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PREFACE

The study of Harrison's cohomology groups was initiated by
Harrison himself in (8) and continued by Barr in (2). Both of these
papers dealt only with algebras over fields although all definitioms
hold true over an arbitrary ring. Here we make an attempt (suggested
by Professor Barr) to study Harrison's groups in general over any ring.
Unfortunately, complete meaningful results seem to be obtainable only
when the ring contains the rational numbers. However, with mild assump-
tions on the existence of units in arbitrary rings, interesting par-
tial results are available, Further, using an idempotent arising out
of the shuffles of Harrison's theory, one gets an interesting splitting
of Hochschild's complex,
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of Mathematics at the University of Illinois. For the third year, he
held a research assistantship under National Science Foundation grant
GP5478, For the last two years, He was supported partly by a one-
fourth time teaching assistantship at McGill University and partly by
grant NRC 245«77 of the National Research Council of Canada. Unaided
by this help, this research would have been impossible,

The author would like to thank especially his advisor, Professor
Michael Barr for all of his patient aid, advice and encouragement for
the length of time of this research. Thanks also go to all of those
who wittingly or unwittingly helped but especially to Bob McConnell

and Ann Fleury,
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THE SPLITTINGS

1. The Hochschild Complex

Let k be an arbitrary commutative ring and let A be an ar-
bitrary commutative algebra over k. Unless expressly mentioned to
the contrafy, all rings are assumed to have a unit element. The Hoch-
schild homology (and cohomology) modules of A will be defined using
the following complex. In dimension n, n>0, we let

5 A = aea(Mga

denote the A-A bimodule in which A(®)

denotes the tensor product of
A taken with itself n times. Unless expressly mentioned to the con-
trary, all tensor products will be taken over the base ring k.

We define an A-A linear map an: SnA —_— Sn— A in the

1
following way. Let a,83,8...82a ., € SnA' Set
an(aon...xan+1)== 23, Ba,B. . Ba L, - 3,833, 8, B2
n
1- '] 1‘ ("'l) aoﬂalﬂ...ﬂanan_]_l

Then, because of Cartan and Eilenberg (5), page 174, we see that

an”lan = 0, and we have defined a differential of degree -1, We

shall denote the entire complex thus defined by S,A.
We define the Hochschild homology and cohomology modules of A
with coefficients in the A-A bimodule M to be:

Hochy (A,M) = H(S,Am, M)

AmA

¥
and Hoch (A,M) = H(Hom

aa(5hsM))




We shall denote the n-th homology and cohomology modules by Hochn(A,M)
and Hoch™(A,M) respectively.

The foregoing definitions can be somewhat simplified if we
restrict the bimodules in which we are allowed to take coefficients.
In the present case, we shall be concerned only with symmetric bimodules.
That is, we are interested in those A-A bimodules, M, for which am = ma
for all a in A and m in M,

1.1 Proposition: If M is a symmetric A-A bimodule, then M is
isomorphic to AuAM.

Proof: The A-A bimodule action on Am,M is given by (alxaz)(axm) =
a amma,. We define f: M ——————*'AHAM by £f(m) = lzm and g: AuAM —— M
by g(amm) = am. The f and g are clearly A-A linear and fg(amm) = f(am) =
lgam = asm. Furthermore, gf(m) = g(lsm) = lm = m., Thus, we see that f
and g are isomorphisms.

We shall use the above isomorphism in the following way. If M

is a symmetric A-A bimodule, then

SnAEAEAM = SnAEAxAAEAM
- (n)
ArA EAEAEAAEAM
= AuA(n)uAM

In a similar manner, using the adjointness of tensor and hom we es-
tablish that

. (n)
) HomAuA(SnA’M) = HomA(AnA

M)
Proposition 1.l now tells us that the category of symmetric

A-A bimodules is naturally equivalent to the category of left A modules.




Thus, if we now consider left A modules as symmetric A-A bimodules,

and we use the remarks following proposition 1.1, we may simplify Hoch-

(n)

schild's complex in the following way. We set CnA = AA" "and we de-
fine an: CnA ——— Cn—lA by
an(aoualu...uan) = a,a,Ba M, . .Ba - 3,Ba,3,8...Bd
Toees t (-l)n—laonalu...aan_lan
+ (-l)naoanaalna2n...nan_l

Then, as before, an_lan = 0 and then we will have, if we denote the en-

tire complex by C,A
Hoch*(A,M) ==H(C*AuAM)
and Hoch' (A,M) = H(Hom, (C,A,M))
From now on we shall denote the element aoual

ao[él,...,aﬁ] in order to conform to the notation of Barr (1).

