
SIMPLICIAL METHODS IN ALGEBRA

AND ALGEBRAIC GEOMETRY

W. D. GILLAM

Abstract. This is an introduction to / survey of simplicial techniques in algebra and
algebraic geometry. We begin with the basic notions of simplicial objects and model cat-
egories. We then give a complete, elementary treatment of the model category structure
on the category of simplicial (commutative) rings. As a sort of interlude, we also discuss
differential graded rings (DGAs) and the functor from simplicial rings to DGAs, as well
as some additional structures (divided powers) possessed by the DGAs in the essential
image of this functor. Finally, we give an introduction to derived algebraic geometry.
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1. Model categories

In this section we recall the definition of a model category, following [Hov], with the
modified definition of “functorial factorization” from the Errata to [Hov]. We review the
basic notions of model categories: lifting properties, cofibrant generation, etc. We also
discuss the notion of a weak model category, which I have introduced as a convenient
formalism for derived functors, Ken Brown’s Lemma, etc. We will use the formalism of
model categories throughout the text, though our use of the actual theory / machinery of
model categories will be rather limited, so one can largely take this whole section as a list
of definitions.

1.1. Definitions. For a category C, we let

Map C := HomCat(• → •,C)

denote the category of morphisms in C, whose morphisms are commutative squares in C.
The category Map C comes with two obvious functors

Dom : Map C → C

Cod : Map C → C,

taking a morphism to its domain and codomain.

Definition 1.1.1. We say that a C morphism f ′ : X ′ → Y ′ is a retract of a C morphism
f : X → Y iff f ′ is a retract of f as objects of Map C.

In other words, f ′ is a retract of f iff there is a commutative C diagram

X ′

f ′

��

i // X

f
��

p // X ′

f ′

��
X ′

j // X
q // X ′

with pi = Id and qj = Id. In such a diagram note that i, j are monic and p, q are epic.

Definition 1.1.2. A functorial factorization on a category C is an ordered pair (α, β)
of endofunctors of Map C with Codα = Domβ satisfying β(f)α(f) = f for every C
morphism f .

Definition 1.1.3. We say that a C morphism f : X → Y has the left lifting property
(LLP for short) with respect to a C morphism g : U → V and that g has the right
lifting property (RLP) with respect to f iff there is a completion as indicated in any solid
(commutative) C diagram as below.

X //

f
��

U

g

��
Y

>>

// V

Definition 1.1.4. A model structure on a category C (typically assumed to have all direct
and inverse limits, or at least all finite direct and inverse limits) consists of two functorial
factorizations (α, β), (γ, δ) and three subcategories called weak equivalences, fibrations,
and cofibrations satisfying the following axioms:
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(2-out-of-3) If f, g are composable C-morphisms and two out of three of f, g, gf are
weak equivalences, then so is the third.
(Retracts) Weak equivalences, fibrations, and cofibrations are closed under retracts.
(Lifting) Call a morphism a trivial fibration (resp. trivial cofibration) iff it is both a
fibration (resp. cofibration) and a weak equivalence. Then trivial cofibrations have the
LLP with respect to all fibrations and cofibrations have the LLP with respect to all
trivial fibrations.
(Factorization) For every C-morphism f , α(f) is a trivial cofibration, β(f) is a
fibration, γ(f) is a cofibration, and δ(f) is a trivial fibration.

A model category is a category equipped with a model structure.

Definition 1.1.5. An object X of a model category C is called fibrant (resp. cofibrant)
iff the map to the terminal object (resp. from the initial object) is a fibration (resp.
cofibration).

Lemma 1.1.6. Let C be a model category. A C-morphism is a cofibration (resp. a trivial
cofibration) iff it has the LLP property with respect to all trivial fibrations (resp. all fibra-
tions). Similarly, a map is a fibration (resp. a trivial fibration) iff it has the RLP with
respect to all trivial cofibrations (resp. all cofibrations).

Proof. [Hov, 1.1.10] �

1.2. Homotopy category. Given a category C equipped with a subcategory of weak
equivalences satisfying 2-out-of-3, one can form the homotopy category Ho C, modulo set-
theoretic issues, characterized by the property: there is a functor iC : C → Ho C taking
weak equivalences to isomorphisms which is initial in the 2-category of categories under
C where weak equivalences are taken to isomorphisms. In the case of a model category
C, one can show that the homotopy category Ho C is equivalent to the category whose
objects are objects of C which are both fibrant and cofibrant, where a morphism between
such objects is an equivalence class of C morphisms under the equivalence relation of
homotopy (which we will not define here). The relation of homotopy for maps of fibrant
and cofibrant objects of C is stable under composition.

1.3. Basic constructions. One can make new model categories from old as in the fol-
lowing examples.

Example 1.3.1. If C is a model category, then Cop has a natural model structure where
a Cop-morphism f : X → Y is a cofibration (resp. fibration, weak equivalence) iff the
corresponding C-morphism f : Y → X is a fibration (resp. cofibration, weak equivalence).
This is the sense in which the model category axioms are “self-dual” so that any theorem
about model categories has a corresponding dual theorem obtained by applying the original
theorem to the opposite model category.

Example 1.3.2. If C is a model category and X is an object of C, then category X/C
of objects of C under X admits an obvious forgetful functor

F : X/C → C

(X → Y ) 7→ Y.

Declare an X/C morphism f to be a fibration (resp. cofibration, weak equivalence) iff Ff
is a fibration (resp. cofibration, weak equivalence) in C. Then X/C is a model category.



6 W. D. GILLAM

In [Hov, 1.1.8] this is stated and proved in the case where X is the terminal object, but
there is no need to restrict to that case. Dually, the category C/X = X/Cop inherits a
model structure from C in a similar manner.

1.4. Properness. The various concepts of properness are certain stability properties for
weak equivalences which do not follow from the model category axioms, but are never-the-
less enjoyed by many model categories and which play a role in the theory of homotopy
limits (§1.8).

Definition 1.4.1. A model category C is called right proper iff weak equivalences are
closed under base change along fibrations. That is, in any cartesian diagram

W
f //

q

��

X

p

��
Z

g // Y

where p is a fibration and g is a weak equivalence, f is a weak equivalence. Dually, C is
called left proper iff weak equivalences are closed under pushouts along cofibrations. We
say C is proper iff it is both left and right proper.

One can often prove that a model category is left or right proper by using the following:

Lemma 1.4.2. (Reedy’s Lemma) In any model category, a pushout of a weak equiva-
lence between cofibrant objects along a cofibration is a weak equivalence. Dually, a pullback
of a weak equivalence between fibrant objects along a fibration is a weak equivalence.

Proof. [Hir, 13.1.2] or [Red]. The proof uses, in an essential way, the “abstract homotopy
theory of model categories,” (c.f. [Hov, 1.2], [Hir, 7.3-7.9], or [Red]) which I do not want
to explain in the present notes. An unfairly dismissive, though roughly correct, point of
view would be that this result is just a collection of formal diagram lemmas motivated by
the basic constructions of classical algebraic topology. �

Proposition 1.4.3. (Reedy) If C is a model category where every object is cofibrant,
then C is left proper. Dually, if every object of C is fibrant, then C is right proper.

Proof. [Hir, 13.1.3]. This is immediate from Reedy’s Lemma. �

For more on proper model categories, see [Hir, Ch. 13].

1.5. Cofibrantly generated model categories. Most model categories used in prac-
tice are constructed through the same “general nonsense” surrounding the Small Object
Argument. Here we give a brief summary of the basic notions and results (originally due
to Kan) following [Hov, 2.1].

Definition 1.5.1. Let C be a category, S a set of morphisms in C. Let λ be an ordinal
(isomorphism class of well-ordered sets), regarded as a category where there is a unique
morphism α → β iff α ≤ β. A λ-sequence in C (resp. in S) is a direct limit preserving
functor {Xα : α ∈ λ} from λ to C (resp. such that for each α ∈ λ, the transition function
Xα → Xα+1 is in S). Given a λ-sequence {Xα} in S with direct limit X, the structure
maps Xα → X are called transfinite compositions of maps in S. Dually, if {Xα : α ∈ λ} is
an inverse limit preserving functor from λop to C with inverse limit X and structure maps
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Xα+1 → Xα in S, the structure maps X → Xα are called inverse transfinite compositions
of maps in S.

In particular, note that a composition of morphisms in S is both a transfinite compo-
sition and an inverse transfinite composition of morphisms in S (take λ = {0, 1, 2}). The
basic reason for introducing the notion of a “transfinite composition” is the following:

Lemma 1.5.2. Fix a C-morphism f . Then the set of C-morphisms with the LLP w.r.t.
f is closed under retracts, pushouts, and transfinite compositions. Dually, the set of C-
morphisms with the RLP w.r.t. f is closed under retracts, pullbacks, and inverse transfinite
compositions.

Proof. This is a straightforward diagram exercise. �

Definition 1.5.3. Fix a cardinal κ. An object Y of C is called κ-small relative to S iff
the natural map

lim
−→

HomC(Y,Xα) = HomC(Y, lim
−→

Xα)

is an isomorphism for each λ-sequence {Xα} in S where the cofinality of λ is larger than
κ. The object Y is called small relative to S (or just small when S is the set of all
C-morphisms) iff Y is κ-small relative to S for some cardinal κ.

Definition 1.5.4. Let C be a category. A class of morphisms in C is called saturated
iff it is closed under pushouts, transfinite compositions, and retracts. Let I be a class of
morphisms of C. Let I-cell denote the class of C-morphisms expressible as a transfinite
composition of pushouts of maps in I. Let I-sat denote the smallest saturated class of
C-morphisms containing I. Let I-inj (resp. I-proj ) denote the class of C-morphisms with
the RLP (resp. LLP) w.r.t. every map in I. Set I-cof := (I-inj)-proj.

Fix a class of C-morphisms I. From the definitions it is clear that I ⊆ I-cof. By
Lemma 1.5.2, I-proj is closed under pushouts, retracts, and transfinite compositions. In
particular, I-cof is closed under pushouts, retracts, and transfinite compositions, so we
have I-cell ⊆ I-sat ⊆ I-cof.

Remark 1.5.5. The dual concepts “I-cocell” and “I-cosat” are, in practice, not partic-
ularly useful. See the discussion after [Hov, 2.1.18].

In the language of Definition 1.5.4, Lemma 1.1.6 says that

{ cofibrations } = { trivial fibrations }-proj
{ trivial cofibrations } = { fibrations }-proj
{ fibrations } = { trivial cofibrations }-inj
{ trivial fibrations } = { cofibrations }-inj

and hence:

{ cofibrations } = { cofibrations }-cof
{ trivial cofibrations } = { trivial cofibrations }-cof.

Proposition 1.5.6. Let C be a model category. The cofibrations (resp. trivial cofibrations)
in C are saturated—i.e. closed under retracts, pushouts, and transfinite compositions.
Dually, the fibrations (resp. trivial fibrations) are cosaturated—i.e. closed under retracts,
pullbacks, and inverse transfinite compositions.
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Proof. Combine Lemmas 1.5.2 and 1.1.6. �

Definition 1.5.7. Let C be a model category with all direct and inverse limits, I (resp.
J) a set of cofibrations (resp. trivial cofibrations) in C. We say that C is cofibrantly
generated by I, J (or with generating cofibrations I and generating trivial cofibrations J)
iff the following hold:

(1) The domains of the maps in I are small relative to I-cell.
(2) The domains of the maps in J are small relative to J-cell.
(3) The class of fibrations is J-inj.
(4) The class of trivial fibrations is I-inj.

Lemma 1.5.8. (Small Object Argument) Suppose C is a category with all direct
limits and I is a set1 of C-morphisms whose domains are small relative to I-cell. Then
any C-morphism f can be functorially factored as f = ip where i ∈ I-cell and p ∈ I-inj.

Proof. [Hov, 2.1.14] or [Hir, 10.5.16] �

Lemma 1.5.9. Let C be a model category cofibrantly generated by the set I (resp. J)
of generating cofibrations (resp. generating trivial cofibrations). Let f : X → Y be a
cofibration (resp. trivial cofibration) in C. Then we can find a C-diagram

X

f
��

X

i
��

X

f
��

Y
s // Z

p // Y

with ps = Id and i ∈ I-cell (resp. i ∈ J-cell). It follows that:

{ cofibrations } = I-sat
{ trivial cofibrations } = J-sat.

Proof. By the Small Object Argument, we can factor f as i : X → Z followed by p : Z → Y
where i is in I-cell (resp. J-cell) and p is in I-inj (resp. J-inj). In other words, p is a trivial
fibration (resp. fibration) in our cofibrantly generated model category. By the Lifting
axiom for our model category we can lift as indicated in

X
i //

f
��

Z

p

��
Y

s
>>

Y

to build the desired retract diagram. For the “It follows that:” We have the containments
⊇ because the sets on the left are saturated by Proposition 1.5.6, and we have the contain-
ments ⊆ because the first part of the lemma says any cofibration (resp. trivial cofibration)
is a retract of a map in I-cell (resp. J-cell), hence is in I-sat (resp. J-sat). �

The introduction of all this convoluted terminology is justified by the following:

1We really mean “set” here and not “class” because the proof involves various direct limit constructions
“over I.”



SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY 9

Theorem 1.5.10. Suppose C is a category with all direct and inverse limits, W is a
subcategory of C, and I and J are sets of maps in C. Then C admits a model category
structure cofibrantly generated by I, J with W as the subcategory of weak equivalences iff
the following hold:

(CG1) W satisfies “2-out-of-3” and is closed under retracts.
(CG2) The domains of I are small relative to I-cell.
(CG3) The domains of J are small relative to J-cell.
(CG4) J-sat ⊆W ∩ I-cof.
(CG5) I-inj ⊆W ∩ J-inj.
(CG6) Either W ∩ I-cof ⊆ J-cof or W ∩ J-inj ⊆ I-inj.

Proof. [Hov, 2.1.19] or [Hir, 11.3.1] �

Remark 1.5.11. In most model categories the “smallness” hypotheses (CG2) and (CG3)
hold trivially because all objects are (absolutely) small. The one notable exception is the
category of topological spaces (§2), where not every object is small.

1.6. Weak model categories. If C is a model category and I is a category, then the
category of functors CI := HomCat(I,C) may not have any natural model category struc-
ture.

Remark 1.6.1. Actually, in [Hir, 11.6.1], Hirschhorn constructs a model category struc-
ture on CI under the assumption that the model category C is cofibrantly generated. The
discussion in the present section is basically designed to circumvent the need to discuss
the latter.

In any case, CI inherits most of the model category axioms from C when we declare
f : X → Y to be a weak equivalence (resp. fibration, cofibration) iff fi : Xi → Yi is a
weak equivalence (resp. fibration, cofibration) in C for each object i of I. The only model
category property that will be lost is the lifting property, because even if one can lift
“at each object of i of I,” there is no reason to expect these lifts to be natural in i. To
formalize the amount of structure we retain, we introduce the following

Definition 1.6.2. A weak model category is a category C with all finite direct and in-
verse limits equipped with three subcategories called weak equivalences, cofibrations, and
fibrations, and two functorial factorizations (α, β), (γ, δ) satisfying the following axioms:

(2-out-of-3) If f and g are composable C morphisms and two out of three of f, g, gf
are weak equivalences, then so is the third.
(Retracts) Weak equivalences, cofibrations, and fibrations are closed under retracts.
(Factorization) For any morphism f , α(f) is a cofibration, β(f) is a trivial fibration,
γ(f) is a trivial cofibration, and δ(f) is a fibration.
(Push-pull) Fibrations are closed under pullback and cofibrations are closed under
pushout.

We can define left proper and right proper for weak model categories as in Defini-
tion 1.4.1.

Example 1.6.3. Any model category can be regarded as a weak model category. Propo-
sition 1.5.6 yields the Push-pull axiom.
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Example 1.6.4. If C is a weak model category and I is an arbitrary category, then CI

becomes a weak model category as discussed in the beginning of the section. This is
straightforward to check. In particular, Map C becomes a weak model category.

1.7. Derived functors. Here we briefly recall the construction of derived functors be-
tween homotopy categories of weak model categories.

Lemma 1.7.1. (Ken Brown) Suppose C is a weak model category and D is a category
with a subcategory of weak equivalences satisfying 2-out-of-3. Then any functor F : C→ D
that takes trivial cofibrations between cofibrant objects to weak equivalences takes all weak
equivalences between cofibrant objects to weak equivalences.

Proof. The usual proof [Hov, Lemma 1.1.12] of Ken Brown’s Lemma when C is a model
category goes through verbatim when C is merely a weak model category. �

The reader should formulate the dual form of Ken Brown as an exercise.

Definition 1.7.2. A functor F : C → D between weak model categories is called a left
Quillen functor iff F preserves finite direct limits, cofibrations, and trivial cofibrations.
Similarly, F is called a right Quillen functor iff F preserves finite inverse limits, fibrations,
and trivial fibrations.

Suppose now that C is a weak model category and D is a category equipped with a
subcategory of weak equivalences satisfying 2-out-of-3. Suppose F : C → D is a functor
taking weak equivalences between cofibrant objects to weak equivalences. For example, a
left Quillen functor between weak model categories has this property in light of Ken Brown.
Then, by the universal property of the homotopy category, F descends to a functor

HoF : Ho Cc → Ho D,

where Cc denotes the full subcategory of C consisting of cofibrant objects. Let Q : C→ Cc

denote the cofibrant replacement functor for C. It follows easily from 2-out-of-3 that Q
takes weak equivalences to weak equivalences, so Q descends to

HoQ : Ho C → Ho Cc.

We define the left derived functor

LF : Ho C → Ho D

to be the composition: LF := (HoF )(HoQ). That is, we set LF (X) := FQ(X) for X ∈ C.

The diagram

C

iC
��

F // D

iD
��

Ho C
LF // Ho D

does not commute, but there is a natural transformation η : LFiC → iDF obtained by
applying F to the natural trivial fibrations QX → X. The pair (LF, η) is characterized
up to unique isomorphism by noting that (LF, η) is a terminal object in the category
whose objects are pairs (G,α) consisting of a functor G : Ho C → HoD and a natural
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transformation α : GiC → iDF and whose morphisms (G,α) → (G′, α′) are natural
transformations ζ : G→ G′ such that

GiCX
ζiCX //

αX $$

G′iCX

α′Xyy
iDFX

commutes for every object X of C. This is straightforward to prove. The upshot is that,
up to unique isomorphism, the pair (LF, η) does not depend on the particular choice of a
cofibrant replacement functor.

1.8. Homotopy limits. Let C be a category with pushouts, f : X → Y a C-morphism.
The pushout functor

Y
∐
X

: X/C → Y/C(1.8.1)

is left adjoint to the “forgetful” functor

Y/C → X/C

(g : Y → Z) 7→ (gf : X → Z).

Dually, if C has pullbacks, then the base change

X ×Y : C/Y → C/X(1.8.2)

is right adjoint to

C/X → C/Y

(g : Z → X) 7→ (fg : Z → Y ).

Now assume that C is a weak model category, so that X/C, C/X, etc. become weak
model categories much as in Example 1.3.2. We would like to describe some circumstances
in which we can form the left derived pushout and right derived pullback—we will con-
centrate on the former and let the reader formulate the dual statements. As we saw in
the last section, to form the left derivative of (1.8.1), we need to know that whenever
a : X → Z and a′ : X → Z ′ are cofibrations in C and g : Z → Z ′ is a weak equivalence in
C with ga = a′, the induced map

Y
∐
X

g : Y
∐
X

Z → Y
∐
X

Z ′

is a weak equivalence. In practice, we typically check the following condition (which
implies the latter condition by Ken Brown) instead:

Lemma 1.8.1. For a weak model category C, the pushout functor (1.8.1) takes cofibrations
to cofibrations. If trivial cofibrations in C are stable under pushout2, then (1.8.1) is a left
Quillen functor.

2Note that cofibrations are always stable under pushout by definition of a weak model category. This
condition is a variant of “left proper” (Definition 1.4.1).
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Proof. Suppose a : X → Z and a′ : X → Z ′ are objects of X/C and g : Z → Z ′ is a
cofibration in X/C—i.e. a cofibration in C with ga = a′. The key point is that the C
diagram

Z
g //

��

Z ′

��
Y
∐
X Z

Y
∐
X g

// Y
∐
X Z

′

is also a pushout, so Y
∐
X g is also a cofibration in C (hence in Y/C) because cofibrations

in a weak model category are stable under pushout. Similarly, if g is a trivial cofibration in
X/C then the second hypothesis implies that Y

∐
X g is a trivial cofibration in C (hence

in Y/C). �

When it can be formed, the left derived pushout will be denoted

Y

L∐
X

: Ho(X/C) → Ho(Y/C).

The right derived pullback will be denoted

X ×R
Y : Ho(C/Y ) → Ho(C/X).
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2. Topological spaces

Perhaps the best example of a model category is “the” model category of topological
spaces Top. Actually, there are several different model category structures on Top, but
only the so-called Quillen model structure of §2.1 will be used in the present notes. After
giving the basic definitions and results concerning this model structure, we will discuss
path spaces and cylinders (§2.3) and prove Whitehead’s Theorem (§2.4). Many of the
formal arguments of these later sections will be recycled in our treatment of simplicial sets
(§4) and, by extension, the entirety of these notes.

2.1. Model structure. Throughout, we let Sn, Dn, and I denote the n-dimensional
sphere, the n-dimensional disk, and the closed interval [0, 1], respectively. Whenever we
refer to a map of topological spaces Sn−1 → Dn, the map is understood to be the usual
inclusion of the boundary. Similarly, Dn → Dn × I is always understood to refer to the
map x 7→ (x, 0).

Definition 2.1.1. Call a map f : X → Y of topological spaces a weak equivalence iff f
induces a bijection π0(f) on path components and

πn(f) : πn(X,x) → πn(Y, f(x))

is an isomorphism for all x ∈ X and all n > 0.

Theorem 2.1.2. The category Top of topological spaces admits a cofibrantly generated
model category structure with the above weak equivalences and where

I := {Sn−1 ↪→ Dn : n ∈ N}
J := {Dn ↪→ Dn × I : n ∈ N}

are the generating cofibrations and trivial cofibrations. Every topological space is fibrant.

(Apologies for the double usage of the notation “I.” Hovey avoids this mistake.)

Proof. [Hov, 2.4.19] (c.f. [Q1, II.3]). This is proved by appeal to the Recognition Theorem
(1.5.10). Most of the effort goes into checking the containment W ∩ J-inj ⊆ I-inj (every
Serre fibration which is also a weak equivalence has the RLP w.r.t. the maps Sn−1 ↪→ Dn)
in (CG6) of that theorem. For the smallness hypotheses (CG2) and (CG3), we first note
that the maps in I and J are injective, so by the second part of Lemma 2.1.3 below, I-sat
and J-sat are contained in the class of injective maps. By the first part of Lemma 2.1.3,
all topological spaces (in particular the domains of the maps in I and J) are small relative
to injective maps. To see that every topological space is fibrant, one checks directly that
the map to a point is in J-inj using the fact that each map in J has a retract. �

Lemma 2.1.3. Every topological space is small relative to injective maps. The set of
injective maps of topological spaces is saturated.

Proof. The first part is [Hov, 2.4.1]. For the second statement, we reduce to the corre-
sponding statement in Sets since all direct and inverse limits in Top commute with the
forgetful functor to Sets. The statement in Sets is easy. �

Note that the fibrations (i.e. the maps J-inj) in this model structure on Top are the
Serre fibrations: maps with the RLP with respect to the maps Dn ↪→ I ×Dn.
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Theorem 2.1.4. The model category Top is proper (Definition 1.4.1).

Proof. [Hir, 13.1.11]. Right proper is also [Hov, 2.4.18]. Both Hovey and Hirschhorn give
a direct proof of the right properness, though it follows formally from Proposition 1.4.3
because every topological space is fibrant. For the left properness one uses the structure of
cofibrations in Top from Lemma 1.5.9, to reduce to proving stability of weak equivalences
under pushouts along Sn−1 ↪→ Dn. �

2.2. Function spaces. Recall that for topological spaces X and Y , the set of continuous
maps f : X → Y can itself be given the structure of a topological space Y X , called the
function space, by giving it the compact-open topology. For a fixed X, the formation of
the topological space Y X is covariantly functorial in Y and we have:

Lemma 2.2.1. If X is locally compact Hausdorff, then ( )X is right adjoint to the
product functor ×X so that we have a natural bijection

HomTop(U ×X,Y ) = HomTop(U, Y X)

for any topological spaces U , Y . In particular, the “product with X” functor × X
preserves direct limits.

Proof. [Mun, 7.5.4] or [Hat, A.14] �

In other words, when X is locally compact Hausdorff, the topological space Y X repre-
sents the functor

Topop → Sets

U 7→ HomTop(U ×X,Y ).

The right adjoint to a product functor in any category is often called the function space,
internal Hom or Weil restriction, and is of interest in many different categories.

Later, in §4.6, we will discuss the right adjoint to the product functor in the category
of simplicial sets—the so called function complex. We will also give the analogs, for
simplicial sets, of the topological results of the next few sections. The reader can take this
as motivation for the “topological digression” which constitutes the remainder of §2.

2.3. Path spaces and cylinders. Since the unit interval I = [0, 1] is compact Hausdorff,
Lemma 2.2.1 says that for any topological space Y , the path space Y I of Y has the property
that there is a natural bijection

HomTop(X,Y I) = HomTop(X × I, Y )(2.3.1)

for any topological space X.

We have a natural map iY : Y → Y I given by the constant path; iY corresponds to
π1 : Y×I → Y under (2.3.1). The inclusions of the endpoints 0, 1 of I induce two evaluation

morphisms e0, e1 : Y I → Y (we have made the canonical identifications Y {0} = Y {1} = Y )
with

e0iY = e1iY = IdY .(2.3.2)

If f, g : X ⇒ Y are two maps of topological spaces, then a homotopy H : X × I → Y
from f to g is the same thing (via the bijection (2.3.1)) as a map of topological spaces
H : X → Y I such that e0H = f and e1H = g.
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The maps e0 and e1 are both deformation retracts of iY : Y → Y I . For example, to see
that e0 is a deformation retract of iY , consider the map

H : Y I × I → Y I

H(γ, t)(s) :=

{
γ(0), s ≤ t
γ(s− t), s ≥ t.

This map satisfies

H|(Y I × {0}) = Id

H|(Y I × {1}) = iY e0

and sits in a commutative diagram as below.

Y × I π1 //

iY ×I
��

Y

iY
��

Y I × I H //

e0×I
��

Y I

e0
��

Y × I π1 // Y

(2.3.3)

In particular, iX , e0, and e1 are all homotopy equivalences.

For a topological space X, we refer to the maps

e0 × e1 : XI → X ×X
(x 7→ (x, 0))

∐
(x 7→ (x, 1)) : X

∐
X → X × I

as the evaluation at the endpoints and the the boundary inclusion, respectively.

Lemma 2.3.1. For any topological space X, the constant path iX : X → XI followed
by the evaluation at the endpoints e0 × e1 : XI → X × X factors the diagonal map
∆ : X → X ×X as a homotopy equivalence followed by a (Serre) fibration. (In fact, one
can lift as indicated in any solid diagram

Y × {0} F //

��

XI

e0×e1
��

Y × I H //

l

77

X ×X

(2.3.4)

where Y is locally compact Hausdorff, hence in particular when Y = Dn is a disk.)

Dually,3 for any cofibrant topological space X, the boundary inclusion X
∐
X ↪→ X × I

followed by the projection π1 : X × I → X factors the codiagonal (fold) map X
∐
X → X

as a cofibration followed by a homotopy equivalence (which is also a fibration).

3To think of this as dual to the first statement, note that all topological spaces are fibrant (Theorem 2.1.2).
We wish to emphasize the analogy with the corresponding statement for simplicial sets (Lemma 4.7.5).
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Proof. Define the topological space J as the pushout

{0} × {0, 1} //

��

I × {0, 1}

��
{0} × I // J

so J consists of three sides of the unit square I × I. The inclusion J ↪→ I × I obviously
has a retract r : I × I → J (in fact a deformation retract).

Since Y is locally compact Hausdorff, taking products with Y preserves direct limits
(Lemma 2.2.1), hence

Y × {0} × {0, 1} //

��

Y × I × {0, 1}

��
Y × {0} × I // Y × J

is a pushout diagram in Top. If, in (2.3.4), we view F as a map F : Y ×{0}× I → X and
H as a map H : Y × I ×{0, 1} → X, then the commutativity of the solid square says that
F and H agree on Y × {0} × {0, 1}, so they correspond via the pushout square above to
a map

F ∪H : Y × J → X

and the lift l is the same thing as a map l : Y × I × I → X restricting to F ∪H on Y × J .
We can easily find such an l using our retract r by setting

l : Y × I × I → X

(y, s, t) 7→ (F ∪H)(r(s, t)).

The dual statement requires a little more work. Since X is cofibrant and the model
category structure on Top is cofibrantly generated with

I = {Sn−1 ↪→ Dn : n ∈ N}

as the set of generating cofibrations (Theorem 2.1.2), we can find a diagram of spaces

X
s // Z

p // X

with ps = IdX where ∅ → Z is in I-cell (Lemma 1.5.9). This diagram yields a diagram

X
∐
X

��

s
∐
s // Z

∐
Z

��

p
∐
p // X

∐
��

X × I s×Id // Z × I
p×Id // X × I

displaying the boundary inclusion map for X as a retract of the boundary inclusion map
for Z. Since cofibrations are closed under retracts, we thus reduce to proving the second
statement under the assumption that ∅ ↪→ X is in I-cell. We begin with the following:
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Claim: Suppose we have a pushout diagram of topological spaces as below.

Sn−1

a
��

// Dn

b
��

X // Y

Then, given any solid commutative diagram of topological spaces

Y
∐
Y

f
∐
g //

��

S

��
Y × I

L′
88

H // T

(2.3.5)

where S → T is a trivial fibration and any commutative diagram

X
∐
X

f |X
∐
g|X //

��

// S

��
X × I

L

77

H|X×I // T,

we can extend L to a lift L′ as indicated in (2.3.5).

To prove the claim, consider the diagram

(Dn
∐
Dn) ∪ (Sn−1 × I) //

j

��

S

��
Dn × I

H(b×I) //

K

55

T

where j is the obvious inclusion and the top horizontal arrow is

(fb
∐

gb) ∪H(a× I).

This map j is nothing but the inclusion Sn ↪→ Dn+1, so we can lift as indicated. Since
product with I preserves pushouts, we have

Y × I = (X
∐
Sn−1

Dn)× I

= (X × I)
∐

Sn−1×I

(Dn × I).

Using this description of Y × I, the map L′ := L∪K will do the job. The claim is proven.

Now suppose λ is an ordinal and {Xα : α ∈ λ} is a λ-sequence in Top such that X0 = ∅
and each map Xα → Xα+1 (α ∈ λ) is a pushout of a map in I. We need to show that the
direct limit Xλ has the property that

Xλ

∐
Xλ → Xλ × I
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is a cofibration. By transfinite induction, it will suffice to prove the following statement:
Given any γ ∈ λ, any commutative diagram of topological spaces

Xγ
∐
Xγ

f
∐
g //

��

S

��
Xγ × I

Lγ

88

H // T

(2.3.6)

with S → T a trivial fibration, and any set of maps

{Lα : Xα × I → S : α < γ}
compatible with the structure maps Xα → Xβ for α < β < γ and making the diagrams

Xα
∐
Xα

f |Xα
∐
g|Xα //

��

// S

��
Xα × I

Lα

66

H|Xα×I // T,

commute for α < γ, there is a lift Lγ as indicated in (2.3.6) compatible with the Lα and
the structure maps Xα → Xγ . This statement is trivial when γ = 0 since X0 = ∅. When
γ is a limit ordinal, we can simply take

Lγ := lim
−→
{Lα : α < γ}

using the fact that

Lγ × I = lim
−→
{Lα × I : α < γ}

because {Xα} is a λ-sequence (direct limit preserving functor) and product with I preserves
direct limits. When γ = α + 1 is a successor, the result follows from the Claim applied
with X → Y given by Xα → Xγ = Xα+1.

The projection map π1 : X×I → X is a fibration since all topological spaces are fibrant
and fibrations are stable under base change. �

Lemma 2.3.2. Suppose f : X → Y is a map of topological spaces. Let iY : Y → Y I

denote the constant path and e0, e1 : Y I → Y the evaluations. Then we have a commutative
diagram

X
(IdX ,iY f) //

f ��

X ×e0Y Y I

e1π2
zz

Y

where (IdX , iY f) is a homotopy equivalence (in fact it admits a deformation retract) and
e1π2 is a (Serre) fibration.

Dually, if f : X → Y is a map of cofibrant topological spaces, then we have a commu-
tative diagram

X
x 7→(x,1) //

f ��

Y
∐
X(X × I)

Id∪fπ1
xx

Y
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where x 7→ (x, 1) is a cofibration and Id∪fπ1 is a homotopy equivalence. (The pushout
over X is defined using the maps f and x 7→ (x, 0).)

Proof. The diagram commutes because e1iY = IdY . To see that (IdX , iY f) admits a
deformation retract, take the base change of (2.3.3) along f . To see that e1π2 is a fibration,
notice that we have a cartesian diagram:

X ×e0Y Y I

Id×e1
��

// Y I

e0×e1
��

X × Y
f×Id // Y × Y

The left vertical arrow Id×e1 is a fibration because e0 × e1 is a fibration (Lemma 2.3.1)
and fibrations are stable under base change. The map e1π2 is the composition of Id×e1

and the projection p2 : X × Y → Y . Since a composition of fibrations is a fibration, e1π2

is a fibration provided p2 is a fibration; this is the case because p2 is a base change of the
map from X to a point, which is a fibration (all topological spaces are fibrant).

For the dual statement, we have a pushout diagram:

X
∐
X

��

f×Id // Y
∐
X

j

��
X × I // Y

∐
X(X × I)

Since X is cofibrant, the left vertical arrow (the boundary inclusion for X) is a cofibration
by Lemma 2.3.1, hence the map labelled j is a cofibration. The map x 7→ (x, 1) is the
composition of the structure map X → Y

∐
X (which is a cofibration since Y is cofibrant)

and j. �

2.4. Whitehead’s Theorem. There are many theorems in algebraic topology that might
be called “Whitehead’s Theorem.” Here is a typical one:

Theorem 2.4.1. (Whitehead) In the model category Top:

(1) Any trivial cofibration admits a deformation retract.
(2) Any trivial fibration p : Z → Y between cofibrant spaces Z, Y is a homotopy

equivalence. More precisely, any such p has a section s such that sp and IdZ are
homotopic via a homotopy J : Z × I → Z sitting in a commutative diagram as
below.

Z × I J //

π1
��

Z

p

��
Z

p // Y

(3) Any weak equivalence between cofibrant spaces is a homotopy equivalence.
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Proof. (1): Suppose j : X → Z is a trivial cofibration. By Lemma 2.3.2 the map e1π2 in
the diagram

X

j

��

(Id,iZj) // X ×e0Z ZI

e1π2

��
Z

(r,H)
66

Z

is a fibration, so we can lift as indicated by the Lifting axiom. This (r,H) can be viewed
as the desired deformation retract, with rj = IdX and the abusively denoted map H :
Z × I → Z corresponding to H under the path space adjunction (2.3.1) providing the
homotopy rel X between jr and the identity of Z.

(2): Since Y and Z are cofibrant, the map z 7→ (z, 1) in the diagram

Z

z 7→(z,1)
��

Z

p

��
Y
∐
Z(Z × I)

s∪J

66

Id∪pπ1 // Y

is a cofibration by Lemma 2.3.2, so we can lift as indicated. This s and J can be interpreted
as the desired section and homotopy.

(3): By either part of the Factorization axiom and 2-out-of-3 for weak equivalences,
we can factor an arbitrary weak equivalence f : X → Y of cofibrant objects as a trivial
cofibration j : X → Z followed by a trivial fibration p : Z → Y . Since j is a cofibration and
X is cofibrant, Z is also cofibrant. Now we combine (1) (applied to j) and (2) (applied to p)
for the desired result: The homotopy p∗H∗s provides a homotopy between pjrs = frs and
IdY = ps. The homotopy r ∗J ∗ j provides a homotopy between rspj = rsf and IdX = rj.
We conclude that f is a homotopy equivalence with homotopy inverse rs : Y → X. �
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3. Simplicial objects

3.1. The simplicial category ∆. Fora nonnegative integer n, let [n] := {0, . . . , n}. Let
∆ denote the category whose objects are the finite sets [0], [1], . . . and where a ∆-morphism
[m]→ [n] is a nondecreasing function. For each i ∈ [n], let ∂in : [n−1]→ [n] be the unique
∆-morphism whose image is [n] \ {i}. That is:

∂in : [n− 1] → [n]

j 7→

{
j, j < i

j + 1, j ≥ i.

For each i ∈ [n], let σin : [n + 1] → [n] be the unique surjective ∆-morphism with
(σin)−1(i) = {i, i+ 1}. That is:

σin : [n+ 1] → [n]

j 7→

{
j, j ≤ i
j − 1, j > i.

We will denote morphisms in ∆ by the Greek letters ρ, σ, τ, . . . .

Lemma 3.1.1. The maps ∂in : [n − 1] → [n] and σin : [n + 1] → [n] defined above satisfy
the following relations:

∂jn+1∂
i
n = ∂in+1∂

j−1
n i < j

σjn−1σ
i
n = σin−1σ

j+1
n i ≤ j

σjn−1∂
i
n = ∂in−1σ

j−1
n−2 i < j

= Idn−1 j ≤ i ≤ j + 1

= ∂i−1
n−1σ

j
n−2 j + 1 < i

Every morphism σ : [n]→ [m] in ∆ factors uniquely as a composition

σ = ∂i1m · · · ∂
is
m−s+1σ

j1
n−t+1 · · ·σ

jt−1

n−2σ
jt
n−1

with 0 ≤ is < · · · < i1 ≤ m and 0 ≤ j1 < · · · < jt < n. The morphisms ∂in and σin generate
the category ∆ and the relations above generate all relations between them.

Proof. It is straightforward to check the claimed relations. For the second part, take
the ik to be the elements of [m] not in the image of σ, listed in decreasing order. Take
j1 < · · · < jt to be the elements j of [n] with σ(j) = σ(j + 1). The final statement can be
obtained from the second, or see [GZ, Page 24]. �

3.2. Simplicial objects. Let C be a category. A simplicial object in C is a contravariant
functor from the simplicial category ∆ to C. Simplicial objects in C form a category

sC := HomCat(∆
op,C),

which evidently contains C as a full subcategory by identifying C with the constant
simplicial objects in sC. For X ∈ sC, we will write Xn for X([n]), din : Xn → Xn−1

for X(∂in). The maps din are called the (basic) boundary maps of X. Similarly, we will
write sin : Xn → Xn+1 as abuse of notation for X(σin). The maps sin are called (basic)
degeneracy maps of X.
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One motivation for considering simplicial objects stems from Čech theory in topology;
this is thoroughly discussed in [Con, §1-2]. Another motivation is that, as we will see
later (§5), simplicial objects in an abelian category are essentially the same thing as chain
complexes, so we can use simplicial objects in an arbitrary category as a “non-abelian”
analog of chain complexes which will allow us to do “homological algebra.” Quillen [Q1]
calls this “homotopical algebra.” For example, in §7, we will be particularly interested in
simplicial rings and various non-abelian analogs of the usual homological concepts: injec-
tive/projective objects, resolutions, quasi-isomorphisms, derived functors, and so forth.

Example 3.2.1. Any object X of C determines a constant simplicial object in sC (also
denoted X) via the constant functor [n] 7→ C which takes every ∆op morphism to IdX .

More generally, for any surjective ∆ morphism σ : [m]→ [n], the map X(σ) : Xn → Xm

is often called a degeneracy map. Notice that every surjective ∆ morphism σ has a section
(any set-theoretic section of a ∆ morphism is again a ∆ morphism), so every degeneracy
map X(σ) of a simplicial object has a retract; in particular, the degeneracy maps are
monomorphisms in C. Similarly, for any injective ∆ morphism σ, we will often call X(σ)
a boundary map. Any injective ∆ morphism has a retract, hence any boundary map has
a section in C, hence is, in particular, an epimorphism.

Lemma 3.2.2. To give a simplicial object X in C it is equivalent to give objects Xn of
C, together with boundary and degeneracy maps

din : Xn → Xn−1, i = 0, . . . , n

sin : Xn → Xn+1, i = 0, . . . , n

satisfying the simplicial relations

din−1d
j
n = dj−1

n−1d
i
n, i < j

sin+1s
j
n = sj+1

n+1s
i
n, i ≤ j

dins
j
n−1 = sj−1

n−2d
i
n−1, i < j

= Idn−1, j ≤ i ≤ j + 1

= sjn−2d
i−1
n−1, j + 1 < i.

Proof. This follows from Lemma 3.1.1. �

Example 3.2.3. Suppressing subscripts, let us spell out explicitly all the simplicial re-
lations among the face and boundary maps between X2, X1, and X0. First we have the
following equalities of maps X2 → X0:

d0d0 = d0d1(3.2.1)

d1d0 = d0d2(3.2.2)

d1d1 = d1d2(3.2.3)

We next have

s0s0 = s1s0 : X0 → X2(3.2.4)
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and finally the relations between the face and boundary maps are:

d1s0 = Id : X0 → X0(3.2.5)

d0s0 = Id : X0 → X0(3.2.6)

d2s0 = s0d1 : X1 → X1(3.2.7)

d2s1 = Id : X1 → X1(3.2.8)

d1s1 = Id : X1 → X1(3.2.9)

d0s1 = s0d0 : X1 → X1.(3.2.10)

The category sC, like any functor category, inherits various properties from C. For
instance, if C has all (inverse, say) limits indexed by a category D, then so does sC, and
the inverse limit of a functor F : D→ sC is given by in the obvious way:

(lim
←−

F )n = lim
←−
D∈D

F (D)n.

We can also define cosimplicial objects in a category C to be functors X : ∆ → C.
The category csC of cosimplicial objects in C arises less frequently than sC, but plays an
important role in geometric realization (§4.3).

Example 3.2.4. Let X×G→ X be a right action of a group object G (in some category
C—really a monoid object will suffice) on an object X of C. To this action, one can
functorially associate a simplicial object X• of C with

X0 = X

X1 = X ×G
X2 = X ×G×G

...

Xn = X ×Gn.

The boundary maps din : Xn → Xn−1 for X• are given by

d0
n(x, g1, . . . , gn) := (xg1, g2, . . . , gn)

d1
n(x, g1, . . . , gn) := (x, g1g2, g3, . . . , gn)

...

dn−1
n (x, g1, . . . , gn) := (x, g1, . . . , gn−2, gn−1gn)

dnn(x, g1, . . . , gn) := (x, g1, . . . , gn−1)

and the face maps sin : Xn → Xn+1 are given by

s0
n(x, g1, . . . , gn) := (x, 1, g1, . . . , gn)

s1
n(x, g1, . . . , gn) := (x, g1, 1, g2, . . . , gn)

...

snn(x, g1, . . . , gn) := (x, g1, . . . , gn, 1).
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Supressing subscripts, these maps are given for small n by:

d0(x, g) = xg

d1(x, g) = x

d0(x, g, h) = (xg, h)

d1(x, g, h) = (x, gh)

d2(x, g, h) = (x, g)

s0(x) = (x, 1)

s0(x, g) = (x, 1, g)

s1(x, g) = (x, g, 1).

