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On the deformation of rings 
and algebras: II 
By Murray GERSTENHABER* 

This paper presents a deformation theory for filtered rings. A complete 
filtered ring is shown to be a deformation of its associated graded ring; in 
particular, it is given by a knowledge of the latter and certain homological 
information. The significant advance over Gerstenhaber [1] is that the ad- 
ditive structure, in particular the characteristic, should there be one, may 
change. The signal difficulty lies in constructing the necessary absolute coho- 
mology groups. (For examples of the problems involved in this direction, 
cf. Dixmier [1] and Shukla [1].) 

The classical algebraic obstruction theories, including those of Eilenberg- 
MacLane [1] and Hochschild [2], [3], [4], are in effect given a uniform treatment 
by ? 1 of this paper. Section 2 contains the successive approximations to a 
filtered ring, and ? 3 ends-with the deformation of one filtered ring to another. 
Important but easily obtained results are stated without proof. 

1. Homological preparation 

Let 9R denote the category of all rings, associative or not. By an epimor- 
phism in R, we shall mean a morphism which is an epimorphism in the sense 
of sets, regardless of whether or not it may be an epimorphism in the cate- 
gorical sense of Grothendieck [1]. 

DEFINITION 1. A category of interest is a subcategory C of Rk with the 
properties: 

( 1 ) If A B is a morphism in C, then its kernel and cokernel (in A) are 
again in C. [The cokernel of A - B, coker (A - B) is the quotient of B by the 
ideal generated by the set-theoretic image of A in B, together with the natural 
projection B - coker (A - B). Similarly, the kernel is the set-theoretic kernel 
together with the natural injection. Under the usual categorical definitions 

both are in fact defined only up to isomorphism, and we so view them here.] 
( 2 ) The fibered product (cf. Gabriel [1]) of C-morphisms p: A - C and 

: B C (i.e., the object A x a B = {(a, b) I xpa = cf} with the obvious ring 
structure and projection maps) is again in C. 

Remark. Had we considered categories of interest inside almost abelian 
* The author gratefully wishes to acknowledge the support of the N.S.F. under grants 

G-24412 and GP-3683. 
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2 MURRAY GERSTENHABER 

categories (J. C. Moore [1]), then what follows could also have included the 
cases of groups and schemes. 

The categories of associative, Lie, Jordan, commutative associative, and 
associative nilpotent algebras are examples of categories of interest. For the 
rest of this section, some category of interest C will be assumed fixed. By 
a singular object in C we shall mean a ring A such that the addition map 
A x A A is a morphism in C. It follows that A is a zero ring, i.e., ab- 0 
for all a, b in A. The following (not needed in the sequel) intrinsically char- 
acterizes singular objects. 

THEOREM 1. Singular objects are precisely the "groups relative to the 
category C", i.e., the objects A such that 

( 1 ) for all x in C, Home (X, A) carries an additive group structure, 
and 

( 2 ) given X X', the induced mapping Home (X', A) Home (X, A) 
is a morphism of groups. 

By the bicenter of a ring A, we shall mean the set of all x such that 
xa= ax = 0 for all a in A, and a morphism will be called singular if its 
image is contained in the bicenter. If p: C A is a singular morphism in C, 
then -p, defined by -p(c) -(wc) is again a morphism in C. If r: CUB is 
a second singular morphism, then -p x /: C-oAx B (defined by (-p x )cC 
(-wc, *c)) is again in C. 

DEFINITION 2. The cokernel of -p x r will be denoted by A +, B; it is 
the direct product with the images of C in A and B identified and is again a 
ring in C. 

There are obvious morphisms A - A +, B and B > A + cB. 

LEMMA 1. The "sum" A + cB has the following universal property. If 

4 P C yB 

is a commutative diagram of rings and morphisms in C in which 9, r and 
a are singular, then there exists a unique morphism A +cB~ > X in C such 
that A - X is the composite A - A + a - X, and similarly for B X. 

The concept of exact sequence in C is clear; a morphism of sequences is 
the usual commutative diagram (cf. Yoneda [1] and [2]). Given A and C in C 
an extension of A by C is a short exact sequence E: 0 - C - B - A . 0, the 
objects and morphisms tacitly being in C. The extension is singular if C is a 
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DEFORMATION OF RINGS: II 3 

singular object; it is split if there is a morphism A - B such that the com- 
posite A - B - A is the identity morphism 1A. 

DEFINITION 3. Let A and C be in C. An A-structure on C is a split ex- 
tension E: 0 - C -B H A 0 together with a definite choice of splitting 
map. Equivalently, there is defined an action of A on C such that the group 
direct product with multiplication given by 

(a, c)(a', c') = (aa', ac' + ca' + cc') 

is again in C. 
By abuse of language, we may sometimes speak of the A-structure C. If 

C is singular, then we have the usual concept of an A-module in the category 
e, cf. Gerstenhaber [2]. A morphism of A-structures is simply a morphism of 
short exact sequences carrying the splitting map of the first into that of the 
second. Kernels and cokernels are defined in the category of A-structures. If 
C' carries an A'-structure and a morphism Am A' is given, then C' carries an 
A-structure in a natural way. If, in addition, an A-structure C and a mor- 
phism C C' in C are given, then we shall say that A - A' and C C' are 
compatible if C - C' is a morphism of A-structures. Any morphism p: A C 
in C induces a natural A-structure on C. (Split the short exact sequence 
O- C --A x C-) A -O by the diagonal map A -A x C. It is trivial to 
verify from the axioms that all the objects and morphisms are in C.) In par- 
ticular, A and all its quotients carry canonical A-structure. If C1 carries an 
Al-structure and C2 an A2-structure, then C1 x C2 carries an Al x A2-structure 
in a natural way. 

