The first step in the proof is to state the definition of long 3cocycles in usable form. We denote the typical element of  $T_2$  by  $\mathbf{X} = [X_1, X_2, \dots, X_m]$ ; by definition,

$$\mathbf{X}^{\sigma} = \left[ X_{\sigma 1}, \dots, X_{\sigma m} \right] = \left\{ X_1, \dots, X_m \right] = \mathbf{X}$$

for every permutation  $\sigma \in S_m$  of  $1, 2, \ldots, m$ . We denote  $p\mathbf{X}$  by  $x, \pi_1^1\mathbf{X}$  by  $\mathbb{X}$ , and  $\pi_0^1\mathbf{X}$  by X. Then  $x = p\mathbf{X} = p\mathbb{X} = pX$ . If  $\mathbf{X} = [X_1, X_2, \ldots, X_m]$  and  $x_j = pX_j$ , then

$$\begin{split} \mathbf{X} &= \pi_1^1 \mathbf{X} = X_1 X_2 \cdots X_m, \\ X &= \pi_0^1 \mathbf{X} = \begin{bmatrix} x_1, x_2, \cdots, x_m \end{bmatrix}. \end{split}$$

When  $c \in C^3(S, \mathcal{A})$ , we write  $c_{\mathbf{X}} = c_{X_1; X_2; \dots; X_m}$  (with semicolons), separating the components of each  $X_j$  with commas if necessary:

$$c_{\mathbf{X}} = c_{x_{11}, \dots, x_{1m_1}; x_{21}, \dots, x_{2m_2}; \dots; x_{n1}, \dots, x_{nm_n}}$$

By definition,  $c_{\mathbf{X}^{\sigma}} = c_{X_{\sigma1};...;X_{\sigma m}} = c_{X_1;...;X_m} = c_{\mathbf{X}}$  for every permutation  $\sigma \in S_m$ , and  $c_{X_1^{\sigma_1};...;X_m}^{\sigma_m} = c_{X_1;...;X_m}$  for all suitable permutations  $\sigma_1, \ldots, \sigma_m$ .

For all  $[\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n] \in T_3$  we have

$$\begin{split} \pi_2^2 [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n] &= \mathbf{X}_1 \mathbf{X}_2 \cdots \mathbf{X}_n \,, \\ \pi_1^2 [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n] &= [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n] \,, \\ \pi_0^2 [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n] &= [X_1, X_2, \dots, X_n] \,, \end{split}$$

(with  $X_i = \pi_0^1 \mathbf{X}_i$ ); hence

(C3) 
$$\begin{array}{rcl} & (\delta c) \begin{bmatrix} \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n \end{bmatrix} = c_{X_1; X_2; \dots; X_n} - c_{\mathbf{X}_1; \mathbf{X}_2; \dots; \mathbf{X}_n} \\ & + c_{\mathbf{X}_1 \mathbf{X}_2 \cdots \mathbf{X}_n} - \sum_{k=1}^n c_{\mathbf{X}_k}^{x_k^k} \end{array}$$

where  $x_k^{\wedge} = x_1 \cdots x_{k-1} x_{k+1} \cdots x_n$ ,  $x_k = pX_k = pX_k = pX_k$ . Thus a long 3-cocycle is a family  $s = (s_{\mathbf{X}})_{\mathbf{X} \in T_2}$  such that  $s_{\mathbf{X}} \in \mathcal{A}_x$  and the following conditions hold:

$$(P3') \qquad \qquad s_{X_{\sigma_1};\ldots;X_{\sigma_m}} = s_{X_1;\ldots;X_m}$$

 $\text{for all } m \geq 1, \ \mathbf{X} \in T_2 \ \text{of length} \ m, \text{and} \ \sigma \in S_m;$ 

$$(P3') s_{X_1^{\sigma_1};...;X_m^{\sigma_m}} = s_{X_1;...;X_m}$$

for all  $m \ge 1$ ,  $\mathbf{X} \in T_2$  of length m, and suitable permutations  $\sigma_1, \ldots, \sigma_m$ ; and

(Z3) 
$$s_{\mathbf{X}_1\mathbf{X}_2\cdots\mathbf{X}_n} = s_{\mathbf{X}_1;\mathbf{X}_2;\ldots;\mathbf{X}_n} - s_{X_1;X_2;\ldots;X_n} + \sum_{k=1}^n s_{\mathbf{X}_k}^{X_k^h}$$

for all  $\mathbf{X}_1, \ldots, \mathbf{X}_n \in T_2$ , where, as before,  $X_i = \pi_0^1 \mathbf{X}_i$ ,  $x_i = p \mathbf{X}_i$ , and  $x_k^{\wedge} = x_1 \cdots x_{k-1} x_{k+1} \cdots x_n$ .

3. Condition (Z3) implies that long 3-cocycles can be trimmed (as we trimmed long 2-cocycles in Section 1). This will be done in three stages.

When 
$$\mathbf{X} = [X_1, \dots, X_m] \in T_1$$
, we let  $x_i = pX_i$  and

$$x'_{j} = x_{1}x_{2}\cdots x_{j}, \qquad x''_{j} = x_{j+1}\cdots x_{m}, \qquad X'_{j} = X_{1}X_{2}\cdots X_{j}.$$

LEMMA 2.1. Every long 3-cocycle s satisfies

$$(Z') s_X = s_x$$

for all  $X \in T_1$ , and (Z'')

$$s_{X_1;...;X_m} = \sum_{j=1}^{m} s_{x_j}^{x_j^{\wedge}} + \sum_{j=1}^{m-1} s_{X_j';X_{j+1}}^{x_{j+1}'} - \sum_{j=1}^{m-1} s_{x_1,...,x_j;x_{j+1}}^{x_{j+1}'}$$

for all  $X_1, \ldots, X_m \in T_1$ .

PROOF. Let  $X \in T_1$ . With n = 1 and  $\mathbf{Y}_1 = [X]$ , we have  $\mathbb{Y}_1 = X$ ,  $Y_1 = [x]$ ,  $y_1 = x$ , and (Z3) reduces to (Z').

Now let  $X_1, \ldots, X_m \in T_1$ . If m = 1, then (Z'') follows from (Z'). Let  $m \ge 2$ . With  $\mathbf{Y}_1 = [X_1, \ldots, X_{m-1}]$  and  $\mathbf{Y}_2 = [X_m]$ , we have  $\mathbf{Y}_1\mathbf{Y}_2 = [X_1, \ldots, X_m]$ ,  $\mathbb{Y}_1 = X_1 \cdots X_{m-1} = X'_{m-1}$ ,  $\mathbb{Y}_2 = X_m$ ,  $Y_1 = [x_1, \cdots, x_{m-1}]$ ,  $Y_2 = [x_m]$ , and (Z3) yields

(X3)  
$$s_{X_{1};...;X_{m}} = s_{X_{1}\cdots X_{m-1};X_{m}} - s_{x_{1},...,x_{m-1};x_{m}} + s_{X_{1};...;X_{m-1}}^{x'_{m}} + s_{X_{m}}^{x'_{m-1}}.$$

This proves (Z'') if m = 2. For m > 2 we proceed by induction on m. If  $m \ge 2$  and (Z'') holds for m, then:

$${}^{s}X_{1};...;X_{m};X_{m+1}$$

$$= s_{X_{1};...;X_{m}}^{x_{m+1}} + s_{X_{1}\cdots X_{m};X_{m+1}} - s_{x_{1},...,x_{m-1};x_{m}} + s_{X_{m}}^{x'_{m-1}}$$
by (X3)
$$= \left(\sum_{j=1}^{m} s_{x_{j}}^{x_{j}^{h}} + \sum_{j=1}^{m-1} s_{X_{j}';X_{j+1}}^{x'_{j+1}'} - \sum_{j=1}^{m-1} s_{x_{1},...,x_{j};x_{j+1}}^{x'_{j+1}'}\right)^{x_{m+1}}$$

$$+ s_{X_{1}\cdots X_{m};X_{m+1}} - s_{x_{1},...,x_{m-1};x_{m}} + s_{x_{m}}^{x'_{m-1}}$$
by the induction hypothesis and (Z')

$$= \sum_{j=1}^{m} s_{x_j}^{x_j^{\prime} x_{m+1}} + s_{x_m}^{x_{m-1}^{\prime}} + \sum_{j=1}^{m-1} s_{X_j^{\prime};X_{j+1}}^{x_{j+1}^{\prime}} + s_{X_m^{\prime};X_{m+1}}^{\prime} \\ - \sum_{j=1}^{m-1} s_{x_1,\dots,x_j;x_{j+1}}^{x_{j+1}^{\prime} x_{m+1}} - s_{x_1,\dots,x_{m-1};x_m}^{\prime}$$

and thus (Z'') holds for m + 1.

4. Lemma 2.1 shows that a long 3-cocycle is determined by its values on commutative words of length at most 2. In detail, let

$$C_1(S,\mathcal{A}) \;=\; (\prod_{x\in S} \mathcal{A}_x) \times (\prod_{X,Y\in T_1} \mathcal{A}_{xy})$$

be the abelian group of all families

$$c = ((c_x)_{x \in S}), (c_{X;Y})_{X,Y \in T_1}))$$

such that  $c_x \in \mathcal{A}_x$  for all  $x \in S$  and  $c_{X,Y} \in \mathcal{A}_{xy}$  for all  $X, Y \in T_1$ . The trimming homomorphism  $\Gamma_1 : Z^3(S, \mathcal{A}) \longrightarrow C_1(S, \mathcal{A})$  is defined by  $(\Gamma_1 s)_x = s_x$ ,  $(\Gamma_1 s)_{X;Y} = s_{X;Y}$  for all  $x \in S$ ,  $X, Y \in T_1$ . Lemma 2.1 implies that  $\Gamma_1$  is injective.

LEMMA 2.2. Let  $s \in C_1(S, \mathcal{A})$ . Then  $s \in \text{Im } \Gamma_1$  if and only if:

$$(P'_1) s_{B;A} = s_{A;B} ext{ for all } A, B \in T_1;$$

$$(P_1'') \qquad s_{A^{\sigma};B^{\tau}} = s_{A;B} \text{ for all } A, B \in T_1 \text{ and suitable } \sigma, \tau;$$

$$(Z'_1) \qquad \qquad s_{a;b}=s^b_a+s^a_b \ \text{ for all } a,b\in S; \quad \text{and}$$

$$(Z_1'') s_{A;BC} + s_{B;C}^a + s_a^{bc} - s_{a;b,c} = s_{AB;C} + s_{A;B}^c + s_c^{ab} - s_{a,b;c}$$

for all  $A, B, C \in T_1$ .

PROOF. Let  $s \in SZ^3$ . Properties  $(P'_1)$  and  $(P''_1)$  follow from (P3')and (P3''). Let  $a, b \in S$ . With n = 2,  $\mathbf{X}_1 = [[a]]$ , and  $\mathbf{X}_2 = [[b]]$ , we have  $\mathbb{X}_1 = X_1 = [a]$ ,  $\mathbb{X}_2 = X_2 = [b]$ , and (Z3) reduces to  $(Z'_1)$ . Next let  $A, B, C \in T_1$ . With n = 2,  $\mathbf{X}_1 = [A, B]$ , and  $\mathbf{X}_2 = [C]$ , we have  $\mathbb{X}_1 = AB$ ,  $X_1 = [a, b]$ ,  $\mathbb{X}_2 = C$ ,  $X_2 = [c]$ , and (Z3) reads

$$s_{A;B;C} = s_{AB;C} - s_{a,b;c} + s_{A;B}^{c} + s_{c}^{al}$$

(using (Z')). Similarly, with n = 2,  $\mathbf{X}_1 = [A]$ , and  $\mathbf{X}_2 = [B, C]$ , (Z3) reads

$$s_{A;B;C} = s_{A;BC} - s_{a;b,c} + s_a^{bc} + s_{B;C}^{a}$$

This proves  $(Z_1'')$ .