The relations among the low order boundary maps as in in Example 3.2.3 are the following:

d0d0 = d0d1 : (x, g, h) 7→ xgh(3.2.11)

d1d0 = d0d2 : (x, g, h) 7→ xg(3.2.12)

d1d1 = d1d2 : (x, g, h) 7→ x(3.2.13)

The low order degeneracy map relations are

s0s0 = s1s0 : x 7→ (x, 1, 1)(3.2.14)

and finally the relations between the face and boundary maps are:

d1s0 = Id : X → X(3.2.15)

d0s0 = Id : X → X(3.2.16)

d2s0 = s0d1 : (x, g) 7→ (x, 1)(3.2.17)

d2s1 = Id : X1 → X1(3.2.18)

d1s1 = Id : X1 → X1(3.2.19)

d0s1 = s0d0 : (x, g) 7→ (xg, 1).(3.2.20)

The equality (3.2.11) uses the compatibility of the action with multiplication for G and
the equality (3.2.16) uses the fact that “the identity of G acts trivially on X”. All of the
other equalities above use only the fact that G is a group object and have nothing to do
with the fact that X ×G→ X is an action.

3.3. Examples of cosimplicial objects. In this section we give some examples of cosim-
plicial objects.

For a non-negative integer n, let ∆>n ⊆ Rn+1 denote the convex hull of the standard
basis vectors e0, . . . , en:

∆>n := {t0e0 + · · ·+ tnen ∈ Rn+1 : ti ∈ [0, 1],
∑

ti = 1}.

A morphism σ : [m]→ [n] in the simplicial category ∆ induces a morphism of topological
spaces

∆>(σ) : ∆>m → ∆>n

(t0e0 + · · ·+ tmem) 7→ (
∑

i∈σ−1(0)

tie0 + · · ·+
∑

i∈σ−1(n)

tien),

so we can regard ∆> as a cosimplicial topological space called the standard (topological)
simplex.
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The algebraic analog of the standard topological simplex is the following: For a non-
negative integer n, let An denote the ring

An := Z[t0, . . . , tn]/〈1− t0 − t1 − · · · − tn〉.
A ∆-morphism σ : [m]→ [n] induces a ring homomorphism

A(σ) : An → Am

ti 7→
∑

j∈σ−1(i)

tj ,

so that the An form a simplicial ring A, and hence the ∆alg
n := SpecAn form a cosimplicial

scheme ∆alg called the standard (algebraic) simplex.

3.4. Bisimplicial objects. We can also consider “simplicial simplicial objects” in a cat-
egory C. We have natural isomorphisms

ssC = Hom(∆op,Hom(∆op,C))

= Hom(∆op ×∆op,C).

We will always view the category of “simplicial simplicial objects” as the category

ssC = Hom(∆op ×∆op,C),

which we will also call the category of bisimplicial objects of C. The diagonal inclusion

∆op → ∆op ×∆op

[n] 7→ ([n], [n])

induces, via restriction of functors, a functor

∆ : ssC → sC.

For a bisimplicial object X ∈ ssC, the simplicial object ∆(X) ∈ sC is called the diagonal
of X. The diagonal construction will make an appearance in §5.8.

3.5. Truncations and (co)skeleta. For a nonnegative integer n, let ∆n denote the full
subcategory of ∆ whose objects are [0], . . . , [n]. An n-truncated simplicial object in C is a
functor ∆op

n → C. Let

snC := HomCat(∆
op
n ,C)

be the category of n-truncated simplicial objects in C. The inclusion ∆op
n ↪→ ∆op induces

a restriction functor

trn : sC → snC

X 7→ X|∆op
n
,

which we call the n-truncation. For any m ≥ n we have analogous functor

trn : smC → snC.

Given an n-truncated simplicial object Y ∈ snC and a simplicial object X ∈ sC (or a
truncated simplicial object X ∈ smC for some m ≥ n) we say that X is a lift of Y if
trnX = Y . We have similar notions of lifting morphisms of n-truncated simplicial objects.

Let ∆mon (resp. ∆mon
n ) denote the subcategory of ∆ (resp. ∆n) with the same objects,

but where a morphism [m] → [k] is also required to be monic. Define ∆epi and ∆epi
n

similarly.
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Assume C has finite inverse limits. By the Kan Extension Theorem [Mac, X.3], the
truncation trn : sC→ snC admits a right adjoint

Coskn : snC → sC

called the nth coskeleton functor, defined by

(CosknX)m := lim
←−
{Xk : ([m]→ [k]) ∈ [m] ↓ ∆op

n }

= lim
←−
{Xk : ([k]→ [m]) ∈ ∆n ↓ [m]}

= lim
←−
{Xk : ([k]→ [m]) ∈ ∆mon

n ↓ [m]}.

The first equality is the usual “formula” for Kan extension [Mac, X.3.1]; the second is a
translation of it. To be clear, we emphasize that the inverse limit is the inverse limit of
the functor

(∆n ↓ [m])op → C

([k]→ [m]) 7→ Xk.

The third equality is by cofinality of ∆mon
n ↓ [m] in ∆n ↓ [m]: every object ([k]→ [m]) in

∆n ↓ [m] admits a map to an object ([l]→ [m]) where [l]→ [m] is monic.

In particular, notice that Xm = (CosknX)m for m ≤ n. Indeed, when m ≤ n, Id :
[m]→ [m] is the terminal object of ∆n ↓ m.

The adjunction isomorphism

HomsnC(trnX,Y ) → HomsC(X,Coskn Y )

takes a map f : trnX → Y to the map X → Coskn Y given in degree m by the map
Xm → (Coskn Y )m obtained as the inverse limit of the maps

fkX(σ) : Xm → Yk

over all σ : [k]→ [m] in ∆n ↓ [m].

For X ∈ sC, we use the abusive notation

CosknX := Coskn(trnX).

For m ≤ n, we have a natural map

Coskm → Coskn(3.5.1)

corresponding to the natural isomorphism

trn CoskmX = trnX

under the adjunction isomorphism

HomsC(CoskmX,CosknX) = HomsnC(trn CoskmX, trnX).

Since the maps (3.5.1) are isomorphisms in degrees ≤ n, we have

X = lim
←−
{CosknX : n ∈ N}(3.5.2)

(the inverse limit is computed degreewise).

Dually, if C has finite direct limits, then the Kan Extension Theorem implies that
truncation trn admits a left adjoint

Skn : snC → sC
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called the nth skeleton functor, given on X ∈ snC by the formula

(SknX)m = lim
−→
{Xk : ([m]→ [k]) ∈ [m] ↓ ∆n}

= lim
−→
{Xk : ([m]→ [k]) ∈ [m] ↓ ∆epi

n }.

The structure map

(SknX)(σ) : (SknX)m → (SknX)l

induced by a ∆ morphism σ : [l]→ [m] is the map on direct limits induced by the following
commutative diagram of functors:

([m] ↓ ∆n)op τ 7→σ∗τ //

(τ :[m]→[k]) 7→Xk %%

([l] ↓ ∆n)op

([l]→[k]) 7→Xkyy
C

As with the coskeleton functor, we use the abusive notation

SknX := Skn trnX

for X ∈ sC. Reasoning much as with the coskeleton functor, we see that there are natural
maps

Sk0X → Sk1X → · · · → X

and that

X = lim
−→
{SknX : n ∈ N}.(3.5.3)

Example 3.5.1. Note that s0C is naturally isomorphic to C, so we can regard Sk0

and Cosk0 as functors C→ sC. With this understanding, Sk0X is the constant simplicial
object and Cosk0X is the simplicial object with (Cosk0X)n = X [n] (the n+1 fold product

of X in C) whose boundary maps are the natural projections X [n] → X [n−1] “forgetting

one coordinate” and whose degeneracy maps X [n] → X [n+1] are the diagonals given by
“repeating one coordinate”.

3.6. Latching and matching objects. The latching and matching objects we are about
to define arise naturally in many inductive constructions with simplicial objects. The
matching objects also arise in the theory of fibrations of simplicial sets (§??), and hence
in many other model categories where fibrations are defined in terms of an underlying
simplicial set.

Fix k, n ∈ N with k ≤ n We call the categories

Lkn := [n] ↓ ∆epi
k

Mn := ∆mono
k ↓ [n]

the (k, n)-latching and -matching categories, respectively. Explicitly, an object of Lkn is a
surjective ∆-morphism σ : [n]→ [m] with m ≤ k and a morphism τ in Lkn is a commutative
triangle

[n]

σ

~~

σ′

!!
[m]

τ // [m′]
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of surjective ∆-morphisms. Similarly, an object of Mk
n is an injective ∆-morphism σ :

[m] ↪→ [n] with m ≤ k and a morphism τ in Mk
n is a commutative triangle

[m]
τ //

σ   

[m′]

σ′}}
[n]

of injective ∆-morphisms. The case where k = n− 1 is especially common/useful; we will
simply call

Ln := Ln−1
n

Mn := Mn−1
n

the nth latching and matching categories.

If X is a simplicial object in a category C with finite direct limits, then the (k, n)
latching object object of X is defined by

Lkn(X) := lim
−→
{Xm : (σ : [n]→ [m]) ∈ Lkn}

= (SkkX)n.

Notice that Lnn(X) = Xn (the identity [n] → [n] is the initial object in Lnn) and L0
n(X) =∐

[n]X0 (the category L0
n is just the set Hom∆([0], [n]) = [n]). When k = n− 1, we simply

call

Ln(X) := Ln−1
n (X)

the nth latching object of X. Notice that Lkn(X) depends only on the restriction of X

to ∆epi
k —that is, it depends only on the degeneracies of trkX. By restriction, we obtain

natural maps ∐
[n]

X0 = L0
n(X)→ L1

n(X)→ · · · → Ln−1
n (X)→ Lnn(X) = Xn

which one may think of as successively better approximations of Xn

Similarly, if C has finite inverse limits, the (k, n) matching object of X is the object of
C defined by

Mk
n(X) := lim

←−
{Xm : (σ : [m]→ [n]) ∈ Mk

n}

= (CoskkX)n.

We have Mk
n(X) = Xn and M0

n(X) = X
[n]
0 . Notice that Mk

n(X) depends only on the
boundary maps for trkX. When k = n− 1, we simply call

Mn(X) := Mn−1
n (X)

the nth matching object of X. Restriction yields maps

Xn = Mn
n(X)→ Mn−1

n (X)→ · · · → M1
n(X)→ M0

n(X) = X
[n]
0 .

In practice it isn’t really so important that the limits used to define latching and match-
ing objects actually exist in C (be representable), since we really just use them as short-
hand for their universal properties, so to speak. They just provide a way of packaging
certain finite diagrams of C-morphisms.
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The morphisms

Ln(X)→ Xn → Mn(X)(3.6.1)

can often be described quite explicitly.

For example, we can use the simplicial relations (Lemma 3.2.2) to give the following
explicit descriptions of the latching and matching objects associated to a simplicial set X:

Ln(X) =

 ∐
i∈[n−1]

(Xn−1)i

 / ∼(3.6.2)

Mn(X) = {(x0, . . . , xn) ∈ X [n]
n−1 : din−1xj = dj−1

n−1xi ∀ i < j}.
In the formula for Ln(X), the subscript i in (Xn−1)i is used to distinguish between the

different copies of of Xn−1 and ∼ is the smallest equivalence relation such that sjn−2(y) ∈
(Xn−1)i is equivalent to sin−2(y) ∈ (Xn−1)j+1 for each y ∈ Xn−2 and each 0 ≤ i ≤ j ≤ n−2.

In terms of the formulas (3.6.2), the morphism Ln(X)→ Xn in (3.6.1) is given by taking
the equivalence class of x ∈ (Xn−1)i to sin−1(x) ∈ Xn. The morphism Xn → Mn(X) is
given by

x 7→ (d0
nx, . . . , d

n
nx).

Notice that these maps are well-defined in light of the simplicial relations (Lemma 3.2.2).

The formulas (3.6.2) (or appropriate variations) will of course be valid in many other
categories where there is some notion of “underlying set” so that, say, the set underlying
a finite inverse limit is the inverse limit of the underlying sets. For example, the formula
(3.6.2) for Ln(X) is equally valid in simplicial groups, simplicial rings, etc. For an abelian
category A and a simplicial object A ∈ sA, the object Ln(A) of A is given by the cokernel
of an appropriate map ⊕

0≤i≤j≤n−2

(Aj−2)ij →
⊕

i∈[n−1]

(An−1)i,

though in practice it is generally easier to work directly with the direct limit description.

The adjunction morphism Skn(X)→ X need not be injective:

Example 3.6.1. Consider the simplicial set X with X0 = {x} and Xn = {x, y} for all
n > 0. The map s0

0 : X0 → X1 takes x to x and for any ∆-morphism σ : [m] → [n] with
m,n ≥ 1, the map X(σ) is the identity. The map Sk1(X)→ X will not be an isomorphism
in degree 2. Note that Sk1(X)2 = L2(X) is the second latching object of X, and the degree
two part of Sk1(X) → X is the natural map L2(X) → X2 mentioned in (3.6.1). Using
the explicit description of L2(X) in (3.6.2), we see that L2(X) = (X1

∐
X1)/ ∼, where ∼

simply identifies x in the first copy of X1 with x in the second copy of X1. In particular,
L2(X) has three elements, while X2 only has two elements.

Example 3.6.2. In Example 4.1.2 we will consider, for a fixed N ∈ N, the simplicial set
∆[N ] with

∆[N ]n = Hom∆([n], [N ]).

For a ∆-morphism σ : [m] → [n], the structure map ∆[N ](σ) : ∆[N ]n → ∆[N ]m is σ∗.
Using the factorization statements in Lemma 3.2.2, one can show that

Lkn(∆[N ]) → ∆[N ]n
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is the inclusion of the subset of those τ ∈ ∆[N ]n = Hom∆([n], [N ]) where | Im τ | ≤ k.
Indeed, Skk ∆[N ] is the sub simplicial set of ∆[N ] consisting of the ∆-morphisms to [N ]
with image of cardinality at most k.

3.7. Simplicial homotopy. Let f, g : X → Y be sC morphisms. A homotopy h from f
to g consists of a C morphism h(φ) : Xn → Yn, defined for each morphism φ : [n]→ [1] of
∆, satisfying the conditions:

(1) For any commutative triangle

[m]

φ   

ψ // [n]

θ��
[1]

in ∆, the square

Xn
h(θ) //

X(ψ)

��

Yn

Y (ψ)

��
Xm

h(φ) // Ym

commutes in C.
(2) For any n, if φ : [n]→ [1] is the constant map to 0 ∈ [1], then h(φ) = fn and if φ

is the constant map to 1 ∈ [1], then h(φ) = gn.

The relation consisting of pairs

(f, g) ∈ HomsC(C,D)×HomsC(C,D)

defined by “there is a homotopy from f to g” is not generally an equivalence relation.
It is clearly reflexive, but not generally symmetric or transitive. However, if there is a
homotopy h from f to g, and k, l : D → E are sC morphisms with a homotopy h′ from k
to l, then there is a homotopy from kf to lg, obtained by composing h and h′:

(φ : [n]→ [1]) 7→ (h′(φ)h(φ) : Cn → En).

We let ∼ be the equivalence relation generated by this relation and we say f is homotopic
to g if f ∼ g. In other words, f ∼ g means there is a finite string of morphisms f =
f0, f1, . . . , fn = g such that, for every i, either there is a homotopy from fi to fi+1 or there
is a homotopy from fi+1 to fi.

An sC morphism f : C → D is a homotopy equivalence if there is an sC morphism
g : D → C such that fg ∼ IdD and gf ∼ IdC .

Remark 3.7.1. More generally, for any X,Y ∈ sC, there is a naturally associated simpli-
cial set Hom(X,Y ) with Hom(X•, Y•)n given by the set of functions h assigning to every
∆-morphism σ : [m] → [n], a morphism h(σ) : Xm → Ym in such a way that for any
commutative triangle

[m]

σ   

τ // [m′]

σ′}}
[n]
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in ∆ (i.e. any morphism in ∆/[n]), the square

Xm′
h(σ′) //

X(τ)
��

Ym′

Y (τ)
��

Xm
h(σ) // Ym

commutes in C. For a map φ : [n]→ [n′] the simplicial set structure map

Hom(X,Y )(φ) : Hom(X,Y )n′ → Hom(X,Y )n

is defined by taking h ∈ Hom(X,Y )n′ to the function φ∗h ∈ Hom(X,Y )n assigning h(φψ) :
Xm → Ym to a ∆-morphism ψ : [m]→ [n′].

Notice that ∆/[0] = ∆ and Hom(X,Y )0 = HomsC(X,Y ) (a moment’s thought shows
that the commutativity condition above amounts to the assertion that hn := h([n]→ [0])
is a natural transformation).

In this language, a homotopy from f to g is an element of Hom(X,Y )1 mapping to

f, g ∈ Hom(X,Y )0 = HomsC(X,Y )

under the maps

Hom(X,Y )1 ⇒ Hom(X,Y )0

induced by the two injective ∆ morphisms [0] ⇒ [1]. We will revisit this again in §?? for
simplicial sets, where it is a little more concrete.

Remark 3.7.2. Sometimes one encounters the following definition of a homotopy from
f to g: There are morphisms hin : Xn → Yn+1, for i = 0, . . . , n, satisfying the following
conditions:

(1) d0
n+1h

0
n = fn and dn+1

n+1h
n
n = gn

(2) din+1h
j
n =


hj−1
n+1d

i
n i < j

din+1h
i−1
n i = j 6= 0

hjn+1d
i−1
n i > j + 1

(3) sin+1h
j
n =

{
hj+1
n+1s

i
n i ≤ j

hjn+1s
i−1
n i > j

To see the equivalence of the two definitions, observe that the maps [n] → [1] in ∆ are
the unique maps αni (i = 0, . . . , n + 1) with α−1

i (0) = {0, . . . , i− 1}. To go from the first
definition of homotopy to the second, set

hin := uαn+1
i

sin : Xn → Yn+1 i = 0, . . . , n.

To go from the second definition to the first, set

uαni := din+1h
i
n : Xn → Yn i = 0, . . . , n+ 1.

One can check by drawing diagrams that the two sets of conditions are exchanged.

Once we have a notion of (simplicial) homotopy, we can define many of the usual
homotopy notions from topology. For example, if i : X → Y is an sC morphism with a
retract r : Y → X, then we say that r is a deformation retract of i iff there is a homotopy
from Id : Y → Y to ir : Y → Y restricting to the identity on X.
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The following example of a simplicial homotopy arises “in nature” and is useful in
topology.

Lemma 3.7.3. Suppose C has products and X ∈ C is such that the unique map f : X → 1
to the terminal object (empty product) admits section s (i.e. there is some map 1 → X).
Then

Cosk0 f : Cosk0X → 1

is a homotopy equivalence in sC with homotopy inverse

Cosk0 s : 1→ Cosk0X.

Proof. Certainly (Cosk0 f)(Cosk0 s) = Cosk0(fs) is the identity of Cosk0 1 = 1 because
Cosk0 is a functor and fs = Id1 by definition of “section”. We need to show that

F := (Cosk0 s)(Cosk0 f) = Cosk0(sf)

is homotopic to the identity of Cosk0X. The map F is given by

Fn : Xn+1 → Xn+1

(x0, . . . , xn) 7→ (sf(x0), . . . , sf(xn)).

We define a homotopy to the identity by associating to φ : [n] → [1] the “straight line
homotopy” map

h(φ) : Xn+1 → Xn+1

h(φ)(x0, . . . , xn)i :=

{
sf(xi), φ(i) = 0

xi, φ(i) = 1.

When φ is the constant map onto 0 ∈ [1], obviously h(φ) = Fn and when φ is the constant
map to 1 ∈ [1] obviously h(φ) is the identity. To finish the proof that h is the desired
homotopy, we must show that, for any commutative square

[m]

φ   

ψ // [n]

θ��
[1]

in ∆, the square

Xn+1
h(θ) //

ψ∗

��

Xn+1

ψ∗

��
Xm+1

h(φ) // Xm+1

commutes in C.
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Here ψ∗ is short for (Cosk0X)(ψ). It is given by ψ∗(x0, . . . , xn)i = xψ(i). The commu-
tativity we want is now a simple computation:

(ψ∗h(θ))(x0, . . . , xn)i =

{
sf(xψ(i)), θ(ψ(i)) = 0

xψ(i), θ(ψ(i)) = 1

=

{
sf(xψ(i)), φ(i) = 0

xψ(i), φ(i) = 1

=

{
sf(ψ∗(x0, . . . , xn))i, φ(i) = 0

ψ∗(x0, . . . , xn)i, φ(i) = 1

= (h(φ)ψ∗)(x0, . . . , xn)i.

�
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4. Simplicial sets

In this section we study the category sSets of simplicial sets. Much of the theory of
simplicial objects in an arbitrary category is based on the theory of simplicial sets.

For a simplicial set X, we refer to the elements of Xn as simplicies of X of dimension
n. Fix a simplex x ∈ Xn. For any injective ∆ morphism σ : [k] → [n], the simplex
X(σ)(x) ∈ Xk is called a face of x. For any surjective ∆ morphism σ : [k] → [n], the
simplex X(σ)(x) ∈ Xk is called a degeneracy of x. Recall that the degeneracy map X(σ)
corresponding to a ∆ surjection σ always has a retract, so in particular it is injective. The
simplex x is called non-degenerate if it is a degeneracy only of itself. It is easy to see that
any simplex x ∈ Xm is a degeneracy of a unique non-degenerate simplex y: just choose l
minimal such that there is a ∆ surjection σ : [m]→ [l] and a y ∈ Xl with X(σ)(y) = x.

4.1. Examples. Here we mention several examples of simplicial sets. The n-simplex of
Example 4.1.2 and its cousins in the examples that follow will be used throughout our
study of simplicial sets.

Example 4.1.1. (Simplicial complexes) An easy way to describe simplicial sets is in
terms of the simplicial complexes one may be familiar with from topology (c.f. [Hat], for
example). Recall that a simplicial complex consists of a set X of finite sets such that for
any A ∈ X and any B ⊆ A, we have B ∈ X. Any element of any set belonging to X is
called a vertex of X. An ordered simplicial set is a simplicial set X together with a total
ordering of the set of vertices of X.

Given an ordered simplicial complex X, we define a simplicial set Xss ∈ sSets by letting
Xss
n be the set of nondecreasing sequences (x0, . . . , xn) of vertices, such that {x0, . . . , xn} ∈

X. Note that there may be repeats in the sequence. For a ∆-morphism σ : [m]→ [n], we
define

Xss(σ) : Xss
n → Xss

m

(x0, . . . , xn) 7→ (xσ(0), . . . , xσ(m)).

This is well-defined because σ is non-decreasing and because X is closed under passage
to subsets. The nondegenerate n simplices of Xss are the strictly increasing sequences
(x0, . . . , xn); such simplices are in bijective correspondence with the sets in X of cardinality
n+ 1.

Example 4.1.2. (Standard simplices) For each n ∈ N we have the n-simplex ∆[n] ∈
sSets defined by setting

∆[n]m := {(i0, . . . , im) : 0 ≤ i0 ≤ · · · ≤ im ≤ n}.

The boundary maps for ∆[n] are given by

djm : ∆[n]m → ∆[n]m−1

(i0, . . . , im) 7→ (i0, . . . , ij−1, ij+1, . . . , im)

and the basic degeneracy maps for ∆[n] are given by

sjm : ∆[n]m → ∆[n]m+1

(i0, . . . , im) 7→ (i0, . . . , ij−1, ij , ij , ij+1, . . . , im).
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It is easy to check that for any X ∈ sSets, the map

HomsSets(∆[n], X) 7→ Xn

f 7→ fn((0, 1, . . . , n))

is bijective.

In the language of Example 4.1.1, the n-simplex ∆[n] is the simplicial set associated to
the ordered simplicial complex X consisting of all subsets of [n], with the obvious ordering
on X0 = [n].

Notice that a sequence (i0, . . . , im) ∈ ∆[n]m may be viewed as a ∆ morphism

[m] → [n]

j 7→ ij .

Indeed, we could alternatively define ∆[n] by setting

∆[n]m := Hom∆([m], [n]).

For a ∆-morphism σ : [m]→ [m′], we can define the corresponding structure map for ∆[n]
by the formula

∆[n](σ) : Hom∆([m′], [m]) → Hom∆([m], [n])

f 7→ fσ.

It is clear from this description that a ∆-morphism σ : [m] → [n] gives rise to map of
simplicial sets ∆[σ] : ∆[m]→ ∆[n] in a functorial manner, so that ∆[•] forms a cosimplicial
simplicial set, called the standard cosimplicial simplicial set.

It is worth emphasizing that the formula

HomsSets(∆[m],∆[n]) = ∆[n]m(4.1.1)

= Hom∆([m], [n])

shows that the standard cosimplicial simplicial set

∆[•] : ∆ → sSets

is a fully faithful functor, so that we can regard the simplicial category ∆ as a full sub-
category of sSets via the standard cosimplicial simplicial set.

One sees immediately from the description of maps out of ∆[n] that the functor

Sets → sSets

X 7→
∐
X

∆[n]

is left adjoint to the forgetful functor

sSets → Sets

Y 7→ Yn.

That is, we have

HomsSets(
∐
W

∆[n], X) = HomSets(W,Xn).(4.1.2)
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Example 4.1.3. (Boundary of the n-simplex) For each n ∈ N we also have the
boundary ∂∆[n] of ∆[n], which is the sub-simplicial set of ∆[n] generated by

(1, 2, . . . , n), (0, 2, . . . , n), . . . , (0, 1, . . . , n− 1) ∈ ∆[n]n−1.

Denote the natural inclusion by in : ∂∆[n] ↪→ ∆[n]. The map

HomsSets(∂∆[n], X) → HomSets([n], Xn−1)

f 7→ (i 7→ fn−1(0, . . . , i− 1, i+ 1, . . . , n))

induced by in is a bijection onto the set of f ∈ HomSets([n], Xn−1) satisfying

din−1f(j) = dj−1
n−1f(i) for all 0 ≤ i < j ≤ n.

This set is nothing but the nth matching object Mn(X) (§3.6) of X, so we have a bijection

HomsSets(∂∆[n], X) = Mn(X)

natural in X.

In terms of the alternative definition of ∆[n], ∂∆[n] can be viewed as the subobject
where

(∂∆[n])m ⊆ (∆[n])m = Hom∆([m], [n])

is the subset consisting of ∆-morphisms σ : [m]→ [n] which are not surjective.

In the language of Example 4.1.1, ∂∆[n] is the simplicial set associated to the ordered
simplicial complex X consisting of all proper subsets of [n], with the obvious ordering on
X0 = [n].

Example 4.1.4. (Horns) For each n ∈ N and each k ∈ [n], the k-horn Λk[n] is the
sub-simplicial set of ∂∆[n] generated by the n− 1 simplices

(1, 2, . . . , n), . . . , (0, . . . , k − 2, k, . . . , n), (0, . . . , k, k + 2, . . . , n), (0, 1, . . . , n− 1).

The map

HomsSets(Λ
k[n], X) → HomSets([n], Xn−1)

f 7→ (i 7→ fn−1(0, . . . , i− 1, i+ 1, . . . , n))

is a bijection onto the set of f ∈ HomSets([n] \ {k}, Xn−1) satisfying

din−1f(j) = dj−1
n−1f(i) for all 0 ≤ i < j ≤ n, i, j 6= k.

Denote the natural inclusion by ikn : Λk[n] ↪→ ∆[n].

In terms of the alternative description of ∆[n] in Example 4.1.2, the subobject Λk[n]
can be viewed as the subobject where

(Λk[n])m ⊆ (∆[n])m = Hom∆([m], [n])

is the subset consisting of ∆-morphisms σ : [m]→ [n] where k /∈ Im(σ).
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4.2. Presentations. The basic properties of the simplicial sets introduced in §4.1 allow us
to give various descriptions of arbitrary simplicial sets in terms of direct limits, typically of
simplicial sets of the form ∆[n] for various n. We will refer to these direct limit decriptions
as “presentations.”

The disjoint union, over n ∈ N, of the maps corresponding to Id : Xn → Xn under the
adjunction (4.1.2) is a surjection of simplicial sets∐

n∈N

∐
Xn

∆[n] → X.

Call the domain of this surjection X ′ and note that the formation of the surjection X ′ → X
is functorial in X. Notice also that the two projections define a coequalizer diagram

(X ′ ×X X ′) ⇒ X ′ → X

in sSets (since direct limits in sSets are formed degree-wise, the fact that this is a co-
equalizer diagram is immediate from the fact that this diagram would be a coequalizer
diagram in Sets when X ′ → X is a surjection of sets). Since the natural surjection

X ′′ := (X ′ ×X X ′)′ → X ′ ×X X ′

is an epimorphism in sSets, the induced diagram

X ′′ ⇒ X ′ → X(4.2.1)

is also a coequalizer diagram, which we will call the first presentation of X. It is functorial
in X. Notice that X ′ and X ′′ are disjoint unions of copies of various ∆[n] and that the
maps X ′′ ⇒ X ′ are constructed by mapping summands ∆[m] of the coproduct X ′′ to
summands ∆[n] of the coproduct X ′ via a map of the form ∆[σ] for some ∆-morphism
σ : [m]→ [n]. We can thus write the first presentation in the form

X = lim
−→

∏
j∈J

∆[nj ] ⇒
∏
i∈I

∆[ni]

 ,(4.2.2)

where I and J are certain index sets depending functorially on X and the parallel arrows
are specified by maps φ, ψ : J ⇒ I of the index sets together with ∆-morphisms

φ(j) : [nj ] → [nφ(j)]

ψ(j) : [nj ] → [nψ(j)].

The upshot is that we can express an arbitrary simplicial set X as a direct limit of copies
of standard n-simplices ∆[n] for various n ∈ N.

Another way to do this is as follows. For X ∈ sSets, let Hom(∆[•], X) denote the
category whose objects are maps of simplicial sets x : ∆[n] → X (for some n ∈ N) and
whose morphisms are the obvious commutative triangles

∆[n]

x
!!

// ∆[m]

y
||

X

in sSets. Observe: Such a map x is the same thing an element of Xn (Example 4.1.2),
and, in such a commutative triangle, the map ∆[n]→ ∆[m] is necessarily of the form ∆[σ]
for some ∆-morphism σ : [n] → [m] (c.f. (4.1.1)), so the commutativity of this triangle
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is equivalent to saying that x = X(σ)(y) ∈ Xn. It follows easily from these observations
that we have

X = lim
−→
{∆[n] : (x : ∆[n]→ X) ∈ Hom(∆[•], X)}.(4.2.3)

We will call (4.2.3) the second presentation of X. It is also clearly functorial in X.

Recall the skeleton functors Skn : sSets → sSets from §3.5. For X ∈ sSets, we have
natural maps of simplicial sets

∅ =: Sk−1X → Sk0X → Sk1X → · · · → X

and

X = lim
−→
{SknX : n ∈ N}.(4.2.4)

We also have a natural map

Xn → Mn(X) = (Skn−1X)n,(4.2.5)

where the set MnX is the nth matching object of X discussed in §3.6. By the description
of maps out of ∂∆[n] in Example 4.1.3, we can view each element of Mn(X) as a map
of simplicial sets ∂∆[n] → X. Recall (§3.6) that Mn(X) depends only on trn−1(X). The
natural maps

Skn−1(X)→ Skn(X)→ X

induces isomorphisms

trn−1 Skn−1X = trn−1 SknX = trn−1X

(§3.5) and hence also isomorphisms

Mn(Skn−1X) = Mn(SknX) = Mn(X).

Each element x ∈ Xn hence determines a commutative diagram of simplicial sets

∂∆[n]

∂x
��

in // ∆[n]

x

��
Skn−1X // SknX

(4.2.6)

where ∂x denotes the image of x (viewing x as an element of Xn) under (4.2.5). The map
∂x is called the attaching map for X.

Taking the coproduct of the top parts of (4.2.6) over the non-degenerate elements Xnd
n

of Xn, we obtain a commutative diagram of simplicial sets as below.∐
x∈Xnd

n
∂∆[n]

��

//
∐
x∈Xnd

n
∆[n]

��
Skn−1X // SknX

(4.2.7)

Lemma 4.2.1. For any X ∈ sSets, n ∈ N, (4.2.7) is a pushout diagram in sSets.

Proof. The n-skeleton Skn is characterized as the left adjoint to the truncation Y 7→ trn Y
(§3.5), so a map f : Skn−1X → Y is the same thing as a map of (n−1)-truncated simplicial
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sets f : trn−1X → trn−1 Y . By the universal property of coproducts and the description
of maps out of the ∆[n] in Example 4.1.2 and maps out of ∂∆[n] in Example 4.1.3, a map∐

x∈Xnd

∆[n] → Y(4.2.8)

is the same thing as a map of sets fn : Xnd
n → Yn and the condition that the map f and

the map (4.2.8) agree on
∐
x∈Xnd

n
∂∆[n] is equivalent to saying that the diagram of sets

Xnd
n

��

fn // Yn

��
Mn(X)

f // Mn(Y )

(4.2.9)

commutes—both vertical arrows in (4.2.9) are given by

z 7→ (d0
nz, . . . , d

n
nz)

(§3.6). The lemma can thus be reinterpreted as the following statement: Suppose X and
Y are simplicial sets and f : trn−1X → trn−1 Y is a map of (n − 1)-truncated simplicial
sets. Then

f 7→ (fn : Xnd
n → Yn)

establishes a bijection between the set of liftings of f to a(n abusively denoted) map
f : trnX → trn Y of n-truncated simplicial sets and the set of maps of sets fn : Xnd

n → Yn
making (4.2.9) commute. (We will prove a similar, but fancier, statement in Lemma 7.9.2).

The basic point is that, given the (n − 1)-truncated map f , there is only one possible

way to define fn : Xn → Yn on the subset Xdeg
n ⊆ Xn of degenerate elements in a

manner compatible with the degeneracies for trnX and trn Y and, furthermore, when

fn : Xdeg
n → Yn is defined in this manner, the diagram

Xdeg
n

��

fn // Yn

��
Mn(X)

f // Mn(Y )

(4.2.10)

will commute. To see this, suppose x ∈ Xdeg, so that we can write x = X(σ)(x′) for some
surjective ∆-morphism σ : [n]→ [m], with m < n maximal w.r.t. to this property, so that
x′ ∈ Xm is non-degenerate. Since we need

Xm
fm //

X(σ)
��

Ym

Y (σ)
��

Xn
fn // Yn

to commute, there is no choice but to define fn(x) := Y (σ)fm(x′). The resulting map

fn : Xdeg
n → Yn is compatible with the boundary maps din for X and Y (i.e. makes (4.2.10)
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commute) because we compute

fn−1d
i
nx = fn−1d

i
nX(σ)x′

= fn−1X(σ∂in)(x′)

= Y (σ∂in)(fm(x′))

= dinY (σ)(fm(x′))

= dinfnx

using the fact that our f was a well-defined map of (n − 1)-truncated simplicial sets for
the key third equality. Now if we have a map fn : Xnd

n → Yn making (4.2.9) commute, we
define fn : Xn → Yn by defining it as above on the degenerate subset. By writing every
element as a degeneracy of a non-degenerate element, it is straightforward to check that
this fn is compatible with all the boundaries and degeneracies for trnX and trn Y , hence
yields the desired lift. �

4.3. Geometric realization. The fundamental geometric realization construction asso-
ciates, to a cosimplicial object Z ∈ csC in a category C, a functor

( )Z : C → sSets,

called the singular simplex (with respect to Z) and, assuming C has direct limits, a left
adjoint

| |Z : sSets → C

to the singular simplex functor, called the geometric realization (with respect to Z).

For X ∈ C, the singular simplex XZ ∈ sSets is defined by

XZ
n := HomC(Zn, X).

For a ∆-morphism σ : [m]→ [n], the structure map

XZ(σ) : HomC(Zn, X) → HomC(Zm, X)

for the simplicial set XZ is defined by f 7→ Z(σ)(f), where Z(σ) : Zm → Zn is the
structure map for Z.

Proposition 4.3.1. Fix Z ∈ csC. Assume C has direct limits. Then the singular simplex
functor X 7→ XZ admits a left adjoint X 7→ |X|Z . Aside from being characterized as the
left adjoint to the singular simplex functor, the geometric realization is also characterized
(up to unique isomorphism of functors) by the following properties:

(1) Geometric realization preserves direct limits.
(2) The composition of the standard cosimplicial simplicial set ∆[•] : ∆→ sSets and

the geometric realization | |Z : sSets→ C is (isomorphic to) Z : ∆→ C.

Proof. From the calculation

HomsSets(∆[n], XZ) = XZ
n

= HomC(Zn, X)

we see that |∆[•]| := Z will indeed define a left adjoint to the singular simplex on the
full subcategory ∆[•](∆) of sSets (and indeed, up to unique isomorphism, this is the only
possible way to define the geometric realization of the standard simplices and the maps
between them). Using the fact that C has direct limits, we can promote this recipe for
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the geometric realization of the standard simplices (and the maps ∆[σ] between them) to
a recipe for the geometric realization of an arbitrary X ∈ sSets by making use of, say,
one of the functorial presentations of X as a direct limit of standard simplicies from §4.2.
The point is that we can write

X = lim
−→
{∆[ni] : i ∈ IX}

for some direct limit system of simplicial sets {∆[ni] : i ∈ IX} functorial in X. We can
then define |X|Z functorially in X by the formula

|X|Z := lim
−→
{Zni : i ∈ IX}.

Notice that the structure maps for the direct limit on the RHS are determined by the
cosimplicial structure of Z because each map ∆[ni] → ∆[nj ] in the direct limit system
defining X is necessarily of the form ∆[σ] for some ∆-morphism σ : [ni]→ [nj ] by (4.1.1).
The fact that the functor X 7→ |X|Z , thus defined, actually yields a left adjoint to the
singular simplex is just a formal calculation with the universal property of direct limits
using the fact that we know this to be the case for the standard simplices. �

For example, the geometric realization sSets → sSets with respect to the standard
cosimplicial simplicial set ∆[•] is the identity functor.

Recall the standard topological simplex ∆> ∈ csTop from §3.3. The singular simplex
with respect to ∆> is a functor usually denoted

Sing : Top → sSets.(4.3.1)

The corresponding geometric realization is a functor

| | : sSets → Top(4.3.2)

usually called, simply, the geometric realization functor (or, if there is any possible chance
of confusion, the standard topological geometric realization functor).

Let us make a few general remarks about this particular geometric realization.

Lemma 4.3.2. For any simplicial set X, the geometric realization |X| ∈ Top is a CW
complex whose n-cells correspond to non-degenerate elements of Xn.

Proof. First note that

|∆[n]| ∼= Dn

|∂∆[n]| ∼= Sn−1,

where Dn is the n-dimensional disk and Sn is the n-dimensional sphere, and the isomor-
phisms are such that

|in : ∂∆[n]→ ∆[n]|
is the usual inclusion Sn−1 → Dn of the boundary of the disk. Since geometric realization
commutes with direct limits, the result we want follows from the (geometric realization
of the) formula (4.2.4) and the fact that (4.2.7) (hence also its geometric realization) is a
pushout diagram (Lemma 4.2.1). �

Definition 4.3.3. Let X be a topological space. A subset U ⊆ X is called compactly
open iff f−1(U) is open in K for each compact (Hausdorff) space K and each continuous
map f : K → X. A topological space X is called a Kelley space iff every compactly open
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subset of X is open. The full subcategory of Top consisting of Kelley spaces is denoted
K.

The inclusion K → Top has a right adjoint, left inverse obtained by endowing an
arbitrary space X with the “Kelley topology” where a subset U ⊆ X is declared open iff
it is compactly open.

From the construction of |X| in the proof of Proposition 4.3.1, we see that |X| can be
written as a coequalizer

X = lim
−→

(X ′′ ⇒ X ′),

in Top, where X ′ and X ′′ are disjoint unions of copies of standard topological n-simplices
∆>n , for various n. Certainly such X ′ and X ′′ are Kelley spaces and it is a general fact
that a direct limit of Kelley spaces (taken in Top) is again a Kelley space [Hov, 2.4.22(3)],
so |X| ∈ K. Similarly, if X is a finite simplicial set (i.e. X has only finitely many non-
degenerate simplices), then we can present X as a coequalizer

X = lim
−→

∏
j∈J

∆[nj ] ⇒
∏
i∈I

∆[ni]

 ,

where I is the (finite) set of non-degenerate simplices in X. (Compared to the standard
presentations of §4.2, the latter presentation has the slight disadvantage that it is not
functorial because the set of non-degenerate simplices of X isn’t functorial in X.) Geo-
metric realization preserves coequalizers, so |X| is a quotient of a finite disjoint union of
standard topological simplices, so |X| is compact because a quotient of a compact space
is (quasi-)compact. (The geometric realization |X| of any simplicial set is Hausdorff.)

We can view the geometric realization | | as a functor

| | : sSets → K.(4.3.3)

The category K has inverse limits, obtained by taking the inverse limit in Top, then
endowing the result with the Kelley topology.

Lemma 4.3.4. The functor (4.3.3) preserves finite inverse limits.

Proof. [Hov, 3.2.4] �

Since we will require a certain complement of this result, let us recall how Hovey proves
this. (We will just discuss the preservation of finite products.) First [Hov, 3.1.8] he proves:

Lemma 4.3.5. For any m,n ∈ N, the natural map

|∆[m]×∆[n]| → |∆[m]| × |∆[n]|
is an isomorphism. (On the RHS it doesn’t matter whether the product is taken in K or
Top since the spaces |∆[m]| = ∆>m and |∆[n]| = ∆>n are both compact.)

Definition 4.3.6. Let C be a category with products and direct limits. We say that
products commute with direct limits in C iff, for all direct limit systems i 7→ Xi and
j 7→ Xj in C, the natural comparison map

lim
−→

(Xi ×Xj) → (lim
−→

Xi)× (lim
−→

Xj)(4.3.4)

is an isomorphism.
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For example, it is elementary to see that products commute with direct limits in Sets,
and hence also in sSets, since this can be checked “degree-wise.” In Top, however, prod-
ucts do not commute with general direct limits, though it is elementary to see that they
commute with coproducts (direct sums). However, the natural comparison map (4.3.4) is
at least bijective, because the underlying set of a direct or inverse limit in Top coincides
with the direct or inverse limits of the underlying sets and we have already mentioned
that products commute with direct limits in Sets. Isomorphy for (4.3.4) in Top is hence
equivalent to saying that a subset of the codomain is open whenever its preimage in the
domain is open. The situation is better in K:

Proposition 4.3.7. Products commute with direct limits in K.

