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COMMUNICATIONS IN ALGEBRA, 25(11), 3427-3462 (1997)

COCYCLES IN COMMUTATIVE SEMIGROUP COHOMOLOGY

Pierre Antoine Grillet
Tulane University, New Orleans LA 70118, U.S.A.

Abstract. An alternate description of triple cohomology for commutative

semigroups is given in dimensions 1, 2, and 3.
Introduction.

1. Commutative semigroup cohomology refers to triple cohomology in
the variety of commutative semigroups (Beck [2]; see also [1]). In [4] we
gave a concrete description of this cohomology and showed that it coincides
with the cohomology in [3] in dimension 2; the second cohomology group

H 2(5, A) thus classifies commutative group coextensions of 5 by A.

The description of commutative cohomology in {4] is derived {rom its
definition by triples and does not lend itself to the computation of examples.
Cochains in dimensions n > 2 are indexed by an unbounded number of
elements of §; this makes the computation of cohomology groups an infinite

task, even for a finite semigroup.

Inn dimension 2 one can use the equivalent computable description in [3],
in which cochains are indexed by pairs of elements of S. In section 1 we prove
a stronger result: the cocycle and coboundary groups for triple cohomology
coincide with the groups of symmetric cocycles and coboundaries in [3]. (A
sharper description is given in [6].)

In Section 2 we prove a similar but more difficult result for dimension
3, which describes H3(S, A) using symmetric cochains indexed (as in Leech
cohommology) by three elements of S. It is an open question whether these
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3428 GRILLET

results extend to higher dimensions; if so, the main result in Section 2 might

be proved as in [2] or (8].

Sections 1 and 2 also contain normalization results for symmetric 2- and

3-cocycles.
The major results in this article were announced in [5].

2. We keep the notation in [4]. In what follows S is a commutative
semigroup. The Leech category #(.S) is defined after 7] as follows. The
objects of #(S) are the elements of 5. The morphisms of #(S) are the
elements of S x S'; when z € S, t € S, then (z,t) is a morphism from
z to xt. The composition of (z,t) : * — xt and (2t,u) : ot — ztu is
(z,tu) : @ — ztu; the identity on ¢ € S is (x,1). An abelian group valued
functor A4 on H#(S) thus assigns to each ¢ € S an abelian group A4, , and
to each pair (z,t) € § x S! a homomorphism oyt Ay — Ayt (written
on the left), so that a, 1 is the identity on A, and Oy Qg = Oy gy for all
r,tu.

In longer calculations it is convenient to write
0p49 = gt e Ay when ge A,
then
1 t
gt=g, (¢)=g"

whenever z € S, a € A, t,u g st

Define semigroups T,, by induction as follows: T, = S; T, 41 is the free
commutative semigroup on the set T, . An element of T, ,, is a nonempty
product of elements of T,,, the factors of which are unique up to order. In

what follows it would be very confusing to write the elements of T} | as the

usual products of generators; hence we shall write the elements of T, 41 @s

nonempty unordered sequences t = [ml, vy 2, | of elements of T, (so that
m>1and t7 = [azlﬂ, .. 'v%m] = [:cl, o ,.rm] =t for every permutation
o €S, of 1,2,...,m). Multiplication in T} | is given by concatenation:

[-’131,---,1'7"] [ylv"'ayn] = [xlv"'vx"pylv"'vyn] .
A homomorphism p: T, — S is defined by induction by

p[$1’$2""’$7n = (pxl)(px2)~-- (p.rm),
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starting with pz = z for all z € S in general, p [:cl, e ,sz] 1s the prod-
uct of all the elements of § which appear as components of [;L'l, Ty ]

Similarly, homomorphisms 7' : T, , | — T}, are defined by induction by

7T77: [Cvly.T?,...,l"n] = I Ty T,

-1 -1 -1 o
ey, xg, 2] = [7] e, 7l ey, w1l e, ) i i<n

for all ©y,...,x,, € T,. This implies p(nj't) = pt forall t € T, . (Com-
mutative semigroups are tripleable over sets; in the corresponding cotriple,
GS=T), e=n),and 7' = G"'eG".)

Let A be an abelian group valued functor on #(S). For each n > 1,
a long n-cochain on S with coeflicients in A is a family ¢ = (Ct)teTn_l
such that ¢, € 'Apt for all t € T,,_;. Under pointwise addition, long n-

cochains form an abelian group C"(S,A) = [l;er, , Ay- Coboundary

homomorphisms 6, : C"(5,A) — C’"+1(5, A) such that 6,06, ; = 0 are
defined by

n—1 ; n m pt;\

(©) Bpe) = X,y D ey, + D" E | 6
for all c € C™(S,A) and t = [2y,...,2,,) €T,, with
t;\ = ':.Tl,.,.,$j_1,$j+17-~'7$m:|

(so that pz; pt;-\ = pt). A long n-cocycle is an element of Z"(S,A) =
Ker 6, C C™(S,A). A long n-coboundary is an element of B"(S,A) =
Imé,_; CZ"(S,A) (with BY(S, A)=0).

It is shown in [4] that the triple cohomology group H"(S,A) (called
H" (S, A) in [1], [2]) is naturally isomorphic to Z"(S, A)/ B"(S, A).

3. In dimension 1, H1(S,A) & Z1(S, A). A long 1-cochain is a family
c=(cy)pes € lzes Ay With coboundary

m Pt;-\
(Cl) (6C)t = Cxl"'zm - Zj:l C.’L’]'
for all t = [z},...,2,,,] € T} (since 7r8t =pt=a;--a,) Hence cisa
long 1-cocycle if and only if
A

m z

(21) Corezm = Zj:l cwj’
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for all z,...,z,, € S, m = 1, with :cg\ =Ty T T Ty By
induction on m, (Z1) is equivalent to

— Y T
(A1) e

for all 2,y € S. Thus ZI(S, A) and Hl(S, A) are the same as in [3].

Condition (A1) implies that 1-cocycles are normalized (¢, = 0 whenever
e =cin §).

Section 1. Triple cohomology in dimension 2.

1. We call the 2-cochains defined in [3] symmetric 2-cochains to dis-
tinguish them from long 2-cochains. In detail, a short 2-cochain is a family
c = (c, y)x,yeS such that Cpy € Azy for all z,y € S. Under pointwise

addition, short 2-cochains form an abelian group HI yeS Azy. A symmetric

2-cochawn is a short 2-cochain ¢ = (c, ), veg € [[; yeg A,y such that

(52) Cyo T Coy

for all z,y € 5. For example, the coboundary of a 1-cochain u yields a short
2-cochain, also denoted by du:

(bu)yy = ugy — ul — uy,

which is symmetric.
A symmetric 2-cocycle or factor setis a symmetric 2-cochain s such that
(42) Say T Seyz T Spyst Sy,

for all z,y,z € S. A symmetric 2-coboundary is a symmetric 2-cochain
(necessarily a cocycle) s for which there exists a l-cochain u = (u),cs
(with u, € A, ) such that s = du, that is,

(B2) Spy = Ugy — UL — Uy

for all @,y € S. Under pointwise addition these form groups SC%(S, 4) C
L yes Aey $Z%(S, A), and SB%(S, A). In [3] these groups are denoted by
C?(s, A), Z2(S, A), B%(S,A), and defined only when A is thin (o, = ay

whenever zt = zu).
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It is shown in [3] that SZ%(S,A)/ SBY(S, A) classifies commutative
group coextensions of S by A; therefore SZQ(S', A)/ SB2(S, A) = HZ(S, A).
We now prove (Theorem 1.3) that in fact 745, A) = SZ%(S,A), with
B2(S, A) = SB(S, A).

2. We denote the typical element of T} by X = [zl, e ,ze}; £ is the
length ¢ = |X| of the commutative word X . By definition,

X% = [z, .rTpp)] = [;vl,...,:ce] = X
for every permutation 0 € S; of 1,2,...,£. We also let

) "
r=pX =z Ty T; = Ty, Xy = T Ty,
and zf\ =y T;_yT;1 - Ty; in these formulas, any empty product is
read as 1 € S1. When ¢ € 5%, A) we write eX = €3y, {without

brackets). Since ¢ depends only on X, we have c for

Lol Lol = CI],.,_,I[
every ¢ € S;; we write this property as ¢yo = cy.

For every X = [Xl,...,Xm] € T, we have
W%X = X X, ﬂéX = [le,...,pXm] = [xl,...,xm],

and

m xf
(C2) (bc)x = Coprgm — CX1o Xim + Zj:l °y;

for every ¢ € C%(S,A) (with 1‘5\ = @) @1 Tjp1° " Tyy). Thus long
2-cocycles are families s = (SX)XETl € HXGT1 ApX such that

(Pz) SXa' = SX

forall X €Ty, 0 € SIX” and

m ,;;.\
(22) SX]“'Xm = S»’Cl;--nx'm + Ej—:.l ch

forall m > 1 and X;,..., X, € T;.