For the converse, let  $c \in C_1$  have properties  $(P'_1)$ ,  $(P''_1)$ ,  $(Z'_1)$ , and  $(Z''_1)$ . Define  $s_{X_1;\ldots;X_m} \in \mathcal{A}_x$  for all  $X_1,\ldots,X_m \in T_1$  by

$$s_{X_1;\ldots;X_m} = \sum_{j=1}^m c_{x_j}^{x_j^{\wedge}} + \sum_{j=1}^{m-1} c_{X_j';X_{j+1}}^{x_{j+1}'} - \sum_{j=1}^{m-1} c_{x_1,\ldots,x_j;x_{j+1}}^{x_{j+1}'}.$$

In particular,  $s_{X_1}=c_{x_1}=c_x,$  so that (Z') holds for s and  $s_x=c_x$  for all  $x\in S\,.$  Also

$$s_{A;B} = c_a^b + c_b^a + c_{A;B} - c_{a,b} = c_{A;B}$$

by  $(Z'_1)$ ; therefore  $\Gamma_1 s = c$  and (Z'') holds for s. Property (P3'') follows from  $(P''_1)$ . It remains to show that (P3') and (Z3) hold for s.

First we show that s has property (X3) in the proof of Lemma 2.1:

(X3)  
$$s_{X_1;...;X_m} = s_{X_1\cdots X_{m-1};X_m} - s_{x_1,...,x_{m-1};x_m} + s_{X_1;...;X_{m-1}}^{x_m'} + s_{X_m}^{x_{m-1}'}.$$

This property is trivial if m = 1 and follows from (Z') and  $(Z'_1)$  if m = 2. For m > 2, let  $y''_j = x_{j+1} \cdots x_{m-1}$  (with  $y''_{m-1} = 1 \in S^1$ ) and  $y'_j = x_1 \cdots x_{j-1} x_{j+1} \cdots x_{m-1}$ . Then  $x''_j = y''_j x_m$  and  $x'_j = y'_j x_m$  for all  $j \leq m-1$ , and (Z'') yields

$$\begin{split} s_{X_{1};\,...;\,X_{m}} &= \sum_{j=1}^{m} s_{x_{j}}^{x_{j}^{\wedge}} + \sum_{j=1}^{m-1} s_{x_{j}';X_{j+1}}^{x_{j+1}''} - \sum_{j=1}^{m-1} s_{x_{1},...,x_{j};x_{j+1}}^{x_{j+1}'} \\ &= \left(\sum_{j=1}^{m-1} s_{x_{j}}^{y_{j}^{\wedge}}\right)^{x_{m}} + s_{X_{m}}^{x_{m-1}'} \\ &+ \left(\sum_{j=1}^{m-2} s_{X_{j}';X_{j+1}}^{y_{j+1}'}\right)^{x_{m}} + s_{X_{m-1}';X_{m}} \\ &- \left(\sum_{j=1}^{m-2} s_{x_{1},...,x_{j};x_{j+1}}^{y_{j+1}'}\right)^{x_{m}} - s_{x_{1},...,x_{m-1};x_{m}} \\ &= s_{X_{1};...;X_{m-1}}^{x_{m}} + s_{X_{m}}^{x_{m-1}'} + s_{X_{m-1}';X_{m}} - s_{x_{1},...,x_{m-1};x_{m}} \,. \end{split}$$

Thus (X3) holds for s.

We use induction on m to prove (P3'):  $s_{\mathbf{X}\sigma} = s_{\mathbf{X}}$ , for all  $m \geq 1$ ,  $\mathbf{X} = [X_1, \ldots, X_m]$ , and  $\sigma \in S_m$ . By  $(P_1')$ , s has this property for  $m \leq 2$ . If m > 2 it suffices to prove that  $s_{\mathbf{X}\sigma} = s_{\mathbf{X}}$  when  $\sigma = (i \ i+1)$ , i < m. If i < m-1, then  $\sigma m = m$  and  $s_{\mathbf{X}\sigma} = s_{\mathbf{X}}$  follows from (X3) and the induction hypothesis. Let i = m - 1. Let

$$\mathbf{B} = [X_1, \dots, X_{m-2}], \quad A = X_{m-1}, \quad C = X_m,$$

so that  $\mathbb{B} = X_1 \cdots X_{m-2}$ . By (Z'') we have

$$\begin{split} s_{\mathbf{X}} &= s_{B_{1};\,...;\,B_{m-2};\,A;C} \\ &= \sum_{j=1}^{m-2} s_{b_{j}}^{b_{j}^{\wedge}ac} + s_{a}^{bc} + s_{c}^{ba} \\ &+ \sum_{j=1}^{m-3} s_{B_{j}^{\prime};B_{j+1}}^{b_{j+1}^{\prime}ac} + s_{\mathbb{B};A}^{c} + s_{\mathbb{B}A;C} \\ &- \sum_{j=1}^{m-3} s_{b_{1},...,b_{j};b_{j+1}}^{b_{j+1}^{\prime}ac} - s_{b_{1},...,b_{m-2};a}^{c} - s_{b_{1},...,b_{m-2},a;c} \,, \end{split}$$

$$s_{\mathbf{X}\sigma} = s_{B_{1};...;B_{m-2};C;A}$$

$$= \sum_{j=1}^{m-2} s_{b_{j}}^{b_{j}^{\wedge} ca} + s_{c}^{ba} + s_{a}^{bc}$$

$$+ \sum_{j=1}^{m-3} s_{B_{j}';B_{j+1}}^{b_{j+1}' ca} + s_{\mathbb{B};C}^{a} + s_{\mathbb{B};C;A}$$

$$- \sum_{j=1}^{m-3} s_{b_{1},...,b_{j};b_{j+1}}^{b_{j+1}' ca} - s_{b_{1},...,b_{m-2};c}^{a} - s_{b_{1},...,b_{m-2};c}^{m-3} + s_{\mathbb{B};C;A}$$

Hence we need to show that

$$\begin{split} s^c_{\mathbb{B};A} &+ s_{\mathbb{B}A;C} - s^c_{b_1,...,b_{m-2};a} - s_{b_1,...,b_{m-2},a;c} \\ &= s^a_{\mathbb{B};C} + s_{\mathbb{B}C;A} - s^a_{b_1,...,b_{m-2};c} - s_{b_1,...,b_{m-2},c;a}; \end{split}$$

this follows from:

$$\begin{split} s_{b_1,\dots,b_{m-2},a;c} &+ s_{b_1,\dots,b_{m-2};a}^c \\ &= s_{a,b_1,\dots,b_{m-2};c} + s_{a;b_1,\dots,b_{m-2}}^c \quad \text{by} \ (P_1'), (P_1'') \\ &= s_{a;b_1,\dots,b_{m-2},c} + s_{b_1,\dots,b_{m-2};c}^a + s_{a}^{bc} - s_{a;b,c} - s_{c}^{ab} + s_{a,b;c} \quad \text{by} \ (Z_1'') \\ &= s_{b_1,\dots,b_{m-2},c;a} + s_{b_1,\dots,b_{m-2};c}^a + s_{A\mathbb{B};C} + s_{A;\mathbb{B}}^c - s_{A;\mathbb{B}C} - s_{\mathbb{B};C}^a \quad \text{by} \ (Z_1'') \\ &= s_{b_1,\dots,b_{m-2},c;a} + s_{b_1,\dots,b_{m-2};c}^a + s_{\mathbb{B}A;C} + s_{\mathbb{B};A}^c - s_{\mathbb{B}C;A} - s_{\mathbb{B};C}^a \\ \end{split}$$

This proves (P3').

We now turn to (Z3). First we prove

$$(Z_1^*) \begin{array}{rcl} s_{X;Y_1\cdots Y_\ell} &=& \sum_{i=0}^{\ell-1} s_{XY_i';Y_{i+1}}^{y_{i+1}'} + \sum_{i=2}^{\ell} s_{y_i}^{xy_i^{\wedge}} - \sum_{i=1}^{\ell-1} s_{x,y_i';y_{i+1}}^{y_{i+1}'} \\ &-& (\ell-1)s_x^y - \sum_{i=1}^{\ell-1} s_{Y_i';Y_{i+1}}^{xy_{i+1}'} + \sum_{i=1}^{\ell-1} s_{x;y_i',y_{i+1}}^{y_{i+1}'} \end{array}$$

for all  $X, Y_1, \ldots, Y_{\ell} \in T_1$ . This is trivial if  $\ell = 1$  and reduces to  $(Z_1'')$  if  $\ell = 2$ . For  $\ell > 2$  we proceed by induction on  $\ell$ . Let  $\mathbf{B} = [Y_1, \ldots, Y_{\ell-1}]$ , so that  $b_i'' = y_{i+1} \cdots y_{\ell-1}$  and  $b_i^{\wedge} = y_1 \cdots y_{i-1} y_{i+1} \cdots y_{\ell-1}, y_i'' = b_i'' y_{\ell}$ , and  $y_i^{\wedge} = b_i^{\wedge} y_{\ell}$ , for all  $i < \ell$ . With A = X,  $B = Y_1 \cdots Y_{\ell-1}$ , and  $C = Y_{\ell}$ ,  $(Z_1'')$  yields

$$\begin{split} s_{X;Y_{1}\cdots Y_{\ell}} &= s_{X;B}^{y_{\ell}} + s_{XB;Y_{\ell}} + s_{y_{\ell}}^{xb} - s_{x,b;y_{\ell}} - s_{B;Y_{\ell}}^{x} - s_{x}^{by_{\ell}} + s_{x;b,y_{\ell}} \\ &= \left( \sum_{i=0}^{\ell-2} s_{XY'_{i};Y_{i+1}}^{b''_{i+1}} + \sum_{i=2}^{\ell-1} s_{y_{i}}^{xb_{i}^{\wedge}} - \sum_{i=1}^{\ell-2} s_{xy'_{i};y_{i+1}}^{b''_{i+1}} \right) \\ &- (\ell-2)s_{x}^{b} - \sum_{i=1}^{\ell-2} s_{Y'_{i};Y_{i+1}}^{xb''_{i+1}} + \sum_{i=1}^{\ell-2} s_{x;y'_{i},y_{i+1}}^{b''_{i+1}} \right)^{y_{\ell}} \\ &+ s_{XB;Y_{\ell}} + s_{y_{\ell}}^{xb} - s_{x,b;y_{\ell}} - s_{B;Y_{\ell}}^{x} - s_{x}^{by_{\ell}} + s_{x;b,y_{\ell}} \\ &\text{by the induction hypothesis} \end{split}$$

$$\begin{split} &= \sum_{i=0}^{\ell-2} s_{XY'_{i};Y_{i+1}}^{y'_{i+1}} + \sum_{i=2}^{\ell-1} s_{Y'_{i}}^{xy'_{i}} - \sum_{i=1}^{\ell-2} s_{x,y'_{i};Y_{i+1}}^{y'_{i+1}} \\ &- (\ell-2)s_{x}^{y} - \sum_{i=1}^{\ell-2} s_{Y'_{i};Y_{i+1}}^{y'_{i+1}} + \sum_{i=1}^{\ell-2} s_{x;y'_{i},y_{i+1}}^{y'_{i+1}} \\ &+ s_{XY'_{\ell-1};Y_{\ell}} + s_{y_{\ell}}^{y'_{\ell-1}} - s_{x,y'_{\ell-1};Y_{\ell}} - s_{x}^{x} + s_{x;y'_{\ell-1},y_{\ell}} \\ &= \sum_{i=0}^{\ell-1} s_{XY'_{i};Y_{i+1}}^{y''_{i+1}} + \sum_{i=2}^{\ell} s_{y_{i}}^{xy'_{i}} - \sum_{i=1}^{\ell-1} s_{x,y'_{i};y_{i+1}}^{y''_{i+1}} \\ &- (\ell-1)s_{x}^{y} - \sum_{i=1}^{\ell-1} s_{Y'_{i};Y_{i+1}}^{xy''_{i+1}} + \sum_{i=1}^{\ell-1} s_{x;y'_{i},y_{i+1}}^{y''_{i+1}}, \end{split}$$

and  $(Z_1^*)$  holds for  $\ell$ .

We now prove (Z3). With n = 1 and  $\mathbf{X}_1 = \mathbf{X}$ , (Z3) reads  $s_{\mathbf{X}} = s_X$ ; this follows from (Z') since  $p\mathbf{X} = pX$ .

