## Communications in Algebra

# Cocycles in commutative semigroup cohomology 

## Pierre Antoine Grillet

To cite this article: Pierre Antoine Grillet (1997) Cocycles in commutative semigroup cohomology, Communications in Algebra, 25:11, 3427-3462, DOI: 10.1080/00927879708826061

To link to this article: https://doi.org/10.1080/00927879708826061


Published online: 27 Jun 2007.


Submit your article to this journal


Article views: 46


View related articles


Citing articles: 3 View citing articles

# COCYCLES IN COMMUTATIVE SEMIGROUP COHOMOLOGY 

Pierre Antoine Grillet
Tulane University, New Orleans LA 70118, U.S.A.


#### Abstract

An alternate description of triple cohomology for commutative semigroups is given in dimensions 1,2 , and 3 .


## Introduction.

1. Commutative semigroup cohomology refers to triple cohomology in the variety of commutative semigroups (Beck [2]; see also [1]). In [4] we gave a concrete description of this cohomology and showed that it coincides with the cohomology in [3] in dimension 2; the second cohomology group $H^{2}(S, \mathcal{A})$ thus classifies commutative group coextensions of $S$ by $\mathcal{A}$.

The description of commutative cohomology in [4] is derived from its definition by triples and does not lend itself to the computation of examples. Cochains in dimensions $n \geq 2$ are indexed by an unbounded number of elements of $S$; this makes the computation of cohomology groups an infinite task, even for a finite semigroup.

In dimension 2 one can use the equivalent computable description in [3], in which cochains are indexed by pairs of elements of $S$. In section 1 we prove a stronger result: the cocycle and coboundary groups for triple cohomology coincide with the groups of symmetric cocycles and coboundaries in [3]. (A sharper description is given in [6].)

In Section 2 we prove a similar but more difficult result for dimension 3, which describes $H^{3}(S, \mathcal{A})$ using symmetric cochains indexed (as in Leech cohomology) by three elements of $S$. It is an open question whether these
results extend to higher dimensions; if so, the main result in Section 2 might be proved as in [2] or [8].

Sections 1 and 2 also contain normalization results for symmetric 2 - and 3-cocycles.

The major results in this article were announced in [5].
2. We keep the notation in [4]. In what follows $S$ is a commutative semigroup. The Leech category $\mathscr{H}(S)$ is defined after [7] as follows. The objects of $\mathscr{H}(S)$ are the elements of $S$. The morphisms of $\mathscr{H}(S)$ are the elements of $S \times S^{1}$; when $x \in S, t \in S^{1}$, then $(x, t)$ is a morphism from $x$ to $x t$. The composition of $(x, t): x \longrightarrow x t$ and $(x t, u): x t \longrightarrow x t u$ is $(x, t u): x \rightarrow x t u$; the identity on $x \in S$ is $(x, 1)$. An abelian group valued functor $\mathcal{A}$ on $\mathscr{H}(S)$ thus assigns to each $x \in S$ an abelian group $\mathcal{A}_{x}$, and to each pair $(x, t) \in S \times S^{1}$ a homomorphism $\alpha_{x, t}: \mathcal{A}_{x} \rightarrow \mathcal{A}_{x} t$ (written on the left), so that $\alpha_{x, 1}$ is the identity on $\mathcal{A}_{x}$ and $\alpha_{x t, u} \alpha_{x, t}=\alpha_{x, t u}$ for all $x, t, u$.

In longer calculations it is convenient to write

$$
\alpha_{x, t} g=g^{t} \in \mathcal{A}_{x t} \quad \text { when } \quad g \in \mathcal{A}_{x}
$$

then

$$
g^{1}=g, \quad\left(g^{t}\right)^{u}=g^{t u}
$$

whenever $x \in S, a \in \mathcal{A}_{x}, t, u \in S^{1}$.
Define semigroups $T_{n}$ by induction as follows: $T_{0}=S ; T_{n+1}$ is the free commutative semigroup on the set $T_{n}$. An element of $T_{n+1}$ is a nonempty product of elements of $T_{n}$, the factors of which are unique up to order. In what follows it would be very confusing to write the elements of $T_{n+1}$ as the usual products of generators; hence we shall write the elements of $T_{n+1}$ as nonempty unordered sequences $t=\left[x_{1}, \ldots, x_{m}\right]$ of elements of $T_{n}$ (so that $m \geq 1$ and $t^{\sigma}=\left[x_{\sigma 1}, \ldots, x_{\sigma m}\right]=\left[x_{1}, \ldots, x_{m}\right]=t$ for every permutation $\sigma \in S_{m}$ of $1,2, \ldots, m$ ). Multiplication in $T_{n+1}$ is given by concatenation:

$$
\left[x_{1}, \ldots, x_{m}\right]\left[y_{1}, \ldots, y_{n}\right]=\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]
$$

A homomorphism $p: T_{n} \rightarrow S$ is defined by induction by

$$
p\left[x_{1}, x_{2}, \ldots, x_{m}\right]=\left(p x_{1}\right)\left(p x_{2}\right) \cdots\left(p x_{m}\right)
$$

starting with $p x=x$ for all $x \in S$; in general, $p\left[x_{1}, \ldots, x_{m}\right]$ is the product of all the elements of $S$ which appear as components of $\left[x_{1}, \ldots, x_{m}\right]$. Similarly, homomorphisms $\pi_{i}^{n}: T_{n+1} \longrightarrow T_{n}$ are defined by induction by

$$
\begin{aligned}
\pi_{n}^{n}\left[x_{1}, x_{2}, \ldots, x_{m}\right] & =x_{1} x_{2} \cdots x_{m} \\
\pi_{i}^{n}\left[x_{1}, x_{2}, \ldots, x_{m}\right] & =\left[\pi_{i}^{n-1} x_{1}, \pi_{i}^{n-1} x_{2}, \ldots, \pi_{i}^{n-1} x_{m}\right] \text { if } i<n
\end{aligned}
$$

for all $x_{1}, \ldots, x_{m} \in T_{n}$. This implies $p\left(\pi_{i}^{n} t\right)=p t$ for all $t \in T_{n+1}$. (Commutative semigroups are tripleable over sets; in the corresponding cotriple, $G S=T_{1}, \epsilon=\pi_{0}^{0}$, and $\pi_{i}^{n}=G^{n-i} \epsilon G^{i}$.)

Let $\mathcal{A}$ be an abelian group valued functor on $\mathscr{H}(S)$. For each $n \geq 1$, a long $n$-cochain on $S$ with coefficients in $\mathcal{A}$ is a family $c=\left(c_{t}\right)_{t \in T_{n-1}}$ such that $c_{t} \in \mathcal{A}_{p t}$ for all $t \in T_{n-1}$. Under pointwise addition, long $n$ cochains form an abelian group $C^{n}(S, \mathcal{A})=\prod_{t \in T_{n-1}} \mathcal{A}_{p t}$. Coboundary homomorphisms $\delta_{n}: C^{n}(S, \mathcal{A}) \longrightarrow C^{n+1}(S, \mathcal{A})$ such that $\delta_{n} \delta_{n-1}=0$ are defined by

$$
\begin{equation*}
\left(\delta_{n} c\right)_{t}=\sum_{i=0}^{n-1}(-1)^{i} c_{\pi_{i}^{n-1} t}+(-1)^{n} \sum_{j=1}^{m}{ }_{c_{x} t_{j}}^{p{ }_{j}} \tag{C}
\end{equation*}
$$

for all $c \in C^{n}(S, \mathcal{A})$ and $t=\left[x_{1}, \ldots, x_{m}\right] \in T_{n}$, with

$$
t_{j}^{\wedge}=\left[x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m}\right]
$$

(so that $p x_{j} p t_{j}^{\wedge}=p t$ ). A long $n$-cocycle is an element of $Z^{n}(S, \mathcal{A})=$ Ker $\delta_{n} \subseteq C^{n}(S, \mathcal{A})$. A long $n$-coboundary is an element of $B^{n}(S, \mathcal{A})=$ $\operatorname{Im} \delta_{n-1} \subseteq Z^{n}(S, \mathcal{A})\left(\right.$ with $\left.B^{1}(S, \mathcal{A})=0\right)$.

It is shown in [4] that the triple cohomology group $H^{n}(S, \mathcal{A})$ (called $H^{n-1}(S, \mathcal{A})$ in $\left.[1],[2]\right)$ is naturally isomorphic to $Z^{n}(S, \mathcal{A}) / B^{n}(S, \mathcal{A})$.
3. In dimension 1, $H^{1}(S, \mathcal{A}) \cong Z^{1}(S, \mathcal{A})$. A long 1 -cochain is a family $c=\left(c_{x}\right)_{x \in S} \in \prod_{x \in S} \mathcal{A}_{x}$, with coboundary

$$
\begin{equation*}
(\delta c)_{t}=c_{x_{1} \cdots x_{m}}-\sum_{j=1}^{m} c_{x_{j}}^{p t_{j}^{\wedge}} \tag{C1}
\end{equation*}
$$

for all $t=\left[x_{1}, \ldots, x_{m}\right] \in T_{1}$ (since $\pi_{0}^{0} t=p t=a_{1} \cdots a_{m}$ ). Hence $c$ is a long 1 -cocycle if and only if

$$
\begin{equation*}
c_{x_{1} \cdots x_{m}}=\sum_{j=1}^{m} \stackrel{x_{x_{j}}^{\wedge}}{c_{j}^{\wedge}} \tag{Z1}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{m} \in S, m \geq 1$, with $x_{j}^{\wedge}=x_{1} \cdots x_{j-1} x_{j+1} \cdots x_{m}$. By induction on $m,(Z 1)$ is equivalent to

$$
\begin{equation*}
c_{x y}=c_{x}^{y}+c_{y}^{x} \tag{A1}
\end{equation*}
$$

for all $x, y \in S$. Thus $Z^{1}(S, \mathcal{A})$ and $H^{1}(S, \mathcal{A})$ are the same as in [3].
Condition (A1) implies that 1-cocycles are normalized ( $c_{e}=0$ whenever $e^{2}=e$ in $S$ ).

## Section 1. Triple cohomology in dimension 2.

1. We call the 2 -cochains defined in [3] symmetric 2 -cochains to distinguish them from long 2 -cochains. In detail, a short 2 -cochain is a family $c=\left(c_{x, y}\right)_{x, y \in S}$ such that $c_{x, y} \in \mathcal{A}_{x y}$ for all $x, y \in S$. Under pointwise addition, short 2 -cochains form an abelian group $\prod_{x, y \in S} \mathcal{A}_{x y}$. A symmetric 2 -cochain is a short 2 -cochain $c=\left(c_{x, y}\right)_{x, y \in S} \in \prod_{x, y \in S} \mathcal{A}_{x y}$ such that

$$
\begin{equation*}
c_{y, x}=c_{x, y} \tag{S2}
\end{equation*}
$$

for all $x, y \in S$. For example, the coboundary of a 1 -cochain $u$ yields a short 2 -cochain, also denoted by $\delta u$ :

$$
(\delta u)_{x, y}=u_{x y}-u_{x}^{y}-u_{y}^{x},
$$

which is symmetric.
A symmetric 2 -cocycle or factor set is a symmetric 2 -cochain $s$ such that

$$
\begin{equation*}
s_{x, y}^{z}+s_{x y, z}=s_{x, y z}+s_{y, z}^{x} \tag{A2}
\end{equation*}
$$

for all $x, y, z \in S$. A symmetric 2 -coboundary is a symmetric 2 -cochain (necessarily a cocycle) $s$ for which there exists a 1 -cochain $u=\left(u_{x}\right)_{x \in S}$ (with $u_{x} \in \mathcal{A}_{x}$ ) such that $s=\delta u$, that is,

$$
\begin{equation*}
s_{x, y}=u_{x y}-u_{x}^{y}-u_{y}^{x} \tag{B2}
\end{equation*}
$$

for all $x, y \in S$. Under pointwise addition these form groups $S C^{2}(S, \mathcal{A}) \subseteq$ $\prod_{x, y \in S} \mathcal{A}_{x y}, S Z^{2}(S, \mathcal{A})$, and $S B^{2}(S, \mathcal{A})$. In [3] these groups are denoted by $C^{2}(S, \mathcal{A}), Z^{2}(S, \mathcal{A}), B^{2}(S, \mathcal{A})$, and defined only when $\mathcal{A}$ is thin $\left(\alpha_{x, t}=\alpha_{x, u}\right.$ whenever $x t=x u)$.

It is shown in [3] that $S Z^{2}(S, \mathcal{A}) / S B^{2}(S, \mathcal{A})$ classifies commutative group coextensions of $S$ by $\mathcal{A}$; therefore $S Z^{2}(S, \mathcal{A}) / S B^{2}(S, \mathcal{A}) \cong H^{2}(S, \mathcal{A})$. We now prove (Theorem 1.3) that in fact $Z^{2}(S, \mathcal{A}) \cong S Z^{2}(S, \mathcal{A})$, with $B^{2}(S, \mathcal{A}) \cong S B^{2}(S, \mathcal{A})$.
2. We denote the typical element of $T_{1}$ by $X=\left[x_{1}, \ldots, x_{\ell}\right] ; \ell$ is the length $\ell=|X|$ of the commutative word $X$. By definition,

$$
X^{\sigma}=\left[x_{\sigma 1}, \ldots, x_{\sigma \ell}\right]=\left[x_{1}, \ldots, x_{\ell}\right]=X
$$

for every permutation $\sigma \in S_{\ell}$ of $1,2, \ldots, \ell$. We also let

$$
x=p X=x_{1} \cdots x_{\ell}, \quad x_{i}^{\prime}=x_{1} \cdots x_{i}, \quad x_{i}^{\prime \prime}=x_{i+1} \cdots x_{\ell},
$$

and $x_{i}^{\wedge}=x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{\ell}$; in these formulas, any empty product is read as $1 \in S^{1}$. When $c \in S^{2}(S, \mathcal{A})$ we write $c_{X}=c_{x_{1}, \ldots, x_{\ell}}$ (without brackets). Since $c$ depends only on $X$, we have $c_{x_{\sigma 1}, \ldots, x_{\sigma \ell}}=c_{x_{1}, \ldots, x_{\ell}}$ for every $\sigma \in S_{\ell}$; we write this property as $c_{X^{\sigma}}=c_{X}$.

For every $\mathbf{X}=\left[X_{1}, \ldots, X_{m}\right] \in T_{2}$ we have

$$
\pi_{1}^{1} \mathbf{X}=X_{1} \cdots X_{m}, \quad \pi_{0}^{1} \mathbf{X}=\left[p X_{1}, \ldots, p X_{m}\right]=\left[x_{1}, \ldots, x_{m}\right]
$$

and

$$
\begin{equation*}
(\delta c)_{\mathbf{X}}=c_{x_{1}, \ldots, x_{m}}-c_{X_{1} \cdots X_{m}}+\sum_{j=1}^{m} c_{X_{j}}^{x_{j}} \tag{C2}
\end{equation*}
$$

for every $c \in C^{2}(S, \mathcal{A})$ (with $x_{j}^{\wedge}=x_{1} \cdots x_{j-1} x_{j+1} \cdots x_{m}$ ). Thus long 2-cocycles are families $s=\left(s_{X}\right)_{X \in T_{1}} \in \prod_{X \in T_{1}} \mathcal{A}_{p X}$ such that

$$
\begin{equation*}
s_{X^{\sigma}}=s_{X} \tag{P2}
\end{equation*}
$$

for all $X \in T_{1}, \sigma \in S_{|X|}$, and

$$
\begin{equation*}
s_{X_{1} \cdots X_{m}}=s_{x_{1}, \ldots, x_{m}}+\sum_{j=1}^{m} \stackrel{x_{j}^{\wedge}}{c_{X_{j}}^{\wedge}} \tag{Z2}
\end{equation*}
$$

for all $m \geq 1$ and $X_{1}, \ldots, X_{m} \in T_{1}$.
3. Lemma 1.1. When $s$ is a long 2 -cocycle, $s_{x}=0$ for all $x \in S$, and

$$
s_{X}=\sum_{i=1}^{\ell-1} s_{x_{i}^{\prime}, x_{i+1}}^{x_{i+1}^{\prime \prime}}
$$

for all $X \in T_{1}$ of length $\ell$.

Proof. Let $x \in S$. With $m=1$ and $X_{1}=[x],(Z 2)$ yields $s_{x}=0$. Hence ( $Z 2^{\prime}$ ) holds when $\ell=1$. Let $\ell \geq 2$.

With $m=2, X_{1}=\left[x_{1}, \ldots, x_{\ell-1}\right]$, and $X_{2}=\left[x_{\ell}\right],(\mathrm{Z} 2)$ reads

$$
\begin{equation*}
s_{X}=s_{x_{\ell-1}^{\prime}, x_{\ell}}+s_{x_{1}, \ldots, x_{\ell-1}}^{x_{\ell}} \tag{X2}
\end{equation*}
$$

(since $s_{X_{2}}=0$ ). Hence ( $Z 2^{\prime}$ ) holds if $\ell=2$ or $\ell=3$. If $\ell>3$ and $\left(Z 2^{\prime}\right)$ holds for $\ell-1$, then with $y=x_{i+1} \cdots x_{\ell-1}$ we have $y x_{\ell}=x_{i+1}^{\prime \prime}$ and (X2) yields

$$
\begin{aligned}
s_{X} & =s_{x_{\ell}, \ldots, x_{\ell-1}}^{x_{\ell}}+s_{x_{\ell-1}^{\prime}}, x_{\ell} \\
& =\left(\sum_{i=1}^{\ell-2} s_{x_{i}^{\prime}, x_{i+1}}^{y}\right)^{x_{\ell}}+s_{x_{\ell-1}^{\prime}, x_{\ell}} \\
& =\sum_{i=1}^{\ell-2} s_{x_{i+1}^{\prime}}^{x_{i+1}^{\prime \prime}, x_{i+1}}+s_{x_{\ell-1}^{\prime}, x_{\ell}} \\
& =\sum_{i=1}^{\ell-1} s_{x_{i}^{\prime}, x_{i+1}}^{x_{i+1}^{\prime \prime}} ;
\end{aligned}
$$

thus $\left(Z 2^{\prime}\right)$ holds for $\ell$.
4. By 1.1 , a long 2 -cocycle is uniquely determined by its values on commutative words of length 2 . More precisely, let $\Gamma: Z^{2}(S, \mathcal{A}) \longrightarrow S C^{2}(S, \mathcal{A})$ be the trimming homomorphism defined by $(\Gamma s)_{x, y}=s_{x, y} \in \mathcal{A}_{x y}$ for all $x, y \in S$ (note that $s_{x, y}=s_{y, x}$ by ( $P 2$ )). Lemma 1.1 implies that $\Gamma$ is injective.

