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COMMUNICATIONS IN ALGEBRA, 25(1 I), 3427-3462 (1997) 

COCYCLES IN COMMUTATIVE SEMIGROUP COHOMOLOGY 

Pierre Antoine Grillet 
Tulane University, New Orleans LA 70118, U.S.A. 

Abstract. An alternate description of triple cohonlology for conlmutative 

semigroups is given in dimensions 1, 2,  and 3 .  

Introduction. 

1. Commutative semigroup cohomology refers to triple cohomology in 

the variety of commutative semigroups (Beck [2];  see also [I]). In [4] we 
gave a concrete description of this cohomology and showed that it coincides 

with the cohomology in [3] in dimension 2; the second cohomology group 

H2(s, A) thus classifies commutative group coextensions of S by A.  

The description of commutative cohomology in [4] is derived from its 
definition by triples and does not lend itself to the computation of examples. 

Cochains in dimensions n 2 2 are indexed by an unbounded number of 

elements of S; this makes the computation of cohomology groups an infinite 

task, even for a finite semigroup. 

In dirnerlsion 2 one can use the equivalent computable description in [3 ] ,  

in which cochains are irldexed by pairs of elements of S . In section 1 we prove 

a stronger result: the cocycle and coboundary groups for triple cohomology 
coincide with the groups of symmetric cocycles and coboundaries in [3 ] .  (A 
sharper description is given in [ 6 ] . )  

In Section 2 we prove a similar but more difficult result for dimension 

3 ,  which describes H3(s, A) using synlmetric cochains indexed (as in Leech 

cohomology) by three elements of S. It is an open question whether these 

Copyr~ght  C 1997 by Marcel Dekker, Inc. 



3428 GRILLET 

results extend to higher dimensions; if so, the main result in Section 2 might 
be proved as ill [2] or [6]. 

Sections 1 and 2 also contain normalization results for symmetric 2- and 

3-cocycles. 

The major results in this article were announced in [ 5 ] .  

2,  We keep the notation in [4]. In what follows S is a conunutative 

semigroup. The Leech category 2 ( S )  is defined after [7] as follows. The 

objects of X ( S )  are the elenlents of S .  The nlorphisins of X ( S )  are the 

ele~nents of S x s1 ; wllen e E S, t E sl, tlien ( z ,  t )  is a rnorphism from 
r to r t .  Tlle corrlposition of (x , t )  : x -+ zt  and ( r t , u )  : xt --t xtu is 
(x, t u )  : .r --+ xtu ; the identity on x E S is (J, 1). An abelian group valued 
functor A on X ( S )  thus assigns to each z E S an abelian group A,, and 

1 to each pair (s, t )  E S x S a l~omon~or~~l l i s rn  axst : A, -+ A,t (written 

on the left), so that is the identity on A, and a,t,uar,t = a,,tu for all 
x, t ,  7L. 

In longer calculatious it is convenient to write 

then 
I l u -  lu  

9 = g >  ( 9 )  - 9  

whenever z E S ,  a E A,, t, u  E S' . 

Define seinigroups T,, by induction as follows: To = S ;  TTLS1 is the free 

comnlutative semigroup on the set T, . An element of T,+l is a nonempty 

product of ele~nents of T,, , the factors of which are unique up to order. 111 

what follows it would be very confusing to write the elements of T,+l as the 

usual products of generators; lierice we shall write the elements of T,+l as 

nonempty unordered sequences t = [ X I , .  . . , x,,] of elements of T, (so that 

In > 1 and tu = [xul,  . . . , z ,,,, ] = [ z l , .  . . , x,,] = t for every permutation 

a E S,, of 1 ,2 , .  . . , nz). Multiplication in T,,+l is given by concatenation: 

A homomorpl~ism p : T, - S is defiiled by induction by 
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starting with px = x for all x E S ;  in general, p [xl  , . . . , x,, ] is the prod- 

uct of d l  the elements of S which appear as components of [x l , .  . . , s,,] . 
Similarly, homomorphisms n l  : Tn+l - Tn are defined by induction by 

T; [z1,x2, .  . . ,xsn]  = "1x2 " '  xm 

n l  [x l ,  xZ, .  . . ,z,,] = [x?-lxl, n;-lx2,. . . , n:-lxm] if i < n 

for all ;cl, . . . , L, E Tn . This implies p ( ~ r t )  = pt for all t E Tn+l. (Com- 
mutative semigroups are tripleable over sets; in the corresponding cotriple, 

GS = TI ,  6 = n:, and nr  = ~ ~ - ~ c  Gi .) 

Let A be an abelian group valued functor on X(S) .  For each 1 1  > 1 ,  

a long n - c o c h a i n  on S with coefficients in A is a fanlily c = ( c ~ ) ~ ~ ~ ~ - ~  

such that ct E Apt for all t E Tn-l. Under pointwise addition, long n -  

cochains form an abelian group Cn(S, A) = ntET,,-l Apt. Coboundary 

honlornorphisms 6, : C'YS, A) - cn+l (S ,  A) such that 6, 6,,-1 = 0 are 

defined by 

for all C E  Cn(S,A) and t = [sl ,..., x,,] E T,,, with 

tA J = [ x l ) . .  . , X ~ - ~ , Z ~ + ~ , .  .. ,X,] 

(so that px . ptA = pt). A long n - c o c y c l e  is an element of Zn(S, A) = 
3 3 

Ker 6, C Cn(S,A). A long  n - c o b o u n d a r y  is an element of Bn(S,  A) = 

Im 6,-1 Zn(S, A) (with B'(s, A) = 0) .  

It is shown in [4] that the triple cohon~ology group Hn(S, A) (called 

(s, A) in [I], [2]) is naturally isomorphic to Zn(S, A)/ Bn(S, A). 

3. In dimension 1, H'(s, A) S z'(s, A).  A long 1-cochain is a family 

c = ( c + ) ~ € ~  E n,,, A,, with coboundary 

for all t = [ x l , . .  . ,x,] E TI (since n:t = pt = al  . . .  a,). Hence c is a 

long 1-cocycle if and only if 



3430 GRILLET 

for all z l  ,..., x,, E S ,  rn 2 1, with xf = x l . . .  x j - l ~ , + l . . .  x n l .  By 

induction on nz, (21)  is equivalent to 

( A l l  c XY = c i  + c; 

for all .z, y E S .  Thus z'(s, A)  and H '(s, A) are the same as in [3]. 