For n > 1 we proceed by induction on n. Let  $\mathbf{X}_k = [X_{k1}, \dots, X_{km_k}]$ , so that  $\mathbb{X}_k = X_{k1} \cdots X_{km_k}$  and  $X_k = [x_{k1}, \dots, x_{km_k}]$  (with  $x_{kj} = pX_{kj}$ ). The left hand side of (Z3) is

 $LHS(n) \ = \ s_{\mathbf{X}_{1}\cdots\mathbf{X}_{n}} \ = \ s_{X_{11};\,\ldots;\,X_{1m_{1}};\,\ldots;\,X_{n1};\,\ldots;\,X_{nm_{n}}} \ ;$ 

the right hand side is

$$RHS(n) = s_{\mathbf{X}_{1};...;\mathbf{X}_{n}} - s_{X_{1};...;X_{n}} + \sum_{k=1}^{n} s_{\mathbf{X}_{k}}^{x_{k}^{\wedge}}$$
  
$$= s_{X_{11}\cdots X_{1m_{1}};...;X_{n1}\cdots X_{nm_{n}}}$$
  
$$- s_{x_{11}\cdots x_{1m_{1}};...;x_{n1}\cdots x_{nm_{n}}}$$
  
$$+ \sum_{k=1}^{n} s_{X_{k1};...;X_{km_{k}}}^{x_{k}^{\wedge}} \cdot$$

We use (Z''), then separate the terms which contain n:

$$LHS(n) = \sum_{k=1}^{n} \sum_{j=1}^{m_{k}} s_{x_{kj}}^{x_{k}^{\wedge}(x_{k})_{j}^{\wedge}} + \sum_{j=1}^{m_{1}-1} s_{(X_{1})_{j}';X_{1,j+1}}^{(x_{1})'_{1}+1} + \sum_{k=2}^{n} \sum_{j=0}^{m_{k}-1} s_{X_{k-1}'(X_{k})_{j}';X_{k,j+1}}^{(x_{k})'_{1}+1} - \sum_{j=1}^{m_{1}-1} s_{x_{11},\dots,x_{1j};x_{1,j+1}}^{(x_{1})'_{1}+1} - \sum_{k=2}^{n} \sum_{j=0}^{m_{k}-1} s_{x_{11},\dots,x_{kj};x_{k,j+1}}^{(x_{k})'_{1}+1}$$

$$\begin{split} &= \sum_{k=1}^{n-1} \sum_{j=1}^{m_k} s_{x_k}^{x_k^h}(x_k)_j^h \\ &+ \sum_{j=1}^{m_{l-1}} s_{(x_l)_{j+1}^{''}x_{1,j+1}^{''}} + \sum_{k=2}^{n-1} \sum_{j=0}^{m_k-1} s_{x_{k-1}^{''}(X_k)_{j+1}^{''}x_{k,j+1}^{''}} \\ &- \sum_{j=1}^{m_{l-1}} s_{x_{1,1},\dots,x_{1j}^{'}x_{1,j+1}^{''}} - \sum_{k=2}^{n-1} \sum_{j=0}^{m_{l-1}} s_{x_{1,1},\dots,x_{kj}^{'}x_{k,j+1}} \\ &+ \sum_{j=1}^{m_{l-1}} s_{x_{nj}}^{''}(x_{n})_j^h \\ &+ \sum_{j=0}^{m_{l-1}} s_{x_{n-1}^{''}(X_{n})_{j}^{'}, X_{n,j+1}^{''}} - \sum_{j=0}^{m_{l-1}} s_{x_{1,1},\dots,x_{nj}^{'}x_{n,j+1}} \\ &= LHS(n-1)^{x_n} + \sum_{j=1}^{m_n} s_{x_{nj}^{''}}^{x_{n-1}^{''}(x_{n})_{j}^{'}} \\ &+ \sum_{j=0}^{m_{n-1}} s_{x_{n-1}^{''}(X_{n})_{j}^{'}, X_{n,j+1}^{''}} - \sum_{j=0}^{m_{n-1}} s_{x_{1,1},\dots,x_{nj}^{''}x_{n,j+1}}^{x_{n,j+1}^{''}}, (2), (3) \\ RHS(n) &= \sum_{k=1}^{n} s_{x_k}^{x_k^h} + \sum_{k=1}^{n-1} s_{x_{k+1}^{''}}^{x_{k+1}^{''}} - \sum_{k=1}^{n-1} s_{x_{1,\dots,x_{k}^{''}x_{k+1}}^{x_{k+1}^{''}}, (2), (3) \\ RHS(n) &= \sum_{k=1}^{n} s_{x_k}^{x_k^h} + \sum_{k=1}^{n-1} s_{x_{k+1}^{''}}^{x_{k+1}^{''}} - \sum_{k=1}^{n-1} s_{x_{1,\dots,x_{k}^{''}x_{k+1}}^{x_{k+1}} \\ &- \sum_{k=1}^{n} s_{x_k}^{x_k^h} - \sum_{k=1}^{n-1} s_{x_k^{''}x_{k+1}}^{x_{k+1}^{''}} + \sum_{k=1}^{n-1} s_{x_{1,\dots,x_{k}^{''}x_{k+1}}^{x_{k+1}} \\ &+ \sum_{k=1}^{n} \left( \sum_{j=1}^{m_k} s_{x_{kj}^{'}}^{x_k} \right)^{x_k^h} + \sum_{k=1}^{n} \left( \sum_{j=1}^{m_{k-1}} s_{(x_k)_{j+1}^{''}, x_{k,j+1}}^{x_k^h} \right)^{x_k^h} \\ &= \sum_{k=1}^{n-1} s_{x_k}^{x_k} - \sum_{k=1}^{n-2} s_{x_k^{''}x_{k+1}}^{x_{k+1}} \\ &- \sum_{k=1}^{n-1} \left( \sum_{j=1}^{m_k} s_{x_{kj}^{'}}^{x_{kj}} \right)^{x_k^h} + \sum_{k=1}^{n-1} \left( \sum_{j=1}^{m_k-1} s_{(x_k)_{j+1}^{''}, x_{k,j+1}}^{x_{k+1}} \right)^{x_k^h} \\ &- \sum_{k=1}^{n-1} \left( \sum_{j=1}^{m_k} s_{x_{kj}^{''}}^{x_{kj}^{''}} + \sum_{k=1}^{n-1} s_{x_{k-1}^{''}}, x_{n,j+1}^{x_{n-1}} \right)^{x_k^h} \\ &- \sum_{k=1}^{n-1} \left( \sum_{j=1}^{m_k-1} s_{x_{k1}^{'''}, x_{kj}^{''}} + \sum_{k=1}^{n-1} s_{x_{k-1}^{'''}, x_{kj}^{''}} \right)^{x_k^h} \\ &- \sum_{k=1}^{m_k-1} s_{x_{kj}^{''}}^{x_{kj}^{''}} + \sum_{j=1}^{m_k-1} s_{x_{k-1}^{''''}, x_{kj}^{''}} \right)^{x_k^h} \\ &- \sum_{j=1}^{m_k-1} s_{x_{kj}^{'''}}^{x_{k-1}^{''''}} + \sum_{j=1}^{m_k-1} s_{x_{k-1}^{''''}, x_{kj}^{'''''}} \right)$$

$$= RHS(n-1)^{x_n} + s_{X_n}^{x'_{n-1}} + s_{X_{n-1}}^{x'_{n-1}} - s_{X_n}^{x'_{n-1}} - s_{X_{n-1}}^{x'_{n-1}} X_n \quad (\mathbf{A}), (\mathbf{B}), (\mathbf{C}), (\mathbf{D})$$

$$+ \sum_{j=1}^{m_n} s_{x_{nj}}^{(x_n)_j x'_{n-1}} + \sum_{j=1}^{m_n-1} s_{(X_n)_j;X_{n,j+1}}^{(x_n)_{j+1}' x'_{n-1}}$$
(1), (E)

$$-\sum_{j=1}^{m_n-1} \frac{(x_n)_{j+1}'' x_{n-1}'}{s_{x_{n1},\dots,x_{nj};x_{n,j+1}}}.$$
 (F)

Since LHS(n-1) = RHS(n-1) by the induction hypothesis, it remains to show that

$$(2) - (3) = (A) + (B) - (C) - (D) + (E) - (F).$$
By  $(Z')$ ,  $s_{X_n} = s_{x_n} = s_{X_n}$ ; hence  $(A) = (C)$ . By  $(Z*_1)$ ,  
 ${}^{s_{X'_{n-1};X_n} = s_{X'_{n-1};X_n} = s_{X'_{n-1};X_n} = s_{X'_{n-1};X_n + X_{nm_n} - s_{x_{11},...,x_{n-1},m_{n-1};[x_{n1}] \cdots [x_{nm_n}] = \sum_{j=0}^{m_n - 1} s_{X'_{n-1}(X_n)'_{j+1}}^{(x_n)'_{j+1}} + \sum_{j=2}^{m_n s_{x_{nj}}^{(x_{n-1})}} - \sum_{j=1}^{m_n - 1} s_{X'_{n-1}(X_n)'_{j};X_{n,j+1}}^{(x_n)'_{j+1}} - (m_n - 1) s_{x'_{n-1}}^{x_n} - \sum_{j=1}^{m_n - 1} s_{(X_n)'_{j+1},X_{n,j+1}}^{(x_n)'_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j},x_{n,j+1}}^{(x_n)'_{j+1}} - \sum_{j=2}^{m_n - 1} s_{x_{nj}}^{(x_n)'_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1}}^{(x_n)'_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1}}^{(x_n)'_{j+1}} + (m_n - 1) s_{x'_{n-1}}^{x_n} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j},x_{n,j+1}}^{(x_n)'_{j+1}} - \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j,x_{n,j+1}}^{(x_n)'_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j,x_{n,j+1}}^{(x_n)'_{j+1}} - \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)'_{j+1}} - \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)'_{j+1}} - \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)'_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)_{j+1}} - \sum_{j=0}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)_{j+1}} - \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_n)_{j+1}} + \sum_{j=1}^{m_n - 1} s_{x'_{n-1};(x_n)'_{j+1}}^{(x_$ 

Thus  $(\mathbf{B}) - (\mathbf{D}) = (\mathbf{2}) - (\mathbf{E}) - (\mathbf{3}) + (\mathbf{F})$ ; therefore  $(\mathbf{2}) - (\mathbf{3}) = (\mathbf{A}) + (\mathbf{B}) - (\mathbf{C}) - (\mathbf{D}) + (\mathbf{E}) - (\mathbf{F})$  and  $(\mathbb{Z}\mathbf{3})$  is proved.

5. It follows from Lemmas 2.1 and 2.2 that  $Z^3(S, \mathcal{A})$  is isomorphic to the group  $Z_1(S, \mathcal{A})$  of all  $s \in C_1(S, \mathcal{A})$  which satisfy  $(P'_1), (P''_1), (Z'_1)$ , and  $(Z''_1)$ ; the proof of 2.2 shows that these properties imply  $(Z^*_1)$ .

LEMMA 2.3. Every  $s \in Z_1(S, \mathcal{A})$  satisfies

$$(Z_{1}^{**}) \qquad s_{X;Y} = \sum_{i=0}^{\ell-1} s_{XY_{|i};y_{i+1}}^{y_{i+1}'} + \sum_{i=2}^{\ell} s_{y_{i}}^{y_{y_{i}'}'} - \sum_{i=1}^{\ell-1} s_{x,y_{i}';y_{i+1}}^{y_{i+1}'} \\ - (\ell-1)s_{x}^{y} - \sum_{i=1}^{\ell-1} s_{Y_{|i};y_{i+1}}^{y_{i+1}''} + \sum_{i=1}^{\ell-1} s_{x;y_{i}',y_{i+1}}^{y_{i+1}''}$$

for all  $X, Y = \begin{bmatrix} y_1, \dots, y_\ell \end{bmatrix} \in T_1$ , with  $Y_{|i} = \begin{bmatrix} y_1, \dots, y_i \end{bmatrix}$ .

PROOF. Property  $(Z_1^{**})$  is the particular case of  $(Z_1^*)$  where  $Y_i = \big[\,y_i\,\big]$  for all i.