DEFINITION 4. Suppose given an A-structure on C. Then a morphism 
A: C - A is said to conform if the C-structure on C induced by the morphism 
is the canonical one, i.e., if cc' = (c)c' = c.p(c') for all c and c' in C. 

The Baer extension theory is meaningful for categories of interest. That 
is, fixing an A-module structure on M, the set of equivalence classes of sin- 
gular extensions of A by M forms a group in the usual way, here denoted by 
6,(A, M) or simply by 62(M) if A and C are understood. It is important to 
note that &2(A, M) does not necessarily vanish when M is an injective in the 
(abelian) category of A-modules relative to C. It vanishes, for example, when 
C is the category of associative or Lie algebras over some fixed coefficient field, 
but does not vanish when C is the category of commutative associative algebras 
over a field, cf. Gerstenhaber [1, Ch. I, Th. 3]. 

For the purposes of the deformation theory, no present definition of the 
higher cohomology groups, including that of Gerstenhaber [2], is satisfactory; 
the germane definition of the third group, here denoted '(A, M), follows. 
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4 MURRAY GERSTENHABER 

(All concepts are tacitly relative to C.) 
Given an A-module structure on M, an exact sequence 

E:O M - N - B )A - >O 

will be called admissible if N carries a B-structure, the morphism N B 
conforms, and M - N is a morphism of B-structures (where we may consider 
M as a B-structure by virtue of the morphism B - A). Note that M a N is 
necessarily singular. A morphism of admissible sequences is a commutative 
diagram 

E:O > M > N > B > A >0 

lf {f3 {f2 Ifi Ifo 
E': 0 > M' > N' > B' > A' > 0 

in which f3 and fo are compatible, f2 and f, are compatible, and f3 and ft are 
compatible (where M is considered as a B-structure, and M' as a B'-structure). 
Let C3(A, M) be the category whose objects are admissible sequences begin- 
ning with A and terminating with M, with morphisms, those morphisms for 
which fo and f3 are identity maps. Given two sequences in C3(A, M), they are 
considered equivalent if there is a morphism in C3(A, M) from one to the 
other, and we define the equivalence relation in C3(A, M) to be the one which 
this propagates. 

LEMMA 2. Given E' and E" in C3(A, M), they are equivalent if and 
only if there exists an E and morphisms E" - E - E". 

The lemma is known in the Yoneda theory (Yoneda, [1], [2]); the proof 
here follows similar lines. 

DEFINITION 5. &3(A, M) is the set of equivalence classes in C3(A, M). 
The group structure in &3(A, M) is introduced precisely as in the Yoneda 

theory. Specifically, the zero element is the class of the sequence 0: 0 M 
M A A -A 0, where M- A is the zero map, the negative of the class of 
E: 0 M N B A is the class of the sequence formed from E by 
replacing M > N by its negative, and the sum of the class of E with that of 
E': 0 Ma N' B' A 0 0 is the class of the sequence 

0 >(M x M)IK >(Nx N')IK yB XABf A 0O. 

where K is the kernel of the addition map M x M-a M, i.e., K = {(m, -m)}. 

THEOREM 2. &3(A, M) is a commutative group, contravariant as a 
functor of A and covariant as a functor of the A-module M. 

PROOF. The contravariance in A follows from the existence of fibered 
products. As for the covariance in M, note that given an admissible sequence 
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DEFORMATION OF RINGS: II 5 

0 > M-a N-o B - A 0 and an A-module morphism M-a M', then M' +M N 
is well-defined in C. The group structure follows classical lines. 

If p is a derivation of A into the A-module M, and if A + M denotes the 
split singular extension, then (a, m) - (a, m + cp(a)) is an automorphism in 
Rt of A + M; if it is an automorphism in e then we shall say that cp is a 
derivation of A into M relative to C. Denoting by Der, (A, M) the additive 
group of all such, we have the usual result on the exactness of the coho- 
mology sequence. (The sequence here terminates with the third group since 
no higher ones have been defined, but can be extended by the derived func- 
tors of 0, as well as in some less obvious ways.) 

THEOREM 3. Let 0 - M' M M" - 0 be a short exact sequence of 
A-modules. Then letting C and A be understood, there is a natural exact 
sequence 0 - Der M' Der M ? Der M" -2M' O* M O* M" -3 Mf 
O3M -3m". 

(Note. The cohomology groups of groups, of associative algebras, and of 
Lie algebras can be defined as derived functors of Der; (cf. Rinehart-Barr [1]).) 

The following elementary theorem is the most important one in this 
section. In it 0 will denote also the zero module. 