Proof. I assume Hovey found this in [Lew, Appendix A], which is the standard reference
for basic facts about K and related categories. In any case, this is fairly elementary. �

With these observations in hand, the fact that geometric realization commutes with
finite products is a formal computation, as follows. Suppose X and Y are simplicial sets.
Using, say, the standard presentation, we can write X = lim

−→
∆[mi], Y = lim

−→
∆[nj ] for

some appropriate direct limits systems of simplicial sets. Then we compute

|X| × |Y | = | lim
−→

∆[mi]| × | lim−→ ∆[nj ]|(4.3.5)

=
(

lim
−→
|∆[mi]|)

)
×
(

lim
−→
|∆[nj ]|

)
= lim
−→

(|∆[mi]| × |∆[nj ]|)

= lim
−→
|∆[mi]×∆[nj ]|

= | lim
−→

(∆[mi]×∆[nj ])|

= |X × Y |
using the fact that geometric realization commutes with direct limits, Lemma 4.3.5, and
the fact that products commute with direct limits in sSets and K (the products of Kelley
spaces here are taken in K).

Proposition 4.3.8. For a fixed locally compact space Y , the “product with Y ” functor
Top→ Top commutes with direct limits.

Proof. This is Lemma 2.2.1, but we can also argue directly as follows. As mentioned
above, it is easy to see that “product with Y ” commutes with coproducts (even without
hypotheses on Y ), so we reduce to treating coequalizers. We need to show that when

X ′′ ⇒ X ′ → X

is a coequalizer diagram, so is

X ′′ × Y ⇒ X ′ × Y → X × Y,
when the products are given the product topology. Let f : X ′ → X denote the quotient
map for the original coequalizer diagram. Since we know the product with Y commutes
with coequalizers on the level of underlying sets, the issue is to show that the product
topology on X × Y actually coincides with the quotient topology on X × Y induced by
the continuous surjection

f × Id : X ′ × Y → X × Y.
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That is: we need to show that any subset U ⊆ X×Y with (f× Id)−1(U) open in X ′×Y is
open in X×Y . It is enough to show that for any topological space W and any map of sets
g : X×Y →W for which the composition h := g(f × Id) : X ′×Y →W is continuous, the
map g is continuous. (In fact, the property we want for f × Id is equivalent to this latter
assertion and both are equivalent to the special case where W is the Sierpinski space, which
represents the “open subsets” functor.) Anyway, the result we want is [Bre, 13.19]. I will
repeat the argument here for the reader’s convenience: Consider an open subset U ⊆ W
and suppose g(x0, y0) ∈ U for some (x0, y0) ∈ X × Y . To show that g is continuous, we
want to show that there is a neighborhood A of x0 in X and a neighborhood V of y0 in
Y such that g(A × V ) ⊆ U . Since the quotient map f is surjective, we can pick a point
x′0 ∈ X ′ with f(x′0) = x0. Then h(x′0, y0) = g(x0, y0) ∈ U , so since h is continuous and Y is
locally compact, there is a compact neighborhood K of y0 in Y such that h(x′0×K) ⊆ U .
Set

A := {x ∈ X : g(x×K) ⊆ U}.

Then x0 ∈ A, so A and V := K (or the interior of K if V is to be open) will do the
job provided we can show A is open in X. Since f is a quotient map, it suffices to show
f−1(A) is open in X ′. Notice that

f−1(A) = {x′ ∈ X ′ : h(x′ ×N) = g(f(x′)×K) ⊆ U},

so that

X ′ − f−1(A) = π1(h−1(W − U) ∩ (X ′ ×K)).

This set is closed in X ′ because the projection π1 : X ′ × K → X ′ is proper since K is
compact. �

Corollary 4.3.9. If X is a finite simplicial set (finitely many non-degenerate simplices),
then the “product with X” functor sSets→ sSets commutes with the geometric realization
functor

| | : sSets → Top.

That is, the natural map

|X × Y | → |X| × |Y |

is an isomorphism for any simplicial set Y , where the product on the RHS is the usual
product of topological spaces.

Proof. Repeat the formal computation (4.3.5) using the fact that |X| is compact, so we
can commute the product with |X| and the direct limit spaces in (4.3.5) (in Top, not just
in K) using Proposition 4.3.8. �

Remark 4.3.10. In the above corollary, we could replace the condition that X is finite
with the condition that |X| is locally compact. However, a simplicial set with infinitely
many non-degenerate simplices will rarely have a locally compact geometric realization.

For more on geometric realization, see [Mil], [GJ, I.2].
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4.4. Model structure. In this section we recall “the” model structure on sSets.

Definition 4.4.1. A map f : X → Y of simplicial sets is called a . . .

. . . weak equivalence iff its geometric realization |f | : |X| → |Y | is a weak equivalence
of topological spaces (Definition 2.1.1).

. . . fibration iff it has the RLP w.r.t. the inclusions ikn : Λk[n] ↪→ ∆[n] of k-horns (c.f.
Example 4.1.4) for all n > 0 and all k ∈ [n].

. . . cofibration iff it is injective.

Theorem 4.4.2. The category sSets of simplicial sets is a model category with the weak
equivalences, fibrations, and cofibrations defined above. This model structure is cofibrantly
generated (Definition 1.5.7) by the set I of cofibrations and the set J of trivial cofibrations
below.

I := {∂∆[n] ↪→ ∆[n] : n ∈ N}
J := {ikn : Λk[n] ↪→ ∆[n] : n > 0, k ∈ [n]}

Proof. [Q1, II.3], [Hov, 3.2]. The fact that a map of simplicial sets is a cofibration iff it is
injective is [Hov, 3.2.2]. �

Theorem 4.4.3. Simplicial sets, with the above model category structure, is proper (Def-
inition 1.4.1).

Proof. [Hir, 13.1.13] Since all simplicial sets are cofibrant, left properness follows from
Proposition 1.4.3. Right properness follows formally from the following facts: 1) The
geometric realization functor (§4.3) takes fibrations of simplicial sets to fibrations of
topological spaces (i.e. Serre fibrations) [Hov, 3.6.2]. 2) Geometric realization preserves
fibered products, at least when viewed as a functor to the category K of Kelley spaces
(Lemma 4.3.4). 3) The model category Top (§2) is right proper (Theorem 2.1.4). We
use 2-out-of-3 for weak equivalences in Top and the obvious fact that the map from the
fibered product in K to the fibered product in Top is always a weak equivalence (both
spaces receive the same maps from spheres). �

Let us make a few remarks about fibrations of simplicial sets. By definition, f : X → Y
is a fibration iff there is a lift as indicated in any solid diagram

Λk[n] //

ikn
��

X

f

��
∆[n]

==

// Y

of simplicial sets (n > 0, k ∈ [n]). According to the description of maps out of Λk[n]
and ∆[n] given in Examples 4.1.2 and 4.1.4, the solid part of this diagram corresponds to
elements

x0, . . . , xk−1, xk+1, . . . , xn ∈ Xn−1, y ∈ Yn
satisfying:

din−1xj = dj−1
n−1xi, 0 ≤ i < j ≤ n, i, j 6= k(4.4.1)

diny = fn−1xi, 0 ≤ i ≤ n, i 6= k.
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Similarly, a lift as indicated corresponds to an element x ∈ Xn satisfying dinx = xi for
i = 0, . . . , k − 1, k + 1, . . . , n and fnx = y. In other words, if we let

Mk
n(X/Y ) ⊆ Xn

n−1 × Y

be the set of all

(x0, . . . , xk−1, xk+1, . . . , xn, y) ∈ Xn
n−1 × Y

satisfying the relations (4.4.1), then we have a natural map

Xn → Mk
n(X/Y )(4.4.2)

x 7→ (d0
nx, . . . , d

k−1
n x, dk+1

n x, . . . , dnnx, fnx).

The map f is a fibration iff the maps (4.4.2) are surjective for all n > 0, k ∈ [n].

Remark 4.4.4. When n = 0, Λk[n] = ∅ is the initial object; the RLP with respect
to ∅ ↪→ ∆[0] is equivalent to surjectivity of f0 : X0 → Y0, but we emphasize that this
surjectivity is not required for f to be a fibration.

The following “corollary of Theorem 4.4.2” is often useful (actually one usually proves
some result to this effect before proving Theorem 4.4.2):

Proposition 4.4.5. For a map f : X → Y of simplicial sets, the following are equivalent:

(1) f is a fibration (Definition 4.4.1).
(2) f has the RLP w.r.t. the inclusions

(∂∆[n]×∆[1]) ∪ (∆[n]× {e}) ↪→ ∆[n]×∆[1]

for all n ∈ N, e ∈ {0, 1}.
(3) f has the RLP w.r.t. the inclusion

(K ×∆[1]) ∪ (L× {e}) ↪→ L×∆[1]

for any injective map of simplicial sets K ↪→ L and any e ∈ {0, 1}.
(4) f has the RLP w.r.t. K ↪→ L whenever K ↪→ L is an injective map of simplicial

sets for which |K| → |L| is a weak equivalence of topological spaces.

Proof. The equivalence of the first three statements is [GZ, IV.2.1] (one proves this “from
first principles”). The equivalence of the first and last statements is the statement that
fibrations in the model category sSets have the RLP w.r.t. trivial cofibrations, so it is
part of the assertion in Theorem 4.4.2 that sSets is a model category with the definitions
of Definition 4.4.1. �

Proposition 4.4.6. For a map f : X → Y of simplicial sets, the following are equivalent:

(1) f is a trivial fibration (Definition 4.4.1).
(2) f : X → Y has the RLP w.r.t. the inclusion in : ∂∆[n] ↪→ ∆[n] for any n ∈ N.
(3) f : X → Y has the RLP w.r.t. all injective maps of simplicial sets.

Proof. (C.f. [Q1, II.3.2.1]) The equivalence of the first two statements is part of the cofi-
brant generation assertion in Theorem 4.4.2—namely the assertion that I-inj is the set
of trivial fibrations. The equivalence of the first and third statements is the assertion
that trivial fibrations have the RLP w.r.t. cofibrations, which is part of the assertion in
Theorem 4.4.2 that sSets is a model category with the definitions of Definition 4.4.1. �
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Recall (Definition 1.1.5) that a simplicial set is called fibrant iff the map to the terminal
simplicial set is a fibration. (All simplicial sets are cofibrant since the map from the empty
simplicial set is certainly injective.) Let us unravel this a bit. Let Mn(X/Y ) denote the
set of

(x0, . . . , xn, y) ∈ X [n]
n−1 × Yn

satisfying the relations

din−1xj = dj−1
n−1xi, 0 ≤ i < j ≤ n(4.4.3)

diny = fn−1xi, i ∈ [n].

Then a solid diagram

∂∆[n] //

in
��

X

f

��
∆[n]

<<

// Y

is the same thing as an element of Mn(X/Y ) and a lift as indicated is the same thing as
an element x ∈ Xn with dinx = xi for all i ∈ [n] and fnx = y. Evidently then, f is a trivial
fibration iff the natural map

Xn → Mn(X/Y )(4.4.4)

x 7→ (d0
nx, . . . , d

n
nx, fnx)

is surjective.

Notice that Mn(X/Y ) is a relative version of the nth matching object Mn(X) of §3.6.
Indeed, when Y is the terminal object, Mn(X/Y ) = Mn(X) is the nth matching object of
§3.6.

4.5. Homotopy groups. In this section we define the homotopy sets πn(X,1) of a fibrant,
based simplicial set X.

A basepoint of a simplicial set X is a map from the terminal simplicial set 1 to X. The
terminal simplicial set is the constant simplicial set associated to a one-element set, so

HomsSets(1, X) = HomSets(1, tr0X)

= X0

(c.f. Example 3.5.1). That is, a basepoint of X is the same thing as an element 1 ∈ X0.
A based simplicial set is a simplicial set X equipped with a basepoint. By slight abuse
of notation, we write 1 ∈ Xn for the image of the base point 1 ∈ X0 under the map
X0 → Xn induced by the unique ∆ morphism [n] → [0]. Note that for any ∆-morphism
σ : [m]→ [n], the structure map X(σ) : Xn → Xm takes 1 to 1, so this abuse of notation
should be harmless.

For a based simplicial set X and an n ∈ N, we let

Zn(X) := {x ∈ Xn : dinx = 1 for i = 0, . . . , n}
(note Z0(X) := X0). Define a relation ∼ on Zn(X) by declaring x ∼ y iff there is some
z ∈ Xn+1 such that din+1z = 1 for i = 0, . . . , n− 1 and dnn+1 = x, dn+1

n+1z = y.

Recall from the previous section that for n > 0, we let

Mk
n(X) := {(x0, . . . , xk−1, xk+1, . . . , xn) ∈ Xn

n−1 : din−1xj = dj−1
n−1xi ∀ i < j},
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so we have a natural map

Xn → Mk
n(X)(4.5.1)

x 7→ (d0
nx, . . . , d

k−1
n x, dk+1

n x, . . . , dnnx).

The simplicial set X is fibrant iff (4.5.1) is surjective for all n > 0.

Proposition 4.5.1. If X is fibrant, then the relation ∼ is an equivalence relation.

Proof. Reflexive: Perhaps surprisingly, this is the most difficult property to establish.
Given x ∈ Zn(X) ⊆ Xn, we seek a z ∈ Xn+1 such that

din+1z =

{
1, i = 0, . . . , n− 1

x, i = n, n+ 1

Since we can see easily that (1, . . . ,1, x) ∈ Mn
n+1(X), by fibrancy there is a y ∈ Xn+1

such that din+1y = 1 for i ∈ [n− 1] and dn+1
n+1y = x (we know nothing about dnn+1y). Next

observe that (1, . . . ,1, y, y) ∈ Mn+2
n+2(X), so by fibrancy there is a w ∈ Xn+2 such that

din+2w =

{
1, i = 0, . . . , n− 1

y, i = n, n+ 1

(we know nothing about dn+2
n+2w). I claim z := dn+2

n+2w ∈ Xn+1 is as desired. Indeed, for
i ∈ [n− 1], we compute

din+1z = din+1d
n+2
n+2w

= dn+1
n+1d

i
n+2w

= dn+1
n+11

= 1,

and for i ∈ {n, n+ 1}, we compute

din+1z = din+1d
n+2
n+2w

= dn+1
n+1d

i
n+2w

= dn+1
n+1y

= x.

Symmetric: Suppose x, y ∈ Zn(X) are such that there is some z ∈ Xn+1 with

din+1z =


1, i = 0, . . . , n− 1

x, i = n

y, i = n+ 1.

By reflexivity proved above, there is r ∈ Xn+1 such that

din+1r =

{
1, i = 0, . . . , n− 1

y, i = n, n+ 1.
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Since dn+1
n+1r = dn+1

n+1z it follows that (1, . . . ,1, z, r) ∈ Mn+2
n+2(X), so by fibrancy there is

some u ∈ Xn+2 with

din+2u =


1, i = 0, . . . , n− 1

z, i = n

r, i = n+ 1.

Now we check, just as above, that w := dn+2
n+2u satisfies

din+1w =


1, i = 0, . . . , n− 1

y, i = n

x, i = n+ 1.

Transitive: Suppose x, y, z ∈ Zn(X) have x ∼ y and y ∼ z. We know ∼ is symmetric so,
since y ∼ x, there is some u ∈ Xn+1 with

din+1u =


1, i = 0, . . . , n− 1

y, i = n

x, i = n+ 1

and since y ∼ z there is some v ∈ Xn+1 with

din+1v =


1, i = 0, . . . , n− 1

y, i = n

w, i = n+ 1

From the equality dnn+1u = dnn+1v it follows that (1, . . . ,1, u, v) ∈ Mn+2
n+2(X), so by fibrancy,

there is some w ∈ Xn+2 with

din+2w =


1, i = 0, . . . , n− 1

u, i = n

v, i = n+ 1

and one checks easily that dn+2
n+2w ∈ Xn+1 witnesses x ∼ z. �

Definition 4.5.2. The quotient sets

πn(X) := Zn(X)/ ∼
are called the homotopy sets of the based, fibrant simplicial set X.

Remark 4.5.3. The set π0(X) of path components of X does not depend on the choice
of basepoint, and can be defined without requiring X to be fibrant by the formula

π0(X) = lim
−→

(d0
1, d

1
1 : X1 ⇒ X0).

Theorem 4.5.4. Let f, g : X ⇒ Y be homotopic maps of fibrant simplicial sets. Then
the maps

π0(f), π0(g) : π0(X) ⇒ π0(Y )

coincide, as do the maps

πn(f), πn(g) : πn(X,x) ⇒ πn(Y, f(x))

for any base point x of X and any n > 0.
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Proof. Exercise. �

4.6. Function complexes. Our first task is to describe the analog of the function space
(i.e. the space of continuous maps Y → Z between topological spaces Y and Z discussed
in §??) in the category of simplicial sets. Given simplicial sets Y,Z, we will define a new
simplicial set ZY called the function complex of Y and Z characterized (up to unique
isomorphism) by the existence of a bijection

HomsSets(X,Z
Y ) = HomsSets(X × Y,Z),(4.6.1)

natural in X ∈ sSets. The construction will be covariantly functorial in Z and contravari-
antly functorial in Y :

sSets× sSetsop → sSets(4.6.2)

(Z, Y ) 7→ ZY .

Notice that the situation in simplicial sets is slightly nicer than the one in Top since we
do not need any hypotheses on X.

To construct ZY , we make use of the standard simplices ∆[n] of Example 4.1.2. Recall
that

∆[n]m = Hom∆([m], [n]).

We let

ZYn := HomsSets(Y ×∆[n], Z).

For a ∆-morphism σ : [n] → [m], recall (Example 4.1.2) that we have a natural map
∆[σ] : ∆[n]→ ∆[m] of simplicial sets. We define the structure map

ZY (σ) : ZYm → ZYn(4.6.3)

by taking an sSets morphism f : Y ×∆[m]→ Z to the sSets morphism

f(IdY ×∆[σ]) : Y ×∆[n] → Z.

Proposition 4.6.1. For simplicial sets X,Y, Z, we have a natural bijection (4.6.1).

Proof. Define

Ψ : HomsSets(X,Z
Y ) → HomsSets(X × Y,Z)

Φ : HomsSets(X × Y,Z) → HomsSets(X,Z
Y )

by the following formulas:

Ψ(g)n(x, y) := gn(x)(y, Id : [n]→ [n])

Φ(f)n(x)m(y, σ : [m]→ [n]) := fm(X(σ)(x), y).

We leave it to the reader to check that:

(1) For every n ∈ N and every x ∈ Xn, Φ(f)n(x) : Y ×∆[n]→ Z is a map of simplicial
sets.

(2) Φ(f) : X → ZY is a map of simplicial sets.
(3) Ψ(g) : X × Y → Z is a map of simplicial sets.
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The fact that ΨΦ(f) = f for all f amounts to the following:

ΨΦ(f)n(x, y) = Φ(f)n(x)(y, Id : [n]→ [n])

= fn(X(Id)(x), y)

= f(x, y)

and the fact that ΦΨ(g) = g for all g amounts to the following:

ΦΨ(g)n(x)m(y, σ : [m]→ [n]) = Ψ(g)n(X(σ)(x), y)

= gm(X(σ)(x))n(y, Id : [n]→ [n])

= ZY (σ)(gn(x))m(y, Id : [n]→ [n])

= gn(x)m(y, Idσ : [m]→ [n])

= gn(x)m(y, σ : [m]→ [n]).

In the third equality we use that g is a map of simplicial sets, so it is compatible with the
structure maps associated by X and by ZY to σ and in the fourth equality we use the
definition of the maps (4.6.3). �

4.7. Simplicial homotopy revisited. For simplicity, we introduce the notation I :=
∆[1] for the standard 1-simplex (Example 4.1.2). Recall that In = Hom∆([n], [1]). For a
simplicial set Y , the function complex (§4.6) Y I ∈ sSets is called the path space of Y , in
analogy with the topological situation (§??). Via the functoriality of function complexes
(4.6.2), the two maps i0, i1 : ∆[0] ⇒ ∆[1] induce two evaluation maps e0, e1 : Y I ⇒ Y

(note ∆[0] is the terminal simplicial set with |∆[0]n| = 1 for every n, so Y ∆[0] = Y ). The
common retract r : I → ∆[0] of the ij induces a map iY : Y → Y I called the constant
path map. We have

e0iY = e1iY = IdY .

Proposition 4.7.1. Let f, g : X ⇒ Y be maps of simplicial sets. There are natural
bijections between the following sets:

(1) the set of simplicial homotopies h from f to g in the sense of §3.7
(2) the set of morphisms of simplicial sets H : X × I → Y with Hi0 = f , Hi1 = g
(3) the set of morphisms of simplicial sets H : X → Y I with e0H = f , e1H = g.

Proof. Recall (§3.7) that such an h consists of maps h(φ) : Xn → Yn defined for each
∆-morphism φ : [n]→ [1] (i.e. for each element φ ∈ Hom∆([n], [1]) = In, satisfying various
conditions. It is straightforward to check that those conditions are equivalent to saying
that the maps

Xn × In → Yn

(x, φ) 7→ h(φ)(x)

define a map of simplicial sets H : X × I → Y and it is straightforward to see that
such an H gives maps h(φ) by the formula h(φ)(x) := Hn(x, φ). This gives the bijection
between the first two sets. The bijection between the second and third sets follows from
the adjointness (4.6.1). �

Similarly, we can reformulate the definition of deformation retract from §3.7 as follows:
If f : X → Y is a map of simplicial sets we say that r is a deformation retract of f iff



52 W. D. GILLAM

rf = IdX and there is a commutative diagram of simplicial sets

X × I π1 //

f×Id
��

X

f
��

Y × I H // Y

(4.7.1)

with Hi0 = fr, Hi1 = IdY . (This H is the same thing as a homotopy rel X from fr to
the identity of Y in the sense of §3.7.) Using (4.6.1) we see that such an H is the same
thing as a map of simplicial sets H : Y → Y I making

X
iX //

f
��

XI

fI

��
Y

H // Y I

(4.7.2)

commute and satisfying e0H = fr, e1H = IdY .

Starting only with f , we see similarly that a pair (r,H) consisting of a retract r of f and
a homotopy H rel X from fr to the identity of Y is the same thing as a lift as indicated
in the commutative square of simplicial sets below.

X
(IdX ,iY f) //

f

��

X ×f,e0Y Y I

π2e1

��
Y

(r,H)
66

Y

(4.7.3)

(Note that f IiX = iY f .)

Proposition 4.7.2. If f, g : X ⇒ Y are simplicially homotopic maps (§3.7) of simplicial
sets, then the geometric realizations |f |, |g| : |X|⇒ |Y | are homotopic maps of topological
spaces in the usual sense. Similarly, if r : Y → X is a deformation retract of f : X → Y
in the “simplicial” sense of §3.7, then |r| is a deformation retract of |f | in the usual
topological sense.

Proof. The geometric realization of the simplicial set I = ∆[1] is the standard topological
1-simples ∆>1 (i.e. the usual closed interval I from topology). Similarly, the geometric
realizations of the maps ie : ∆[0]→ ∆[1] (e = 0, 1) are the usual inclusions of the endpoints
of the interval I. According to Proposition 4.7.1, we can view a simplicial homotopy from
f to g as a map of simplicial sets H : X × I → Y with Hi0 = f , Hi1 = g. Since I = ∆[1]
is a finite simplicial set, Corollary 4.3.9 says that the geometric realization of H can be
viewed as a map of spaces |H| : |X| × I → |Y | (where I = |∆[1]| is the usual topological
interval) with |Hi0| = |H||i0| = |f |, |Hi1| = |H||i1| = |g|, which is a homotopy from f to
g in the usual sense. The statement about deformation retracts is obtained similarly by
considering the geometric realization of (4.7.1). �

Lemma 4.7.3. The retract r : ∆[1] → ∆[0] is a deformation retract of both inclusions
i0, i1 : ∆[0]→ ∆[1].

Proof. On symmetry grounds, it will be enough to treat the case of i1. We already have
ri1 = Id, so it remains only to produce a strict homotopy H : ∆[1] × ∆[1] → ∆[1] from
the identity of ∆[1] to the map i1r : ∆[1]→ ∆[1]. An n simplex of ∆[1]×∆[1] is a pair of
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∆ morphisms σ, τ : [n] → [1], while an n simplex of ∆[1] is just a ∆ morphism [n] → [1].
Observe that

h : [1]× [1] → [1]

(0, 0) 7→ 0

(1, 0) 7→ 1

(0, 1) 7→ 1

(1, 1) 7→ 1

is a map of ordered sets, so

(σ, τ) 7→ h(σ × τ)

defines a map

(∆[1]×∆[1])n → ∆[1]n

which is clearly contravariantly functorial in n for ∆ morphisms, hence we can view this
as a map of simplicial sets H as above. From the fact that h|[1] × {0} : [1] → [1] is
the identity, and h|[1] × {1} : [1] → [1] is the constant function 1, we see that H is as
desired. �

Lemma 4.7.4. For any simplicial set Y , the evaluation maps e0, e1 : Y I → Y are both
deformation retracts of the constant path map iY : Y → Y I .

Proof. We can view the deformation retract of i0 constructed in the previous lemma as a
commutative diagram of simplicial sets

{0} × I //

��

{0}

��
I × I H // I

with Hi0 = i0r and Hi1 = Id, as in (4.7.1). If we apply the contravariant functor Y
to this diagram and note that Y I×I = (Y I)I , the resulting diagram is of the form (4.7.2)
with K := Y H satisfying e0K = iY e0 and e1K = Id. �

We would like to establish analogs of the topological results of §?? for simplicial sets.
The argument used in the proof of Lemma 2.3.1 does not carry over verbatim to simplicial
sets: the analogous inclusion J ↪→ ∆[1] × ∆[1] does not have a retract. However, the
analogous result will hold in simplicial sets under the additional assumption that X is
fibrant (§4.4):

Lemma 4.7.5. If X is a fibrant simplicial set, then the product of the evaluation maps
e0 × e1 : XI → X ×X is a fibration of simplicial sets (§4.4).

Proof. The map XI → X × X in question is the one induced by the inclusion of the
boundary i : {0, 1} ↪→ I. The lemma is then a special case of [Hov, 3.3.1] where p is the
map from X to the terminal object. The result we want is not hard to prove directly using
basic facts about the model category of simplicial sets from §4.4. Consider an injective
map of simplicial sets K ↪→ L whose geometric realization |K| ↪→ |L| is a weak equivalence
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of topological spaces (so K ↪→ L is an arbitrary trivial cofibration of simplicial sets) and
a commutative diagram

K

��

a // XI

��
L

b //

l

;;

X ×X
of simplicial sets. We must show that there is a lift l as indicated. By the adjointness
(4.6.1), the map a can be viewed as a map a : K× I → X and the map b can be viewed as
a map L×{0, 1} → X and the commutativity of the solid square can be viewed as saying
that a and b agree on K × {0, 1}. Let W be the union of K × I and L × {0, 1} inside of
L× I, so we have a pushout diagram

K × {0, 1} //

��

L× {0, 1}

��
K × I // W

of simplicial sets, an inclusion j : W ↪→ L × I, and a map f = (a, b) : W → X. Since
weak equivalences of simplicial sets are closed under products,4 the top horizontal arrow
is a weak equivalence. Since the left vertical arrow is a cofibration (i.e. is injective) and
sSets is left proper (Theorem 4.4.3), the bottom horizontal arrow is a weak equivalence.
The map j is hence a trivial cofibration because it is injective and is a weak equivalence
by 2-out-of-3. Using the adjointness (4.6.1) we see that a lift l in the original diagram is
the same thing as a lift in the diagram below.

W
f=(a,b) //

j
��

X

L× I

88

Such a lift exists because X is fibrant and j is a trivial cofibration. �

Lemma 4.7.6. Suppose f : X → Y is an arbitrary map between fibrant simplicial sets.
Let iY : Y → Y I denote the constant path and e0, e1 : Y I → Y the evaluations. Then we
have a commutative diagram

X
(IdX ,iY f) //

f ��

X ×e0Y Y I

e1π2
zz

Y

where (IdX , iY f) is a homotopy equivalence and e1π2 is a fibration.

Proof. Argue exactly as in the proof of the topological analog Lemma 2.3.2, replacing the
use of Lemma 2.3.1 there with the use of Lemma 4.7.5 (this is where we need Y fibrant).
Note that iY : Y → Y I is a homotopy equivalence by Lemma 4.7.4. One uses the fact
that X is fibrant to know that the projection p2 : X × Y → Y is a fibration. �

4This follow from the following facts: 1) geometric realization (to K) preserves products (Lemma 4.3.5)
and 2) a product of weak equivalences in Top is a weak equivalence between formation of homotopy groups
commutes with products.
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4.8. Whitehead’s Theorem. There are various results in algebraic topology that go by
the name “Whitehead’s Theorem.” In this section, we recall some of these results.

Theorem 4.8.1. (Whitehead) Any trivial cofibration between between fibrant simplicial
sets admits a deformation retract. Any weak equivalence between fibrant simplicial sets is
a homotopy equivalence.

Proof. For the first statement: Suppose j : X → Z is a trivial cofibration and X and Z
are fibrant. By Lemma 4.7.6 the map e1π2 in the diagram

X

j

��

(Id,iZj) // X ×e0Z ZI

e1π2

��
Z

(r,H)
66

Z

is a fibration, so we can lift as indicated. As discussed above, this (r,H) can be viewed
as the desired deformation retract, with rj = IdX and the abusively denoted map H :
Z × I → Z corresponding to H under the adjunction (2.3.1) providing the homotopy
between jr and the identity of Z.

For the second statement: Suppose f : X → Y is a weak equivalence of fibrant simplicial
sets. Factor f as a trivial cofibration j : X → Z followed by a fibration p : Z → Y . Note
that p is in fact a trivial fibration, by 2-out-of-3 for weak equivalences. Notice also that Z
is fibrant since Y is fibrant and fibrations are closed under composition. Since Y (like any
simplicial set) is cofibrant, we can find a section s : Y → Z of p by lifting in the diagram
below.

∅ //

��

Z

p

��
Y

s

??

Y

The section s is a trivial cofibration (it is injective since it has a retract p and it is a weak
equivalence by 2-out-of-3) so we can lift as indicated in the diagram

Y
(iZs) //

s
��

ZI

(e0,e1)
��

Z

J

77

(Id,sp) // Z × Z
because (e0, e1) is a fibration by Lemma 4.7.5 since Z is fibrant. Note that the solid square
commutes since

(e0, e1)iZs = (s, s)

= (s, sps)

= (Id, sp)s.

This lift J can be viewed as a homotopy between sp and the identity of Z.

To finish the proof of the second statement, we combine the result of the first statement
with what we did immediately above. The homotopy p ∗ H ∗ s provides a homotopy
between pjrs = frs and IdY = ps. The homotopy r ∗ J ∗ j provides a homotopy between
rspj = rsf and IdX = rj. We conclude that f is a homotopy equivalence with homotopy
inverse rs : Y → X. �
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Remark 4.8.2. The most general variant of “Whitehead’s Theorem” is perhaps the state-
ment that, in any model category, a map between fibrant and cofibrant objects is a weak
equivalence iff it is a “homotopy equivalence” in the sense of the abstract homotopy theory
of model categories ([Hov, 1.2.8] or [Hir, 7.5.10]). In any given model category one can
usually unravel the abstract homotopy equivalence notion into something recognizable by
the “man on the street” (ha!) who has no knowledge of model categories. I prefer to give
the unravelled result in these notes whenever possible.

Theorem 4.8.3. (Whitehead) If f : X → Y is a trivial cofibration of simplicial sets,
then |f | : |X| → |Y | admits a deformation retract. If f : X → Y is any weak equivalence
of simplicial sets then |f | : |X| → |Y | is a homotopy equivalence of topological spaces.

Proof. Since |X| and |Y | are CW complexes by Lemma 4.3.2, this follows by applying the
“usual formulation” (c.f. [Hat, 4.5]) of Whitehead’s theorem to each connected component
of |X| (the connected componenents of |X| are bijective with those of |Y | via the weak
equivalence |f |). �

Corollary 4.8.4. Suppose f : X → Y is a weak equivalence of simplicial sets. Then
the induced map of degree-wise free simplicial abelian groups ⊕XZ → ⊕Y Z is a weak
equivalence of simplicial abelian groups.

Proof. By construction of simplicial homology, the homology of the chain complex C(⊕XZ)
of free abelian groups computes the simplicial homology of |X|. (Depending on your
particular definition of singular homology, this might be more easily recognizable as the
homology of the normalized chain complex N(⊕XZ).) By the basic relationship between
simplicial and singular homology (c.f. [Hat, 2.1]), this simplicial homology coincides with
singular homology, which is homotopy invariant [Hat, 2.10]. Since |f | is a homotopy
equivalence by Theorem 4.8.3, the map |f | induces isomorphisms on singular homology
groups, hence the maps of simplicial homology groups must also be isomorphisms, whence
the result. �

4.9. Quillen’s Theorem. Quillen’s theorem on simplicial sets and topological spaces
says that the model categories of simplicial sets (§4.4) and topological spaces (§2) are
very closely related via the singular simplex functor Sing in (4.3.1) and the geometric
realization functor | | in (4.3.2).

We first mention an easy result on the singular simplex and geometric realization con-
structions of §4.3:

Lemma 4.9.1. Let C be a category with all direct limits, Z ∈ csC, XZ : C→ sSets the
singular simplex functor, | |Z : sSets → C its left adjoint geometric realization functor
(Proposition 4.3.1). Suppose that for each n > 0 and each k ∈ [n], the geometric realization

|ikn|Z : |Λk[n]|Z → |∆[n]|Z
of the inclusion of the k-horn has a retract in C. (This is the case for the standard
topological geometric realization.) Then the singular simplex XZ ∈ sSets is fibrant for
every X ∈ C.

Proof. For the parenthetical remark: The standard topological geometric realization of ikn
is the inclusion of all but one of the codimension one faces of the standard simplex ∆>n .
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This map clearly admits a retract, even a deformation retract. For the main statement of
the lemma: By adjointness, a lift in the diagram of simplicial sets

Λk[n]

ikn
��

// XZ

∆[n]

<<

is the same thing as a lift in the C-diagram

|Λk[n]|Z

|ikn|Z
��

// X

|∆[n]|Z

;;

which can certainly be found if |ikn|Z has a retract. �

Theorem 4.9.2. (Quillen) The singular simplex functor

Sing : Top → sSets

and its left adjoint, the geometric realization functor

| | : sSets → Top

satisfy the following properties:

(1) A map f in sSets is a weak equivalence iff |f | is a weak equivalence in Top.
(2) | | takes cofibrations to cofibrations and trivial cofibrations to trivial cofibrations.

That is: | | is a left Quillen functor.
(3) Sing takes fibrations to fibrations and trivial fibrations to trivial fibrations. That

is: Sing is a right Quillen functor.
(4) For a fibrant simplicial set X, and a base point 1 ∈ X0, the homotopy sets πn(X,1)

of Definition 4.5.2 are naturally isomorphic to the homotopy sets of |X| with the
corresponding base point.

(5) For any X ∈ Top, SingX ∈ sSets is fibrant and for any x ∈ X, the usual
homotopy set πn(X,x) is naturally bijective with πn(SingX,x), the latter defined
by Definition 4.5.2.

(6) If f is a fibration in sSets, then |f | is a fibration in Top.
(7) A map f in Top is a weak equivalence iff Sing f is a weak equivalence in sSets.
(8) For any simplicial set X, the adjunction morphism X → Sing |X| is a weak equiv-

alence of simplicial sets.
(9) For any topological space Y , the adjunction morphism | Sing Y | → Y is a weak

equivalence in Top.
(10) The functors

Ho Sing : Ho Top → Ho sSets

Ho | | : Ho sSets → Ho Top

yield an equivalence of homotopy categories Ho Top ∼= Ho sSets.
(11) For every X ∈ sSets and every Y ∈ Top, a map |X| → Y in Top is a weak

equivalence iff the adjoint map X → Sing Y is a weak equivalence of simplicial
sets.
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Proof. (1) holds by definition of a weak equivalence of simplicial sets (Definition 4.4.1).

For (2), the only issue, in light of (1), is to show that | | takes cofibrations to cofibra-
tions. Recall (Theorem 4.4.2, Lemma 1.5.9) that the cofibrations in sSets are the smallest
saturated class of sSets morphisms containing the set

I = {∂∆[n] ↪→ ∆[n] : n ∈ N}.

Since the left adjoint | | preserves direct limits and the cofibrations in Top are a saturated
class of maps (as is the case in any model category by Proposition 1.5.6), it suffices to
note that

|∂∆[n] ↪→ ∆[n]| ∼= |Sn−1 ↪→ Dn|
is a cofibration in Top (c.f. Theorem 2.1.2).

(3) follows formally from (2) by adjointness and the characterization of fibrations (resp.
trivial fibrations) as maps with the RLP w.r.t. trivial cofibrations (resp. cofibrations).

(4) is [Hov, 3.6.3].

(5) We established fibrancy of SingX in Lemma 4.9.1. The other part is just a matter
of staring at the definition of πn(SingX,1) until you agree that it coincides with whatever
you think is the “usual definition” of homotopy sets. (In a sense there is really nothing to
prove since we can take this as the “usual definition.”) First note that

(SingX)0 = HomTop(∆>0 , X)

= X,

so the chosen basepoint x ∈ X is the same thing as a choice of base point 1 for SingX. An
element of Zn(SingX) is the same thing as an element f ∈ (SingX)n with all boundaries

equal to 1, which is the same thing as a map of topological spaces f : ∆top
n → X contracting

the boundary of ∆top
n to the basepoint x. The equivalence relation ∼ on Zn(SingX) is

given by declaring f sin f ′ iff there is a map g : ∆top
n+1 → X which contracts all but the

last two codimension one facts to x and is given on these last two faces by f and f ′. This
should clearly be equivalent to any other definition of homotopy sets.

(6) is [Hov, 3.6.2]. This fact won’t be necessary to establish the other parts of Quillen’s
theorem, though it is an important result originally due to Quillen. Hovey proves this en
route to proving that sSets is a model category.

(7) By (5) and the definition of a weak equivalence in Top, f : X → Y is a weak
equivalence in Top iff

πn(Sing f) : πn(SingX) → πn(Sing Y )(4.9.1)

is bijective for all n (and all choices of basepoint when n > 0). But SingX and Sing Y are
fibrant, so the map (4.9.1) is naturally identified, via (4), with the map

πn(| Sing f |) : πn(| SingX|) → πn(|Sing Y |)(4.9.2)

whose isomorphy (for all basepoints when n > 0) is, by definition, equivalent to Sing f
being a weak equivalence in sSets.

For (8), we need to show that

πn(|X|) → πn(| Sing |X||)
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is bijective (for all choices of basepoint when n > 0). But the LHS is naturally bijective
with πn(Sing |X|) by (5) and the RHS is naturally bijective with πn(Sing |X|) by (4), since
Sing |X| is fibrant.

(9) is similar to (8)

For (10), first note that the functors Sing and | | are well-defined on the homotopy
categories since they preserve weak equivalences by (1) and (7). The fact that the resulting
functors are equivalences is immediate from (8) and (9), since the adjunctions become
isomorphisms in the homotopy categories.

(11) is a formal consequence of (10).

�

Corollary 4.9.3. A map f : X → Y of fibrant simplicial sets is a weak equivalence iff

πn(f) : πn(X) → πn(Y )

is an isomorphism for all n (and all basepoints when n > 0).

Proof. Use (4) and the definition of weak equivalence of simplicial sets. �

Remark 4.9.4. Hovey replaces Top with K in his version of this statement [Hov, 3.6.7],
but his proof makes perfect sense for arbitrary spaces, as far as I can tell. (He does a much
better job of actually keeping track of how various isomorphisms are given rather than
just mumbling “A is naturally identified with B” as I did.) Also, if you want to reconcile
his “Quillen equivalence” statement with the statement above, you will want to keep track
of the fact that this particular Quillen equivalence is much nicer than a typical Quillen
equivalence, in that the functors involved both already reflect arbitrary weak equivalences.
In fact, Hovey makes an implicit use of this fact in establishing his Quillen equivalence
via the criterion of [Hov, 1.3.16(b)]: instead of checking that FQUY → Y is a weak
equivalence (as he should in that criterion), he actually checks that FUY → Y (i.e. the
map |Sing Y | → Y for a space Y ) is a weak equivalence. The two statements are equivalent
because FQUY → Y factors as FQUY → FUY → Y and the first map is F applied to
the trivial fibration QUX → UX, which is part of the “cofibrant replacement of UX”
(the functorial factorization of the map from the initial object ∅ to UX as a cofibration
∅ → QUX followed by a trivial fibration QUX → UX) and we already know F will take
the weak equivalence QUX → UX to a weak equivalence FQUX → FUX (this is all
trivial because F is the geometric realization functor, so it takes weak equivalences to
weak equivalences by definition).

Also note that there is a typo in [Hov, 1.3.13(b)] (the FQX should be FUX) and a
confusing double usage of R in [Hov, 1.3.6.2] both for the “right-derived” and the “fibrant
replacement,” so in a sense he defines RU := UR, where the R’s on the two sides have the
two different meanings.
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5. The abelian setting

Here we briefly review the theory of simplicial objects in an abelian category A. The
basic theorem of Dold-Kan-Puppe (Theorem 5.3.1) asserts that there is an equivalence of
categories

N : sA → Ch≥0A

between simplicial objects in A and the category of chain complexes in A supported in
non-negative degrees. Furthermore, if A is the category modules over a ring (or any other
abelian category with a reasonable notion of underlying sets), then the equivalence N
identifies the homotopy groups of the simplicial set |M | underlying a simplicial module M
with the homology of the corresponding complex (§5.4):

πn(|M |) = Hn(N(M)).

Furthermore, the equivalence N takes homotopies in the sense of chain complexes to homo-
topies of simplicial objects in the sense of §3.7. The upshot is that the theory of simplicial
objects in an abelian category A is essentially the same as the theory of chain complexes
in A supported in non-negative degrees.

5.1. Associated chain complexes. Given an A ∈ sA and an n ∈ N, we define a chain
complex C(A) ∈ Ch≥0(A) by setting C(A)n := An, with boundary map

dn : C(A)n → C(A)n−1

defined by

dn :=
n∑
i=0

(−1)idin : An → An−1.

Lemma 5.1.1. dn−1dn = 0

Proof. Fix i, j with 0 ≤ i < j ≤ n. Let ∂ : [n − 2] ↪→ [n] be the unique monic ∆

morphism whose image contains neither i nor j. Then ∂ can be factored as ∂ = ∂jn∂in−1

or as ∂ = ∂in∂
j−1
n−1 (Lemma 3.1.1). In the formal sum dn−1dn of maps from An → An−2,

the map A(∂) appears once for each of these two factorizations, with opposite signs. �

The complex C(A) is called unnormalized chain complex associated to A. We define a
subcomplex N(A) ⊆ C(A) called the normalized chain complex (c.f. [DP, 3.1]) by setting

Nn(A) :=
n⋂
i=1

Ker(din : An → An−1).

(Note that the intersection is over the kernels of all but the zeroth boundary map d0
n :

An → An−1.) By convention, N0(A) := A0. It is easy to check that dn|Nn(A) = d0
n takes

Nn(A) into Nn−1(A), so that N(A) ⊆ C(A) is a subcomplex. Formation of C(A) and N(A)
is clearly functorial in A, so we have functors

C : sA → Ch≥0A

N : sA → Ch≥0A.