3. LEMMA 1.1, When s is a long 2-cocycle, s, =0 for all x € S, and

=1 2!
(Zzl) sy = Zi=1 8 i+1

ol
for all X € Ty of length (.
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PRrOOF. Let z € S. With m =1 and X; = [2], (Z2) yields s, = 0.
Hence (Z2') holds when € = 1. Let { > 2.
With m =2, X| = [1"'1»"'7””5—1]’ and Xy = [wé] , (Z22) reads

- - Te
(X2) Sx = Sx'ﬂ_l,xg + Sy, Tpg

(since sy, = 0). Hence (Z2') holds if £ =2 or £ =3. If £ >3 and (Z2)
holds for ¢ — 1, then with y = ;- 2,y we have yz, = £'1'+1 and (X2)

yields
prinnd I[ S
SX S.’L‘l,...,lf_l + .Elf__l,l’[
-2 re
= 8 + s, ;
Zi:l Tyt Te—pTe
1
- Z(——? SxH-l ,
i=1 el Te—1¥e
g wl
_ Z[——l S’“i—H

o
=1  T;,&i41

thus (Z2') holds for (. m

4. By 1.1, a long 2-cocycle is uniquely determined by its values on com-
mutative words of length 2. More precisely, let T': Z%(S, A) — SC2(S, A)
be the trimming homoemorphism defined by (Fs)zy =5,y € Ay, for all

z,y € 5 (note that s, , = s, . by (P2)). Lemma 1.1 implies that T is

injective.
LemMMma 1.2, ImT' = SZQ(S, A).

PROOF. Let s € Z%, x,y,2 € §. With m = 2, X; = [z], and
X, = Ly,2], (Z2) reads: Spy: = Syys +s;z (since s, = 0). With
X = [#,y] and Xy = [z], (Z2) reads: Sea: = Sayz T si,,y (since

s, =0). Hence s} , TSy =Sy, T8y, and T's € 522,

Conversely let s € SZ%. We use (Z2') to define sy forall X € T}. In
detail, let

t — i+1
EAPRONE 7] Zi:l a:;,:vi_H

forall £ > 1 and z,...,z, € S. If £ =1, then the right hand side is empty,
and t, =0 forall z € §. If { =2 we obtain ey so that 't =s. It

—1 2!
K

=Sy
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remains to prove (P2) and (Z2), so that ¢ € Z2.

First we note that
1 2 .y
+1
= S
t;vl, e Y Ei:l Sz;,zi+1 zhy

~1 =z y
— i+l — 1Y
= (Z s ) ToSaly = lnag TSy

i=1 "TpEip
so that (X2) holds for ¢.
We prove (P2): tyo =ty forall X = [:cl,...,:vej by induction on
{. For £ < 2, (P2) follows from (S52). For £ > 2 it suffices to show that

tyr =ty for every transposition 7 = (¢ i+1) with i < ¢. For i < £ —1,
tyr =ty follows from the induction hypothesis, since

t = ¥ s .
Ty, .., Ty Ty, gy + Ty 1T

by (X2). For ¢ = £ — 1 we have, with w}_Q =b, 1, 1 =c¢c, zp=d:

: E =3 ‘ril-}—l + d +
= , S 8 S
X i=1 xi’v“"i-{-l b,C bC,d

-3 "
_ +1
txr = 2., Su

I
TiTit1

+ 8hat Spde
and it follows from (A2) and (S2) that
d _.d _ c _ .
Shet Sbed = SeptScbd = Sepd T Sbd = Sbd T Sbde -

Therefore (P2) holds.

(Z2) holds when m = 1; for m > 1 we proceed by induction on m.
Assume that (Z2) holds for m and let Yi,...,Y,,,Z € T}, ij = yj,

pZ==z LetY|--- Y, =X= [xl,...,wq] €T and Z = [zl,...,zr]. By
the induction hypothesis,

A
_ m yk
tX - tyly"':ym + zk:l tYk ’

where y,/c\ = Y] Yp—1 Ykgl " Yms We want to prove that

A
_ m yk z z
txz = tyym: T Ek=1 by, *1iz-
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By definition, tx, =1 equals

Ty, Lg 21,0 27

"
q—1 ;L’H_lb r—1 ]+1
1+ == S + .
B SR D DA

z JI r—1 Z9,+1
= t/ + 3;5 121 + Z

M
r—1 z; “j+1
Lt z
+ Ej:l ( Sa:,zg- + SI’Z_IjZ]"Fl + 829-ij+1>
by the induction hypothesis and (A2),

1"

o 4% m 1
- tyl, SYm + Zk 1t Y5 + Sx,z'l

Z’-I H r— 1 Z’-I 1 &
RS LIE l @‘s#,)
]

j=2 ‘”Z j=1 2524

— 4% z
= tyeym T Zk 1 Yk t s, T iz
_ mooyp s T
- tyla'"aynhz + Zk‘:l t k + tZ

v (X2), and (Z2) is proved. m

THEOREM 1.3. For every commutative semigroup S and abelian group
valued functor A on #(S): Z(S, A) = 52%(5, A); B(S, A) = SBY(S, A);
and H2(S, A) = SZ%(5, A)/ SB(S, A).

PROOF. By 1.1, 1.2, T is an isomorphism 7Z2 . 57%. When ce C!,

(C1) implies (6¢), , = ¢, — ¢y — ¢, ; hence r(B*) =5B%n

5. If Ais thin (if a, , = a, , whenever 2t = zu in §), normalization
can be used to sharpen Theorem 1.3. A symumetric 2-cochain ¢ is normalized

2

when ¢, , = 0 whenever e” = ¢ and ez = z in S. These cochains form a
2l

subgroup NSC?(S, A) of SC?(S, A). Normalized symmetric 2-cocycles and
2-coboundaries form abelian groups NSZ%(S, A) = SZ2(S, A)ﬂNSCZ(S, A)
and NSB2(S, A) = SB*(S, A) N NSC%(5,A). If A is thin, it is readily
verified that a symmetric 2-coboundary is normalized if and only if it is the
coboundary of a normalized 1-cochain.

PROPOSITION 1.4. If A is thin, H%(S,A) = NSZ%(S, A)/NSB*(S, A).
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PROOF. We show that S22 = NSZ%2+ SB?; then H? = NSZ%/ NSB?
follows from H? 2 $72/SB?% and SB?NNSZ% = NSB?,

Let s € $Z2. Take any u € C(S, A) such that u, = 3, . whenever
2

e = ¢ in S. Since A is thin, Yo = Qg is the identity on A, and
(bu),, = —u,. Hence t = s 4 éu € $Z? satisfies t. . = 0 whenever e =e.

It follows from (A2) that ¢ is normalized: if €2 = ¢ and ex = z, then
a,, =a, is the identity on A, and

Fe g te,e + tee,z = te,e:c + Cegre te,x

yields t,, =0. Thus s =t — 6u € NSZ? + SB®. »

Section 2. Cocycles in dimension 3.

1. A short 3-cochain on S with coefficients in A is a family ¢ =
(Cm,y,z)z,y,zes’ such that €y € Awyz for all z,y,z € 5. Under point-
wise addition, short 3-cochains form an abelian group [[, , .c5 Az A
symmetric 3-cochain on S with coefficients in A is a short 3-cochain ¢ =

(C%y,z)-'v,y,zes such that

and ¢ =0

[ = - C 4
YT z,4,2° T,Y,2 + Cyvz!l' + 2,x,y

for all z,y,z € §. For example, the coboundary of a symmetric 2-cochain

u, defined by

— & _ oz

is a symmetric 3-cochain.