THEOREM 4. The necessary and sufficient condition that the class of an 
admissible sequence 0 O M a N - B - A - 0 be the zero element of &3(A, M) 
is that there exist a morphism of admissible sequences of the form 

o - > 0 N > >A >O 

o - M - N - B - A - 0, 
and when that is the case, we may assume, that N N and that the mor- 
phism N -N is the identity. We then have a singular extension 0 >M 

B B O. 
PROOF. An immediate consequence of Lemma 2. 
Despite its simplicity and importance, the theorem seems to have been 

overlooked in the classical literature. 
If E: 0 Ma No B A O is equivalent to zero in C3(A, M), then 

the sequence E.: 0 - 0 - N o B - A - 0 and morphism E. - E which exist 
by Theorem 4 are not necessarily unique. Calling such a sequence and mor- 
phism a solution for E, we have 

THEOREM 5. If E is equivalent to zero in C3(A, M), then the set of 
equivalence classes of solutions for E is in a natural way a principal homo- 
geneous space over &2(A, M). 
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6 MURRAY GERSTENHABER 

PROOF. If E is equivalent to zero, then we have a diagram 

E : 10 N >K >as 

E : 0 M > N >B - A 0; 

E. and E' are equivalent if there exists a morphism 

Eo: 0-N- N >> B A-A-0-- *0 

E': 0 ~~ > N > B'->A > . 

The morphism B B' is then an isomorphism. To see that &2(A, M) actually 
operates, suppose that F: 0 M-* Foe A- 0 represents an element of that 
group. Then there is a morphism 

EO XAF: 0 - X M >B AF >A >0 

______ add _ I 
E :0 yM- N _ > _A 

where add is the addition map defined by add (n, m) = n + m, and the mor- 
phism B x A F B is given by (b, f) - wrb. We may thus set 

E0 + F = add* (E. X AF): 0 > (N x M)/ker add 
-*(B xAF)/keradd > A 0 . 

It remains to show that given E. and E', there is an F such that E' is 
equivalent to E0 + F. To this end, set N/M = K and observe that there is a 
natural morphism 

E: O- N > B - A - 0 

K: 0 K B - A > 0 

The same being true for E', and the morphisms N - K and B - B being 
epimorphisms, we can form 

Eo x E': O- >N XKN-B xBB' >A >A 0. 

Let diag: No N x K N be the diagonal map, let diag N be identified with its 
image in B x B B', and set (B x B B')/diag N F. There is a natural epimor- 
phism F > A induced by the morphisms B A and B' - A. Now every ele- 
ment of N x K N is uniquely representable in the form (n, n + m); mapping 
this to (n, m) shows that N x K N is isomorphic to N x M. Further, B X B B' 
is isomorphic to B X A F, the morphism being the product of the morphisms 
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B x B B' B (projection on the first factor) and B x B B F (reduction modulo 
diag N). Therefore, letting F denote the sequence 0 M- M F > A 0, it is 
the case that E. x K E'is isomorphic to 

Eo XAF: 0 N x M > BX AF ,- A >O. 

Projection of (n, n + m) on the second factor is just the addition map, 
add: N x M- N. Projecting E0 x K Eo on the second factor gives just Eo. There- 
fore F has the property that E0 + F = E', as required. This ends the proof. 

One may note that, if C is a category of algebras over a coefficient ring 
k, then all the foregoing definitions can be relativized by considering only k- 
morphisms and only exact sequences of k-morphisms which are k-split; we 
write correspondingly Rel &'(A, M) and Rel &e(Ag M). If A is projective as 
a k-module, then the relative groups coincide with the absolute ones. 

The relationship between &3(A, M) and the classical third cohomology 
group in important special cases is given by 

THEOREM 6. 1. Let C be an arbitrary category of interest, M be an A- 
module relative to C, and R'&'(A, M) denote the first right derived functor 
of 61(A, M) considered as a functor of M. Then there is a natural mono- 
morphism R'&'(A, M) &-(A, M). 

2. Let k be a fixed coefficient ring, and C denote either the category of 
associative algebras, Lie algebras, or commutative associative algebras over 
k (or, had we given the details, the category of groups). Then there is a 
natural morphism 

Rel &'(A, M) >Hel(Ag M),9 

where if C is the category of associative algebras, then H,(A, M) is defined 
as in Hochschild [1]. If C is the category of Lie algebras, it is defined as in 
Chevalley-Eilenberg [1]; and if C is the category of commutative associative 
algebras, then it is defined as in Harrison [1]. (In the group case, it is 
defined as in Eilenberg-MacLane [1]; cf. also MacLane [1] for all the 
foregoing.) 

3. If A is projective as a k-module, and if C is the category of associa- 
tive algebras or Lie algebras over k (or if C is the category of all groups), 
then the morphisms 

R 1&2(Ag M) >&e(Ag M) >Hel(Ag M) 
are isomorphisms. 

PROOF. As for 1, if in the definition of &'(A, M) as equivalence classes 
of sequences 0 M N > B A > 0, we had imposed the additional condi- 
tion that N be singular (hence an A-module) the resulting group would have 
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8 MURRAY GERSTENHABER 

been just R'&'(A, M); the monomorphism follows. Assertion 2 is just the 
basic computation of the algebraic obstruction theories, and can in effect be 
found in Hochschild [2] for the associative case, in Hochschild [3] for the Lie 
algebra case, in Harrison [1] for the commutative associative algebra case 
(and in Eilenberg-MacLane [1] or MacLane [1] for the group case). Asser- 
tion 3 follows from the fact that in the cases mentioned H,(A, M) is isomor- 
phic to R'&'(A, M), and the composite morphism given in 3. is the classical 
isomorphism (Gerstenhaber [2]). It follows that each factor is an isomor- 
phism. This ends the proof. 