This permits further trimming. Since  $s_{x;y,z} = s_{y,z;x}$ ,  $(Z_1^{**})$  shows that each  $s \in Z_1$  is uniquely determined by its values  $s_x$  with  $x \in S$  and  $s_{X;y}$ with  $X \in T_1$ ,  $y \in S$ . Let

$$C_2(S,\mathcal{A}) \;=\; (\textstyle{\textstyle\prod_{x\in S}\,\mathcal{A}_x})\times(\textstyle{\textstyle\prod_{X\in T_1,\,y\in S}\,\mathcal{A}_{(pX)y}})$$

be the abelian group of all families

$$c = ((c_x)_{x \in S}), (c_{X;y})_{X \in T_1, y \in S})$$

such that  $c_x \in \mathcal{A}_x$  and  $c_{X;y} \in \mathcal{A}_{(pX)y}$  for all  $x, y \in S$ ,  $X \in T_1$ . Let  $\Gamma_2$ :  $Z_1(S,\mathcal{A}) \longrightarrow C_2(S,\mathcal{A})$  be the trimming homomorphism defined by  $(\Gamma_2 s)_x = s_x$ ,  $(\Gamma_2 s)_{X;y} = s_{X;y}$  for all  $x, y \in S$ ,  $X \in T_1$ . Lemma 2.3 implies that  $\Gamma_2$  is injective.

LEMMA 2.4. Let  $s \in C_2(S, \mathcal{A})$ . Then  $s \in \text{Im } \Gamma_2$  if and only if it has properties

$$(Z_1') \qquad \qquad s_{x;y} = s_x^y + s_y^z$$

$$(P'_2) \ s_{[x]Y;z} \ - \ s_{x,y;z} \ - \ s^x_{Y;z} \ + \ s^{xy}_z \ = \ s_{[z]Y;x} \ - \ s_{z,y;x} \ - \ s^z_{Y;x} \ + \ s^{zy}_x$$

$$(P_2'') \qquad \qquad s_{X^{\sigma};y} = s_{X;y}$$

$$\begin{aligned} &(Z_2) & s_{wx,y;z} + s_{xy,z;w} + s_{w,x;yz} + s_y^{wxz} + s_z^{wxy} + s_z^z, w + s_{y,z;x}^w + s_{wx}^{yz} \\ &= s_{y,z;wx} + s_{w,xy;z} + s_{x,yz;w} + s_w^{xyz} + s_x^{wyz} + s_{w,x;y}^z + s_{x,y;z}^w + s_{yz}^{wyz} \\ &\text{for all } w, x, y, z \in S, \ X, Y \in T_1, \text{ and suitable } \sigma. \end{aligned}$$

PROOF. First we show that every long 3-cocycle  $s \in \mathbb{Z}^3$  has properties  $(\mathbb{Z}_2)$  and  $(\mathbb{P}'_2)$ .

Let  $w, x, y, z \in S$ . With  $A = [w], B = [x, y], C = [z], (Z''_1)$  reads (with sides exchanged)

 $\begin{array}{ll} (1) \ s_{w,x,y;\,z} + s_{w;\,x,y}^{z} + s_{z}^{wxy} - s_{w,xy;\,z} = s_{w;\,x,y,z} + s_{x,y;\,z}^{w} + s_{w}^{xyz} - s_{w;\,xy,z} \, . \\ \\ \text{With } A = \left[ w \right], \ B = \left[ x \right], \ C = \left[ y, z \right], \ (Z_{1}^{\prime\prime}) \ \text{reads} \\ (2) \ s_{w;\,x,y,z} + s_{x;\,y,z}^{w} + s_{w}^{xyz} - s_{w;\,x,yz} = s_{w,x;\,y,z} + s_{w;\,x}^{yz} + s_{yz}^{wx} - s_{w,x;\,yz} \, . \\ \\ \text{With } A = \left[ w, x \right], \ B = \left[ y \right], \ C = \left[ z \right], \ (Z_{1}^{\prime\prime}) \ \text{reads} \\ (3) \ s_{w,x;\,y,z} + s_{y;\,z}^{wx} + s_{wx}^{yz} - s_{wx;\,y,z} = s_{w,x,y;\,z} + s_{w,x;\,y}^{z} + s_{z}^{wxy} - s_{wx,y;\,z} \, . \\ \\ \text{Adding these equalities yields} \end{array}$ 

$$\begin{split} \underline{s_{w,x,y;z}} + s_{w;x,y}^{z} + \underline{s_{z}^{wxy}} - s_{w,xy;z} \\ + \underline{s_{w;x,y,z}} + s_{x;y,z}^{w} + \underline{s_{w}^{xyz}} - s_{w;x,yz} \\ + \underline{s_{w,x;y,z}} + s_{y;z}^{wx} + \underline{s_{w}^{yz}} - s_{w;x,yz} \\ = \underline{s_{w;x,y,z}} + s_{w,y;z}^{w} + \underline{s_{w}^{xyz}} - s_{w;xy,z} \\ + \underline{s_{w,x;y,z}} + s_{w;x}^{yz} + \underline{s_{w}^{xyz}} - s_{w,x;yz} \\ + \underline{s_{w,x;y,z}} + s_{w;x}^{yz} + \underline{s_{w}^{xyz}} - s_{w,x;yz} \\ + \underline{s_{w,x,y;z}} + s_{w,x;y}^{z} + \underline{s_{w}^{xyy}} - s_{w,x;yz} \end{split}$$

cancelling the underlined terms, and applying  $(Z_1^\prime)$  to  $s_{w;\,x}$  and  $s_{y;\,z}\,,$  yields

;

$$\begin{split} s^{z}_{w;x,y} &- s_{w,xy;z} + s^{w}_{x;y,z} - s_{w;x,yz} + s^{wxz}_{y} + s^{wxy}_{z} + s^{yz}_{wx} - s_{wx;y,z} \\ &= s^{w}_{x,y;z} - s_{w;xy,z} + s^{xyz}_{w} + s^{wyz}_{x} + s^{wx}_{yz} - s_{w,x;yz} + s^{z}_{w,x;y} - s_{wx,y;z}; \end{split}$$

since  $s_{A;B} = s_{B;A}$ , this yields  $(Z_2)$ .

Now let  $x,z\in S,\;Y\in T_1.$  With m = 3,  $X_1$  = [ x ],  $X_2$  = Y, and  $X_3$  = [ z ], (Z'') reads

$$\begin{split} s_{x;Y;z} &= s_x^{yz} + s_y^{xz} + s_z^{xy} + s_{x;Y}^z + s_{[x]Y;z} - s_{x;y}^z - s_{x,y;z} \\ &= s_z^{xy} + s_{Y;x}^z + s_{[x]Y;z} - s_{x,y;z} \,, \end{split}$$

since  $s_x^{yz} + s_y^{xz} = s_{x;y}^z$  and  $s_{x;Y} = s_{Y;x}$ . Exchanging x and z yields

$$s_{z;Y;x} = s_x^{yz} + s_{Y;z}^x + s_{[z]Y;x} - s_{z,y;x}.$$

Since  $s_{x;Y;z} = s_{z;Y;x}$ , we obtain

$$s_{z}^{xy} + s_{Y;x}^{z} + s_{[x]Y;z} - s_{x,y;z} = s_{x}^{yz} + s_{Y;z}^{x} + s_{[z]Y;x} - s_{z,y;x}$$

and  $(P_2')$ .

Thus every long 3-cocycle  $s \in Z^3$  has properties  $(Z_2)$ ,  $(P'_2)$ ,  $(Z'_1)$  (which was proved before), and  $(P''_2)$  (which follows from  $(P''_1)$  and ultimately from (P3'')). Hence every  $t = \Gamma_1 s \in Z_1$  has these properties, and so does every  $\Gamma_2 t$  with  $t \in Z_1$ .

Conversely let  $c \in C_2(S, \mathcal{A})$  have properties  $(P'_2)$ ,  $(P''_2)$ ,  $(Z'_1)$ , and  $(Z_2)$ . Define  $s_x = c_x$  for all  $x \in S$  and

$$s_{X;Y} = \sum_{i=0}^{\ell-1} c_{XY_{i};y_{i+1}}^{y_{i+1}'} + \sum_{i=2}^{\ell} c_{y_i}^{xy_i^{\wedge}} - \sum_{i=1}^{\ell-1} c_{x,y_i';y_{i+1}}^{y_{i+1}'} - (\ell-1) c_x^y - \sum_{i=1}^{\ell-1} c_{Y_{i};y_{i+1}}^{xy_{i+1}'} + \sum_{i=1}^{\ell-1} c_{y_i',y_{i+1};x}^{y_{i+1}'}$$

for all  $X, Y = [y_1, \ldots, y_\ell] \in T_1$  (where  $Y_{|i} = [y_1, \ldots, y_i]$ ). This is according to  $(Z_1^{**})$ , except for the last term. If  $\ell = 1$ , then  $s_{X;y} = c_{X;y}$ ; therefore s has properties  $(P'_2), (P''_2), (Z'_1)$ , and  $(Z_2)$ , and will satisfy  $\Gamma_2 s = c$ .

By  $(Z'_1)$ , we also have

$$\begin{split} s_{x;y,z} &= c_{x;y}^{z} + c_{x,y;z} + c_{z}^{xy} - c_{x,y;z} - c_{x}^{yz} - c_{y;z}^{x} + c_{y,z;x} \\ &= c_{x}^{yz} + c_{y}^{xz} + c_{z}^{xy} - c_{x}^{yz} - c_{z}^{xy} + c_{y,z;x} \\ &= c_{y,z;x} \end{split}$$

for all  $x, y, z \in S$ . In particular,

$$s_{x;y,z} = s_{y,z;x}$$

for all  $x, y, z \in S$ . The definition of s then shows that it has property  $(Z_1^{**})$ . Since c satisfies  $(P_2'')$  we have  $s_{X\sigma;Y} = s_{X;Y}$  for all  $X, Y, \sigma; (P_1'')$  follows from this property and  $(P_1')$ . It remains to prove that s satisfies  $(P_1')$  and  $(Z_1'')$ . We begin with  $(Z''_1)$ . Let  $A, B = [b_1, \ldots, b_\ell], C = [c_1, \ldots, c_m] \in T_1$ . By  $(Z_1^{**})$ , the left hand side and right hand side of  $(Z''_1)$  are:

$$LHS = s_{A;BC} + s_{B;C}^{a} + s_{a}^{oc} - s_{a;b,c}$$
  
=  $\sum_{i=0}^{\ell-1} s_{AB_{\{i\}};b_{i+1}}^{b''_{i+1}c} + \sum_{j=0}^{m-1} s_{ABC_{\{j\}};c_{j+1}}^{c''_{j+1}}$  (1), (2)

+ 
$$\sum_{i=2}^{\ell} s_{b_i}^{ab_i^{\wedge}c}$$
 +  $s_{c_1}^{abc_1^{\wedge}}$  +  $\sum_{j=2}^{m} s_{c_j}^{abc_j^{\wedge}}$  (3),(a),(4)

$$-\sum_{i=1}^{\ell-1} \frac{s_{i+1}^{\prime\prime}c}{s_{a,b_{i}^{\prime};b_{i+1}}} - \frac{s_{a,b;c_{1}}^{\prime\prime}}{s_{a,b;c_{1}}} - \sum_{j=1}^{m-1} \frac{s_{a,b_{j}^{\prime};j_{j+1}}^{\prime\prime\prime}}{s_{a,b_{j}^{\prime};c_{j+1}}}$$
(5),(b),(c)

$$- (\ell - 1)s_a^{bc} - s_a^{bc} - (m - 1)s_a^{bc}$$
(6),(7),(d)

$$-\sum_{i=1}^{\ell-1} s^{ab''_{i+1}c}_{B_{|i};b_{i+1}} - \sum_{j=0}^{m-1} s^{abc''_{j+1}}_{BC_{|j};c_{j+1}}$$
(8),(9)

+ 
$$\sum_{i=1}^{\ell-1} s_{a;b'_i,b_{i+1}}^{b''_{i+1}c}$$
 +  $s_{a;b,c_1}^{c''_{1}}$  +  $\sum_{j=1}^{m-1} s_{a;bc'_j,c_{j+1}}^{c''_{j+1}}$  (10),(g),(h)