Lemma 1.2. $\operatorname{Im} \Gamma=S Z^{2}(S, \mathcal{A})$.
Proof. Let $s \in Z^{2}, x, y, z \in S$. With $m=2, X_{1}=[x]$, and $X_{2}=[y, z]$, (Z2) reads: $s_{x, y, z}=s_{x, y z}+s_{y, z}^{x}$ (since $s_{x}=0$ ). With $X_{1}=[x, y]$ and $X_{2}=[z],(Z 2)$ reads: $s_{x, y, z}=s_{x y, z}+s_{x, y}^{z}$ (since $s_{z}=0$ ). Hence $s_{x, y}^{z}+s_{x y, z}=s_{x, y z}+s_{y, z}^{x}$ and $\Gamma s \in S Z^{2}$.

Conversely let $s \in S Z^{2}$. We use ( $Z 2^{\prime}$ ) to define $s_{X}$ for all $X \in T_{1}$. In detail, let

$$
t_{x_{1}, \ldots, x_{\ell}}=\sum_{i=1}^{\ell-1} \begin{gathered}
x_{i+1}^{\prime \prime} \\
s_{x_{i}^{\prime}, x_{i+1}}^{\prime}
\end{gathered}
$$

for all $\ell \geq 1$ and $x_{1}, \ldots, x_{\ell} \in S$. If $\ell=1$, then the right hand side is empty, and $t_{x}=0$ for all $x \in S$. If $\ell=2$ we obtain $t_{x, y}=s_{x, y}$, so that $\Gamma t=s$. It
remains to prove ( $P 2$ ) and ( $Z 2$ ), so that $t \in Z^{2}$.
First we note that

$$
\begin{aligned}
t_{x_{1}, \ldots, x_{\ell}, y} & =\sum_{i=1}^{\ell-1} \begin{array}{c}
x_{i+1}^{\prime \prime} y \\
s_{i}^{\prime}, x_{i+1}
\end{array}+s_{x_{\ell}^{\prime}, y} \\
& =\left(\sum_{i=1}^{\ell-1} \begin{array}{c}
x_{i+1}^{\prime \prime} \\
x_{i}^{\prime}, x_{i+1}
\end{array}\right)^{y}+s_{x_{\ell}^{\prime}, y}=t_{x_{1}, \ldots, x_{\ell}}^{y}+s_{x_{\ell}^{\prime}, y}
\end{aligned}
$$

so that ( $X 2$ ) holds for $t$.
We prove (P2): $t_{X^{\sigma}}=t_{X}$ for all $X=\left[x_{1}, \ldots, x_{\ell}\right]$ by induction on $\ell$. For $\ell \leq 2,(P 2)$ follows from ( $S 2$ ). For $\ell>2$ it suffices to show that $t_{X^{\tau}}=t_{X}$ for every transposition $\tau=\left(\begin{array}{ll}i & i+1\end{array}\right)$ with $i<\ell$. For $i<\ell-1$, $t_{X^{\tau}}=t_{X}$ follows from the induction hypothesis, since

$$
t_{x_{1}, \ldots, x_{\ell}}=t_{x_{1}, \ldots, x_{\ell-1}}^{x_{\ell}}+s_{x_{\ell-1}^{\prime}, x_{\ell}}
$$

by (X2). For $i=\ell-1$ we have, with $x_{\ell-2}^{\prime}=b, x_{\ell-1}=c, x_{\ell}=d$ :

$$
\begin{aligned}
t_{X} & =\sum_{i=1}^{\ell-3} \begin{array}{cc}
x_{i+1}^{\prime \prime} \\
x_{i}^{\prime}, x_{i+1}
\end{array}+s_{b, c}^{d}+s_{b c, d} \\
t_{X^{\tau}} & =\sum_{i=1}^{\ell-3} \begin{array}{l}
x_{i+1}^{\prime \prime} \\
s_{i, i}^{\prime}, x_{i+1}
\end{array}+s_{b, d}^{c}+s_{b d, c}
\end{aligned}
$$

and it follows from ( $A 2$ ) and ( $S 2$ ) that

$$
s_{b, c}^{d}+s_{b c, d}=s_{c, b}^{d}+s_{c b, d}=s_{c, b d}+s_{b, d}^{c}=s_{b, d}^{c}+s_{b d, c} .
$$

Therefore ( $P 2$ ) holds.
(Z2) holds when $m=1$; for $m>1$ we proceed by induction on $m$. Assume that ( $Z 2$ ) holds for $m$ and let $Y_{1}, \ldots, Y_{m}, Z \in T_{1}, p Y_{j}=y_{j}$, $p Z=z$. Let $Y_{1} \cdots Y_{m}=X=\left[x_{1}, \ldots, x_{q}\right] \in T_{1}$ and $Z=\left[z_{1}, \ldots, z_{r}\right]$. By the induction hypothesis,

$$
t_{X}=t_{y_{1}, \cdots, y_{m}}+\sum_{k=1}^{m} t_{Y_{k}}^{y_{k}},
$$

where $y_{k}=y_{1} \cdots y_{k-1} y_{k+1} \cdots y_{m}$; we want to prove that

$$
t_{X Z}=t_{y_{1}, \cdots, y_{m}, z}+\sum_{k=1}^{m} t_{Y_{k}}^{y_{\hat{k}}^{\wedge} z}+t_{Z}^{z}
$$

By definition, $t_{X Z}=t_{x_{1}, \ldots, x_{q}, z_{1}, \ldots, z_{r}}$ equals

$$
\begin{aligned}
t_{X Z}= & \sum_{i=1}^{q-1} s_{x_{i}^{\prime}, x_{i+1}}^{x_{i+1}^{\prime \prime} b}+\sum_{j=0}^{r-1} s_{x z_{j}^{\prime}, z_{j+1}}^{z_{j+1}^{\prime \prime}} \\
= & t_{X}^{z}+s_{x, z_{1}}^{z_{1}^{\prime \prime}}+\sum_{j=1}^{r-1} s_{x z_{j}^{\prime}, z_{j+1}}^{z_{j+1}^{\prime \prime}} \\
= & t_{y_{1}, \cdots, y_{m}}^{z}+\sum_{k=1}^{m} t_{Y_{k}^{\prime}}^{y_{k}^{\wedge}}+s_{x, z_{1}}^{z_{1}^{\prime \prime}} \\
& \quad+\sum_{j=1}^{r-1}\left(-s_{x, z_{j}^{\prime}}^{z_{j+1}}+s_{x, z_{j}^{\prime} z_{j+1}}+s_{z_{j}^{\prime}, z_{j+1}}^{x}\right)^{z_{j+1}^{\prime \prime}}
\end{aligned}
$$

by the induction hypothesis and (A2),

$$
\begin{aligned}
= & t_{y_{1}, \cdots, y_{m}}^{z}+\sum_{k=1}^{m} t_{Y_{k}}^{y_{\hat{k}}^{\wedge}}+s_{x, z_{1}^{\prime}}^{z_{1}^{\prime \prime}} \\
& \quad-\sum_{j=1}^{r-1} s_{x, z_{j}^{\prime}}^{z_{j}^{\prime \prime}}+\sum_{j=2}^{r} s_{x, z_{j}^{\prime}}^{z_{j}^{\prime \prime}}+\left(\sum_{j=1}^{r-1} s_{z_{j}^{\prime}, z_{j+1}}^{z_{j+1}^{\prime \prime}}\right)^{x} \\
= & t_{y_{1}, \cdots, y_{m}}^{z}+\sum_{k=1}^{m} t_{Y_{k}^{\prime}}^{y_{k}^{\wedge} z}+s_{x, z}+t_{Z}^{x} \\
= & t_{y_{1}, \cdots, y_{m}, z}+\sum_{k=1}^{m} t_{Y_{k}^{\prime}}^{y_{k}^{\wedge} z}+t_{Z}^{x}
\end{aligned}
$$

by (X2), and ( $Z 2$ ) is proved.
Theorem 1.3. For every commutative semigroup $S$ and abelian group valued functor $\mathcal{A}$ on $\mathscr{H}(S): Z^{2}(S, \mathcal{A}) \cong S Z^{2}(S, \mathcal{A}) ; B^{2}(S, \mathcal{A}) \cong S B^{2}(S, \mathcal{A})$; and $H^{2}(S, \mathcal{A}) \cong S Z^{2}(S, \mathcal{A}) / S B^{2}(S, \mathcal{A})$.

Proof. By 1.1, 1.2, $\Gamma$ is an isomorphism $Z^{2} \rightarrow S Z^{2}$. When $c \in C^{1}$, (C1) implies $(\delta c)_{x, y}=c_{x y}-c_{x}^{y}-c_{y}^{x}$; hence $\Gamma\left(B^{2}\right)=S B^{2}$.
5. If $\mathcal{A}$ is thin (if $\alpha_{x, t}=\alpha_{x, u}$ whenever $x t=x u$ in $S$ ), normalization can be used to sharpen Theorem 1.3. A symmetric 2-cochain $c$ is normalized when $c_{e, x}=0$ whenever $e^{2}=e$ and $e x=x$ in $S$. These cochains form a subgroup $N S C^{2}(S, \mathcal{A})$ of $S C^{2}(S, \mathcal{A})$. Normalized symmetric 2 -cocycles and 2-coboundaries form abelian groups $N S Z^{2}(S, \mathcal{A})=S Z^{2}(S, \mathcal{A}) \cap N S C^{2}(S, \mathcal{A})$ and $N S B^{2}(S, \mathcal{A})=S B^{2}(S, \mathcal{A}) \cap N S C^{2}(S, \mathcal{A})$. If $\mathcal{A}$ is thin, it is readily verified that a symmetric 2 -coboundary is normalized if and only if it is the coboundary of a normalized 1-cochain.

Proposition 1.4. If $\mathcal{A}$ is thin, $H^{2}(S, \mathcal{A}) \cong N S Z^{2}(S, \mathcal{A}) / N S B^{2}(S, \mathcal{A})$.

Proof. We show that $S Z^{2}=N S Z^{2}+S B^{2}$; then $H^{2} \cong N S Z^{2} / N S B^{2}$ follows from $H^{2} \cong S Z^{2} / S B^{2}$ and $S B^{2} \cap N S Z^{2}=N S B^{2}$.

Let $s \in S Z^{2}$. Take any $u \in C^{1}(S, \mathcal{A})$ such that $u_{e}=s_{e, e}$ whenever $e^{2}=e$ in $S$. Since $\mathcal{A}$ is thin, $\alpha_{e, e}=\alpha_{e, 1}$ is the identity on $\mathcal{A}_{e}$ and $(\delta u)_{e, e}=-u_{e}$. Hence $t=s+\delta u \in S Z^{2}$ satisfies $t_{e, e}=0$ whenever $e^{2}=e$. It follows from (A2) that $t$ is normalized: if $e^{2}=e$ and $e x=x$, then $\alpha_{x, e}=\alpha_{x, 1}$ is the identity on $\mathcal{A}_{x}$ and

$$
\alpha_{e, x} t_{e, e}+t_{e e, x}=t_{e, e x}+\alpha_{e x, e} t_{e, x}
$$

yields $t_{e, x}=0$. Thus $s=t-\delta u \in N S Z^{2}+S B^{2}$.

## Section 2. Cocycles in dimension 3.

1. A short 3 -cochain on $S$ with coefficients in $\mathcal{A}$ is a family $c=$ $\left(c_{x, y, z}\right)_{x, y, z \in S}$ such that $c_{x, y, z} \in \mathcal{A}_{x y z}$ for all $x, y, z \in S$. Under pointwise addition, short 3 -cochains form an abelian group $\prod_{x, y, z \in S} \mathcal{A}_{x y z}$. A symmetric 3 -cochain on $S$ with coefficients in $\mathcal{A}$ is a short 3 -cochain $c=$ $\left(c_{x, y, z}\right)_{x, y, z \in S}$ such that

$$
c_{z, y, x}=-c_{x, y, z}, \quad \text { and } \quad c_{x, y, z}+c_{y, z, x}+c_{z, x, y}=0
$$

for all $x, y, z \in S$. For example, the coboundary of a symmetric 2-cochain $u$, defined by

$$
(\delta u)_{x, y, z}=u_{y, z}^{x}-u_{x y, z}+u_{x, y z}-u_{x, y}^{z}
$$

is a symmetric 3 -cochain.
A symmetric 3 -cocycle is a symmetric 3 -cochain $t$ such that

$$
t_{y, z, w}^{x}-t_{x y, z, w}+t_{x, y z, w}-t_{x, y, z w}+t_{x, y, z}^{w}=0
$$

for all $x, y, z, w \in S$. A symmetric 3 -coboundary is a symmetric 3 -cochain $t$ (necessarily a 3 -cocycle) for which there exists a symmetric 2-cochain $u$ such that $t=\delta u$. Under pointwise addition, symmetric 3 -cochains, 3 -cocycles, and 3 -coboundaries form abelian groups $S C^{3}(S, \mathcal{A}) \subseteq \prod_{x, y, z \in S} \mathcal{A}_{x y z}$, $S Z^{3}(S, \mathcal{A})$, and $S B^{3}(S, \mathcal{A})$. The main result in this section (Theorem 2.11) is that $H^{3}(S, \mathcal{A}) \cong S Z^{3}(S, \mathcal{A}) / S B^{3}(S, \mathcal{A})$.
2. The first step in the proof is to state the definition of long 3 cocycles in usable form. We denote the typical element of $T_{2}$ by $\mathbf{X}=$ $\left[X_{1}, X_{2}, \ldots, X_{m}\right]$; by definition,

$$
\mathbf{X}^{\sigma}=\left[X_{\sigma 1}, \ldots, X_{\sigma m}\right]=\left\{X_{1}, \ldots, X_{m}\right]=\mathbf{X}
$$

for every permutation $\sigma \in S_{m}$ of $1,2, \ldots, m$. We denote $p \mathbf{X}$ by $x, \pi_{1}^{1} \mathbf{X}$ by $\mathbb{X}$, and $\pi_{0}^{1} \mathbf{X}$ by $X$. Then $x=p \mathbf{X}=p \mathbb{X}=p X$. If $\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{m}\right]$ and $x_{j}=p X_{j}$, then

$$
\begin{aligned}
& \mathbb{X}=\pi_{1}^{1} \mathbf{X}=X_{1} X_{2} \cdots X_{m} \\
& X=\pi_{0}^{1} \mathbf{X}=\left[x_{1}, x_{2}, \cdots, x_{m}\right]
\end{aligned}
$$

When $c \in C^{3}(S, \mathcal{A})$, we write $c_{\mathbf{X}}=c_{X_{1} ; X_{2} ; \ldots ; X_{m} \text { (with semi- }}$ colons), separating the components of each $X_{j}$ with commas if necessary:

$$
c_{\mathbf{X}}=c_{x_{11}, \ldots, x_{1 m_{1}} ; x_{21}, \ldots, x_{2 m_{2}} ; \ldots ; x_{n 1}, \ldots, x_{n m_{n}} .}
$$

By definition, $c_{\mathbf{X}^{\sigma}}=c_{X_{\sigma 1} ; \ldots ; X_{\sigma m}}=c_{X_{1} ; \ldots ; X_{m}}=c_{\mathbf{X}}$ for every permutation $\sigma \in S_{m}$, and $c_{X_{1}}^{\sigma_{1}} ; \ldots ; X_{m}^{\sigma_{m}}=c_{X_{1} ; \ldots ; X_{m}}$ for all suitable permutations $\sigma_{1}, \ldots, \sigma_{m}$.