A symmetric 3-cocycle is a symmetric 3-cochain t such that

tz,z,w - t.’ry,z,w + tl‘,yZ,U) - tl‘,y,zw + tzy,z = 0

for all z,y,z,w € S. A symmetric 3-coboundary is a symmetric 3-cochain ¢
(necessarily a 3-cocycle) for which there exists a symmetric 2-cochain v such
that ¢t = éu. Under pointwise addition, symmetric 3-cochains, 3-cocycles,

and 3-coboundaries form abelian groups SC%(S, 4) C Hz,y,zeS Agyzs

SZ3(8, A}, and SB3(S, A). The main result in this section (Theorem 2.11)
is that H3(S, 4) = 52%(S, 4)/ SB3(S, A).
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9. The first step in the proof is to state the definition of long 3-
cocycles in usable form. We denote the typical element of T; by X =
[X,,Xy,...,X,,]; by definition,

9 am ? m

for every permutation o € S,, of 1,2,...,m. We denote pX by =, W%X by
X, and 73X by X. Then z = pX = pX =pX. If X = [ X, Xp,.... X, ]
and T; = pXj, then

1 -
X= 71X=A1X2"‘X7n,

X = WéX: [wl,x‘z,---,l‘m]

When ¢ € C3(S,A), we write CX = CXy;Xgii Xm (with semi-

colons), separating the components of each Xj with commas if necessary:

Cx:

C.. . C g .
Tils - Timy s P21, s T2mg s s daly s Inmp

By definition, ¢xos = CX oy Xom = CX15s Xm = €X for every permuta-
tion ¢ € 5,,, and CXfl;.A.;X;',{” = Xy X for all suitable permutations

Tlsenes Ty

For all [Xl,XQ,...,Xn:\ € T3 we have
X, Xy, X, ] = XXy X,
W%[Xl,x‘z’...,xnl = [XPXQ,...,X”],
w2 X, Xg,.o, X, ] = (X Xy X, ],

(with X; = ﬂ'éXi); Lence

(66)[X1,X2,-..,Xn] = X1 Xy Xn T X3 Xg s Xn
(C3) no oz
+T X X9 X T Ek:l kaka
where xi\ =Ly Ty Tyt Ty, o = pXy = pXy =pX,. Thusa long
3-cocycle is a family s = (sx)xep, such that sy € A, and the following
conditions hold:

!
(P3) SXGI;...;Xgm = SXI;...;Xm
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forall m > 1, X € T, of length m, and o € 5,,;

/ —
(P3) stl;...; AL SXl;-u;Xm

for all m > 1, X € T, of length m, and suitable permutations oy,...,0,,;
and

n I;c\
(Z3)  sxyXpXn T XyiXpiiXn T SXXpioiXe T 2oy Xy

for all X{,...,X,, € Ty, where, as before, X; = W(I)Xi, z; = pX;, and
TR =AY B gy By

3. Condition (Z3) implies that long 3-cocycles can be trimmed (as we
trimmed long 2-cocycles in Section 1). This will be done in three stages.

When X = [Xl,...,Xm] €T, welet z, = pX; and

I

/ . -l oy v -
.T]:.TI.T?'JI CIIJ =lj+1"'.137", AJ—AIAQ'A]

i
LEMMA 2.1. Every long 3-cocycle s satisfies

(Z,) Sx = S

forall X € T}, and
(z")

A " - "
z; m—1 T m~1 Tivl

m
XiieiXm = Doy % T Xy WX T 2jmp SEhesia

for all Xy,...,X,, €Ty.

m

Proor. Let X € T;. With n =1 and Y| = [X], we have Y, =X,
Y, = [¢], y; =2, and (Z3) reduces to (z".

Now let X,,...,X,, € T;. If m =1, then (Z") follows from (Z').
Let m > 2. With Y, = [X,...,X,,_;] and Yy = [X,
Y, Yy = [X,.. X, Yy =X X, =X, Y, =X,,,Y] =
[2q, @], Yo = [z,,], and (Z3) yields

1, we have

SX];--JXm = SXI"'Xm—1§Xm 521,...,1?171_1;1?"1

(X3) y
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This proves (Z") if m = 2. For m > 2 we proceed by induction on m. If
m > 2 and (Z") holds for m, then:

8X1§~~§Xmixm+l

i/

_ Zmp 4 ose L - i sxf"_l
- SX]?-»-}Xm Xi X X1 Tl Tm—1:Tm Nm
by (X3)
N " — ! Tm+1
_ Zm S-’Ej + zm——l 8z1+1 _ Z:m 1 1”_1 .
- j=1 7% =l XX j=1 TELen T4
'
z
m—1
+ SXI"'Xm;Xm—\Ll - S.’E],..,,.’L‘m_l;.’cm + Tm
. . . !
by the induction hypothesis and (Z')
A ' N
m T T m1 FAN m—1
_ J m—1 1 )
- Ej:l ij + Srm + Zj:l SX;;X]'_(,l + Sf\:nﬂ\m+1
Z m—1 .L"/+1 T4l .
- j=1 SI]""’;C];Q:J"}'I bﬂlv--'v‘cm—ﬂxm

and thus (Z") holds for m+1.m

4. Lemma 2.1 shows that a long 3-cocycle is determined by its values
on commutative words of length at most 2. In detail, let

C1(5,A) = (Ilses Ar) x TLx yer, Asy)

be the abelian group of all families

¢ = ((¢p)ees) (exy)xyen))
such that ¢, € A, for all z € S and cxy € Axy for all X,Y € T]. The
trimming homomorphism T : Z3(8, A) — C1(S, A) is defined by (I'ys), =
Sy, (Fls)X;Y =sxy forall 2 € S, X,Y € T|. Lemma 2.1 implies that ry
is injective.

LEMMA 2.2. Let s € C1(S5,A). Then s € ImI'| if and only if:

P sg.ga =84.p forall A BeT;;
1 B;A A;B 1
(P{’) Sq0.BT =S4p forall A,B € T and suitable o,7;
Z; 5y =30 +s¢ forall a,bcS; and
1 ab a b
b b
(Zil) SA:BC + ‘9%;0 + Sac T Sabe = SABC + 3?4;3 + Sg ~Sabie

forall A,B,C €Tj.
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PROOF. Let s € $Z%. Properties (P{) and (P{) follow from (P3')
and (P3"). Let a,b € §. With n =2, X, = [La]], and X, = (1617, we
have X; = X| = [a], Xy =Xy = [b], and (Z3) reduces to (Zi) Next
let A,B,C € T;. With n =2, X; = [A,B], and X, = [C], we have
Xy=4B, X, = la,b], X,=0C, Xy =[c], and (Z3) reads

— c ab
SAB.C T SABC T Sabie + S4:B T Se

(using (Z')). Similarly, with n =2, X; = [4], and X, =1[B,C], (23)
reads
b
SAB.C T SABC T Sabc + ‘Sac + S(JIB;C'

This proves (Z i’)

For the converse, let ¢ € C| have properties (P{), (P{), (Z}), and

"
(Z1). Define SXyii Xm € A, forall X;,..., X, €T by
A " "
m X m—-1 & m—1 7
— J Jj+1 _ J+1
SXI;N;Xm - Z]Zl C:l:]‘ + Z]:I CX]";X]‘.{.l ijl Czl,.‘.,xj;z]-_,_l .
In particular, 8X, = Cq, =€, 5O that (Z') holds for s and s, = ¢, for all

z € S. Also
_ b a _
S4B = Gt teap—Cp T 4B

by (Zi); therefore T'ys = ¢ and (Z") holds for s. Property (P3") follows
from (P}'). It remains to show that (P3') and (Z3) hold for s.

First we show that s has property (X3) in the proof of Lemma 2.1:

SXI?-n;Xm = SXI“‘Xm—1§Xn1 - sxlvu-yzm—-l;xm
(X3) )
+ Szm 4 S‘Em—l
Xijei Xmn—1 Xm
This property is trivial if m = 1 and follows from (Z') and (Z}) if m = 2.
For m > 2, let y;-' =Tjpt Ty (with yﬁz_l =1¢€ 51) and y;\ =
" A .
Ty BT Ty Then x; = y}'wm and :1:;\ = Yj Ty for all 7 <

m —1, and (Z") yields
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A "
m z m—1 m—-1 '
J J+1 J+1
- - = — S Tt
S‘XI;.A.,’/\m Z]:l 'S-L] + Z]:l ‘\ ’A]_*_l Z]:l L1y Ly 8541
Tm ]
- E’"—l Sy] gim-1
- j=1 zj Xm
Im
m—2 y
J+1
+ + /
Z )(J,,X]_‘_l ‘\m—l"\m
T
m—2 y]_|_1 m
Z Sy, .., TjsTj+1 - S"—’ly~-w"3m—l§73nl
2!
:Lm m—1
= - - - Sy v - 8 . .
1\1,~ S Am + S/\m + XX m L1y Tm—1%m
m—1

Thus (X'3) holds for s.

We use induction on m to prove (P3'): sxo = sy, forall m > 1,
X=[X.. X,,],and 0 € S, By (P{), s has this property for m < 2.
Ifm>2it sufﬁces to prove that sxo = sx when o = (i i+1), i < m.

If o <m—1, then om = m and sy, = sx follows from (X3) and the
induction hypothesis. Let 1 =m — 1. Let

B = [‘Yl’ e "Xm—‘z]’ 4= Xm—l’ C= ‘Xm’
sothat B=X,--- X, _o. By (Z") we have

m—
*X T OBiieiBm_2;4;C
Zyn—-Q b;.\a
= . Ere + 5 + s
j=1 7b;

m=3 b, . ac

. J+1 [4
ZJ__I B’ BJ+1 + SB}A + SBA;C
m-—3 ij+1 ac

[
S -8 .
b1, oibm_2;a 01, s bim—g,asc?