+ 
$$\sum_{j=0}^{m-1} s_{BC_{|j};c_{i+1}}^{ac''_{i+1}}$$
 +  $\sum_{j=2}^{m} s_{c_{j}}^{abc_{j}^{\wedge}}$  -  $\sum_{j=1}^{m-1} s_{b,c'_{j};c_{j+1}}^{ac''_{j+1}}$  (9), (j), (k)

$$-(m-1)s_{b}^{ac} - \sum_{j=1}^{m-1} s_{C_{j};c_{j+1}}^{abc''_{j+1}} + \sum_{j=1}^{m-1} s_{b;c'_{j},c_{j+1}}^{ac''_{j+1}}(\ell), (11), (m)$$

$$+ s_a^{bc} - s_{a;b,c},$$
 (7),(n)

$$RHS = s_{AB;C} + s_{A;B}^{c} + s_{c}^{ab} - s_{a,b;c}$$

$$= \sum_{j=0}^{m-1} s_{ABC|j;c_{j+1}}^{c''_{j+1}} + \sum_{j=2}^{m} s_{c_{j}}^{abc_{j}^{\wedge}} - \sum_{j=1}^{m-1} s_{ab,c_{j}^{\prime};c_{j+1}}^{c''_{j+1}} (\mathbf{2}), (\mathbf{4}), (\mathbf{p})$$

$$- (m-1)s_{ab}^{c} - \sum_{j=1}^{m-1} s_{C|j;c_{j+1}}^{abc''_{j+1}} + \sum_{j=1}^{m-1} s_{ab;c_{j}^{\prime};c_{j+1}}^{c''_{j+1}} (\mathbf{q}), (\mathbf{11}), (\mathbf{r})$$

$$+ \sum_{i=0}^{\ell-1} s_{AB|i;b_{i+1}}^{b''_{i+1}c} + \sum_{i=2}^{\ell} s_{bi}^{ab^{\wedge}c} - \sum_{i=1}^{\ell-1} s_{a,b_{i}^{\prime};b_{i+1}}^{b''_{i+1}c} (\mathbf{1}), (\mathbf{3}), (\mathbf{5})$$

$$= (\ell-1)s^{bc} - \sum^{\ell-1} s_{ab'_{i+1}c}^{b''_{i+1}c} + \sum_{i=2}^{\ell-1} s_{bi'_{i+1}c}^{b''_{i+1}c} (\mathbf{6}) (\mathbf{8}) (\mathbf{10})$$

$$- (\ell - 1)s_{a}^{bc} - \sum_{i=1}^{c-1} s_{B_{i}i;b_{i+1}}^{ai+1c} + \sum_{i=1}^{c-1} s_{a;b_{i}',b_{i+1}}^{i+1c}$$
(6),(8),(10)

$$+ s_c^{ab} - s_{a,b;c}. \qquad (\mathbf{s}), (\mathbf{t})$$

As indicated, 13 terms of LHS cancel with each other or with 9 terms of RHS, leaving the equality

$$(a) - (b) - (c) - (d) + (g) + (h) + (j) - (k) - (l) + (m) - (n) = -(p) - (q) + (r) + (s) - (t);$$

equivalently,

$$\begin{aligned} &(\mathbf{a}) + (\mathbf{g}) + (\mathbf{h}) + (\mathbf{j}) + (\mathbf{m}) + (\mathbf{p}) + (\mathbf{q}) + (\mathbf{t}) \\ &= (\mathbf{b}) + (\mathbf{c}) + (\mathbf{d}) + (\mathbf{k}) + (\mathbf{l}) + (\mathbf{n}) + (\mathbf{r}) + (\mathbf{s}) \,. \end{aligned}$$

With  $w=a,\;x=b,\;y=c_{j}^{\prime},\;\mathrm{and}\;\;z=c_{j+1},\;(Z_{2})$  reads

$$\begin{split} s_{ab,c'_{j};c_{j+1}} + s_{bc'_{j},c_{j+1};a} + s_{a,b};c'_{j}c_{j+1} + s_{c'_{j}}^{abc_{j+1}} \\ &+ s_{c_{j+1}}^{abc'_{j}} + s_{b,c'_{j};a}^{c_{j+1}} + s_{c'_{j},c_{j+1};b}^{a} + s_{ab}^{c'_{j}c_{j+1}} \\ &= s_{c'_{j},c_{j+1};ab} + s_{a,bc'_{j};c_{j+1}} + s_{b,c'_{j}c_{j+1};a} + s_{a}^{bc'_{j}c_{j+1}} \\ &+ s_{b}^{ac'_{j}c_{j+1}} + s_{a,b;c'_{j}}^{c_{j+1}} + s_{b,c'_{j};c_{j+1}}^{a} + s_{c'_{j}c_{j+1}}^{abc} . \end{split}$$

Since  $c_j'c_{j+1}=c_{j+1}',$  applying  $\alpha_{abc_{j+1}',c_{j+1}''}$  and adding from j=1 to j=m-1 yields

$$\sum_{j=1}^{m-1} s_{ab,c'_{j};c_{j+1}}^{c''_{j+1}} + \sum_{j=1}^{m-1} s_{bc'_{j};c_{j+1};a}^{c''_{j+1}} + \sum_{j=1}^{m-2} s_{a,b;c'_{j+1}}^{c''_{j+1}}$$
(**p**),(**h**),(**A**)

+ 
$$s_{a,b;c}$$
 +  $s_{c_1}^{abc_1''}$  +  $\sum_{j=2}^{m-1} s_{c_j'}^{abc_j''}$  +  $\sum_{j=1}^{m-1} s_{c_{j+1}}^{abc_{j+1}^{\wedge}}$  (**t**), (**a**), (**B**), (**j**)

+ 
$$s_{b,c_{1};a}^{c_{1}'}$$
 +  $\sum_{j=2}^{m-1} s_{b,c_{j};a}^{c_{j}'}$  +  $\sum_{j=1}^{m-1} s_{c_{j},c_{j+1};b}^{ac_{j+1}'}$  (g), (C), (m)

$$+ (m-1)s^c_{ab} \tag{(q)}$$

$$=\sum_{j=1}^{m-1} s_{c'_{j},c_{j+1};ab}^{c''_{j+1}} + \sum_{j=1}^{m-1} s_{a,bc'_{j};c_{j+1}}^{c''_{j+1}} + \sum_{j=1}^{m-2} s_{b,c'_{j+1};a}^{c''_{j+1}} \quad (\mathbf{r}), (\mathbf{c}), (\mathbf{C})$$

+ 
$$s_{b,c;a}$$
 +  $(m-1)s_a^{bc}$  +  $(m-1)s_b^{ac}$  +  $s_{a,b;c_1}^{c_1''}$  (**n**), (**d**), (*l*), (**b**)

+ 
$$\sum_{j=2}^{m-1} s_{a,b;c'_{j}}^{c''_{j}}$$
 +  $\sum_{j=1}^{m-1} s_{b,c'_{j};c_{j+1}}^{ac''_{j+1}}$  (A),(k)

+ 
$$\sum_{j=1}^{m-2} s_{c'_{j+1}}^{abc''_{j+1}} + s_c^{ab}$$
. (B),(s)

Since  $s_{x;y,z} = s_{y,z;x}$  we obtain, after cancellations,

$$(\mathbf{a}) + (\mathbf{g}) + (\mathbf{h}) + (\mathbf{j}) + (\mathbf{m}) + (\mathbf{p}) + (\mathbf{q}) + (\mathbf{t})$$
  
=  $(\mathbf{b}) + (\mathbf{c}) + (\mathbf{d}) + (\mathbf{k}) + (\ell) + (\mathbf{n}) + (\mathbf{r}) + (\mathbf{s})$ 

and  $(Z_1'')$  is proved.

Next we prove

$$s_{A;b} = s_{b;A}$$

for all  $A = [a_1, \ldots, a_\ell] \in T_1$ ,  $b \in S$ . This follows from  $(Z'_1)$  if  $\ell = 1$ and was shown above if  $\ell = 2$ . For  $\ell > 2$ , we proceed by induction on  $\ell$ . Let  $C = A[t] = [a_1, \ldots, a_\ell, t]$ . We use  $(Z_1^{**})$  and separate the terms containing t:

$$\begin{split} s_{b;C} &= \sum_{i=0}^{\ell} s_{[b]C_{|i};c_{i+1}}^{c''_{i+1}} + \sum_{i=2}^{\ell+1} s_{c_i}^{bc_i^{\wedge}} - \sum_{i=1}^{\ell} s_{b,c_i^{\prime};c_{i+1}}^{c''_{i+1}} \\ &- \ell s_b^c - \sum_{i=1}^{\ell} s_{C_{|i};c_{i+1}}^{bc_{i+1}^{\prime}} + \sum_{i=1}^{\ell} s_{b;c_i^{\prime},c_{i+1}}^{c''_{i+1}} \\ &= \sum_{i=0}^{\ell-1} s_{[b]A_{|i};a_{i+1}}^{a''_{i+1}t} + \sum_{i=2}^{\ell} s_{a_i}^{ba_i^{\wedge}t} - \sum_{i=1}^{\ell-1} s_{b,a_i^{\prime};a_{i+1}}^{a''_{i+1}t} \\ &- (\ell-1)s_b^{at} - \sum_{i=1}^{\ell-1} s_{A_{|i};a_{i+1}}^{a''_{i+1}t} + \sum_{i=1}^{\ell-1} s_{b;a_i^{\prime},a_{i+1}}^{a''_{i+1}t} \\ &+ s_{[b]A;t} + s_b^{ba} - s_{b,a;t} - s_b^{at} - s_{A;t}^{b} + s_{b;a,t} \\ &= s_{b;A}^t + s_{[b]A;t} + s_b^{ba} - s_{b,a;t} - s_b^{at} - s_{A;t}^{b} + s_{b;a,t} \\ &= s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{b} + s_t^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{b} + s_{b}^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{b} + s_{b}^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{b} + s_{b}^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{b} + s_{b}^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{ba} + s_{b}^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{ba} + s_{b}^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{ba} + s_{b}^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{A;t}^{ba} + s_{b}^{ba} + s_{t,a;b} + s_{A;b}^t - s_b^{at} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{b,a;t}^{ba} + s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} \\ &+ s_{[b]A;t} - s_{b,a;t} - s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} \\ &+ s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} + s_{b}^{ba} \\ &+ s_{b}^{ba} + s_{b}^{ba} \\ &+ s_{b}^{ba} + s_{b}^{b$$

$$= s_{[t]A;b} = s_{C;b}$$

by  $(P'_2)$  (with x = b, Y = A, z = t) and  $(P''_2)$ .

We can now prove  $(P'_1) : s_{B;A} = s_{A;B}$  for all  $A, B = [b_1, \ldots, b_m] \in T_1$  by induction on m. Assume  $s_{B;A} = s_{A;B}$  and let  $C = B[t] = [b_1, \ldots, b_m, t]$ . We use  $(Z_1^{**})$  and separate the terms containing t:

$$s_{A;C} = \sum_{i=0}^{m} s_{AC_{|i};c_{i+1}}^{\prime\prime} + \sum_{i=2}^{m+1} s_{c_{i}}^{ac_{i}^{\wedge}} - \sum_{i=1}^{m} s_{a,c_{i}';c_{i+1}}^{\prime\prime\prime}$$

$$- m s_a^c - \sum_{i=1}^m s_{C_{|i|};c_{i+1}}^{ac_{i+1}'} + \sum_{i=1}^m s_{a;c_i',c_{i+1}}^{c_{i+1}''}$$

$$= \sum_{i=0}^{m-1} s_{AB_{|i|};b_{i+1}}^{b_{i+1}'t} + \sum_{i=2}^m s_{b_i}^{b_i^{\wedge}t} - \sum_{i=1}^{m-1} s_{a,b_i';b_{i+1}}^{b_{i+1}'t}$$

$$- (m-1) s_a^{bt} - \sum_{i=1}^{m-1} s_{B_{|i|};b_{i+1}}^{ab_{i+1}'t} + \sum_{i=1}^{m-1} s_{a;b_i',b_{i+1}}^{b_{i+1}'t}$$

$$+ s_{AB;t} + s_t^{ab} - s_{a,b;t} - s_a^{bt} - s_{B;t}^a + s_{a;b,t}$$

$$= s_{A;B}^t + s_{AB;t} + s_t^{ab} - s_{a,b;t} - s_a^{bt} - s_a^a, + s_{a;b,t}$$

Also,

$$s_{C;A} = s_{B[t];A} = s_{[t]B;A} \text{ since } s_{X\sigma;Y} = s_{X;Y}$$
  
=  $s_{t;BA} + s_{B;A}^t + s_t^{ba} - s_{t;b,a} - s_{t;B}^a - s_a^{tb} + s_{t,b;a} \text{ by } (Z_1'')$   
=  $s_{A;B}^t + s_{AB;t} + s_t^{ab} - s_{a,b;t} - s_a^{bt} - s_{B;t}^a + s_{a;b,t}$ 

by the induction hypothesis and the case m = 1. This proves  $(P'_1)$ .