Condition (Al )  implies that 1-cocycles are normalized (c, = 0 whenever 

e2 = c in S ) .  

Section 1. Triple coliomology in dimension 2. 

1. We call the 2-cochains defined in [3] symmetric 2-cochains to dis- 

tinguisll t l ie~n from long 2-cocllains. In detail, a sh,ort 2-cochazn is a fanlily 
c = ( c , , ~ ) , , ~ ~ ~  such that c , , ~  E Axy for all x ,  y E S .  Under pointwise 

addition, short 2-cochains form an abelian group n x , y E S  d r y .  A symmetric 

2-cochazn is a short 2-cochain c = ( C , , ~ ) , , ~ ~ S  E nx,yES Axy such that 

(S2) CY,, = c Z,Y 

for all x, y E S. For example, the coboundary of a 1-cochain u yields a short 

2-cocllain, also denoted by 6u : 

(Su),,y = u + Y  - ug - ux Y ' 

which is symmetric. 

A symmetric 2-cocycle or factor set is a symmetric 2-cochain s such that 

(A21 - 
s;,Y + Szy,z - Sx,yz + s;,z 

for all x, y, z E S .  A symmetric 2-coboundary is a symmetric 2-cochain 
(necessarily a coc~cle) s for which there exists a 1-cocllain u = ( u , ) , ~ ~  

(with u, E A,) such that s = Su, that is, 

(B2) s Z?Y = u  " Y - u g - u x  Y 

for all 2,  y E S .  Under pointwise addition these form groups SC'(S, A) c 
nx,yES A,!, , SZ~(S,  A) ,  and SB~(S, A) . In [3] these groups are denoted by 

C2(S, A ) ,  z2 (S ,  A) ,  B~(s ,  A) ,  and defined only when A is thin ( oXL = a,,, 

whenever xt = xu ). 
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It is shown in [31 that SZ'(S, A)/ SB~(S, A) classifies commutative 

group coextensions of S by A;  therefore SZ2(S, A)/ SB'(S, A) 2 H'(s, A) .  

We now prove (Theorem 1.3) that in fact Z2(S, A) r SZ2(S, A), with 

B~(s ,  A) 2 SB~(S,  A). 

2. We denote the typical element of T1 by X = [ x l ,  . . . , xe ] ; C is the 

length t = 1x1 of the commutative word X . By definition, 

X U  = [xu l , .  . . , xue] = [x l , .  . . > xe] = X 

for every permutation a E S, of 1 ,2 , .  . . , C. We also let 

and xa = s1 . . . xi-l xi+l . . . st; in these formulas, any empty product is 

read as 1 E s l .  When c 6 s2(S,A) we write cx = c " 1  ,...," p (without 

= C brackets). Since c depends only on X ,  we have cxUl ,,,, rxup  +. for 
every a E St; we write this property as c p  = CX. 

For every X = [xl,. . . , X m ]  E T2 we have 

and 

for every c E c2 (S ,A)  (with 23 = xl . . .  xj-l xj+l ... xm).  Thus long 

2-cocycles are families s = E nXETl Apx such that 

(P2)  
- s x u  - s x  

for all X E TI ,  a E S I X I l  and 

for all m > 1 and X I , .  . . ,X,, E TI.  

3. LEMMA 1.1. When s is a long 2-cocycle, s ,  = 0 for all x E S, and 

for all X E T1 of length t .  
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PROOF. Let s E S .  With nb = 1 and X I  = [ X I ,  (22)  yields s ,  = 0.  

Hence (22') holds when C = 1 .  Let C 2 2. 

With rn = 2 ,  X1 = [ s l , .  . . , Z C - ~ ] ,  and X2  = ["[I, (22) reads 

(since s = 0 ) .  Hence (22')  holds if l = 2 or l = 3 .  If k' > 3 and (22') ' 2 

holds for C - I ,  then with y =  xi+^ . . . X C - ~  we have ysr = x:+~ and (X2) 

yields 
"C 

S~ = S ~ l , . . . , ~ E - l  + sxl p-l JC 

thus (22') holds for C .  I 

4. By 1.1, a long 2-cocycle is uniquely deternlined by its values on com- 

mutative words of length 2. More precisely, let I? : z 2 ( S ,  A) --t SC~(S,  A) 

be the trzmmzng homomorphzsm defined by ( P S ) , , ~  = sz , ,  E Axy for all 

s ,  y E S (note that s,,, = sy , ,  by (P2)) .  Leinina 1.1 implies that r is 

i~ljective. 

PROOF. Let s E z 2 ,  x , y , z  E S .  With m = 2,  X1 = [ r ] ,  and 

S2 = [ y, z ] , (22)  reads: s x , y ,Z  - - s ~ , ~ ~  + s ; , ~  (since s ,  = 0). With 

X I  = [ x , ~ ]  and -Y2 = [ z ] ,  (22)  reads: s , ,~ , ;  = + <,y (since 

sz  = 0). Hence s : , ~  + s , ~ , ~  = s , , ~ ~  + s;,, and r s  E Sz2. 

Conversely let s E Sz2. We use (22') to define sAy for all X E TI .  In 

detail, let 

for all C 2 1 and x I , .  . . , s t  E S. If t = 1, then the right hand side is empty, 

and t ,  = 0 for all x E S .  If C = 2 we obtain t = s Z,3/, so that rt = s .  It Z,Y 
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remains to prove ( P 2 )  and ( 2 2 ) ,  so that t  E z2 
First we note that 

so that ( X 2 )  holds for t . 

We prove ( P 2 ) :  t X ,  = t X  for all X = [ X I , .  . . , xe] by induction on 

e. For t 5 2 ,  ( P 2 )  follows from ( S 2 ) .  For 1 > 2 it suffices to show that 

tJKr = tx for every transposition T = (i i + l )  with z < l .  For i < P -  1, 
t X r  = t X  follows from the induction hypothesis, since 

by ( X 2 ) .  For i = l - 1  we have, with zip:, = b ,  XeF1 = C ,  ze = d: 

and it follows from ( A 2 )  and ( S 2 )  that 

d d 
'b ,c  + ' bc ,d  = ' c ,b  + Sc6,d = Sc,bd + ~ ; , d  = ~ ; , d  + Sbd,c 

Therefore ( P 2 )  holds. 