For all $\left[\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right] \in T_{3}$ we have

$$
\begin{aligned}
\pi_{2}^{2}\left[\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right] & =\mathbf{X}_{1} \mathbf{X}_{2} \ldots \mathbf{X}_{n} \\
\pi_{1}^{2}\left[\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right] & =\left[\mathbf{X}_{1}, \mathbb{X}_{2}, \ldots, \mathbf{X}_{n}\right] \\
\pi_{0}^{2}\left[\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right] & =\left[X_{1}, X_{2}, \ldots, X_{n}\right]
\end{aligned}
$$

(with $X_{i}=\pi_{0}^{1} \mathbf{X}_{i}$ ); hence

$$
\begin{align*}
{ }^{(\delta c)}\left[\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right]= & c_{X_{1} ; X_{2} ; \ldots ; X_{n}}-c_{\mathbb{X}_{1} ; \mathbb{X}_{2} ; \ldots ; \mathbb{X}_{n}} \\
& +c_{\mathbf{X}_{1} \mathbf{x}_{2} \ldots \mathbf{X}_{n}-\sum_{k=1}^{n} c_{\mathbf{X}_{k}}^{x_{k}}} \tag{C3}
\end{align*}
$$

where $x_{k}^{\wedge}=x_{1} \cdots x_{k-1} x_{k+1} \cdots x_{n}, x_{k}=p X_{k}=p \mathbb{X}_{k}=p \mathbf{X}_{k}$. Thus a long 3 -cocycle is a family $s=\left(s_{\mathbf{X}}\right)_{\mathbf{X} \in T_{2}}$ such that $s_{\mathbf{X}} \in \mathcal{A}_{\boldsymbol{x}}$ and the following conditions hold:

$$
s_{X_{\sigma 1} ; \ldots ; X_{\sigma m}}=s_{X_{1} ; \ldots ; X_{m}}
$$

for all $m \geq 1, \mathbf{X} \in T_{2}$ of length $m$, and $\sigma \in S_{m}$;

$$
s_{X_{1}}^{\sigma_{1}} ; \ldots ; X_{m}^{\sigma_{m}}=s_{X_{1} ; \ldots ; X_{m}}
$$

for all $m \geq 1, \mathbf{X} \in T_{2}$ of length $m$, and suitable permutations $\sigma_{1}, \ldots, \sigma_{m}$; and

$$
\begin{equation*}
s_{\mathbf{X}_{1} \mathbf{X}_{2} \ldots \mathbf{X}_{n}}=s_{\mathbb{X}_{1} ; \mathbb{X}_{2} ; \ldots ; \mathbb{X}_{n}}-s_{X_{1} ; X_{2} ; \ldots ; X_{n}}+\sum_{k=1}^{n} s_{\mathbf{X}_{k}}^{x_{k}} \tag{Z3}
\end{equation*}
$$

for all $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in T_{2}$, where, as before, $X_{i}=\pi_{0}^{1} \mathbf{X}_{i}, x_{i}=p \mathbf{X}_{i}$, and $x_{k}^{\hat{k}}=x_{1} \cdots x_{k-1} x_{k+1} \cdots x_{n}$.
3. Condition (Z3) implies that long 3 -cocycles can be trimmed (as we trimmed long 2 -cocycles in Section 1). This will be done in three stages.

When $\mathbf{X}=\left[X_{1}, \ldots, X_{m}\right] \in T_{1}$, we let $x_{i}=p X_{i}$ and

$$
x_{j}^{\prime}=x_{1} x_{2} \cdots x_{j}, \quad x_{j}^{\prime \prime}=x_{j+1} \cdots x_{m}, \quad X_{j}^{\prime}=X_{1} X_{2} \cdots X_{j} .
$$

Lemma 2.1. Every long 3-cocycle s satisfies

$$
s_{X}=s_{x}
$$

for all $X \in T_{1}$, and ( $Z^{\prime \prime}$ )
$s_{X_{1} ; \ldots ; X_{m}}=\sum_{j=1}^{m} \stackrel{x_{1} \wedge}{s_{j}} x_{j}+\sum_{j=1}^{m-1} \stackrel{x_{j+1}^{\prime \prime}}{s_{X_{j}^{\prime} ; X_{j+1}}}-\sum_{j=1}^{m-1} \stackrel{x_{j+1}^{\prime \prime}}{s_{x_{1}, \ldots, x_{j} ; x_{j+1}}}$
for all $X_{1}, \ldots, X_{m} \in T_{1}$.
Proof. Let $X \in T_{1}$. With $n=1$ and $\mathbf{Y}_{1}=[X]$, we have $\mathbb{Y}_{1}=X$, $Y_{1}=[x], y_{1}=x$, and (Z3) reduces to ( $Z^{\prime}$ ).

Now let $X_{1}, \ldots, X_{m} \in T_{1}$. If $m=1$, then $\left(Z^{\prime \prime}\right)$ follows from ( $Z^{\prime}$ ). Let $m \geq 2$. With $\mathbf{Y}_{1}=\left[X_{1}, \ldots, X_{m-1}\right]$ and $\mathbf{Y}_{2}=\left[X_{m}\right]$, we have $\mathbf{Y}_{1} \mathbf{Y}_{2}=\left[X_{1}, \ldots, X_{m}\right], \mathbb{Y}_{1}=X_{1} \cdots X_{m-1}=X_{m-1}^{\prime}, \mathbb{Y}_{2}=X_{m}, Y_{1}=$ $\left[x_{1}, \cdots, x_{m-1}\right], Y_{2}=\left[x_{m}\right]$, and (Z3) yields

$$
\begin{align*}
s_{X_{1} ; \ldots ; X_{m}}= & s_{X_{1} \ldots X_{m-1} ; X_{m}}-s_{x_{1}, \ldots, x_{m-1} ; x_{m}} \\
& +s_{X_{1} ; \ldots ; X_{m-1}}^{x_{m}}+s_{X_{m}}^{x_{m-1}^{\prime}} . \tag{X3}
\end{align*}
$$

This proves $\left(Z^{\prime \prime}\right)$ if $m=2$. For $m>2$ we proceed by induction on $m$. If $m \geq 2$ and ( $Z^{\prime \prime}$ ) holds for $m$, then:

$$
\begin{aligned}
& s_{X_{1}} ; \ldots ; X_{m} ; X_{m+1} \\
&= s_{X_{1} ; \ldots ; X_{m}}^{x_{m+1}}+s_{X_{1} \ldots X_{m} ; X_{m+1}}-s_{x_{1}, \ldots, x_{m-1} ; x_{m}}+s_{X_{m}}^{x_{m}^{\prime}} \\
& \quad \text { by }(X 3) \\
&=\left(\sum_{j=1}^{m} s_{x_{j}}^{x_{j}^{\wedge}}+\sum_{j=1}^{m-1} s_{X_{j+1}^{\prime} ; X_{j+1}}^{x^{\prime \prime}}-\sum_{j=1}^{m-1} s_{x_{1}, \ldots, x_{j} ; x_{j+1}}^{x_{j+1}^{\prime \prime}}\right)^{x_{m+1}} \\
& \quad+s_{X_{1} \ldots X_{m} ; X_{m+1}}-s_{x_{1}, \ldots, x_{m-1} ; x_{m}}+s_{x_{m-1}}^{x_{m}^{\prime}}
\end{aligned}
$$

by the induction hypothesis and ( $Z^{\prime}$ )

$$
\begin{aligned}
= & \sum_{j=1}^{m} s_{x_{j}}^{x_{j}^{x_{m+1}}}+s_{x_{m}}^{x_{m-1}^{\prime}}+\sum_{j=1}^{m-1} s_{X_{j+1}^{\prime} ; X_{j+1}}^{x_{j}^{\prime \prime}}+s_{X_{m}^{\prime} ; X_{m+1}} \\
& -\sum_{j=1}^{m-1} \begin{array}{c}
x_{j+1}^{\prime \prime} x_{m+1} \\
s_{x_{1}, \ldots, x_{j} ; x_{j+1}}-s_{x_{1}, \ldots, x_{m-1} ; x_{m}}
\end{array}
\end{aligned}
$$

and thus ( $Z^{\prime \prime}$ ) holds for $m+1$.
4. Lemma 2.1 shows that a long 3 -cocycle is determined by its values on commutative words of length at most 2. In detail, let

$$
C_{1}(S, \mathcal{A})=\left(\prod_{x \in S} \mathcal{A}_{x}\right) \times\left(\prod_{X, Y \in T_{1}} \mathcal{A}_{x y}\right)
$$

be the abelian group of all families

$$
\left.\left.c=\left(\left(c_{x}\right)_{x \in S}\right),\left(c_{X: Y}\right)_{X, Y \in T_{1}}\right)\right)
$$

such that $c_{x} \in \mathcal{A}_{x}$ for all $x \in S$ and $c_{X, Y} \in \mathcal{A}_{x y}$ for all $X, Y \in T_{1}$. The trimming homomorphism $\Gamma_{1}: Z^{3}(S, \mathcal{A}) \longrightarrow C_{1}(S, \mathcal{A})$ is defined by $\left(\Gamma_{1} s\right)_{x}=$ $s_{x},\left(\Gamma_{1} s\right)_{X ; Y}=s_{X ; Y}$ for all $x \in S, X, Y \in T_{1}$. Lemma 2.1 implies that $\Gamma_{1}$ is injective.

Lemma 2.2. Let $s \in C_{1}(S, \mathcal{A})$. Then $s \in \operatorname{Im} \Gamma_{1}$ if and only if:
$\left(P_{1}^{\prime}\right) \quad s_{B ; A}=s_{A ; B}$ for all $A, B \in T_{1}$;
$\left(P_{1}^{\prime \prime}\right) \quad s_{A^{\sigma} ; B^{r}}=s_{A ; B}$ for all $A, B \in T_{1}$ and suitable $\sigma, \tau$;
$\left(Z_{1}^{\prime}\right) \quad s_{a ; b}=s_{a}^{b}+s_{b}^{a}$ for all $a, b \in S ; \quad$ and
$\left(Z_{1}^{\prime \prime}\right) \quad s_{A ; B C}+s_{B ; C}^{a}+s_{a}^{b c}-s_{a ; b, c}=s_{A B ; C}+s_{A ; B}^{c}+s_{c}^{a b}-s_{a, b ; c}$
for all $A, B, C \in T_{1}$.

Proof. Let $s \in S Z^{3}$. Properties ( $P_{1}^{\prime}$ ) and ( $P_{1}^{\prime \prime}$ ) follow from ( $P 3^{\prime}$ ) and $\left(P 3^{\prime \prime}\right)$. Let $a, b \in S$. With $n=2, \mathbf{X}_{1}=[[a]]$, and $\mathbf{X}_{2}=[[b]]$, we have $\mathbb{X}_{1}=X_{1}=[a], \mathbb{X}_{2}=X_{2}=[b]$, and $(Z 3)$ reduces to $\left(Z_{1}^{\prime}\right)$. Next let $A, B, C \in T_{1}$. With $n=2, \mathbf{X}_{1}=[A, B]$, and $\mathbf{X}_{2}=[C]$, we have $\mathbb{X}_{1}=A B, X_{1}=[a, b], \mathbb{X}_{2}=C, X_{2}=[c]$, and (Z3) reads

$$
s_{A ; B ; C}=s_{A B ; C}-s_{a, b ; c}+s_{A ; B}^{c}+s_{c}^{a b}
$$

(using $\left(Z^{\prime}\right)$ ). Similarly, with $n=2, \mathbf{X}_{1}=[A]$, and $\mathbf{X}_{2}=[B, C],(Z 3)$ reads

$$
s_{A ; B ; C}=s_{A ; B C}-s_{a ; b, c}+s_{a}^{b c}+s_{B ; C}^{a} .
$$

This proves ( $Z_{1}^{\prime \prime}$ ).
For the converse, let $c \in C_{1}$ have properties $\left(P_{1}^{\prime}\right),\left(P_{1}^{\prime \prime}\right),\left(Z_{1}^{\prime}\right)$, and $\left(Z_{1}^{\prime \prime}\right)$. Define $s_{X_{1} ; \ldots ; X_{m}} \in \mathcal{A}_{x}$ for all $X_{1}, \ldots, X_{m} \in T_{1}$ by

In particular, $s_{X_{1}}=c_{x_{1}}=c_{x}$, so that $\left(Z^{\prime}\right)$ holds for $s$ and $s_{x}=c_{x}$ for all $x \in S$. Also

$$
s_{A ; B}=c_{a}^{b}+c_{b}^{a}+c_{A ; B}-c_{a, b}=c_{A ; B}
$$

by $\left(Z_{1}^{\prime}\right)$; therefore $\Gamma_{1} s=c$ and ( $Z^{\prime \prime}$ ) holds for $s$. Property ( $P 3^{\prime \prime}$ ) follows from $\left(P_{1}^{\prime \prime}\right)$. It remains to show that $\left(P 3^{\prime}\right)$ and ( $Z 3$ ) hold for $s$.

First we show that $s$ has property (X3) in the proof of Lemma 2.1:

$$
\begin{align*}
s_{X_{1} ; \ldots ; X_{m}}= & s_{X_{1} \ldots X_{m-1} ; X_{m}}-s_{x_{1}, \ldots, x_{m-1} ; x_{m}} \\
& +s_{X_{1} ; \ldots ; X_{m-1}}^{x_{m}}+s_{X_{m}}^{x_{m-1}^{\prime}} . \tag{X3}
\end{align*}
$$

This property is trivial if $m=1$ and follows from ( $Z^{\prime}$ ) and ( $Z_{1}^{\prime}$ ) if $m=2$. For $m>2$, let $y_{j}^{\prime \prime}=x_{j+1} \cdots x_{m-1}\left(\right.$ with $\left.y_{m-1}^{\prime \prime}=1 \in S^{1}\right)$ and $y_{j}^{\wedge}=$ $x_{1} \cdots x_{j-1} x_{j+1} \cdots x_{m-1}$. Then $x_{j}^{\prime \prime}=y_{j}^{\prime \prime} x_{m}$ and $x_{j}^{\wedge}=y_{j}^{\wedge} x_{m}$ for all $j \leq$ $m-1$, and ( $Z^{\prime \prime}$ ) yields

$$
\begin{aligned}
& s_{X_{1} ; \ldots ; X_{m}}=\sum_{j=1}^{m} s_{x_{j}}^{x_{j}^{\wedge}}+\sum_{j=1}^{m-1} s_{X_{j}^{\prime \prime} ; X_{j+1}}^{x_{j+1}^{\prime \prime}}-\sum_{j=1}^{m-1} s_{x_{1}, \ldots, x_{j} ; x_{j+1}}^{x_{j+1}^{\prime \prime}} \\
& =\left(\sum_{j=1}^{m-1} \begin{array}{cc}
y_{j}^{\wedge} \\
x_{j}
\end{array}\right)^{x_{m}}+s_{X_{m}}^{x_{m-1}^{\prime}} \\
& +\left(\sum_{j=1}^{m-2} s_{X_{j}^{\prime-} ; X_{j+1}}^{y_{j+1}^{\prime \prime}}\right)^{x_{m}}+s_{X_{m-1}^{\prime} ; X_{m}} \\
& -\left(\sum_{j=1}^{m-2} s_{x_{1}, \ldots, x_{j} ; x_{j+1}}^{y_{j+1}^{\prime \prime}}\right)^{x_{m}}-s_{x_{1}, \ldots, x_{m-1} ; x_{m}} \\
& =s_{X_{1} ; \ldots ; X_{m-1}}^{x_{m}}+s_{X_{m}}^{x_{m-1}^{\prime}}+s_{X_{m-1}^{\prime}}^{\prime} ; X_{m}-s_{x_{1}, \ldots, x_{m-1} ; x_{m}} .
\end{aligned}
$$

Thus (X3) holds for $s$.
We use induction on $m$ to prove $\left(P 3^{\prime}\right): s_{\mathbf{X}^{\sigma}}=s_{\mathbf{X}}$, for all $m \geq 1$, $\mathbf{X}=\left[X_{1}, \ldots, X_{m}\right]$, and $\sigma \in S_{m}$. By $\left(P_{1}^{\prime}\right), s$ has this property for $m \leq 2$. If $m>2$ it suffices to prove that $s_{\mathbf{X}}{ }^{\sigma}=s_{\mathbf{X}}$ when $\sigma=(i \quad i+1), i<m$. If $i<m-1$, then $\sigma m=m$ and $s_{\mathbf{X}} \sigma=s_{\mathbf{X}}$ follows from $(X 3)$ and the induction hypothesis. Let $i=m-1$. Let

$$
\mathbf{B}=\left[X_{1}, \ldots, X_{m-2}\right], \quad A=X_{m-1}, \quad C=X_{m}
$$

so that $\mathbb{B}=X_{1} \cdots X_{m-2} \cdot B y\left(Z^{\prime \prime}\right)$ we have

$$
\begin{aligned}
& s_{\mathbf{X}}=s_{B_{1} ; \ldots ; B_{m-2} ; A ; C} \\
& =\sum_{j=1}^{m-2}{\stackrel{s}{b_{j}}}_{b_{j}^{\wedge} a c}^{a c}+s_{a}^{b c}+s_{c}^{b a} \\
& +\sum_{j=1}^{m-3}{\underset{s}{B_{j+1}^{\prime} ; B_{j+1}}}_{b_{j}^{\prime \prime} a c}^{{ }_{j}^{\prime}}+s_{\mathbb{B} ; A}^{c}+s_{\mathbb{B} A ; C}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{s} \mathbf{X}^{\sigma}=s_{B_{1} ; \ldots ; B_{m-2} ; C ; A} \\
& =\sum_{j=1}^{m-2} s_{b_{j}}^{b_{j}^{\wedge} c a}+s_{c}^{b a}+s_{a}^{b c} \\
& +\sum_{j=1}^{m-3} s_{B_{j}^{\prime} ; B_{j+1}}^{b_{j+1}^{\prime \prime} c a}+s_{\mathbb{B} ; C}^{a}+s_{\mathbb{B} C ; A} \\
& -\sum_{j=1}^{m-3}{\stackrel{s}{b_{1}, \ldots, b_{j} ; b_{j+1}}}_{b_{j+1}^{\prime \prime} c a}^{s_{1}}-s_{b_{1}, \ldots, b_{m-2} ; c}^{a}-s_{b_{1}, \ldots, b_{m-2}, c ; a} .
\end{aligned}
$$