For the categories of part 3 of the theorem, we have also that &3(Ag M) 
R2 Dere (A, M), following Rinehart-Barr [1]. 

Note, finally, that if all the rings and modules under consideration are 
graded, and if we consider only morphisms of degree zero, then all the fore- 
going discussion continues to hold verbatim, and the groups Der, &2, 23 all 
acquire natural gradations. This is still true if the gradation is by the inte- 
gers Z, and the objects are complete in their natural topologies; this will be 
the case in the next section. 

2. Successive approximations and the rigidity theorem 

Throughout this section, an equationally defined category C of algebras 
over a coefficient ring k will be understood as a category of interest. Ex- 
amples include associative, Lie, Jordan, and commutative associative algebras, 
but nilpotent algebras are excluded unless an index of nilpotence is fixed. 
(The category of groups is also excluded.) We shall use ring and algebra 
interchangeably, but all morphisms will be understood to be k-module mor- 
phisms. We give now for the purposes of this paper 

DEFINITION 1. A filtered ring A is a ring together with a decreasing se- 
quence of submodules indexed by the integers, 

A D... D F1A D FA D F1A D 
such that FA.FjA c Fa+jA. A complete filtered ring is one which is complete 
in the sense of Eilenberg-Moore [1], or equivalently, exhaustive, separated, and 
complete in the sense of Bourbaki [1]. (Note that it carries a natural topology.) 

In an equationally defined category, every ring has a natural completion. 
DEFINITION 2. The weak associated graded ring wgr A of a filtered ring 

A is the direct sum Et=_0, FiA/Fi+1A, with the obvious k-module and multi- 
plicative structures. A graded ring is a filtered ring B together with sec- 
tions si: F?B/F,+1B > FiB such that E si: wgr B > B is a morphism of k- 
algebras. The associated graded ring gr A of a filtered ring A is the com- 
pletion of wgr A. 
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Warning. The definitions of graded ring and associated graded ring 
adopted here do not coincide with the usual ones (cf. MacLane [1]). Ordi- 
narily a graded ring is one such that E si is an isomorphism. Here a graded 
ring is a special case of a filtered ring and therefore also has a completion 
which is again obviously graded. For example, if R is a ring and t a variable, 
then both the polynomial ring R[t] and the power series ring R[[t]] over R, 
with the obvious sections, are graded rings, the latter being the completion 
of the former. 

If A is complete, then A and gr A are homeomorphic as topological spaces 
by a homeomorphism which in general is not canonical (cf. Gerstenhaber 
f1, Ch. III]). 

Henceforth we shall tacitly assume that all filtered (and hence also all 
graded) rings and modules under consideration are complete. 

If B is a graded ring, then we shall denote the submodule sj(FjB/Fj,,B) 
of B by Bi and call it the ith homogeneous part. 

DEFINITION 3. A bifiltered ring B is one carrying two filtrations, F and 
F', such that setting FmF!'B = FmB n F,'B makes each FmB and each F%'B 
into a (complete) filtered module. A filtered graded ring is one in which the 
second filtration is a gradation; in this case we write FmBi for FmFI'B. 

Given a ring A, we shall denote by A((t)) the ring of formal power series 
E aiti in which finitely many negative powers of t may appear. 

DEFINITION 4. Let A be a filtered ring. Then App A is the filtered graded 
subring of A((t)) consisting of those series E aiti for which ai e FA for all i, 
with gradation induced by that of A((t)) and filtration defined by 

FmnAPPA= {A I aiti I ai e FmiA} . 

Note that the filtration on App A is non-negative, i.e., F0 App A = App A. 
It follows that the Fn App A are ideals for all n. In what follows, we may write 
N-filtered for non-negatively filtered. 

DEFINITION 5. The nth approximation to a filtered ring A is the ring 
App. A = App A/F+ App A, with filtration and gradation inherited from 
App A. 

Note that App0 A is identical with gr A. The ring App A has a natural 
k-module endomorphism a defined by o( atti) = E aiti-; we shall call a the 
shift. If x and y are in App A then we have c(xy) = (cx)y = x(ay), and fur- 
ther, Fm App A = a- App A. Each of the rings Appn A inherits from App A 
an endomorphism with these properties; we shall continue to call it the shift 
and to denote it by a. 

LEMMA 1. Let A be a filtered ring. Then, 
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10 MURRAY GERSTENHABER 

1. The shift is a continuous k-module endomorphism of App A and of 
Appn A for every n. It is a monomorphism on App A; its kernel on Appn A 
is FnAppnA. 

2. There is a natural sequence of projections 

App A 1App1 A <p A App3AA (-... 

Denoting the shift on Appn A by an, we have w7ann = Un-l7n- The kernel of 
wrn is Fn Appn A and proj lim AppnA is naturally isomorphic with App A. 
Further, proj lim an = a, the shift of App A. 