( 2 2 )  holds when m = 1 ; for m > 1 we proceed by induction on m .  

Assume that ( 2 2 )  holds for rn and let Yl,. . . , Y,,, 2 E T I ,  pYj = yj,  

p Z = z .  Let Yl . . .  Y,, = X  = [ z l  , . . .  , z q ]  € T I  and Z =  [ z l  , . . . ,  z r ] .  By 

the induction hypothesis, 
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by the induction hypothesis and (112), 

by (X2) ,  and (22)  is proved. I 

THEOREM 1.3. For every cornrnutative semigroup S and abeiian group 

rdued functor A on X ( S )  : z 2 ( s ,  A) E SZ'(S, A) ; B~(s ,  A) Z SB'(S, A) ; 

and H'(s, A) E S.Z2(s, A)/ SB'(S, A). 

PROOF. By 1.1, 1.2, r is an isomorphism z2 -+ s z 2 .  When c E C' , 
(C l )  implies (OC),,~ = cEY - c: - C; ; hence r (8 ' )  = SB'. I 

5 .  If A is thin (if aXTt = a,,, whellcvcr s t  = xu  in S) ,  normalization 

can be used to sharpen Theorem 1.3. A symmetric 2-cochain c is n o ~ m a ~ i z e d  

when c, , ,  = 0 wlmlever e2 = c and ex = r in S. These cochains form a 

subgroup NSC'(S, A) of sC2(S ,  A). Norinalized symmetric 2-cocycles and 

2-coboundaries form abelian groups NSZ'(S, A) = S z 2 ( s ,  A ) ~ N S C ~ ( S ,  A) 

and NSB'(S, A) = s B 2 ( s ,  A) n NSC'(S, A). If A is thin, it is readily 
verified that a symmetric 2-coboundary is normalized if and only if it is the 

coboundary of a normalized 1-cochain. 

PROPOSITION 1.4. If A is thin, H~(s ,  A) NSZ~(S, A)/NSB~(S, A). 
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PROOF. We show that SZ2 = N S Z ~ + S B ~ ;  then H 2  E N5'Z2/ NSB2 

follows from H 2  E s Z 2 /  S B ~  and SB2 fl N S Z ~  = N S B ~ .  

Let s E s Z 2 .  Take any u E C1(s, A) such that u, = s,,, whenever 

e2 = e in S .  Since A is thin, a,,, = U. is the identity on A, and e , l  

(6u),,, = -u,. Hence t = s + 6u E SZ2 satisfies t,,, = 0 whenever e2 = e .  

It follows from (A2) that t is normalized: if e2 = e and ex = x ,  then 

a,,, = is the identity on A, and 

ae,z te ,e  tee,,  = te,ez + te,z 

yields t,,, = 0.  Thus s = t - 6u E N S Z ~  + S B ~ .  D 

Section 2. Cocycles in dimension 3. 

1. A short 3-cochain on S with coefficients in A is a family c = 

(c,,,,,),,,,~~S such that c,, , E A,,, for all x, y, z E S. Under point- , , 
wise addition, short 3-cochains form an abelian group n,,y,,ES Axya. A 
symmetric 3-cochain on S with coefficients in A is a short 3-cochain c = 

(cX,,,Z)X,,,~ES such that 

C - - 
Z,Y,Z - c z,y,z , and ' Z , ~ , Z  + Cy,z,x + Cz,r,y = O 

for all x, y,  z E S. For example, the coboundary of a symmetric 2-cochain 

U ,  defined by 

is a symmetric 3-cochain. 

A symmetric 3-cocycle is a symmetric 3-cochain t such that 

- t;,z,w - t,,,z,w + t,,,z,w tx,y,tw + t:,,,z = 0 

for all x, y,  z ,  w E S .  A symmetric 3-coboundary is a symmetric 3-cochain t 
(necessarily a 3-cocycle) for which there exists a symmetric 2-cochain u such 

that t = 67.1. Under pointwise addition, syrnmetric 3-cochains, 3-cocycles, 

and 3-coboundaries form abelian groups SC3(S, A) c nx,,,,Es A,,, , 
SZ3(S, A),  and sB3(S,  A). The main result in this section (Theorem 2.11) 

is that H ~ ( s ,  A) S sZ3(S,  A)/ SB~(S, A).  
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2. The first step in the proof is to state the definition of long 3- 

cocycles in usable form. We denote the typical element of T2 by X = 

[ X I ,  S2,. . . , XI,] ; by definition, 

xu = [x & . . . ,  X,,,] = {A- ,,..., x',,,] = x 

for every perrnutatio~~ a  E S,,, of 1, 2 , .  . . , na. We denote pX by z ,  a : ~  by 

X, and n i x  by X .  Then z = pX = pX = pX.  If X = [ X 1 , S 2 , .  . . , X m ]  
and z . = pXj,  then 

I 

Wheu c c~(s ,A) ,  we write cx  = c y  i 1 )  . x  z ; , , , ;  X n, (with serni- 

colons), separating the components of each Sj with commas if necessary: 

- By defi~lition, ~ X O  = c x U 1 ;  ,,,; xu,, - c x l ;  ,,,; xn, = cX for every perrnuta- 

tion a  E S,, , and c x q  ; ,,,;, = cxI ;  ,,,; x,,, for all suitable permutations 
1 

a l l . .  1 

For all [ x ~ ,  X2, . . . , X,, ] E T3 we have 

(with Xi = n i x i  ); hence 

where z$ = z l . . .  z k - l z k + l . . .  z n ,  z k  = p X k  =pXk = p X k .  Thus a long 

3-cocycle is a family s = ( s ~ ) ~ ~ ~ ~  such that sx E A, and the following 

conditions hold: 
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for all m > 1, X E T2 of length m ,  and a E S,,; 

for all m 2 1, X E T2 of length m ,  and suitable permutations a , , .  . . , a,,,; 
and 

1 for all X I , .  . . , X n  E T2, where, as before, xi = x0Xi, xi = pXi, and 
x k = q . . .  xk-l"k+l"' x n .  