B...B3 by

2. Differential Graded Algebras

2,1 Definition: A differential graded algebra (U,d) over the

commutative k-algebra A is a graded algebra U over A equipped with a
graded A-module endomorphism of degree -1, 3: U ———— U, such that
99 = 0 and the Leibniz formula is satisfied. I. e.,

deg u, , .
) 1w, 3(u2)

B(ul-uz) ==8(ul)'u2 t (-1
We shall frequently abbreviate differential graded to DG.
é
If we consider the complex C,A, we at once note that it is

merely the underlying module of A tensored over k with itself many




times in each dimension. Thus, C,A looks quite a bit like the tensor

algebra of A over k. It is thus natural to ask whether or not C,A can
be made into a DG-algebra, The answer is yes, however the multipli-’

cation is much more complicated than mere tensor multiplication,

In order to describe the multiplication, we must make use, first,
of the fact that C,A is a simplicial A-module with faces and degenera-
cies given by:

ai(a [a al) =a[a a,a cvsa ) 0<i<n
n 0 l,oul’n 0 l"”’ii"‘l" I,n —
i .
sn(aotal,. . ,an] ) = ao['qll,. .o ’ai’l’ai'l‘l" . ,a;) 0<i<n

These are easily seen to satisfy the following simplicial

identities (see MacLane (11) ):

i S R . | . o i J o gt i . .
dn-—ldn dn—ldn 1<) Sn'i'lsn Sn+lsn <]
j=1.1i . .
i3 Sn-—2dn-l <3
dn So_1 = lj o1 i=3, jt1
Sn-2dn—l i>jtl

Secondly, we make note of the fact that there is a natural
isomorphism between CnAxACmA and CanA'
We define the product of a generator in dimension i and one

in dimension n-i as follows. If i equals 0 or n, then
Sn,O(Cal""’an-") = SO,n([al""’a;l) = f_al,...,a;j

If i is not 0 or n, then

et By esid) = Todm oy oy (B sa)

i -
1' ("l) [ai.i_gﬂ Si,n"‘i—l(tal’...’ai'l'l’...’an])
where the sign ~ denotes an omitted factor., We, of course extend

these functions A-linearly, and then this becomes the "shuffle"




multiplication,

2.2 Proposition: ansi,n-ic @l" verad ) =

i
.]- ("l) Si,nr—i"l(@l’...’a}.l nan_itai_rl’ou-,a;)
Proof: There is an A-linear map CiAnACiA S CiA which is
* ! ! 1 1 ! I

given by a, [al,.. +»ag] naO[_al,... ,ai] — aOaOEalal""’aiai]'
Then, if we apply this map to the shuffle map of Eilenberg and MacLane
(6), we will have our shuffle multiplication, The proposition then
follows from theorem 5.2 of the paper cited,

The complex CuA, together with the above defined multiplicationm,
is now an augmented DG-algebra., That is, there exists a map of DG-al-
gebras from C,A to A where A is considered as a DG-algebra with trivial
grading and differential. We are very interested in the kermel of this
augmentation, In order to decide what that is, we note that the map
8,3 C;A —— C,A is given by al(ao{aij) ~aya; - 8,3, = 0. Thus

1
9., is zero, and the kernel of the augmentation must then consist of that

1
part of C,A of dimension greater than or equal to one. This kernel
forms a subcomplex which we shall call J A, or, if A is understood,
sometimes merely J,.

Now consider JiA, which we define to be that subcomplex of
CyA which is formed by all non-trivial shuffles. We now set

Chyh = J,A/J%A

Then the differential and grading of CyA induce a differential and

grading on the quotient complex Ch,A, We now define the n-th Harrison

PR




homology and cohomology groups of A with coefficients in the left A~
module M to be:
Harr (A,M) = H_(ChyAm M)
and Harr" (A,M) ==Hn(HomA(Ch*A,M))
we denote the total homology and cohomology by Harr,(A,M) and Harr“(A,M)

respectively.
3. The Action of I
— ——— — 1

Let Zn denote the full permutation group on n letters and let
m be an arbitrary permutation. Any such permutation will define an A-

(n)

isomorphism of AmA by

ﬂ—l@l,. . ,a; ==[éﬂ(l),. ‘e ’a‘rr(n)]

Thus, we may make CnA’ n>l, into a kzn module where k is our ground ring.
We may then consider the shuffles Si,n—i as elements of the group ring.