-2,

=1 Tbi e bjibigy

SX T OBy Bm-2:C; A

m—2 bg\ ca ba

= Ej:l S5 + s, + s,

a
Zj:l 339;314_1 + Spo + SBcia

8 - s — 8
j=1 b1, by by, bm—z;e by, bm—g,ca "
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Hence we need to show that
c c
S]B;A + SBA;C - 8b11 ""bm—Z;a - Sbly ~-~,bm—-2,a;c
a a .
= Spc t SBOA T Sby, .. bmenic — Sby, . bm_z,cia’
this follows from:
+ c
31, bm—2,0;¢ Sb1, e bm—2;0
¢ I [l
- savb]y"'lbﬂl—z;c + Sa§bly--~‘bm—2 by (Pl)’ (Pl )
_ a Jbe ab "
= Sayby, . bpon,c + by, bmegic +sg — Sasbe ~ Se + Sab;c by (Zl
— . Ry c a "
= Sby,.nbp_a,c;a + 35, vy bm—2;C T SABC t SAB ~ SABC ~ SBC by (Zl
a c a
Sbyy b2, ca + Shy, e bm—a;c + SBA,C + SB,A T SBC,A T SB,C
This proves (P3').

We now turn to (Z3). First we prove

-1yl ¢ ayd -1y
+1 i 1-+1
St ., = s Sy - E S
- XiY Y Zi:O XY Yit1 + Eizz Yi i=1 BY Y
1 1" i
, -1 =yl -1y,
1\ i+l ) il
(8 1)‘5.7: Zi:l SYi';YH.l + i=1 Sz’;y'i,y,'+1

for all X,Y],...,Y, € T}. This is trivial if £ = 1 and reduces to (z]) it
¢ =2. For £ > 2 we proceed by induction on {. Let B = [Yl,...,Yg_l:\, 50
that b;' = Y;p1 " Yoy and bl(\ = Y1 Y Yigl " Yoo y:-' = b;-/yg, and
v =y, forall i < 0. With A=X, B=Y,---Y,_,and C =Y, (Z)
yields

- zb T b
SX,Yiv, = SX3B T OXBY, Sy T Sabye ~ By, — 5+ by,

" A 1
_ (24_2 sbi_H N Ee—l sd’i B Ee—z Sbi+1
i=0 “XY!Yit =g Y i=1 &Y Vit
-2 b =2 b Ye
— (f—2sb — 5 i 5 i+l )
( )5 Zi:l Y/Yip + Zz'=1 T Y Yit1

zb z by
T OSXBY Ty T Swbiu T SBY T S% T Saby,

by the induction hypothesis
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-2y (-1 Ly -2 gyl
N SR IS Sl D D
i=0 1\Y ‘it 1 =2 =1 &Y, Vit
-2 -2 yl+1

Ly
_ )9\ z+1
(6 "‘)S.z: Ei:l Y’ Yig + Zz:l z,y,,yi+1

: gy g

tosxyl_sYe TS T Seyl e T Y[’ Ve T T ny e
1 / 2
SR ar U Zc S S
i=0 SXY/ Vi =9 ¥ =1 TYH il
—1 zy! —1 gl

- (=1)s¥ — PR s

( ) x Z:z':l Y Yig1 Ei:l LY Yit1

and (Z7) holds for £.

We now prove (Z3). With n =1 and X| = X, (Z3) reads sy = sy ;
this follows from (Z') since pX = pX.

For n > 1 we proceed by induction on n. Let X = [Xkl’ e ’kak 1,

so that Xp = Xpp-- Xy, and X = EITHE 'akak] (with xp; = pX;).
The left hand side of (Z3) is

LHS(n) = X,

= 8 - . . - . . - . . -
N ""’\17”1 HORD. SRS ST

the right hand side is

n 20

— g e B k
RHS(H) - bxl§~'~§xrz éAl?---?l\n + Zk;l SXk

= S+ - . v ,
‘\11""\11711y'--x‘\1t1"'/\nn1”
- S . . g .
11 Timys i dnl " Tnma
A
] z
+ s .
Z/c:l ‘\kly‘“v/\kmk

We use (Z'"), then separate the terms which contain n:

A(xk)/'\

Zml—l (:cl)H_l o Z ka 1 (:ck) _sz
j=1 ()\1) iX1,541 k=2 k_l(«\k) $ Xk i1

my—1 (II)J.H ‘”1

_Z'

j=1

mk 1 (:ck)J_H:Lk
REITRE Z15:%1,j+1 Zk‘ 9 Z S2y1, T Tk 41
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mk xk (=)}

Zk 1 Z 2
Zml 1S(II)J+1 1 Z ka -1 (zk)]+1 /k,
i=1 (X)X 54 k=2 X, _ (XRS5 Xk i

mp—1 (zl)fjl+1 ‘clll Z Z mk 1 ‘rk)l],—{-l Ilk,
Zj:l 2115 L1521, 541 k=2 Sz11,. 9 TkFi Tk, 41
A

Mp z’n-—l (zn)}

J
+ 2]21 Sznj

+ Mmp—1 (In)ljl.',l mp—1 (rn)ljl_i_l
2z Sx’n_l(xn)g;x o T Ljog SELEagidn
~1 (@)}
= LHS(n—1"" + £ sarst " (1)
mp—1 (In)]'_H mp—1 (In)H_l
+ Zj:o X, (Xn) X b Zj:o $217, e i 2, b1 1 2) (3)
n o zf n—1 af z!
— k k41 _ W1
RHS(n) = ZIc=1 X + Elc—l Sx;cixk+l Ek 1 S“’ 9Tk Tkl
n PITA n—-1 n-1 &z
_ [ (. k1 .
Ekzl "X E’“—l Xka/\k+1 + Ek:l SELy e TR Thp 1
n my, (Ik)j) A n ( myp—1 (“’k)'f+1 )I;c\
Spr: $
+ Zk=1(2j:1 Tkj + Zkzi Zj:l (X8)5 Xk g

mk -1 (Ik)J_H 12
- Zk 1 Z SBR1y s Thj3 T 41

n—2 1'
k+1
= sy
Elc 1 xk + ZL 1 XX
n—-1 z n—2 z!
_ Z _\k _ Z s !c,+1
k=1 <k k=1 AkJXk-}-l
n—1 my {zp)? 1‘2\ n—1 mp—1 (:Ek)"+l ;z:,{,‘
+ S (s ) + DL (T i)
2pmt 2121 ki Ly ijl (X)X jr1
mk"l (1)) 41 g
- Zk 1 Z STp1, e Thy3 Tk 1

! !

z
s n—1 + s ; - 3 a—-1 s ;
+ Xn Xln lyX Xn 1\ n—1 1)\ n
)A't;_l mp—1 (zn) i+1Tn—1
+ + . 41 -
Z xn] ijl ()(n)],/‘\ n,j+1

" ot
mp~1 (In)j_{.] L1
Z]:]. ’s-l'nlxnwrnj;fn,j—i-l
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= RHS(n-1)""
" 2z

+ son=l + Sy
Xn Xn__]§xn

mp (En)P Tl
+ Zj:l S’E”j ! + z

mp—1 (rn)’]"+1 xln_1

- Zj:l erllx--~axnj§ln,j+1 :

- Sx,
YL '
mp—1 (’L")]‘—H‘En—]

j=1

GRILLET

- Sk'fl_l;l\',l (A),(B),(C),(D)

8(‘\'71)_,}‘;4\711,]'-}-1 (1)’(E)

(F)

Since LHS(n—1) = RHS(n—1) by the induction hypothesis, it remains to

show that

(2)-(3) =

(A)+(B) - (C)— (D) +(E) - (F).

By (2'), X, = Sz, = Sx, hence (A) =(C). By (Z+(),

Syt . - Sy N
Xn—l Xn X :,_1 WX
= Sv/ v -
Xn_ly)‘nl'“/\nmn
. M
my—1 (Ln)j+1

= . S - -
Zj:() X;l_.l()‘n)}?l\n,j-i-l

mp—1

— ijl s

(.Crl)g',+1

Z mp—1 -U,n_] (1'71)’]!+1
- S
j=1

(XTI)I]‘; Xn,j+1

Y
my—1 (.Ln)j_H
Srllv'-wxnj?rn,j—kl

- X
+ Zmn—l (zn)9’+1

j=0

t

. 5 !
j=1 1,1_17(111)12311,j+1

Z:mn-—l -’L‘;l_l (zn)9!+1
i=1
mp—~1 (In)’]!+1

: s n
j=0 X[ (Xn)fiXn i

_8111_1 ,(I,,_)’j; Tn,j+1

+ 2

Sxq1, &g Tnj+1

STI1, o Tnji Tn, 41

(111)3,_1.1

+ Ejjzl

B S-Ella caln—1my, s [xnl ] [#Enm"]

Mp Iin_.l(-rn)?