3. Condition (23) implies that long 3-cocycles can be trimmed (as we 
trimmed long 2-cocycles in Section 1). This will be done in three stages. 

When X = [ X I , .  . . ,X,,] E TI,  we let xi = pXi and 

LEMMA 2.1. Every long 3-cocycle s satisfies 

for all X E T1, and 

(2")  

for all X1, . . . , XI,, E TI. 

Pnoor. Let X E T1. With n =  1 and Y1 = [ X I ,  we have Y1 = X ,  

Y1 = [ x ]  , yl = x ,  and (23)  reduces to (2'). 

Now let X I , .  . . ,X,,, E TI.  If m = 1, then (2")  follows from (2 ' ) .  

Let m > 2 .  W i t h Y 1  = [XI  , . . . ,  a n d Y 2  = [X,, ,] ,wehave 

Y,Y, = [X ,,..., X,,], Y, = X I . . .  X,,_, = q,-,, Y2 = X,, Y, = 

[ x , , . . .  , x , ~ - ~ ] ,  15 = [ z m ] ,  and (23)  yields 
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This proves (2") if m = 2 .  For in > 2 we proceed by induction on m .  If 

rn > 2 and (2") holds for nz , then: 

- S + sx:ll- 1 + Sx1 ... x,,; s,,+~ "1, ...,"m--1;2‘111 x 711 

by the induction liypotliesis and ( 2 ' )  

4. Lemna 2.1 shows that a long 3-cocycle is determined by its values 

on colnnlutative words of length at most 2. In detail, let 

w , ~ )  = cn,,, A,) x cn,,,.,, A,,) 

be the abelian group of all families 

c = ( ( C ~ ) ~ E S ) ?  (CS,Y)X-,IJ~T~ 1) 
such that c, E A, for all x E S and C S , ~  E A,, for all X,I' E TI.  The 

trinming liomomorphisln rl : Z3(s ,  A) -+ C1(S, A) is defined by ( r ls) ,  = 

3, , ( rp ) ,y ;y  = s X,y for all x E S ,  X ,  I' E TI . Lenlnla 2.1 ixnplies that rl 
is injective. 

LEMMA 2.2. Let s E C1(S,A). Then s E I m r l  if and only if: 

b 
sail, = sa + s$ for all a ,  b E S ;  and 
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PROOF. Let s  E S Z ~ .  Properties (P i )  and (P;) follow from (P3') 

and(P3") .  Let a , b ~ S .  W i t h n = 2 ,  X 1 = [ [ a ] ] , a n d X 2 = [ [ b ] ] , w e  

have X1 = XI = [ a ] ,  W2 = X2 = [ b ]  , and (23) reduces to (2;).  Next 

let A, B , C  E TI. With 12 = 2,  X I  = [ A ,  B ] ,  and X2 = [ C ]  , we have 

X1 = AB, XI = [a ,  b] , X2 = C ,  X2 = [c] , and (23)  reads 

(using (2')) .  Similarly, with n = 2,  X1 = [ A ] ,  and X2 = [B, C]  , (23)  

reads 

'A;B;C = S ~ ; ~ ~  - 'a;b,r + + '%;c. 

This proves (2;). 

For the converse, let c E C1 have properties (P i ) ,  (pi'), (2'11, and 

(2;). Define s x l ;  ,,,; Xn,  E A, for all X I , .  . . ,X,,, E TI by 

In particular, sxl = c = c,, so that (2')  holds for s and s, = c, for all 
"1 

x E S . Also 
b 

SA;B = ca + C; + CA;B - ca,b = CA;B 

by (2;) ;  therefore r l s  = c and (2") holds for s .  Property ( ~ 3 " )  follows 

from (Pi'). It remains to show that ( ~ 3 ' )  and (23) hold for s  . 

First we show that s has property (X3) in the proof of Lemma 2.1: 

This property is trivial if m = 1 and follows from (2 ' )  and (Zi)  if m = 2. 

For m > 2,  let y'! = zj+l . . .  L ~ ~ - ~  (with Yk-l = I E 5'') and yA = 
3 3 

xl . . .  x j - ~  zj+l . . .  xm-l. Then z'! = yyzm and zA  = yA zm for all j 5 
3 3 3 

m - 1, and (2") yields 
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Thus (X3)  holds for s .  

1% use induction on m to prove ( ~ 3 ' ) :  s x a  = s x ,  for all mn 2 1, 

X = [ X I ,  . . . , X,,, ] , and a E S,,, . By (pi), s has this property for m 5 2 .  

If rn > 2 it suffices to prove that sxu = sx d e n  u = ( z  z + l ) ,  i < m .  
If I < 772 - 1, then urn = In and sxu = sx follows from (X3) and the 

induction hypothesis. Let z = rn - 1. Let 

B = [X l, . . . ,X,, , - , ] ,  A=X, , , - l ,  C =S,,, 

so that IB3 = X1 . . . X17,-2. By (2") we have 
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Hence we need to show that 

this follows from: 

This proves ( ~ 3 ' ) .  

We now turn to (23) .  First we prove 

for all X, Y1,. . . , Y, E T I .  This is trivial if I? = 1 and reduces to (2;) if 

e = 2 .  For 4!>2  w e p r ~ c e e d b ~ i n d u c t i o n o n t .  Let B =  [Y1, . . . , Y e - l ] , ~ ~  
I' 

that by = yiS1. . . ye-1 and b p  = y1 . . . yi-1 yi+1 . . . yi = byye, and 

y"b~yC,forall  ~ < l .  With . 4 = X ,  B=Y1 . . .Ye - l , and  C = Y t ,  (2:) 

yields 

f s ~ ~ ; , i  + 3;: - s z.6; ye - " 8 ; ~ ~  - s?( + Sz;6,yt 

by the induction l~~pothesis  



and (2:) holds for C. 

We now prove (23) .  With n = 1 and X1 = X ,  ( 2 3 )  reads sx = sx ; 

this follows from (2 ' )  since pX = p S  . 

For n > 1 we proceed by induction or1 n .  Let XI, = [ x k l , .  . . , Xknak ] , 
so that XI, = . XPllLL and XI, = [ x k l r . .  . , . rk,nk] (with tkJ = pXkJ ). 