Of special importance to us will be the element En of kzn de~
fined in the following manner, Let the alternating representation
sgn: I ———* k be defined by sgn(w) =1 if 7 is an element of the al-
ternating subgroup of Zn and ~1 otherwise. Then we may linearly extend
sgn to a ring homomorphism also called sgn: kzn ———— k, We now set

E = .2 2n(sgn(ﬂ))'ﬂ

Now, if u e kz_, then u'E_ ==(sgn(u))'En.

8.1 Lemma (Barr (2)): Let a0[§l""’aﬁj e J A, Then

anEn(aoca.l,...,ar;) = 0.




Furthermore, if u ¢ an, and Bnu(ao[ﬁl,...,a&]) =0 for all
ao[al,...,aﬁ] € JnA and arbitrary A, then u is some multiple of En.

Proof: Let us compute BnEn(ao[bl,...,aél). If n—l is one of
the permutations in L then the term aOaﬂ(l)[?n(2)""’aﬂ(n§] occurs
with coefficient sgn(w) in the boundary. This term also appears as
the last term in the boundary of n—lc—l(aocgl,...,a;]) where o = (1...n).
That is, it will as the last term of the boundary of

202y 2%n(n) 21l -

However, we note that sgn(o) ==(—l)n—l, so the second time the term ap-
pears, it has coefficient (~l)2n—l(sgn(n)) = -ggn(w). Furthermore,
the term aotan(l)”'"an(i)an(iTl)""’an(ni] appears in the boun-
dary of w-l(ao[ﬁl,...,aé]) and with opposite sign in the boundary of
ﬂ—l(i i+l)(ao[al,...,a&]). Thus, we see that anEn is zero.

Now let u be any element of kzn, and suppose anu(ao[?l,...ag ) =
0 for all aOY?l,...,an] in CnA and arbitrary A, Consider any per-
mutation n—l which appears in u., The term
ao[?w(l)""’an(i)an(i+l)"'"aﬂ(n)] now appears in the boundary of
u(ao[?l,...,aﬁ]). This can be cancelled in all cases only by itself
with opposite sign. Such a term will only be afforded in all cases
by using n—l(i itl). Thus every term of the form w"l(i itl) appears in
u along with w_l, and this is sufficient to guarantee that u will be a
multiple of En'

Now let us suppose that our ground ring is the integers, that

u is in an, and that anu =0, Then u ==mEn for some integer m, But




u*gE = m]:."2
n n

=m*n!*E
n
= (sgn(u))'En.
Thus we see that sgn(u) = men!. This observation will be very helpful
to us when our ground ring is a field of characteristic zero. Un-
fortunately, when it is a field of characteristic p, and n>p, we must

modify the case for the integers to get any information about u.

L. The Exact Sequence

Now let the ground ring k be a field, we have defined the com-

plex Ch,A using the exact sequence

(4.1) 0 r 324 > A + ChyA ——— 0

o "

We now need to know that this sequence splits, albeit non-naturally.

2 C oo (n) (n)
Now, JnASJnA is simply Am Sl,n—lA t oo, f Sn—l,lA
(n)

tained in JnA = AmA'"°, The exact sequence of k-vector spaces

(n) (n) (n)
0 ——————ﬂ-sl’n_lA ool Sn—l,lA

and is con-

—— A

— 4™, A b s At

l,n~1 n-1,1 ; 0

[

certainly has a k-splitting. Thus, since A is a k-vector space and is

then projective, we find that
(n)

(n)
0 — Am Sl,n—lA P sn—l,lA

(n)

—— AmA

—r AE{A(n)/ Sl,n—lA(n) % ees T Sn—l,lA(n)} — 0

is exact and split as a sequence of A-modules. We thus see that the

exact sequence (4,1) is an exact sequence of complexes for which the




sequence in the n-th dimension is split, Because of the splitting,
both the sequences