6. It follows from Lemmas 2.3 and 2.4 that  $Z^3(S, \mathcal{A})$  is isomorphic to the group  $Z_2(S, \mathcal{A})$  of all  $s \in C_2(S, \mathcal{A})$  with properties  $(P'_2), (P''_2), (Z'_1)$ , and  $(Z_2)$ .

Property  $(P'_2)$  implies that  $Z_2(S, \mathcal{A})$  can be trimmed further. For this we use an arbitrary total order relation < on S (which need not be compatible with the multiplication). Let R be the set of all *restricted* sequences  $r = (x_1, x_2, \ldots, x_{\ell}, y)$  of elements of S such that  $\ell \ge 2$  and  $y \le x_1, \ldots, x_{\ell}$ whenever  $\ell \ge 3$  (there is no restriction if  $\ell = 2$ ). (One could require  $x_1 \ge x_2 \ge \cdots \ge x_{\ell} \ge y$ ; but this would complicate the notation and the proofs.) As before,  $pr = x_1 \cdots x_{\ell} y$ . Let

$$C_3(S,\mathcal{A}) \;=\; \left(\prod_{x\in S} \; \mathcal{A}_x\right) \times \left(\prod_{r\in R} \; \mathcal{A}_{pr}\right).$$

The elements of  $C_3(S,\mathcal{A})$  are families c consisting of a family  $c_x \in \mathcal{A}_x$   $(x \in S)$  and a family  $c_{X;y} = c_{x_1,\ldots,x_\ell;y} \in \mathcal{A}_{xy}$   $(\ell \geq 2, (x_1,\ldots,x_\ell,y) \in R)$ . The trimming homomorphism  $\Gamma_3: Z_2(S,\mathcal{A}) \longrightarrow C_3(S,\mathcal{A})$  is defined for each  $s \in Z_2$  by:  $(\Gamma_3 s)_x = s_x$  for all  $x \in S$ , and  $(\Gamma_3 s)_{x_1,\ldots,x_\ell;y} = s_{x_1,\ldots,x_\ell;y}$  for all  $(x_1,\ldots,x_\ell,y) \in R$ .

LEMMA 2.5.  $\Gamma_3$  is injective.

PROOF. Assume  $\Gamma_3 s = 0$ , where  $s \in Z_2$ . Then  $s_x = 0$  for all  $x \in S$  and we want to show that  $s_{x_1, \ldots, x_\ell; y} = 0$  for all  $x_1, \ldots, x_\ell, y \in S$ . This follows from  $(Z'_1)$  if  $\ell = 1$  and from  $\Gamma_3 s = 0$  if  $\ell = 2$ , or if  $\ell \ge 3$  and  $y \le x_1, \ldots, x_\ell$ . For  $\ell \ge 3$  we proceed by induction on  $\ell$ . Let  $x_i = \min(x_1, \ldots, x_\ell)$ ,  $X = [x_1, \ldots, x_i, \ldots, x_\ell]$ , and  $T = [x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_\ell]$ . If  $y \le x_i$ , then  $y \le x_1, \ldots, x_\ell$  and  $s_{x_1, \ldots, x_\ell; y} = 0$ . If  $y > x_i$ , then  $s_{[y]T; x_i} = s_{y, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_\ell; x_i} = 0$  and

$$s_{X;y} = s_{[x_i]T;y} \quad \text{by } (P_2'')$$
  
=  $s_{[y]T;x_i} - s_{y,t;x_i} - s_{T;x_i}^y + s_{x_i}^{ty} + s_{x_i,t;y}^{x_i} + s_{T;y}^{x_i} - s_y^{x_it} \quad \text{by } (P_2')$   
= 0

by the induction hypothesis.  $\blacksquare$ 

7. The last link in the chain from long 3-cocycles to symmetric 3-cocycles is the following homomorphism.

LEMMA 2.6. A homomorphism  $\Delta: Z_2(S, \mathcal{A}) \longrightarrow SZ^3(S, \mathcal{A})$  is defined by:

$$(\Delta) \qquad (\Delta s)_{x,y,z} = s_{x,y;z} - s_{z,y;x} + s_x^{yz} - s_z^{xy}.$$

More generally, if  $s \in C_2(S, \mathcal{A})$  has properties  $(P_2'')$  and  $(Z_2)$ , then  $\Delta s \in SZ^3(S, \mathcal{A})$ .

Recall that symmetric 3-cocycles are characterized by

$$(S3) t_{z,y,x} \ = \ -t_{x,y,z} \ , \quad t_{x,y,z} + t_{y,z,x} + t_{z,x,y} \ = \ 0 \ ,$$

(A3) 
$$t_{x,y,z}^{w} - t_{wx,y,z} + t_{w,xy,z} - t_{w,x,yz} + t_{w,x,y}^{z} = 0$$

PROOF. Let s satisfy  $(P_2'')$  and  $(Z_2)$  (for instance, let  $s \in Z_2$ ) and  $t = \Delta s$ . It is clear from  $(\Delta)$  that  $t_{z,y,x} = -t_{x,y,z}$ . Also

$$\begin{split} t_{x,y,z} + t_{y,z,x} + t_{z,x,y} &= s_{x,y;z} - s_{z,y;x} + s_x^{yz} - s_z^{xy} \\ &+ s_{y,z;x} - s_{x,z;y} + s_y^{xz} - s_y^{yz} \\ &+ s_{z,x;y} - s_{y,x;z} + s_z^{xy} - s_y^{xz} \\ &= 0 \,. \end{split}$$

Thus t satisfies (S3). Finally,

$$\begin{split} t_{x,y,z}^{w} &= t_{wx,y,z} + t_{w,xy,z} - t_{w,x,yz} + t_{w,x,y}^{z} \\ &= s_{x,y;z}^{w} - s_{z,y;x}^{w} + s_{x}^{wyz} - s_{z}^{wxy} \qquad (1), (2), (\mathbf{x}), (\mathbf{z}) \\ &- s_{wx,y;z} + s_{z,y;wx} - s_{w}x^{yz} + s_{z}^{wxy} \qquad (3), (4), (\mathbf{wx}), (\mathbf{z}) \\ &+ s_{w,xy;z} - s_{z,xy;w} + s_{w}^{xyz} - s_{z}^{wxy} \qquad (5), (6), (\mathbf{w}), (\mathbf{z}) \\ &- s_{w,x;yz} + s_{yz,x;w} - s_{w}^{xyz} + s_{yz}^{wx} \qquad (7), (8), (\mathbf{w}), (\mathbf{yz}) \\ &+ s_{x}^{z}, y - s_{y,x;w}^{z} + s_{w}^{xyz} - s_{y}^{wxz} \qquad (9), (10), (\mathbf{w}), (\mathbf{y}) \\ &= -s_{wx,y;z} - s_{xy,z;w} - s_{w,x;yz} - s_{y}^{wxz} \qquad (3), (6), (7), (\mathbf{y}) \\ &- s_{z}^{wxy} - s_{x,y;w}^{z} - s_{y,z;x}^{w} - s_{wx}^{yz} \qquad (2), (10), (2), (\mathbf{wx}) \\ &+ s_{y,z;wx} + s_{w,xy;z} + s_{x,yz;w} + s_{w}^{xyz} \qquad (4), (5), (8), (\mathbf{w}) \\ &+ s_{x}^{wyz} + s_{w,x;y}^{z} + s_{x,y;z}^{w} + s_{yz}^{wx} \qquad (x), (9), (1), (\mathbf{yz}) \\ &= 0 \end{split}$$

by  $(P_2'')$  and  $(Z_2)$ , and (A3) holds.

With  $t = \Delta s$ , property (P'2) can be restated as:

$$(P'_2) s_{[x]Y;z} - s_{[z]Y;x} = t_{x,y,z} + s^x_{Y;z} - s^z_{Y;x}$$

LEMMA 2.7. Let  $c \in C_3(S, \mathcal{A})$ . Then  $c \in \operatorname{Im} \Gamma_3$  if and only if c satisfies  $(P_2'')$  and  $(Z_2)$ .

PROOF. These conditions are necessary by Lemma 2.4. Conversely let  $c \in C_3$  have properties  $(P_2'')$  and  $(Z_2)$ . By Lemma 2.6,  $t = \Delta c \in SZ^3$  (t satisfies (S3) and (A3)). Let  $A = [a_1, \ldots, a_\ell] \in T_1$ . If  $\ell \geq 3$ , let  $m = \min(a_1, \ldots, a_\ell)$  and A = [m]D (actually,  $A^{\sigma} = [m]D$  for some  $\sigma$ ). Define  $s_x = c_x$ ,  $s_{x;y} = c_x^y + c_y^x$ ,  $s_{x;y;z} = c_{x;y;z}$ , and  $s_{A;b}$  by induction on  $\ell$ :

$$s_{A;b} = \begin{cases} c_{A;b} & \text{if } b \le m, \\ c_{[b]D;m} + t_{m,d,b} + s_{D;b}^m - s_{D;m}^b & \text{if } b \ge m; \end{cases}$$

There is no ambiguity if b = m, since  $t_{m,d,m} = -t_{d,m,m} - t_{m,m,d} = 0$  by (S3), (A3). We see that s satisfies  $(Z'_1)$ , inherits  $(P''_2)$  and  $(Z_2)$  from c, and will satisfy  $\Gamma_3 s = c$ . It remains to prove that s satisfies  $(P'_2)$ .

First we show that every symmetric 3-cocycle satisfies

 $(T) \qquad t_{x,zw,y}+t_{y,xw,z}+t_{z,yw,x}=t^z_{x,w,y}+t^x_{y,w,z}+t^y_{z,w,x} \\ \text{for all } x,y,z,w\in S. \text{ By } (A3),$ 

$$\begin{split} t^x_{z,w,y} - t_{xz,w,y} + t_{x,zw,y} - t_{x,z,wy} + t^y_{x,z,w} &= 0 \\ &= t^z_{x,w,y} - t_{xz,w,y} + t_{z,xw,y} - t_{z,x,wy} + t^y_{z,x,w}, \end{split}$$

so that

$$t_{x,zw,y} - t_{x,z,wy} - t_{z,xw,y} + t_{z,x,wy}$$
  
=  $t_{x,w,y}^{z} + t_{z,x,w}^{y} - t_{x,z,w}^{y} - t_{z,w,y}^{x}$ 

 $= t_{x,w,y} + t_{z,x,w}^{z} - t_{x,z,w}^{z} - t_{z,w,y}^{z}.$ By (S3),  $-t_{z,xw,y} = t_{y,xw,z}, -t_{z,w,y} = t_{y,w,z}$ , and

$$\begin{aligned} t_{z,x,wy} - t_{x,z,wy} &= -t_{wy,x,z} - t_{x,z,wy} = t_{z,wy,x} \,, \\ t_{z,x,w} - t_{x,z,w} &= -t_{w,x,z} - t_{x,z,w} = t_{z,w,x} \,; \end{aligned}$$

this yields (T).

Let  $x, z \in S$  and  $Y = \left[ y_1, \dots, y_k \right] \in T$ . We prove

$$(P'_2) s_{[x]Y;z} - s_{[z]Y;x} = t_{x,y,z} + s^x_{Y;z} - s^z_{Y;x}.$$

by induction on k. If k = 1, then  $(P'_2)$  reads

$$s_{x,y;z} - s_{z,y;x} = t_{x,y,z} + s_{y;z}^x - s_{y;x}^z;$$

this follows from the definitions of s and t. Now let  $k \ge 2$ ,  $m = \min Y = \min (y_1, \ldots, y_\ell)$ , and Y = [m]W. We consider several cases, based on the possible order arrangements of m, y, and z.