We can compose either of these with the homology functors

Hn : Ch≥0A → A



SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY 61

to define functors abusively denoted

Hn : sA → A.

As the notation suggests, it does not matter which chain complex we use to compute the
homology:

Lemma 5.1.2. The inclusion i : N(A) ↪→ C(A) admits a retract p : C(A) → N(A) such
that ip is homotopic to the identity. In particular, i is a homotopy equivalence and hence

Hn(N(A)) = Hn(C(A))

for all n.

Proof. It is easiest to see this if we pass from C(A) to N(A) “one step at a time” instead
of “all at once.” To do this, we define a decreasing filtration

· · · ⊆ N2(A) ⊆ N1(A) ⊆ N0(A) = C(A)

by setting

Nk(A)n :=

min(k,n)⋂
i=1

Ker(dn+1−k
n : An → An−1)

so that

N0(A)n := An

N1(A)n :=

{
Ker dnn, n > 0

A0, n = 0

N2(A)n :=


(Ker dnn) ∩ (Ker dn−1

n ), n > 1

Ker d1
1, n = 1

A0, n = 0,

and so forth. It is easy to see that this is a filtration by subcomplexes, finite in each
degree, and that ∩kNk(A) = N(A).

Consider the map p1
n := (Id−sn−1

n−1d
n
n) : An → An. (We adopt the convention that

sin = 0 when i < 0.) Using the simplicial identities from Lemma 3.2.2 one sees that p1

takes values in N1(A) and in fact defines a map of chain complexes N0(A)→ N1(A) which
clearly retracts the inclusion N1(A) ↪→ N0(A). Define a homotopy operator H1 on N0(A)
by setting

H1
n := (−1)nsnn : An → An+1.

Using the simplicial identities

din+1s
n
n =

{
sn−1
n−1d

i
n, i < n

Id, i = n, n+ 1

we see that

dn+1H
1
n +H1

n−1dn = −sn−1
n−1d

n
n

= p1 − Id,
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so the homotopy H1 shows that the inclusion N1(A) ⊆ N0(A) is a homotopy equivalence
with homotopy inverse p1. Similarly, one sees that the map

p2
n := (Id−sn−2

n−1d
n−1
n ) : N1(A)n → An

in fact defines a chain complex map p2 : N1(A)→ N2(A) retracting the inclusion N2(A) ↪→
N1(A). Furthermore, the homotopy operator H2 on N1(A) defined by

H2
n := (−1)n−1sn−1

n : N1(A)n → N1(A)n+1

satisfies

dn+1H
2
n +H2

n−1dn = p2 − Id,

so N2(A) ⊆ N1(A) is a homotopy equivalence. Continuing in this manner, we see that
i : N(A) ⊆ C(A) is a homotopy equivalence with homotopy inverse p : C(A) → N(A)
defined by

pn := (Id−s0
n−1d

1
n) · · · (Id−sn−2

n−1d
n−1
n )(Id−sn−1

n−1d
n
n) : An → N(A)n.

�

Example 5.1.3. For example, consider the constant simplicial object (Example 3.2.1)
A ∈ sA associated to an object A ∈ A. Then C(A)n = A for every n ∈ N, and C(A)
has boundary map C(A)n → C(A)n−1 given by the alternating sum of n+ 1 copies of the
identity of A, which is zero when n is odd and the indentity of A when n is even, so

C(A) = [ · · · // A
= // A

0 // A
= // A

0 // A ],

which clearly has homology

Hn(A) =

{
A, n = 0

0, n > 0.

On the other hand, N(A) is just the subcomplex of C(A) consisting solely of the A in
degree zero—this obviously has the same homology as C(A) and it is not particularly hard
in this example to see that N(A) ↪→ C(A) is a homotopy equivalence.

Remark 5.1.4. Some authors (e.g. [Wei, 8.3.6]) define the normalized chain complex5 by

N(A)n :=

n−1⋂
i=0

Ker(din : An → An−1).

The homology of this complex is the same as the homology of the normalized complex as
we have defined it here. For one thing, trivial modifications of the proof of Lemma 5.1.2
show that this version of the normalized complex is also homotopy equivalent to C(A).
Alternatively, one can use the “front-to-back” duality in [Wei, 8.2.10].

5Weibel also calls the normalized chain complex the Moore complex whereas Goerss and Jardine [GJ] call
the unnormalized chain complex the Moore complex.
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5.2. Degenerate subcomplex. For A ∈ sA, the degenerate subcomplex D(A) of the
unnormalized chain complex C(A) is defined by

D(A)n :=
∑

σ:[n]→[m]

Im(A(σ) : Am → An),

where the (non-direct!) sum is over surjective ∆-morphisms σ : [n] → [m] with n > m.
Since all such ∆ morphisms factor though one of the ∆-morphisms σin−1 : [n] → [n − 1]

(Lemma 3.1.1) whose images under A are the degeneracies sin−1 : An−1 → An, we could
alternatively define the degenerate subcomplex by

D(A)n :=
n−1∑
i=0

Im(sin−1 : An−1 → An).

To see that D(A) is a subcomplex (i.e. to see that dD(A)n ⊆ D(A)n−1), it suffices to prove
that, for any fixed j ∈ [n− 1],(

n∑
i=0

(−1)idin

)
(Im sjn) ⊆ D(A)n−1.

This follows immediately from the simplicial relations of Lemma 3.2.2—the terms in the
sum with i = j and i = j + 1 cancel out and the others are degeneracies.

Lemma 5.2.1. The unnormalized complex C(A) splits naturally as a direct sum of the
normalized chain complex N(A) and the degenerate subcomplex D(A).

Proof. 6 First we show that D(A) ∩ N(A) = 0. The key is to make use of the map

p = (Id−s0
n−1d

1
n) · · · (Id−sn−2

n−1d
n−1
n )(Id−sn−1

n−1d
n
n) : An → An

of Lemma 5.1.2. It is clear that p is the identity on N(A)n, so it suffices to show
that D(A)n ⊆ Ker p. From the simplicial relations concerning dnns

i
n−1 and sn−1

n−1s
i
n−2

(Lemma 3.2.2) we see that the image of any sin−1 under the map p1 = (Id−sn−1
n−1d

n
n)

is again in the image of sin−1 and we see that the image of sn−1
n−1 is in the kernel of p1.

Using this, and the simplicial identities concerning dn−1
n sin−1 and sn−2

n−1s
i
n−2 we then see

that the image of any sin−1 under the map

p2 = (Id−sn−2
n−1d

n−1
n )p1

is again in the image of sin−1 and the images of both sn−1
n−1 and sn−2

n−1 are in the kernel of

p2. Continuing in this manner we find that the image of any sin−1 is in the kernel of p.

Next we show that D(A) + N(A) = C(A). This is already clear from the fact that p
takes values in N(A)n as we saw in Lemma 5.1.2 because it is clear from the formula for p
that p is equal to the identity modulo morphisms factoring through one of the sin−1. �

The proof shows that the projection C(A) → N(A) corresponding to the splitting of
Lemma 5.2.1 coincides with the map p of Lemma 5.1.2.

Proposition 5.2.2. The degenerate subcomplex D(A) is contractible.

Proof. [DP, 3.22] �

6Weibel’s proof of this in [Wei, 8.3.7] seems to be wrong. Besides the typo with the subscripted j (should
be an i), the third sentence contains the false assertion diny = xi.
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5.3. Dold-Kan-Puppe. In this section we will prove that the normalized chain complex
functor N of §5.1 is an equivalence of categories. We begin by defining the inverse functor

K : Ch≥0A → sA

K(B)n :=
⊕

σ:[n]→[k]

Bk,

where the direct sum is over all surjective ∆ morphisms σ : [n] → [k]. For such a σ, we
let σ : Bk → K(B)n denote the structure map to the direct sum. The degeneracy map

K(B)(τ) : K(B)m → K(B)n

associated to a surjective ∆ morphism τ : [n]→ [m] is defined tautologically by requiring

K(B)m
K(B)(τ) // K(B)n

Bk

σ

OO

στ

::

to commute for each surjective ∆ morphism σ : [m]→ [k]. The boundary map

din : K(B)n → K(B)n−1

associated to the ∆ morphism ∂in : [n − 1] → [n] is defined as follows: For any surjective
∆ morphism σ : [n] → [k], if the composition σ∂in is also surjective, then we require

dinσ = σ∂in. Otherwise, we can write σ∂in = ∂jkτ (uniquely) for a surjective ∆ morphism

τ : [n − 1] → [k − 1] and an injective ∆ morphism ∂jk : [k − 1] → [k]. In this case we let

dinσ be the boundary map Bk → Bk−1 followed by τ : Bk−1 → K(B)n−1 if j = 0, and we
let dinσ := 0 if j > 0.

Theorem 5.3.1. The functor N : sA → Ch≥0(A) is an equivalence of categories with
inverse K.

Proof. See [DP, 3.6] or [Wei, 8.4.1]. �

Lemma 5.3.2. The functor N takes simplicial homotopies to homotopies of chain com-
plexes and the functor K takes homotopies of chain complexes to simplicial homotopies.

Proof. This is a straightforward exercise with the definitions and the formulas for N and
K. See [Wei, 8.3.13], for example. �

5.4. Homology and homotopy. We now fix a ring A and specialize to the case where
our abelian category A = Mod(A) is the category of A modules. Then we can pass to
underlying sets to define a functor

| | : Mod(A) → Sets,

and hence also a functor

| | : sMod(A) → sSets.

Lemma 5.4.1. For any M ∈ sMod(A) we have πn(|M |) = Hn(M) for any base point of
|M |.
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Proof. First note that M has a simplicial abelian group structure, so |M | is a fibrant
simplicial set (Corollary 5.6.6) and it makes sense to speak of the simplicial homotopy
sets of |M |. Next we claim, quite generally, that the homotopy sets of a simplicial set
|G| underlying any simplicial group G have no dependence on the choice of basepoint
(§4.5). The point is that for any choice of basepoint 1 (i.e. for any choice of an element
g0 ∈ G0), multiplication by g−1

0 and its degeneracies yields an isomorphism of simplicial
sets |G| → |G| taking the base point g0 to the basepoint 1 ∈ G0. That is, we have an
isomorphism (|G|, g0) ∼= (|G|, 1) of based simplicial sets and hence an isomorphism of the
corresponding homotopy groups. Now we compute the homotopy sets of |M | using the
basepoint 0 ∈M0 (whose degeneracies are just the zeros of the other Mn). It is clear that
the subset Zn(|M |) defined in §4.5 is nothing but

{m ∈Mn : din(m) = 0 for i = 0, . . . , n},

which is nothing but the group of cycles Zn(N(M)) in the normalized chain complex N(M).
We will denote this subset of Mn by Zn(M) in the rest of the proof.

It remains only to prove that the equivalence relation ∼ on Zn(M) defined in §4.5 is
equivalent to the relation of “differing by a coboundary” used to define homology as a
quotient of Zn(M). For x, y ∈ Zn(M), if x ∼ y then there is z ∈Mn+1 with

din+1z =


0, i = 0, . . . , n− 1

x, i = n

y, i = n+ 1.

Using the simplicial relations

din+1s
n
n =

{
sn−1
n−1d

i
n, i = 0, . . . , n− 1

Id, i = n, n+ 1

(Lemma 3.2.2), we then see that z′ := snnx− z satisfies

din+1z
′ =

{
0, i = 0, . . . , n

x− y, i = n+ 1,

hence z′ is an element of N(M)n+1 (in its “front-to-back” incarnation as in Remark 5.1.4)
whose coboundary therein is x− y (up to a sign). This process can clearly be reversed to
go from z′ to z so that differing by a coboundary implies ∼ equivalence. �

5.5. Model structure on connective complexes. Throughout this section we let A
be an abelian category with functorial projective resolutions: i.e. for each object A ∈ A,
there is a projective object PA of A and a surjection PA → A, which is functorial in A in
the evident sense (any A-morphism A→ B lifts functorially to an A-morphism PA → PB
making the obvious square commute). For example, if A = Mod(R) for a ring R, one
obtains such a functorial projective resolution by letting PA be the free R-module on the
underlying set of A.

In practice, most abelian categories “encountered in nature” with enough projectives
will have functorial projective resolutions because Grothendieck’s general criterion [T,
1.10.1] for the existence of enough projectives in a nice abelian category also yields the
existence of functorial projective resolutions.
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We will now discuss the projective model structure on the category Ch≥0A of non-
negatively graded (aka connective) chain complexes in A.

Definition 5.5.1. A morphism h : B → C in Ch≥0A is called a . . .

. . . weak equivalence (quasi-isomorphism) iff Hn(h) is an isomorphism for all n ∈ N.

. . . fibration iff hn : Bn → Cn is surjective for all n > 0.

. . . cofibration iff hn : Bn → Cn is injective with projective cokernel for all n ∈ N.

. . . trivial fibration iff it is both a fibration and a weak equivalence.

. . . trivial cofibration iff it is both a cofibration and a weak equivalence.

An object A of Ch≥0A is called cofibrant (resp. acyclic) iff 0 → A is a cofibration (resp.
a weak equivalence—i.e. Hn(A) = 0 for all n ∈ N).

Theorem 5.5.2. Suppose A is an abelian category with functorial projective resolutions.
Then Ch≥0A is a model category with the weak equivalences, fibrations, and cofibrations
in Definition 5.5.1.

Proof. The details will occupy the remainder of the section. It is obvious that weak
equivalences satisfy 2-out-of-3. It is also easy to see that weak equivalences, fibrations,
and cofibrations are closed under retracts (exercise). We will establish the necessary lifting
properties in Lemmas 5.5.6 and 5.5.11 and the factorizations in Theorem 5.5.8. �

Remark 5.5.3. If, in the definition of model category, one drops the requirement that the
factorizations be functorial, then the above theorem continues to hold under the weaker
assumption of the existence of projective resolutions which are not necessarily functorial.
For example, we can take A to be the category Abfg of finitely generated abelian groups.

Definition 5.5.4. For A ∈ A and n ∈ N, we let Dn(A) ∈ Ch≥0A denote the complex
which is A in degrees n and n − 1, zero in other degrees, and with boundary map in
degree n given by the identity A → A. To be clear, our convention is that D0(A) is the
complex which is A in degree zero and zero in all other degrees. The complex Dn(A) is
called the n-dimensional disk on A. Similarly, we let Sn(A) denote the complex—called
the n-dimensional sphere on A—which is A in degree n and zero in all other degrees. The
convention S−1(A) = 0 is convenient.

Notice that, for n > 0, Dn(A) is acyclic for any A. We have a natural bijection

HomCh≥0A(Dn(A), B) = HomA(A,Bn)(5.5.1)

(given by f 7→ fn) expressing the fact that the n-disk functor Dn is left adjoint to the
“degree n” functor B 7→ Bn. We also have a natural bijection

HomCh≥0A(Sn(A), B) = HomA(A,Zn(B)),(5.5.2)

where Zn(B) = Ker(dn : Bn → Bn−1) denotes the object of n-dimensional cycles in the
complex B. For each n ∈ N, we have a natural map of chain complexes Sn−1(A)→ Dn(A)
given by the identity in degree n− 1 and zero in other degrees.

We will often be interested in the case where A = Mod(R) for a ring R. The case R = Z
is of particular interest, for then Ch≥0A = Ch≥0Ab is the category of non-negatively
graded chain complexes of abelian groups. We set Dn := Dn(R) and Sn := Sn(R). The
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bijections (5.5.1) and (5.5.2) specialize to

HomCh≥0Mod(R)(D
n, B) = Bn(5.5.3)

HomCh≥0Mod(R)(S
n, B) = Zn(B),(5.5.4)

(given by f 7→ fn(1)) for each B ∈ Ch≥Mod(R) and each n ∈ N.

Lemma 5.5.5. For a map h : B → C in Ch≥0A, the following are equivalent:

(1) h is a trivial fibration (Definition 5.5.1).
(2) The map hn : Bn → Cn is surjective for every n ∈ N and h is a quasi-isomorphism.
(3) The map (d, hn) : Bn → Zn−1(B)×Zn−1(C)Cn is surjective for every n ∈ N. (When

n = 0, this map is just the map h0 : B0 → C0.)

When A = Mod(R) for a ring R, these conditions are equivalent to:

(4) The map h has the RLP with respect to the maps Sn−1 ↪→ Dn for every n ∈ N.

Proof. (2) implies (1) is trivial. For the converse, consider some c ∈ C0 = Z0(C). Since
H0(h) is surjective, there is a b ∈ B0 and a c′ ∈ C1 with c = h0b+dc

′. Since h1 is surjective,
c′ = h1b

′ for some b′ ∈ B1 and then we see that c = h0(b+ db′).

We will give an “element theoretic” proof of the remaining implications; the reader can
translate it into a more abstract argument if desired.

For (2) implies (3), consider some

(b, c) ∈ Zn−1(B)×Zn−1(C) Cn,

so hn−1b = dc. Since hn is surjective, there is a b′ ∈ Bn such that hnb
′ = c. Then

db′ − b ∈ Zn−1(B) (because b ∈ Zn−1(B)) and we have

hn−1(db′ − b) = dhnb
′ − hn−1b

= dc− dc
= 0.

Since h is a surjective quasi-isomorphism, the complex Kerh is acyclic so there is some
b′′ ∈ Kerhn ⊆ Bn with db′′ = db′ − b. The image of b′ − b′′ under the map in (3) is (b, c).

For (3) implies (2), first argue that each map Zn(B)→ Zn(C) is surjective by consider-
ing, for c ∈ Zn(C), the element (0, c) ∈ Zn−1(B)×Zn−1(C) Cn and using surjectivity of the
map in (3). Once it is known that the maps Zn(B)→ Zn(C) are surjective, surjectivity of
Bn → Cn is immediate from surjectivity of the maps in (3). Since each Zn(B) → Zn(C)
is surjective, so is each Hn(h), so it remains only to prove the injectivity of the maps
Hn−1(h). To see this, suppose b ∈ Zn−1(B) has hn−1(b) = dc for some c ∈ Cn. Then
(b, c) ∈ Zn−1(B)×Zn−1(C) Cn and surjecitivity of the map in (3) says that b is a boundary
in B.

For the equivalence of (3) and (4), use the natural bijections (5.5.3) and (5.5.4) to see
that a solid commutative diagram

Sn−1 //

��

B

h
��

Dn

<<

// C
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in Ch≥0Mod(R) is the same thing as an element of Zn−1(B) ×Zn−1(C) Cn, and a lift as
indicated is a preimage of this element under the map in (3). �

Lemma 5.5.6. Cofibrations in Ch≥0A have the LLP w.r.t. trivial fibrations.

Proof. Consider a commutative diagram

A

i
��

f // B

h
��

P

l
??

g
// C

(5.5.5)

where h is a trivial fibration and i is a cofibration. We must construct the lift l as indicated.
We do this inductively. Assume we have constructed maps lk : Pk → Bk for k < n which
are compatible with the boundary maps and make the diagrams

Ak

ik
��

fk // Bk

hk
��

Pk

lk
>>

gk
// Ck

(5.5.6)

commute. We can certainly get started since our complexes are supported in non-negative
degrees, so we need only construct a map ln : Pn → Bn compatible with the boundary
maps and making

An

in
��

fn // Bn

hn
��

Pn

ln
==

gn
// Cn

(5.5.7)

commute. Since i is a cofibration, we can find a projective subobject E ⊆ Pn so that the
inclusion in : An → Pn induces a splitting Pn = An ⊕ E. We already have a unique way
(namely fn) of defining ln on the summand An compatibly with the boundary maps, so we
need only produce an A-morphism l : E → Bn so that the following diagram commutes:

E

gn

$$
l //

d
��

Bn
hn //

d
��

Cn

d
��

Pn−1
ln−1 // Bn−1

hn−1 // Cn−1

(5.5.8)

The issue is only to make the left square and upper triangle commute; in particular, the
“big square” already commutes and a moment’s thought shows that finding such an l is
equivalent to producing a lift in the following A-diagram:

Bn

d,hn
��

E

l ++

dln−1,gn // Zn−1(B)×Zn−1(C) Cn
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This can be done because E is projective and the vertical arrow is surjective since h is a
trivial fibration (Lemma 5.5.5). �

Lemma 5.5.7. For any B ∈ Ch≥0A, there is a map q : E → B (functorial in B) where:

(1) The complex E is acyclic.
(2) En ∈ A is projective for all n ∈ N.
(3) qn : En → Bn is surjective for all n > 0 (i.e. q is a fibration).

Proof. For each n > 0 choose (functorially in B) a surjection pn : Pn → Bn with Pn
projective. This surjection corresponds, via the adjunction (5.5.1), to a Ch≥0A-morphism
Dn(pn) : Dn(Pn)→ B given by pn (hence surjective) in degree n. The sum over n > 0 of
the Dn(pn) will do the job since each Dn(Pn) with n > 0 is acyclic. �

Theorem 5.5.8. Suppose A is an abelian category with functorial projective resolutions.
Then each morphism f : A→ B in Ch≥0A admits two functorial factorizations:

(1) f = ip where i is a trivial cofibration and p is a fibration.
(2) f = ip where i is a cofibration and p is a trivial fibration.

Proof. For the first factorization, pick q : E → B as in Lemma 5.5.7 and factor f as the
inclusion i : A→ A⊕E followed by p = (f, q) : A⊕E → B. The map i a trivial cofibration
because each En is projective and the complex E is acyclic. The maps pn are surjective
when n > 0 because the maps qn are surjective when n > 0.

For the second factorization, we build up the factorization inductively. Assume we have
constructed a factorization of f in degrees 0, . . . , n as i : A → P followed by p : P → B
with the following properties:

(1) For each k ∈ {0, . . . , n} there is a projective subobject Ek ⊆ Pk so that ik induces
a splitting Pk = Ak ⊕ Ek.

(2) For each k ∈ {0, . . . , n}, pk : Pk → Bk is surjective.
(3) For each k ∈ {0, . . . , n− 1}, the map Hk(p) is an isomorphism.
(4) The map pn : Zn(P )→ Zn(B) is surjective.

Functorially choose the following:

(1) a surjection a : X ′′ → Ker(Zn(P )→ Hn(B)) with X ′′ projective. Define X ′ by the
cartesian diagram

X ′
π2 //

π1
��

Bn+1

d
��

X ′′
pna // Bn(B)

and choose a surjection X → X ′ with X projective. The map d in this diagram is
surjective, so π1 is also surjective, as is the induced map

a : X → Ker(Zn(P )→ Hn(B)).

We will abusively write π2 : X → Bn+1 for the composition of our chosen surjection
X → X ′ and the map π2 in the diagram.

(2) a surjection b : Y → Zn+1(B) with Y projective.
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(3) a surjection c : Z ′′ → Bn+1 with Z ′′ projective. Define Z ′ by the cartesian diagram

Z ′
π2 //

π1
��

Pn

pn

��
Z ′′

dc // Bn

and choose a surjection Z → Z ′ with Z projective. The map pn is surjective, so
π1 is also surjective and the induced map c : Z → Bn+1 is also surjective. We will
abusively write π2 : Z → Pn for the composition of our chosen surjection Z → Z ′

and the map π2 in the diagram.

Set En+1 := X ⊕ Y ⊕ Z, Pn+1 := An+1 ⊕ En+1 and let in+1 : An+1 → Pn+1 be the
natural map. Our constructions of X,Y, Z ensure that the diagram

An+1 ⊕X ⊕ Y ⊕ Z
pn+1:=(fn+1,π2,b,c) //

(d,a,0,π2)

��

Bn+1

d
��

Pn
pn // Bn

commutes (the left vertical arrow here is the differential Pn+1 → Pn for our lifted complex
P ) and it is straightforward to see that our choices of X, Y , Z yield a factorization of f
in degrees 0, . . . , n+ 1 with all the properties above (replacing n by n+ 1). �

Lemma 5.5.9. An object E of Ch≥0A is acyclic and cofibrant iff E is a direct sum of
projective disks of positive dimension—i.e. we can write

E =
∞⊕
n=0

Dn+1(Pn)

for projective objects P0, P1, . . . of A.

Proof. It is clear that such a direct sum of projective disks is acyclic and cofibrant. Suppose
E is acyclic and cofibrant. Since E is cofibrant, each En is projective. Since H0(E) = 0,
the boundary map E1 → E0 must be surjective, so it has a section s : E0 → E1 since E0 is
projective. Via the formula (5.5.1), this s determines a map D1(E0) → E which is given
by s in degree 1 and is an isomorphism in degree zero (because ds = Id); so D1(E0)→ E
is injective. Note that, since E1 is also projective, the quotient E1/s(E0) is also projective,
so the quotient F := E/D1(E0) is also cofibrant, and has F0 = 0. This F is also acyclic
since D1(E0) and E are acyclic. The quotient map E → F is surjective and both E and
F are acyclic, so E → F is a trivial fibration, hence it has a section because F is cofibrant
(apply Lemma 5.5.6 to the diagram below).

0 //

��

E

��
F F

Since Ch≥0A is an abelian category, this section yields a splitting E = D1(E0)⊕F . This
F has F0 = 0 and is acyclic, so the boundary map F2 → F1 is surjective and since F1 is
projective, we can split off another projective disk by the same process: F = D2(F1)⊕G.
Continuing in this manner yields the desired direct sum decomposition of E into a sum
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of projective disks (only finitely many steps are needed to get the desired direct sum
decomposition in any given degree, so there is no issue in “taking the limit”). �

We eventually want to prove that trivial cofibrations have the LLP w.r.t. fibrations. We
first prove this in a special case:

Lemma 5.5.10. If 0→ E is a trivial cofibration, then 0→ E has the LLP w.r.t. fibrations.

Proof. We have to construct a lift in any diagram

B

h
��

E

>>

g // C

where h is a fibration (i.e. hn is surjective for all n > 0). By the previous lemma, E =
⊕∞n=0D

n+1(Pn) is a sum of positive dimensional projective disks. By the universal property
of direct sums and maps out of disks (5.5.1), it is equivalent to lift in each A-diagram

Bn+1

hn+1

��
Pn

<<

g // Cn+1

(n ∈ N), which we can do because hn+1 is surjective and Pn is projective. �

Now we give the structure of trivial cofibrations in Ch≥0A and prove that they have
the LLP w.r.t. fibrations.

Lemma 5.5.11. For any trivial cofibration i : A→ P there is a splitting P = A⊕E where
E = Cok i is acyclic and cofibrant. Trivial cofibrations have the LLP w.r.t. fibrations.

Proof. For the first statement: Since i is a trivial cofibration, E = Cok i is acylic and
cofibrant. To obtain the splitting, we need to find a section of the projection P → E,
which we can do by the previous lemma because P → E is certainly a fibration. The
second statement follows easily from the first using the universal property of direct sums
and Lemma 5.5.10. �

Theorem 5.5.12. Let R be a ring. Then the model structure on Ch≥0Mod(R) from
Theorem 5.5.2 is cofibrantly generated (Definition 1.5.7) by the set I of cofibrations and
the set J of trivial cofibrations below.

I := {Sn−1 ↪→ Dn : n ∈ N}
J := {0 ↪→ Dn : n > 0}

Proof. First: It is clear from the definition of “cofibration” (Definition 5.5.1), the defini-
tions of the complexes Sn and Dn (Definition 5.5.4), and the acyclicity of the Dn with
n > 0 that the maps in I are cofibrations and the maps in J are trivial cofibrations. The
smallness conditions in Definition 1.5.7 hold trivially since one can easily show that every
object of Ch≥0Mod(R) is small (c.f. [Hov, 2.3.2]). It is immediate from the definitions of
“fibration” (Definition 5.5.1) and “J-inj” (Definition 1.5.4) and the description (5.5.3) of
a map out of Dn that J-inj is the set of fibrations. The equivalence of the first and last
conditions in Lemma 5.5.5 says that I-inj is the set of trivial fibrations. �
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Remark 5.5.13. One could also prove Theorem 5.5.12 using the Recognition Theorem
(1.5.10). This is a good exercise for the reader. One can follow Hovey’s proof of the analog
for unbounded complexes in [Hov, 2.3].

Remark 5.5.14. One could also obtain a cofibrant generation statement similar to The-
orem 5.5.12 for any abelian category A with all direct limits, functorial projective resolu-
tions, and a generator in the sense of [T, 1.9].

5.6. Inherited model structure on simplicial objects. Let A be an abelian category
with functorial projective resolutions (§5.5). Using the inverse equivalences

N : sA → Ch≥0A

K : Ch≥0A → sA

of Theorem 5.3.1 and the model structure on Ch≥0A of Theorem 5.5.2, we formally obtain
a model structure on sA. It is not so obvious a priori that this model structure on sA
has anything much to do with the simplicial nature of sA. It turns out, however, that
when A = Mod(R) for a ring Mod(R), a map f : A → B is a fibration (resp. weak
equivalence) in sMod(R) for this “formally obtained” model structure iff the underlying
map of simplicial sets f : A → B is a fibration (resp. weak equivalence) in the model
category sSets of simplicial sets (§4.4).

Definition 5.6.1. A morphism f : A→ B in sA is called a weak equivalence (resp. fibra-
tion, cofibration) iff the map N(f) : N(A) → N(B) is a weak equivalence (resp. fibration,
cofibration) in the model structure on Ch≥0A of Theorem 5.5.2.

Proposition 5.6.2. The category sA is a model category with the definitions above. If
A = Mod(R) for a ring R, this model category is cofibrantly generated by the set I of
cofibrations and the set J of trivial cofibrations below.

I := {K(Sn−1 ↪→ Dn) : n ∈ N}
J := {K(0 ↪→ Dn) : n > 0}

Proof. This is immediate from Theorems 5.5.2 and Theorem 5.5.12 because N and K are
inverse equivalences by Theorem 5.3.1. �

Recall from §4.4 that a map of simplicial sets f is called a fibration iff it has the RLP
with respect to the inclusions of k-horns ik : Λk[n] ↪→ ∆[n] for all n > 0, k ∈ [n].

Proposition 5.6.3. For a map f : A→ B of simplicial abelian groups, the following are
equivalent:

(1) The underlying map f : A→ B of simplicial sets is a fibration.
(2) The map Nn(f) : Nn(A)→ Nn(B) is surjective for n > 0.
(3) The map An → Bn ×H0(B) H0(A) is surjective for n ≥ 0.

Proof. This is [Q1, Proposition II.3.8.1]. �

Corollary 5.6.4. A map f : A→ B of simplicial groups is surjective in each dimension
iff it is a fibration and H0(f) is surjective.

Corollary 5.6.5. A weak equivalence f : A→ B of simplicial abelian groups is a (trivial)
fibration iff it is surjective (in each degree).
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Corollary 5.6.6. Any simplicial set underlying a simplicial abelian group is fibrant.

Corollary 5.6.7. Any map between constant simplicial abelian groups is a fibration.

Remark 5.6.8. The word “abelian” isn’t necessary in the results of this section, but we
will only use this abelian case in what follows.

5.7. Shuffles. Fix non-negative integers m,n ∈ N. We begin by observing that there is a
bijection between surjective ∆-morphisms [m+ n]→ [m] and increasing sequences

1 ≤ σ1 < σ2 < · · · < σm ≤ m+ n

given as follows: To the sequence σ1, . . . , σm, we associate the surjective ∆-morphism

[m+ n] → [m]

0, . . . , σ1 − 1 → 0

σ1, . . . , σ2 − 1 → 1
...

σm−1, . . . , σm − 1 → m− 1

σm, . . . ,m+ n 7→ m,

and to a surjective ∆-morphism σ : [m+ n]→ [m] we associate the increasing sequence

1 ≤ σ1 < σ2 < · · · < σm ≤ m+ n

defined by σi := minσ−1(i). Our convention when m = 0 is that the unique ∆-morphism
[m+ n]→ [0] corresponds to the “empty sequence”.

An (m,n)-shuffle (σ, τ) is a permutation

(σ1, . . . , σm, τ1, . . . , τn)

of {1, 2, . . . ,m + n} such that σ1 < σ2 < · · · < σm and τ1 < · · · < τn. Write Shuff(m,n)
for the set of (m,n)-shuffles. The sign of an (m,n) shuffle

sign(σ, τ) ∈ {1,−1}
is, by definition, the sign of the corresponding permutation. An (m,n)-shuffle (σ, τ) gives
rise to surjective ∆-morphisms

σ : [m+ n] → [m]

τ : [m+ n] → [n]

via the aforementioned bijection. Note that an (m,n)-shuffle is uniquely recovered from
the set of σi’s (just list everything in increasing order), so (m,n)-shuffles are in bijective
correspondence with subsets

Σ ⊆ {1, . . . ,m+ n}
of cardinality m.

There is an obvious bijection

Shuff(m,n) → Shuff(n,m)

(σ, τ) 7→ (τ, σ)

and we have

sign(σ, τ) = (−1)mn sign(τ, σ).
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The rest of this section will be devoted to establishing similar, but slightly more elaborate,
bijections with similar “sign rules.”

If p ∈ N is a third nonnegative integer, then we can also consider (m,n, p)-shuffles,
which are of course permutations

(α1, . . . , αm, β1, . . . , βn, γ1, . . . , γp)

of {1, . . . ,m+ n+ p} where the αi are increasing with i, the βi are increasing with i, and
the γi are increasing with i. Such a shuffle gives rise to three surjective ∆-morphisms

α : [m+ n+ p] → [m]

β : [m+ n+ p] → [n]

γ : [m+ n+ p] → [p]

using the correspondence discussed at the beginning of the section, and a sign

sign(α, β, γ) ∈ {1,−1}

(the sign of the corresponding permuation). Quite generally, we can consider the set
Shuff(m1, . . . ,mn) of (m1, . . . ,mn)-shuffles for any m1, . . . ,mn ∈ N.

Lemma 5.7.1. For m,n, p ∈ N, there is a bijection

Shuff(m,n)× Shuff(m+ n, p) → Shuff(m,n, p)

((σ, τ), (ρ, θ)) 7→ (σρ, τρ, θ)

with

sign(σ, τ) sign(ρ, θ) = sign(σρ, τρ, θ)

and a bijection

Shuff(m,n+ p)× Shuff(n, p) → Shuff(m,n, p)

((σ, τ), (ρ, θ)) 7→ (σ, ρτ, θτ)

with

sign(σ, τ) sign(ρ, θ) = sign(σ, ρτ, θτ).

Proof. We will just discuss the first bijection; the second is similar. First of all, if we write
out the first map in terms of permuatations, I claim that it is given by

((σ, τ), (ρ, θ)) 7→ (ρσ1 , . . . , ρσm , ρτ1 , . . . , ρτn , θ1, . . . , θp).

This latter map is clearly bijective with the indicated sign relationship. To prove the
claim, note that, since σ, ρ are non-decreasing, we have

(σρ)i = min(σρ)−1(i)

= min ρ−1(σ−1(i))

= min ρ−1(minσ−1(i))

= min ρ−1(σi)

= ρσi

and similarly with σ replaced by τ . �
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Lemma 5.7.2. Fix m,n ∈ N with m+ n > 0 and i ∈ [m+ n]. Let

δi := δim+n : [m+ n− 1] ↪→ [m+ n]

denote the unique injective ∆-morphism whose image misses i. For every (m,n)-shuffle
(σ, τ) exactly one of the following occurs:

(1) Both σδi and τδi are surjective, i ∈ {1, . . . ,m + n − 1}, and exactly one of the
following occurs:
(a) i = σp for some p ∈ {1, . . . ,m} and i+ 1 = τq for some q ∈ {1, . . . , n}
(b) i+ 1 = σp for some p ∈ {1, . . . ,m} and i = τq for some q ∈ {1, . . . , n}.

In either case, if (σ′, τ ′) is obtained from (σ, τ) by interchanging i and i+ 1, then

σ′δi = σδi

τ ′δi = τδi.

(2) There is a unique j ∈ [m] and a unique (m− 1, n)-shuffle (σ′, τ ′) such that

[m− 1]

δjm
��

[m+ n− 1]
σ′
oo

δi

��

τ ′

%%
[m] [m+ n]σ
oo

τ
// [n]

commutes and we have

(−1)i sign(σ, τ) = (−1)j sign(σ′, τ ′).

Every pair

((σ′, τ ′), j) ∈ Shuff(m− 1, n)× [m]

arises in this manner from a unique (m,n)-shuffle (σ, τ) for which j is not in the
image of σδi.

(3) There is a unique j ∈ [n] and a unique (m,n− 1) shuffle (σ′, τ ′) such that

[m+ n− 1]

σ′

yy
δi

��

τ ′
// [n− 1]

δjn
��

[m] [m+ n]σ
oo

τ
// [n]

commutes and we have

(−1)i sign(σ, τ) = (−1)m+j sign(σ′, τ ′).

Every pair

((σ′, τ ′), j) ∈ Shuff(m,n− 1)× [n]

arises in this manner from a unique (m,n)-shuffle (σ, τ) for which j is not in the
image of τδi.

Proof. When i = 0, the number 1 appears somewhere in the permuatation

(σ1, . . . , σm, τ1, . . . , τn),

so it must be that 1 = σ1 or 1 = τ1. If, say, 1 = σ1, then σ−1(0) = {0}, so σδ0 isn’t
surjective (but τδ0 is surjective since τ1 > 1) and it is straightforward to check that

(σ′, τ ′) := (σ2 − 1, σ3 − 1, . . . , σm − 1, τ1 − 1, . . . , τn − 1)



76 W. D. GILLAM

is as desired. When i = m + n, we either have m + n = σm or m + n = τn. In, say, the
former case, σ−1(m) = {m + n}, so σδm+n isn’t surjective and it is straightforward to
check that

(σ′, τ ′) := (σ1, . . . , σm−1, τ1, . . . , τn)

is as desired.

Suppose i ∈ {1, . . . ,m+n−1} and, say, σδi isn’t surjective. Since σ is surjective and δi

only misses i, this means that there is some j ∈ [m] for which σ−1(j) = {i}, hence σj = i
and σj+1 = i+ 1. Then we set σ′ := (σ1, . . . , σj−1, σj+1 − 1, σj+2 − 1, . . . , σm − 1), and we
obtain τ ′ from τ by subtracting 1 from each τk which is greater than i. It is straightforward
to check that this (σ′, τ ′) is as desired and that the indicated sign relationship holds. It
is also clear that the recipe we are describing for producing ((σ′, τ ′), j) from (σ, τ) with
j /∈ Imσδi can be inverted.

On the other hand, suppose i ∈ {1, . . . ,m+n− 1}, but σδi and τδi are surjective. The
number i appears somewhere in the permutation (σ1, . . . , σm, τ1, . . . , τn). Say i = σp for
some p. The number i + 1 also appears somewhere in this partition, but it cannot be
one of the σj , for then it would have to be σp+1, but then we would have σ−1(p) = {i},
contradicting surjectivity of σδi. We conclude that i + 1 = τq for some q. If (σ′, τ ′) is
obtained from (σ, τ) by permuting i, i + 1, then the claimed equalities σδi = σ′δi and
τδi = τ ′δi are straightforward to check. �

5.8. Eilenberg-Zilber. One use of shuffles (§5.7) occurs in the Eilenberg-Zilber Theorem,
which we will now describe.

Let A be an abelian category and let V ∈ ssA be a bisimplicial object of A (§3.4).
By applying the (unnormalized) chain complex functor (§5.1) twice we obtain a functor
abusively denoted

C : ssA → Ch≥0Ch≥0A

from bisimplicial objects in A to first-quadrant double complexes in A. We have C(V )p,q =
Vp,q. We can compose this with the total complex functor

Tot : Ch≥0Ch≥0A → Ch≥0A

to associate a chain complex TotC(V ) to our bisimplicial object V with

(TotC(V ))n =
⊕
p+q=n

Vp,q.

We can also apply the diagonal functor (§3.4), followed by the unnormalized chain complex
functor to obtain another chain complex C(∆(V )) from V with C(∆(V ))n = Vn,n. The
Eilenberg-Zilber Theorem asserts that the chain complexes TotC(V ) and C(∆(V )) are
homotopy equivalent via natural maps which we now describe.

First we have the shuffle map

TotC(V ) → C(∆(V ))(5.8.1)

given in degree n by the sum, over p, q ∈ N with p+ q = n, of the maps∑
(σ,τ)

sign(σ, τ)V (σ, τ) : Vp,q → Vn,n,
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where the sum here is over all (p, q)-shuffles (σ, τ) and V (σ, τ) is of course the structure
map that V associates to the ∆×∆ morphism

σ × τ : [n]× [n] → [p]× [q].

Next we have the Alexander-Whitney map

C(∆(V )) → TotC(V )(5.8.2)

given in degree n by the product,7 over p, q ∈ N with p+ q = n, of the maps

V (σn,p, τn,q) : Vn,n → Vp,q,

where σn,p and τn,q are the ∆ morphisms defined below.

σn,p : [n] → [p] τn,p : [n] → [q]

0 7→ 0 0, . . . , n− q 7→ 0
... n− q + 1 7→ 1

p− 1 7→ p− 1
...

p, . . . , n 7→ p n = n− q + q 7→ q.

(5.8.3)

Theorem 5.8.1. (Eilenberg-Zilber) The shuffle map is a homotopy equivalence of com-
plexes with the Alexander Whitney map as its homotopy inverse.

Proof. This is [DP, 2.15]. �

In practice, one is often interested in knowing something about the homology of C(∆(V )),
which is identified, via Eilenberg-Zilber with the homology of TotC(V ). The good thing
about the latter homology is that it is calculated as the homology of the total complex
associated to a double complex, hence it comes with two spectral sequences:

′Ep,q1 = Hp(V•,q) =⇒ Hp+q(TotC(V ))(5.8.4)
′′Ep,q1 = Hq(Vp,•) =⇒ Hp+q(TotC(V )).(5.8.5)

We will be most interested in this general result in the following situation. Let A be a
ring and let M,N ∈ sMod(A) be two simplicial A modules. There are various possible
meanings of the tensor product M ⊗N . For one thing, we can form a bisimplicial (§3.4)
A module M ⊗N ∈ ssMod(A) with

(M ⊗N)m,n := Mm ⊗Nn.

For a ∆×∆ morphism

σ × τ : ([k], [l]) → ([m], [n]),

the structure map

(M ⊗N)(σ, τ) : Mm ⊗Nn → Mk ⊗Nl

is of course given by M(σ)⊗N(τ), where

M(σ) : Mm → Ml

N(τ) : Nn → Nl

7The product in question is finite, so it is also the sum, but I prefer to call it the product since we are
defining the map using the categorical property of the product.
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are the structure maps for M and N . From the bisimplicial A-module M ⊗ N , we can
form the complexes TotC(M ⊗N) and C(∆(M ⊗N)) with

(TotC(M ⊗N))n :=
⊕
p+q=n

Mp ⊗Nq

C(∆(M ⊗N))n := Mn ⊗Nn.

Using Eilenberg-Zilber, we can view the spectral sequences (5.8.4) and (5.8.5) as spectral
sequences

′Ep,q1 = Hp(M• ⊗Nq) =⇒ Hp+q(C(∆(M ⊗N)))(5.8.6)
′′Ep,q1 = Hq(Mp ⊗N•) =⇒ Hp+q(C(∆(M ⊗N))).(5.8.7)

With these spectral sequences in hand, we can prove the following lemma, which will be
useful later.