The left hand side of (23)  is 

L H S ( n )  = s x  - 
, . . .XI1 - S.~11;...;Slrlll;...;SI11;...;,Yn7nn ; 

the riglit hand side is 

We use (2") , then separate the terms which contain n : 
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Since LHS(n  - 1) = RHS(ra - 1 )  b y  the induction hypothesis, it reinains to 

show that 

Thus ( B )  - (D) = (2) - (E) - (3) + ( F ) ;  therefore (2) - (3) = (A) + (B) - 
( C )  - (D) + (E) - (F)  and (23) is proved. 
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5. It follows from Lemmas 2.1 and 2.2 that Z3(s, A) is isomorphic to 

the group Z1(S, A) of all s E C1(S, A) which satisfy (p i ) ,  (pi'), (z:), and 

(2;); the proof of 2.2 shows that these properties imply (2;). 

LEMMA 2.3. Every s E Z1(S, A) satisfies 

for dl X,Y = [yl, .  . . , ye] E TI ,  with Ti = [ Y ~ ,  . . . , yi]  . 

PROOF. Property (Zf*) is the particular case of (Zr)  where = [ y i ]  
for all i . B 

This permits further trimming. Since s,; Y , Z  = s ~ , ~ ; , ,  (Zr*) shows that 

each s E Z1 is uniquely determined by its values s, with a: E S and SX; 

with X € T I ,  Y E S .  Let 

C2(S, A) = (&s ( ~ X E T ~ , ~ E S  A ( p ~ ) y )  

be the abeliarl group of d l  families 

such that c, E A, and CS; E for all x,  y E S ,  X E TI . Let r2 : 
Z1 (S, A) - C2(S, A) be the trimming hon~omorphism defined by (r2s), = 

S~ (r2s),~; y = S z ~ ;  y for all x ,  y E S, E T I .  Lemma 2.3 implies that 

is injective. 

LEMMA 2.4. Let s E C2(S,A).  Then s E I m r 2  if and only if it has 

properties 

(2; s,;y = s$ + sC Y 

Swz,y,  2 + Szy,t; w + S ~ , x ,  y: + syWXZ + s y y  + s ; ,~ ,  + s;:; , + sg, 
( 2 2 )  - 

- S y , z ,w+  + Sw,xy;: + Sx,y:, w + CYZ + SFYZ + s;,z,y + s:,y,z +SF: 
for all w,  x, y, z E S, X, Y E TI, and suitable a .  
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PROOF. First we show that every long 3-cocycle s E z3 has properties 

( Z 2 )  and (P ; ) .  

Let w,x, y,z E S. With A = [ w ]  , B = [x,~], C = [z], (2;) reads 

(with sides exchanged) 

- 
( I )  % , c , ~ , z  + S:  , L , y  + ' y X Y  - 'UI ,xL .y , ;  - % , E , Y , Z  + S Y , ~ , ~  + s:" - ' U > , . C Y , 2  ' 

With A = [ w ] ,  B = [x], C = [y,z], (2;) reads 

Now let x,z E S ,  I' E T I .  With m = 3 ,  XI = [XI, X 2  = I', and 

,Y3 = [z ] , (2") reads 

- s!4r + s P i  
s ~ , ~ , ~  - z y + s ~ Y + s ~ , ~ + s [ E ] ~ , Z - s ~ , y - S ~ , Y , Z  

= s;y + s$ , ,  + S [ , ] y , ,  - S,,y,z , 
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since sY,Z + s;' = sZiy and s,;y = sy; ,  . Exchanging x and z yields 

Since s,:; Y; ,  = s,; ;. , we obtain 

- 
s?' + 4;. + S[ l : ]~ ; t  - s x , y ; z  - ez + s?;z + s [ t ] ~ ; 2  - S z , y ; 2  

Thus every long 3-cocycle s E .Z3 has properties (Z2),  ( p i ) ,  (2;) 
(which was proved before), and (P;) (which follows from ( P r )  and ulti- 

mately from ( ~ 3 " ) ) .  Hence every t = r l s  E Z1 has these properties, and 

so does every r2t with t E Z1. 

Conversely let c E C2(S, A) have properties ( p i ) ,  (P;), (Z i ) ,  and 

(Z2).  Define sx = cx for all x E S and 

e-1 Y:;~ E zy; e-i 
C s " ; ~  = EizO C x ~ , i i ~ i + l  + Xi=? Cs - Ci=l X , ? J ; ; Y ~ + ~  

for all X, 1' = [ y l ,  . . . , ye] E TI (where I$ = [ yl, . . . , yi ] ). This is accord- 

ing to (Zf *),  except for the last term. If C = 1 , then s ~ ;  = CX; ; therefore 

s has properties ( p i ) ,  ( p i ) ,  (2;))  and ( Z 2 ) ,  and will satisfy r 2 s  = c. 

By (z;), we also have 

- 
- Cy,z ;x  

for all x, y, z E S .  In particular, 

- 
Sz: Y , t  - Sy,z ;x  

for all x, y, s E S .  The definition of s then shows that it has property (ZT*). 
Since c satisfies ( P l )  we have sx0; k. = SX;  for all X,  Y, a ;  (pi') follows 

from this property and (P i ) .  It remains to prove that s satisfies ( p i )  and 

(.Z[). 
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As indicated, 13 terms of LHS cancel with each other or with 9 terms of 
RHS, leaving the equality 
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Since s,; y ,Z = s ~ , ~ ; ~  we obtain, after cancellations, 

and (2;) is proved. 

Next we prove 

'A,b = ",A 

for all A = [ a l . .  . . , u C ]  E TI. b E S .  This follo~vs from (Zi) if C = 1 
and was shown above if C = 2 .  For C > 2 ,  w-e pioceed by induction on 

C. Lct C = A [ t ]  = [ a l ,  . . . , ue, t ] .  \Ye use (ZT*) and sepa~ate  the tcrnls 

cant aining t  : 

C - 1  ba$,t C-1 a'! I 
- (l - l )s f  - 

s , ~ l , l ; ~ l + l  + C, 2=1 s 6;(l:,uz+l 1+1 

We can now prove (Pf) : sgSll = S A , ~  for a11 A, B = [b l , .  . . , b,,,] E 

TI by induction on nl.  Assume s B,A - - and let C = B [ t ]  = 

[ b l , .  . . , b ,,,, t ]  . We use (Zr*) and separate the terms containing t :  
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Also, 

by the induction hypothesis and the case m = 1. This proves (Pi). I 

6. It follows from Lemmas 2.3 and 2.4 that z3 ( s ,  A) is isomorphic to 

the group Z2(S, A) of all s E C2 (S, A) with properties (pi), (P;) , (2;) , 
and (Z2 ) .  