Hence we need to show that

$$
\begin{aligned}
& s_{\mathbb{B} ; A}^{c}+s_{\mathbb{B} A ; C}-s_{b_{1}, \ldots, b_{m-2} ; a}^{c}-s_{b_{1}, \ldots, b_{m-2}, a ; c} \\
& \quad=s_{\mathbb{B} ; C}^{a}+s_{\mathbb{B} C ; A}-s_{b_{1}, \ldots, b_{m-2} ; c}^{a}-s_{b_{1}, \ldots, b_{m-2}, c ; a}
\end{aligned}
$$

this follows from:

$$
\begin{aligned}
& s_{b_{1}, \ldots, b_{m-2}, a ; c}+s_{b_{1}, \ldots, b_{m-2} ; a}^{c} \\
& \quad=s_{a, b_{1}, \ldots, b_{m-2} ; c}+s_{a ; b_{1}, \ldots, b_{m-2}}^{c} \text { by }\left(P_{1}^{\prime}\right),\left(P_{1}^{\prime \prime}\right) \\
& \quad=s_{a ; b_{1}, \ldots, b_{m-2}, c}+s_{b_{1}, \ldots, b_{m-2} ; c}^{a}+s_{a}^{b c}-s_{a ; b, c}-s_{c}^{a b}+s_{a, b ; c} \text { by }\left(Z_{1}^{\prime \prime}\right) \\
& =s_{b_{1}, \ldots, b_{m-2}, c ; a}+s_{b_{1}, \ldots, b_{m-2} ; c}^{a}+s_{A \mathbb{B} ; C}+s_{A ; \mathbb{B}}^{c}-s_{A ; \mathbb{B} C}-s_{\mathbb{B} ; C}^{a} \text { by }\left(Z_{1}^{\prime \prime}\right) \\
& \quad=s_{b_{1}, \ldots, b_{m-2}, c ; a}+s_{b_{1}, \ldots, b_{m-2} ; c}^{a}+s_{\mathbb{B} A ; C}+s_{\mathbb{B} ; A}^{c}-s_{\mathbb{B} C ; A}-s_{\mathbb{B} ; C}^{a} .
\end{aligned}
$$

This proves $\left(P 3^{\prime}\right)$.
We now turn to (Z3). First we prove

$$
\begin{align*}
& s_{X ; Y_{1} \cdots Y_{\ell}}= \sum_{i=0}^{\ell-1} s_{X Y_{i}^{\prime} ; Y_{i+1}}^{y_{i+1}^{\prime \prime}}+\sum_{i=2}^{\ell} s_{y_{i}}^{x y_{i}^{\wedge}}-\sum_{i=1}^{\ell-1} s_{x, y_{i}^{\prime} ; y_{i+1}}^{y_{i+1}^{\prime \prime}} \\
&-(\ell-1) s_{x}^{y}-\sum_{i=1}^{\ell-1} s_{Y_{i}^{\prime} ; Y_{i+1}}^{x y_{i+1}^{\prime \prime}}+\sum_{i=1}^{\ell-1} s_{i+1}^{y_{i+1}^{\prime \prime}}  \tag{1}\\
& x ; y_{i}^{\prime}, y_{i+1}
\end{align*}
$$

for all $X, Y_{1}, \ldots, Y_{\ell} \in T_{1}$. This is trivial if $\ell=1$ and reduces to $\left(Z_{1}^{\prime \prime}\right)$ if $\ell=2$. For $\ell>2$ we proceed by induction on $\ell$. Let $\mathbf{B}=\left[Y_{1}, \ldots, Y_{\ell-1}\right]$, so that $b_{i}^{\prime \prime}=y_{i+1} \cdots y_{\ell-1}$ and $b_{i}^{\wedge}=y_{1} \cdots y_{i-1} y_{i+1} \cdots y_{\ell-1}, y_{i}^{\prime \prime}=b_{i}^{\prime \prime} y_{\ell}$, and $y_{i}^{\wedge}=b_{i}^{\wedge} y_{\ell}$, for all $i<\ell$. With $A=X, B=Y_{1} \cdots Y_{\ell-1}$, and $C=Y_{\ell},\left(Z_{1}^{\prime \prime}\right)$ yields

$$
\begin{aligned}
s_{X ; Y_{1} \cdots Y_{\ell}}= & s_{X ; B}^{\ell_{\ell}}+s_{X B ; Y_{\ell}}+s_{y_{\ell}}^{x b}-s_{x, b ; y_{\ell}}-s_{B ; Y_{\ell}}^{x}-s_{x}^{b y_{\ell}}+s_{x ; b, y_{\ell}} \\
= & \left(\sum_{i=0}^{\ell-2} s_{X Y_{i}^{\prime} ; Y_{i+1}}^{b_{i+1}^{\prime \prime}}+\sum_{i=2}^{\ell-1} s_{y_{i}}^{x l_{i}^{\wedge}}-\sum_{i=1}^{\ell-2} s_{x, y_{i}^{\prime} ; y_{i+1}}^{b_{i+1}^{\prime \prime}}\right. \\
& -(\ell-2) s_{x}^{b}-\sum_{i=1}^{\ell-2} s_{Y_{i}^{\prime} ; Y_{i+1}}^{x b_{i+1}^{\prime \prime}}+\sum_{i=1}^{\left.\ell-2 s_{x ; y_{i}^{\prime}, y_{i+1}}^{b_{i+1}^{\prime \prime}}\right)^{y_{\ell}}} \\
& +s_{X B ; Y_{\ell}}+s_{y_{\ell}}^{x b}-s_{x, b ; y_{\ell}}-s_{B ; Y_{\ell}}^{x}-s_{x}^{b y_{\ell}}+s_{x ; b, y_{\ell}}
\end{aligned}
$$

by the induction hypothesis

$$
\begin{aligned}
= & \sum_{i=0}^{\ell-2} s_{X Y_{i}^{\prime} ; Y_{i+1}^{\prime}}^{y_{i+1}^{\prime \prime}}+\sum_{i=2}^{\ell-1} s_{y_{i}}^{x y_{i}^{\wedge}}-\sum_{i=1}^{\ell-2} s_{x, y_{i}^{\prime} ; y_{i+1}^{\prime \prime}}^{y_{i+1}^{\prime}} \\
& -(\ell-2) s_{x}^{y}-\sum_{i=1}^{\ell-2} s_{Y_{i}^{\prime}}^{x y_{i+1}^{\prime \prime}, Y_{i+1}}+\sum_{i=1}^{\ell-2} s_{x ; y_{i}^{\prime}, y_{i+1}^{\prime}}^{y_{i+1}^{\prime \prime}} \\
& +s_{X Y_{\ell-1}^{\prime} ; Y_{\ell}^{\prime}}+s_{y_{\ell}}^{x y_{\ell-1}^{\prime}}-s_{x, y_{\ell-1}^{\prime} ; y_{\ell}}-s_{Y_{\ell-1}^{x} ;}^{x} ; Y_{\ell}^{\prime}-s_{x}^{y_{\ell}^{\prime}}+s_{x ; y_{\ell-1}^{\prime}, y_{\ell}} \\
= & \sum_{i=0}^{\ell-1} s_{X Y_{i}^{\prime} ; Y_{i+1}^{\prime \prime}}^{y_{i+1}^{\prime \prime}}+\sum_{i=2}^{\ell} s_{y_{i}}^{x y_{i}^{\wedge}}-\sum_{i=1}^{\ell-1} s_{x, y_{i}^{\prime} ; y_{i+1}^{\prime \prime}}^{\prime \prime} \\
& -(\ell-1) s_{x}^{y}-\sum_{i=1}^{\ell-1} s_{Y_{i}^{\prime} ; Y_{i+1}^{\prime}}^{x y_{i+1}^{\prime \prime}}+\sum_{i=1}^{\ell-1} s_{x i y_{i}^{\prime}, y_{i+1}}^{y_{i+1}^{\prime \prime}}
\end{aligned}
$$

and $\left(Z_{1}^{*}\right)$ holds for $\ell$.
We now prove (Z3). With $n=1$ and $\mathbf{X}_{1}=\mathbf{X},(Z 3)$ reads $s_{\mathbb{X}}=s_{X}$; this follows from ( $Z^{\prime}$ ) since $p \mathbb{X}=p X$.

For $n>1$ we proceed by induction on $n$. Let $\mathbf{X}_{k}=\left[X_{k 1}, \ldots, X_{k m_{k}}\right]$, so that $\mathbb{X}_{k}=X_{k 1} \cdots X_{k m_{k}}$ and $X_{k}=\left[x_{k 1}, \ldots, x_{k m_{k}}\right]$ (with $x_{k j}=p X_{k j}$ ). The left hand side of $(Z 3)$ is

$$
\text { LHS }(n)=s_{\mathbf{X}_{1} \ldots \mathbf{X}_{n}}=s_{X_{11} ; \ldots ; X_{1 m_{1}} ; \ldots ; X_{n 1} ; \ldots ; X_{n m_{n}}}
$$

the right hand side is

$$
\begin{aligned}
R H S(n)= & s_{\mathbb{X}_{1} ; \ldots ; \mathbb{X}_{n}}-s_{X_{1} ; \ldots ; X_{n}}+\sum_{k=1}^{n} s_{\mathbf{X}_{k}}^{x_{k}} \\
= & s_{X_{11} \ldots X_{1 m_{1}} ; \ldots ; X_{n 1} \cdots X_{n m_{n}}} \\
& -s_{x_{11} \cdots x_{1 m_{1}} ; \ldots ; x_{n 1} \cdots x_{n m_{n}}} \\
& +\sum_{k=1}^{n} s_{X_{k 1} ; \ldots ; X_{k m_{k}}} .
\end{aligned}
$$

We use ( $Z^{\prime \prime}$ ), then separate the terms which contain $n$ :

$$
\begin{aligned}
& \text { LHS(n) }=\sum_{k=1}^{n} \sum_{j=1}^{m_{k} s_{x_{k j}}{ }_{k}^{\hat{k}}\left(x_{k}\right)_{j}^{\hat{j}}} \\
& +\sum_{j=1}^{m_{1}-1} s_{\left(X_{1}\right)_{j}^{\prime} ; X_{1, j+1}}^{\left(x_{1}\right)_{j+1}^{\prime \prime} x_{1}^{\prime \prime}}+\sum_{k=2}^{n} \sum_{j=0}^{m_{k}-1}{\underset{s}{X_{k-1}^{\prime}}\left(x_{k}\right)_{j+1}^{\prime \prime} x_{k}^{\prime \prime}}_{\left(X_{k}\right)_{j}^{\prime} ; X_{k, j+1}} \\
& -\sum_{j=1}^{m_{1}-1 \begin{array}{c}
\left.\left(x_{1}\right)\right)_{j+1}^{\prime \prime} x_{1}^{\prime \prime} \\
s_{x_{11}}, \ldots, x_{1 j} ; x_{1, j+1}
\end{array}-\sum_{k=2}^{n} \sum_{j=0}^{m_{k}-1\left(x_{k}\right)_{x_{11}}^{\prime \prime}, \ldots, x_{k j} ; x_{k, j+1}^{\prime \prime}}, ~}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{n-1} \sum_{j=1}^{m_{k}}{ }_{1}^{x_{x_{k j}} x_{k}^{\wedge}\left(x_{k}\right) \hat{j}} \\
& +\sum_{j=1}^{m_{1}-1} s_{\left(X_{1}\right)_{j}^{\prime} ; X_{1, j+1}}^{\left(x_{1}\right) \prime \prime}+\sum_{k=2}^{n-1} \sum_{j=0}^{m_{k}-1} s_{X_{k-1}\left(x_{k}\right)_{j+1}^{\prime \prime} x_{k}^{\prime \prime}}^{s_{k}^{\prime}}{ }_{j}^{\prime \prime} ; X_{k, j+1}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=1}^{m_{n} x_{n-1}^{\prime} s_{n-1}^{\prime}\left(x_{n}\right)_{j}^{\hat{j}}}
\end{aligned}
$$

$$
\begin{align*}
& =\operatorname{LHS}(n-1)^{x_{n}}+\sum_{j=1}^{m_{n} s_{x_{n-1}}^{\prime}\left(x_{n}\right)_{j}^{\wedge}}  \tag{1}\\
& +\sum_{j=0}^{m_{n}-1} \stackrel{\left(x_{n}\right){ }_{j+1}^{\prime \prime}}{s_{X_{n-1}^{\prime}}^{\prime}\left(X_{n}\right)_{j}^{\prime} ; X_{n, j+1}}-\sum_{j=0}^{m_{n}-1} \begin{array}{c}
\left(x_{n}\right)_{j+1}^{\prime \prime} \\
s_{x_{11}, \ldots, x_{n j} ; x_{n, j+1}},(2),(3)
\end{array}  \tag{3}\\
& R H S(n)=\sum_{k=1}^{n} s_{X_{k}}^{x_{k}}+\sum_{k=1}^{n-1} s_{\mathbb{X}_{k}^{\prime} ; \mathbb{X}_{k+1}^{\prime \prime}}^{x_{k+1}}-\sum_{k=1}^{n-1} \begin{array}{c}
x_{k+1}^{n} \\
s_{x_{1}, \ldots, x_{k} ; x_{k+1}}
\end{array} \\
& -\sum_{k=1}^{n} s_{X_{k}}^{x_{k}^{\wedge}}-\sum_{k=1}^{n-1} \begin{array}{c}
x_{k+1}^{\prime \prime} \\
s_{X_{k}^{\prime}: X_{k+1}}^{\prime}
\end{array}+\sum_{k=1}^{n-1} \begin{array}{c}
x_{k}^{\prime \prime} \\
s_{x_{1}, \ldots, x_{k} ; x_{k+1}}
\end{array} \\
& +\sum_{k=1}^{n}\left(\sum_{j=1}^{m_{k}}\left(x_{x_{k j}}^{\left(x_{k}\right)}\right)_{j}^{x^{x}}\right)^{\hat{k}}+\sum_{k=1}^{n}\left(\sum_{j=1}^{m_{k}-1} s_{\left(X_{k} x_{k}\right)_{j+1}^{\prime} ; X_{k, j+1}}^{x_{k}}\right)^{x_{k}} \\
& -\sum_{k=1}^{n}\left(\sum_{j=1}^{m_{k}-1} \begin{array}{c}
\left(x_{k}\right)_{j+1}^{n} s_{x_{k 1}, \ldots, x_{k j} ; x_{k, j+1}}
\end{array}\right)^{x_{k}^{\hat{k}}} \\
& =\sum_{k=1}^{n-1} s_{\mathbb{X}_{k}}^{x_{k}}+\sum_{k=1}^{n-2} s_{\mathbb{X}_{k}^{\prime} ; \mathbb{X}_{k+1}^{\prime \prime}}^{x_{k+1}} \\
& -\sum_{k=1}^{n-1} s_{x_{k}}^{\hat{x_{k}}}-\sum_{k=1}^{n-2} s_{X_{k}^{\prime} ; X_{k+1}^{\prime \prime}}^{x_{k}^{\prime \prime}}
\end{align*}
$$

$$
\begin{aligned}
& -\sum_{k=1}^{n-1}\left(\sum_{j=1}^{m_{k}-1} \begin{array}{l}
\left(x_{k}\right)_{j+1}^{\prime \prime} \\
s_{x_{k 1}, \ldots, x_{k j} ; x_{k, j+1}}^{\prime}
\end{array}\right)^{x^{\hat{k}}} \\
& +s_{\mathbb{X}_{n}}^{x_{n-1}^{\prime}}+s_{\mathbb{X}_{n-1}^{\prime}} ; \mathbb{X}_{n}-s_{X_{n-1}}^{x_{n}^{\prime}}-s_{X_{n-1}^{\prime}} ; X_{n} \\
& +\sum_{j=1}^{\left.m_{n}\left(x_{n}\right)_{n_{j}}\right)_{j}^{\wedge} x_{n-1}^{\prime}}+\sum_{j=1}^{m_{n}-1} \begin{array}{l}
\left(x_{n}\right)_{j+1}^{\prime \prime} x_{n-1}^{\prime} \\
s_{\left(X_{n}\right)_{j}^{\prime} ; X_{n, j+1}}
\end{array} \\
& -\sum_{j=1}^{m_{n}-1} \begin{array}{l}
\left(x_{n}\right)_{j+1}^{\prime \prime} x_{n-1}^{\prime} \\
s_{x_{n 1}}, \ldots, x_{n j} ; x_{n, j+1}
\end{array}
\end{aligned}
$$

$$
\begin{align*}
= & R H S(n-1)^{x_{n}} \\
& +s_{\mathbb{X}_{n}}^{x_{n-1}^{\prime}}+s_{\mathbb{X}_{n-1}^{\prime} ; \mathbb{X}_{n}}-s_{X_{n}}^{x_{n-1}^{\prime}}-s_{X_{n-1}^{\prime} ; X_{n}}(\mathbf{A}),(\mathbf{B}),(\mathbf{C}),(\mathbf{D}) \\
& +\sum_{j=1}^{m_{n}} s_{x_{n j}}^{\left(x_{n}\right)_{j}^{\wedge} x_{n-1}^{\prime}}+\sum_{j=1}^{m_{n}-1} s_{\left(x_{n}\right)_{j+1}^{\prime} x_{n-1}^{\prime}}^{\left(x_{n}^{\prime} ; X_{n, j+1}^{\prime}\right.}  \tag{1}\\
& -\sum_{j=1}^{m_{n}-1} s_{x_{n 1}, \ldots, x_{n j} ; x_{n, j+1}}^{\left(x_{n}\right)_{j+1}^{\prime \prime} x_{n-1}^{\prime}} \tag{F}
\end{align*}
$$

Since $L H S(n-1)=R H S(n-1)$ by the induction hypothesis, it remains to show that

$$
(\mathbf{2})-(\mathbf{3})=(\mathbf{A})+(\mathbf{B})-(\mathbf{C})-(\mathbf{D})+(\mathbf{E})-(\mathbf{F})
$$