- Zj::z S

- (m,—1) sz,”
n—1

mp—1 (z71)9!+1
j=1 T (@)

My .L""_I(J:n);\

- Zj=2 82,

Fi
+ (m, —1)s 7
n—1
H‘ln"‘l ’(.‘Cn)g_f_]
Sy HC U
n—-1\" g n,j+1

- X

! 1
mp—1 -1 (I")j+1

j=1

- S, -
Zj———l (1\n)9§)ﬁn,j+1

I "
map—-1 2, (;vn)H_1
STni, e TnyiTa i1

Thus (B) — (D) = (2) — (E) — (3) + (F); therefore (2) — (3) = (A) +(B) —
(C)—(D)+ (E)—(F) and (Z3) is proved. m
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5. It follows from Lemmas 2.1 and 2.2 that Z3(S, A) is isomorphic to
the group Z;(S, A) of all s € C|(S,.A) which satisfy (P]), (P'), (Z}), and
(Z;’); the proof of 2.2 shows that these properties imply (Z7).

LEMMA 2.3. Every s € Z,(S,A) satisfies
£-1 y:-’_*_l 14 zyh -1y
Sy = I Syt — g !
() Xy = Ligg Xiviar T Licy * 2 Y5 Vit
1

-1 zy! -1y
— (f—-1 Sy _ 3 +1 s i+1
( ) sz Zi:l Y941 + Ei—l Y] Vit

PROOF. Property (Z7*) is the particular case of (Z]) where Y; = [y;]
forall . m

This permits further trimming. Since s;., . = s, ;. 5, (Z1*) shows that

each s € Z| is uniquely determined by its values s, with z € S and SX.y
with X € T}, y € S. Let

C‘z(sv A) = (HzeS 'A.c) x (HXET],yES ‘A(pX)y)

be the abelian group of all families

¢ = ((Cx):cES)’ (CX;y)XETl,yES)
such that ¢, € A, and Cx,y € A(pX)y for all z,y € S, X € T|. Let I'y :
Z(S, A) — Cy(S, A) be the trimming homomorphism defined by (T'ys), =
Sp, (F25)X;y =sy.y for all 2,y € S, X € T}. Lemma 2.3 implies that Ty
is injective.
LEMMA 2.4. Let s € Cy(S,A). Then s € ImT'y if and only if it has

properties

, ,
(Zl) Sy = Sg+3;

/ - R / Ty __ _ o2 z
(PZ) 2]y z Szy;z Sy 2z + 57 = S[z]Y;I Sryie Yz + Sry
1" —
(Py) SX0y = SX5y

wez wTy z w yz
(Z ) Swe,y; 2 + Sey,z;w + Sw,z;yz + Sy ts 7+ Sz,y;w + Sy + S
2 z : 5
— LYz wyz z w wz
= Sy,z;wz + Sw,zy; 2 + Seyzw tsy tST Sw,z;y + Se,y; 2 + Syz

for all w,z,y,z € §, X,Y € T}, and suitable o.
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PROOF. First we show that every long 3-cocycle s € Z3 has properties
/
(Zy) and (Py).

Let w,z,y,z € 5. With 4 = =[w], B=[ay], C=[z], (Z ") reads

(with sides exchanged)

z wry _ — w Yz _ g
(1) Sw,ey;z + Swizy t+ s, Sway;z = Swiay,z + Seyz + sy w; LY,z

With A= [w], B=[z], C=[y,z2], (Z/ll) reads

ryr _ yz
(2) Swieye T ‘Sz sy T8 T Sweyr = Sway,z tsuwet 3 Swe;yz
With 4 =[w,2], B=[y]. C=1[z], Z” reads
. wr o, Yz _ way _
(3) Sw,riy,z + Syiz + 8y Swryyz = Swry; :t Sy Y +s; Swey: 2

Adding these equalitics yields

z wry _
Sw,z,y; = + Swiz,y + s, Sw,ey; 2

ryz _
+Swly~+sx yz+3w Sw;z,yz

we yr _
t S, Swaiy,z + Sy T Sue ~ Sway,:

— . Ty
- "w;x,y,z+ .vy,~+‘5 §

W w; LY,z
yz wr
+ Sw,riy.z + Sw; z + Syz T Swayz
JWEY .
+Sw£y~+8w1y+az Swayiz

cancelling the underlined terms, and applying (Zi) to s, and Syzs yields

2 G _ wrz wry yl, e
Swyzy ~ Sw Y 2 + sy sys  Sweyz + Sy ts; + S Swzyy,z

W _ XYz WYz wr _
Sz z Sw;.vy,z +°w +‘5z +‘Sy; 3

WYz + ‘Sw,.v;y ~ Swa,y;z
since Sy.p =sp.4, this yields (Z5).

Now let 2,2 € S, YV € T}. With m =3, X| = [z], Xy =7, and
Ay = (2], (Z") reads

_Lyz rz zy z z
Sp ¥z T Sz +8y +s; +Sz;Y+S[z]Y;: Seiy T Seyz

Ty | .z _
s +°Y;17+'S[z]Y;z Sy yizo
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z

. vz, 2z _ . o
since 83" + 8% = s, and Spy =S¥,z Exchanging = and z yields

yz z —
Suvie = Sz +SY;Z+S[z]Y;z Sryee

Since 54 ¥iz = S5Y g0 WE obtain

;
z z s = Y% 4 57
‘szy + Y.z + S[ely;z ~ Sz T Sg + 3Y;z + Sz T Sryie
and (P)).

Thus every long 3-cocycle s € Z® has properties (Z9), (Pé), (2})
(which was proved before), and (Py) (which follows from (P{') and ulti-
mately from (P3")). Hence every ¢t = I';s € Z; has these properties, and
so does every 'yt with ¢ € Z.

Conversely let ¢ € Cq(S,A) have properties (PQ'), (PQ"), (Zi), and
(Z,). Define s, = ¢, forall z € S and

-1y T 1yl
+1 7 i1

Sy, =4 Cv s Cy- — C
XY Ei:() XY|i g1 + Ez’:Q 4 Zi:l T Vit

-1 :cy;'_f_l

1 g
_ - y o 1+1
(t—1)c; Ei:l V)i vit1 + Z:i:l Cy;,yiﬂ;‘r

for all X,V = [yl,...,yg] € Ty (where Y(i = [yl,...,yi]). This is accord-
ing to (Z}*), except for the last term. If (=1, then sy, = cy,,; therefore
s has properties (Py), (Pé'), (Z}), and (Zy), and will satisfy T9s = c.

By (Zi), we also have

z i
Spiye T oyt vz T Oy

Iy _ S
;Y2 .t z Cx,y;z Cr c

ERTI

fl

Yz xz Ty Yz _ xz XY
(54 +cy +c; cy ¢y c, +cyyz;x

= C, ..
¥z

for all x,y,z € §. In particular,

for all z,y,z € S. The definition of s then shows that it has property (Z7™).
Since c satisfies (Py) we have sxo.y = sy,y foral X,Y,0; (P follows

from this property and (P]). It remains to prove that s satisfies (P]) and
(21).
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’e begin with (Z'l'). Let A,B = [bl,...,bﬂ],C = [cl,..., m] etdy.
By (Z7"), the left hand side and right hand side of (Z]) ate:

LHS = sypc+sbhe+ s = Sae

=1 o m—1 ¢
_ i+1° ]+1 1) (2
- Z:i:() 431” i+1 + Z_7':0 4B(J“vcj+l ( )’( )
14 ab ¢ abef m  abc?
+ Z -9 qb + Seq ! + ijz SC]' / (3),(3),(4)
-1 o c” m~1 ¢
i+1¢ _ €i+1
= Dicy Sabibiyy T Sabiey T 2o ol e (5),(b), (c)
— (=15t — b (m—1)sbe (6),(7),(d)
-1 ab" m—1 abe'!
— l+l — J+1
Zi:l B|z: i+1 Z] =0 BC[]’ 541 (8)7(9)
=1 b e m—1 ¢
1€ 1 it
™ Z:i—_—l 6a bibitr + Sa;beq + Zj:l ba;bn}ycj_,_l (10)7(3)-(11)

m—1 ac 1+1 m abc? m—1 ac']-'_i_1 .
+ Z_j:() *BCyjiciq + Zj:z Sej T Zj:l Sb,c";c_j_{_l (9), (), (k)
) . ae m~—1 abé‘]+1 m—1 acH_l )
- (m=—1)sf¢ ~ Zj:l SCiert + Ej::l l)c o1 (0),(11), (m)
b
+ Sac — Saibe (7)7(11)

_ .C ab
RHS = SAB.C + SA:B +s. — Sabie

SRS D SIS LIS S w SN RTINS
— (m—-1)s% - Zj’: acblj%'jjﬂ + Z;Zl SZ%TCI;.,CM (@), (11), (r)
TS0 S AR NI KD vary N CONCINE
— (L=1)ske - Z:: (,;b{i%llil + Zf: siil‘g,:bm (6),(8),(10)
+ sgb — Sabic- (s),(t)

As indicated, 13 terms of LHS cancel with each other or with 9 terms of
RHS, leaving the equality
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(@) = (b) = (¢) = (d) +(g) + (h) + (j) — (k) = (1) + (m) — (n)
= =(p) — (@) +(r) +(s) - (t);
equivalently,
(a) + (g) + () + (3) + (m) + (p) + (a) + (t)
= (b)+(c) +(d) + (k) + (1) + (n) +(r) +(s) .