3. Let (a - 1) denote the ideal of App A consisting of all elements of 
the form ax - x, xs App A, and let (App A)/(a - 1) be filtered by letting 
FJ[(App A)/(a - 1)] be the image of (App A), (the "th grading submodule) 
under the natural projection. Then A is canonically isomorphic with 
(App A)/(a - 1). 

PROOF. Only 3 needs proof; and, for this, it is sufficient to observe that 
the morphism App A m A given by E aiti E a, (the sum necessarily con- 
verging) has kernel precisely (a - 1). 

DEFINITION 6. A shift ring (B, a) is an N-filtered graded ring B with a 
continuous k-module shift endomorphism a, such that a(FmBi)= Fm+iBi-, 
and such that aaub= ar ab= a(ab). If, in addition, for some non-negative 
integer n we have ker a = FnB, then B will be called an (abstract) nth ap- 
proximation ring. A morphism of shift rings will be assumed to carry the 
shift of the first into that of the second. 

THEOREM 1. 1. App and Appn are covariant functors from the category 
of filtered rings to that of shift rings; Appn A is an abstract nth approxi- 
mation ring. 

2. A necessary and sufficient condition that a shift ring (B, a) be of 
the form App A for some filtered ring A is that the shift endomorphism a 
be a monomorphism. 

3. Suppose given for every n ? 0 an nth approximation ring (B a 
together with an epimorphism (B ') 9a ) ) (B , avIn)) of shift rings whose 
kernel is Fn+1B f+1 Then proj lim (Bun n7(n)) = (B, a) is a shift ring whose 
shift is a monomorphism; hence it is of the form App A for some A. 

PROOF. Only 2 needs proof. Observe that the elements of B of the form 
ax - x form an ideal (a - 1); the desired A is then just B/(a - 1). 

Lemma 1 and Theorem 1 together assert that knowledge of a filtered 
ring is equivalent to knowledge of a graded ring B('0 and a sequence 
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of abstract nth approximation rings; '?) is the zero map. 
DEFINITION 7. Given a shift ring (B, a), let (sh B, sA a) denote the shift 

ring defined by setting Fm(sh B)i = Fmi-Bi,. We shall also denote by sh the 
mapping from B to sA B which is pointwise the identity. (Note that sh is a 
module isomorphism and a homeomorphism, but does not preserve the filtra- 
tion and gradation.) Multiplication in sh B is defined by setting sh a sh b 
sh [a(ab)]; we set (sh a)a = sh (aa). 

It is important to note that every graded ring A is also filtered by setting 
F A = A, F1A = 0, and hence is also trivially a shift ring with a = 0. The 
multiplication in sA A is then identically zero. 

LEMMA 2. Given an arbitrary shift ring (B, a), s B becomes in a 
natural way a filtered graded B-structure by setting a sh b = sh (ab) = 
(sh a) b. 

The proof is left to the reader. Henceforth, by abuse of language, we 
may speak of a shif t ring B, the shift being understood. Note that the shift 
functor sh is an exact covariant functor from the category of shift rings to 
itself. In particular, it can be iterated; sh" B is well defined for any shift 
ring B. 

Given an ntll approximation ring (B(,), (,)), a fundamental question is 
whether or not it is of the form Appn A for some filtered ring A, the shift 
endomorphism of Appn A being, of course, that induced from App A. In view 
of Theorem 1, the first step is to determine under what conditions there exists 
an (n + 1)st approximation ring (B(+') ("+l)) from which (B("), (n)) can be 
obtained by reduction modulo Fn+,B("+') To this end, note that if B(,) is a 
fixed nth approximation ring, and if for every m < n, B(m) denotes the mth ap- 
proximation ring obtained by reducing B(") modulo Fm+,B'), then we have 
FMB(n) _ shm B(-m) and the sequence 

Enm: 0 shA B(n-m) > B(n) B(m-1) 0 

is exact. In particular, for m = n = 1, we have 

E1,1: 0 > sBi?) > B(') 71 >B()-b 0 

where sA B(0 is a zero ring and a module over B(0) isomorphic to B(0) itself 
except for the gradation. Since the concepts of zero ring and singular ring 
coincide in C, E1l, is a singular extension of B(0) by sh B'?), and thus represents 
an element of O2(BR0', sh B(0)). Conversely, given an element of &2(B'0', sh B(0)) 
represented by the sequence E1,1, there is a unique structure of shift ring on 
B(1) such that wi is a morphism of shift rings with kernel F1B~'l. If we define 
such pairs (B('), w1: B(1') B(0)) and (Barl, rf) to be equivalent if there is an iso- 
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12 MURRAY GERSTENHABER 

morphism p: B"' B') such that Aq' w1, then the equivalence classes are 
in effect just the elements of &2(B(0', sh B'0)). Accordingly, given a graded ring 
B(?', we may call O2(B'0', sh B(0)) its group of first order infinitesimal defor- 
mations to a filtered ring, and more generally, call &2(B(0', shn B'?') the group 
of nth order infinitesimal deformations for all n > 1. 

Consider now the sequences Enn_1 and En, . Applying sh to the former, 
we can compose them to get 

(En,0) o (sh Eno_1): 0 - shn+1 B(0) sh B'n - B(n- > B -?' > 0 

sh B(" 1) 

0 0. 