$\operatorname{By}\left(Z^{\prime}\right), s_{\mathbb{X}_{n}}=s_{x_{n}}=s_{X_{n}} ;$ hence $(\mathbf{A})=(\mathbf{C}) . \operatorname{By}\left(Z *_{1}\right)$,

$$
-\sum_{j=1}^{m_{n}-1} \underset{s_{x_{n-1}^{\prime}}^{\left(x_{n}\right)}\left(x_{n}\right)_{j}^{\prime} ; x_{n, j+1}^{\prime \prime}}{\left(m_{n}-1\right) s_{x_{n-1}^{\prime}}^{x_{n}},-\left(m^{\prime}\right.}
$$

$$
\begin{aligned}
& -\sum_{j=1}^{m_{n}-1} s_{\left(X_{n}\right)_{j}^{\prime} ; X_{n, j+1}}^{x_{n-1}^{\prime}\left(x_{n}\right)_{j+1}^{\prime \prime}}+\sum_{j=1}^{m_{n}-1} s_{\left.x_{n-1}^{\prime} ;\left(x_{n}\right)_{j}^{\prime}\right)_{j+1}^{\prime \prime}}^{\sum_{j=0}^{m_{n}-1} s_{x_{11}, \ldots, x_{n j} ; x_{n, j+1}\left(x_{n}\right)_{j+1}^{\prime \prime}}-\sum_{j=2}^{m_{n}} s_{x_{n j}}^{x_{n-1}^{\prime}\left(x_{n}\right)_{j}^{\wedge}}}
\end{aligned}
$$

$$
+\sum_{j=1}^{m_{n}-1} s_{x_{n-1}^{\prime},\left(x_{n}\right)_{j}^{\prime} ; x_{n, j+1}}^{\left(x_{n}\right)_{j+1}^{\prime \prime}}+\left(m_{n}-1\right) s_{x_{n-1}^{\prime}}^{x_{n}}
$$

$$
+\sum_{j=1}^{m_{n}-1} s_{x_{n 1}, \ldots, x_{n j} ; x_{n, j+1}^{\prime}}^{x_{n-1}^{\prime}\left(x_{n}\right)_{j+1}^{\prime \prime}}-\sum_{j=1}^{m_{n}-1} s_{x_{n-1}^{\prime} ;\left(x_{n}\right)_{j}^{\prime}, x_{n, j+1}}^{\left(x_{n}\right)_{j+1}^{\prime \prime}}
$$

Thus $(\mathbf{B})-(\mathbf{D})=(\mathbf{2})-(\mathbf{E})-(\mathbf{3})+(\mathbf{F}) ;$ therefore $(\mathbf{2})-(\mathbf{3})=(\mathbf{A})+(\mathbf{B})-$ $(\mathbf{C})-(\mathbf{D})+(\mathbf{E})-(\mathbf{F})$ and $(Z 3)$ is proved.

$$
\begin{aligned}
& s_{X_{n-1}^{\prime}} ; \mathbb{X}_{n}-s_{X_{n-1}^{\prime} ; X_{n}} \\
& =s_{\mathbb{X}_{n-1}^{\prime}} ; X_{n 1} \cdots X_{n m_{n}}-s_{x_{11}, \ldots, x_{n-1, m_{n-1}} ;\left[x_{n 1}\right] \ldots\left[x_{n m_{n}}\right]} \\
& =\sum_{j=0}^{m_{n}-1} s_{X_{n-1}^{\prime}\left(x_{n}\right)_{j}^{\prime} ; X_{n, j+1}^{\prime \prime}}^{\left(x_{n+1}\right.}+\sum_{j=2}^{m_{n} s_{x_{n j}}^{x_{n-1}^{\prime}\left(x_{n}\right)_{j}^{\wedge}}, ~\left(x_{n}\right.}
\end{aligned}
$$

5. It follows from Lemmas 2.1 and 2.2 that $Z^{3}(S, \mathcal{A})$ is isomorphic to the group $Z_{1}(S, \mathcal{A})$ of all $s \in C_{1}(S, \mathcal{A})$ which satisfy $\left(P_{1}^{\prime}\right),\left(P_{1}^{\prime \prime}\right),\left(Z_{1}^{\prime}\right)$, and $\left(Z_{1}^{\prime \prime}\right)$; the proof of 2.2 shows that these properties imply $\left(Z_{1}^{*}\right)$.

Lemma 2.3. Every $s \in Z_{1}(S, \mathcal{A})$ satisfies
$\left(Z_{1}^{* *}\right)$

$$
\begin{aligned}
s_{X ; Y}= & \sum_{i=0}^{\ell-1} s_{X Y_{\mid i} ; y_{i+1}}^{\prime \prime}+\sum_{i=2}^{\ell} s_{y_{i}}^{x y_{i}^{\wedge}}-\sum_{i=1}^{\ell-1} s_{x, y_{i}^{\prime} ; y_{i+1}^{\prime}}^{y_{i+1}^{\prime \prime}} \\
& -(\ell-1) s_{x}^{y}-\sum_{i=1}^{\ell-1} s_{Y_{\mid i} ; y_{i+1}}^{x y_{i+1}^{\prime \prime}}+\sum_{i=1}^{\ell-1} s_{x ; y_{i}^{\prime}, y_{i+1}}^{y_{i+1}^{\prime \prime}}
\end{aligned}
$$

for all $X, Y=\left[y_{1}, \ldots, y_{\ell}\right] \in T_{1}$, with $Y_{\mid i}=\left[y_{1}, \ldots, y_{i}\right]$.
Proof. Property $\left(Z_{1}^{* *}\right)$ is the particular case of $\left(Z_{1}^{*}\right)$ where $Y_{i}=\left[y_{i}\right]$ for all $i$.

This permits further trimming. Since $s_{x ; y, z}=s_{y, z ; x},\left(Z_{1}^{* *}\right)$ shows that each $s \in Z_{1}$ is uniquely determined by its values $s_{x}$ with $x \in S$ and $s_{X ; y}$ with $X \in T_{1}, y \in S$. Let

$$
C_{2}(S, \mathcal{A})=\left(\prod_{x \in S} \mathcal{A}_{x}\right) \times\left(\prod_{X \in T_{1}, y \in S} \mathcal{A}_{(p X) y}\right)
$$

be the abelian group of all families

$$
\left.c=\left(\left(c_{x}\right)_{x \in S}\right),\left(c_{X ; y}\right)_{X \in T_{1}, y \in S}\right)
$$

such that $c_{x} \in \mathcal{A}_{x}$ and $c_{X ; y} \in \mathcal{A}_{(p X) y}$ for all $x, y \in S, X \in T_{1}$. Let $\Gamma_{2}$ : $Z_{1}(S, \mathcal{A}) \longrightarrow C_{2}(S, \mathcal{A})$ be the trimming homomorphism defined by $\left(\Gamma_{2} s\right)_{x}=$ $s_{x},\left(\Gamma_{2} s\right)_{X ; y}=s_{X ; y}$ for all $x, y \in S, X \in T_{1}$. Lemma 2.3 implies that $\Gamma_{2}$ is injective.

Lemma 2.4. Let $s \in C_{2}(S, \mathcal{A})$. Then $s \in \operatorname{Im} \Gamma_{2}$ if and only if it has properties
$\left(Z_{1}^{\prime}\right) \quad s_{x ; y}=s_{x}^{y}+s_{y}^{x}$
$\left(P_{2}^{\prime}\right) s_{[x] Y ; z}-s_{x, y ; z}-s_{Y ; z}^{x}+s_{z}^{x y}=s_{[z] Y ; x}-s_{z, y ; x}-s_{Y ; x}^{z}+s_{x}^{z y}$
$\left(P_{2}^{\prime \prime}\right)$

$$
s_{X^{\sigma} ; y}=s_{X ; y}
$$

$\left(Z_{2}\right) \quad s_{w x, y ; z}+s_{x y, z ; w}+s_{w, x ; y z}+s_{y}^{w x z}+s_{z}^{w x y}+s_{x, y ; w}^{z}+s_{y, z ; x}^{w}+s_{w x}^{y z}$

$$
=s_{y, z ; w x}+s_{w, x y ; z}+s_{x, y z ; w}+s_{w}^{x y z}+s_{x}^{w y z}+s_{w, x ; y}^{z}+s_{x, y ; z}^{w}+s_{y z}^{w \boldsymbol{x}}
$$

for all $w, x, y, z \in S, X, Y \in T_{1}$, and suitable $\sigma$.

Proof. First we show that every long 3-cocycle $s \in Z^{3}$ has properties $\left(Z_{2}\right)$ and $\left(P_{2}^{\prime}\right)$.

Let $w, x, y, z \in S$. With $A=[w], B=[x, y], C=[z],\left(Z_{1}^{\prime \prime}\right)$ reads (with sides exchanged)
(1) $s_{w, x, y ; z}+s_{w ; x, y}^{z}+s_{z}^{w x y}-s_{w, x y ; z}=s_{w ; x, y, z}+s_{x, y ; z}^{w}+s_{w}^{x y z}-s_{w ; x y, z}$.

With $A=[w], B=[x], C=[y, z],\left(Z_{1}^{\prime \prime}\right)$ reads
(2) $s_{w ; x, y, z}+s_{x ; y, z}^{w}+s_{w}^{x y z}-s_{w ; x, y z}=s_{w, x ; y, z}+s_{w ; x}^{y z}+s_{y z}^{w x}-s_{w, x ; y z}$.

With $A=[w, x], B=[y], C=[z],\left(Z_{1}^{\prime \prime}\right)$ reads
(3) $s_{w, x ; y, z}+s_{y ; z}^{w x}+s_{w x}^{y z}-s_{w x ; y, z}=s_{w, x, y ; z}+s_{w, x ; y}^{z}+s_{z}^{w x y}-s_{w x, y ; z}$.

Adding these equalities yields

$$
\begin{aligned}
& \underline{s_{w, x, y ; z}}+s_{w ; x, y}^{z}+\underline{s_{z}^{w x y}}-s_{w, x y ; z} \\
& \quad+\underline{s_{w ; x, y, z}}+s_{x ; y, z}^{w}+\underline{s_{w}^{x y z}}-s_{w ; x, y z} \\
& \quad+\underline{s_{w, x ; y, z}}+s_{y ; z}^{w x}+s_{w x}^{y z}-s_{w x ; y, z} \\
& =\underline{s_{w ; x, y, z}}+s_{x, y ; z}^{w}+\underline{s_{w}^{x y z}}-s_{w ; x y, z} \\
& \quad+\underline{s_{w, x ; y, z}}+s_{w ; x}^{y z}+s_{y z}^{w x}-s_{w, x ; y z} \\
& \quad+\underline{s_{w, x, y ; z}}+s_{w, x ; y}^{z}+\underline{s_{z}^{w x y}}-s_{w x, y ; z}
\end{aligned}
$$

cancelling the underlined terms, and applying $\left(Z_{1}^{\prime}\right)$ to $s_{w ; x}$ and $s_{y ; z}$, yields

$$
\begin{aligned}
& s_{w ; \boldsymbol{x}, y}^{z}-s_{w, x y ; z}+s_{x, y, z}^{w}-s_{w ; x, y z}+s_{y}^{w \boldsymbol{x} z}+s_{z}^{w x y}+s_{w x}^{y z}-s_{w x ; y, z} \\
& \quad=s_{x, y ; z}^{w}-s_{w ; x y, z}+s_{w}^{x y z}+s_{x}^{w y z}+s_{y z}^{w x}-s_{w, \boldsymbol{x} ; y z}+s_{w, \boldsymbol{x} ; y}^{z}-s_{w \boldsymbol{x}, y ; z}
\end{aligned}
$$

since $s_{A ; B}=s_{B ; A}$, this yields $\left(Z_{2}\right)$.
Now let $x, z \in S, Y \in T_{1}$. With $m=3, X_{1}=[x], X_{2}=Y$, and $X_{3}=[z],\left(Z^{\prime \prime}\right)$ reads

$$
\begin{aligned}
s_{x ; Y ; z} & =s_{x}^{y z}+s_{y}^{x z}+s_{z}^{x y}+s_{x ; Y}^{z}+s_{[x] Y ; z}-s_{x ; y}^{z}-s_{x, y ; z} \\
& =s_{z}^{x y}+s_{Y ; x}^{z}+s_{[x] Y ; z}-s_{x, y ; z},
\end{aligned}
$$

since $s_{x}^{y z}+s_{y}^{x z}=s_{x ; y}^{z}$ and $s_{x ; Y}=s_{Y ; x}$. Exchanging $x$ and $z$ yields

$$
s_{z ; Y ; x}=s_{x}^{y z}+s_{Y ; z}^{x}+s_{[z] Y ; x}-s_{z, y ; x}
$$

Since $s_{x ; Y ; z}=s_{z ; Y ; x}$, we obtain

$$
s_{z}^{x y}+s_{Y ; x}^{z}+s_{[x] Y ; z}-s_{x, y ; z}=s_{x}^{y z}+s_{Y ; z}^{x}+s_{[z] Y ; x}-s_{z, y ; x}
$$

and $\left(P_{2}^{\prime}\right)$.
Thus every long 3 -cocycle $s \in Z^{3}$ has properties $\left(Z_{2}\right),\left(P_{2}^{\prime}\right),\left(Z_{1}^{\prime}\right)$ (which was proved before), and $\left(P_{2}^{\prime \prime}\right)$ (which follows from $\left(P_{1}^{\prime \prime}\right)$ and ultimately from $\left(P 3^{\prime \prime}\right)$ ). Hence every $t=\Gamma_{1} s \in Z_{1}$ has these properties, and so does every $\Gamma_{2} t$ with $t \in Z_{1}$.

Conversely let $c \in C_{2}(S, \mathcal{A})$ have properties $\left(P_{2}^{\prime}\right),\left(P_{2}^{\prime \prime}\right),\left(Z_{1}^{\prime}\right)$, and $\left(Z_{2}\right)$. Define $s_{x}=c_{x}$ for all $x \in S$ and

$$
\begin{aligned}
s_{X ; Y}= & \sum_{i=0}^{\ell-1} c_{X Y_{\mid i} ; y_{i+1}}^{y_{i+1}^{\prime \prime}}+\sum_{i=2}^{\ell} c_{y_{i}}^{x y_{i}^{\wedge}}-\sum_{i=1}^{\ell-1} c_{x, y_{i}^{\prime} ; y_{i+1}}^{y_{i+1}^{\prime \prime}} \\
& -(\ell-1) c_{x}^{y}-\sum_{i=1}^{\ell-1} c_{Y \mid i ; y_{i+1}}^{x y_{i+1}^{\prime \prime}}+\sum_{i=1}^{\ell-1} c_{y_{i+1}^{\prime}, y_{i+1} ; x}^{y_{i+1}^{\prime \prime}}
\end{aligned}
$$

for all $X, Y=\left[y_{1}, \ldots, y_{\ell}\right] \in T_{1}$ (where $Y_{\mid i}=\left[y_{1}, \ldots, y_{i}\right]$ ). This is according to $\left(Z_{1}^{* *}\right)$, except for the last term. If $\ell=1$, then $s_{X ; y}=c_{X ; y}$; therefore $s$ has properties $\left(P_{2}^{\prime}\right),\left(P_{2}^{\prime \prime}\right),\left(Z_{1}^{\prime}\right)$, and $\left(Z_{2}\right)$, and will satisfy $\Gamma_{2} s=c$.

By $\left(Z_{1}^{\prime}\right)$, we also have

$$
\begin{aligned}
s_{x ; y, z} & =c_{x ; y}^{z}+c_{x, y ; z}+c_{z}^{x y}-c_{x, y ; z}-c_{x}^{y z}-c_{y ; z}^{x}+c_{y, z ; x} \\
& =c_{x}^{y z}+c_{y}^{x z}+c_{z}^{x y}-c_{x}^{y z}-c_{y}^{x z}-c_{z}^{x y}+c_{y, z ; x} \\
& =c_{y, z ; x}
\end{aligned}
$$

for all $x, y, z \in S$. In particular,

$$
s_{x ; y, z}=s_{y, z ; x}
$$

for all $x, y, z \in S$. The definition of $s$ then shows that it has property $\left(Z_{1}^{* *}\right)$. Since $c$ satisfies $\left(P_{2}^{\prime \prime}\right)$ we have $s_{X^{\sigma} ; Y}=s_{X ; Y}$ for all $X, Y, \sigma ;\left(P_{1}^{\prime \prime}\right)$ follows from this property and $\left(P_{1}^{\prime}\right)$. It remains to prove that $s$ satisfies $\left(P_{1}^{\prime}\right)$ and $\left(Z_{1}^{\prime \prime}\right)$.