(4.2) 0 —— HomA(ChnA,M) —— HomA(JnA,M)
——r HomA(JiA,M) ———r 0

(4.8) 0 ——— JﬁAaAM —— J,_Ag M ——— Ch AgM —— 0
are exact for any A-module M. Thus we have two short exact sequen-
ces of complexes., Now, it is clear from Cartan and Eilenberg (5),

page 169, that

Hn(J*AEAM) ==Hochn(A,M)

==TorAEA(A,M)
n
and Hn(HomA(J*A,M)) ==Hochn(A,M)
- n
ExtAxA(A,M)
Thus, if we take homology, we have two long exact sequences:

e 9, Hn(JiAxAM) ———— Tor ™A

N (A, M)

3 2
——— Harr_(A,M) —=— H___ (JzAB,M) ~———>

5 Harr (A ,M) ~—— EthEA(A,M)
2 ntl 8 vee
—_— Hn(HomA(J*A,M)) ~———— Harr~ ~(A,M) ——

where 9 and § are the connecting homomorphisms.

5. The Splittings

We are interested in those cases for which Harrison's theory is
a direct summand of Hochschild's theory. In (2), Barr has shown that,

if k is a field of characteristic zero, then this is the case in every
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dimension for all commutative algebras. We shall give a variation of
his proof and then use our own techniques to find splittings in certain
dimensions for fields of characteristic p.

5.1 Theorem: Let k be a field of characteristic p. There are
n&tural transformations of functors

<bi(A,M): Hochi<A,M);——-—-—~+ Harri(A,M)

@i(A,M): Harri(A,M) —— Hochi(A,M)
If 1<i<p-1, then @i(A,M) is a split epimorphism and ¢i(A,M) is a split
monomorphism. If k happens to be a field of characteristic zero, then
these splittings exist in each dimension,

The fact that there exist natural transformations of functors
is clear since Harrison's complex was defined as a quotient of Hoch-
schild's complex in a functorial manner. For the rest, we shall show
that there exist projections e, JiA —_— ChiA which are also
natural transformations and which split for l<i<p-1l. We shall make use
of several lemmas.

5.2 Lemma: Let l<i<n, Let aj[&;,.4058 40 € J_.,A. Then

Bnp1(@olays e erdpy ) = (354, (@fiay s ey BT o5 53,1T)

i
U U EEEREL T n L ST CIRVRLERIL eI B

Proof:\lanﬂ(a0 ayseeesa gy ) =agala,s,a 0] Ea,00008 407

n+l

1‘.-. T(l) n_rlcalgtot,anj

= a alEaQ,...,a 'rlj - aota a2,q-.,an1_j 1‘ e

Tl
1' ("l)l (a a, 'i'lEal’...’a Tl""’an+j)
- ("l)lfl(a a. 'i'l[al""’al’i"l""’a l])
1‘ oy T("l)n.{-l(a a .i.lEal""!aj)




11

T L RERCEL IS U R EFFUPTEREL WA
i i
P Dl e deag g 8y 0 omg )

i
- (=1) (aotal,...,ai])n( @i“rlaiw""’an“rl]) T

t (—l)l(—l)n—iﬂ(aO[_‘_al, ces ,ai] )u(an'l'l‘-—-aiw"l’ - ,an‘_])

= (Bi_”_(a0 Ell, - ’aiTl’J))E(L‘E‘iTZ" . ,an_r]:l)

i
U G T T LIS Y GRS EREREL SN L

We have noted earlier that each s, may be considered as an

i,n-1i

element of kzn and thus as an A-endomorphism of the A~module JnA. We
now define another element, 8, of kEn in the following way. First, we

set 84 equal to zero. Next, if n>2, we set

n-1
s. = ] s

n . i,n-i.
i=1 ?

We already know that Ss g need not be a chain map. We, can now show,

2

however, that Sy is a chain map.

Py
5.3 Lemma ( Barr (2)): ansn Sn-—lan

Proof: We recall that, by proposition 2,2, we have,

2081 ,n-i B0BLs - 03 =8y 5 3 (R5(ag[Ry 50 a5 030D

i
T (-1) Si,n—i—l(aotal’ . ,a{_\m(an_i[aiﬂ, ves ,a; )
n-1

! si,n-i(ao@v""an]))