Property ( P i )  implies that Z2(S, A) can be trimmed further. For this 

we use an arbitrary total order relation < on S (which need not be com- 
patible with the multiplication). Let R be the set of all restricted sequences 

r = (x1,x2, .  . . , xe, y )  of elements of S such that f 2 2 and y  5 x l , .  . . , x, 

whenever e > 3 (there is no restriction if ! = 2) .  (One could require 

x1 2 x2 2 . . .  > x( 2 y ;  but this would complicate the notation and 

the proofs.) As before, pr = ol . . . xe y  . Let 

The elements of C3(S, A) are families c consisting of a family c, E A, 

( x  E S )  and a family cxiy = cZl ,..., E AZy (& 2 2,  (xl , .  . . ,xe, Y) E R).  
The trimming homomorphism r3 : Z2(S, A) -+ C3(S, A) is defined for each 

- s E 2 2  by: (r33)z = SZ for x E S1 and (r3sIrl ,  ..., ze; y - sz1, ..., ze; y for 
a11 (xl , .  . . , x,, y )  E R.  

LEMMA 2.5. r3 is injective. 
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PROOF. Assulne r3s = 0 ,  where 5 E Z2.  Then s ,  = 0 for all x E S and 

we want to sllow that sx l  , , ,[, = 0 for all X I , .  . . , x j ,  y E S .  This follows 

from (z;) if C = 1 and from r 3 s  = 0 if L = 2 ,  or if f > 3 and y 5 x l , .  . . , xC.  

For t > 3 we proceed by induction on t. Let s, = m i n ( ~ ~ ,  . . . , xL),  

X = [ x l , .  . . , x , , .  . . , x , ] ,  and T = [ . L ~ ,  . . . , I . , - ~ ,  . r S l , .  . . , z C ] .  If y 5 x,,  

then y 5 x i .  . . . , xe and s X 1 ,  = 0. If y > x , ,  then s - 
, "! Y [ Y I T , ~ ,  - 

= 0 and 
s ~ , t l ,  , . L ~ , X , + ~ ,  , X ~ , X Z  

by the induction hypothesis. H 

7 .  Tlle last link in the chain from long 3-cocycles to synmletric 3-cocycles 
is the following llon~omorphism. 

More generally, if s E C2(S, A) has properties (17:) arid (Z2) ,  then As E 

S Z 3 ( s ,  A).  

Recall that syrnnietric 3-cocycles are characterized by 

PROOF. Let s satisfy (P;) and (Z2) (for instance, let s E Z 2 )  and 
- t = A s .  It is clear from (A) that t z , y , X  = t e , y , z .  Also 
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Thus t satisfies (S3). Finally, 

by (P;) and (Z2),  and (A3) holds. I 

With t = As,  property ( ~ ' 2 )  can be restated as: 

LEMMA 2.7. Let c E C3(S, A). Then c E Im r3 if and o d y  if c  satisfies 

(pi) and (22).  

PROOF. These conditions are necessary by Lemma 2.4. Conversely let 

c E C3 have properties (P;) and ( Z 2 )  By Lemma 2.6, t = Ac E s Z 3  

( t  satisfies (S3) and (A3)). Let A = [ a l , .  . . , aC]  E T I .  If /! 2 3, let 

m = min(al , .  . . , a l )  and A = [ m ] ~  (actually, Au = [ m ] ~  for some a ) .  
- - Define s, = c, , sx;y  - c i  + c i  , s , , ~ ; ,  - c , ,~ ;  ;, and s,+I, by induction on C :  

- There is no ambiguity if b = m ,  since t,,,d,,n - -td,,% ,1,1 - tm,na,d = 0 by 

(S3),  (A3). We see that s satisfies (z;), i~lherits (P;) and (Z2) from c ,  

and will satisfy r 3 s  = c .  It remains to prove that s satisfies (P i ) .  
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Let .r,z E S and Y = [ y l , .  . . ,yk]  E T.  We prove 

(p; )  - S 
- 

S [ " ] ~ , z  [ z ] y , x  - t",y,Z + s;r ,z  - s ; , x  . 

by induction on I;. If X: = 1,  then (P;)  reads 

- 
" , y , z  - 

- 
z , y , e  t z , y , r  + s ; , z  - s z  Y J  . ' 

this follows from the definitions of s and f .  Now let I; 2 2 ,  nz = nlinY = 

min ( Y ~ ,  . . . , y o ,  and Y = [ m ] PI'. We consider several cases, based on the 

possible order arrangements of 117 ,  y , a d  z . 

Case 1: :c 5 m I z .  Then ~ n i n ( [ x ] Y )  = n. 5 2 ,  m i n ( [ z ] ~ )  = 172 2 2 ,  

- 
S [ x ] ~ , z  - C [ z ] Y , x  + t"J,Z + + ; z  - 4 , x ,  

- 
S [ z ] ~ , x  - C [ z ] ~ , x  ' and 

- 
S [ x ] ~ , z  - S [ z ] ~ , x  - t x , y , z  + s f ; , t  - G , X .  