Note that in effect B(0) is merely a graded ring, since F1B(0) = 0. 
THEOREM 2. Let a shift ring (B , j()) be given, and let (EnO) o (sh En n-1) 

be considered as an exact sequence of graded rings (letting the filtrations of 
B(n) and shBi ) be forgotten). Then 

1. (En'0) o (sh E.,,-,) is an admissible sequence of graded rings in the 
sense of ? 1, and therefore represents an element, henceforth denoted 
obs (B' q(fa)) of &3(B'0', shn+1 B(0)). In particular, for n 1, there is a map 

obs: OB(B'0', sh B(?') >& 3(B'0', sh2 B'')) 

(The map is quadratic and in general is not a morphism of k-modules.) 
2. The necessary and sufficient condition that there exist an n + lst ap- 

proximation ring (B(n+ (l) ) together with a morphism n+1: B+') Be ) 
of shift rings with kernel F,+,Bn+') is that obs (Bn), q(n)) = 0. When that is 
so, we shall call the pair (B'n+l' w ?+1) a solution for B'n). 

3. Assume that obs (B(n), (n)) = 0 and define solutions (Bun- 1), wr,+?) and 
(B'-+l', 1fn+?) to be equivalent if there exists an isomorphism of shift rings 
A: B'n+l' B7'+ such that mfw = wr. Then the equivalence classes of solutions 
form in a natural way a principal homogeneous space over &2(B'?', shn+1 B0)). 

PROOF. We leave 1 to the reader. As for 2 and 3, note that as far as the 
structure of graded ring on B(n+') is concerned, the assertions follow from 
Theorem 5 of ? 1. However, the filtration on Bn+') is completely determined 
by that on B(n) and the condition that w be a morphism of filtered rings with 
kernel Fn+B(n+l'); this ends the proof. 

Combining the preceding with Theorem 1, one concludes that given an 
abstract nth approximation ring B(n) if the successive obstructions to con- 
structing a sequence of approximation rings and projections B(n) B n+l * . . 
all vanish, then B(m' = Appm A for some A and all m; in particular, B( = 
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DEFORMATION OF RINGS: II 13 

Appn A. (For m < n we set, as usual, B(m) = B (n)/Fn+jB'n.) In particular, 
we have 

COROLLARY 1. Let (BOY, q(n)) be an nth approximation ring. If 

&3(B(0), sh' B'?) = 0 

for all i > n, then there exists a filtered ring A such that B(") = Appn A. 
Let an nth approximation ring B(n) be fixed. In the set of pairs (A, ()), 

where A is a filtered ring and co: App, Am B(- ) an isomorphism of shift rings, 
let an equivalence relation be defined by setting (A, co) - (A', co') if there exists 
a morphism P: A A' of filtered rings such that o- =' Appn p. Let Fil (Ban)) 
(the space of filtered rings with associated nth approximation ring B(n)) be the 
set of equivalence classes of these pairs. In the special case n = 0 we state 

DEFINITION 7. A graded ring B(0) is rigid if Fil (B(0)) is reduced to a single 
element. 

Observe that, if (Bn), j(n)) is an nth approximation ring, then forming the 
associated graded ring gr B(n) to B(n) as a filtered ring, we have a natural iso- 
morphism of shift rings App B(')- gr B . (Note that gr B is in fact a doubly 
graded ring with an obvious shift endomorphism.) If B(") - gr B(%) then we 
shall say that B(%) is graded. For such an nth approximation ring, we have 
obsn (B(-), v) = 0, for Appn+l B(0) is a solution, and indeed a canonical one. 
It follows that the equivalence classes of solutions are in canonical one-one 
correspondence with the elements of &2(B'0', shn+1 BHO)). 

COROLLARY 2. Let B(7) be a graded nth approximation ring. If 

&2(B(0', sh' B')) = 0 

for i > n + 1, then the elements of Fil (Bun)) are in canonical one-one corre- 
spondence with the elements of &2(B10), shn+1 B?0)); should the latter vanish, 
then Fil (B(n)) is reduced to a single element. In particular, if 

&2(B'0', sh' B'?)) = 0 

for all i > 0, then the graded ring B(0) is rigid. 
The group of automorphisms, Aut B(n) of an nth approximation ring B(n> 

operates on Fil (B(n)) as follows. If z is an automorphism, A a filtered ring, 
and o: Appn A B(- ) an isomorphism, then set z-(A, co) (A, z-o). The oper- 
ation preserves equivalence classes and so defines the desired action. The 
action on Fil Wn)), however, need not be effective. Let Triv B(n) denote the 
normal subgroup consisting of all elements of Aut B(n) whose action is trivial. 
The modular group, Mod B(n) of an nth approximation ring B(n) may be defined 
to be Aut B )f/Triv B . 
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14 MURRAY GERSTENHABER 

3. The ray determined by a filtered ring 

Henceforth, considering App A as a collection of power series E aitt, the 
shift endomorphism will be denoted by t-'. 

DEFINITION 1. Let A be a filtered ring, and X be any element of the 
coefficient ring k. Then Def, A will denote the ring App A/(t-1 - X), filtered 
by letting Fi Def A be the image of (App A)i under the canonical projection. 