Thus, ansn(ao[al,.. . ,an'_]) = Bn(i
n-1l

i ,Z= lsi—l,n—i

((ai(aol:al,. . ,ai:l ) )m( [ai“_,. ‘e ,anj))

t DY g (agiayseaay ([ 5a,0))
= "Sl,n—2( (a,fag )a(an_l('_aQ, cersa] )) 1sl’n_2(82(aor_’al,a2] B(Eg,. .. .8 ] ))
- .. .T(—l)nFQSn_%l((aO[al, veesa, 1)e3, (T ,a3))

t oy g,1 81 (B0l oy Du )
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=5 ( -1(8g CIERRRRL S Nt .., ts (3 (a CIFTRRPL S ))

l,n-2 n-2,1" 'n-1
~ G- lan(ao Bysveesdy )
Thus the theorem is proved.
5.4 Lemma: sgn(s.’n l) = “$.n-i (We use the symbol i nei to

represent the binomial coefficient of n objects taken i at a time.)
Proof: We shall first consider our ground ring to be the in-

tegers and look at ZZn. Now we proceed by induction on n. The lemma

is obvious for n = 2 since Sl,l =¢e ~ (1 2) where e is the identity

element of En. Now we assume we have proved the lemma for n-l. Then

Si,n—'(ao al,...,an ) may be written in the following way:
S; n-i(30 21200008y ) =8y i,nei-1(80 310003y g JB 2
n"l ~
T ("’l) si—l,n"i(ao al’.."ai’."an )ﬂ ai
- _qyn-i . .
Thus 81 n-i 8§ neiel t (-1) i—l,n-i(l itl it2 .., n). If we apply

En € ZZ to both sides of the above equation we will have

sgn(s ) *E —{sgn(sl neim l) t (= l)n"l(sgn(sl 1,n- l) sgn( (i ...n)))}-En
2(n-1)
=={sgn(sl nein l) t (~1) sgn(sl 1,n- 1)} E
—{cl n-i-1 T ci—l,n-—i}.En
=={c"i,n—i}oEn
Thus sgn(sl - l) ==ci,n—i'

Now if we replace the ring of integers by any arbitrary com-
mutative ring, there will be a canonical map, ¢: Z —— k, which
is given simply by taking unit to unit. This extends to a map

'S ZZn —_— kEn. This second map will take s, . E zzn to the

i,n-i

same element in kEn and it will also commute with the maps sgn from
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Z2L_ to Z and kI_ to k. Thus in the ring kI_, the signature of s, .

is also c, .
i,n-i

5.5 Corollary: sgn(sn) = 2%.2,

Proof: sgn(sn) ==sgn(sl, 1 Tooeo t Sn-l,l)

N«
= 2% g,
[} [ ] . n_ - - = *
5.6 Proposition: ((2"-2) sn)...(2 Sn)si,n—i 0 for all l<i<n,

Proof: Once again, we shall consider our base ring to be the
integers first, Thus, we have s, and Si,n—i in ZEn. We proceed by
induction on n with the case for n = 1 being trivial, If n = 2, then
8, = Sl,l =e ~ (1 2). Thus,

(2 - 52)31,1 = (2 - et (12))(e - (1 2))
= (e t (1 2))(e -~ (1 2))
=(? - 1 2)?)
= (e - e)
=0

Now assume that the proposition is true for n-1, Then

n-1
0, (((2"77-2)-s )i (208 DSy | 1) =

n-1 i
(((2777-2)-s ;)eve(2-s ;0)(s; | sCOumL) (-1)7s; o (1m0 ;D)
because of propositions 2,2 and 5.3. Then, by induction,
n-1l -
(((2 —2)—81'1—1)"'(2—Sn))(si—-l,n—i(aiﬂl)) 0
n-1 -
and (((2 -2)—Sn-'l)..'(2-Sn))(Si,n"i"l(lxan"i)) o.
Thus, by proposition 3.1, we see that (2" 1-2)-8_)...(2-5 )8, _ . must
n n’ i,n-i

be some multiple, say Py onei? of En for all pairs i and n-i, Thus
,N-
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((2%-2)-5 )((2"e2)-5 ). (208 D5y | o = ((2%2)es)) vy

n
ri,n—i(Q —2asgn(sn)) E

. E ]
oN=i "m ‘
i
=0,
by corollary 5,5, By applying the same tricks we used in lemma 5.4,
we see that the proposition is true for an arbitrary commutative ring.
Now suppose we consider
1 = D 5y n"l.. - -
e ((27-2) sn)((2 2) sn)...(2 s ) € kI,
where k is a field of characteristic p. Then look at (eﬁ)g. If we
expand (er'l)2 as a polynomial in s, We see that every term, excepting