Case 2: z 5 nz 5 x follows from Case 1 by excha~lging x and ; 

Case3: x 5 z  I m .  Then ~ n i n ( [ x ] ~ ) = x  5 2 ,  r n i n ( [ z ] ~ ) = z > x ,  

and 
S - 

[ X I Y ;  z - C [ z ~ y ; x  + t X , y , t  + 3 G ; t  - s ; ; ~  1 

S - 
[ z ] ~ ; x  - C [ z ] ~ ; x  

as in Case 1. 
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Case 4: z 5 x 5 m follows from Case 3 by exchanging x and z 

Case 5 :  m 5 x, z . Then 

ln in([x]Y)  = rn .< z, [ x ] Y  = [ m ]  [ x ] w ,  

min([z]Y)  = rn 5 x,  [ z ] Y  = [ m ] [ z ] ~ ,  

min([x]W) > in, min([z]W) > m, 

and 

by the induction hypothesis and ( S 3 ) ,  whereas 

by (S3);  then (P i )  follows from (T).  . 
8. By Lemmas 2.5 and 2.7, Z3(s ,  A) is isomorphic to the group Z3(S, A)  

of all families s E C3(S, A) with properties (Z2) and (P;) .  
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The next trimming reduces Z3(S, A) to its direct summand z ~ ( S ,  A) 
whose elements are all s E Z3 such that s, = 0 for all x E S (hence = 0 

for all 2, y E S by (2;) )  and = 0 when X has length 3 or more (and 

y 5 m i n x ) .  In Z; , (P;) reduces to 

for all x,  y ,  z E S, and (Z2) reduces to 

z ~ ( S ,  A) is isomorphic to the group Z4(S, A) c nr,y,,ES Asyr of a11 families 

s = (s z ,y;  t),,y,ztS surh that s , , ~ ;  E AZyz for a11 x, y, z E S and (P:), (Z4) 

hold. 

Z4 is not isomorphic to Z3; rather. we prove that the remaining ele- 

ments of Z3 contribute nothing to the cohomology. 

The trimming homolnorpliisms rl  , r2, r3 provide an isonlorphisln 

r : Z3(s ,  A) --+ ZJ(S, A) which affects coboulldaries as follows. Recall that 

Sc E z3(5 ,  A) is defined by 

for all X I , .  . . , X, E TI and c E c2. In particular, 

(hc)x = Cx ' 

(W2,y.z = ciy,; - c,,y,; + c:,,~ + c:y , 
- ( W ' Y , ~  - "z,y - "x[~]  + c; + c; . 

This describes the subgroup B3(S, A) = r (B~(s ,  A)) of Z3(S, A). 

LEMMA 2.8. Z3(S, A) = z ~ ( s ,  A) + B3(S, A).  

PROOF. Given s E Z3, define cx E A, for all X' = [xl,. . . ,x!] E TI 
by induction on t as follows: 
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where m = m i n x  and X = W [ m ]  . We see that (Sc), = c, = s,  for all 

x E S  and 

( 6 ' ) ~ ; ~  = C r , y  - " ~ [ y ]  + C$ + C; = S X ; ~  

whenever X has length 3 or more and y 5 ~n in  X . Hence s - r6c E 2: and 

s = ( s - r 6 c ) + r 6 c € Z i + B 3 . 1  

Since is an isomorphism, H3 = z ~ / B ~  E Z3/B3 E Z : / B ~ ,  where 

In other words, B ~ ( S ,  A) is the group of all s  E Z i ( S ,  A) such that s  = rSc 

for some c E c2(s, A). Then c ,  = s, = 0 for all I E S ,  and s  = rSc 
reduces to 

- (C4) S x , y ; z  - Cxy , z  - z ,y , z  + c;,y . 

B ~ ( S ,  A) is isomorphic to the group B4(S ,  A) Z4(S ,  A) of all families 

8 = (%,y; Z ) x , y , z E ~  ~ u c h  that s,,y; 2 = C ~ Y , z  - C t , y , z  + qy E 4 y t  for 

c E C 2 ( s ,  A ) .  We now have 

LEMMA 2.9. H3(s ,  A) % Z4(S,  A)/ B4(S ,  A). a 

9. Recall that a symmetric 3-coboundary is a symmetric 3-cochain t 
(necessarily a symmetric 3-cocycle) for which there exists u = ( U , , ~ ) , , , ~ S  

such that u Z r y  E Axy , 

(52) 
- 

u y , x  - u x , y  7 and 

( B 3 )  - 
t ~ , Y , i  - $,i - 2 y , 2  + U ~ , y Z  - uz ,?y 

for all x, y ,  z E S .  Under pointwise addition, synlmetric 3-coboundaries form 

an abelian group S B ~ ( S ,  A). 

The homomorphism A in Lemma 2.6 induces a homomorphism D : 

Z,(S, A) - S Z ~ ( S ,  A) given by: 

( D S ) , , ~ , ~  = S + , y ;  2 - t , y ;  + 

for all x, y,  z E S .  We show that D is surjective. For this we again use an 
arbitrary total order 5 on S .  
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L E ~ I M A  2.10. A lmnorr~o&isn~ E  : sZ3(S,  A) - Z4(S, A) is defined 

by: 

tx,Y,z i f r  < y,z.  

(* t ) z , y , t  = ty ,x , t  { 0 

i f y  5 x ,z ,  

if z < x, y. 

Moreover DE = 1; Irn (1 - E D )  B4 ; D (B4) L S B ~ ;  and E ( sB~)  2 B4. 

PROOF. The three cases in the definitioll of Et are consistent with 

each other: if x < y ,z  and y x, z ,  then .c = y and t y ,  = t y , r , z ;  if 

x 5 y, z and z < x, y,  then x = z and (S3) inlplies tc,Y,z = tx ,y ,x  - - 

t x , y , c + t y  ,c,z +tx ,c ,y  = 0 ;  if y < x , z  and z < x , y ,  t l m ~  y = z and (S3) 

implies ty,c,r = 0 .  

Let t E s Z 3  and s  = Et .  First we show that 

- 
S c , y ;  t - sz,y c  - t,,,,, - 0 = t x.y,'- 

If y < x , z ,  then 

- - - - - - 
S c , y ;  t c  t y ,c , t  - t y , t , c  

by (S3). If finally z < x. y , then 

- - This implies s  E Zq: indeed (P:) : s , , ~ ; ~  sy,,;: holds by definition, 

and (Z4) holds since 

by (S3) and (H3). Hence E se~ids s Z 3  into Z 4  Then s , , ~ ;  ,-sZ,, = t ,,,,, 
shows that Ds = t ,  so that DE is the identity on s Z 3 .  
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Next we show that u = s - EDs is given for each s E Z, by: 

If x 5 y, z 7  then 

( S  - ED&,y; z  = ' x , y ;  i - ( D s ) z , y , z  = z , y ;  r  - ' z , y ;  t + ' z , y ; x  - Y , Z ; X  
- 

by (~l). If y 5 x , z ,  then 

for instance, u X l y ;  = u holds by (P;) if z 5 c, y ; if s 5 y, z , then Y , t ; Z  
- - = u - S y , z ; z  - u Y , z ; x ;  if y I x , ~ ,  then u , , ~ ; ~  = s ,,,; y , x ; z .  There- 

fore a long 2-cochain c is well defined by: 

- - -u 
x,Y; for all x , y , z  E S, 

c, = 0 whenever X does not have length 3. 