The definition is extended to shift rings (B, a) first by observing that in 
App A there is a k-module endomorphism App a defined by App v(I biti) = 
E (bi)ti+1, and then by observing that the ideal (t-1- X) is stable under 
App a, so that the latter induces a k-module endomorphism Def, a in Def, B. 
The pair (Def B, DefA v) is then again a shift ring. Considering for every 
fixed n the class of ntlh approximation rings, and similarly the class of rings 
of the form App A, as a category with morphisms the morphisms of shift 
rings (i.e., considering these classes as full subcategories of the category of 
shift rings), we have 

PROPOSITION 1. The functor Def, is a functor from each of the fol- 
lowing categories to itself: Filtered rings, N-filtered rings, non-positively 
filtered rings (i.e., filtered rings A with F1A -0), filtered graded rings, 
shift rings, nth approximation rings, rings of the form App A. 

The list is not to be considered exhaustive. Briefly, the functor Def, 
inserts a ring of any of the categories which we have considered into a one- 
parameter family parameterized by the elements of the coefficient ring k. 
Considering this we have 

PROPOSITION 2. The functor Def1 is the identity functor, Def =gr, and 
Def, gr = gr Def, = gr for all X in k. 

The proposition asserts, in particular, that given any graded ring B(", 
every point of Fil B("' can be joined by a ray to the origin, namely B("' itself. 

Given a filtered ring A, there is a canonical morphism F0A - App A de- 
fined by a - at'. If A is N-filtered, then the composite morphism 

A = FA- > App A - >App A/(t-1- X) = Def, A 

will be denoted by A,. If A is a ring with non-positive filtration, in which 
case App A is the set of finite sums a. + a-1t-' + * + a_,t-1, ai E F_iA 
then the kernel of the morphism App A ) A given by E a-i t-' Xia_- 
contains the ideal (t-1- X). There is therefore a canonical morphism 

AX: Deft A > A . 

PROPOSITION 3. On the categories of N-filtered rings, shift rings, nth 
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approximation rings, and rings of the form App A, the pair (Def,, A,) is a 
natural transformation of the identity functor for every X in k, while on 
the category of rings with non-positive filtration, the identity is a natural 
transformation of (Def,, All). 

A ring A will be said to have a short filtration if A = FA and F2A = 0. 
We have then a singular extension 

0- , FA , FoA- FoAIFlA > 

and Fil (gr A) can be identified with &2(FOA/F1A, F1A). We can there- 
fore consider Def, 8 for an element 8 of the latter group. Note also that 
&2(FOA/F1A, F1A) is a k-module, so that X/3 is defined for all X in k. 

PROPOSITION 4. Let A be a ring with a short filtration. Then, for all 
8 in S2(FOA/F1A, F1A), we have Def, = =X,8. 

The proposition holds also for shift rings with short filtration and for n" 
approximation rings with n = 1. 

PROPOSITION 5. 1. For any filtered ring A, we have App Def, A 
Def, App A. 

2. If B(0) <-- B(1) < 42 B'2 (2 * ** is a sequence of nth approximation 
rings with kernel wun = FnB f) then Def, proj lim B(n) = proj lim Def Bans 

PROOF. 1. Given an N-filtered ring A, let App+ A denote the subring of 
App A consisting of those series of the form E aiti with ai = 0 for i < 0. 
Then it is the case that App A/(t-1- X) is identical with App+ A/(t-1 - X); 
that is, every element of App A is congruent modulo the ideal (t1 - X) to an 
element of App+ A. 

Consider now Def, App A. Let the variable in App A be denoted by t, and 
that introduced in the definition of Def, be denoted by u. Then Def, App A 
is the quotient of the ring of series of the form a aijtiu=, aij E F,+jA by 
the ideal (u1 - X). In each series there are only a finite number of terms 
with negative powers of t or u; we write 

a = 
1i2-mn -n ait i u 

where m and n depend on a. Since the filtration of App A is non-negative, 
we need, by the remark of the preceding paragraph, consider only those 
series aijt'uj in which j _ 0. On the other hand, one may readily 
verify that App A Def, A is the quotient of the ring of series of the form 
Adi2-m {42-n bijtiuj with bij E FiA and bij = 0 for j > i, by the ideal (t1 - X). 
We may write 

Def, App A = { Eim , aitiuIij E Fi+jA}/(u- X) 

and 
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16 MURRAY GERSTENHABER 

App Def, A = {i-m bijtiuj bij E FiA}/(t-1 - X) 
j<i 

The mapping atiuj ati+ jui, a E Fi+jA, extended in the obvious way to the 
power series, induces an isomorphism from the first to the second. We leave 
2 to the reader. 

PROPOSITION 6. 1. Let (B, a) be a shift ring. Then for every X in k, 
we have Aa = X Def, (a) -A, where, on the right, X denotes the k-module 
endomorphism x > Xx of Def, B. 

2. If (B"", (f,)) is an nth approximation ring, then for every X in k, we 
have 

obs (Def, B("', Def_ q(7()) - "') obs (B("), 7(n)) 

PROOF. Part 1 is obvious. Using it, we have the commutative diagram 

o -> shn+l B?) BB(,- h B -> B' -> 0 

2n+1 ] sh (Ak) Ash Bn-1) A I { ,~~~~~~~2 h (Ax){ 
o > sh+l B' -> sh Def, B(") > Def B() > B(() - 0 0 

sh Def, B('-') 
where X also stands, as before, for the k-module endomorphism x Xx. 