With w=a, z =, y—c yand z =cjy 1, (Zy) reads

, + Saij+1
a,b;chj+1 C'J_

. . S
sab,c;.,c]'_H + Sbc;-,c]'_{_] | a +

abel. cs e
J j+1 a 7+

Se S 8 S

+ CJ+1 + b‘c9;a + C;-,Cj.{_l;b ad
belc;

_ 3Cj+1
= Sc'.,0j+1;ab + Sa,bcg;0j+1 + Sb,c'jc]'.H;a a
ac C]+1 ]+1

ab
+b abc

+ Sy .
],C]+1 C]rC]‘,.H

’+bc

= 1 and adding f =1t
Since ¢\ il = cH_l, applying o, ]+1’C(j,+l adding from j o

j=m—1 yields
m—1 m—1 ! m-2 !
Tit Sabdiepn T ot Sieia T Djet Sape,, (PH(W(A)

j=1 ab,cj;c]-+1 j=1 bc.,c]-+1,a j=1 a,b,cj
abc!! m—1 abc'»’ m—1 abc’-\_‘_1 .
+ Sape T S bt Z ¢ T+ Zj:l 30j+11 (t),(a),(B),(J)
,, me1 ! m—1 ac"
g7 Jj+1
+ sbcl, + EJ -9 bc ‘a + Zj:l SC;:C]#—]%[) (g),(C),(m)
+ (m—1)s5 (a)
m—1 J’+] m—1 c’jl+l Zm—? c']’_H ( ) ( ) (C)
Z S ,Cj+1;ab+zj:1 Sa,bc};cH] + j=1 bc]_H, rjie),
+ Spea + (M=1)sk + (m—1)sf° + sabq (n),(d),(¢),(b)
m—1 ¢ m—1 ac'
J J+1
+ Z]:? Sa,b;c' + Z bC C]+1 (A)’(k)
m-2 abc'!
+ 2. / 7+ + Sab- (B),(s)
=1 i
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. . _ . ) ellations
Since Spiy: = Syzz We obtain, after cancellations,

(a) +(g) + (h) + (§) + (m) + (p) + (a) + (t)
= (b) +(c) + (d) + (k) + () + (n) + (1) + (s)
and (Z{) is proved.
Next we prove
SAh = ShiA
for all A = [al,...,a[] e T}, b€ S. This follows from (Zi) if (=1
and was shown above if { = 2. For £ > 2, we proceed by induction on

(. Let C = A[t] = [ay,...,a,t]. We use (Z7*) and separate the terms

containing t:

£ et £4+1 be ( ol
. — s i+1 st . S,l+1
b,C Z2::0 [b]Cli;c,-_H + Zl:‘z Bt 22:1 O,C;;Ci+l
I4 be!! £ !
— s — i+1 ; g 111
T Ly SCen T 2ig “bich i
=1 a1 £ ba™ -1 a'l .t
i=0 [b]A)i;aH-l i=2 ! i=1 by“,‘§ui+]
(=1 ball, ¢t =1 af |t

- (=it - ¥

i=1 bA|i§az+1 + =1 Sb;ai.,a,'_l_l
+ s + Sba . _oeat b
STp)Ast t Shayt — Sb Sar T Spay
= St + s + Sb“ _ . at b
bA STblA; e t Sb,a;t Sp — Sa + Sprayg
e . b ba . t t
= Shl4;r T Shat T SAn + o8+ Sta;bh + SAp S(bl
N . . , . ol
by the induction hypothesis and (Py)
= 5|:15]A;b = S
by (Pé) (with 2 =0, Y = A, z=1) and (Pél).
We can now prove (P{) i8p.g = s4p forall A/B = [bl,...,bm] €
T, by induction on m. Assume sp.4 = s,.p5 and let C = B[t] =

[by,.... b, t]. We use (Z}*) and separate the terms containing t:

" A 1"
L m-1 ac; mo Cig

sac = i SACueirs T iy Sl T X,

/.
1==1 a,Ci,Cj_(_l
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I "
¢ mo 04 mo G
— ms, — s s
a Ei:] Clis it + Ez’:l ajchCit1
m-1 b .t m  abM m—1 o ¢
— i+1 H - i+1
- Ei:() SABiibis + Zi:? ®b; Zz‘:l Sa,blibit
H 1"
bt m—1 abi_‘_lt m—1 bi+1t
— (m—1 _
( Vs = Lisy SBiibisy T List St
ab bt a
+ SAB;t + 8y = Sab;t — Sa T SBi + Sa;bt
_ .t ab bt a
= SAB + SAB;t + s = Sabit — Sa T SBi + Sabit-
Also,
SCiA = SB[ 4 = S[)ma SINCC Syoy =Syy

t ba a th "
st,BA T SBA T S — Sgba — S4B — Sa t Syhe bY(ZY)

bt
Sa

t ab a
S4B * SAB; T St T Sapt — = Spy T Saby

)

by the induction hypothesis and the case m = 1. This proves (P{) |

6. It follows from Lemmas 2.3 and 2.4 that Z3(S,.A) is isomorphic to
the group Z,(S, A) of all s € Cy(S,A) with properties (Pé), (P, (2),
and (Z,).

Property (Pj) implies that Zy(S,.A) can be trimmed further. For this
we use an arbitrary total order relation < on S (which need not be com-
patible with the multiplication). Let R be the set of all restricted sequences
r = (x],2q9,...,2p y) of elements of S such that { > 2 and y < zy,...,7
whenever ¢ > 3 (there is no restriction if ¢ = 2). (One could require
Ty 2Ty = 2Ty 2 Y but this would complicate the notation and
the proofs.) As before, pr =z, -+~ z,y. Let

CS(Sv A) = (HJ:ES A.L) X (HrGR ‘Apr) .

The elements of C3(S,A) are families ¢ consisting of a family ¢, € A,
err gy € A_ty (£>2,(zy,...,24,y) ER).
The trimming homomorphism I'y : Zo(S, A) — C3(S,.A) is defined for each
s € Zy by: (Tgs), =s, forall € S, and (Tgs), | 20y =5z . zpy fOF
all (zq,...,2p, y) € R.

(z € S)andafamily cx., =c

LEMMA 2.5. T'y is injective.
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PRrROOF. Assume ['qs =0, where s € Zy. Then s, =0 forall z € S and

we want to show that s, iy = 0 for all zy,...,2, y € 5. This follows

1o @

from (Z])if (=1 andfrom T'ys = 0if (=2, 0rif (23 and y Say,... 2.
For ¢ > 3 we proceed by induction on €. Let z; = min(xy,..., ),
X = [ml,...,xi,.,.,wd, and T = [xl,...,:zfi_l, .’L’H_l,...,IC]. Ify<a,
then y < xy,...,2p and Sap, ey = 0. If y > z;, then Sy Tie; =
Sy 21 e i, Bipr iy = O A0

1
Xy = S[ry Y ()

— . _ Y Ay i ozt /
= S[ITey T Sudie T ST T TSy T Ty Tt by (B)

=0
by the induction hypothesis. ®

7. The last link in the chain from long 3-cocycles to symmetric 3-cocycles

is the following homomorphism.

LEMMA 2.6. A homomorphism A : Zo(S, A) — SZ3(S, A) is defined
by:

(A) (As)x,y,z = Spyz " Siyet syt — st

More generally, if s € Cy(S, A) has properties (Pé') and (Zy), then As €
SZ3(5, A).

Recall that symmetric 3-cocycles are characterized by

(53) toye = “toyer toyetlyottp, =0,
/ w z
(A3) tr,y,: - tuw,y,z + tw,;uy,z - tw,lwyz + tu/yyxVy = 0.