We begin with $\left(Z_{1}^{\prime \prime}\right)$. Let $A, B=\left[b_{1}, \ldots, b_{\ell}\right], C=\left[c_{1}, \ldots, c_{m}\right] \in T_{1}$. By $\left(Z_{1}^{* *}\right)$, the left hand side and right hand side of $\left(Z_{1}^{\prime \prime}\right)$ are:

$$
\begin{aligned}
& \text { LHS }=s_{A ; B C}+s_{B ; C}^{a}+s_{a}^{b c}-s_{a ; b, c}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=2}^{\ell} s_{b_{i}}^{a b \hat{i} c}+s_{c_{1}}^{a b c_{1} \hat{\imath}}+\sum_{j=2}^{m} s_{c_{j}}^{a b c_{j}^{\hat{1}}}
\end{aligned}
$$

$$
\begin{aligned}
& -(\ell-1) s_{a}^{b c}-s_{a}^{b c}-(m-1) s_{a}^{b c} \\
& -\sum_{i=1}^{\ell-1} s_{B_{i j} ; b_{i+1}}^{a b_{i+1}^{\prime \prime} c}-\sum_{j=0}^{m-1}{ }^{a b c_{j+1}^{\prime \prime}}{ }_{B C_{\mid j} ; c_{j+1}} \\
& +\sum_{i=1}^{\ell-1} \begin{array}{c}
b_{i+1}^{\prime \prime} s_{i+1}^{\prime} c \\
a ; b_{i}^{\prime}, b_{i+1}
\end{array}+s_{a ; b, c_{1}}^{c_{1}^{\prime \prime}}+\sum_{j=1}^{m-1} \begin{array}{c}
c_{j+1}^{\prime \prime} \\
s_{j ; b c_{j}^{\prime}, c_{j+1}}
\end{array} \\
& +\sum_{j=0}^{m-1} \stackrel{a c_{i+1}^{\prime \prime}}{s_{B C_{\mid j} ; c_{i+1}}}+\sum_{j=2}^{m} s_{c_{j}}^{a b c_{j}^{\wedge}}-\sum_{j=1}^{m-1 a c_{j+1}^{\prime \prime} s_{b, c_{j}^{\prime} ; c_{j+1}}}
\end{aligned}
$$

$$
\begin{aligned}
& +s_{a}^{b c}-s_{a ; b, c}, \\
& \text { RHS }=s_{A B ; C}+s_{A ; B}^{c}+s_{c}^{a b}-s_{a, b ; c}
\end{aligned}
$$

$$
\begin{align*}
& -(m-1) s_{a b}^{c}-\sum_{j=1}^{m-1}{ }^{s}{ }_{C_{\mid j} ; c_{j+1}}^{\prime \prime}+\sum_{j=1}^{m-1} s_{a b ; c_{j}^{\prime}, c_{j+1}}^{c_{j+1}^{\prime \prime}}(\mathbf{q}),(\mathbf{1 1}),(\mathbf{r}) \\
& +\sum_{i=0}^{\ell-1} s_{A B_{1 i} ; b_{i+1}}^{b_{i+1}^{\prime \prime} c}+\sum_{i=2}^{\ell} s_{b_{i}}^{a b \hat{b_{i}} c}-\sum_{i=1}^{\ell-1} s_{a, b_{i}^{\prime} ; b_{i+1}}^{b_{i+1}^{\prime \prime} c} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& +s_{c}^{a b}-s_{a, b ; c} . \tag{6}
\end{align*}
$$

As indicated, 13 terms of $L H S$ cancel with each other or with 9 terms of $R H S$, leaving the equality

$$
\begin{aligned}
& (\mathbf{a})-(\mathbf{b})-(\mathbf{c})-(\mathbf{d})+(\mathbf{g})+(\mathbf{h})+(\mathbf{j})-(\mathbf{k})-(\mathbf{l})+(\mathbf{m})-(\mathbf{n}) \\
& =-(\mathbf{p})-(\mathbf{q})+(\mathbf{r})+(\mathbf{s})-(\mathbf{t}) ;
\end{aligned}
$$

equivalently,

$$
\begin{aligned}
& (\mathbf{a})+(\mathbf{g})+(\mathbf{h})+(\mathbf{j})+(\mathbf{m})+(\mathbf{p})+(\mathbf{q})+(\mathbf{t}) \\
& =(\mathbf{b})+(\mathbf{c})+(\mathbf{d})+(\mathbf{k})+(\mathbf{l})+(\mathbf{n})+(\mathbf{r})+(\mathbf{s}) .
\end{aligned}
$$

With $w=a, x=b, y=c_{j}^{\prime}$, and $z=c_{j+1},\left(Z_{2}\right)$ reads

$$
\begin{aligned}
& s_{a b, c_{j}^{\prime} ; c_{j+1}}+s_{b c_{j}^{\prime}, c_{j+1} ; a}+s_{a, b ; c_{j}^{\prime} c_{j+1}}+s_{c_{j}^{\prime}}^{a b c_{j+1}} \\
& \quad \begin{array}{l}
a b c_{j}^{\prime} \\
\quad+s_{c_{j+1}}^{c_{j+1}}+s_{b, c_{j}^{\prime} ; a}+s_{c_{j}^{\prime}, c_{j+1} ; b}^{a}+s_{a b}^{c_{j}^{\prime} c_{j+1}} \\
\quad=s_{c_{j}^{\prime}, c_{j+1} ; a b}+s_{a, b c_{j}^{\prime} ; c_{j+1}}+s_{b, c_{j}^{\prime} c_{j+1} ; a}+s_{a}^{b c_{j}^{\prime} c_{j+1}} \\
\quad+s_{b}^{a c_{j}^{\prime} c_{j+1}}+s_{a, b ; c_{j}^{\prime}}^{c_{j+1}}+s_{b, c_{j}^{\prime} ; c_{j+1}^{a}}^{a}+s_{c_{j}^{\prime} c_{j+1}}^{a b} .
\end{array} .
\end{aligned}
$$

Since $c_{j}^{\prime} c_{j+1}=c_{j+1}^{\prime}$, applying $\alpha_{a b c_{j+1}^{\prime}, c_{j+1}^{\prime \prime}}$ and adding from $j=1$ to $j=m-1$ yields

$$
\begin{aligned}
& \sum_{j=1}^{m-1} \stackrel{c_{j+1}^{\prime \prime}}{s_{j b, c_{j}^{\prime} ; c_{j+1}}^{\prime \prime}}+\sum_{j=1}^{m-1} s_{b c_{j}^{c}, c_{j+1} ; a}^{c_{j+1}^{\prime \prime}}+\sum_{j=1}^{m-2} s_{a, b ; c_{j+1}^{\prime}}^{c_{j+1}^{\prime \prime}} \quad(\mathbf{p}),(\mathbf{h}),(\mathbf{A}) \\
& +s_{a, b ; c}+s_{c_{1}}^{a b c_{1}^{\prime \prime}}+\sum_{j=2}^{m-1} \stackrel{a b c_{j}^{\prime \prime}}{s_{c_{j}^{\prime}}}+\sum_{j=1}^{m-1} s_{c_{j+1}}^{a b c_{j+1}^{\wedge}} \quad(\mathbf{t}),(\mathbf{a}),(\mathbf{B}),(\mathbf{j}) \\
& +s_{b, c_{1} ; a}^{c_{1}^{\prime \prime}}+\sum_{j=2}^{m-1} s_{b, c_{j}^{\prime} ; a}^{c^{\prime \prime}}+\sum_{j=1}^{m-1}{ }_{s}^{a c_{j}^{\prime \prime}}{ }_{c_{j}^{\prime}, c_{j+1} ; b}^{\prime \prime} \\
& +(m-1) s_{a b}^{c} \\
& (\mathbf{g}),(\mathbf{C}),(\mathbf{m})
\end{aligned}
$$

$$
\begin{align*}
& +s_{b, c ; a}+(m-1) s_{a}^{b c}+(m-1) s_{b}^{a c}+s_{a, b ; c_{1}}^{c_{1}^{\prime \prime}}  \tag{A}\\
& \text { (n), (d), ( } \ell \text { ), (b) }
\end{align*}
$$

$$
\begin{align*}
& +\sum_{j=1}^{m-2} \underset{c_{j+1}^{\prime}}{a b c_{j+1}^{\prime \prime}}+s_{c}^{a b} . \tag{B}
\end{align*}
$$

Since $s_{x ; y, z}=s_{y, z ; x}$ we obtain, after cancellations,

$$
\begin{aligned}
& (\mathbf{a})+(\mathbf{g})+(\mathbf{l})+(\mathbf{j})+(\mathbf{m})+(\mathbf{p})+(\mathbf{q})+(\mathbf{t}) \\
& =(\mathbf{b})+(\mathbf{c})+(\mathbf{d})+(\mathbf{k})+(\ell)+(\mathbf{n})+(\mathbf{r})+(\mathbf{s})
\end{aligned}
$$

and $\left(Z_{1}^{\prime \prime}\right)$ is proved.
Next we prove

$$
s_{A ; b}=s_{b ; A}
$$

for all $A=\left[a_{1}, \ldots, a_{\ell}\right] \in T_{1}, b \in S$. This follows from $\left(Z_{1}^{\prime}\right)$ if $\ell=1$ and was shown above if $\ell=2$. For $\ell>2$, we proceed by induction on $\ell$. Let $C=A[t]=\left[a_{1}, \ldots, a_{\ell}, t\right]$. We use $\left(Z_{1}^{* *}\right)$ and separate the terms containing $t$ :

$$
\begin{aligned}
s_{b ; C}= & \sum_{i=0}^{\ell} s_{[b] C_{\mid i} ; c_{i+1}}^{c_{i+1}^{\prime \prime}}+\sum_{i=2}^{\ell+1} s_{c_{i}}^{b c_{i}^{\wedge}}-\sum_{i=1}^{\ell} s_{i, c_{i}^{\prime} ; c_{i+1}}^{c_{i+1}^{\prime \prime}} \\
& -\ell s_{b}^{c}-\sum_{i=1}^{\ell}{ }^{b c_{i+1}^{\prime}} C_{i i}^{\prime} ; c_{i+1} \\
= & \sum_{i=1}^{\ell}{ }_{i=0}^{\ell-1} s_{b ; c_{i}^{\prime}, c_{i+1}}^{c_{i+1}^{\prime \prime}}{ }_{[b] A_{\mid i} ; a_{i+1}}^{\prime \prime}+\sum_{i=2}^{\ell} s_{a_{i}}^{b a_{i}^{\wedge} t}-\sum_{i=1}^{\ell-1} s_{b, a_{i}^{\prime}, a_{i+1}}^{s_{i+1}^{\prime \prime} t} \\
& -(\ell-1) s_{b}^{a t}-\sum_{i=1}^{\ell-1} s_{A_{\mid i} ; a_{i+1}}^{b a_{i+1}^{\prime \prime} t}+\sum_{i=1}^{\ell-1} s_{b ; a_{i}^{\prime}, a_{i+1}}^{a_{i+1}^{t}} \\
& +s_{[b] A ; t}+s_{t}^{b a}-s_{b, a ; t}-s_{b}^{a t}-s_{A ; t}^{b}+s_{b ; a, t} \\
= & s_{b ; A}^{t}+s_{[b] A ; t}+s_{t}^{b a}-s_{b, a ; t}-s_{b}^{a t}-s_{A ; t}^{b}+s_{b ; a, t} \\
= & s_{[b] A ; t}-s_{b, a ; t}-s_{A ; t}^{b}+s_{i}^{b a}+s_{t, a ; b}+s_{A ; b}^{t}-s_{b}^{a t}
\end{aligned}
$$

$$
\text { by the induction hypothesis and }\left(P_{2}^{\prime \prime}\right)
$$

$$
=s_{[t] A ; b}=s_{C ; b}
$$

by $\left(P_{2}^{\prime}\right)$ (with $x=b, Y=A, z=t$ ) and $\left(P_{2}^{\prime \prime}\right)$.
We can now prove $\left(P_{1}^{\prime}\right): s_{B ; A}=s_{A ; B}$ for all $A, B=\left[b_{1}, \ldots, b_{m}\right] \in$ $T_{1}$ by induction on $m$. Assume $s_{B ; A}=s_{A ; B}$ and let $C=B[t]=$ $\left[b_{1}, \ldots, b_{m}, t\right]$. We use $\left(Z_{1}^{* *}\right)$ and separate the terms containing $t$ :

$$
s_{A ; C}=\sum_{i=0}^{m} s_{A C_{i i} ; c_{i+1}}^{c_{i+1}^{\prime \prime}}+\sum_{i=2}^{m+1} s_{c_{i}}^{a c_{i}^{\wedge}}-\sum_{i=1}^{m} s_{a, c_{i}^{\prime}, c_{i+1}}^{c_{i}^{\prime \prime}}
$$

$$
\begin{aligned}
& -m s_{a}^{c}-\sum_{i=1}^{m} s_{C_{l i} ; c_{i+1}}^{a c_{i+1}^{\prime \prime}}+\sum_{i=1}^{m} s_{a ; c_{i}^{\prime}, c_{i+1}}^{c_{i+1}^{\prime \prime}} \\
= & \sum_{i=0}^{m-1} s_{A B_{\mid i} ; b_{i+1}}^{b_{i+1}^{\prime \prime} t}+\sum_{i=2}^{m} s_{b_{i}}^{a b_{i}^{\wedge} t}-\sum_{i=1}^{m-1} s_{a, b_{i}^{\prime} ; b_{i+1}}^{b_{i+1}^{\prime \prime} t} \\
& -(m-1) s_{a}^{b t}-\sum_{i=1}^{m-1}{ }^{s_{B}^{a b_{i i+1}^{\prime \prime}}{ }^{t} b_{i+1}}+\sum_{i=1}^{m-1} s_{a ; b_{i}^{\prime}, b_{i+1}}^{b_{i+1}^{\prime \prime} t} \\
& +s_{A B ; t}+s_{t}^{a b}-s_{a, b ; t}-s_{a}^{b t}-s_{B ; t}^{a}+s_{a ; b, t} \\
= & s_{A ; B}^{t}+s_{A B ; t}+s_{t}^{a b}-s_{a, b ; t}-s_{a}^{b t}-s_{B ; t}^{a}+s_{a ; b, t}
\end{aligned}
$$

Also,

$$
\begin{aligned}
s_{C ; A} & =s_{B[t] ; A}=s_{[t] B ; A} \text { since } s_{X}{ }^{\sigma} ; Y=s_{X ; Y} \\
& =s_{t ; B A}+s_{B ; A}^{t}+s_{t}^{b a}-s_{t ; b, a}-s_{t ; B}^{a}-s_{a}^{t b}+s_{t, b ; a} \text { by }\left(Z_{1}^{\prime \prime}\right) \\
& =s_{A ; B}^{t}+s_{A B ; t}+s_{t}^{a b}-s_{a, b ; t}-s_{a}^{b t}-s_{B ; t}^{a}+s_{a ; b, t}
\end{aligned}
$$

by the induction hypothesis and the case $m=1$. This proves $\left(P_{1}^{\prime}\right)$.
6. It follows from Lemmas 2.3 and 2.4 that $Z^{3}(S, \mathcal{A})$ is isomorphic to the group $Z_{2}(S, \mathcal{A})$ of all $s \in C_{2}(S, \mathcal{A})$ with properties $\left(P_{2}^{\prime}\right),\left(P_{2}^{\prime \prime}\right),\left(Z_{1}^{\prime}\right)$, and $\left(Z_{2}\right)$.

Property $\left(P_{2}^{\prime}\right)$ implies that $Z_{2}(S, \mathcal{A})$ can be trimmed further. For this we use an arbitrary total order relation $<$ on $S$ (which need not be compatible with the multiplication). Let $R$ be the set of all restricted sequences $r=\left(x_{1}, x_{2}, \ldots, x_{\ell}, y\right)$ of elements of $S$ such that $\ell \geq 2$ and $y \leq x_{1}, \ldots, x_{\ell}$ whenever $\ell \geq 3$ (there is no restriction if $\ell=2$ ). (One could require $x_{1} \geq x_{2} \geq \cdots \geq x_{\ell} \geq y$; but this would complicate the notation and the proofs.) As before, $p r=x_{1} \cdots x_{\ell} y$. Let

$$
C_{3}(S, \mathcal{A})=\left(\prod_{x \in S} \mathcal{A}_{x}\right) \times\left(\prod_{r \in R} \mathcal{A}_{p r}\right)
$$

The elements of $C_{3}(S, \mathcal{A})$ are families $c$ consisting of a family $c_{x} \in \mathcal{A}_{x}$ $(x \in S)$ and a family $c_{X ; y}=c_{x_{1}, \ldots, x_{\ell} ; y} \in \mathcal{A}_{x y}\left(\ell \geq 2,\left(x_{1}, \ldots, x_{\ell}, y\right) \in R\right)$. The trimming homomorphism $\Gamma_{3}: Z_{2}(S, \mathcal{A}) \longrightarrow C_{3}(S, \mathcal{A})$ is defined for each $s \in Z_{2}$ by: $\left(\Gamma_{3} s\right)_{x}=s_{x}$ for all $x \in S$, and $\left(\Gamma_{3} s\right)_{x_{1}, \ldots, x_{\ell} ; y}=s_{x_{1}, \ldots, x_{\ell} ; y}$ for all $\left(x_{1}, \ldots, x_{\ell}, y\right) \in R$.

Lemma 2.5. $\Gamma_{3}$ is injective.

Proof. Assume $\Gamma_{3} s=0$, where $s \in Z_{2}$. Then $s_{x}=0$ for all $x \in S$ and we want to show that $s_{x_{1}, \ldots, x_{\ell} ; y}=0$ for all $x_{1}, \ldots, x_{\ell}, y \in S$. This follows from $\left(Z_{1}^{\prime}\right)$ if $\ell=1$ and from $\Gamma_{3} s=0$ if $\ell=2$, or if $\ell \geq 3$ and $y \leq x_{1}, \ldots, x_{\ell}$. For $\ell \geq 3$ we proceed by induction on $\ell$. Let $x_{i}=\min \left(x_{1}, \ldots, x_{\ell}\right)$, $X=\left[x_{1}, \ldots, x_{i}, \ldots, x_{\ell}\right]$, and $T=\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{\ell}\right]$. If $y \leq x_{i}$, then $y \leq x_{1}, \ldots, x_{\ell}$ and $s_{x_{1}, \ldots, x_{\ell} ; y}=0$. If $y>x_{i}$, then $s_{[y] T ; x_{i}}=$ $s_{y, x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{i} ; x_{i}}=0$ and

$$
\begin{aligned}
& s_{X ; y}=s_{\left[x_{i}\right] T ; y} \text { by }\left(P_{2}^{\prime \prime}\right) \\
& \quad=s_{[y] T ; x_{i}}-s_{y, t ; x_{i}}-s_{T ; x_{i}}^{y}+s_{x_{i}}^{t y}+s_{x_{i}, t ; y}+s_{T ; y}^{x_{i}}-s_{y}^{x_{i} t} \text { by }\left(P_{2}^{\prime}\right) \\
& \quad=0
\end{aligned}
$$

by the induction hypothesis.
7. The last link in the chain from long 3 -cocycles to symmetric 3 -cocycles is the following homomorphism.