Lemma 5.8.2. Let A be a ring, L a simplicial A module, f : M → N a quasi-isomorphism
of simplicial A modules. If L (or both M and N) is (are) degree-wise flat, then

∆(f ⊗ L) : ∆(M ⊗ L) → ∆(N ⊗ L)

is also a quasi-isomorphism of simplicial A modules.

Proof. We want to prove that

Hn(C(∆(f ⊗ L))) : Hn(C(∆(M ⊗ L))) → Hn(C(∆(N ⊗ L)))

is an isomorphism of A modules for all n. As discussed above, by Eilenberg-Zilber, we can
view this map as the abutment of two different maps of spectral sequences induced by the
map of double complexes

C(f ⊗ L) : C(M ⊗ L) → C(N ⊗ L).

On Ep,q1 terms the first map of spectral sequences is the natural map

Hp(M• ⊗ Lq) → Hp(N• ⊗ Lq).

When each Lq is flat, the homology commutes with the tensor product so these maps are
just the maps

Hp(f)⊗ Lq : Hp(M•)⊗ Lq → Hp(N•)⊗ Lq,

which are isomorphisms by the assumption that f is a quasi-isomorphism, hence the map
on abutments is also an isomorphism and we’re done. When both M and N are degree-
wise flat, we instead look at the other map of spectral sequences and argue similarly that
it is given on Ep,q1 by

fp ⊗Hq(L•) : Mp ⊗Hq(L•) → Np ⊗Hq(L•).

Of course these maps need not be isomorphisms, but if we now look at the map on Ep,q2
terms (that is, we take homology in the p direction), using that all the Mp and Np are
flat, we find that this map is nothing but the map

Hp(f)⊗Hq(L•) : Hp(M)⊗Hq(L•) → Hp(N)⊗Hq(L•),

which is an isomorphism since f is a quasi-isomorphism, hence the map on abutments is
also a quasi-isomorphism. �
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6. Homotopy rings survey

In §7 and §8, we will spend a considerable amount of time discussing the categories of
simplicial rings and differential graded rings. These categories are both used to accomplish
the same basic goal: We seek some category of “ring complexes” that will play roughly the
same role that the category of chain complexes plays in the usual homological algebra of
abelian categories. There should then be some corresponding “homotopy category” (“the”
homotopy category of rings) playing the role played by the derived category in the abelian
setting.

For abelian categories there really is only “one” homotopy category, the derived cate-
gory. It doesn’t matter whether we think about it in terms of simplicial objects or (non-
negatively graded) complexes. (Throughout the rest of this discussion, all “complexes” are
understood to be chain complexes with non-negative grading and all “differential graded
objects” are understood to be “connective,” meaning “graded by N”.) This is perhaps
an extreme example, because the category of simplicial objects is already equivalent to
the category of complexes; it is not merely the case that the two homotopy categories are
equivalent. Perhaps a better example to keep in mind would be simplicial sets versus topo-
logical spaces, where the two model categories in question are not equivalent categories,
but are merely “Quillen equivalent” model categories, so they have equivalent homotopy
categories.

The situation for “ring complexes” is much more complicated. The basic point is that
there are several possible choices for the category of “ring complexes” with a notion of
“weak equivalences.” It is not entirely clear which of these categories can be endowed with
a model structure, and it is not clear which of the corresponding homotopy categories are
equivalent.

The two “classical” candidates for the category of “ring complexes” are simplicial rings
and differential graded rings, to be discussed in the next sections. For not necessarily
commutative rings the situation is, perhaps surprisingly, simpler:

Theorem 6.0.1. (Schwede-Shipley) [SS] There are model category structures on the
category of simplicial (not necessarily commutative) rings and on the category of (not
necessarily commutative) differential graded rings, and a Quillen equivalence between these
two model categories.

In fact, in the above theorem the fibrations and weak-equivalences are “as expected,”
meaning that they the ones inherited from the underlying (additive) simplicial abelian
group (c.f. Proposition 5.6.3) and the underlying “differential graded abelian group” (com-
plex of abelian groups), respectively. Even the functors yielding this equivalence are “as
expected” on the level of underlying simplicial/differential abelian groups.

Theorem 6.0.2. (Bousfield-Gugenheim) [BG] There is a model category structure on
the category of (commutative) differential graded Q-algebras with the “expected” fibrations
and trivial fibrations.

Theorem 6.0.3. (Stanley) [Sta] There is a model category structure on the category of
(commutative) differential graded rings where the weak equivalences and the cofibrations
are “as expected.”
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To say that the cofibrations are “as expected” here means that they are retracts of “free
morphisms.” (C.f. §?? and §7.12 for various kinds of “free morphisms.”) It turns out that
in Stanley’s model category, the fibrations are not as expected: a map can be a fibration
without the corresponding map of normalized chain complexes being surjective in each
positive degree (c.f. Proposition 5.6.3).

There is yet another alternative category of “ring complexes,” namely the category of
so-called E∞ rings, the standard example being the complex of singular cochains in a
topological space X. An E∞-ring doesn’t “commute on the nose,” but it “commutes up
to homotopy” in an appropriate sense.

Theorem 6.0.4. (Mandell) [Man] There is a Quillen equivalence between the model
category of simplicial E∞ rings and the model category of differential graded E∞ rings.

There are several more possibilities for the category of “ring complexes.” One can con-
sider topological rings, or A∞-rings. I am not aware of any results concerning model
structures or homotopy categories of these.

For further discussion of these issues, I recommend [DAG, 2.6] and the introductions to
[Ric2] and [SS].

7. Simplicial rings

Let An denote the category of commutative rings with unit. A simplicial object in An
is called a simplicial ring. Simplicial rings form a category

sAn := HomCat(∆
op,An)

(§3.2) which we will study in detail in this section.

We begin in §7.2 with the basic theory of modules over a simplicial ring. In §7.4 we
explain how to view the homology of a simplicial ring as a graded-commutative ring—we
will give a more sophisticated treatment of this point in §8, but the treatment in §7.4 is
simpler and sufficient for our current purposes. We next describe “the” model category
structure on the category of simplicial rings (§7.5) and the category of modules over a
fixed simplicial ring (§7.12). This requires various factorization results established in §7.8.

7.1. Symmetric products. For lack of a better place, we will collect in this section some
basic facts about symmetric products of topological spaces.

Definition 7.1.1. Let X be a topological space, n ∈ N. Then nth symmetric product
of X, denoted SymnX, is the quotient of Xn by the action of the symmetric group Sn

permuting the coordinates:

σ · (x1, . . . , xn) = (xσ(1), . . . , xσ(n)) (σ ∈ Sn).

Formally, this quotient is the coequalizer

SymnX = lim
−→

(a, π2 : Sn ×Xn ⇒ Xn)

of the action and projection.

From the universal property of the quotient, one see that X 7→ SymnX is a functor
Top→ Top.
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Lemma 7.1.2. If f, g : X ⇒ Y are homotopic maps of topological spaces, then

Symn f,Symn g : SymnX ⇒ Symn Y

are homotopic maps of topological spaces.

Proof. Say H : X × I → Y is a homotopy from f to g. The map

Xn × I → Y n

(x1, . . . , xn, t) 7→ (H(x1, t), . . . , (xn, t))

is clearly continuous and Sn equivariant (with Sn acting on Xn× I by acting on the first
factor). The induced map of quotients by Sn will provide the desired homotopy. To be
precise, one uses Proposition 4.3.8 and the local compactness of I to ensure that

(Xn × I)/Sn = (SymnX)× I.
�

7.2. Modules. Let A be a a simplicial ring. An A-module is a simplicial abelian group
M such that each Mn is equipped with the structure of an An module compatibly with
the simplicial structures: that is, for each ∆-morphism σ : [m]→ [n], the map of abelian
groups M(σ) : Mn →Mm should be A(σ) : An → Am linear:

M(σ)(a ·m) = A(σ) ·M(σ)(m)

for all a ∈ An, m ∈Mn. A morphism of A-modules f : M → N consists of an An module
homomorphism fn : Mn → Nn for each n ∈ N such that N(σ)fn = fmM(σ) for each
∆-morphism σ : [m]→ [n].

Modules over A form an abelian category Mod(A) with all direct and inverse limits
constructed “degree-wise.” We will make use of the usual notations of projective and
injective objects in the abelian category Mod(A). Exactness of a sequence of A-modules
is equivalent to exactness in each degree. The category Mod(A) also has tensor products,
also constructed degree-wise.

Example 7.2.1. If A → B is a morphism of simplicial rings, then B becomes an A
module in an obvious manner and the modules of Kähler differentials ΩBn/An ∈Mod(Bn)
fit together to form a B module ΩB/A ∈Mod(B).

If A is the constant simplicial ring associated to a ring A (Example 3.2.1), then it is
clear from the definitions that we have a natural isomorphism of categories

Mod(A) = sMod(A).(7.2.1)

This is one situation where the abuse of notation given by writing A ∈ sAn instead of
A ∈ sAn could cause some confusion, because Mod(A) has ambiguous meaning. For a
constant simplicial ring A, the tensor product of A modules

⊗ : Mod(A)×Mod(A) → Mod(A)

is identified under the isomorphism (7.2.1) with the functor

∆( ⊗ ) : sMod(A)× sMod(A) → sMod(A)

discussed in §5.8.

Definition 7.2.2. For an A-module M , we say that M is degree-wise flat (resp. finitely
generated, . . . ) iff Mn is a flat (resp. finitely generated, . . . ) An module for every n ∈ N.
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The forgetful functor

Mod(A) → sSets

taking an A-module to the underlying simplicial set has a left adjoint, the free module
functor

⊕ A : sSets → Mod(A),

which associates to each simplicial set X, the A module ⊕XA given by ⊕XnAn ∈Mod(An)
in degree n. For a ∆-morphism σ : [n] → [m], the structure map ⊕XmAm → ⊕XnAn for
⊕XA takes the summand indexed by x ∈ Xm into the summand indexed by X(σ)(x) ∈ Xn

via the map A(σ). An A-module M in the essential image of this functor will be called
free and a chosen isomorphism ⊕XA → M will be called a basis for M . Clearly a free
A-module is degree-wise flat.

Fix n ∈ N. The forgetful functor

Mod(A) → Mod(An)

N 7→ Nn

is exact and has a left adjoint

Fn : Mod(An) → Mod(A)(7.2.2)

M 7→ FnM.

To construct FnM , we set

(FnM)k :=
⊕

τ :[k]→[n]

M ⊗An Ak.

The direct sum runs over the (finite!) set of ∆-morphisms τ : [k] → [n] and the tensor
product is of course defined using A(τ) : An → Ak. Write τ : M ⊗An Ak → (FnM)k for
the structure map to the direct sum. In particular we have the structure map

Id : M → (FnM)n.(7.2.3)

The adjunction isomorphism

HomA(FnM,N) = HomAn(M,Nn)

takes g : FnM → N to gnId : M → Nn. The inverse takes f : M → Nn to the map
Φ(f) : FnM → N given in degree k using the universal property of the direct sum by

Φ(f)kτ := N(τ)f ⊗An Ak : M ⊗An Ak → Nk

m⊗ a 7→ a ·N(τ)f(m).

We leave it to the reader to verify that Φ(f) is a well-defined map of A-modules and that
Φ is inverse to g 7→ gnId.

Lemma 7.2.3. Suppose M is a projective An-module. Then FnM is a projective A-
module.

Proof. This follows formally from the fact that M 7→ FnM is left adjoint to the exact
functor N 7→ Nn. �
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7.3. Associated chain complexes. For a simplicial ring A, and an A module M , we set

Nn(M) := ∩ni=1 Ker(din : Mn →Mn−1)

Zn(M) := ∩ni=0 Ker(din : Mn →Mn−1)

Hn(M) := Zn(M)/d0
n+1Nn+1(M).

Note that N(M) is just the normalized chain complex (§5.1) associated to the underlying
simplicial abelian group of M , Zn(M) is the group of n-cycles in N(M), and H∗(M) is
the homology of N(M). By Lemma 5.1.2, we can alternatively compute Hn(M) as the
homology of the unnormalized chain complex C(M) = ⊕∞n=0Mn with differential

dn+1 :=
n+1∑
i=0

(−1)idin+1 : Mn+1 → Mn.

It is clear that all of the above constructions are natural in the A module M , so that a
map of A modules f : M → N in particular induces maps

Hn(f) : Hn(M) → Hn(N).

Notice that Nn(M) and Zn(M) are An submodules of Mn. The subset d0
n+1Nn+1(M) ⊆

Mn is also an An submodule because d0
n+1 : Mn+1 → Mn has a section s0

n : Mn → Mn+1

(§3.2) so for a ∈ An and m ∈ Nn+1(M) we have

ad0
n+1(m) = d0

n+1(s0
n(a))d0

n+1(m)

= d0
n+1(s0

n(a)m)

and sn0 (a)m ∈ Nn+1(M) because Nn+1(M) ⊆ Mn+1 is a sub An+1 module. (In fact
this statement requires only the surjectivity of d0

n+1 : An+1 → An, not the existence of
a section.) Consequently, Hn(M), being a quotient of two An modules, is also an An
module.

Remark 7.3.1. We defined Hn(M) to be the quotient of the An-module Zn(M) by the
the image of the (d0

n+1 : An+1 → An)-linear map

d0
n+1 : Nn+1(M) → Zn(M).(7.3.1)

As discussed above, the image of (7.3.1) is in fact an An-submodule of Zn(M). It follows
that the image of (7.3.1) is the same as the image of the corresponding An-module map

Nn+1(M)⊗An+1 An → Zn(M)(7.3.2)

(the tensor product here is of course formed using d0
n+1). Evidently then, Hn(M) is nothing

but the cokernel of the An-module map (7.3.2).

The An-modules Hn(M) do not assemble into an A-module in any reasonable way. We
will see in §7.4 that the Hn(M) carry some additional structures, but for the time being
we will view the Hn as functors

Hn : Mod(A) → Mod(An),

which are “unrelated” for different n.

If each An is a noetherian ring and each Mn is a finitely generated An module, then the
An modules Zn(M), dn+1

n+1Zn+1(M),Hn(M) are all finitely generated.
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We will often be interested in the case M = A. Note that H0(A) = A0/d
1
1Z1(A) is

the quotient of A0 by the ideal d1
1Z1(A), so it carries a natural ring structure making

A0 → H0(A) a surjective ring homomorphism.

We will also often be interested in the case of a constant simplicial ring A associated to
a ring A, in which case the homology functors

Hn : Mod(A) → Mod(An) = Mod(A)

are clearly identified under the isomorphism (7.2.1) of §7.2 with the usual homology func-
tors

Hn : sMod(A) → Mod(A)

defined for simplicial objects in the abelian category Mod(A), as discussed in §5.1. In
particular, we have

Hn(A) =

{
A, n = 0

0, n > 0.

as in Example 5.1.3.

A map f : M → N of A modules will be called a quasi-isomorphism iff Hn(f) is an
isomorphism for every n ∈ N. We are already in a position to prove the following:

Lemma 7.3.2. Let A be a simplicial ring, f : M → N a quasi-isomorphism of A modules,
L an A module. Suppose that at least one of the following holds:

(1) M and N are degree-wise flat
(2) L is degree-wise flat

Then f ⊗ L : M ⊗ L→ N ⊗ L is a quasi-isomorphism of A modules.

Proof. This is [Ill, 3.3.2.1]. The proof there is terse and a bit tricky to follow without a
certain amount of familiarity with the techniques and machinery, so I will give a bit of
an explanation here. We first treat the special case where the simplicial ring in question
is a constant simplicial ring A associated to a ring A. In this case, the “coincidence”
Mod(A) = sMod(A) and the description of the tensor product of modules and homology
of modules under this coincidence (immediately above and §7.2) reduces us to a statement
purely about simplicial modules over a ring, which is nothing but Lemma 5.8.2 (Eilenberg-
Zilber).

In the general case, we will again end up working with simplicial A modules, even
though we are only trying to prove a statement about A modules. A simplicial A module
V carries the structure of a bisimplicial abelian group V = (V••) such that for each q ∈ N,
the “row” V•q is an A module, and for each p ∈ N, the “column” Vp• is a simplicial Ap
module. In particular, we have a functor

C : sMod(A) → Ch≥0Ch≥0Ab

from simplicial A modules to double complexes of abelian groups; we can take the total
complex of the double complex C(V ) and take its homology to attach to every simplicial
A module V homology groups Tot Hn(V ) arising as the abutment of two different spectral
sequences. The constant simplicial A modules L, M , N of course have L•q = L, M•q = M
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and N•q = N for all q ∈ N. The spectral sequence where we first take homology in the
vertical (i.e. the q) direction degenerates to yield

Tot Hn(E) = Hn(E)(7.3.3)

for any E ∈ Mod(A), where H∗(E) is the “usual” homology of E defined above. By
general nonsense, there exists a quasi-isomorphism of simplicial A modules F → L such
that F•q is a free A module (§7.2) for every q ∈ N, say with basis Xq ∈ sSets, so that

F•q ⊗A E = (⊕XqZ)⊗Z E

for every A module E. The key point is that F•q ⊗A E is naturally identified with the
result of tensoring a free (hence degree-wise flat) simplicial Z module (namely ⊕XqZ) with
another simplicial Z module (namely, the simplicial abelian group underlying E) so we
can use the special case proved above (in the very special case where the ring is Z and
hypothesis (2) holds) to conclude that, for each q ∈ N, the functor

F•q ⊗A : Mod(A) → Mod(A)(7.3.4)

preserves quasi-isomorphisms.

Now we consider the following commutative diagram of simplicial A modules:

M ⊗ F

��

// N ⊗ F

��
M ⊗ L // N ⊗ L

(7.3.5)

Here the tensor products ⊗ are really the composition of the “bisimplicial tensor product”

⊗ : sMod(A)× sMod(A) → ssMod(A)

(c.f. §5.8) and the diagonal functor

∆ : ssMod(A) → sMod(A),

though we have suppressed the ∆ to ease notation. Note that M ⊗ L = M ⊗ L and
similarly with M replaced by N . Now, for each fixed q ∈ N, the top horizontal arrow in
(7.3.5) is just

F•q ⊗A f : F•q ⊗AM → F•q ⊗A N,
which is the image of the quasi-isomorphism f under (7.3.4), hence is a quasi-isomorphism,
hence this top vertical arrow induces an isomorphism on Tot Hn for all n by degeneration
of spectral sequences.

For each fixed p ∈ N, the left vertical arrow in (7.3.5) is the map of simplicial Ap
modules

Mp ⊗Ap Fp• → Mp ⊗Ap Lp.(7.3.6)

Since F → L is a quasi-isomorphism of simplicial A modules, Fp• → Lp is a quasi-

isomorphism of simplicial Ap modules. Under hypothesis (1), the map (7.3.6) is hence
a quasi-isomorphism by the special case (and similarly with M replaced by N). On the
other hand, note that each Fpq is a flat (even free) Ap module, so under hypothesis (2),
the map (7.3.6) is also a quasi-isomorphism by the special case (applied using hypothesis
(1)!). Either way, we conclude that the maps (7.3.6) (and their variants with M replaced
by N) are quasi-isomorphisms, hence the vertical arrows in (7.3.5) induce isomorphisms
on total homology. Since the top horizontal arrow also induces an isomorphism on total
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homology, so does the bottom horizontal arrow. But the map on total homology induced
by the bottom horizontal arrow is identified with the map on usual homology induced by
f ⊗ L via (7.3.3), hence we conclude that f ⊗ L is a quasi-isomorphism, as desired. �

7.4. Homology ring. The homology groups Hn(A) fit together into a graded-commutative
ring

H∗(A) := ⊕∞n=0 Hn(A),

which we will call the homology ring (or just the homology) of A. Similarly, for any A
module M , the homology groups Hn(M) have a natural graded H∗(A) module structure.

The fastest way to define the multiplication maps

Hm(A)⊗Hn(A) → Hm+n(A)

is via geometric realization: we have

Hm(A) = πm(A)

= πm(|A|),
where |A| ∈ K is the Kelley (compactly generated weak Hausdorff) space obtained as the
geometric realization (§4.3) of the simplicial set |A| underlying the simplicial ring A. The
space |A| is of course pointed by 0 ∈ |A|. Since A is a ring object in simplicial sets and
geometric realization (viewed as a functor to K) preserves finite inverse limits, |A| is a
ring object in K. An element [f ] of πm(|A|) is represented by a map f : Im → A taking
the boundary of the cube Im to 0 ∈ |A| and an element [g] of πn(A) is represented by a
map g : In → A taking the boundary of In to 0. Using the ring structure on A, we can
define a map

fg : Im+n → |A|
(x, y) 7→ f(x)g(y)

which also clearly takes the boundary of Im+n to 0 ∈ |A|, hence represents a class
[fg] ∈ πm+n(|A|). The multiplication [f ][g] := [fg] is clearly well-defined; it is graded
commutative because the automorphism (x, y) 7→ (y, x) of Im+n acts by (−1)mn on the
orientation of Im+n. For any A module M , one can define the structure maps

Hm(A)⊗Hn(M) → Hm+n(M)

in a similar manner.

Although this is the most expedient way to define the ring structure on H∗(A) and the
H∗(A) module structure on H∗(M), we will see in §8 that H∗(A) arises as the homology
ring of a differential graded ring, and, as such, is a graded-commutative ring. We will also
see that H∗(M) is then the homology of a module over this differential graded ring.

7.5. Model structure. In this section, we describe “the” model category structure on
simplicial rings. The results of this section can be obtained from general results of Quillen
[Q1, II.4]. Our aim here is mostly to spell out some of the constructions in [Q1] a bit more
explicitly. The finiteness results of Theorem 7.8.6 probably do not follow from Quillen’s
approach; they will be crucial in our applications to derived algebraic geometry (§9).

Definition 7.5.1. Let f : A → B be a morphism of simplicial rings. We say that f is
a weak equivalence iff H∗(f) : H∗(A) → H∗(B) is an isomorphism. We say that f is a
fibration iff it satisfies the following equivalent conditions:
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(1) The underlying map of simplicial sets is a fibration.
(2) The map A→ B ×H0(B) H0(A) is surjective.

(Proposition 5.6.3). We say that f is a cofibration iff it has the LLP with respect to all
trivial fibrations.

The following facts are easy to see directly from the definitions:

(1) Weak equivalences satisfy 2-out-of-3.
(2) Fibrations and cofibrations form subcategories closed under retracts.

Theorem 7.5.2. The category of simplicial rings forms a model category (§1) with the
indicated weak equivalences, fibrations, and cofibrations.

This theorem will be proved in §7.9 using the results of the next two sections. In light of
the trivial facts mentioned above, it remains only to construct factorizations and establish
the lifting axioms. To do this, we first need a supply of cofibrations.

7.6. Supply of cofibrations. In this section we prove that various types of maps of
simplicial rings are cofibrations (i.e. have the LLP w.r.t. trivial fibrations). Unfortunately
our cofibrations will “come in two flavors.” These “two flavors” are enough to perform all
the necessary factorizations to prove Theorem 7.5.2. I wasn’t able to find a sufficiently
flexible class of cofibrations that would include “both flavors.”

Let A be a simplicial ring. The forgetful functor

A/sAn → Mod(A)

has a left adjoint given by taking an A-module M to the symmetric algebra Sym∗AM .
This symmetric algebra is formed degree-wise and the fact that one has the purported
adjointness follows, say, from the analogous adjointess for usual rings. The forgetful functor

A/sAn → sSets

also has a left adjoint taking a simplicial set X to the free A-algebra A[X].

These constructions yield some “obvious” cofibrations:

Theorem 7.6.1. Let A be a simplicial ring, M a projective A-module, P := Sym∗AM .
Then the structure map i : A→ P is a cofibration.

Proof. We need to produce a lift in a diagram of simplicial rings

A
f //

i

��

B

h

��
P

l

??

g // C

where h is a trivial fibration. By the universal property of the symmetric algebra such a
lift is the same thing as a lift in the following diagram of A-modules:

B

h

��
M

l

>>

g // C
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Since h is a fibration, h : B → C×H0(C) H0(B) is surjective and since h is a trivial fibration
(so H0(B)→ H0(C) is an isomorphism), we see that h is surjective, so we can find the lift
above since M is projective. �

Corollary 7.6.2. Let A be a simplicial ring, n ∈ N, M a projective An-module, FnM
the associated A-module (§7.2), P := FnM . Then the structure map i : A → P is a
cofibration.

Proof. FnM is a projective A-module by Lemma 7.2.3. �

Corollary 7.6.3. Let A be a simplicial ring, X a simplicial set, P := A[X] the free
A-algebra on X. Then the structure map i : A→ P is a cofibration.

Proof. One would like to say: The free A-algebra is the symmetric algebra on the corre-
sponding free module, so this “follows from” the theorem. The problem is that it is not
so clear that the free A-module on an arbitrary simplicial set X is actually a projective
object in Mod(A). It is better to directly establish the existence of a lift in a diagram
as in the proof of the theorem, as follows. By the universal property of the free algebra
P = A[X], it is equivalent to find a lift in the diagram

∅ //

��

B

h

��
X

l

??

g|X
// C

of simplicial sets. All simplicial sets are cofibrant, so ∅ → X is a cofibration of simplicial
sets. By our definition of (trivial) fibrations, the forgetful functor sAn → sSets takes
fibrations to fibrations and trivial fibrations to trivial fibrations, so h is also a trivial
fibration of simplicial sets, hence such a lift exists. �

The next flavor of cofibration is more subtle . . .

Recall from §3.6 that we let Ln denote the “latching category” whose objects are sur-
jective ∆-morphisms σ : [n] → [m] with m < n and whose morphisms are the obvious
triangles of surjective ∆-morphisms.

Definition 7.6.4. A degenerate simplicial ring is a functor

A : (∆epi)op → An

[n] 7→ An.

A simplicial ring determines an underlying degenerate simplicial ring by restriction of
functors. A degenerate module M over a degenerate simplicial ring A consists of an
An-module Mn (for each n ∈ N) and an A(σ)-linear map M(σ) : Mm → Mn defined
functorially for each surjective ∆-morphism σ : [n]→ [m]. Given a degenerate module M
over a degenerate simplicial ring A and an n ∈ N, we call the An-module

Dn := lim
−→
{Mm ⊗Am An : (σ : [n]→ [m]) ∈ Ln},(7.6.1)

the nth degeneracy module of M . The maps Mm ⊗Am An → Mn determined by the
structure maps M(σ) for M induce a natural An-module map

Dn → Mn.(7.6.2)
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We say that M is split if the natural maps (7.6.2) are injective (in which case we refer to
Dn ⊆ Mn as the degenerate submodule) and, for each n ∈ N, there is an An-submodule
En ⊆ Mn, called a non-degenerate complement, inducing a direct sum decomposition
Mn = Dn ⊕ En.

Lemma 7.6.5. Suppose M is a split degenerate module over a degenerate simplicial ring
A with non-degenerate complements (E0, E1, . . . ). Then for each n ∈ N, the natural maps

M(σ)|Em : Em ⊗Am An → Dn(7.6.3)

for σ ∈ Ln induce an isomorphism of An-modules

Dn =
⊕

(σ:[n]→[m])∈Ln

Em ⊗Am An.(7.6.4)

Since Mn = Dn ⊕ En, we hence have

Mn =
⊕

(σ:[n]→[m])∈Ln

Em ⊗Am An.(7.6.5)

Proof. Note that when n = 0 we have D0 = 0 and all of the statements of the lemma hold
trivially. We prove the lemma by induction on n by constructing an inverse f to the map⊕

(σ:[n]→[m])∈Ln

Em ⊗Am An → Dn(7.6.6)

induced by the natural maps (7.6.3). By the universal property of the direct limit Dn

and the adjointness of extension and restriction of scalars, such an An-module map f is
specified by giving A(ρ)-linear maps

fρ : Ml →
⊕
σ∈Ln

Em ⊗Am An(7.6.7)

for each surjective ∆-morphism ρ : [n]→ [l] with l < n so that the diagrams⊕
σ∈Tn Em ⊗Am An

Ml

fρ
77

Mk
M(θ)oo

fτ
gg

(7.6.8)

commute for each Ln-morphism as below.

[n]
ρ

��

τ

  
[l]

θ // [k]

But by induction we already know that the natural maps (7.6.3) yield an isomorphism

Ml =
⊕

θ:[l]→[k]

Ek ⊗Ak Am

(where θ : [l]→ [k] runs over all surjective ∆-morphisms) and we can define our map

fρ :
⊕

θ:[l]→[k]

Ek ⊗Ak Al →
⊕
σ∈Ln

Em ⊗Am An
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by taking the summand indexed by θ : [l]→ [k] into the summand indexed by θρ : [n]→ [k]
by the obvious map

Ek ⊗Ak Al → Ek ⊗Ak An
e⊗ a 7→ e⊗A(ρ)(a).

It is tautological to check that the diagrams (7.6.8) commute and that our f is an inverse
to (7.6.6). �

Definition 7.6.6. A morphism of simplicial rings i : A→ P is called semi-symmetric iff
there are An-submodules Mn ⊆ Pn (called a basis) for each n ∈ N satisfying the following
properties:

(1) For each n ∈ N, the induced map Sym∗AnMn → Pn is an isomorphism.
(2) For each surjective ∆-morphism σ : [n]→ [m], the corresponding degeneracy map

P (σ) : Pm → Pn takes Mm ⊆ Pm into Mn ⊆ Pn. (Recall that this degeneracy map
is injective, as it has a retract.)

The second condition above says that the degeneracy maps for P make the Mn into a
degenerate module M over the degenerate simplicial ring underlying A. A semi-symmetric
morphism i is called symmetric iff it has a basis (M0,M1, . . . ) so that the corresponding
degenerate module M is split (Definition 7.6.4).

Definition 7.6.7. A morphism of simplicial rings is called projective (resp. free) iff it is
symmetric and has a basis (M0,M1, . . . ) and non-degenerate complements (E0, E1, . . . )
with each En a projective (resp. free) An-module. Notice that, in light of the formulas
(7.6.4) and (7.6.5) in Lemma 7.6.5, this implies that each Dn and each Mn is also a
projective (resp. free) An-module.8

One can equivalently define a free morphism to be a map i : A→ P such that there are
subsets Xn ⊆ Pn (called a basis) for each n ∈ N satisfying the following properties:

(1) For each n ∈ N, the induced map An[Xn] → Pn is an isomorphism (i.e. Pn “is” a
polynomial ring over An).

(2) For each surjective ∆-morphism σ : [n]→ [m], the corresponding degeneracy map
P (σ) : Pm → Pn takes Xm ⊆ Pm into Xn ⊆ Pn.

(3) Let Dn denote the direct limit of the Xm over (σ : [n] → [m]) ∈ Ln. 9 We
require the natural map Dn → Xn to be injective for every n. We call Dn ⊆ Xn

the degenerate subset of Xn and we call its complement En := Xn \Dn the non-
degenerate subset of Xn.

We say that a free morphism is of finite type (or degree-wise finite type if there is any
chance of confusion) if we can take every set Xn to be finite. A trivial free (resp. projective)
morphism is a morphism which is both free (resp. projective) and a weak equivalence.

Remark 7.6.8. The “one can equivalently define” in the above definition requires some
justification. Suppose i : A → P is a free morphism with basis (X0, X1, . . . ). For n ∈ N,
we view Dn as a subset of Xn via the natural map which is injective by hypothesis. We
call Dn ⊆ Xn the degenerate subset of Xn. Let En := Xn \ Dn be the non-degenerate

8Projective (resp. free) modules are stable under extension of scalars and direct sums.
9Note that Dn “is” just the nth latching object Ln(X) of “X,” though in §3.6 we discussed latching objects
only for simplicial sets, though the definition makes perfect sense for “purely degenerate simplicial sets”
such as the X here.
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complement. If we now letMn be the free An-module on the setXn, then we have An[Xn] =
Sym∗AnMn so i is certainly semi-symmetric with basis (M0,M1, . . . ). Furthermore, the
natural An-module map (7.6.2) is nothing but the map of free An-modules induced by the
inclusion of sets Dn ↪→ Xn, so it is clear that the free An-module on the subset En will
serve as a (free) non-degenerate complement.

To go the other way, suppose i : A→ P is a symmetric morphism with basis (M0,M1, . . . )
and free non-degenerate complements (E0, E1, . . . ). Choose a basis Yn ⊆ En for each
n ∈ N. In light of the formula (7.6.5) of Lemma 7.6.5, we obtain a basis

Xn :=
∐

(τ :[n]→[l])∈Ln

Yl

of Mn so that each surjective ∆-morphism σ : [n] → [m] induces an inclusion M(σ) :
Xm ↪→ Xn. This inclusion is nothing but the obvious inclusion∐

π:[m]→[k]

Yk →
∐

τ :[n]→[l]

Yl

taking the subset indexed by π : [m] → [k] bijectively onto the subset indexed by πσ :
[n]→ [k]. (Note that, if π, π′ : [m] ⇒ [k] are distinct, then πσ and π′σ are distinct because
σ is surjective.) The natural map

lim
−→
{Xm : (σ : [n]→ [m]) ∈ Ln} → Xn

is injective because the natural map

lim
−→
{Mm ⊗Am An : (σ : [n]→ [m]) ∈ Ln} → Mn

is injective.

Remark 7.6.9. Suppose A is a simplicial ring and X is a simplicial set. The structure
map A → A[X] for the free A-algebra on X may not be a free morphism of simplicial
rings, because the natural map Dn → Xn (which is just the natural map Ln(X)→ Xn for
the simplicial set X) may not be injective (Example 3.6.1). Never-the-less, we have seen
in Corollary 7.6.3 that A→ A[X] is a cofibration.

Similarly, if P is a projective A-module, A → Sym∗A P need not be a projective
morphism. Indeed, when P = FnM for a projective An-module M , the natural maps
Dm → Xm will not be injective for all m (unless M = 0). In Example 7.6.10 below,
we will give a very simple example showing that the map A → Sym∗AM , although semi-
symmetric, need not be symmetric, because (7.6.2) need not be injective.

Also note that not every free morphism A→ P is of the form A→ A[X] for a simplicial
set X—this is because in the definition of free morphism we do not require P (σ) : Pm → Pn
to take Xm into Xn for all ∆-morphisms σ : [n]→ [m] (as would be the case if P = A[X]
for a simplicial set X), but rather only for surjective ∆-morphisms. This is why we have
“two flavors” of cofibrations. The cofibrations of the “first flavor” are good for factoring
a map as a cofibration followed by a surjection. The extra “flexibility” in the cofibrations
of the “second flavor” makes them suitable for factoring a map that is already surjective
as a cofibration followed by a trivial fibration.
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Example 7.6.10. Let s : Z → Z[x] be the unique ring map and let p : Z[x] → Z be the
unique ring map with p(x) = 0, so we have a retract diagram of rings as below.

Z s // Z[x]
p // Z

We can thing of this as a 1-truncated simplicial ring A with A0 = Z, A1 = Z[x], s = s0
0

and d0
1 = d1

1 = p. We can similarly view the diagram

Z Id // Z Id // Z

as a module M over this 1-truncated simplicial ring. By general theory of coskeleta (§3.5),
there will exist a simplicial ring A and an A-module M which agree with our A and M in
degrees ≤ 1. The map M0⊗A0 A1 →M1 (the natural map (7.6.2) when n = 1) is just the
map p—it is not injective, so the semi-symmetric map A→ Sym∗AM is not symmetric.

When i : A → P is a symmetric morphism with basis (M0,M1, . . . ) and p : P → B
is a map of simplicial rings, we usually write pn : Mn → Bn instead of the more correct
pn|Mn : Mn → Bn. Similarly for free morphisms.

Let us first observe that free morphisms of simplicial rings have some “stability” prop-
erties that are similar to the stability properties we would expect from cofibrations:

Lemma 7.6.11. Free morphisms of simplicial rings are stable under pushouts and com-
positions. If

A0 → A1 → A2 → · · ·
is a diagram of free morphisms of simplicial rings indexed by N with direct limit A, then
the structure maps An → A are free morphisms.

Proof. Suppose i : A → P is a projective (resp. free) morphism with basis (M0,M1, . . . )
and projective (resp. free) non-degenerate complements (E0, E1, . . . ). Let A → B be an
arbitrary map of simplicial rings, B → Q = P ⊗A B the pushout. It is straightforward
to see that B → Q is free with basis (M0 ⊗A0 B0,M1 ⊗A1 B1, . . . ) and non-degenerate
complements (E0 ⊗A0 B0, E1 ⊗A1 B1, . . . ). Since each En is projective (resp. free), so
is each En ⊗An Bn. The degeneracy maps for the degenerate B-module M ⊗A B are
injective because the degeneracy maps for M are inclusions of direct summands. The
other statements are similar and boil down to the fact that a “polynomial ring over a
polynomial ring is a polynomial ring” and “a sequential direct limit of polynomial rings is
a polynomial ring on the union of the variables.” �

The proof of the following technical lemma is elementary, though tedious, and is included
merely for the sake of completeness—the reader is urged to skip over it.

Lemma 7.6.12. Suppose i : A→ P is a symmetric morphism of simplicial rings with basis
(M0,M1, . . . ) and non-degenerate complements (E0, E1, . . . ), f : A → B is an arbitrary
morphism of simplicial rings, and p : trn P → trnB is a map of n-truncated simplicial
rings with trn f = p trn i. Then

p 7→ (pn+1 : Mn+1 → Bn+1)

establishes a bijection between the set of liftings of p to a map p : trn+1 P → trn+1B of
(n+1)-truncated simplicial rings satisfying trn+1 f = p trn+1 i and the set of Am+1-module
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homomorphisms q : En+1 → Bn+1 making the diagrams

En+1

din+1

��

q // Bn+1

din+1

��
Pn pn

// Bn

(7.6.9)

commute for i = 0, . . . , n+ 1.

Proof. Set pm := pm for m ≤ n. Such a lifting p is certainly determined by the An+1-
algebra map pn+1 : Pn+1 → Bn+1. Such an algebra map pn+1 will yield a lifting of p with
trn+1 f = p trn+1 i iff the square S(σ) below commutes for every ∆-morphism σ : [m]→ [k]
with m, k ≤ n+ 1.

Pk
pk //

P (σ)
��

Bk

B(σ)
��

Pm pm
// Bm

(7.6.10)

Notice that if σ happens to factor as σ = ρτ , then the square S(σ) is obtained by con-
catenating S(ρ) and S(τ) so we can check the commutativity of S(σ) by checking com-
mutativity of §(ρ) and S(τ). Since p was a map of n-truncated simplicial rings, we know
S(σ) commutes whenever m, k ≤ n. We thus see that the commutativity of all the S(σ)
is equivalent to the commutativity of the squares S(∂in+1) (i = 0, . . . , n+ 1) below

Pn+1

P (∂in+1)=din+1

��

pn+1 // Bn+1

din+1=B(∂in+1)

��
Pn pn

// Bn

(7.6.11)

and the squares S(σ) for σ : [n+ 1]→ [m] for σ ∈ T , shown below.

Pm

P (σ)

��

pm // Bm

B(σ)

��
Pn+1 pn+1

// Bn+1

(7.6.12)

By the universal property of the symmetric algebra Pn+1 = Sym∗An+1
Mn+1, the An+1-

algebra map pn+1 is equivalent to the data of an An+1-module map pn+1 : Mn+1 →
Bn+1. Using the direct sum decomposition Mn+1 = Dn+1 ⊕ En+1 into the degenerate
and non-degenerate summands, the universal property of direct sums, and the direct limit
description of Dn+1, we see that the An+1-module map pn+1 is determined by giving an
An+1-module map q : En+1 → Bn+1 and An+1-module maps pσ : Mm ⊗Am An → Bn+1

for each σ ∈ Ln+1 satisfying the compatibility condition necessary to define a map out of
the direct limit Dn+1 (we will formulate this momentarily). By the adjointness of ⊗ and
restriction of scalars, we will view pσ as a map of Am-modules pσ : Mm → Bn+1, regarding
Bn+1 as an Am-module by restriction of scalars along fn+1A(σ) = B(σ)fm. The condition
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for the pσ to define a map Dn+1 →Mm+1 is that the diagram

Pn+1

Mm

pσ
;;

Mk
P (θ)oo

pτ
bb

(7.6.13)

should commute for each Ln+1-morphism as below.

[n+ 1]

σ

{{

τ

""
[m]

θ // [k]

Using the universal property of Pm = SymAmMm, we see that commutativity of (7.6.12)
is equivalent to the formula

pσ = B(σ)pm.(7.6.14)

Using our description of pn+1 in terms of the pσ (assuming these actually “glue”) and
q, we see that the commutativity of (7.6.11) is equivalent to the commutativity of the
diagrams (7.6.9) plus the commutativity of the diagrams

Mm

P (∂in+1)P (σ)

��

pσ // Bn+1

din+1=B(∂in+1)

��
Pn pn

// Bn

(7.6.15)

for each σ ∈ T . The whole point of the lemma is that, as long as pσ is defined by (7.6.14)
(as it must be in any lifting p), the diagrams (7.6.13) and (7.6.15) will commute as desired.
For the commutativity of (7.6.13), just compute

pσP (θ) = B(σ)pmP (θ)

= B(σ)B(θ)pk

= B(τ)pk

(the second equality uses the fact that p is a well-defined map of n-truncated simplicial
rings). For the commutativity of (7.6.15), let τ : [n] → [m] be the composition of ∂in+1 :
[n]→ [n+ 1] and σ : [n+ 1]→ [m], then compute

B(∂in+1)pσ = B(∂in+1)B(σ)pm

= B(τ)pm

= pnP (τ)

= pnP (∂in+1)P (σ)

(using the fact that p is a well-defined map of n-truncated simplicial rings for the third
equality). �

Theorem 7.6.13. Projective morphisms of simplicial rings are cofibrations.
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Proof. Suppose i : A → P is a projective morphism of simplicial rings. We need to show
that there exists a lift l as indicated in any solid commutative diagram

A
f //

i

��

B

h

��
P

l

??

g // C

of simplicial rings where h is a trivial fibration.

Fix a basis (M0,M1, . . . ) for i and a choice of non-degenerate complement En ⊆Mn for
each n ∈ N. Recall from §?? that we let Mn(B/C) denote the set (in fact, An-module) of

(b0, . . . , bn, c) ∈ B[n]
n−1 × Cn

satisfying

din−1bj = dj−1
n−1bi, 0 ≤ i < j ≤ n

dinc = hn−1bi, i ∈ [n]

and that “h is a trivial fibration” is equivalent to surjectivity of each map

Bn → Mn(B/C)

b 7→ (d0
nb, . . . , d

n
nb, hnb).

We construct the lift l inductively: To get started, we need to find a lift l0 in the diagram
of rings:

A0
f0 //

i0

��

B0

h0

��
P0

l0

>>

g0 // C0

By the universal property of the symmetric algebra P0 = Sym∗A0
M0, this is the same thing

as finding a lift in the diagram of A0-modules below.