PROOF. Let s satisfy (Py) and (Z,) (for instance, let s € Z,) and

t = As. It is clear from (A) that toye ="ty . Also

t +1

LY,z

it =

_ yz _ Gy
. S . . -
yu,x Tty vy z " Saye TS TS
Tz yz
e — S S - S
yze " Sezy T8y TS

zy zz
-8
y

+ s
T Seay T Syae T
= 0.
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Thus ¢ satisfies (53). Finally,

toye ~ tws g, T tway: = tuey: ooy

T (1),(2),(x), (=)
= Suagiz T Szyue —sw® F57Y 0 (3),(4),(wx),(2)
+ Sy T Saygw TSw 85 (5),(6),(w),(z)
= Swaiye T Sysae ~Sw Sy (7),(8),(w), (yz)
+ Suay T St =Sy (9),(10),(w),(y)

= Suggiz T Sayze " Sway:— Sy (3):(6),(7),(y)
= Y =Sy ~ Spne S (z),(10),(2), (wx)
t Sy swe T Sways Torynw TS (4):(8),(8),(w)
LR L IPRVE P i (x),(9),(1), (vz)

=0

by (Py) and (Z,), and (A3) holds. u

With ¢ = As, property (P'2) can be restated as:
(Py) Slyi: — SLvie T frye TV T SV

LEMMA 2.7. Let ¢ € C4(S, A). Then ¢ € ImT'y if and only if ¢ satisfies
(Py) and (Zy).

PROOF. These conditions are necessary by Lemma 2.4. Conversely let
¢ € Cy have properties (P)) and (Z,). By Lemma 2.6, t = Ac € 523
(t satisfies (53) and (A43)). Let A = [ay,...,q,] € T). If £ > 3, let
m =min(a,...,ap) and A= [m]D (actually, A = [m]D for some o).

Define s, = c,, Sy = ¥+ c;, Spyiz = Cpy: s and S 4, by induction on ¢:
CA;I) if b S m,
Sa T m b . .
Bl D;m + tm,d,b + SDb T SDym ifb2>m;

There is no ambiguity if b = m, since t,, 4,, = g, m — tmd = 0 by

(53), (A3). We see that s satisfies (Z}), inherits (P}) and (Z,) from c,
and will satisfy I'ys = c. It remains to prove that s satisfies (Pj).
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First we show that every symmetric 3-cocycle satisfies

Y- z y
(T) t:v,zw,y + ty,.vw,z + t:,yw,x - L“L',u),y + ty,w,z + tz,w,.v

for all x,y,z,w € §. By (A3),

tf,w,y - t:vz,w,y + ta:,zw,y - tz‘,z,wy + ﬂz]‘,z,w =0
= ti’,w,y - t:cz,w,y + tz,xw,y - t:,.c,wy + tg,a),w’
so that
t;v,zw,y - tz,z,wy - tz,a:w,y + tz,.r,wy
= t;zz,w,y + tg,x,w - tg,z,w - tf,w,y .
By (53), —trwy = tyawz “tawy = tywss and
tzx:c,wy - tr,z,wy = _twy,x,z - t.’r,z,u:y = tz,wy,r ’
tz,.c,w - t:c,z,w = _tw,a:,z - t.r,,z,w = t:,w,.L !

this yields (7).
Let z,z€ S and ¥V = [yl,...,yk] € T. We prove

/ .
(Py) Selyiz T S[vie T tr,y,z + Sﬁ)L’;z - Sf’;x‘
by induction on k. If k =1, then (Pj) reads

T z
8w — 8. . = 1 8, — 8.3
z,y;2 LY x Yz, + ¥z yz

this follows from the definitions of s and t. Now let £ > 2, m = minY =
min (yy,...,y), and ¥ = [m]W. We consider several cases, based on the
possible order arrangements of m, y, and z.

Case 1:  <m < z. Then min([2]Y) =2 <z, min([2]Y)=m >z,

— T z
s[.v]Y;z - c[z])’;x + t.L‘,y,z + Sy T Sy

SLyiz = []viee and
SLIvi: T SElvse = lege TV T S
Case 2: z < m < ¢ follows from Case 1 by exchanging z and z.
Case 3: # <z <m. Then min([2]Y) =2 < z, min([z]Y)=2>z,
and
S[I]Y;Z = Lye + tz,y,z + 3%’;z - Si’;r’
Y = CLlvie

as in Case 1.
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Case 4: z < & < m follows from Case 3 by exchanging = and 2.
Case 5: m < z,z. Then
min([z]Y)=m <z, [2]V =[m][z]W,
min([z]Y)=m <z, []Y =[m][z]W,
min([z ]JW)>m, min([z]W)>m,

and
— m T
Yie = C[eIW;m t tmwe T SWie ~ SWimo
- m z
Yz T C[dw;m + tm,w,z + Wi,z — SWim>
—_ m _ z
S[f]Y§Z - C[Z][‘C]WH" + tm,xw,z + S[I]W;Z S[w]W;m’
_ m Wz
S[Z]Y§I - C[f][Z]W;m + tm,zw,:c + S[z]W;z S[z]VV;m’
Siw;m = w;me S[Z]W;m = Ldw;mo
so that
S[e]y;e — Svie T tm,:cw,z - tm,zw,a:

m m z z
+ S[z]W;z - S[z]W;x - S[r]W;m + S[z]W;m
=1

mrw,z tm,z w,r

m am _ zm .z T
+ ta:,w,z + SWz SWiz C[z]W;m + C[z]W;m

— m
- tm,xw,z + tr,zw,m 2,w,&

mx mz z T
+ SWir T Swie T c[r]W;m + c[z]W;m
by the induction hypothesis and (53), whereas

z z _ z z mx
tr,y,z + Sy T Syp = tr,mw,z + C[z]pv;m + tm,w,z + SW, 2

z z mz

- C[z]W';m - tm,w,x T Wiz
_ x oz
- tz,mw,z' + C[z]W;m C[w]W;m

mx mz

+ tfn,w,z + tj:,w,m + Swi: T SWiz
by (53); then (Py) follows from (7). ®

8. By Lemmas 2.5 and 2.7, Z3(S, A) is isomorphic to the group Z3(S, A)
of all families s € C3(S5,.A) with properties (Z;) and (Pé').
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The next trimming reduces Z3(S, A) to its direct summand Z&(S, A)
whose elements are all s € Zg such that s, = 0 for all x € § (hence Sy = 0

for all 2,y € S by (Z})) and S5, =0 when X has length 3 or more (and
y <minX). In Z}, (Py) reduces to

(Py) Sywiz T Szyz
for all x,y,z € S, and (Z;) reduces to

oSyt S +s

Swa,y; 2 ey, w T Swayz

w
Bl .
7y uy+ yYZY"Ll

(Zy4)

= Syz; w.L+Swzy ~+b,z:yz w+5wz y+5ry,"'

Z4(S, A) is isomorphic to the group Z,(5, A) C Hr,y,zeS .Ary~ of all families

s = (sx,y;z)z,y,zeS such that s, .. € Ay, forall z,y,z€ S and (PL;/), {Zy)

hold.

zYz

Z, is not isomorphic to Zg; rather, we prove that the remaining ele-
ments of Z5 contribute nothing to the cohomology.

The trimming homomorphisms I';, Ty, I'y provide an isomorphism
r: Z3(5 A) — Z4(S, A) which affects coboundaries as follows Recall that
bc € Z3(5, A) is defined by

n PIA
_ k
(02) (6C)X1;...;,\'n - Czl,..,,;vn - CXln-Xn -+ Ek:l Xt

forall X{,...,X,, €T} and c€ Cc?. In particular,

(6C)z,y;z = Cry: T Cryez + Ci-,y + Cﬁy
(6C)X;y = Cry T CX{y] + Cg( + c; :
This describes the subgroup B3(S, A) = T'(B3(S,A)) of Z5(S, A).
LEMMA 2.8. Z3(S, A) = Z4(S, A) + By(5, A).

PROOF. Given s € Zg, define ¢y € A, forall X = [wl,...,xg] el
by induction on £ as follows:
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8 ifl=1,
_Jo if0=23,

—swan t Oy oy 024,
where m = min X and X = W[m]. We see that (6¢), = ¢, = s, for all
z € S and

(Be)xy = Coy ~ X[ TN TG = Xy

whenever X has length 3 or more and y <minX. Hence s —T'éc € Zj and
s=(s—Tbc)+T6c€ Zy+ B;.

Since T is an isomorphism, H% = Z3/B% = Z3/By = Z; /B, where
Bi(S,A) + Z4(S5,A)N By(S, A).