Then ( s  - E D S ) , , ~ ; ~  = c , ~ , ~  - c , , ~ , ~  + c : , ~  for all x , y , z  E S .  Thus 

I m ( 1  - E D )  E B,. 

Next, let s E B4, so that 

- - 
S x , y ; z  Cxy , z  - C x , y , z  + c;,y ' 

for some c E c2. Then 

- - 
( D ~ ) x , y , r  = ' x , y ; r  ' t , y ;  .c - -c;,z + Cxy , z  - C z y , z  + c:,y . 

Thus D (B,) 2 S B ~ .  

Finally let t E S B ~ ,  so that 

- u x  - - 
t x , ~ , z  y,z "+y,z + " z , y r  - X>Y 

where u is symmetric (ub,,  = u , , ~  for all a,  b) .  Let c , , ~  = u , , ~  and 
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These three cases are consistent with each other: if, say. x 5 y, z and y 5 
. c , z ,  then x = y and u;,, + u x j y ,  = u ! , ~  + u ~ , , ~ .  We see that c , , ~ , ~  = 

- 
C z , z , y  - C y , z , z  etc. If x < y, z ,  then 

- 
( E t ) x , y ; z  = t z , y , z  - u x  y,r - U x y , z  + u z , y r  - ll:,y = c , y , z  - C x y , z  - c f  ,y 

If y 5 2, z ,  then 

- 
( E t ) x , y , z  = t y , x , z  - u!,z - u y x , z  + U y , x i  - u;,z = Cx,y , z  - C x y , z  - c;,y . 

If y 5 x, z ,  then 

(E t ) x , y ,Z  = 0 = u 2  x ,y  - u ~ ~ , ~  + u ~ , ~ ~  - ui x , y  = c - c - c f  x , y , z  XY,Z x , y  ' 

Thus ( E t )  ,,y, = c , , ~ , ~  - c ~ ~ , ~  - c:,!, for all r .  y. 2 .  Hence E ( s B ~ )  B4. I 

By Lernnia 2.10, D : Zq + s Z 3  satisfies D jB4) 2 S B ~  and induces a 

holnon~orphisni D *  : H~ ---t s Z 3 /  S B ~ .  Since DE = 1, D is surjective and 

so is D r .  hloreovcr, Ds E S B ~  implies E D s  E Bq and s = (s - E D s )  + 
EDs E Bq; therefore D *  is injective and we have proved 

TIIEOBEM 2.11. For every commutative semigroup S and abelian group 

valued fu i~ctor  A on X ( S ) ,  

10. Normalization call be used to sharpen Tlieorcm 2.11. A syinmetric 
3-cochain c is normalized when 

c,, , ,~ = O whenever e2 = e, ex = + .  

By (S3), this condition implies 

c, ,,,!/ = 0 whenever e2 = c, ET = T,  ey = y, 

c, ,~, ,  = O whenever c2 = e, cy = y. 

Normalized symmetric 3-cochains, cocycles and coboundaries form groups 

NSC~(S, A) 2 SC3(s ,  A) ,  NSZ~(S, A) = SZ~(S,  A) n NSC~(S, A), and 

NSB~(S, A) = s B 3 ( s ,  A) n NSC~(S, A).  We note: 
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LEMMA 2.12. If A is thin, then NSB3(S, A) = S(NSC~(S, A ) )  

2 PROOF. Let A be thin. If e = e and ex = x ,  then exy = xy, 

@zy ,e  = " x y , l  7 u z , y  = ' x , y  7 and 

- 
(*u )e , x , y  = u; , y  - + u e , z y  - ' ! , x  - U e , x y  - u!,x . 

In particular, if u is normalized, then S u  is normalized. 

Conversely assume that t = S u  is normalized. Let u, E c'(s, A) satisfy 

we = u whenever e2 = e. Since a,,, = aeS1 we have ( S W ) , , ~  = wz - 
e ,e 

u , , + w ~ = w , = u  e ,e f o r a l l e 2 = e .  Let v = u - S w E S C 2 .  Then S v = t  

and v , ,  = 0 for all e2 = r .  Since t is normalized we have u , , , ~  - uY = 
e , t  

(6v)e , , ,y  = 0 whenever e2 = e ,  ex = x.  In particular u , , , ~  = v:,, = 0,  so 

that v,,, = 0 whenever e2 = e,  ex = x , and t = 61, with v normalized. 8 

PROPOSITION 2.13. If A is thin, then 

H3(S, A) E NSZ~(S,  A)/ NSB3(S, A ) .  

PROOF. We show that s Z 3  = Ns,Z3+SB3; then H3 NSZ3/ N S B ~  
follows from H 3  E s,Z3/ S B ~  and NSZ3 f l  S B ~  = N S B ~ .  

Let t E SZ3. Define 

2 
ue,, = u,,, = t,,,,, if e = e, ex = x, 

if neither x2 = 2, zy = y nor y2 = y ,  yx = x. 

If e = 2 ,  then t e e  , = t,,,,, , so that u is well defined. We see that u E SC' 
2 > 

and that u,,, = te, , , ,  = 0 whenever e2 = e , by (S3). Let s = t - 6 u  E s Z 3 .  

When e2 = e ,  ex = x ,  then a,,, = a,,l, 

(Su )e , e , x  = uE ,x  - ' e e , z  + ue,ex  - ':,e = ue,x  = ' e , e , x  7 

and s,,,,, = 0; hence ( A 3 )  yields 

- - - 
S e , x , ~  ' ; , x , y  - ' e e , z , y  + ' e , e z , y  ' e , e , x y  + '!,e,x = O 

for all y E S. Thus s is normalized, and t = s + S u  E N S Z ~  + SB3. 8 
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