B0

h0

��
M0

l0

>>

g0 // C0

By definition of “projective module,” we can find such a lift since B0 → C0 = M0(B/C)
is surjective because h is a trivial fibration. Now suppose that we have constructed the
solid diagram

trnA
trn f //

trn i

��

trnB

trn h

��
trn P

trn l

;;

trn g // trnC
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of n-truncated simplicial rings and we want to lift it to a diagram

trn+1A
trn+1 f //

trn+1 i

��

trn+1B

trn+1 h

��
trn+1 P

trn+1 l

::

trn+1 g // trn+1C

of (n+ 1)-truncated simplicial rings. By Lemma 7.9.2, it suffices to find an An+1-module
homomorphism q : En+1 → Bn+1 such that

gn+1 = hn+1q

and such that the following diagram commutes:

En+1

din+1

��

q // Bn+1

din+1

��
An

fn
// Bn

The fact that trn l is a map of truncated simplicial rings ensures that we have a map of
An+1-modules

En+1 → Mn+1(B/C)

x 7→ (lnd
0
n+1x, . . . , lnd

n+1
n+1x, gn+1x).

We can then find our q by lifting in the diagram of An+1-modules below.

Bn+1

��
En+1

q
88

// Mn+1(B/C)

(Such a lift exists because En+1 is projective and Bn+1 → Mn+1(B/C) is surjective.) �

7.7. Path space. If B is a simplicial ring, then the path space BI of §4.7 carries the
structure of a simplicial ring.

DISCUSS: simplicial homotopy (§3.7) is internal so sAn via path spaces

Replace “trivial free morphism” in Lemma 7.9.1 with “trivial cofibration” and elaborate
on the importance of this result: emphasize that the deformation retract is in sAn.

7.8. Factorizations. In this section, we will construct various factorizations of mor-
phisms of simplicial rings which, among other things, will be used in §7.5 to prove that
simplicial rings form a model category. The factorization construction in Theorem 7.8.6 is
a loose conglomeration of [Q1, II.4.6-7], [And, I.6], and [Beh, Proposition 1.9]. With the
possible exception of the finiteness statement in Theorem 7.8.6, the results of this section
can all be obtained from the general results of Quillen in [Q1, II.4].

Lemma 7.8.1. Any morphism f : A → B of simplicial rings can be factored as f = qj
where j : A→ Q is a homotopy equivalence and q : Q→ B is a fibration.
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Proof. If B is a simplicial ring, then the path space BI of §4.7 carries the structure of a
simplicial ring. Indeed,

BI
n = HomsSets(∆[1]×∆[n], B)

carries a natural ring structure because B is a ring object in simplicial sets. Furthermore,
the evaluation maps e0, e1 : BI → B and the constant path map i : B → BI are maps
of simplicial rings, and the homotopy equivalence B ∼= BI is a homotopy equivalence of
simplicial rings. Since all simplicial rings are fibrant (Corollary 5.6.6), the factorization of
f from Lemma 4.7.6 is as desired. �

We need another straightforward, though tedious, lemma.

Lemma 7.8.2. Suppose A is a simplicial ring and i : trnA → trn P is a symmetric
morphism of n-truncated simplicial rings. To lift i to a symmetric morphism of (n + 1)-
truncated simplicial rings, it suffices to give an An+1-module En+1 (which will be a non-
degenerate complement for the lifted morphism) and A(∂in+1)-linear maps

din+1 : En+1 → Pn

for i ∈ [n+ 1], so that we have an equality

dind
j
n+1 = dj−1

n din+1 : En+1 → Pn−1(7.8.1)

of A(∂jn+1∂
i
n) = A(∂in+1∂

j−1
n )-linear maps for 0 ≤ i < j ≤ n+ 1.

Remark 7.8.3. The data of A(∂in+1)-linear maps din+1 : En+1 → Pn satisfying (7.8.1) is
the same as the datum of an An+1-module map En+1 → Mn+1(P ), where the (n + 1)st-
matching object Mn+1(P ) (§3.6) is regarded as an An+1-module via the scalar multiplica-
tion

a · (p0, . . . , pn+1) := ((∂0
n+1a)p0, . . . , (∂

n+1
n+1a)pn+1)

(there is an in suppressed in the notation).

Proof. Choose a basis (M0, . . . ,Mn) for i, so that the Mm form a (split) n-truncated
degenerate module trnM over the n-truncated degenerate simplicial ring underlying A.
Set

Dn+1 := lim
−→
{Mm ⊗Am An+1 : (σ : [n+ 1]→ [m]) ∈ Tn+1}

and let σ : Mm → Dn+1 denote the A(σ)-linear structure map to the direct limit. Set
Mn+1 := Dn+1 ⊕ En+1, Pn+1 := Sym∗An+1

Mn+1. For a Tn+1-morphism σ : [n+ 1]→ [m],

set M(σ) : Mm → Mn+1 equal to σ followed by the inclusion Dn+1 ↪→ Mn+1. By the
universal property of the direct limit, the maps M(σ) are compatible with the structure
maps for the n-truncated degenerate module trnM , so we have constructed a (split) (n+1)-
truncated module M lifting trnM , where, as the notation suggests, Dn+1 ⊆ Mn+1 is the
(n+1)st degenerate submodule. In particular, applying the symmetric algebra functor, we
obtain degeneracy maps for our lifted P compatible with the degeneracy maps for trn P
and those for A. In particular, our new degeneracy maps satisfy the simplicial relations

sins
j
n−1 = sj+1

n sin−1 (i ≤ j)
expressing their compatibility with the degeneracy maps for trn P .

We now need to define boundary maps for our lifted P compatible with our degeneracies,
with the boundary maps for trn P , and with the boundary maps for A. For a ∆-morphism
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τ : [k] → [n + 1], to say that P (τ) : Pn+1 → Pk is compatible with A(τ) is to say it is
obtained (using the symmetric algebra adjointness) from an A(τ)-linear map

P (τ) : Mn+1 → Pk.(7.8.2)

Since we want (7.8.2) to be compatible with our degeneracy maps P (σ), there is no
choice about how to define the restriction P (τ)D of (7.8.2) to Dn+1: We have to have
P (τ)M(σ) = P (στ) : Mm → Pk. Thinking of M(σ) as the structure map σ : Mm → Dn+1,
it is straightforward (and rather tautological) to check that the universal property of the
direct limit does indeed yield a unique map P (τ)D : Dn+1 → Pk with P (τ)DM(σ) = P (στ)
for all σ ∈ Tn+1. Now, no matter how we define (7.8.2) on the non-degenerate complement
En+1, it is clear from our construction of P (τ)D that our maps P (τ) will be compatible
with the degeneracies for P—that is, the simplicial relations

din+1s
j
n =


sj−1
n−1d

i
n, i < j

Idn, 0 < j ≤ i ≤ j + 1

sjn−1d
i−1
n , j + 1 < i

will hold. So, it remains only to define the boundary maps din+1 = P (∂in+1) : En+1 → Pn
in such a way that they are compatible with the the boundary maps for trn P . Taking a
look at the simplicial relations in Lemma 3.2.2, we see that it is enough to arrange the
equalities in the statement of the lemma. �

To construct our factorizations of simplicial rings, we will make heavy use of the match-
ing objects

Mk
n(A) := lim

←−
{Am : (σ : [m]→ [n]) ∈ Mk

n}

discussed in §3.6. Recall (§3.6) that Mk
n is the category of injective ∆-morphisms σ : [m]→

[n] with m ≤ k whose morphisms are the obvious commutative triangles of injective ∆-
morphisms. We have “restriction” ring maps

An = Mn
n(A)→ Mn−1

n (A)→ · · · → M1
n(A)→ M0

n(X) = A
[n]
0 .(7.8.3)

We regard each Mk
n(A) as an An-module via these restriction maps. If An is noetherian,

then each Mk
n(A) is a finitely generated An-module because Mk

n(A) is a submodule of the
(finite!) product ∏

{Am : (σ : [m]→ [n]) ∈ Mk
n}

(regarding Am in the factor indexed by σ as an An-module via A(σ)), each of whose factors
is a finitely generated An-module (each of these A(σ) is surjective because each σ is an
injective ∆-morphism). In particular, when An is noetherian, the ring homomorphisms
(7.8.3) are all finite type (since they are module finite), so, in particular, each Mk

n(A) is
noetherian.

If f : A → B is, degree-wise, a finite type map of noetherian rings, then every in-
duced map Mk

n(A) → Mk
n(B) is a finite type map of noetherian rings because it sits in a

commutative diagram

An //

��

Bn

��
Mk
n(A) // Mk

n(B)
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where the three other arrows are finite type.

Lemma 7.8.4. Any map of simplicial rings f : A → B can be factored functorially as
f = ip where i : A→ P is a cofibration and p : P → B is surjective.

Finite version: If f is a degree-wise finite type map of noetherian rings and we fix N ∈ N
is finite, then we can can find a factorization f = ip (though not functorially) where i is
a finite type cofibration and pk is surjective for k ≤ N .

Proof. �

Lemma 7.8.5. Fix n ∈ N ∪ {∞}. Suppose f : A→ B is a map of simplicial rings which
is surjective in degrees < n. Then we can factor f as i : A → P followed by p : P → B
where:

(1) i is a free morphism.
(2) Hk(p) is an isomorphism for all k < n− 1.

Theorem 7.8.6. Any morphism f : A→ B of simplicial rings can be factored as f = ip
where i : A→ P is a free morphism and p : P → B is a trivial fibration.

Finite Version: Fix some N ∈ $ and suppose that each f is (degree-wise) a finite type
map of noetherian rings. Then we can factor f as f = ip such that:

(1) i is a finite type free map
(2) pk : Pk → Bk is surjective for k ≤ N
(3) Hk(p) is an isomorphism for k ≤ n. (“p is n-connected”).

Proof. We will refer to the situation where each fn is a finite type morphism of noetherian
rings as the “noetherian situation.” For clarity, if A[X] is the free A-algebra on a set X,
we will write [x] ∈ A[X] for the element corresponding to x ∈ X.

We get started by choosing a subset X0 ⊆ B0 generating B0 as an A0 algebra. In the
noetherian situation, we choose X0 finite. We set P0 := A0[X0], let i0 : A0 → P0 be the
natural map, and let p0 : P0 → B0 be the unique A0 algebra map with p0[x] = x for all
x ∈ X0, so f0 = p0i0.

Now we proceed inductively. We assume that we have constructed an n-truncated
simplicial ring trn P ∈ snAn, a free map trn i : trnA → trn P (of finite type in the
noetherian situation) with basis (X0, X1, . . . , Xn), and a map trn p : trn P → trnB such
that:

(1) trn f = (trn p)(trn i)
(2) The map pk : Pk → Bk is surjective for k ≤ n.
(3) The map pk : Mk(P )→ Mk(B) is surjective for k ≤ n.
(4) The map pk : Hk(P )→ Hk(B) is an isomorphism for k < n.
(5) The map pk : Zn(P )→ Hn(B) is surjective.

We will prove that it is possible to extend all of this to find the same data satisfying the
same conditions with n replaced everywhere by n+ 1. The desired factorization will then
be the union, over all n, of these finite approximations (and the abusive notation trn P ,
trn i, trn p will be justified). The conditions above will ensure that p is a trivial fibration:
By definition, this can be checked on the underlying simplicial abelian groups, so we can
use Corollary 5.6.5.
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To construct the desired lift, we make several choices:

(1) Choose a subset W ⊆ Bn+1 generating Bn+1 as an An+1 algebra, taking W finite
in the noetherian situation.

(2) For each w ∈ W ⊆ Bn+1, (d0
n+1w, . . . , d

n+1
n+1w) ∈ Mn(B), so, since pn : Mn(P ) →

Mn(B) is surjective, we can choose (w0, . . . , wn+1) ∈ Mn(P ) so that

(pnw0, . . . , pnwn+1) = (d0
n+1w, . . . , d

n+1
n+1w).

(3) Choose some subset S ⊆ Mn+1(B) generating Mn+1(B) as a Bn+1-module (c.f.
Remark 7.8.3 for the module structure). Each map din+1 : Bn+1 → Bn is surjective

and Mn+1(B) is a Bn+1-submodule of B
[n+1]
n (regarding the latter as a Bn+1-

module by using din+1 to define scalar multiplication on the ith factor), so we can
and do take S finite in the noetherian situation.

(4) For each s = (s0, . . . , sn+2) ∈ S ⊆ Mn+1(B) and each pair (i, j) with 0 ≤ i < j ≤
n+ 2 choose some sij ∈ Pn with

pn(sij) = din+1sj

(= dj−1
n+1si).

Such a choice is possible because pn : Pn → Bn is surjective.
(5) Choose a subset

K ⊆ Ker(Hn(p) : Zn(P )→ Hn(B))

generating the kernel of this surjection as a Pn module, taking K finite in the
noetherian situation.

(6) For each x ∈ K ⊆ Pn, pn(x) is zero in Hn(B), so we can choose some zx ∈ Nn+1(B)
with d0

n+1zx = pn(x).
(7) Choose a subset Y ⊆ Zn+1(B) ⊆ Bn+1 whose image in Hn+1(B) generates the

latter as a Bn+1 module. We can and do take Y finite in the noetherian situation.

For clarity, we now partially repeat the proof of Lemma 7.8.2. Let Dn+1 be the direct
limit of the sets Xm over the latching category Ln+1 (§3.6) of all surjective non-identity
∆-morphisms σ : [n + 1] → [m]. (Note that Dn+1 is finite when all these Xm are finite
because Ln+1 is a finite category.) For such a σ, let σ : Xm → Dn+1 denote the structure
map to the direct limit.

Let T be the set of all formal symbols si for s = (s0, . . . , sn+2) ∈ S and i ∈ [n+ 2]. (We
say “formal symbols” to emphasize that si and s′j are thought of as distinct elements of T

whenever s 6= s′ or i 6= j, even though the elements si, s
′
j ∈ Bn+1 may very well coincide.)

Note that T is finite when S is finite. Set

En+1 := W
∐

T
∐

K
∐

Y

Xn+1 := Dn+1

∐
En+1.

We will often write σ : Xm → Xn+1 as abuse of notation for the composition of σ : Xm →
Dn+1 and the inclusion Dn+1 ⊆ Xn+1. Let Pn+1 := An+1[Xn+1] and let in+1 : An+1 →
Pn+1 be the natural map.
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For a (σ : [n + 1] → [m]) ∈ Ln+1, we define the degeneracy map P (σ) : Pm → Pn+1 to
be the unique ring homomorphism making

Pm
P (σ) // Pn+1

Am

im

OO

A(σ) // An+1

in+1

OO

commute and taking Xm ⊆ Pm into Xn+1 ⊆ Pn+1 via σ. These degeneracy maps are
compatible with the “old” degeneracy maps for the n-truncated simplicial ring trn P and,
as the notation suggests, Dn+1, En+1 ⊆ Xn+1 are the non-degenerate and degenerate basis
elements, respectively, in the sense of Definition 7.6.7.

For i ∈ [n + 1], the boundary map din+1 = P (∂in+1) : Pn+1 → Pn is defined as follows:
First of all, we need

Pn+1

din+1 // Pn

An+1

in+1

OO

din+1 // An

in

OO(7.8.4)

to commute. The universal property of the free An+1-algebra Pn+1 = An+1[Xn+1] says
that to give an An+1-algebra map din+1 making (7.8.4) commute is the same thing as
giving a map of sets

din+1 : Xn+1 → Pn.(7.8.5)

By (the proof of) Lemma 7.8.2, there is only one way to define the boundary maps (7.8.5)
on Dn+1 compatibly with the degeneracy maps P (σ) defined in the previous paragraph (we
must have din+1σ = P (σ∂in+1)) and to define the maps (7.8.5) lifting trn i : trnA→ trn P
to a free morphism of (n + 1)-truncated simplicial rings trn+1 i : trn+1A → trn+1 P it
suffices to define maps of sets

din+1 : En+1 → Pn(7.8.6)

(which, as the notation suggests, will be the restrictions of the maps (7.8.5) to En+1)
satisfying

dind
j
n+1 = dj−1

n din+1 : En+1 → Pn−1, 0 ≤ i < j ≤ n+ 1.(7.8.7)

We define (7.8.6) on the subsets W , K, and Y by setting

din+1(w) := wi, w ∈W(7.8.8)

d0
n+1(x) := x, x ∈ K
din+1(x) := 0, x ∈ K, i > 0

din+1(y) := 0, y ∈ Y.

We define (7.8.6) on T by setting

din+1(sj) := sij(7.8.9)

for each s = (s0, . . . , sn+2) ∈ S and each pair (i, j) with 0 ≤ i < j ≤ n+ 2. It is important
to notice that this makes sense—i.e. that this definition actually defines din+1sj exactly
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once for each s ∈ S and each (i, j) ∈ [n+ 1]× [n+ 2] (because either 0 ≤ i < j ≤ n+ 2 or
0 ≤ j < i+ 1 ≤ n+ 2).

As in the proof of Lemma 7.8.2, it is clear that our boundary maps din+1, thus defined,
are compatible with the degeneracies for P . It remains only to check that they are com-

patible with the boundary maps djn for trn P . According to Lemma 7.8.2, we need to check
that

dind
j
n+1 = dj−1

n din+1 : En+1 → Pn−1

for all 0 ≤ i < j ≤ n + 1. This completes the construction of the lift trn+1 i : trn+1A →
trn+1 P .

To define pn+1 : Pn+1 → Bn+1, with fn+1 = pn+1in+1 making trn+1 p : trn+1 P →
trn+1 P an sn+1An morphism extending trn p satisfying

trn+1 f = (trn+1 p)(trn+1 i),

we need only define a function pn+1 : En+1 → Bn+1 so that the diagram

Pn+1

din+1 //

pn+1

��

Pn

pn

��
Bn+1

din+1 // Bn

(7.8.10)

commutes (Lemma 7.9.2). I claim that we can arrange this by setting

pn+1(w) := w, w ∈W
pn+1(x) := zx, x ∈ K
pn+1(y) := y, y ∈ Y.

Indeed, commutativity of (7.8.10) on W ⊆ Pn+1 is equivalent to the equality

din+1(w) = pn(wi)

which we arranged by our choice of wi (and our definition din+1(w) := wi in (7.8.8)),
commutativity on x ∈ K ⊆ Pn+1 holds when i > 0 since both ways around the diagram
yield 0 and when i = 0, this commutativity is equivalent to the equality

d0
n+1(zx) = pn(x)

we arranged by our choice of zx; commutativity on Y ⊆ Pn+1 holds since both ways around
the diagram yield 0.

Now we argue that our extension to n + 1 has all the desired properties. The map
pn+1 : Pn+1 → Bn+1 is surjective by our choice of W , since pn+1 is a map of An+1-
algebras and each w ∈W ⊆ Pn+1 is in the image of pn+1. To see that the stage n+ 1 map
Hn(P )→ Hn(B) is an isomorphism, first note that it was surjective at stage n and Zn(P )
is the same both at stage n and at stage n + 1. Next note that our definition of din+1 in
(7.8.8) for x ∈ K ⊆ Xn+1 ⊆ Pn+1 ensures that K is in fact contained in Nn+1(P ) ⊆ Pn+1,
and our definition of d0

n+1(x) for x ∈ K ensures that Nn+1(P )→ Zn(P ) surjects onto the
kernel of the surjection Zn(P ) → Hn(B). To see that Zn+1(P ) → Hn+1(B) is surjective,
note that our definition din+1(y) := 0 in (7.8.8) ensures that Y ⊆ Pn+1 is in fact contained
in Zn+1(P ) and our choice of Y ⊆ Zn+1(B) and definition pn+1(y) := y then ensure the
desired surjectivity.
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For the final statement of the theorem, first factor f = jq as in Lemma 7.8.1, then factor
j = ip as in the first part of the theorem. The free morphism i is also a weak equivalence
by 2-out-of-3 because j and p are weak equivalences. The resulting factorization f = i(pq)
is hence as desired because pq, being a composition of fibrations, is also a fibration. �

Remark 7.8.7. (Functoriality) The factorization described in the proof of Lemma 7.8.1
is clearly functorial in f . The factorizations described in the proof of Theorem 7.8.6 can
be made functorial at the cost of the finiteness statement by eliminating the choices made
in the above proof, as follows. We get started by taking X0 = B0, P0 = A0[B0], so that
our map p0 : P0 → B0 comes with a natural set-theoretic section s0 : B0 → P0 given
by s0(b) := [b]. We then proceed inductively as in the proof above, assuming that each
pk : Pk → Bk also comes with a set-theoretic section sk : Bk → Pk. Instead of making the
choices we made in that proof, we proceed as follows:

(1) We set W := Bn+1.
(2) For each w ∈ W and each i ∈ [n + 1], we set wi := snd

i
n+1(w) ∈ Pn so that

pn(wi) = pnsnd
i
n+1(w) = din+1(w) because sn is a section of pn.

(3) Define K as the fibered product

K
π2 //

π1
��

Zn(P )

��
Zn+1(B)

d0n+1 // Hn(B)

and set zx := π1(x) ∈ Zn+1(B) for x ∈ K. The image of the map π2 is clearly the
kernel of Zn(P )→ Hn(B).

(4) Set Y := Zn+1(B) ⊆ Bn+1.

It is clear that the sets W,K,Z and the definitions of wi and zx above are functorial in the
map of simplicial rings A→ B. We then define Pn+1, in+1, and the maps pn+1 exactly as
in the above proof. The map pn+1 comes with a tautological section sn+1 : Bn+1 → Pn+1

given by sn+1(b) = [b] because of our choice of W = Bn+1. We also define the boundary
maps din+1 : Pn+1 → Pn as in the above proof, except we set

din+1[x] :=

{
π2(x), i = 0

0, i > 0.

All of these constructions are also functorial in A→ B.

In light of this remark, we have proved:

Corollary 7.8.8. Morphisms of simplicial rings admit two functorial factorizations:

(1) f = ip, where i is free (hence a cofibration by Theorem 7.6.13) and p is a trivial
fibration, and

(2) f = ip, where i is a trivial free morphism (hence a trivial cofibration) and p is a
fibration.

Remark 7.8.9. If one isn’t interested in the finiteness statement of Theorem 7.8.6, then
the first factorization of Theorem 7.8.6 can also be obtained formally by using the fact
that the free algebra functor is left adjoint to the forgetful functor from rings to sets. This
is what Illusie does in [Ill].
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We can use Theorem 7.8.6 to say something about the structure of cofibrations of
simplicial rings:

Corollary 7.8.10. Suppose i : A→ P is a cofibration of simplicial rings. Then the ring
map i0 : A0 → P0 has the LLP with respect to all surjective ring maps.

Proof. Suppose f : B → C is a surjective ring map and

A0
//

i0
��

B

f
��

P0

>>

// C

is a commutative diagram of ring maps. Regarding f as a map of constant simplicial rings
and using the fact that A 7→ A0 is left adjoint to the “constant simplicial ring” functor,
we obtain a commutative diagram

A //

i
��

B

f
��

P

??

// C

of simplicial rings. By Theorem 7.8.6 we can factor the map f of constant simplicial rings
as B → Q→ C where B → Q is a cofibration and Q→ C is a trivial fibration. It is clear
from the proof of that theorem that, since f is surjective, we can arrange that B → Q is
an isomorphism in degree zero. Since i is a cofibration, we can lift in the square

A //

i
��

Q

��
P

??

// C

of simplicial rings because Q → C is a trivial fibration; the degree zero part of this lift
then provides a lift in our original ring diagram. �

7.9. Proof of Theorem 7.5.2. Recall from §7.5 that the only model category axioms
(§1) for sAn not immediate from the definitions (Definition 7.5.1) are: The factorization
axiom and the lifting axiom. We established the factorization axiom in Corollary 7.8.8,
and “half” of the lifting axiom is immediate from the definition of “cofibration.” It remains
only to show that trivial cofibrations have the LLP with respect to fibrations, which we will
do in Lemma 7.9.4 after we prove the final statement of Theorem 7.5.2 as Lemma 7.9.3.

Lemma 7.9.1. Every trivial free morphism of simplicial rings admits a deformation re-
tract.

Proof. We recycle the idea used to prove Lemma 7.8.1. Suppose i : A→ P is a trivial free
morphism. Let P I be the path space for P , iP : P → P I the constant path, e0, e1 : P I ⇒ P
the evaluations. Since all simplicial rings are fibrant (by our definition of fibration and
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Corollary 5.6.6), Lemma 4.7.6 says that we have a solid commutative square

A
(Id,iP i) //

i

��

A×e0P P I

e1π2

��
P

(r,h)

::

P

where (Id, iP i) is a homotopy equivalence (hence a weak equivalence) and e1π2 is a fibra-
tion. Since i is a trivial free morphism, e1π2 is in fact a trivial fibration by 2-out-of-3,
hence we can find the lift (r, h) as indicated by Theorem 7.6.13. Unravelling the com-
mutativity of this diagram with Proposition ??, we see that r : P → A retracts i and
h : P → P I can be viewed as a homotopy rel A from ir to the identity of P . �

Lemma 7.9.2. Trivial free morphisms of simplicial rings have the LLP with respect to
fibrations.

Proof. This follows formally from the previous lemma using [Q1, II.3.4]. I will spell out
the details here because I found Quillen’s proof a little confusing. Consider a diagram

A
j //

i

��

B

p

��
P

l

??

k // C

where i : A → P is a trivial free morphism and p is a fibration; we must find a lift l as
indicated. By the previous lemma, i has a deformation retract r : P → A. Let h : P → P I

be the homotopy witnessing this, so we have a commutative diagram

A
iA //

i
��

AI

iI
��

P
h // P I

with e0h = ir, e1h = IdP expressing the homotopy rel A from ir to IdP . The square

P
kIh //

jr
��

CI

e0
��

B
p // C

commutes by the computation

e0k
Ih = ke0h = kir = pjr,

so we have an induced map

(jr, kIh) : P → B ×e0C CI .
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The solid square

A
iBj //

i

��

BI

(e0,pI)

��
P

(jr,kIh) //

H

99

B ×e0C CI

commutes by the computations
e0iBj = j = jri

and
pIiBj = pIjIiA = kIiIiA = kIhi.

We claim that the map (e0, p
I) is a trivial fibration. Assuming the claim, we have the lift

H as indicated by Theorem 7.6.13. We obtain the desired lift l in the original diagram by
setting l := e1H.

The claim follows from general facts about fibrations in the category of simplicial sets
(either [Hov, 3.3.1], or the discussion in [Q1, II.2.3-4]), or slightly more directly by using
the characterizations of fibrations and trivial fibrations in §?? as follows: To prove that
(e0, p

I) is a trivial fibration it suffices (by Proposition 4.4.6) to prove that there is a lift
as indicated in any solid diagram

K //

t

��

BI

(e0,pI)
��

L //

;;

B ×e0C CI

where t is an injective map of simplicial sets. But one translates this into finding a lift in

(K ×∆[1]) ∪ (L× {0}) //

��

B

p

��
L×∆[1] // C

(see the proof of Lemma 4.7.5 for a similar “translation”) which can be done because p is
a fibration (c.f. Proposition 5.6.3(3)). �

Lemma 7.9.3. A map of simplicial rings is a cofibration (resp. trivial cofibration) iff it
is a retract of a free morphism (resp. trivial free morphism).

Proof. We saw in Theorem 7.6.13 that free morphisms are cofibrations. Any retract of
a cofibration (resp. trivial cofibration) is a cofibration (resp. trivial cofibration) because
this follows formally from our definition of cofibration (Definition 7.5.1), as we already
mentioned in §7.5. This proves (⇐=). For (=⇒), suppose j : A→ B is a cofibration (resp.
trivial cofibration). Factor j = ip where i : A → P is a free morphism and p is a trivial
fibration (Theorem 7.8.6). If j is trivial, then so is i by 2-out-of-3. Since j is a cofibration
and p is a trivial fibration, the diagram

A
i //

j
��

P

p

��
B

s
>>

B
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admits a completion as indicated, hence the diagram

A

j
��

A

i
��

A

j
��

B
s // P

p // B

displays j as a retract of i. �

Lemma 7.9.4. Trivial cofibrations of simplicial rings have the LLP with respect to fibra-
tions.

Proof. We showed in Lemma 7.9.2 that trivial free morphisms have the LLP with respect
to fibrations and we showed in Lemma 7.9.3 that every trivial cofibration is a retract of a
trivial free morphism, so this follows from formal diagram arguments (Lemma 1.5.2). �

7.10. Properness. In this section we will prove, among other related things, that our
model structure on simplicial rings is both left and right proper, in the sense of Defini-
tion 1.4.1. We require some preliminary lemmas:

Lemma 7.10.1. A retract of a flat ring homomorphism is again flat.

Proof. Consider a commutative diagram of ring homomorphisms

A
i //

f
��

A′
p //

g
��

A

f
��

B
j // B′

q // B

where g is flat and pi = Id, qj = Id. We must show that f is flat. It suffices to show that
for any injective map k : M → N of A modules, k⊗A B is also injective. Regard M,N as
A′ modules and k as a morphism (still injective of course!) of A modules by restriction of
scalars along p. Then we have a commutative diagram

M ⊗A B
Id⊗j //

k⊗AB
��

M ⊗A′ B′

k⊗A′B′
��

Id⊗q // M ⊗A B

k⊗AB
��

N ⊗A B
Id⊗j // N ⊗A′ B′

Id⊗q // N ⊗A B

(of abelian groups, say) where the compositions of the rows are identities (i.e. it is a retract
diagram—since qj = Id), hence k ⊗A B is injective because k ⊗A′ B′ is injective as g is
flat. Note that we use pi = Id to check that Id⊗j is well-defined (A bilinear) as follows:
the point is that, for a ∈ A and m ∈ M , the element a · m of M (now viewed as an
A′ module via p) coincides with the element i(a) ·M , because the latter is defined to be
p(i(a)) ·M = a ·M—one then computes

(Id⊗j)((a ·m)⊗ b) = (a ·m)⊗ j(b)
= (i(a) ·m)⊗ j(b)
= m⊗ ((gi)(a)j(b))

= m⊗ ((jf)(a)j(b))

= m⊗ j(f(a)b)

= (Id⊗j)(m⊗ (f(a)b)).
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�

Lemma 7.10.2. A cofibration i : A→ P of simplicial rings is degree-wise flat.

Proof. A free morphism of simplicial rings is clearly degree-wise flat and any cofibration is
a retract of a free morphism (Lemma 7.9.3), and is hence degree-wise flat by Lemma 7.10.1.

�

Theorem 7.10.3. The model category of simplicial rings (§7.5) is both left and right
proper in the sense of Definition 1.4.1.

Proof. Right properness follows formally from right properness of the model category
sSets (Proposition ??) in light of the fact that the forgetful functor sAn → sSets pre-
serves inverse limits (in particular pullbacks), takes fibrations to fibrations (by definition
of a fibration in sAn), and is faithful in the sense that a map of simplicial rings is a weak
equivalence iff the underlying map of simplicial sets is a weak equivalence.

For left properness, suppose f : A → B is a weak equivalence and i : A → P is a
cofibration. We want to show that P → B ⊗A P is a weak equivalence. But i is degree-
wise flat by Lemma 7.10.2, so this follows from Lemma 7.3.2. �

There are several variants of the properness conditions satisfied by the model category
of simplicial rings:

Theorem 7.10.4. If fi : A → Bi (i = 1, 2) are cofibrations of simplicial rings, A → C
is an arbitrary map of simplicial rings, and g : B1 → B2 is a cofibration (resp. weak
equivalence) of simplicial rings with gf1 = f2, then

g ⊗A C : B1 ⊗A C → B2 ⊗A C
is a cofibration (resp. weak equivalence) of simplicial rings.

Proof. First of all, a pushout of a cofibration in any model category is again a cofibration
[Hov, 1.1.11]—for simplicial rings one can see this explicitly using the characterization of
cofibrations in Lemma 7.9.3 by first noting that a pushout of a free morphism is clearly
free, then note that pushouts (like any functor) take retracts to retracts. Evidently then,
the only issue is the statement about weak equivalences, which follows from Lemma 7.10.2
and Lemma 7.3.2(1). �

Corollary 7.10.5. If f : A → B is a (trivial) cofibration of simplicial rings and A → C
is an arbitrary morphism of simplicial rings, then f ⊗A C : C → B ⊗A C is a (trivial)
cofibration of simplicial rings.

Proof. Apply the previous theorem with B1 = A, g = f . �

7.11. Derived tensor product. Corollary 7.10.5 says that for any morphism A→ C of
simplicial rings, the pushout (tensor product) functor

⊗A C : A/sAn → C/sAn(7.11.1)

is a left Quillen functor (§1.7), so we can form its left derived functor

⊗L
A C : Ho(A/sAn) → Ho(C/sAn),

the left derived tensor product of simplicial rings.
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7.12. Model structure on modules. In this section, we describe the model category
structure on the category Mod(A) of modules over a simplicial ring A (§7.2), fixed
throughout. The general ideas and proofs are similar, though easier, to what we did with
simplicial rings, so for the proofs we will generally just refer back to the corresponding
proofs for simplicial rings, letting the reader make the necessary modifications.

Definition 7.12.1. Let f : M → N be a morphism of A-modules. We say that f is a
weak equivalence (or quasi-isomorphism) iff H∗(f) : H∗(A) → H∗(B) is an isomorphism.
We say that f is a fibration iff it satisfies the following equivalent conditions:

(1) The underlying map of simplicial sets is a fibration.
(2) The map A→ B ×H0(B) H0(A) is surjective.

(Proposition 5.6.3). We say that f is a cofibration iff it has the LLP with respect to all
trivial fibrations.

The following facts are easy to see directly from the definitions:

(1) Weak equivalences satisfy 2-out-of-3.
(2) Fibrations and cofibrations form subcategories closed under retracts.

Definition 7.12.2. A morphism i : M → P is called semi-split iff there areAn-submodules
Bn ⊆ Pn (called a basis) for each n ∈ N satisfying the following properties:

(1) For each n ∈ N, the map in : Mn → Pn is injective and we have a direct sum
decomposition of An-modules Pn = Mn ⊕Bn.

(2) For each surjective ∆-morphism σ : [n]→ [m], the corresponding degeneracy map
P (σ) : Pm → Pn takes Bm ⊆ Pm into Bn ⊆ Pn. (Recall that this degeneracy map
is injective, as it has a retract.)

Such a morphism i is called split iff, for each n ∈ N, the induced An-module homomorphism

lim
−→
{Bm ⊗Am An : (σ : [n]→ [m]) ∈ Tn} → Bn(7.12.1)

is injective (call its image Dn ⊆ Mn the degenerate submodule of Mn) and there is an
An-submodule En ⊆ Bn (called a non-degenerate complement) inducing a direct sum
decomposition Bn = Dn ⊕En. If, furthermore, Bn and En can be taken projective (resp.
free), then i is called projective (resp. free).

Theorem 7.12.3. The category Mod(A) forms a model category (§1) with the weak
equivalences, fibrations, and cofibrations as in Definition 7.12.1. A map of A-modules is
a cofibration iff it is a retract of a free morphism (Definition 7.12.2).

This theorem is proved in the same manner as Theorem 7.5.2. One begins by proving
that every projective morphism of A-modules (in particular every free morphism of A-
modules) is a cofibration (adapt the proof of Theorem 7.6.13). Then one makes use of the
following factorization results:

Theorem 7.12.4. Any morphism f : M → N of A-modules can be factored (functorially)
as f = ip where i : M → P is a free morphism and p : P → N is a trivial fibration. If,
for all n ∈ N, An is noetherian and Mn and Nn are finitely generated, then we can find
such a factorization where all the Pn are also finitely generated. (Though the functorial
factorization won’t have this finiteness property.) We can also factor f (functorially) as
f = ip where i is a trivial free morphism and p is a fibration.
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Proof. Adapt Theorem 7.8.6. �

7.13. Cotangent complex.

Proposition 7.13.1. The functor Ω : sMap An→ sAnMod is a left Quillen adjunction
for the weak model structures above.
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8. Differential graded rings

In §8.1 we will recall some basic definitions and facts concerning differential graded
rings (DGAs) and modules over them (c.f. [C1]). We will then explain how to equip the
total chain complex C(A) of any simplicial ring A with a (strictly) graded-commutative
multiplication using the shuffle product (§8.3), so that the usual differential on C(A) makes
C(A) into a DGA. We will see that the normalized chain complex N(A) ⊆ C(A) is a sub
DGA (quasi-isomorphic to C(A)). For an A-module M , we will see how to view C(M) as
a module over the DGA C(A), and N(M) as a module over N(A) (§8.4). In particular, we
will see that the homology H∗(A) of a simplicial ring A (§7.3) carries the structure of a
strictly graded-commutative ring and the homology of an A-module carries the structure
of a module over H∗(A).

We will also see that the DGA N(A) associated to a simplicial ring A is endowed with
a system of divided powers compatible with the differential (§8.5). We will also see that
this structure descends to the homology ring. It is unclear to me to what extent these
are “folk theorems.” Most of the statements proved here are alluded to, but not proved,
in [Ill, p. 59]. The results presented here on divided powers are due essentially to Birgit
Richter [Ric].

The results of this section can be summarized as follows.

Theorem 8.0.1. The normalized chain complex defines a functor

N : sAn → PDDGA

from the category sAn of simplicial rings to the category PDDGA of strictly graded-
commutative differential graded rings equipped with divided powers passing to homology.

8.1. Definitions. A graded-commutative ring is a graded ring A = ⊕∞n=0An whose mul-
tiplication satisfies

ab = (−1)mnba(8.1.1)

for homogeneous elements a ∈ Am, b ∈ An. We will write (−1)a as abusive notation for
(−1)m when a ∈ Am. In this notation, we would write (8.1.1) simply as ab = (−1)abba. A
strictly graded-commutative ring is a graded-commutative ring with the additional prop-
erty that a2 = 0 for every homogeneous element a of odd degree. Note that graded-
commutativity implies that 2a2 = 0 for such an a, so any graded commutative ring where
2 is a regular element is automatically strictly graded-commutative. Graded-commutative
rings form a category GrAn whose morphisms A → B are ring homomorphisms taking
An into Bn for every n ∈ N.

Any ring can be viewed as a graded-commutative ring supported in degree zero. The
exterior algebra ∧•AM on a module M over a ring A is a graded-commutative A algebra.

For a graded-commutative ring A, an A module is a graded abelian group M = ⊕∞n=0Mn

equipped with an A module structure which respects the grading in the sense that scalar
multiplication A×M →M takes Am ×Mn into Mm+n. Modules over A form an abelian
category Mod(A) whose morphisms are maps which are both A module maps in the usual
sense and maps of graded abelian groups. If f : A → B is a GrAn morphism, then B
becomes an A module with scalar multiplication a · b := f(a)b. The tensor product M ⊗N
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of two A modules M,N is the A module obtained by quotienting the graded abelian group

∞⊕
n=0

( ⊕
p+q=n

Mp ⊗Z Nq

)
by the homogeneous (for the “outer” N grading) relations

(am)⊗ n− (−1)amm⊗ (an).(8.1.2)

A differential graded ring (for short: DGA) is a graded-commutative ring A equipped
with a differential d : A• → A•−1 satisfying d2 = 0 and the graded Leibnitz rule

d(ab) = (da)b+ (−1)aadb.(8.1.3)

When discussing multiple DGAs we will often write dA for the differential of a DGA
A. Differential graded rings form a category DGA where a morphism is a morphism of
graded-commutative rings commuting with the differentials. There is an obvious forgetful
functor DGA→ GrAn.

A module M over a DGA A is a module M over the underlying graded-commutative
ring which is equipped with a differential

dM : M• → M•−1

which interacts with the differential dA for A according to the graded Leibnitz rule

dM (a · b) = dAa · b+ (−1)aa · dM (b).(8.1.4)

If there is no chance of confusion we will simply write d instead of dM . If f : A → B
is a DGA morphism, then B becomes an A module with the usual scalar multiplication
a · b := f(a)b. The Leibnitz rule is obtained from the commutativity of dA, dB, and f as
follows:

dB(a · b) = dB(f(a)b)

= dB(f(a))b+ (−1)af(a)dB(b)

= f(dA(a))b+ (−1)aa · dB(b)

= dA(a) · b+ (−1)aa · dB(b).

For modules M,N over a DGA A, the tensor product M ⊗ N ∈ Mod(A) is con-
structed by equipping the tensor product of underlying modules over the underlying
graded-commutative ring with the differential

d : (M ⊗N)• 7→ (M ⊗N)•−1

d(m⊗ n) := dMm⊗ n+ (−1)mm⊗ dNn.

To see that this is well defined we must check that it kills the relations (8.1.2). To this
end we compute

d((am)⊗ n− (−1)amm⊗ (an))

= dM (am)⊗ n+ (−1)am(am)⊗ dNn− (−1)amdMm⊗ (an)− (−1)am+mm⊗ dN (an)

= (dA(a)m)⊗ n+ (−1)a(adMm)⊗ n+ (−1)am(am)⊗ dN (n)

−(−1)amdMm⊗ (an)− (−1)am+mm⊗ (dA(a)n)− (−1)am+a+am⊗ (adNn).
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We see that these six terms cancel in pairs by using the following three instances of the
relations (8.1.2):

(dA(a)m)⊗ n− (−1)(a−1)mm⊗ (dA(a)n)

(am)⊗ dNn− (−1)amm⊗ (adNn)

(adMm)⊗ n− (−1)a(m−1)dMm⊗ (an).

Similar (easier) calculations show that d2 = 0 and that this d satisfies the Leibnitz rule
(8.1.4). For a map of dgas f : A→ B, multiplication defines a B module homomorphism

B ⊗A B → B

b1 ⊗ b2 7→ b1b2.

For any DGA A and any A module M , the homology of M is defined, as a graded
abelian group, by

Hn(M) := Ker(d : Mn →Mn−1)/ Im(d : Mn+1 →Mn).

In particular case A = M , the homology groups Hn(A) can be assembled into a graded-
commutative ring

H(A) := ⊕∞n=0 Hn(A)

whose multiplication is given by [a][b] := [ab] (it is easy to check that this is well-defined,
associative, graded-commutative, and so forth). Similarly, the homology H(M) of an A
module M becomes an H(A) module using the scalar multiplication [a] · [m] := [a · m].
Formation of homology is clearly functorial in the A module M , so we have a functor

H : Mod(A) → Mod(H(A)).

We say that a map of A modules f : M → N is a quasi-isomorphism iff H(f) is an
isomorphism of H(A)-modules.

A morphism f : A→ B of dgas induces a GrAn morphism

H(f) : H(A) → H(B)

by setting H(f)[a] := [f(a)]. Thus we define a functor

H : DGA → GrAn.

We say that f is a quasi-isomorphism iff H(f) is an isomorphism.

8.2. Examples. ADD: free DGA on a chain complex

In this section we will give several examples of DGAs.

First of all, we can view any graded-commutative ring A as a DGA by giving it the zero
differential. This defines a functor

i : GrAn → DGA.

The functor i admits a right adjoint

Ker d : DGA → GrAn

taking a DGA A to the graded-commutative ring

Ker dA :=

∞⊕
n=0

Ker(d : An → An−1).
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The point is that there is an obvious inclusion map of DGAs iKer dA ↪→ A which is initial
among maps from a dga with zero differential to A.