In other words, BQ(S, A) is the group of all s € Z&(S, A) such that s = I'éc
for some ¢ € C%(S,A). Then ¢, =s, =0 forall z €8, and s = Iéc

reduces to
(04) Spyiz = Cxyz T Cryz + Cey-

Bj(S, A) is isomorphic to the group B,(S,A) C Z4(S, A) of all families

s=( z,y,2€S5 such that Sz = Ceyz T + C;’y S ‘Azyz for some

S [
z,y;z) .Y,z

ce C¥S, A). We now have
LEMMA 2.9. H3(S,A) = Z,(S, A)/ B4(S, A). u

9. Recall that a symmetric 3-coboundary is a symmetric 3-cochain ¢
(necessarily a symmetric 3-cocycle) for which there exists u = (uz,y)z,yES
such that Ugy € Azy,

(52) Uy o
(B3) t = uy . -

Ily!z

= Uy, and

z

for all z,y,z € S. Under pointwise addition, symmetric 3-coboundaries form
an abelian group SB3(S, A).

The homomorphism A in Lemma 2.6 induces a homomorphism D :
Z,(8,A) — SZ3(S, A) given by:
(Ds)gy: = Soyiz = Siya

for all z,y,z € S. We show that D is surjective. For this we again use an
arbitrary total order < on §.
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LeMMA 2.10. A homomorphism E : SZ3(S, A) — Z4(S,A) is defined

by:
LI ife <y,z,
(Et)x,y;z = ty,z:,z ify<ua,z,
0 ifz<uz,y.

Moreover DE = 1; Im(1— ED) C By; D(B,) C $B?; and E(SB®) C B,.

PrROOF. The three cases in the definition of Et are consistent with

each other: if + < y,z and y < 2,2, then ¢ = y and Loyr = tyass if
r < y,z and 2z < x,y, then 2 = z and (93) implies toye = toys =
tyyr Tlyze tlogy =05 if y<w,z and z < z,y, then y = z and (53)
implies tyz:=0.

Let t € SZ% and s = Et. First we show that

I T T
452 nLHyx LY,

forall z,y,z€ S5. If £ <y,z, then

Seyiz T Sryr = loys bry,z -

If y<<=z,z, then

=t —t = —t . —t =

Spyz "8 5 o > = 1,
.Y 2 2yz Y,z Y.z Y.z,z 4Ty tl,y,z

by (S83). If finally z < z,y, then
=0t =t

S-’L':Z/;z - Szv.’/ z Tty Tl
by (53).

This implies s € Z,: indeed (P!l’) ]
and (Z,) holds since

holds by definition,

T
T,y 2 Y,z z

weyz Sy nwe + Szay;w T Swayz + Swriyz T Syzew
Z z w w
toyrw T Sway TSy T Saype
_ z w
- twl‘,y,z + tz,ry,w + tz,w,yz + ty,x,w + tz,y,w
— W _ _ 32 _
- tr,y,z - th,y,z tw,ry,z + tw,z,y: tw,r,y =0
3.
by (53) and (A3). Hence E sends SZ* into Z,. Then SayizSzyz = toys

shows that Ds =t, so that DF is the identity on 573,
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Next we show that u = s — EDs is given for each s € Z, by:

Syzrie ifz<uy,z,
Upyr = 3 Szzy ify<u,z,
S yiz ifz<z,y.
If 2 <y,z, then
(s — EDs)z,y;z = Sy (Ds)x,y,z = Seyz T Sz + Sz = Syzz

by (Py). If y < z,z, then

(s =EDs)y iz = Spyie = (D8)yus = Spyz =Syt Soay = Samy-

If z<a,y, then (EDs), ., =0 and (s = EDs), .. =s, ...
It follows that
Ysyiz = Yooy = Yyaz T Uygz T Yray T Yyt

for instance, u, vz = Uyg: holds by (Pé’l') if z<az,y;if 2 <y,z, then
Up gz = Sy 2o = Uy iz if y <ax,z, then Upyiz = Sy = Uyaize There-
fore a long 2-cochain ¢ is well defined by:

Coyz = “Ugyi: for all z,y,z € 9,

cx =0 whenever X does not have length 3.

Then (s — EDs), .. =
Im (1 - ED) C B,.

Coyz ~ Coy: T c;y for all z,y,2 € S. Thus

Next, let s € By, so that

S, = ¢, ., —C ct
L'Yy’z ‘Ly7z ‘L‘7y7z + xyy ’

for some ¢ € C2. Then

(Ds)yye = Sayiz = Sege = ~Cye+Caye = Coyp + oy
3
Thus D(B,) C SB°.
Finally let t € SB3, so that
— z r
ey = Yy T Upye ToUpyr T gy

where u is symmetric (ub,a =wu,p for all a,b). Let c, y = Ug, and
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xr 3E o
Uy o+ Uy oy ife<y,z,

y .
Cpys = Uy ot Uy ify<uz,z,

Up g T Uz oy if 2 <z,y.

These three cases are consistent with each other: if, say, * < y,z and y <
~ — z = Y ] —
x,z, then z = y and Uy o Up e = Up L Uy g We see that Cryyz =
Cyzy = Sy, OO If 2 <vy,z, then
_ . T 4 —_ _ -4
(Et)pyz = tpye = Uy = Upys TUpye —Upy = Cpyp = Cpyp~Coy-
If y<az,z, then

CZ

— = ¥ = -~ = — —
(Et);c,y;z = ty,x,z = Up s T Uy + Upawz "YUy = Coyz T Coyz z,y
If y<<z,z, then
— — Z _ _ 7 — — —cF
(Bt)yy: = 0 0= gy =ty Ty =gy = Cpyr = Cpy = Gy
- z o 3
Thus (Et), .. =¢py . —Cpy.—Cpy forall @y, 2. Hence E(SB”)C By. &

By Lemma 2.10, D : Z;, — 573 satisfies D(By) C 5B* and induces a
homomorphism D* : HY —» SZ3/ $B3. Since DE = 1, D is surjective and
so is D*. Moreover, Ds € SB® imphes EDs € By and s = (s — EDs) +

EDs € By; therefore D* is injective and we have proved

THEOREM 2.11. For every commutative semigroup S and abelian group

valued functor A on #(S),
H3(S,A) = SZ%S, A)/ SB3(S,A). u

10. Normalization can be used to sharpen Theorem 2.11. A symmetric
3-cochain ¢ is normalized when

_ 2 _ -
Copy = 0 whenever e“=¢€, ez =x.

By (53), this condition implies

— 2 o -
Cpey = 0 whenever e“ =€, ex =z, ey = y,

Crye =0 whenever ¢ = ¢, ey = y.
Normalized symmetric 3-cochains, cocycles and coboundaries form groups
NSC3(S,A) C SC3(S,A), NSZ3(S,A) = 523(S, 4) N NSC3(S, A), and
NSB3(S, A) = SB3(S,A)n NSC3(S, A). We note:
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LEMMA 2.12. If A is thin, then NSB3(S, A) = §(NSC2(S, A)).

PROOF. Let A be thin. If €2 = ¢ and ex = z, then exy = zy,
d

— e _
zye T Yay,lr Yoy T Ugy» B0
- ¢ —yY — e
(6u)e,r,y - uz,y uez,y + ue,avy ue,z - ue,zy ue,;v :
In particular, if u is normalized, then éu is normalized.

Conversely assume that ¢ = éu is normalized. Let w € CI(S, A) satisfy

_ 2 _ : . €
We = Ug e whenever e“ = e. Since Qo = Q1 We have (6w)eie = wé —

we-i—wg:we:ue’e forall e2 =e. Let v = u — 6w € SC2. Then év = ¢

2 . . . y
and Ve e = 0 for all ¢ = e. Since t is normalized we have Vo gy ~ Veg =
2 : [ |
(6v)e1x‘y = 0 whenever ¢ = ¢, ez = z. In particular Ve ey = Voo = 0, so

2. e, ex =, and t = v with v normalized. m

that Ve g = 0 whenever e
PROPOSITION 2.13. If A is thin, then
H3(S,A) = N52%(5,A)/ NSB3(S, A).

PROOF. We show that SZ% = NSZ3+SB3; then H® = N§23/ NSB®
follows from H3 = $23/SB% and NSZ3nSB3 = NSB3.

Let t € SZ3. Define

Up g = Uy =lpop ife2=e,ez:x,
uxyzo if neither % = z, my:ynory2=y, yr = .
fe=ux,thent,, . =1t,,.,50that u is well defined. We see that u € sc?

and that Upp=1tp oo =0 whenever €2 = e, by (S3). Let s=t—dbu € SZ3.

When €2 =e, ez =z, then o, . = a, {,

—_ € _ Y —
(6u)e,e,z - ue,z uee,z+ue,ex ue,e = Uy =1

and s, . , = 0; hence (A43) yields

=0

€ Yy
3 = 8 - $ S — S8 ]
EYJ“?y elrly ee!zYy + e!ez)y eYe)Iy + e!e)w

for all y € S. Thus s is normalized, and t = s+ u € NSZ3 + SB3 . &
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