Case 1: 
$$x \le m \le z$$
. Then  $\min([x]Y) = x \le z$ ,  $\min([z]Y) = m \ge x$ ,  
 $s_{[x]Y;z} = c_{[z]Y;x} + t_{x,y,z} + s_{Y;z}^x - s_{Y;x}^z$ ,  
 $s_{[z]Y;x} = c_{[z]Y;x}$ , and  
 $s_{[x]Y;z} - s_{[z]Y;x} = t_{x,y,z} + s_{Y;z}^x - s_{Y;x}^z$ .

Case 2:  $z \le m \le x$  follows from Case 1 by exchanging x and z.

Case 3:  $x \le z \le m$ . Then  $\min([x]Y) = x \le z$ ,  $\min([z]Y) = z \ge x$ , and

$$\begin{split} s_{[x]Y;z} &= c_{[z]Y;x} + t_{x,y,z} + s_{Y;z}^x - s_{Y;x}^z, \\ s_{[z]Y;x} &= c_{[z]Y;x}, \end{split}$$

as in Case 1.

Case 4:  $z \leq x \leq m$  follows from Case 3 by exchanging x and z .

Case 5:  $m \leq x, z$ . Then

$$\min\left(\begin{bmatrix} x \end{bmatrix} Y\right) = m \le z, \quad \begin{bmatrix} x \end{bmatrix} Y = \begin{bmatrix} m \end{bmatrix} \begin{bmatrix} x \end{bmatrix} W,$$
$$\min\left(\begin{bmatrix} z \end{bmatrix} Y\right) = m \le x, \quad \begin{bmatrix} z \end{bmatrix} Y = \begin{bmatrix} m \end{bmatrix} \begin{bmatrix} z \end{bmatrix} W,$$
$$\min\left(\begin{bmatrix} x \end{bmatrix} W\right) \ge m, \quad \min\left(\begin{bmatrix} z \end{bmatrix} W\right) \ge m,$$

and

$$\begin{split} s_{Y;x} &= c_{[x]W;m} + t_{m,w,x} + s_{W;x}^m - s_{W;m}^x, \\ s_{Y;z} &= c_{[z]W;m} + t_{m,w,z} + s_{W;z}^m - s_{W;m}^z, \\ s_{[x]Y;z} &= c_{[z][x]W;m} + t_{m,xw,z} + s_{[x]W;z}^m - s_{[x]W;m}^z, \\ s_{[z]Y;x} &= c_{[x][z]W;m} + t_{m,zw,x} + s_{[z]W;x}^m - s_{[z]W;m}^z, \\ s_{[x]W;m} &= c_{[x]W;m}, \quad s_{[z]W;m} = c_{[z]W;m}, \end{split}$$

so that

$$s_{[x]Y;z} - s_{[z]Y;x} = t_{m,xw,z} - t_{m,zw,x} + s_{[x]W;z}^m - s_{[z]W;x}^m - s_{[x]W;m}^z + s_{[z]W;m}^x = t_{m,xw,z} - t_{m,zw,x} + t_{x,w,z}^m + s_{W;z}^{xm} - s_{W;x}^{zm} - c_{[x]W;m}^z + c_{[z]W;m}^x = t_{m,xw,z} + t_{x,zw,m} - t_{z,w,x}^m + s_{W;z}^{mx} - s_{W;x}^{mz} - c_{[x]W;m}^z + c_{[z]W;m}^x$$

by the induction hypothesis and (S3), whereas

$$\begin{split} t_{x,y,z} + s_{Y;z}^x &= t_{x,mw,z} + c_{[z]W;m}^x + t_{m,w,z}^x + s_{W;z}^{mx} \\ &- c_{[x]W;m}^z - t_{m,w,x}^z - s_{W;x}^{mz} \\ &= -t_{z,mw,x} + c_{[z]W;m}^x - c_{[x]W;m}^z \\ &+ t_{m,w,z}^x + t_{x,w,m}^z + s_{W;z}^{mx} - s_{W;x}^{mz} \end{split}$$

by (S3); then  $(P_2')$  follows from (T).

8. By Lemmas 2.5 and 2.7,  $Z^3(S, \mathcal{A})$  is isomorphic to the group  $Z_3(S, \mathcal{A})$ of all families  $s \in C_3(S, \mathcal{A})$  with properties  $(Z_2)$  and  $(P_2'')$ . The next trimming reduces  $Z_3(S, \mathcal{A})$  to its direct summand  $Z'_4(S, \mathcal{A})$ whose elements are all  $s \in Z_3$  such that  $s_x = 0$  for all  $x \in S$  (hence  $s_{x;y} = 0$ for all  $x, y \in S$  by  $(Z'_1)$ ) and  $s_{X;y} = 0$  when X has length 3 or more (and  $y \leq \min X$ ). In  $Z'_4$ ,  $(P''_2)$  reduces to

$$(P_4'') \qquad \qquad s_{y,x;z} = s_{x,y;z}$$

for all  $x, y, z \in S$ , and  $(Z_2)$  reduces to

$$\begin{split} &Z_4'(S,\mathcal{A}) \text{ is isomorphic to the group } Z_4(S,\mathcal{A}) \subseteq \prod_{x,y,z \in S} \mathcal{A}_{xyz} \text{ of all families} \\ &s = (s_{x,y;z})_{x,y,z \in S} \text{ such that } s_{x,y;z} \in \mathcal{A}_{xyz} \text{ for all } x,y,z \in S \text{ and } (P_4''), (Z_4) \\ &\text{hold.} \end{split}$$

 $Z_4$  is not isomorphic to  $Z_3;$  rather, we prove that the remaining elements of  $Z_3$  contribute nothing to the cohomology.

The trimming homomorphisms  $\Gamma_1$ ,  $\Gamma_2$ ,  $\Gamma_3$  provide an isomorphism  $\Gamma: Z^3(S, \mathcal{A}) \longrightarrow Z_3(S, \mathcal{A})$  which affects coboundaries as follows. Recall that  $\delta c \in Z^3(S, \mathcal{A})$  is defined by

(C2) 
$$(\delta c)_{X_1;...;X_n} = c_{x_1,...,x_n} - c_{X_1\cdots X_n} + \sum_{k=1}^n c_{X_k}^{x_k^h}$$

for all  $X_1,\ldots,X_n\in T_1$  and  $c\in C^2.$  In particular,

$$\begin{array}{rcl} (\delta c)_x &=& c_x \;, \\ (\delta c)_{x,y;z} &=& c_{xy,z} \;-\; c_{x,y,z} \;+\; c_{x,y}^z \;+\; c_z^{xy} \;, \\ (\delta c)_{X;y} &=& c_{x,y} \;-\; c_{X[y]} + c_X^y + c_y^x \;. \end{array}$$

This describes the subgroup  $B_3(S, \mathcal{A}) = \Gamma(B^3(S, \mathcal{A}))$  of  $Z_3(S, \mathcal{A})$ .

Lemma 2.8.  $Z_3(S, \mathcal{A}) = Z'_4(S, \mathcal{A}) + B_3(S, \mathcal{A}).$ 

PROOF. Given  $s \in Z_3$ , define  $c_X \in \mathcal{A}_x$  for all  $X = [x_1, \ldots, x_\ell] \in T_1$  by induction on  $\ell$  as follows:

$$c_X = \begin{cases} s_x & \text{if } \ell = 1, \\ 0 & \text{if } \ell = 2, 3, \\ -s_{W;m} + c_W^m + c_m^w & \text{if } \ell \ge 4, \end{cases}$$

where  $m = \min X$  and X = W[m]. We see that  $(\delta c)_x = c_x = s_x$  for all  $x \in S$  and

$$(\delta c)_{X;y} \; = \; c_{x,y} \; - \; c_{X[y]} + c_{X}^{y} + c_{y}^{x} \; = \; s_{X;y}$$

whenever X has length 3 or more and  $y \leq \min X$ . Hence  $s - \Gamma \delta c \in Z'_4$  and  $s = (s - \Gamma \delta c) + \Gamma \delta c \in Z'_4 + B_3$ .

Since  $\Gamma$  is an isomorphism,  $H^3=Z^3/B^3\cong Z_3/B_3\cong Z_4'/B_4',$  where

 $B_4'(S,\mathcal{A}) \ + \ Z_4'(S,\mathcal{A}) \cap B_3(S,\mathcal{A}) \, .$ 

In other words,  $B'_4(S, \mathcal{A})$  is the group of all  $s \in Z'_4(S, \mathcal{A})$  such that  $s = \Gamma \delta c$  for some  $c \in C^2(S, \mathcal{A})$ . Then  $c_x = s_x = 0$  for all  $x \in S$ , and  $s = \Gamma \delta c$  reduces to

$$(C_4) s_{x,y;z} = c_{xy,z} - c_{x,y,z} + c_{x,y}^z.$$

 $B_4'(S,\mathcal{A})$  is isomorphic to the group  $B_4(S,\mathcal{A})\subseteq Z_4(S,\mathcal{A})$  of all families  $s=(s_{x,y;\,z})_{x,y,z\in S}$  such that  $s_{x,y;\,z}=c_{xy,z}-c_{x,y,z}+c_{x,y}^z\in \mathcal{A}_{xyz}$  for some  $c\in C^2(S,\mathcal{A})$ . We now have

Lemma 2.9.  $H^3(S, \mathcal{A}) \cong Z_4(S, \mathcal{A})/B_4(S, \mathcal{A}).$ 

9. Recall that a symmetric 3-coboundary is a symmetric 3-cochain t (necessarily a symmetric 3-cocycle) for which there exists  $u = (u_{x,y})_{x,y \in S}$  such that  $u_{x,y} \in \mathcal{A}_{xy}$ ,

$$(S2) u_{y,x} = u_{x,y}, \text{ and }$$

$$(B3) t_{x,y,z} = u_{y,z}^x - u_{xy,z} + u_{x,yz} - u_{x,y}^z$$

for all  $x, y, z \in S$ . Under pointwise addition, symmetric 3-coboundaries form an abelian group  $SB^{3}(S, \mathcal{A})$ .

The homomorphism  $\Delta$  in Lemma 2.6 induces a homomorphism D:  $Z_4(S, \mathcal{A}) \longrightarrow SZ^3(S, \mathcal{A})$  given by:

$$(Ds)_{x,y,z} = s_{x,y;z} - s_{z,y;x}$$

for all  $x, y, z \in S$ . We show that D is surjective. For this we again use an arbitrary total order  $\leq$  on S.

LEMMA 2.10. A homomorphism  $E: SZ^3(S, \mathcal{A}) \longrightarrow Z_4(S, \mathcal{A})$  is defined by:

$$(Et)_{x,y;z} = \begin{cases} t_{x,y,z} & \text{if } x \le y, z, \\ t_{y,x,z} & \text{if } y \le x, z, \\ 0 & \text{if } z \le x, y. \end{cases}$$

 $\label{eq:moreover} Moreover \; DE = 1 ; \; \mathrm{Im} \, (1-ED) \subseteq B_4 ; \; D\left(B_4\right) \subseteq SB^3 ; \; \mathrm{and} \; E\left(SB^3\right) \subseteq B_4 .$ 

**PROOF.** The three cases in the definition of Et are consistent with each other: if  $x \leq y, z$  and  $y \leq x, z$ , then x = y and  $t_{x,y,z} = t_{y,x,z}$ ; if  $x \leq y, z$  and  $z \leq x, y$ , then x = z and (S3) implies  $t_{x,y,z} = t_{x,y,x} = t_{x,y,x} = t_{x,y,x} + t_{y,x,x} + t_{x,x,y} = 0$ ; if  $y \leq x, z$  and  $z \leq x, y$ , then y = z and (S3) implies  $t_{y,x,z} = 0$ .