In particular, we can view any ring as a DGA supported in degree zero. When A is a
ring, we use “differential graded A-algebra” as a synomnym for “differential graded ring
under i(A)”. If there is no chance of confusion, we will omit the i and simply write i(A) for
A. This results in a similar conflict of notation for modules as we saw in §7.2 for modules
over a constant simplicial ring. We have a natural isomorphism of categories

Mod(i(A)) = Ch≥0Mod(A).(8.2.1)

This isomorphism takes the tensor product of i(A) modules to the tensor product of
complexes of A modules.

For example, the de Rham complex

Γ(X,Ω•X) :=

∞⊕
n=0

Γ(X,Ωn
X)

of, say, a smooth manifold is a differential graded algebra under exterior differential and
wedge product of forms. Similarly, if A→ B is a ring map, then the de Rham complex

Ω•B/A :=
∞⊕
n=0

∧nΩB/A

is a differential graded A algebra.

The other main example is the Koszul complex [EGA III.1.1]. Suppose A is a ring and
f = (f1, . . . , fn) ∈ An. Then there is a unique differential d on the graded-commutative
ring

K•(f , A) :=

n⊕
i=0

∧i(An)

satisfying the graded Leibnitz rule and the formulas dei = fi ∈ A = ∧0A, where e1, . . . , en ∈
An are the standard basis vectors.

The other main example is the symmetric algebra Sym∗AM on a module M over a dga
A. The forgetful functor

A/DGA → Mod(A)

(f : A→ B) 7→ B

admits a left adjoint

Sym∗A : Mod(A) → A/DGA.

Here Sym∗AM is the quotient of the tensor algebra

T (M) := A⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕ · · ·

(this T (A) is a non-commutative DGA under A) by the two sided ideal generated by all
expressions

m1 ⊗m2 − (−1)|m1m2|m2 ⊗m1

where m1,m2 are homogeneous elements of M .
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In the case of the DGA i(A) associated to a ring A, we can use the isomorphism (8.2.1)
to view the symmetric algebra as a functor

Ch≥0Mod(A) → i(A)/DGA = { differential gradedA algebras }.
Running through the definitions, we see that, for a complex M ∈ Ch≥0Mod(A), we have

Sym∗i(A)M =

∞⊕
n=0

 ⊕
0p0+1p1+2p2+···=n

Symp0
A M0 ⊗ ∧p1AM1 ⊗ Symp2

A M2 ⊗ · · ·

 .

The inner direct sum and tensor product here are finite. The differential

d : (Sym∗i(A)M)• → (Sym∗i(A)M)•−1

is characterized by the commutativity of the diagrams

Mn
//

d

��

(Sym∗i(A)M)n

d

��
Mn−1

// (Sym∗i(A)M)n−1

where the horizontal arrows are the natural inclusions.

8.3. Shuffle product. Let A be a simplicial ring. In the rest of this section, we will
explain how to view C(A) := ⊕∞n=0An as a DGA, with the same differential

dn :=
n∑
i=0

(−1)idin : An → An−1(8.3.1)

used to view C(A) is a chain complex (§7.3) . We will also see that N(A) = ⊕∞n=0Nn(A) is
a sub-DGA. The inclusion N(A) ↪→ C(A) is then a quasi-isomorphism by Lemma 5.1.2. In
particular, the homology H∗(A) of A (§7.3) carries the structure of a graded-commutative
ring. The construction will be functorial in A, so we will obtain functors

C : sAn → DGA(8.3.2)

N : sAn → DGA.(8.3.3)

The dga C(A) associated to a simplicial ring enjoys various addition properties. It is
strictly graded commutative in the sense that a · a = 0 for every a ∈ Ai for every odd i.10

We will also see in the next section that C(A) has a natural divided power structure.

The multiplication maps for C(A) are given by

Am ⊗An → Am+n(8.3.4)

a⊗ b 7→ a · b
a · b :=

∑
(σ,τ)

sign(σ, τ)A(σ)(a)A(τ)(b),

where the sum runs over all (m,n)-shuffles (§5.7), and the juxtaposition on the right hand
side is the product in the ring Am+n. For now, we will write a · b to emphasize that we
are refering to the product for C(A), to avoid possible confusion (when m = n) with the

10Graded commutativity in the usual sense only implies 2a · a = 0, but of course there is no difference if 2
is a unit in one of the rings (equivalently all of the rings) An.
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product for the ring Am, which we will always denote simply by juxtaposition. Notice
that these multiplication maps are clearly natural in A.

If a, b ∈ A0, then the product a · b defined by (8.3.4) is just the usual product ab of a
and b in the ring A0. More generally, if a ∈ A0 and b ∈ An, then

a · b = A([n]→ [0])(a)b

is just the usual product of the degeneracy A([n] → [0])(a) ∈ An of a and b in the ring
An. That is, the A0 module structure on An defined using (8.3.4) coincides with the
usual A0 module structure defined by restriction of scalars along the degeneracy map
A([n]→ [0]) : A0 → An.

The multiplication (8.3.4) is graded-commutative because, for a ∈ Am, b ∈ An, we
compute

a · b =
∑
(σ,τ)

sign(σ, τ)A(σ)(a)A(τ)(b)

=
∑
(σ,τ)

(−1)mn sign(τ, σ)A(τ)(b)A(σ)(a)

= (−1)mn
∑
(τ,σ)

sign(τ, σ)A(τ)(b)A(σ)(a)

= (−1)mnb · a.
The first two sums are over (m,n)-shuffles and the third is over (n,m)-shuffles. We have
used the bijective correspondence (σ, τ) 7→ (τ, σ) between the former and the latter (§5.7)
and the commutativity of Am+n. In the case where m = n is odd and a = b, the same
observation shows that, in the sum defining a · a, the summand indexed by (σ, τ) cancels
with the one indexed by (τ, σ), thus we establish the strict graded commutativity.

To see that this multiplication is associative, fix a ∈ Am, b ∈ An, c ∈ Ap. We first
compute

(a · b) · c =
∑
ρ,θ

sign(ρ, θ)A(ρ)

(∑
σ,τ

sign(σ, τ)A(σ)(a)A(τ)(b)

)
A(θ)(c)(8.3.5)

=
∑
ρ,θ

∑
σ,τ

sign(ρ, θ) sign(σ, τ)A(ρσ)(a)A(ρτ)(b)A(θ)(c)

=
∑
α,β,γ

sign(α, β, γ)A(α)(a)A(β)(b)A(γ)(c).

Here, (ρ, θ) runs over (m+n, p)-shuffles, (σ, τ) runs over (m,n)-shuffles, and (α, β, γ) runs
over (m,n, p)-shuffles. We have used the first bijection

((ρ, θ), (σ, τ)) 7→ (ρσ, ρτ, θ)

and sign relationship in Lemma 5.7.1. Computing a · (b · c) using the second bijection and
sign relationship from Lemma 5.7.1 will yield the same result.

We will check that our multiplication and differential are compatible (satisfy the graded
Leibnitz Rule) in Lemma 8.3.2.

Lemma 8.3.1. If a ∈ Nm(A) ⊆ Am and b ∈ Nn(A) ⊆ An, then a · b ∈ Am+n is in
Nm+n(A).
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Proof. Fix an i ∈ {1, . . . ,m+n} and let δi := δim+n : [m+n− 1]→ [m+n] be the unique
injective ∆-morphism whose image does not contain i. Assume a ∈ Nm(A), b ∈ Nn(A).
We want to show that

dim+n(a · b) = A(δi)(a · b)

= A(δi)

(∑
σ,τ

sign(σ, τ)A(σ)(a)A(τ)(b)

)
=
∑
σ,τ

sign(σ, τ)A(σδi)(a)A(τδi)(b)

vanishes. Since σ is surjective and i > 0, we see that if σδi isn’t surjective, then its image

misses some j > 0, so we can write σδi = δjmσ′, where δjm : [m − 1] ↪→ [m] is the unique
injective ∆-morphism whose image misses j. We then see that

A(σδi)(a) = A(δjmσ
′)(a)

= A(σ′)(A(δjm)(a))

= A(σ′)(djma)

= 0

because a ∈ Nm(A). Similarly, if τδi fails to be surjective, then A(τδi)(b) vanishes.
Therefore, in the sum calculating dim+n(a · b) above, we need only sum over those (m,n)-

shuffles (σ, τ) where σδi and τδi are surjective. If i = m + n there are no such shuffles
(Lemma 5.7.2), so we’re done. Otherwise i ∈ {1, . . . ,m + n − 1}, and we see from the
first part of Lemma 5.7.2 that the summand indexed by (σ, τ) cancels with the summand
indexed by the shuffle (σ′, τ ′) obtained by swapping i and i+ 1 in the permutation

(σ1, . . . , σm, τ1, . . . , τn).

This is because

sign(σ, τ) = −σ(σ′, τ ′)

while σ′δi = σδi and τδi = τ ′δi. �

The above lemma shows that N(A) is a sub-DGA of C(A). (It is easy to see, as mentioned
in §5.1, that the differential for C(A) takes N(A) into N(A).)

Lemma 8.3.2. For a simplicial ring A, the multiplication (8.3.4) and differential (8.3.1)
satisfy the graded Leibnitz rule

dm+n(a · b) = dm(a) · b+ (−1)ma · dn(b)

for all m,n ∈ N, a ∈ Am, b ∈ Bn.

Proof. From the definitions, we compute

dm+n(a · b) =

m+n∑
i=0

∑
σ,τ

(−1)i sign(σ, τ)A(σδi)(a)A(τδi)(b),

where (σ, τ) runs over all (m,n)-shuffles and δi : [m + n − 1] ↪→ [m + n] is the unique
injective ∆-morphism whose image does not contain i. As in the previous proof, it follows
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from the first part of Lemma 5.7.2 that the summands indexed by those (σ, τ) for which
σδi and τδi are surjective cancel in pairs, so we can rewrite our sum as

m+n∑
i=0

∑
σ,τ

(−1)i sign(σ, τ)A(σδi)(a)A(τδi)(b)

+
m+n∑
i=0

∑
α,β

(−1)i sign(α, β)A(αδi)(a)A(βδi)(b),

where (σ, τ) runs over those (m,n)-shuffles for which σδi isn’t surjective and (α, β) runs
over those (m,n)-shuffles for which βδi isn’t surjective—these two sets are disjoint by
Lemma 5.7.2. Using the bijections and sign rules from Lemma 5.7.2 we can rewrite this
as

m∑
j=0

∑
σ′,τ ′

(−1)j sign(σ′, τ ′)A(δjmσ
′)(a)A(τ ′)(b)

+

n∑
j=0

∑
α′,β′

(−1)m+j sign(α′, β′)A(α′)(a)A(δjnβ
′)(b),

where (σ′, τ ′) runs over (m− 1, n)-shuffles and (α′, β′) runs over (m,n− 1)-shuffles. Reor-
ganizing these sums in the form

∑
σ′,τ ′

sign(σ′, τ ′)A(σ′)

 m∑
j=0

(−1)jA(δjm)(a)

A(τ ′)(b)

+ (−1)m
∑
α′,β′

sign(α′, β′)A(α′)(a)A(β′)

 n∑
j=0

(−1)jA(δjn)(b)

 ,

we recognize the right hand side of the desired equality. �

8.4. Modules. Let A be a simplicial ring, M an A module (§7.2). The construction from
the previous section can also be used to endow C(M) = ⊕∞n=0Mn with the structure of
a module over the DGA C(A) using the expected formula

∑
i(−1)idi for the differential.

Scalar multiplication is given by

Ap ⊗Mq → Mp+q(8.4.1)

a⊗m 7→ a ·m
a ·m :=

∑
(σ,τ)

sign(σ, τ)A(σ)(a) ·M(τ)(m),

where the sum runs over all (p, q)-shuffles (§5.7). The proof that a · (b ·m) = (a · b) ·m is
identical to the associativity calculation (8.3.5). The proof of the Leibnitz rule (8.1.4) is
the same as the proof of Lemma 8.3.2. We also see that the quasi-isomorphic subcomplex
N(M) ⊆ C(M) is a module over N(A) ⊆ C(A) by the same proof we used for Lemma 8.3.1.

8.5. Divided powers. Let A be a simplicial ring. In this section we explain how to equip
the DGAs C(A) and N(A) of the previous section with a system of divided powers.
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Let A = ⊕∞n=0An be a graded-commutative ring. Write A∗>0 for the set of homogeneous
elements of A of positive degree. A divided power structure (or PD structure) on A is a
set of maps

γn : Ai → Ani,

defined for each n ∈ N and each integer i > 0 satisfying the following properties:

(PD1) γ0(a) = 1, γ1(a) = a for all a ∈ A∗>0.
(PD2) For all odd i ∈ N, all n > 1, and all a ∈ Ai, we have γn(a) = 0.
(PD3) γn(λa) = λnγn(a) for all λ ∈ A0 and all a ∈ A∗>0.
(PD4) For all m,n ∈ N and all a ∈ A∗>0 we have(

m+ n

m

)
γm+n(a) = γm(a)γn(a).

(PD5) For all a, b ∈ A∗>0 and all n ∈ N we have

γn(a+ b) =
∑
j+k=n

γj(a)γk(b).

(PD6) For all a, b ∈ A∗>0 and all n ∈ N we have

γn(ab) = n!γn(a)γn(b) = anγn(b) = γn(a)bn.

(PD7) For all a ∈ A∗>0 and all m,n ∈ N we have

γn(γm(a)) =
(mn)!

n!(m!)n
γmn(a).

For a DGA A, a divided power structure (or PD structure) on A is a divided power structure
on the underlying graded-commutative ring A satisfying the following compatibility with
the differential:

(PD8) dγn(a) = γn−1(a)da for all a ∈ A∗>0 and all n > 0.

A PD structure on a DGA A is said to pass to homology iff the following is satisfied:

(PD9) For any i > 1, any a ∈ Ai, and any n ∈ N, γn(d(a)) = db for some b ∈ Ani+1.

Conditions (PD1) and (PD4) imply, by induction on n, that n!γn(a) = an for every a ∈
A∗>0, so if Q ⊆ A, then A has a unique PD structure given by setting γn(a) := an/(n!). (It
is straightforward to check that this satisfies all of the properties above.) Condition (PD9)
implies, as the terminology suggests, that the homology H∗(A) inherits a PD structure by
setting γn[a] := [γn(a)] for a ∈ H∗>0(A), this being well-defined in light of (PD9).

Let PDDGA denote the category of strictly graded-commutative DGAs equipped with
a PD structure satisfying (PD1)-(PD9) above. A morphism in PDDGA is a morphism
of DGAs compatible with all the maps γn. The remainder of this section is devoted to
proving:

Theorem 8.5.1. For any simplicial ring A, the DGA N(A) (§8.3) is equipped with a PD
structure passing to homology. This structure is functorial in A, so that N can be viewed
as functor N : sAn→ PDDGA.
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In fact we will construct a PD structure on C(A) satisfying all of the above axioms,
with the possible exception of (PD9), then we will argue that the maps γn take N(A) into
itself so that N(A) also had a PD structure satisfying (PD1)-(PD8), then finally we will
check the axiom (PD9) for N(A).

Discussion of Axiom (PD9). I do not know whether the axiom (PD9) holds for C(A)
itself, though I suspect that it does. The axiom (PD9) is rather restrictive and not as well-
behaved as one might hope. It should be viewed as only a shadow of the “right” divided
power axioms for DGAs with divided powers as “richly structured” as the divided powers
on the normalized chain complex of a simplicial ring—see Remark 8.5.5, for example.

Let us give an example of two “perfectly nice” “PDDGAs” (we put this in quotes to
mean we do not assume (PD9)); despite their common construction, only one will satisfy
(PD9).

Example 8.5.2. Fix n ∈ N. As in Definition 5.5.4, we let Dn+1 denote the chain complex
of abelian groups given by Z in degrees n+ 1 and n and zero in other degrees, with degree
n+ 1 differential d : Z→ Z given by the identity. By “general nonsense” we can form the
free “PDDGA” on a chain complex of abelian groups. Our aim is to explicitly describe
the free “PDDGA” An+1 on the disk complex Dn+1—this will depend heavily on the
parity of n. The “PDDGA” An+1 is generated by a generator y of degree |y| = n + 1
and a generator x of degree |x| = n; we have dy = x and dx = 0.

Let us first discuss the case where n is odd. Then

An+1 = Z[x, γ•(y)]/x2,

where the notation γ•(y) is shorthand for adjoining variables γ0(y), γ1(y), γ2(y), . . . (which,
as the notation suggests, will serve as the divided powers of y = γ1(y)) subject to the
relations γ0(y) = 1 and

γm(y)γn(y) =

(
m+ n

m

)
γm+n(y).

The notation dy = x means (c.f. (PD8)) that dγn(y) = xγn−1(y) for each positive integer
n. This An+1 is freely generated as a graded abelian group by

1 = γ0(y), x, y = γ1(y), xγ1(y), γ2(y), xγ2(y), γ3(y), . . . .

The boundaries of these generators are given, respectively, by

0, 0, x, 0, xγ1(y), 0, xγ2(y), . . . .

Notice that (PD9) is satisfied by An+1. We see that Hn(An+1) = 0 for n > 0 and
H0(An+1) = Z.

Now consider the case where n is even. Then

An+1 = Z[γ•(x), y]/y2

has Z-module basis

1 = γ0(x), x = γ1(x), y, γ2(x), xy = γ1(x)y, γ3(x), . . .

with respective boundaries

0, 0, x, 0, 2γ2(x), 0, 3γ3(x), . . . .
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Notice that (PD9) is not satisfied: for example, γ2(x) is not a boundary even though x is
a boundary. The homology algebra of An+1 is given by

H∗(An+1) =
∞⊕
m=0

(Z/mZ)γm(x)

(note that the degree of γm(x) is mn) with the multiplication rule

γk(x)γm(x) =

(
m+ k

m

)
γm+k(x),

where the binomial coefficient is read modulo m + k. This ring certainly does not have
divided powers and is rather unusual.

We start by defining the maps γn. By a calculation similar to the associativity calcula-
tion (8.3.5) for C(A), we see that the nth power map

Ai 7→ Ani

a 7→ an = a · a · · · a︸ ︷︷ ︸
n

is given by

an =
∑

σ1,...,σn

sign(σ1, . . . , σn)A(σ1)(a) · · ·A(σn)(a),

where the sum runs over all (i, i, . . . , i)-shuffles (σ1, . . . , σn). The symmetric group Sn acts
on such shuffles by

g · (σ1, . . . , σn) := (σg(1), . . . , σg(n)).

As long as i > 0 or n = 1 this is a free action.

Each g ∈ Sn acts by swapping blocks of size i in the permutation (σ1, . . . , σn), so we
have

sign(g · (σ1, . . . , σn)) = sign(σ1, . . . , σn) (i even).(8.5.1)

For even i > 0, we define

γn(a) :=
∑

[σ1,...,σn]

sign(σ1, . . . , σn)A(σ1)(a) · · ·A(σn)(a),(8.5.2)

where the sum is over orbits [σ1, . . . , σn] of the Sn action on Shuff(i, i, . . . , i). The point
is that the summand indexed by [σ1, . . . , σn] is independent of the chosen representative
(σ1, . . . , σn) of the orbit in light of (8.5.1) and the commutativity of the ring Ani. For
n = 0, we define γn(a) := 1 and for n = 1, we define (consistently with (8.5.2)) γ1(a) = a.
For n > 1 and odd i > 0, we set γn(a) := 0.

The axioms (PD1)-(PD7) are established by straightforward combinatorial arguments
(counting the number of shuffles) that will be left to the reader. The first tricky axiom to
check is (PD8):

Lemma 8.5.3. For all even m all n > 0 and all a ∈ Am, we have

dmn(γn(a)) = γn−1(a) · dm(a).



122 W. D. GILLAM

Proof. From the definitions, we compute

dmn(γn(a)) =

mn∑
i=0

(−1)i
∑
[σ]

sign[σ]

n∏
k=1

A(σkδi)(a),(8.5.3)

where δi = δimn : [mn− 1] ↪→ [mn] is the monic map missing i and the sum is over

[σ] = [σ1, . . . , σn] ∈ Shuff(m, . . . ,m)/Sn.

For a fixed i ∈ [mn], let us call [σ] multisurjective for i iff each δiσk is surjective (this is
obviously well-defined on Sn orbits). We first argue, as in previous proofs, that for any
fixed i, the terms in the second sum indexed by multisurjective [σ] cancel in pairs. As in
the proof of Lemma 5.7.2, there are no multisurjective [σ] unless i ∈ {1, . . . ,mn− 1}, and
in that case [σ] is multisurjective iff i and i + 1 appear in different parts of the partition
σ of {1, . . . ,mn}. Furthmore, swapping i and i + 1 in a multisurjective [σ] yields a new
multisurjective [σ′] with opposite sign (in particular they aren’t in the same Sn orbit) and
with the property δiσk = δi(σ′)k for all k (after ordering the σk appropriately, since we
work with orbits). Evidently then, the term indexed by [σ] cancels with the one indexed
by [σ′].

For each i ∈ [mn], let Ti be the set of [σ] which are not multisurjective, so that the
second sum in (8.5.3) need only run over Ti. Consider some [σ] ∈ Ti and choose some
representative (σ1, . . . , σn) of this Sn orbit. Since [σ] isn’t multisurjective, it must be that
(σk)−1(j) = {i} for a unique j ∈ [m] (because σk itself is surjective and δi only misses
i). That is, σkj = i and σkj+1 = i + 1. In particular, exactly one of the δiσk fails to

be surjective. (When i = 0 the unique σk that fails to be surjective is the part of the
corresponding partition σ of {1, . . . ,mn} containing 1 and when i = mn, the unique σk

that fails to be surjective is the part of the partition containing mn.) We can then write

our one nonsurjective map as δiσk = δjmτ for some surjective τ : [mn− 1]→ [m− 1]. Via
the bijection in the beginning of §5.7, we can view this τ as an m − 1 element subset of
{1, . . . ,mn− 1}, and we can then let σ be the complementary mn−m element subset to
obtain a shuffle (σ, τ) ∈ Shuff(mn−m,m− 1). Now forget about the σk for which δiσk

failed to be surjective, so we have n− 1 disjoint m-element subsets

σ1, . . . , σk−1, σk+1, . . . , σn ⊆ {1, . . . ,mn}.

Shifting these to replace the m elements of {1, . . . ,mn} that were in σk, and reindexing,
we obtain a partition

{1, . . . ,mn−m} = α1
∐
· · ·
∐

αn−1

into m element subsets: that is,

(α1, . . . , αn−1) ∈ Shuff(m, . . . ,m︸ ︷︷ ︸
n−1

).

It is then straightforward to check that the corresponding surjections αl : [mn−m]→ [m]
are related to the surjections σl : [mn]→ [m] and the surjection σ : [mn− 1]→ [mn−m]
above by

σ1δi = α1σ, . . . , σk−1δi = αk−1σ, σk+1δi = αkσ, . . . , σnδi = αn−1σ(8.5.4)

(everything in sight is surjective, so one need only look at minimal elements of preimages to
determine equality). It is clear that the Sn−1 orbit [α] ∈ Shuff(m, . . . ,m)/Sn−1 depends
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only on [σ] and not on our choice of representative, and that nothing else above depends
on this choice of representative, so we have described a map

mn∐
i=0

Ti → Shuff(mn−m,m− 1)× Shuff(m, . . . ,m)/Sn−1 × [m](8.5.5)

[σ] 7→ ((σ, τ), [α], j).

It is not hard to see that this map is bijective and that

(−1)i sign[σ] = (−1)j sign(σ, τ) sign[α].(8.5.6)

Next we take a look at γn−1(a) · dm(a), which is given by

∑
(σ,τ)

sign(σ, τ)A(σ)(γn−1(a))A(τ)

 m∑
j=0

(−1)jA(δjm)(a)


=
∑
(σ,τ)

sign(σ, τ)A(σ)

∑
[α]

sign[α]

n−1∏
k=1

A(αk)(a)

A(τ)

 m∑
j=0

(−1)jA(δjm)(a)


=
∑
(σ,τ)

∑
[α]

m∑
j=0

(−1)j sign(σ, τ) sign[α]A(δjmτ)(a)
n−1∏
k=1

A(αkσ)(a),

where (σ, τ) ∈ Shuff(mn −m,m − 1) and [α] ∈ Shuff(m, . . . ,m)/Sn−1. As in the para-
graph above, the summands here are indexed by a set which is bijective correspondence
with with the set indexing the (non-cancelling) summands in (8.5.3), and the correspond-
ing summands are equal in light of (8.5.4) and the sign rule (8.5.6). �

The proof that the maps γn take N(A) into itself is almost identical to the proof of
Lemma 8.3.1 and will be left to the reader. Finally we check (PD9):

Lemma 8.5.4. If b ∈ Ni(A) is a boundary in N(A), then γn(b) ∈ Nni(A) is also a boundary
in N(A).

Proof. This is trivial unless i is even, which we now assume. Say b = d0
i+1a for some

a ∈ Ni+1(A). By definition of γn(b), we have

γn(b) :=
∑
σ

sign(σ)

(
n∏
k=1

A(σk)(b)

)

=
∑
σ

sign(σ)

(
n∏
k=1

A(σk)(d0
i+1a)

)
,

where the sum runs over all σ = (σ1, . . . , σn) ∈ Shuff(i, . . . , i)/Sn and we have implicitly
picked some representative of each Sn orbit.

We view σ as a partition of {1, . . . , ni} into n subsets

σk = {σk1 < · · · < σki } (k ∈ {1, . . . , n})
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of size i. The corresponding surjective ∆-morphisms σk are given by

σk : [ni] → [i]

0, . . . , σk1 − 1 7→ 0

σk1 , . . . , σ
k
2 − 1 7→ 1

...

σki , . . . , ni 7→ i.

Define a surjective ∆-morphism τ(σk) : [ni+ 1]→ [i+ 1] by

τ(σk) : [ni+ 1] → [i+ 1](8.5.7)

0 7→ 0

1, . . . , σk1 7→ 1

σk1 + 1, . . . , σk2 7→ 2

...

σki−1 + 1, . . . , σki 7→ i

σki + 1, . . . , ni+ 1 7→ i+ 1.

Then the diagram

[ni]
σk //

∂0ni+1

��

[i]

∂0i+1

��
[ni+ 1]

τ(σk) // [i+ 1]

commutes, so we have

A(σk)d0
i+1 = d0

ni+1A(τ(σk)).

Then we have

γn(b) =
∑
σ

sign(σ)

(
n∏
k=1

d0
ni+1A(τ(σk))(a)

)

= d0
ni+1

(∑
σ

sign(σ)

n∏
k=1

A(τ(σk))(a)

)
.

It remains only to prove that the term x in the parentheses is in the normalized chain

complex Nni+1(A)—i.e. that djni+1(x) = 0 for every j ∈ {1, . . . , ni + 1}. We use our
usual tricks. For such a j, let T (j) denote the set of those σ for which the composition

τ(σk)∂jni+1 : [ni]→ [i+1] is surjective for every k ∈ {1, . . . , n}. Since j > 0, it is clear from

the formula (8.5.7) for τ(σk) that the image of τ(σk)∂jni+1 always contains 0 ∈ [i+ 1], so if
this composition fails to be surjective, then it will factor through some ∂si+1 : [i]→ [i+ 1]
with s > 0. So, if σ is not in T (j), then there will be some k ∈ {1, . . . , n} for which

djni+1A(τ(σk))(a) = 0 because dsi+1(a) = 0 since a ∈ Ni+1(A). Thus only the summands

with σ ∈ T (j) will contribute to djni+1(x), so we can write

djni+1(x) =
∑

σ∈T (j)

sign(σ)

n∏
k=1

A(τ(σk)∂jni+1)(a).
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Now we argue that the terms in this sum cancel in pairs. First of all, the set T (ni + 1)
is empty: there must be some l ∈ {1, . . . , n} so that ni = σki (because the σk form a

partition), and then τ(σl)∂ni+1
ni+1 won’t be surjective because i + 1 ∈ [i + 1] is not in its

image. For similar reasons we see that T (1) = ∅. So we can assume j ∈ {2, . . . , ni}. Given
such a j and a fixed σ ∈ T (j), there is a unique l ∈ {1, . . . , n} and a unique s ∈ {1, . . . , i}
for which j = σls. It cannot be that j − 1 = σls−1, because then τ(σl)∂jni+1 would not

be surjective (its image would not contain s). So j − 1 cannot be in the part σl of the
partition σ, so there is some m ∈ {1, . . . , n} not equal to l and some t ∈ {1, . . . , i} so that
j−1 = σmt . Now we argue as we have done in the previous proofs that we can obtain a new
θ ∈ T (j) by swapping the positions of j and j − 1 in σ (put j − 1 ∈ θl and j ∈ θm). This

θ has sign(θ) = − sign(σ) and τ(σk)∂jni+1 = τ(θk)∂jni+1 for every k, so that the summand

indexed by σ cancels with the one indexed by θ. �

Remark 8.5.5. The proof actually shows much more than the statement of the lemma.
It shows that a choice of a with da = b gives a canonical choice of c with dc = γn(b). It
is not entirely clear that the formula for c in terms of a is given solely in terms of the
PDDGA N(A), but it is certainly a universal formula natural in the simplicial ring A.
Even a typical PDDGA satisfying (PD9) might not come with such a “canonical choice”
of witnesses to (PD9). The upshot is that the divided power structure on the normalized
chain complex of a simplicial ring is much richer than one might initially suspect; it will
satify many axioms much more elaborate than (PD9).

8.6. Application to Tor. Suppose A is a ring and B1, B2 are A-algebras. Then we can
forget that the Bi are A-algebras and just think of them as A-modules, then form the
graded A-module

TorA(B1, B2) :=
⊕
n

TorAn (B1, B2).

In fact this graded A-module carries lots of additional structure: It is in fact a strictly
graded-commutative A-algebra equipped with divided powers—we will call this the Tor
algebra. A formal definition of this additional structure is as follows: Calculate “the”
derived tensor product B1 ⊗L

A B2 in the derived category of simplicial rings (§7.11), then

take the homology of the simplicial ring B1 ⊗L
A B2, noting that the latter has various

additional structures by Theorem 8.0.1.

In the present text, we haven’t tried to construct a model category structure on the
category of (strictly graded-commutative) DGAs with divided powers; it is not so clear
that such a thing exists. If we had developed such additional structures, then we could
presumably argue that we could compute the Tor algebra using DGA resolutions instead
of simplicial resolutions. For the sake of the example discussed below, we are going to
assume that this is the case. That is, we will assume the Tor algebra TorA(B1, B2) can
be computed as follows: First, find a strictly graded-commutative differential graded A-
algebra C (supported in nonnegative degrees, as always) with the following properties:

(1) H0(C) = B1 and Hn(C) = 0 for n 6= 0.
(2) C has divided powers compatible with the passage to homology (if c is a boundary

then γn(c) is a boundary).
(3) C is flat as an A-module (each Cn is a flat A-module).
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Now form the differential graded A-algebra C⊗AB2 and note that it is also equipped with
divided powers compatible with passage to homology, so that H•(C ⊗A B2) is a strictly
graded-commutative graded A-algebra with divided powers. We want to assume that this
is the Tor algebra. Let us at least note that

Hn(C ⊗A B2) = TorAn (B1, B2)

as A-modules because our assumptions on C certainly imply that C (viewed just as a
complex of A-modules) is a flat resolution of B1. The issue is to prove that the strictly
graded-commutative graded A-algebra H•(C⊗AB2) is independent of the choice of C sat-
isfying the above properties. Our present machinery allows us to prove this only for those
C which arise as normalized complexes of simplicial A-algebras. (We haven’t developed a
theory of derived tensor product of DGAs.) Anyway, let us ignore this issue for a moment
and consider a simple example.

Example 8.6.1. Let A = Z[ε]/ε2 and let B1 = B2 = Z, regarded as an A-algebra via
ε 7→ 0. We can easily find a resolution of Z by free A-modules: Just take the chain complex
which is A in every (non-negative) degree and where every boundary map is multiplication
by ε. Tensoring this complex over A with Z yields the complex which is Z in every degree
with all boundary maps zero, so

TorAn (Z,Z) = Z
for all n. This describes TorA(Z,Z) as a graded A-module, but we want to understand it
as a graded A-algebra. Consider the differential graded A-algebra

C := A[x, γ•(y)]/x2

where |x| = 1, |y| = 2, dx = ε, dy = εx and γ•(y) is shorthand for adjoining variables
γ0(y), γ1(y), γ2(y), . . . (which, as the notation suggests, will serve as the divided powers of
y = γ1(y)) subject to the relations γ0(y) = 1 and

γm(y)γn(y) =

(
m+ n

m

)
γm+n(y).

The notation dy = εx is shorthand for dγn(y) = γn−1(y)εx for each positive integer n. As
a graded A-module, C is free with basis

γ0(y) = 1, xγ0(y) = x, γ1(y) = y, xγ1(y) = xy, γ2(y), xγ2(y), . . .

This C is strictly graded commutative with divided powers compatible with passage to
homology. For n ∈ N, the kernel of d2n+1 : C2n+1 → C2n is generated as an A-module by
εxγn(y). But (perhaps up to a sign) εxγn(y) is equal to dγn+1(y), so C has zero homology
in odd degrees. In degree 2n for n positive, the kernel of d2n is generated as an A-module
by εγn(y), which (possibly up to a sign) is the boundary of xγn(y); so Nn(C) = 0 for
n 6= 0. In degree zero, H0(C) = Z because the kernel of d0 is A · 1 = C0, but the image
of d1 : C1 → C0 is A · ε. The differential graded A-algebra C ⊗A Z is obtained from C
by setting ε = 0. The boundary maps are then zero, so this differential graded A-algebra
(with divided powers, etc.) is equal to its own homology. We find that

TorA(Z,Z) = Z[x, γ•(y)]/x2.

Notice that the degree m part of this graded A-algebra is indeed isomorphic to Z as an
A-module for each m (generated by γn(y) if m = 2n is even and by xγn(y) if m = 2n+ 1
is odd).
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9. Derived algebraic geometry

The purpose of this section is to introduce the basic notions of derived algebraic geom-
etry: derived schemes, properties of morphisms of derived schemes, factorizations of maps
of derived schemes, derived fibered products, and the cotangent complex. We warn the
reader at the outset that we will make no attempt at all to give the most general possi-
ble treatment of derived algebraic geometry. In order to keep everything self-contained
(we will use only the basic notions from the theory of simplicial rings in §7) and as con-
crete as possible, we will ultimately limit ourselves roughly to the category of schemes
quasi-projective over some fixed noetherian base ring.

9.1. Affine morphisms. We begin by establishing some facts about affine morphisms of
schemes which we will need later. Although these results should be standard, they cannot
be found, in the generality we need, in [EGA, II.1.6].

Recall [EGA, II.1.6] that a morphism of schemes f : X → Y is affine iff f−1(U) is affine
for every affine open subscheme U ⊆ Y . Equivalently, f is affine iff f∗OX is quasi-coherent
and the natural map of Y -schemes

X → SpecY f∗OX(9.1.1)

is an isomorphism. Affine morphisms are closed under composition (this is immediate from
the definition) and base change (the best way to prove this is to note that the formation
of SpecY is compatible with base change, or apply [EGA, II.1.6.2(ii)] with S = Y ). The
question of whether f is affine is local on Y :

Lemma 9.1.1. Let f : X → Y be a morphism of schemes, {Yi} an open cover of Y . Then
f is affine iff each induced map fi : Xi := f−1(Yi)→ Yi is affine.

Proof. Since affine morphisms are stable under base change, the issue is to prove that
f is affine when each fi is affine. Since pushforward commutes with base change along
open embeddings and the question of quasi-coherence is local, f∗OX is certainly quasi-
coherent. Isomorphy for (9.1.1) can be checked locally on Y . Since the SpecY construction
is compatible with base change, the base change of (9.1.1) along Yi ↪→ Y is just the natural
map

Xi → SpecYi fi∗OXi ,
which is an isomorphism since fi is affine. �

Remark 9.1.2. Actually, one can form a locally ringed space SpecY A over Y for any
OY -algebra A—not necessarily quasi-coherent—and this more general relative spectrum
has all the expected properties (compatibility with base change, in particular), so the first
part of the argument in the above proof is not strictly necessary.

We will need the following generalization of [EGA, II.1.6.3]:

Lemma 9.1.3. In any commutative diagram of schemes

X
f //

  

Y

~~
Z

where X → Z is affine and Y → Z is separated the map f is affine.



128 W. D. GILLAM

Proof. (Lurie) Factor f as the graph morphism Γf = (Id, f) : X → X ×Z Y followed by
the projection π2 : X ×Z Y → Y . The diagrams

X ×Z Y
π1
��

π2 // Y

��
X // Z

and X

Γf
��

f // Y

∆
��

X ×Z Y
(f,Id) // Y ×Z Y

are cartesian and ∆ is a closed embedding (hence an affine morphism) since Y → Z is
separated; affine morphisms are closed under composition and base change so f = π2Γf is
affine. �

We will also need the following generalization of [EGA, II.1.6.2(iv)]:

Lemma 9.1.4. Given a commutative diagram of schemes

Y ′

��

��

Y

��

X ′ //

��

Z ′

��
X // Z

where the diagonal arrows are affine, the induced map X ′ ×Z′ Y ′ → X ×Z Y is affine.

Proof. The question is local on W := X ×Z Y (Lemma 9.1.1), so we can work near a
fixed point w ∈W . Let x, y, z denote the images of w in X,Y, Z, respectively. Pick affine
neighborhoods S, T, U of x, y, z in X,Y, Z so that X → Z takes S into U and Y → Z
takes T into U . Then S ×U T is an affine open neighborhood of w in W and it will suffice
to show that the preimage (S×U T )′ of S×U T in X ′×Z′ Y ′ is affine. Let S′, T ′, U ′ be the
preimages of S, T, U under the diagonal maps. These are affine since the diagonal maps
are affine, so S′×U ′ T ′ is affine, and so the proof is complete because it is easy to see that
the two open subschemes (S ×U T )′ and (S′ ×U ′ T ′) of X ′ ×Z′ Y ′ coincide. �

(The case Z = Z ′ is [EGA, II.1.6.2(iv)].)

9.2. Simplicially ringed spaces. A simplicially ringed space is a pair X = (X,B) con-
sisting of a topological spaceX together with a simplicial sheaf of rings (called the structure
sheaf ) B on X. Note that, in particular, each Bn is a B0-module. Since B a simplicial
sheaf of rings, B(U) is a simplicial ring for each open subspace U ⊆ X and each stalk
Bx is a simplicial ring. The pair X0 := (X,B0) is a ringed space sometimes called the
underlying ringed space of (X,B). If X0 is a locally ringed space (i.e. each stalk B0,x is a
local ring), we say that X is a local simplicially ringed space.

A morphism of simplicially ringed spaces from X = (X,B) to Y = (Y,A) is a pair
(f, f ]) consisting of a map of topological spaces f : X → Y and a map f ] : f−1A→ B of
simplicial sheaves of rings on X. If X and Y are local, then in the definition of a morphism
from X to Y we also demand that the map of ringed spaces

(f, f ]0) : X0 → Y0
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be a map of locally ringed spaces (stalks of f ]0 should be local maps of local rings). We
denote the category of local simplicially ringed spaces by sLRS, though we emphasize
that this is probably bad notation, for sLRS is certainly not the same as the category of
simplicial locally ringed spaces.

We can (and will) regard any (locally) ringed space X as a (local) simplicially ringed
space by taking the constant simplicial sheaf of rings for the structure sheaf.

If X = (X,B) is a local simplicially ringed space, we can consider the ideal I ⊆ B0

given by the image of

d0
1 − d1

1 : B1 → B0

(recall that this image is an ideal because the degeneracy map B0 → B1 is a section of
both d0

1 and d1
1). We let i : π0(X) ↪→ X0 denote the corresponding closed embedding of

locally ringed spaces, with ideal I; we write π0(B) for the structure sheaf of π0(X), so that
i∗π0(B) = B0/I = H0(B). The homology sheaves Hn(B) (defined for simplicial sheaves of
rings exactly as they were defined for simplicial rings in §7.2 and §7.4) are modules over
π0(B) (in fact they form a strictly graded-commutative graded π0(B)-algebra). Formation
of π0(X) and the modules Hn(B) is functorial in the local simplicially ringed space X in
the sense that an sLRS map

f : (X,B) → (Y,A)

induces a map of locally ringed spaces

π0(f) : π0(X) → π0(Y )(9.2.1)

and maps

Hn(f) : π0(f)∗Hn(A) → Hn(B)(9.2.2)

of π0(B)-modules.

Definition 9.2.1. An sLRS map f : (X,B)→ (Y,A) is a quasi-isomorphism iff the map
(9.2.1) and all the maps (9.2.2) are isomorphisms.

It is immediate from the naturality of the maps (9.2.1) and (9.2.2) that quasi-isomorphisms
satisfy “two-out-of-three”.

9.3. Spec of a simplicial ring. Let A be a simplicial ring. Let X := SpecA0. Each An
is an A0 algebra via the structure map A0 → An corresponding to the unique ∆-morphism
[n] → [0]; in particular, each An is an A0 module. Then A∼ is a simplicial sheaf of rings
on the topological space X and each A∼n is quasi-coherent as an OX -module. The pair
(SpecA0, A

∼) is hence a simplicially ringed space (§9.2), which will be denoted SpecA.
The underlying ringed space (SpecA0, A

∼
0 ) is just the scheme X, so, in particular, SpecA

is a local simplicially ringed space. The construction of SpecA is contravariantly functorial
in the simplicial ring A and in fact defines a fully faithful functor

Spec : (sAn)op → sLRS.

For the fullness: If

(f, f ]) : SpecB → SpecA



130 W. D. GILLAM

is a map of local simplicially ringed spaces, then certainly the induced map of underlying
locally ringed spaces

(SpecB0, B
∼
0 ) → (SpecA0, A

∼
0 )

is Spec(A0 → B0) for a ring map A0 → B0. The map f ] : f−1A∼ → B∼ of simplicial
sheaves of rings is the same as a map of simplicial sheaves of rings f ] : A∼ → f∗B

∼ on
the scheme SpecA0. But f∗(B

∼) is just B∼, regarding the Bn as A0-modules by

A0 → B0 → Bn

so the f ]n : A∼n → B∼n are maps of quasi-coherent A∼0 -algebras, hence they correspond to

ring maps An → Bn and the compatibility of the f ]n with the boundaries and degeneracies
for A∼ and B∼ is equivalent to the compatibility of the maps An → Bn with the boundaries
and degeneracies for A and B.

9.4. Derived schemes. An object (X,B) of sLRS isomorphic (in sLRS) to SpecA (for
a simplicial ring A) is called an affine derived scheme. A derived scheme is an object
(X,B) of sLRS which is locally an affine derived scheme—i.e. the topological space X
admits an open cover {Ui} such that each local simplicially ringed space (Ui, B|Ui) is an
affine derived scheme. Morphisms of derived schemes are, by definition, morphisms in
sLRS, so that derived schemes form a full subcategory DS ⊆ sLRS.