Lemma 2.6. A homomorphism $\Delta: Z_{2}(S, \mathcal{A}) \longrightarrow S Z^{3}(S, \mathcal{A})$ is defined by:
$(\Delta)$

$$
(\Delta s)_{x, y, z}=s_{x, y ; z}-s_{z, y ; x}+s_{x}^{y z}-s_{z}^{x y}
$$

More generally, if $s \in C_{2}(S, \mathcal{A})$ has properties $\left(P_{2}^{\prime \prime}\right)$ and $\left(Z_{2}\right)$, then $\Delta s \in$ $S Z^{3}(S, \mathcal{A})$.

Recall that symmetric 3-cocycles are characterized by

$$
\begin{align*}
& t_{z, y, x}=-t_{x, y, z}, \quad t_{x, y, z}+t_{y, z, x}+t_{z, x, y}=0  \tag{S3}\\
& t_{x, y, z}^{w}-t_{w x, y, z}+t_{w, x y, z}-t_{w, x, y z}+t_{w, x, y}^{z}=0 \tag{A3}
\end{align*}
$$

Proof. Let $s$ satisfy $\left(P_{2}^{\prime \prime}\right)$ and $\left(Z_{2}\right)$ (for instance, let $s \in Z_{2}$ ) and $t=\Delta s$. It is clear from $(\Delta)$ that $t_{z, y, x}=-t_{x, y, z}$. Also

$$
\begin{aligned}
t_{x, y, z}+t_{y, z, x}+t_{z, x, y}= & s_{x, y ; z}-s_{z, y ; x}+s_{x}^{y z}-s_{z}^{x y} \\
& +s_{y, z ; x}-s_{x, z ; y}+s_{y}^{x z}-s_{x}^{y z} \\
& +s_{z, x ; y}-s_{y, x ; z}+s_{z}^{x y}-s_{y}^{x z} \\
= & 0
\end{aligned}
$$

Thus $t$ satisfies (S3). Finally,

$$
\begin{array}{rrr}
t_{x, y, z}^{w}-t_{w x, y, z}+t_{w, x y, z}-t_{w, x, y z}+t_{w, x, y}^{z} & \\
=s_{x, y ; z}^{w}-s_{z, y ; x}^{w}+s_{x}^{w y z}-s_{z}^{w x y} & (\mathbf{1}),(\mathbf{2}),(\mathbf{x}),(\mathbf{z}) \\
-s_{w x, y ; z}+s_{z, y ; w x}-s_{w} x^{y z}+s_{z}^{w x y} & (\mathbf{3}),(\mathbf{4}),(\mathbf{w x}),(\mathbf{z}) \\
+s_{w, x y ; z}-s_{z, x y ; w}+s_{w}^{x y z}-s_{z}^{w x y} & (\mathbf{5}),(\mathbf{6}),(\mathbf{w}),(\mathbf{z}) \\
-s_{w, x ; y z}+s_{y z, x ; w}-s_{w}^{x y z}+s_{y z}^{w x} & (\mathbf{7}),(\mathbf{8}),(\mathbf{w}),(\mathbf{y z}) \\
+s_{w, x ; y}^{z}-s_{y, x ; w}^{z}+s_{w}^{x y z}-s_{y}^{w z z} & (\mathbf{9}),(\mathbf{1 0}),(\mathbf{w}),(\mathbf{y}) \\
=-s_{w x, y ; z}-s_{x y, z ; w}-s_{w, x ; y z}-s_{y}^{w x z} & (\mathbf{3}),(\mathbf{6}),(\mathbf{7}),(\mathbf{y}) \\
-s_{z}^{w x y}-s_{x, y ; w}^{z}-s_{y, z ; x}^{w}-s_{w x}^{z z} & (\mathbf{z}),(\mathbf{1 0}),(\mathbf{2}),(\mathbf{w x}) \\
+s_{y, z ; w x}+s_{w, x y ; z}+s_{x, y z ; w}+s_{w}^{x y z} & (\mathbf{4}),(\mathbf{5}),(\mathbf{8}),(\mathbf{w}) \\
+s_{x}^{w y z}+s_{w, x ; y}^{z}+s_{x, y ; z}^{w}+s_{y z}^{w x} & (\mathbf{x}),(\mathbf{9}),(\mathbf{1}),(\mathbf{y z}) \\
=0 &
\end{array}
$$

by ( $P_{2}^{\prime \prime}$ ) and ( $Z_{2}$ ), and (A3) holds.
With $t=\Delta s$, property $\left(P^{\prime} 2\right)$ can be restated as:
$\left(P_{2}^{\prime}\right) \quad s_{[x] Y ; z}-s_{[z] Y ; x}=t_{x, y, z}+s_{Y ; z}^{x}-s_{Y ; x}^{z}$.
Lemma 2.7. Let $c \in C_{3}(S, \mathcal{A})$. Then $c \in \operatorname{Im} \Gamma_{3}$ if and only if $c$ satisfies $\left(P_{2}^{\prime \prime}\right)$ and $\left(Z_{2}\right)$.

Proof. These conditions are necessary by Lemma 2.4. Conversely let $c \in C_{3}$ have properties $\left(P_{2}^{\prime \prime}\right)$ and $\left(Z_{2}\right)$. By Lemma 2.6, $t=\Delta c \in S Z^{3}$ ( $t$ satisfies (S3) and (A3)). Let $A=\left[a_{1}, \ldots, a_{\ell}\right] \in T_{1}$. If $\ell \geq 3$, let $m=\min \left(a_{1}, \ldots, a_{\ell}\right)$ and $A=[m] D$ (actually, $A^{\sigma}=[m] D$ for some $\sigma$ ). Define $s_{x}=c_{x}, s_{x ; y}=c_{x}^{y}+c_{y}^{x}, s_{x, y ; z}=c_{x, y ; z}$, and $s_{A ; b}$ by induction on $\ell$ :

$$
s_{A ; b}= \begin{cases}c_{A ; b} & \text { if } b \leq m \\ c_{[b] D ; m}+t_{m, d, b}+s_{D ; b}^{m}-s_{D ; m}^{b} & \text { if } b \geq m\end{cases}
$$

There is no ambiguity if $b=m$, since $t_{m, d, m}=-t_{d, m, m}-t_{m, m, d}=0$ by $(S 3),(A 3)$. We see that $s$ satisfies $\left(Z_{1}^{\prime}\right)$, inherits $\left(P_{2}^{\prime \prime}\right)$ and $\left(Z_{2}\right)$ from $c$, and will satisfy $\Gamma_{3} s=c$. It remains to prove that $s$ satisfies $\left(P_{2}^{\prime}\right)$.

First we show that every symmetric 3 -cocycle satisfies

$$
\begin{equation*}
t_{x, z w, y}+t_{y, x w, z}+t_{z, y u, x}=t_{x, w, y}^{z}+t_{y, w, z}^{x}+t_{z, w, x}^{y} \tag{T}
\end{equation*}
$$

for all $x, y, z, w \in S$. By (A3),

$$
\begin{aligned}
& t_{z, w, y}^{x}-t_{x z, w, y}+t_{x, z w, y}-t_{x, z, w y}+t_{x, z, w}^{y}=0 \\
& =t_{x, w, y}^{z}-t_{x z, w, y}+t_{z, x w, y}-t_{z, x, w y}+t_{z, x, w}^{y}
\end{aligned}
$$

so that

$$
\begin{aligned}
& t_{x, z w, y}-t_{x, z, w y}-t_{z, x w, y}+t_{z, x, w y} \\
& =t_{x, w, y}^{z}+t_{z, x, w}^{y}-t_{x, z, w}^{y}-t_{z, w, y}^{x}
\end{aligned}
$$

By (S3), $-t_{z, x w, y}=t_{y, x w, z},-t_{z, w, y}=t_{y, w, z}$, and

$$
\begin{aligned}
t_{z, x, w y}-t_{x, z, w y} & =-t_{w y, x, z}-t_{x, z, w y}=t_{z, w y, x}, \\
t_{z, x, w}-t_{x, z, w} & =-t_{w, x, z}-t_{x, z, w}=t_{z, w, x} ;
\end{aligned}
$$

this yields ( $T$ ).
Let $x, z \in S$ and $Y=\left[y_{1}, \ldots, y_{k}\right] \in T$. We prove
$\left(P_{2}^{\prime}\right) \quad s_{[x] Y ; z}-s_{[z] Y ; x}=t_{x, y, z}+s_{Y ; z}^{x}-s_{Y ; x}^{z}$.
by induction on $k$. If $k=1$, then $\left(P_{2}^{\prime}\right)$ reads

$$
s_{x, y ; z}-s_{z, y ; x}=t_{x, y, z}+s_{y ; z}^{x}-s_{y ; x}^{z} ;
$$

this follows from the definitions of $s$ and $t$. Now let $k \geq 2, m=\min Y=$ $\min \left(y_{1}, \ldots, y_{\ell}\right)$, and $Y=[m] W$. We consider several cases, based on the possible order arrangements of $m, y$, and $z$.

Case 1: $x \leq m \leq z$. Then $\min ([x] Y)=x \leq z, \min ([z] Y)=m \geq x$,

$$
\begin{aligned}
& s_{[x] Y ; z}=c_{[z] Y ; x}+t_{x, y, z}+s_{Y ; z}^{x}-s_{Y ; x}^{z}, \\
& s_{[z] Y ; x}=c_{[z] Y ; x}, \quad \text { and } \\
& s_{[x] Y ; z}-s_{[z] Y ; x}=t_{x, y, z}+s_{Y ; z}^{x}-s_{Y ; x}^{z} .
\end{aligned}
$$

Case 2: $z \leq m \leq x$ follows from Case 1 by exchanging $x$ and $z$.
Case 3: $x \leq z \leq m$. Then $\min ([x] Y)=x \leq z, \min ([z] Y)=z \geq x$, and

$$
\begin{aligned}
s_{[x] Y ; z} & =c_{[z] Y ; x}+t_{x, y, z}+s_{Y ; z}^{x}-s_{Y ; x}^{z}, \\
s_{[z] Y ; x} & =c_{[z] Y ; x},
\end{aligned}
$$

as in Case 1.

Case 4: $z \leq x \leq m$ follows from Case 3 by exchanging $x$ and $z$.
Case 5: $m \leq x, z$. Then

$$
\begin{gathered}
\min ([x] Y)=m \leq z, \quad[x] Y=[m][x] W, \\
\min ([z] Y)=m \leq x, \quad[z] Y=[m][z] W, \\
\min ([x] W) \geq m, \quad \min ([z] W) \geq m,
\end{gathered}
$$

and

$$
\begin{aligned}
s_{Y ; x} & =c_{[x] W ; m}+t_{m, w, x}+s_{W ; x}^{m}-s_{W ; m}^{x}, \\
s_{Y ; z} & =c_{[z] W ; m}+t_{m, u, z}+s_{W ; z}^{m}-s_{W ; m}^{z}, \\
s_{[x] Y ; z} & =c_{[z][x] W ; m}+t_{m, x w, z}+s_{[x] W ; z}^{m}-s_{[x] W ; m}^{z}, \\
s_{[z] Y ; x} & =c_{[x][z] W ; m}+t_{m, z w, x}+s_{[z] W ; x}^{m}-s_{[z] W ; m}^{x}, \\
& s_{[x] W ; m}=c_{[x] W ; m}, \quad s_{[z] W ; m}=c_{[z] W ; m},
\end{aligned}
$$

so that

$$
\begin{aligned}
s_{[x] Y ; z}-s_{[z] Y ; x}= & t_{m, x w, z}-t_{m, z w, x} \\
& +s_{[x] W ; z}^{m}-s_{[z] W ; x}^{m}-s_{[x] W ; m}^{z}+s_{[z] W ; m}^{x} \\
= & t_{m, x w, z}-t_{m, z w, x} \\
& +t_{x, w, z}^{m}+s_{W ; z}^{x m}-s_{W ; x}^{z m}-c_{[x] W ; m}^{z}+c_{[z] W ; m}^{x} \\
= & t_{m, x w, z}+t_{x, z w, m}-t_{z, w, x}^{m} \\
& +s_{W ; z}^{m x}-s_{W ; x}^{m z}-c_{[x] W ; m}^{z}+c_{[z] W ; m}^{x}
\end{aligned}
$$

by the induction hypothesis and (S3), whereas

$$
\begin{aligned}
t_{x, y, z}+s_{Y ; z}^{x}-s_{Y ; x}^{\tilde{\tilde{}}}= & t_{x, m u, z}+c_{[z] W ; m}^{x}+t_{m, w, z}^{x}+s_{W ; z}^{m x} \\
& -c_{[x] W ; m}^{z}-t_{m, w, x}^{z}-s_{W ; x}^{m z} \\
= & -t_{z, m u, x}+c_{[z] W ; m}^{x}-c_{[x] W ; m}^{z} \\
& +t_{m, w, z}^{x}+t_{x, w, m}^{z}+s_{W ; z}^{m x}-s_{W ; x}^{m z}
\end{aligned}
$$

by ( $S 3$ ); then $\left(P_{2}^{\prime}\right)$ follows from $(T)$.
8. By Lemmas 2.5 and $2.7, Z^{3}(S, \mathcal{A})$ is isomorphic to the group $Z_{3}(S, \mathcal{A})$ of all families $s \in C_{3}(S, \mathcal{A})$ with properties $\left(Z_{2}\right)$ and ( $P_{2}^{\prime \prime}$ ).

The next trimming reduces $Z_{3}(S, \mathcal{A})$ to its direct summand $Z_{4}^{\prime}(S, \mathcal{A})$ whose elements are all $s \in Z_{3}$ such that $s_{x}=0$ for all $x \in S$ (hence $s_{x ; y}=0$ for all $x, y \in S$ by $\left(Z_{1}^{\prime}\right)$ ) and $s_{X ; y}=0$ when $X$ has length 3 or more (and $y \leq \min X)$. In $Z_{4}^{\prime},\left(P_{2}^{\prime \prime}\right)$ reduces to
$\left(P_{4}^{\prime \prime}\right) \quad s_{y, x ; z}=s_{x, y ; z}$
for all $x, y, z \in S$, and $\left(Z_{2}\right)$ reduces to

$$
\begin{align*}
& s_{w x, y ; z}+s_{x y, z ; w}+s_{w, x ; y z}+s_{x, y ; w}^{z}+s_{y, z ; x}^{w}  \tag{4}\\
& \quad=s_{y, z ; w x}+s_{w, x y ; z}+s_{x, y z ; w}+s_{w, x ; y}^{z}+s_{x, y ; z}^{w}
\end{align*}
$$

$Z_{4}^{\prime}(S, \mathcal{A})$ is isomorphic to the group $Z_{4}(S, \mathcal{A}) \subseteq \prod_{x, y, z \in S} \mathcal{A}_{x y z}$ of all families $s=\left(s_{x, y ; z}\right)_{x, y, z \in S}$ such that $s_{x, y ; z} \in \mathcal{A}_{x y z}$ for all $x, y, z \in S$ and $\left(P_{4}^{\prime \prime}\right),\left(Z_{4}\right)$ hold.
$Z_{4}$ is not isomorphic to $Z_{3}$; rather, we prove that the remaining elements of $Z_{3}$ contribute nothing to the cohomology.

The trimming homomorphisms $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ provide an isomorphism $\Gamma: Z^{3}(S, \mathcal{A}) \rightarrow Z_{3}(S, \mathcal{A})$ which affects coboundaries as follows. Recall that $\delta c \in Z^{3}(S, \mathcal{A})$ is defined by

$$
\begin{equation*}
(\delta c)_{X_{1} ; \ldots ; X_{n}}=c_{x_{1}, \ldots, x_{n}}-c_{X_{1} \cdots X_{n}}+\sum_{k=1}^{n} c_{X_{k}}^{x_{k}^{\wedge}} \tag{C2}
\end{equation*}
$$

for all $X_{1}, \ldots, X_{n} \in T_{1}$ and $c \in C^{2}$. In particular,

$$
\begin{aligned}
(\delta c)_{x} & =c_{x} \\
(\delta c)_{x, y ; z} & =c_{x y, z}-c_{x, y, z}+c_{x, y}^{z}+c_{z}^{x y} \\
(\delta c)_{X ; y} & =c_{x, y}-c_{X[y]}+c_{X}^{y}+c_{y}^{x}
\end{aligned}
$$

This describes the subgroup $B_{3}(S, \mathcal{A})=\Gamma\left(B^{3}(S, \mathcal{A})\right)$ of $Z_{3}(S, \mathcal{A})$.
Lemma 2.8. $Z_{3}(S, \mathcal{A})=Z_{4}^{\prime}(S, \mathcal{A})+B_{3}(S, \mathcal{A})$.
Proof. Given $s \in Z_{3}$, define $c_{X} \in \mathcal{A}_{x}$ for all $X=\left[x_{1}, \ldots, x_{\ell}\right] \in T_{1}$ by induction on $\ell$ as follows:

$$
c_{X}= \begin{cases}s_{x} & \text { if } \ell=1 \\ 0 & \text { if } \ell=2,3 \\ -s_{W ; m}+c_{W}^{m}+c_{m}^{w} & \text { if } \ell \geq 4\end{cases}
$$

where $m=\min X$ and $X=W[m]$. We see that $(\delta c)_{x}=c_{x}=s_{x}$ for all $x \in S$ and

$$
(\delta c)_{X ; y}=c_{x, y}-c_{X[y]}+c_{X}^{y}+c_{y}^{x}=s_{X ; y}
$$

whenever $X$ has length 3 or more and $y \leq \min X$. Hence $s-\Gamma \delta c \in Z_{4}^{\prime}$ and $s=(s-\Gamma \delta c)+\Gamma \delta c \in Z_{4}^{\prime}+B_{3}$.