Let  $t \in SZ^3$  and s = Et. First we show that

$$s_{x,y;z} - s_{z,y|x} = t_{x,y,z}$$

for all  $x, y, z \in S$ . If  $x \leq y, z$ , then

$$s_{x,y;z} - s_{z,y|x} = t_{x,y,z} - 0 = t_{x,y,z}$$

If  $y \leq x, z$ , then

$$s_{x,y;z} - s_{z,y|x} = t_{y,x,z} - t_{y,z,x} = -t_{y,z,x} - t_{z,x,y} = t_{x,y,z}$$

by (S3). If finally  $z \leq x, y$ , then

$$s_{x,y;z} - s_{z,y|x} = 0 - t_{z,y,x} = t_{x,y,z}$$

by (S3).

This implies  $s \in Z_4$ : indeed  $(P_4''): s_{x,y;z} = s_{y,x;z}$  holds by definition, and  $(Z_4)$  holds since

$$s_{wx,y;z} - s_{y,z;wx} + s_{z,xy;w} - s_{w,xy;z} + s_{w,x;yz} - s_{yz,x;w} + s_{y,x;w}^{z} - s_{w,x;y}^{z} + s_{z,y;x}^{w} - s_{x,y;z}^{w} = t_{wx,y,z} + t_{z,xy,w} + t_{x,w,yz} + t_{y,x,w}^{z} + t_{z,y,x}^{w} = -t_{x,y,z}^{w} + t_{wx,y,z} - t_{w,xy,z} + t_{w,x,yz} - t_{w,x,y}^{z} = 0$$

by (S3) and (A3). Hence E sends  $SZ^3$  into  $Z_4$ . Then  $s_{x,y;z} - s_{z,y|x} = t_{x,y,z}$ shows that Ds = t, so that DE is the identity on  $SZ^3$ .

Next we show that u = s - EDs is given for each  $s \in \mathbb{Z}_4$  by:

$$u_{x,y;z} = \begin{cases} s_{y,z;x} & \text{if } x \leq y,z, \\ s_{x,z;y} & \text{if } y \leq x,z, \\ s_{x,y;z} & \text{if } z \leq x,y. \end{cases}$$

If  $x \leq y, z$ , then

$$(s - EDs)_{x,y;z} = s_{x,y;z} - (Ds)_{x,y,z} = s_{x,y;z} - s_{x,y;z} + s_{z,y;x} = s_{y,z;x}$$

by  $(P_4'')$ . If  $y \leq x, z$ , then

$$\begin{aligned} (s - EDs)_{x,y;z} &= s_{x,y;z} - (Ds)_{y,x,z} = s_{x,y;z} - s_{y,x;z} + s_{z,x;y} = s_{x,z;y} \,. \\ \text{If } z \le x, y, \text{ then } (EDs)_{x,y;z} = 0 \text{ and } (s - EDs)_{x,y;z} = s_{x,y;z} \,. \end{aligned}$$

It follows that

$$u_{x,y;z} = u_{x,z;y} = u_{y,x;z} = u_{y,z;x} = u_{z,x;y} = u_{z,y;x}$$
:

for instance,  $u_{x,y;z} = u_{y,x;z}$  holds by  $(P_4'')$  if  $z \le x, y$ ; if  $x \le y, z$ , then  $u_{x,y;z} = s_{y,z;x} = u_{y,z;x}$ ; if  $y \le x, z$ , then  $u_{x,y;z} = s_{x,z;y} = u_{y,x;z}$ . Therefore a long 2-cochain c is well defined by:

$$\begin{cases} c_{x,y,z} &= -u_{x,y;z} & \text{for all } x, y, z \in S, \\ c_X &= 0 & \text{whenever } X \text{ does not have length 3.} \end{cases}$$

Then  $(s-EDs)_{x,y;\,z}=c_{xy,z}-c_{x,y,z}+c_{x,y}^z$  for all  $x,y,z\in S.$  Thus  ${\rm Im}\;(1-ED)\subseteq B_4.$ 

Next, let  $s \in B_4$ , so that

$$s_{x,y;z} = c_{xy,z} - c_{x,y,z} + c_{x,y}^{z},$$

for some  $c \in C^2$ . Then

$$(Ds)_{x,y,z} = s_{x,y;z} - s_{z,y;x} = -c_{y,z}^x + c_{xy,z} - c_{zy,x} + c_{x,y}^z.$$

Thus  $D(B_4) \subseteq SB^3$ .

Finally let  $t \in SB^3$ , so that

$$t_{x,y,z} = u_{y,z}^x - u_{xy,z} + u_{x,yz} - u_{x,y}^z$$

where u is symmetric  $(u_{b,a} = u_{a,b}$  for all a, b). Let  $c_{x,y} = u_{x,y}$  and

$$c_{x,y,z} = \begin{cases} u_{y,z}^{x} + u_{x,yz} & \text{if } x \leq y, z, \\ u_{x,z}^{y} + u_{y,xz} & \text{if } y \leq x, z, \\ u_{x,y}^{z} + u_{z,xy} & \text{if } z \leq x, y. \end{cases}$$

These three cases are consistent with each other: if, say,  $x \leq y, z$  and  $y \leq x, z$ , then x = y and  $u_{y,z}^{x} + u_{x,yz} = u_{x,z}^{y} + u_{y,xz}$ . We see that  $c_{x,y,z} = c_{x,z,y} = c_{y,x,z}$  etc. If  $x \leq y, z$ , then  $(Et)_{x,y;z} = t_{x,y,z} = u_{y,z}^{x} - u_{xy,z} + u_{x,yz} - u_{x,y}^{z} = c_{x,y,z} - c_{xy,z} - c_{x,y}^{z}$ . If  $y \leq x, z$ , then  $(Et)_{x,y;z} = t_{y,x,z} = u_{x,z}^{y} - u_{yx,z} + u_{y,xz} - u_{y,x}^{z} = c_{x,y,z} - c_{xy,z} - c_{x,y}^{z}$ . If  $y \leq x, z$ , then  $(Et)_{x,y;z} = 0 = u_{x,y}^{z} - u_{xy,z} + u_{z,xy} - u_{x,y}^{z} = c_{x,y,z} - c_{xy,z} - c_{x,y}^{z}$ . Thus  $(Et)_{x,y;z} = c_{x,y,z} - c_{xy,z} - c_{x,y}^{z}$  for all x, y, z. Hence  $E(SB^{3}) \subseteq B_{4}$ .

By Lemma 2.10,  $D: Z_4 \longrightarrow SZ^3$  satisfies  $D(B_4) \subseteq SB^3$  and induces a homomorphism  $D^*: H^3 \longrightarrow SZ^3/SB^3$ . Since DE = 1, D is surjective and so is  $D^*$ . Moreover,  $Ds \in SB^3$  implies  $EDs \in B_4$  and  $s = (s - EDs) + EDs \in B_4$ ; therefore  $D^*$  is injective and we have proved

THEOREM 2.11. For every commutative semigroup S and abelian group valued functor  $\mathcal{A}$  on  $\mathcal{H}(S)$ ,

$$H^3(S,\mathcal{A}) \cong SZ^3(S,\mathcal{A})/SB^3(S,\mathcal{A})$$
.

10. Normalization can be used to sharpen Theorem 2.11. A symmetric 3-cochain c is normalized when

$$c_{e,x,y} = 0$$
 whenever  $e^2 = e$ ,  $ex = x$ .

By (S3), this condition implies

$$\begin{cases} c_{x,e,y} = 0 & \text{whenever } e^2 = e, \ ex = x, \ ey = y, \\ c_{x,y,e} = 0 & \text{whenever } e^2 = e, \ ey = y. \end{cases}$$

Normalized symmetric 3-cochains, cocycles and coboundaries form groups  $NSC^3(S, \mathcal{A}) \subseteq SC^3(S, \mathcal{A}), NSZ^3(S, \mathcal{A}) = SZ^3(S, \mathcal{A}) \cap NSC^3(S, \mathcal{A}),$  and  $NSB^3(S, \mathcal{A}) = SB^3(S, \mathcal{A}) \cap NSC^3(S, \mathcal{A}).$  We note:

LEMMA 2.12. If  $\mathcal{A}$  is thin, then  $NSB^3(S, \mathcal{A}) = \delta(NSC^2(S, \mathcal{A}))$ .

PROOF. Let  $\mathcal{A}$  be thin. If  $e^2 = e$  and ex = x, then exy = xy,  $\alpha_{xy,e} = \alpha_{xy,1}$ ,  $u_{x,y}^e = u_{x,y}$ , and

$$(\delta u)_{e,x,y} = u_{x,y}^e - u_{ex,y} + u_{e,xy} - u_{e,x}^y = u_{e,xy} - u_{e,x}^y.$$

In particular, if u is normalized, then  $\delta u$  is normalized.

Conversely assume that  $t = \delta u$  is normalized. Let  $w \in C^1(S, \mathcal{A})$  satisfy  $w_e = u_{e,e}$  whenever  $e^2 = e$ . Since  $\alpha_{e,e} = \alpha_{e,1}$  we have  $(\delta w)_{e,e} = w_e^e - w_e + w_e^e = w_e = u_{e,e}$  for all  $e^2 = e$ . Let  $v = u - \delta w \in SC^2$ . Then  $\delta v = t$  and  $v_{e,e} = 0$  for all  $e^2 = e$ . Since t is normalized we have  $v_{e,xy} - v_{e,x}^y = (\delta v)_{e,x,y} = 0$  whenever  $e^2 = e$ , ex = x. In particular  $v_{e,ey} = v_{e,e}^y = 0$ , so that  $v_{e,x} = 0$  whenever  $e^2 = e$ , ex = x, and  $t = \delta v$  with v normalized.

PROPOSITION 2.13. If A is thin, then

 $H^3(S,\mathcal{A}) \;\cong\; NSZ^3(S,\mathcal{A})/\,NSB^3(S,\mathcal{A})\,.$ 

PROOF. We show that  $SZ^3 = NSZ^3 + SB^3$ ; then  $H^3 \cong NSZ^3 / NSB^3$  follows from  $H^3 \cong SZ^3 / SB^3$  and  $NSZ^3 \cap SB^3 = NSB^3$ .

Let 
$$t \in SZ^3$$
. Define  

$$\begin{cases}
u_{e,x} = u_{x,e} = t_{e,e,x} & \text{if } e^2 = e, ex = x, \\
u_{x,y} = 0 & \text{if neither } x^2 = x, xy = y \text{ nor } y^2 = y, yx = x.
\end{cases}$$

If e = x, then  $t_{e,e,x} = t_{x,x,e}$ , so that u is well defined. We see that  $u \in SC^2$ and that  $u_{e,e} = t_{e,e,e} = 0$  whenever  $e^2 = e$ , by (S3). Let  $s = t - \delta u \in SZ^3$ . When  $e^2 = e$ , ex = x, then  $\alpha_{x,e} = \alpha_{x,1}$ ,

$$(\delta u)_{e,e,x} = u_{e,x}^e - u_{ee,x} + u_{e,ex} - u_{e,e}^x = u_{e,x} = t_{e,e,x},$$

and  $s_{e,e,x} = 0$ ; hence (A3) yields

$$s_{e,x,y} = s_{e,x,y}^e - s_{ee,x,y} + s_{e,ex,y} - s_{e,e,xy} + s_{e,e,x}^y = 0$$

for all  $y \in S$ . Thus s is normalized, and  $t = s + \delta u \in NSZ^3 + SB^3$ .

#### References

 Barr, M. and Beck, J., Homology and standard constructions, Seminar on Triples and Categorical Homology Theory, Springer Lecture Notes in Math. #80 (1969), 245-335.

- [2] Beck, J., Triples, algebras, and cohomology, Doct. diss., Columbia Univ., 1967.
- [3] Grillet, P.A., Left coset extensions, Semigroup Forum 7 (1974), 200-263.
- [4] Grillet, P.A., Commutative semigroup cohomology, Comm. in Algebra 23 (10) (1995), 3573-3587.
- [5] Grillet, P.A., Commutative semigroup cohomology, Semigroup Forum 43 (1991), 247-252.
- [6] Grillet, P.A., The commutative cohomology of finite semigroups, J. Pure Appl. Algebra 102 (1995), 25-47.
- [7] Leech, J., H-coextensions of monoids, Mem. Amer. Math. Soc. #157 (1975).
- [8] Wells, C., Extension theories for monoids, Semigroup Forum 16 (1978), 13-35.

Received: December 1994

Revised: October 1996