Example 9.4.1. For example, every scheme X can be viewed as a derived scheme (X,A),
where A is the constant simplicial sheaf of rings associated to the sheaf of rings OX .

If X = (X,B) is a derived scheme, then the underlying locally ringed space X0 =
(X,B0) is a scheme and each Bn is a quasi-coherent B0-module (the question is local and
it is clearly true for an affine derived scheme). In fact, derived schemes are characterized by
these two properties: If (X,B) is a local simplicially ringed space such that X0 = (X,B0)
is a scheme and each Bn is quasi-coherent, then (X,B) is a derived scheme: Indeed, the
question is local, so we can assume X0

∼= SpecA0 for some ring A0 (in fact A0 := B0(X)
is a canonical choice). Since the category of quasi-coherent sheaves on X0 is equivalent to
the category of A-modules, each we can write B ∼= A∼ for some simplicial ring A (in fact
A := B(X) is a canonical choice), so X ∼= SpecA.

It is clear from this latter characterization of derived schemes that if X = (X,B) is a
derived scheme and U ⊆ X is an open subspace, then (U,B|U) is also a derived scheme,
denoted simply by U if there is no chance of confusion. Furthermore, if the scheme
U0 = (U,B0|U) is affine, then U is an affine derived scheme. If x ∈ U ⊆ X, then we will
say that U is a neighboorhood of x, or an affine neighborhood of x if U is an affine derived
scheme. With this notion of affine neighborhoods, it is clear that affine neighborhoods of
x in the derived scheme X are in bijective correspondence with affine neighborhoods of x
in the usual scheme X0 = (X,B0).

Suppose f : X → Y is a morphism of derived schemes and x ∈ X. We can find an affine
neighborhood V ∼= SpecA of f(x) in Y and an affine neighborhood U ∼= SpecB of x in
f−1(V ) (indeed, the data of such U and V is the same data as an affine neighborhood of x
in the usual morphism of schemes f0 : X0 → Y0). The morphism of affine derived schemes
f |U : U → V then corresponds to some map of simplicial rings A → B (§9.3). Evidently
then, a morphism of derived schemes can be “covered by Spec of simplicial ring maps” in
the same way that a morphism of (usual) schemes can be “covered by Spec of ring maps”.
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9.5. Cosimplicial approach. If (X,B) is a derived scheme, then X0 = (X,B0) is a
scheme and we can form the schemes Xn := SpecX0

Bn, noting that Bn is a quasi-coherent
OX0 = B0-algebra, so the Xn are schemes, affine over X0. We denote the structure map
by pn : Xn → X0, or simply by p if there is no chance of confusion. We have pn∗OXn = Bn.
The simplicial structure on B endows these Xn with the structure of a cosimplicial scheme,
which we denote

X• := SpecX0
B•.

For a ∆-morphism σ : [m]→ [n], the structure map X(σ) : Xm → Xn is the morphism of
affine X0-schemes defined by

X(σ) := SpecX0
(B(σ) : Bn → Bm).

We will often write σ instead of X(σ) if there is no chance of confusion. By Lemma 9.1.3
the morphism X(σ) is itself an affine morphism because we have a commutative diagram

Xm

pm !!

X(σ) // Xn

pn}}
X0

where pm and pn are affine morphisms (note that affine morphisms are separated).

The derived scheme (X,B) can be recovered from the cosimplicial scheme X• by the
formula

B = p∗OX• .

Indeed, we could equivalently define a derived scheme to be a cosimplicial scheme X•
where every structure morphism X(σ) : Xm → Xn is an affine morphism.

The formation of the cosimplicial scheme X• is functorial in the derived scheme X,
so that a map of derived schemes f : X → Y induces a map of cosimplicial schemes
f• : X• → Y•.

Example 9.5.1. For example, if we view a (usual) scheme X as a “constant” derived
scheme as in Example ??, then X• is the constant cosimplicial scheme associated to the
scheme X.

9.6. Properties of maps of derived schemes. If P is a property of maps of schemes
(e.g. “closed embeddings,” “smooth maps,” etc.) and f : X → Y is a map of derived
schemes then we say that f has P degree-wise iff each map of schemes fn : Xn → Yn has
property P. For example, we can speak of degree-wise smooth and degree-wise flat maps
of derived schemes. In fact, we will generally drop the “degree-wise” and simply speak of
smooth, flat, affine, finite type, ... maps of derived schemes. We similarly define properties
of derived schemes “degree-wise,” so that, for example, a derived scheme X is noetherian
iff each scheme Xn is noetherian.

If (X,B) is a derived scheme, the ideal I ⊆ B0 defined in §9.2 is quasi-coherent (it is
the image of a map of quasi-coherent sheaves), so π0(X) is a scheme. For similar reasons,
the Hn(B) are quasi-coherent sheaves on π0(X). (We will return to this point in §9.7.)
We define quasi-isomorphisms for derived schemes exactly as we did for local simplicially
ringed spaces in Definition 9.2.1.
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We now clarify some issues related to the definitions of “degree-wise flat” and “degree-
wise affine.”

Lemma 9.6.1. Consider a commutative diagram of schemes

X ′
q //

f ′

��

X

f
��

Y ′
p // Y

where p and q are affine morphisms. Then f ′ is flat iff the induced map

f−1(p∗OY ′) → q∗OX′(9.6.1)

is a flat map of sheaves of rings on X.

Proof. Both questions of flatness are local on f , so we can assume that X and Y (hence
also X ′ and Y ′) are affine, so our commutative diagram is Spec of a diagram of rings as
below.

B′ B
joo

A′

f ′

OO

A
ioo

f

OO(9.6.2)

We first prove that if f ′ is flat, then (9.6.1) is a flat map of sheaves of rings on X = SpecB.
This can be checked on stalks. The stalk of f−1(p∗OY ′) at a point x ∈ X (a prime ideal
of B) with image y = f(x) in Y (we view y as a prime ideal of A) is given by

(f−1(p∗OY ′))x = (p∗OY ′)y
= lim
−→
OY ′(p−1U)

= lim
−→
OY ′(p−1Ua)

= lim
−→
OY ′(Ui(a))

= lim
−→

A′i(a)

= i(A \ y)−1A′.

Some explanation is needed. The first direct limit runs over open neighborhoods U of y in
Y = SpecA; we then immediately replace this direct limit with the direct limit over the
cofinal set of such neighborhoods given by the basic opens

Ua := {w ∈ SpecA : a /∈ w}
= Spec(Aa)

with a ∈ A\y, then we note that the preimage p−1Ua of such a basic open in Y ′ = SpecA′

is just the basic open Ui(a) in Y ′. We write S−1A to denote the localization of a ring A at
a multiplicative subset S ⊆ A. A similar calculation shows that

(q∗OX′)x = j(B \ x)−1B′
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so that the stalk of (9.6.1) at x is just the bottom arrow in the commutative square of
ring maps below.

A′
f ′ //

��

B′

��
i(A \ y)−1A′ // j(B \ x)−1B′

(9.6.3)

The corresponding pushout square is given by:

A′
f ′ //

��

B′

��
i(A \ y)−1A′ // f ′i(A \ y)−1B′

(9.6.4)

The bottom arrow in (9.6.4) is flat because f ′ is flat by hypothesis and flatness is stable
under base change. By commutativity of (9.6.2) and the fact that y = f−1(x), we see that

f ′i(A \ y) ⊆ j(B \ x),

so the induced map f ′i(A\y)−1B′ → j(B\x)−1B′ is a localization, so it is flat. The bottom
arrow in (9.6.3) is the composition of the bottom arrow in (9.6.4) and this localization, so
it is a composition of flats hence is flat.

For the converse, it suffices to prove that for any prime ideal z ∈ B′ (point of X ′), the
composition

A′ → B′ → B′z = (B′ \ z)−1z(9.6.5)

is flat. Let x := q(z) = j−1(z). Then j(B \ x) ⊆ B′ \ z, so (9.6.5) will factor as the
composition

A′ → i(A \ y)−1A′ → j(B \ x)−1B′ → B′z = (B′ \ z)−1z.

The first and final maps in this latter composition are localizations, so they are flat, and
the middle map is the stalk of (9.6.1) at x, so it is flat by hypothesis, hence (9.6.5) is flat
as desired. �

Lemma 9.6.2. Let f : (X,B) → (Y,A) be a map of derived schemes. The induced map

of schemes fn : Xn → Yn is flat iff f ]n : f−1An → Bn is a flat map of sheaves of rings
on X. In particular, f is degree-wise flat iff f ] : f−1A → B is a degree-wise flat map of
simplicial sheaves of rings on X.

Proof. Apply the previous lemma to the commutative diagram of schemes

Xn
p //

fn
��

X0

f0
��

Yn
p // Y0

noting that the horizontal maps are affine and Bn = p∗OXn , An = p∗OYn . (Also note
that, on the level of topological spaces, f0 coincides with the map f : X → Y .) �
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The next lemma says that the whole theory of derived schemes is just the theory of
schemes with “extra data in the structure sheaf” (“higher nilpotents”)—all the “topology”
of a scheme or map of schemes is in X0 (of f0).

Lemma 9.6.3. A morphism f : X → Y of derived schemes is degree-wise affine iff
f0 : X0 → Y0 is affine.

Proof. Obviously f0 has to be affine for f to be degree-wise affine; to see that this is
sufficient, note that we have a commutative diagram

Xn

fn
��

// X0

f0
��

Yn // Y0

where the horizontal arrows and f0 are affine, hence the composition Xn → Y0 is affine
and we conclude that fn is affine by Lemma 9.1.3. �

Lemma 9.6.4. Let i : X → V be a morphism of derived schemes. The following are
equivalent:

(1) The map i is a quasi-isomorphism and a (degree-wise) closed embedding.
(2) The map i is affine and for every affine open derived subscheme U = SpecP of

V , the map i : i−1(U) → U is given by Spec(P → B) for a trivial fibration of
simplicial rings P → B.

(3) The map i is affine and each point v of V has an affine open neighborhood U =
SpecP of V such that the map i : i−1(U) → U is given by Spec(P → B) for a
trivial fibration of simplicial rings P → B.

Proof. For (1) implies (2), first note that i is affine by Lemma 9.6.3 since i0, being a closed
embedding, is affine. So for every affine open SpecP = U ⊆ V , we can write i−1(U)→ U
as Spec(P → B) for some map of simplicial rings P → B. Since i is a degree-wise closed
embedding, so is i−1(U)→ U , hence P → B is degree-wise surjective because

(i−1(U)n → Un) = Spec(Pn → Bn).

Since i is a quasi-isomorphism, π0(P )→ π0(B) is a ring isomorphism and since

Hn(V )|U = Hn(U)

= Hn(P )∼

(we will see this in §9.7 below) and similarly for i−1(U), we see that P → B is a quasi-
isomorphism of simplicial rings; since we just saw that it is also degree-wise surjective, it
is a trivial fibration by Corollary 5.6.5.

Clearly (2) implies (3). For (3) implies (1), note that the formation of π0 and Hn is
local in nature (§9.7), so the question of whether i is a quasi-isomorphism is local on V ;
similarly, the question of whether i is a degree-wise closed embedding is local on V . �

Definition 9.6.5. A map of derived schemes i : X → V satisfying the equivalent condi-
tions of the above lemma is called a trivial cofibration.

Every trivial cofibration is, in particular, a finite type affine morphism. Notice that
for a map of simplicial rings P → B, the corresponding map SpecB → SpecP of affine
derived schemes is a trivial cofibration iff P → B is a trivial fibration of simplicial rings.
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9.7. Modules and homology. Let (X,B) be a simplicially ringed space (§9.2). We
define a B-module exactly as we defined modules over a simplicial ring in §7.2: a B-
module M thus consists of Bn-modules Mn and, for each ∆-morphism σ : [m] → [n], a
B(σ)-linear map M(σ) : Mn →Mm functorial in σ.

As in §7.2 and §7.4, the homology Hn(M) of a B-module M is defined by the following
formulas:

Nn(M) := Ker

(
n∏
i=1

din : Mn →
n∏
i=1

Mn−1

)

Zn(M) := Ker

(
n∏
i=0

din : Mn →
n∏
i=0

Bn−1

)
= Ker(d0

n : Nn(M)→ Zn−1(M))

Hn(M) := Zn(M)/d0
n+1Nn+1(M)

= Cok(Nn+1(M)⊗Bn+1 Bn → Zn(M)).

Evidently Nn(M), Zn(M), and Hn(M) are Bn-modules. Since the formation of kernels
and cokernels commutes with restriction to open subsets, we have

Nn(M |U) = Nn(M)|U(9.7.1)

Zn(M |U) = Zn(M)|U
Hn(M |U) = Hn(M)|U.

Next suppose (X,B) is a derived scheme with associated cosimplicial scheme X• =
SpecX0

B•. Since the maps pn : Xn → X0 are affine morphisms, pushforward pn∗ gives
an equivalence of categories between quasi-coherent OXn-modules and quasi-coherent Bn-
modules, with inverse given by the “relative” version of M 7→ M∼. A B-module M is
called quasi-coherent iff each Mn is a quasi-coherent Bn-module (in the essential image
of pn∗ : Qco(Xn) → Mod(Bn)). If Xn is locally noetherian, we define a coherent Bn-
module by replacing “Qco(Xn)” with “Coh(Xn)”. If each Xn is locally noetherian, then
we have an evident notion of coherent B-modules. Equivalently, a Bn-module M is quasi-
coherent (resp. coherent in the locally noetherian situation) iff, for each affine open derived
subscheme SpecA = U ⊆ (X,B), we have M |U ∼= N∼ for some An-module N (resp. some
finitely generated An-module N). (Note that N∼ here is defined by regarding N as a
module over A0 via A0 → An; the resulting B0 = A∼0 -module has a natural Bn = A∼n -
module structure.) A B-module M is then quasi-coherent (resp. coherent in the locally
noetherian setting) iff, for each affine open derived subscheme SpecA = U ⊆ (X,B), we
have M ∼= N∼ for some A-module N (resp. some degree-wise finitely generated A-module
N).

Now suppose (X,B) = SpecA for a simplicial ring A and M = N∼ for an A-module N
(§7.2). Then din : Mn →Mn−1 is just (din : Nn → Nn−1)∼ and we see that

Nn(M) = Nn(N)∼

Zn(M) = Zn(N)∼

Hn(M) = Hn(N)∼.

If each An is noetherian and each Nn is a finitely generated as an An-module, then each
of the An-modules Nn(N), Nn(N), Hn(N) is finitely generated.
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Lemma 9.7.1. Suppose (X,B) is a derived scheme (resp. locally noetherian derived
scheme) and M is a quasi-coherent (resp. coherent) B-module. Then Nn(M), Zn(M),
and Hn(M) are quasi-coherent (resp. coherent) Bn-modules for each n ∈ N.

Proof. The question is local and the formation of these modules is local (9.7.1), so we
reduce to the discussion above. �

It is—for the author at least—easier to think about quasi-coherent sheaves on the
scheme Xn than to think about quasi-coherent modules on the ringed space (X,Bn). We
will now give an explicit description of the homology modules Hn(B) from this “more
geometric” point of view. This will be useful in §9.10.

For the ∆-morphism ∂in : [n − 1] ↪→ [n], we usually just write ∂in : Xn−1 → Xn

instead of X(∂in). The map of schemes ∂in : Xn−1 → Xn is a closed embedding because
B(∂in) = din : Bn → Bn−1 is a surjection of quasi-coherent sheaves of rings on the scheme
X0 (din has a section because the ∆-morphism ∂in has a retract). We will write

din : OXn → ∂in∗OXn−1(9.7.2)

for the surjection of quasi-coherent OXn-modules (coherent if Xn is locally noetherian)
corresponding to the closed embedding ∂in : Xn−1 → Xn. This notation is justified by the
fact that

pn∗(d
i
n : OXn → ∂in∗OXn−1) = din : Bn → Bn−1.(9.7.3)

We will also write din for the map

din : (∂in)∗OXn → OXn−1(9.7.4)

corresponding to (9.7.2) under the adjunction ((∂in)∗, ∂in∗).

Define

Nn(X•) := Ker

(
n∏
i=1

din : OXn →
n∏
i=1

∂in∗OXn−1

)

Zn(X•) := Ker

(
n∏
i=0

din : OXn →
n∏
i=0

∂in∗OXn−1

)
= Ker(d0

n : Nn(X•)→ ∂0
n∗Zn−1(X•))

Hn(X•) := ∂0
n+1 ∗Zn(X•)/d

0
n+1(Nn+1(X•))

= Cok(d0
n+1 : (∂0

n+1)∗Nn+1(X•)→ Zn(X•)).

The last equality here is a sheafified version of the discussion in Remark 7.3.1. Notice
that Nn(X•), Zn(X•), and Hn(X•) are all quasi-coherent sheaves on Xn, coherent if Xn is
locally noetherian. It is clear from (9.7.3) and the fact that pn∗ is exact on quasi-coherent
sheaves that

pn∗Nn(X•) = Nn(B)

pn∗Zn(X•) = Zn(B)

pn∗Hn(X•) = Hn(B).



SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY 137

9.8. Fibered products. The category DS of derived schemes, like the category Sch of
schemes, has all finite inverse limits.

To form the fibered product (W,D) = (X,A)×(Z,C) (Y,B), set Wn := Xn ×Zn Yn. The
cosimplicial structure of X•, Y• and Z• endows W• with the structure of a cosimplicial
scheme with the structure map for a ∆-morphism σ : [m]→ [n] given by

W (σ) := X(σ)×Z(σ) Y (σ) : Xm ×Zm Ym → Xn ×Zn Yn.(9.8.1)

To show that this W is a derived scheme, we need to show that each map (9.8.1) is affine.
This is because X(σ), Y (σ) and Z(σ) are affine (Lemma 9.1.4). The structure sheaf D of
the fibered product (W,D) is given, as usual, by

D• = p∗OWn .

It is trivial to see that this W has the correct universal property.

Let π1 : (W,D0) → (X,A0), π2 : (W,D0) → (Y,B0), π : (W,D0) → (Z,C0) denote the
projections on the level of underlying schemes. Notice that the structure sheaf D is not
equal to π∗1A⊗π∗C π∗2B. But of course we don’t expect this, because this is not even true
in degree zero (i.e. it isn’t true for fibered products of schemes).

Notice that if P is a property of morphisms of schemes which is stable under base change,
then the corresponding property for maps of derived schemes (defined degree-wise) is also
stable under base change.

9.9. Resolution properties. A noetherian scheme X is said to have the resolution prop-
erty iff every coherent sheaf on X is a quotient of a bundle (locally free coherent sheaf).
Unfortunately, having the “resolution property” is not a particularly “robust” property.
We instead seek a stronger property which is more robust, yet is also enjoyed by a wide
class of (noetherian) schemes.

Given an invertible sheaf L on a scheme X and a global section s ∈ Γ(X,L), we let

Xs := {x ∈ X : s(x) 6= 0}
denote the non-vanishing locus of s. This Xs is an open subscheme of X and the inclusion
Xs ↪→ X is an affine morphism (see [EGA, II.5.5.8] or [SGA6, II.2.2.3.1]).

Theorem 9.9.1. Let X be a noetherian scheme. The following are equivalent:

(1) The opens Xs, for s ∈ Γ(X,L), L an invertible sheaf on X, form a basis for the
topology of X.

(2) The opens Xs as in the previous part which are affine cover X.
(3) For every coherent sheaf F on X, there is a surjection V → F of coherent OX-

modules, where V is a finite direct sum of invertible sheaves on X.
(4) Same as the previous condition, but require F to be a coherent ideal sheaf.

Proof. Apply [SGA6, II.2.2.3] to the family of all invertible sheaves. �

A noetherian scheme X is called divisorial iff it satisfies the equivalent conditions of
the above theorem. Evidently a divisorial noetherian scheme has the resolution property.

Proposition 9.9.2. (1) Any noetherian affine scheme is divisorial.
(2) Any separated regular noetherian scheme (e.g. any quasi-compact scheme smooth

and separated over a field) is divisorial.
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(3) An open subscheme of a divisorial noetherian scheme is a divisorial noetherian
scheme.

(4) If f : X → Y is an affine morphism of noetherian with Y divisorial, then X is a
divisorial noetherian scheme.

(5) A closed subscheme of a divisorial noetherian scheme is a divisorial noetherian
scheme.

(6) If f : X → Y is a quasi-projective morphism of noetherian schemes and Y is
divisorial, then X is divisorial.

Proof. For (1), note that the second condition of Theorem 9.9.1 holds trivially since X =
X1 is affine, for 1 ∈ Γ(X,OX). For (2), see [SGA6, II.2.2.7.1]. For (3), check the first or
second criterion in Theorem 9.9.1. For (4), check the second condition of Theorem 9.9.1,
noting that the formation of the nonvanishing locus Ys of a global section commutes with
pullback: Xf∗s = f−1(Ys). A closed embedding is an affine morphism so (5) is a special
case of (4). For (6), we can reduce, in light of (3) and (5), to proving that X is divisorial
whenever f : X → Y is a projective morphism of noetherian schemes with Y divisorial.
Pick an f -relatively ample invertible sheaf OX(1). We will check the third condition
of Theorem 9.9.1. Let F be a coherent sheaf on X. By the Fundamental Theorem of
Projective Morphisms [EGA, III.2.2.1], we can find n ∈ N such that the natural map

f∗(f∗(F (n))) → F (n)

is surjective. The same theorem also says that f∗(F (n)) is a coherent sheaf on Y , so,
since Y is divisorial, there is a surjection V → f∗(F (n)) with V a finite direct sum of
invertible sheaves on Y . Since f∗ preserves surjections, f∗V → F (n) is surjective. Since
tensoring with an invertible sheaf preserves surjections, (f∗V )(−n) → F is surjective.
Since (f∗V )(n) is a finite direct sum of invertible sheaves on X, we’re done. �

Let X be a ringed space, B an OX -algebra, f : M → B a map of OX -modules. We say
that f generates B as an OX -algebra iff the induced map Sym∗XM → B is surjective (has
surjective stalks).

Theorem 9.9.3. Let f : X → Y be an affine morphism of noetherian schemes.

(1) If f is finite type, then there is a coherent sheaf G on Y and a map G → f∗OX
of quasi-coherent sheaves on Y generating f∗OX as an OY -algebra. In fact, if
F ′ → f∗OX is any surjection of quasi-coherent sheaves on Y , we can choose
our G → f∗OX to factor through F ′ → f∗OX . Note that such a map yields a
factorization

X = SpecY f∗OX → SpecY Sym∗Y G → Y

of f where the first arrow is a closed embedding.
(2) For any coherent sheaf F on X, there is a coherent sheaf G on Y and a surjection

f∗G → F of coherent sheaves on X. In fact, if F ′ → f∗F is any surjection of
quasi-coherent sheaves on Y , we can arrange that the corresponding map G → f∗F
factors through F ′ → f∗F .

(3) If Y has the resolution property we can take the G in the first two parts to be a
bundle. In particular, when f is finite type, we can factor f as a closed embedding
followed by the projection E → Y for a vector bundle E over Y .
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Proof. We will just prove (2); the proof of (1) is similar, but easier. Cover Y by finitely
many open affines {Ui = SpecAi}. Set

fi := f |f−1(Ui) : f−1(Ui)→ Ui, Fi := F |f−1(Ui), F ′i := F ′|Ui.
Since f is affine, we can write fi = Spec(Ai → Bi) for some Ai-algebra Bi and Fi = M∼i
for some finitely generated Bi-module Mi. In the formula Fi = M∼i , M∼i is the one for
Bi-modules; we also have (fi)∗Fi = M∼i where M∼i is the one for Ai-modules and Mi

is regarded as an Ai-module by restriction of scalars along Ai → Bi. We can also write
F ′i = M ′i for some Ai-module M ′i (not necessarily finitely generated) so the surjection
F ′ → f∗F corresponds to a surjection M ′i → Mi of Ai-modules. Since M ′i → Mi is
surjective and Mi is finitely generated, we can find, for each i, finitely many elements
mi,j ∈M ′i whose images in Mi generate Mi as an Bi-module. (To prove (1), take mi,j ∈ Bi
generating Bi as an Ai-algebra.) Let Si ⊆ M ′i denote the Ai-submodule of M ′i generated
by the mi,j , so that Si ⊗Ai Bi →Mi is a surjection of Bi-modules. Then S∼i is a coherent
sheaf on Ui contained in the quasi-coherent sheaf (M ′i)

∼ = F ′i with the property that
f∗i S

∼
i → Fi is surjective. By [EGA, I.9.4.7], we can find coherent subsheaves Gi ⊆ F ′i

such that Gi|Ui = S∼i . Let G := ⊕iGi, G → f∗F the natural map. This G is a coherent
sheaf on Y and the map G → f∗F is as desired since the surjectivity of f∗G → F can
be checked locally on Y and it is clear on the Ui because the image of G → f∗F on Ui
contains the image of S∼i → fi∗Fi. If Y has the resolution property, then we can find a
surjection G ′ → G with G ′ and bundle and replace G with G ′. �

9.10. Factoring maps of derived schemes. We need a “global” (and “finite type”)
analog of the “projective” maps of simplicial rings defined in §?? to use in our factorizations
of maps of derived schemes.

Definition 9.10.1. Say (Y,A) is a derived scheme. An An-module M is called a bundle
(or an An-bundle for emphasis) iff M ∼= pn∗M

′ for a bundle (locally free sheaf of locally
finite rank) M ′ on Yn = SpecY0 An. Equivalently, M is a bundle iff, for any affine open
derived subscheme SpecC = U ⊆ (Y,A), there is a finitely presented projective Cn-module
P so that M |U ∼= P∼ as An|U -modules. (To make sense of P∼ here, one views P as a
C0-module by restriction of scalars along C0 → Cn, noting that SpecC0 = (U,A0|U), and
noting also that P∼, thus defined, becomes a module over An|U = C∼n .)

Definition 9.10.2. A map of derived schemes V → Y = (Y,A) is called affine projective
iff V ∼= SpecY P (as a derived scheme over Y ) for some map of sheaves of simplicial
rings A → P which is symmetric (Definition 7.6.6) with a basis (M0,M1, . . . ) and non-
degenerate complements (E0, E1, . . . ) so that En is an An-bundle for each n ∈ N. (By
Lemma 7.6.5, this implies that each Mn is also an An-bundle.)

Let me try to explain this in more geometric terms—that is, let me reformulate this
definition entirely in terms of the corresponding map of cosimplicial schemes V• → Y•. To
say that this map is affine projective is equivalent to the following:

(1) For each n ∈ N, the map Vn → Yn is the projection map for a vector bundle: i.e.
Vn = SpecYn Sym∗YnM

′
n for a locally free locally finite rank sheaf M ′n on the scheme

Yn (this M ′n is related to the Mn is the above definition by Mn = pn∗M
′
n).

(2) For each surjective ∆-morphism σ : [n] → [m], the structure map σ : Vn → Vm
for the cosimplicial scheme V• is “induced by” (i.e. is SpecYn Sym∗Yn of) a map
σ∗M ′m → M ′n of locally free sheaves on Yn (this latter σ is the structure map σ :
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Yn → Ym for Y•). (This condition corresponds to the condition that “degeneracies
take bases into bases” (i.e. that the Mn have the structure of a degenerate module
over the degenerate simplicial ring underlying A) in the definition of a symmetric
morphism of simplicial rings.)

(3) For each n ∈ N, there is a locally free locally finite rank subsheaf E′n ⊆M ′n so that
the maps σ∗M ′m →M ′n from the previous part induce a direct sum decomposition

M ′n = E′n ⊕ lim
−→

σ∗M ′m,

where the direct limit is over the category Tn (§??) of surjective, non-identity ∆-
morphisms σ : [n]→ [m]. In geometric terms, this says that the vector bundle Vn
over Yn in fact splits as a sum of two bundles Vn = V D

n ⊕ V E
n (one might prefer

to write Vn = V D
n ×Yn V E

n ), where V D
n = lim

←−
σ∗Vm. (This E′n is related to the

non-degenerate complement En in the definition by En = pn∗E
′
n.)

Remark 9.10.3. It is clear from the definition that an affine projective morphism is
(degree-wise) affine, finite type, smooth, etc. Indeed, if π : V → Y is affine projective,
then for any affine open derived subscheme U = SpecA ⊆ Y , the map π−1(U) → U is
given by Spec(A→ P ) for a degree-wise finite type projective morphism of simplicial rings
A → P . (It might be worth recalling from Theorem 7.6.13 that projective morphisms of
simplicial rings are cofibrations.)

Theorem 9.10.4. Suppose Y = (Y,A) is a noetherian derived scheme such that Y0 is
divisorial and f : (X,B)→ (Y,A) is a finite-type affine map of derived schemes.

(1) We can factor f as j : X → V followed by q : V → Y , where j is a trivial
cofibration (Definition 9.6.5) and q is affine projective.

(2) Any two such factorizations map to a third such factorization.

Proof. Notice that every morphism of schemes involved here is affine and every sheaf is
quasi-coherent, so in principle nothing is lost by pushing everything forward to the scheme
Y0 = (Y,A0) and carefully factoring A→ f∗B using much the same factorization procedure
we used in Theorem 7.8.6. The issue is that one has to be very careful to make sure that
it is possible to use bundles everywhere we used (often very large) free modules in that
proof. I find it is easier to see that this can be done if we phrase the proof in rather more
geometric terms; in particular we will make use of the description of the homology sheaves
of a derived scheme in §9.7.

We first note that since Y0 is divisorial and the Yn are affine over Y0, each of the
schemes Yn is divisorial (Proposition 9.9.2(4)), hence has the resolution property. The
map Xn → Yn is also affine, so each Xn is also divisorial, hence has the resolution property.

As in the proof of Theorem 7.8.6, we are going to construct the factorization inductively.
Start by noting that f0 : X0 → Y0 is a finite type affine map of noetherian schemes and Y0

has the resolution property, so by Theorem 9.9.3(1), we can find a bundle M0 on Y0 and a
map M0 → f0∗OX0 generating f∗OX0 as an OY0-algebra—i.e. so that Sym∗Y0 M0 → f∗OX0

is surjective. Then SpecY0 of this surjection yields a closed embedding

j0 : X0 ↪→ V0 := SpecY0 Sym∗Y0 M0

of X0 into the bundle V0 over Y0 so that f0 factors as the closed embedding followed by
the projection q0 : V0 → Y0.
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Assume we have constructed an n-truncated derived scheme V = (V, P ) and a factor-
ization

trnX
j // V

q // trn Y(9.10.1)

of trn f with the following properties:

(1) The map q : V → trn Y is (truncated) affine projective with basis (M0, . . . ,Mn)
and non-degenerate complements (E0, . . . , En), each Mk and each Ek an Ak-
bundle, say with Ek = pk∗E

′
k, Mk = pk∗M

′
k for locally free coherent sheaves

M ′k and E′k on Yn.
(2) The map j is a (degree-wise) closed embedding.
(3) The map jk : Hk(V•)→ jk∗Hk(X•) is an isomorphism for k < n.
(4) The map jn : Zn(V•)→ jn∗Hn(X•) is surjective.

Our start above gives us all of this when n = 0. We need only prove that we can lift our
factorization (9.10.1) to an analogous factorization of trn+1 f satisfying all of the above
properties with “n” replaced by “n+ 1”.

Let us remark that in light of (??), the surjectivity of the map in (??) is equivalent
to the surjectivity of its adjoint map jn : j∗nZn(V•) → Hn(X•). We also note that since
j0 is a closed embedding, isomorphy for the map in (??) when k = 0 says exactly that
π0(X)→ π0(V ) is an isomorphism.

For each i ∈ [n+ 1], we have a solid commutative diagram of schemes:

Xn

jn
��

fn

%%

∂in+1 // Xn+1

jn+1

��
fn+1

zz

Vn

qn

��

∂in+1 // Vn+1

qn+1

��
Yn

∂in+1

// Yn+1

(9.10.2)

We need to construct Vn+1, etc. making the resulting diagram commute and satisfying
various properties.

Define a quasi-coherent sheaf W on Yn+1 by the cartesian daigram of quasi-coherent
sheaves:

W
π2 //

π1

��

∏n+1
i=0 (∂in+1)∗qn∗OVn

��
(fn+1)∗OXn+1

((fn+1)∗din+1)

//
∏n+1
i=0 (fn+1)∗(∂

i
n+1)∗OXn

(9.10.3)

The right vertical arrow is a product of pushforwards under affine morphisms of the
surjection

j[n : OVn → jn∗OXn(9.10.4)

corresponding to the closed embedding jn, hence it is surjective, and hence π1 is also
surjective. By Theorem 9.9.3(1) we can find a locally free coherent sheaf W ′ on Yn+1
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and a map W ′ → W of quasi-coherent sheaves on Yn+1 so that the evident composition
abusively denoted π1 : W ′ → (fn+1)∗OXn+1 induces a surjection

SymYn+1
W ′ → (fn+1)∗OXn+1 .(9.10.5)

For i ∈ [n+ 1], let

πi2 : W ′ → (∂in+1)∗qn∗OVn(9.10.6)

denote the composition of W ′ →W , π2, and the projection to the ith factor of the product.

Next define a coherent sheaf K on Xn+1 by the cartesian diagram

K
π2 //

π1

��

(∂0
n+1)∗j

∗
nZn(V•)

��
Nn+1(X•)

d0n+1

// (∂0
n+1)∗Zn(X•)

(9.10.7)

of coherent sheaves on Xn+1. The right vertical arrow is the pushforward under the closed
embedding ∂0

n+1 of the map which is surjective by (??), hence it is surjective, and hence
π1 is surjective. By Theorem 9.9.3(2) we can find a bundle K ′ on Yn+1 and a surjection
f∗n+1K

′ → K. The composition of this surjection and the map π1 in (9.10.7) yield a map
f∗n+1K

′ → Nn+1(X•). The composition of the map (f∗n+1, (fn+1)∗)-adjoint to the latter
and (fn+1)∗ of the inclusion Nn+1(X•) ⊆ OXn+1 is a map

K ′ → (fn+1)∗OXn+1 .(9.10.8)

Using the commutative diagram (9.10.2), we obtain a map

K ′ → (∂0
n+1)∗qn∗OVn(9.10.9)

by composing the (f∗n+1, (fn+1)∗)-adjoint of our chosen surjection, (fn+1)∗ of the map π2

in (9.10.7), and the appropriate pushforward of the inclusion Zn(V•) ⊆ OVn .

Since Zn+1(X•) is a coherent sheaf on Xn+1, Theorem 9.9.3(2) says we can also find a
bundle S′ on Yn+1 and a surjection

f∗n+1S
′ → Zn+1(X).(9.10.10)

(Actually we only need the composition f∗n+1S
′ → Hn+1(X) to be surjective.)

Let D′n+1 be the direct limit of the σ∗M ′m as σ : [n + 1] → [m] runs over the category
Tn+1 (§??). (We will often use σ as abuse of notation for Y (σ).) Let σ : σ∗M ′m → D′n+1

be the structure map to the direct limit. Since we can alternatively express D′n+1 as

D′n+1 =
⊕

(σ:[n+1]→[m])∈Tn+1

σ∗E′m

(c.f. Lemma 7.6.5) it is clear that D′n+1 is a locally free coherent sheaf on Yn+1, as are

E′n+1 := W ′ ⊕K ′ ⊕ S′

M ′n+1 := D′n+1 ⊕ E′n+1.

Let

Dn+1 := (pn+1)∗D
′
n+1

En+1 := (pn+1)∗E
′
n+1

Mn+1 := (pn+1)∗M
′
n+1
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be the corresponding An+1-bundles. Let qn+1 : Vn+1 → Yn+1 be the vector bundle defined
by

Vn+1 := SpecYn+1
Sym∗Yn+1

M ′n+1.

For the ∆-morphism ∂in+1 : [n]→ [n+ 1], the corresponding map ∂in+1(V ) : Vn → Vn+1

for our (n + 1)-truncated derived scheme V is defined as follows. We want the bottom
square of (9.10.2) to commute. This is equivalent to saying that our map ∂n+1(V ) is
obtained from a map of quasi-coherent sheaves

din+1 : M ′n+1 → (∂in+1)∗qn∗OVn = (∂in+1)∗ SymYnM
′
n(9.10.11)

on Yn+1. Furthermore, for each (σ : [n+ 1]→ [m]) ∈ Tn+1, we need the diagrams

Vn

qn

��

∂in+1 // Vn+1

qn+1

��

V (σ) // Vm

qm

��
Yn

∂in+1

// Yn+1
Y (σ)

// Ym

(9.10.12)

to commute. This commutativity is equivalent to saying that the composition of

σ : σ∗M ′m → D′n+1 ⊆M ′n+1

and the map (9.10.11) must coincide with the map

σ∗M ′m → (∂in+1)∗qn∗OVn
which is ((∂in+1)∗, (∂in+1)∗)-adjoint to the map

(σ∂in+1)∗M ′m = (∂in+1)∗σ∗M ′m → qn∗Vn

corresponding to the “big square” in (9.10.12) (this big square is already defined for our n-
truncated simplicial objects). It is then tautological to check that we can define (9.10.11)
on the degenerate submodule D′n+1 ⊆ M ′n+1 using the universal property of the direct
limit D′n+1 in a unique manner so that the diagrams (9.10.12) will commute. We can then

define the map din+1 in (9.10.11) on the non-degenerate complement E′n+1 ⊆M ′n+1 in any

way we see fit. On the summand W ′ ⊆ E′n+1, we define din+1 by setting din+1|W ′ := πi2
equal to the map πi2 in (9.10.6). On the summand K ′ ⊆ E′n+1, we define din+1|K ′ to be

zero when i 6= 0 and we define d0
n+1|K ′ to be the map (9.10.9). We declare din+1|S′ := 0

for all i.

We next need to define the map jn+1 : Xn+1 → Vn+1. We want the “right triangle” in
(9.10.2) to commute. This is equivalent to saying that jn+1 corresponds to a map

jn+1 : M ′n+1 → (fn+1)∗OXn+1(9.10.13)

of quasi-coherent OYn+1-modules. We also want the top square in (9.10.2) to commute.
This is equivalent to saying that the square

M ′n+1

jn+1 //

din+1

��

(fn+1)∗OXn+1

��
(∂in+1)∗qn∗OVn // (∂in+1)∗fn∗OXn

(9.10.14)
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of quasi-coherent OYn+1-modules commutes. (The right vertical arrow in (9.10.14) is
(fn+1)∗ of

din+1 : OXn+1 → (∂in+1)∗OXn
and the bottom horizontal arrow in (9.10.14) is the pushforward of (9.10.4).)

First of all, if we want (9.10.13) to be compatible with the maps X(σ) and Y (σ) for σ ∈
Tn+1, then there is no choice about how to define (9.10.13) on the degenerate submodule
D′n+1. It is tautological to check that, using the universal property of the direct limit
D′n+1 (and the fact that we started with a map of n-truncated simplicial objects!), if we
define the composition of σ : σ∗M ′m → D′n+1 and (9.10.13) in the unique way compatible
with X(σ) and Y (σ), then the resulting maps “glue” to a map

jn+1|D′n+1 : D′n+1 → (fn+1)∗OXn+1 ,

this map has the property that (9.10.14) commutes when restricted to D′n+1, and, regard-
less of how we define jn+1|E′n+1, the map jn+1 will be compatible with the X(σ) and
Y (σ) for σ ∈ Tn+1. We thus reduce to defining the map (9.10.13) on the non-degenerate
submodule E′n+1 ⊆M ′n+1 and checking that (9.10.14) commutes on E′n+1.

We define (9.10.13) on the summand W ′ ⊆ E′n+1 to be the map we abusively denoted
π1 when we constructed W ′. We define (9.10.13) on the summand K ′ ⊆ E′n+1 to be the
map (9.10.8). We define (9.10.13) on the summand S′ ⊆ E′n+1 to be the composition of
the map S′ → (fn+1)∗Zn+1(X•) which is (f∗n+1, (fn+1)∗)-adjoint to (9.10.10) and the map
given by (fn+1)∗ of the inclusion Zn+1(X•) ⊆ OXn+1 . The commutativity of (9.10.14) on
W ′ follows from the definitions and the commutativity of (9.10.3). The commutativity of
(9.10.14) on K ′ is trivial when i 6= 0 (both ways around are zero) and follows from the
commutativity of (9.10.7) when i = 0. The commutativity of (9.10.14) on S′ is easy to
see from the definitions of the maps involved (both ways around are zero for all i).

It remains only to check the properties (1)-(4). Certainly (1) holds by our construction
of Vn+1 and qn+1. Property (2) is equivalent to surjectivity of the map

SymYn+1
M ′n+1 → (fn+1)∗OXn+1(9.10.15)

induced by (9.10.13). Our construction of (9.10.13) on W ′ ensures that the restriction of
(9.10.15) to

SymYn+1
W ′ ⊆ SymYn+1

M ′n+1

is the surjection (9.10.5), so (9.10.15) is certainly surjective. For (3), we need to check
that

jn : Hn(V•) → jn∗Hn(X•)(9.10.16)

is an isomorphism. Since this map was surjective at stage n, it will remain surjective at
stage n+ 1, so it is enough to check that the map

d0
n+1 : Nn+1(V•) → (∂0

n+1)∗Zn(V•)(9.10.17)

surjects onto the kernel of the map

(∂0
n+1)∗jn : (∂0

n+1)∗Zn(V•) → (∂0
n+1)∗j

∗
n Hn(X•).(9.10.18)

A moment’s thought with the definition of homology shows that the kernel of (9.10.18) is
exactly the image of the map π1 in (9.10.7).
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Consider the map

K ′ → (qn+1)∗OVn+1 = SymYn+1
M ′n+1

including K ′ as a summand of the degree one part of the symmetric product. Since
the maps din+1|K ′ are zero for i 6= 0, the adjoint map q∗n+1K

′ → OVn+1 factors through
Nn+1(V•) ⊆ OVn+1 . Pulling back along jn+1 : Xn+1 ↪→ Vn+1, we obtain a map

f∗n+1K
′ = j∗n+1q

∗
n+1K → j∗n+1Nn+1(V•).(9.10.19)

Because of the way we defined d0
n+1|K ′, the composition of (9.10.19) and

j∗n+1d
0
n+1 : j∗n+1Nn+1(V•) → j∗n+1(∂0

n+1)∗Nn(V•) = (∂0
n+1)∗j

∗
nNn(V•)

is nothing but the composition of the surjection f∗n+1K
′ → K and the map π1 in (9.10.7).

�

Theorem 9.10.5. Suppose Y is a degree-wise noetherian derived scheme and f : X → Y
is a degree-wise finite-type map of derived schemes such that f0 : X0 → Y0 can be factored
as a closed embedding i : X0 → M0 into a divisorial noetherian scheme M0 followed by a
smooth finite type map p0 : M0 → Y0. (These hypotheses on f0 are satisfied, for example,
if Y0 is divisorial and f0 is quasi-projective.) Then any such factorization can be extended
to a factorization f = pi where i is a trivial cofibration and p is degree-wise smooth and
degree-wise finite type. Any two such factorizations of f map to a third such factorization.

9.11. Derived fibered products.

9.12. Cotangent complex.
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