Part 2 follows immediately. 
The properties of the functor Def, given in Propositions 1 to 6 are more 

than sufficient to characterize it axiomatically. 

THEOREM 1. Let X be an arbitrary element of the coefficient ring k and 
De, be a functor on the category of filtered rings carrying the categories of 
N-filtered, shift, nth approximation rings, and rings of the form App A into 
themselves; and suppose that on the latter categories there is given for every 
A a morphism del,: A De, A such that the pair (De,, del,) is a natural 
transformation of the identity. Suppose further that 

( 1 ) gr De, = Dex gr = gr; 
( 2 ) App De.= De. App; 
( 3 ) if A is a ring with short filtration and 8 e &2 (A/F1A, F1A), then 

De, , = By; 
( 4 ) if (B, a) is a shift ring, then delya = X*De, (a).del,; and 

( 5 ) if B(0) < B(') *... is a sequence of nth approximation rings as in 
Proposition 5, then De, proj lim B(") = proj lim De, B("). 

Then De, coincides with DefA, and del, with A. (up to isomorphism of 
functors). 
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PROOF. It is in effect sufficient to prove for every n that De, and Def 
coincide on ntl approximation rings. For n = 1, this follows from (3). Sup- 
posing this true for n = m, let an m + 1St approximation ring (Bm+l', q(m+l)) 

be given, denote as usual Bm+l'/Fn+,B'm+l' by B(n, and given an element b of 
Bm+l', let mwb denote its image in B(m). By means of the composite morphism 
Bmn+') < '* B(n) <o Def, Bump, the ring sh Def, Bum) (which carries a Def, Bum) 
structure) acquires a structure over Bm+'). We may therefore form 

C = B~m+') + sh DefA Bu)I 

and denoting by i the injection sh Def, Bum-) De, Bm+'), there is a morphism 
9: C - De, B~m+') given by 9(a, x) = del, a + i(sh wx). It is evident that gr v 
is an epimorphism, whence so is p, and De, B~m+') is therefore the quotient of 
C by some ideal. The same is true of Def, B~m+') and condition (4) shows that 
in both cases the ideal is the set of all elements of C of the form 

(i(sh a), -X(Def, )( I) 

where a is an arbitrary element of B(n). The rest is trivial. 
Note now that, since the functors Def, are all from the category of 

filtered rings to itself, the composition of two such is meaningful. 

COROLLARY. Def, Def., = Defy,. 
PROOF. It is sufficient to observe that Defx Defl and DefA, have the same 

axiomatic properties. 
It follows from the corollary that, if X is a unit in k, then Def, A is 

canonically isomorphic to A for all filtered rings A. 
We consider finally the question of deforming general filtered rings. 
DEFINITION 2. A deformation ring (D, S) is a pair consisting of a bifiltered 

ring D with filtrations F and F', and a module endomorphism S: D D with 
the properties 

( 1 ) S is a monomorphism, 
(2) S(FiFJD) = Fi+1F>-D, and 
(3 ) (Sx)y = S(xy) = x(Sy) for all x and y in D. 

THEOREM 2. Let (D, S) be a deformation ring, and let gr' D denote the as- 
sociated graded ring relative to the F' filtration, and set a = gr' S. Then gr' D 
is a ring of theform App Afor some A, with a being the shift. Further, Ais just 
D/F1D. Denoting the ideal of all elements of D of the form Sx - Xx by (S -), 
we have canonical isomorphisms A = D/F1D = DI(S), the filtration of DI(S) 
being induced by the F' filtration of D; likewise, the rings D, = D/(S - X) 
are all filtered, the it filtering part being the image of Fi'D modulo (S -), 
and the associated graded rings of the D, are all canonically isomorphic. 
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18 MURRAY GERSTENHABER 

In view of Theorem 2, we state 
DEFINITION 3. A filtered ring B is a deformation of a filtered ring A if 

there is a deformation ring (D, S) such that setting DA = D/(S - X), we have 
DO A and D1 = B. 

It follows that, if B is a deformation of A, then gr B = gr A. 
Considering the approximation ring App A as a graded ring with certain 

additional elements of structure, we can, in a manner precisely analogous to 
what has gone before, consider infinitesimal deformations of App A, and define 
the obstructions to these. The objects so obtained, being associated with A, 
may be considered, respectively, the infinitesimal deformations, and obstruc- 
tions to infinitesimal deformatioms of A. As before, the successive approxi- 
mations to a filtered ring whose associated graded ring is App A can be 
considered, and if all obstructions can be passed, then a deformation ring 
(D, S) will have been constructed. The concept of rigidity for a filtered ring 
A, the space Fil A, and the modular group Mod A are defined as the corre- 
sponding objects for App A. 

We have omitted from discussion various important topics including 
the obstruction theory, and the relationship of the present theory to the ana- 
lytic deformation theory of Froelicher-Nijenhuis [1] elaborated by Kodaira- 
Spencer (for the most recent developments in which, see Spencer [1]). These 
and other matters (including work which has followed upon the publication 
of Gerstenhaber [1]-in particular Rim [1], Nijenhuis-Richardson [1], and 
Richardson [1]) will be discussed in a monograph being prepared. 
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