Since $\Gamma$ is an isomorphism, $H^{3}=Z^{3} / B^{3} \cong Z_{3} / B_{3} \cong Z_{4}^{\prime} / B_{4}^{\prime}$, where

$$
B_{4}^{\prime}(S, \mathcal{A})+Z_{4}^{\prime}(S, \mathcal{A}) \cap B_{3}(S, \mathcal{A})
$$

In other words, $B_{4}^{\prime}(S, \mathcal{A})$ is the group of all $s \in Z_{4}^{\prime}(S, \mathcal{A})$ such that $s=\Gamma \delta c$ for some $c \in C^{2}(S, \mathcal{A})$. Then $c_{x}=s_{x}=0$ for all $x \in S$, and $s=\Gamma \delta c$ reduces to

$$
\begin{equation*}
s_{x, y ; z}=c_{x y, z}-c_{x, y, z}+c_{x, y}^{z} . \tag{4}
\end{equation*}
$$

$B_{4}^{\prime}(S, \mathcal{A})$ is isomorphic to the $\operatorname{group} B_{4}(S, \mathcal{A}) \subseteq Z_{4}(S, \mathcal{A})$ of all families $s=\left(s_{x, y ; z}\right)_{x, y, z \in S}$ such that $s_{x, y ; z}=c_{x y, z}-c_{x, y, z}+c_{x, y}^{z} \in \mathcal{A}_{x y z}$ for some $c \in C^{2}(S, \mathcal{A})$. We now have

Lemma 2.9. $H^{3}(S, \mathcal{A}) \cong Z_{4}(S, \mathcal{A}) / B_{4}(S, \mathcal{A})$.
9. Recall that a symmetric 3 -coboundary is a symmetric 3 -cochain $t$ (necessarily a symmetric 3 -cocycle) for which there exists $u=\left(u_{x, y}\right)_{x, y \in S}$ such that $u_{x, y} \in \mathcal{A}_{x y}$,

$$
\begin{gather*}
u_{y, x}=u_{x, y}, \quad \text { and }  \tag{S2}\\
t_{x, y, z}=u_{y, z}^{x}-u_{x y, z}+u_{x, y z}-u_{x, y}^{z} \tag{B3}
\end{gather*}
$$

for all $x, y, z \in S$. Under pointwise addition, symmetric 3-coboundaries form an abelian group $S B^{3}(S, \mathcal{A})$.

The homomorphism $\Delta$ in Lemma 2.6 induces a homomorphism $D$ : $Z_{4}(S, \mathcal{A}) \longrightarrow S Z^{3}(S, \mathcal{A})$ given by:

$$
(D s)_{x, y, z}=s_{x, y ; z}-s_{z, y ; x}
$$

for all $x, y, z \in S$. We show that $D$ is surjective. For this we again use an arbitrary total order $\leq$ on $S$.

Lemma 2.10. A homomorphism $E: S Z^{3}(S, \mathcal{A}) \longrightarrow Z_{4}(S, \mathcal{A})$ is defined by:

$$
(E t)_{x, y ; z}= \begin{cases}t_{x, y, z} & \text { if } x \leq y, z \\ t_{y, x, z} & \text { if } y \leq x, z \\ 0 & \text { if } z \leq x, y\end{cases}
$$

Moreover $D E=1 ; \operatorname{lm}(1-E D) \subseteq B_{4} ; D\left(B_{4}\right) \subseteq S B^{3} ;$ and $E\left(S B^{3}\right) \subseteq B_{4}$.
Proof. The three cases in the definition of $E t$ are consistent with each other: if $x \leq y, z$ and $y \leq x, z$, then $x=y$ and $t_{x, y, z}=t_{y, x, z}$; if $x \leq y, z$ and $z \leq x, y$, then $x=z$ and (S3) implies $t_{x, y, z}=t_{x, y, x}=$ $t_{x, y, x}+t_{y, x, x}+t_{x, x, y}=0$; if $y \leq x, z$ and $z \leq x, y$, then $y=z$ and (S3) implies $t_{y, x, z}=0$.

Let $t \in S Z^{3}$ and $s=E t$. First we show that

$$
s_{x, y ; z}-s_{z, y x}=t_{x, y, z}
$$

for all $x, y, z \in S$. If $x \leq y, z$, then

$$
s_{x, y ; z}-s_{z, y x}=t_{x, y, z}-0=t_{x, y, z} .
$$

If $y \leq x, z$, then

$$
s_{x, y ; z}-s_{z, y x}=t_{y, x, z}-t_{y, z, x}=-t_{y, z, x}-t_{z, x, y}=t_{x, y, z}
$$

by (S3). If finally $z \leq x, y$, then

$$
s_{x, y ; z}-s_{z, y x}=0-t_{z, y, x}=t_{x, y, z}
$$

by (S3).
This implies $s \in Z_{4}$ : indeed $\left(P_{4}^{\prime \prime}\right): s_{x, y ; z}=s_{y, x ; z}$ holds by definition, and ( $Z_{4}$ ) holds since

$$
\begin{aligned}
& s_{w x, y ; z}-s_{y, z ; w x}+s_{z, x y ; w}-s_{w, x y ; z}+s_{w, x ; y z}-s_{y z, x ; w} \\
& \quad+s_{y, x ; w}^{z}-s_{u, x ; y}^{z}+s_{z, y ; x}^{w}-s_{x, y ; z}^{w} \\
& =t_{w x, y, z}+t_{z, x y, w}+t_{x, w, y z}+t_{y, x, w}^{z}+t_{z, y, x}^{w} \\
& =-t_{x, y, z}^{w}+t_{w x, y, z}-t_{w, x y, z}+t_{w, x, y z}-t_{w, x, y}^{z}=0
\end{aligned}
$$

by (S3) and (A3). Hence $E$ sends $S Z^{3}$ into $Z_{4}$. Then $s_{x, y ; z}-s_{z, y x}=t_{x, y, z}$ shows that $D s=t$, so that $D E$ is the identity on $S Z^{3}$.

Next we show that $u=s-E D s$ is given for each $s \in Z_{4}$ by:

$$
u_{x, y ; z}= \begin{cases}s_{y, z ; x} & \text { if } x \leq y, z \\ s_{x, z ; y} & \text { if } y \leq x, z \\ s_{x, y ; z} & \text { if } z \leq x, y\end{cases}
$$

If $x \leq y, z$, then

$$
(s-E D s)_{x, y ; z}=s_{x, y ; z}-(D s)_{x, y, z}=s_{x, y ; z}-s_{x, y ; z}+s_{z, y ; x}=s_{y, z ; x}
$$

by $\left(P_{4}^{\prime \prime}\right)$. If $y \leq x, z$, then
$(s-E D s)_{x, y ; z}=s_{x, y ; z}-(D s)_{y, x, z}=s_{x, y ; z}-s_{y, x ; z}+s_{z, x ; y}=s_{x, z ; y}$.
If $z \leq x, y$, then $(E D s)_{x, y ; z}=0$ and $(s-E D s)_{x, y ; z}=s_{x, y ; z}$.
It follows that

$$
u_{x, y ; z}=u_{x, z ; y}=u_{y, x ; z}=u_{y, z ; x}=u_{z, x ; y}=u_{z, y ; x}:
$$

for instance, $u_{x, y ; z}=u_{y, x ; z}$ holds by $\left(P_{4}^{\prime \prime}\right)$ if $z \leq x, y$; if $x \leq y, z$, then $u_{x, y ; z}=s_{y, z ; x}=u_{y, z ; x}$; if $y \leq x, z$, then $u_{x, y ; z}=s_{x, z ; y}=u_{y, x ; z}$. Therefore a long 2 -cochain $c$ is well defined by:

$$
\begin{cases}c_{x, y, z}=-u_{x, y ; z} & \text { for all } x, y, z \in S \\ c_{X}=0 & \text { whenever } X \text { does not have length } 3\end{cases}
$$

Then $(s-E D s)_{x, y ; z}=c_{x y, z}-c_{x, y, z}+c_{x, y}^{z}$ for all $x, y, z \in S$. Thus $\operatorname{Im}(1-E D) \subseteq B_{4}$.

Next, let $s \in B_{4}$, so that

$$
s_{x, y ; z}=c_{x y, z}-c_{x, y, z}+c_{x, y}^{z},
$$

for some $c \in C^{2}$. Then

$$
(D s)_{x, y, z}=s_{x, y ; z}-s_{z, y ; x}=-c_{y, z}^{x}+c_{x y, z}-c_{z y, x}+c_{x, y}^{z}
$$

Thus $D\left(B_{4}\right) \subseteq S B^{3}$.
Finally let $t \in S B^{3}$, so that

$$
t_{x, y, z}=u_{y, z}^{x}-u_{x y, z}+u_{x, y z}-u_{x, y}^{z}
$$

where $u$ is symmetric ( $u_{b, a}=u_{a, b}$ for all $a, b$ ). Let $c_{x, y}=u_{x, y}$ and

$$
c_{x, y, z}= \begin{cases}u_{y, z}^{x}+u_{x, y z} & \text { if } x \leq y, z, \\ u_{x, z}^{y}+u_{y, x z} & \text { if } y \leq x, z, \\ u_{x, y}^{z}+u_{z, x y} & \text { if } z \leq x, y .\end{cases}
$$

These three cases are consistent with each other: if, say, $x \leq y, z$ and $y \leq$ $x, z$, then $x=y$ and $u_{y, z}^{x}+u_{x, y z}=u_{x, z}^{y}+u_{y, x z}$. We see that $c_{x, y, z}=$ $c_{x, z, y}=c_{y, x, z}$ etc. If $x \leq y, z$, then
$(E t)_{x, y ; z}=t_{x, y, z}=u_{y, z}^{x}-u_{x y, z}+u_{x, y z}-u_{x, y}^{z}=c_{x, y, z}-c_{x y, z}-c_{x, y}^{z}$.
If $y \leq x, z$, then

$$
(E t)_{x, y ; z}=t_{y, x, z}=u_{x, z}^{y}-u_{y x, z}+u_{y, x z}-u_{y, x}^{z}=c_{x, y, z}-c_{x y, z}-c_{x, y}^{z} .
$$

If $y \leq x, z$, then

$$
(E t)_{x, y ; z}=0=u_{x, y}^{z}-u_{x y, z}+u_{z, x y}-u_{x, y}^{z}=c_{x, y, z}-c_{x y, z}-c_{x, y}^{z} .
$$

Thus $(E t)_{x, y ; z}=c_{x, y, z}-c_{x y, z}-c_{x, y}^{z}$ for all $x, y, z$. Hence $E\left(S B^{3}\right) \subseteq B_{4}$.
By Lemma 2.10, $D: Z_{4} \rightarrow S Z^{3}$ satisfies $D\left(B_{4}\right) \subseteq S B^{3}$ and induces a homomorphism $D^{*}: H^{3} \longrightarrow S Z^{3} / S B^{3}$. Since $D E=1, D$ is surjective and so is $D^{*}$. Moreover, $D s \in S B^{3}$ implies $E D s \in B_{4}$ and $s=(s-E D s)+$ $E D s \in B_{4}$; therefore $D^{*}$ is injective and we have proved

Theorem 2.11. For every commutative semigroup $S$ and abelian group valued functor $\mathcal{A}$ on $\mathscr{H}(S)$,

$$
H^{3}(S, \mathcal{A}) \cong S Z^{3}(S, \mathcal{A}) / S B^{3}(S, \mathcal{A})
$$

10. Normalization can be used to sharpen Theorem 2.11. A symmetric 3 -cochain $c$ is normalized when

$$
c_{e, x, y}=0 \quad \text { whenever } e^{2}=e, e x=x
$$

By (S3), this condition implies

$$
\left\{\begin{array}{l}
c_{x, e, y}=0 \quad \text { whenever } e^{2}=e, e x=x, e y=y \\
c_{x, y, e}=0 \quad \text { whenever } e^{2}=e, e y=y
\end{array}\right.
$$

Normalized symmetric 3 -cochains, cocycles and coboundaries form groups $N S C^{3}(S, \mathcal{A}) \subseteq S C^{3}(S, \mathcal{A}), N S Z^{3}(S, \mathcal{A})=S Z^{3}(S, \mathcal{A}) \cap N S C^{3}(S, \mathcal{A})$, and $N S B^{3}(S, \mathcal{A})=S B^{3}(S, \mathcal{A}) \cap N S C^{3}(S, \mathcal{A})$. We note:

Lemma 2.12. If $\mathcal{A}$ is thin, then $N S B^{3}(S, \mathcal{A})=\delta\left(N S C^{2}(S, \mathcal{A})\right)$.
Proof. Let $\mathcal{A}$ be thin. If $e^{2}=e$ and $e x=x$, then $e x y=x y$, $\alpha_{x y, e}=\alpha_{x y, 1}, u_{x, y}^{e}=u_{x, y}$, and

$$
(\delta u)_{e, x, y}=u_{x, y}^{e}-u_{e x, y}+u_{e, x y}-u_{e, x}^{y}=u_{e, x y}-u_{e, x}^{y} .
$$

In particular, if $u$ is normalized, then $\delta u$ is normalized.
Conversely assume that $t=\delta u$ is normalized. Let $w \in C^{1}(S, \mathcal{A})$ satisfy $w_{e}=u_{e, \epsilon}$ whenever $e^{2}=e$. Since $\alpha_{e, e}=\alpha_{e, 1}$ we have $(\delta w)_{e, e}=w_{e}^{e}-$ $w_{e}+w_{e}^{e}=w_{e}=u_{e, e}$ for all $c^{2}=e$. Let $v=u-\delta w \in S C^{2}$. Then $\delta v=t$ and $v_{e, e}=0$ for all $e^{2}=\epsilon$. Since $t$ is normalized we have $v_{e, x y}-v_{e, x}^{y}=$ $(\delta v)_{e, x, y}=0$ whenever $e^{2}=e, e x=x$. In particular $v_{e, e y}=v_{e, e}^{y}=0$, so that $v_{e, x}=0$ whenever $\epsilon^{2}=e, e x=x$, and $t=\delta v$ with $v$ normalized.

Proposition 2.13. If $\mathcal{A}$ is thin, then

$$
H^{3}(S, \mathcal{A}) \cong N S Z^{3}(S, \mathcal{A}) / N S B^{3}(S, \mathcal{A})
$$

Proof. We show that $S Z^{3}=N S Z^{3}+S B^{3}$; then $H^{3} \cong N S Z^{3} / N S B^{3}$ follows from $H^{3} \cong S Z^{3} / S B^{3}$ and $N S Z^{3} \cap S B^{3}=N S B^{3}$.

Let $t \in S Z^{3}$. Define

$$
\begin{cases}u_{e, x}=u_{x, e}=t_{e, e, x} & \text { if } e^{2}=e, e x=x, \\ u_{x, y}=0 & \text { if neither } x^{2}=x, x y=y \text { nor } y^{2}=y, y x=x .\end{cases}
$$

If $e=x$, then $t_{e, e, x}=t_{x, x, e}$, so that $u$ is well defined. We see that $u \in S C^{2}$ and that $u_{e, e}=t_{e, e, e}=0$ whenever $e^{2}=e$, by (S3). Let $s=t-\delta u \in S Z^{3}$. When $e^{2}=e, e x=x$, then $\alpha_{x, e}=\alpha_{x, 1}$,

$$
(\delta u)_{e, e, x}=u_{e, x}^{e}-u_{e e, x}+u_{e, e x}-u_{e, e}^{x}=u_{e, x}=t_{e, e, x},
$$

and $s_{e, e, x}=0$; hence (A3) yields

$$
s_{e, \boldsymbol{x}, y}=s_{e, x, y}^{e}-s_{e e, x, y}+s_{e, e x, y}-s_{e, e, x y}+s_{e, e, x}^{y}=0
$$

for all $y \in S$. Thus $s$ is normalized, and $t=s+\delta u \in N S Z^{3}+S B^{3}$.

## References

[1] Barr, M. and Beck, J., Homology and standard constructions, Seminar on Triples and Categorical Homology Theory, Springer Lecture Notes in Math. \#80 (1969), 245-335.
[2] Beck, J., Triples, algebras, and cohomology, Doct. diss., Columbia Univ., 1967.
[3] Grillet, P.A., Lefi coset extensions, Semigroup Forum 7 (1974), 200-263.
[4] Grillet, P.A., Commutative semigroup cohomology, Comm. in Algebra 23 (10) (1995), 3573-3587.
[5] Grillet, P.A., Commutative semigroup cohomology, Semigroup Forum 43 (1991), 247-252.
[6] Grillet, P.A., The commutative cohomology of finite semigroups, J. Pure Appl. Algebra 102 (1995), 25-47.
[7] Leech, J., H-coextensions of monoids, Mem. Amer. Math. Soc. \#157 (1975).
[8] Wells, C., Extension theories for monoids, Semigroup Forum 16 (1978), 13-35.

Received: December 1994
Revised: October 1996