only the first, is a multiple of eﬁsn. But each term of this form is

zero by proposition 5.6, Thus we have

2 n i n
()™ ={ ; L ,(27-2)}(27°-2)-5 )...(2~s )

n : [
If we could multiply eﬁ by the inverse of 5 5.2(2l~2) in our field k,
)

we could convert eﬁ into an idempotent map and be on our way. Unhappily,
this is not always possible since that product may be equal to zero

in the field k. We must then decide when it is possible to divide,

Certainly, it is possible to divide in dimension n by 5 E,Q(zi-z)
when we are working over a field of characteristic zero, Furthermore,
if we are working with a fieldlof characteristic p where 2 is a primitive
root modulo p (i.e,, the order of 2 in the group of units modulo p is
p-1) then we may divide by the above product in dimensions up to but
not including p. When 2 is not a primitive root modulo p, we may also
divide up to dimension p, but in order to show this, we must have some

more Facts at our disposal.



15

[SY

Let us recall that lemma 3,1 holds true for any ring. In par-
ticular, we may consider the ring of integers modulo pawhere p is the

L ] L] (] . i . a
characteristic of our field, a is some non-negative integer, and p

n .
is the largest power of p dividing i 5,2(21*2). We denote this ring by k',

5.7 Lemma: Let n be any integer less than the prime p, Let us
U

n .
consider the ring Z . If p® divides i 2‘2(21_2) then,

((2n—2)-sn)...(2-sn) "pa Z o T o € %

m
TE X
n

Proof: We fix p and proceed by induction, If p is two and
n is one, the lemma is obvious. Now suppose the prime p is odd,
once again, if n is one or two, the lemma is obvious. Let us assume

it is true for n-1l, Consider ((2ne2)-sn)...(2-sn). this is expressible

"

in the form we want if and only if it is congruent to zero in k'Zn.

o, ’

Since lemma 3.1 holds true there, we have

n - (oD n-1
an(((2 -2)—Sn)000(2—sn)) (2 "2)(((2 —2)—Sn_l)-.0(2—sn_l))an

n-l
"Snpl(((2\& —2)—Sn“l)'..(2—sn—l))an

n n-l
(2°-2)(((277-2)-s_ _;)...(2-5 _;))3

since the second term is zero by proposition 5.6.
n-1l

Now suppose pb divides 2"-2, Then pa—b divides (2°71-2)..(2%-2),
By the induction assumption, we see that pa divides
n n-1 . a~b .. .
(27-2)((2 —2)—sn_l)...(2—sn_l) since p divides
n-1 n . .
((2 '2)'Sn-l)"‘(2"sn—l)' Thus, n(((2 -2)-sn)...(2—sn)) is zero in

k'L _ This tells us that ((2n-2)-sn)...(2-sn) is a multiple of E in

l.
k‘Zn. If we multiply the above by En’ we have

n
((2 —2)«sn)...(2~sn)-En - A-En-En
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= nleAE
= ((2"-2)-sgn(s ))...(2-sgn(s )) E_

.=20

Thus nl«A = 0, 8ince n<p, n! is a unit in k', so A must be zero, Thus
we have shown that ((2n-2)-sn)...(2-sn) is zero in k'L .

The above lemma tells us that we are now able to divide by the
2 i
product 5 I 9 (27~2) in a field of characteristic p in all dimensions

less than p. Thus we now set

n o,
= l -
e, =el /{; L ,(27-2)} 2<n<p-1

We will then have the following proposition,
5.8 Proposition: 1.) e JA——>JA is a chain map.
2,) e>=~e
n n

3.) the kernel of e consists of just those
shuffles of dimension n.
= n_,y_ _ i
Proof: 1.) 3 e =28 {((27-2)-s )...(2-s )/ ; L ,(2 2)}

n .
= ((2"2) (2" e2)ms__).iu(2es 100/, I ,(25-2))

n .
n~l i
s, ((2"7-2)-s 1).i(2ms) 100 / ;L ,(27-2))
n-1 n i
= {((2 "2)"‘sn«l)otc(2"sn—.l)an}/ i l.[: 2(2 "'2)
= en-—lan

since the second term above 1s zero by lemma 5.6,
2 n n i
2.) e =e {((27°-2)-8 )...(2~s)/ , I ,(27-2)}. If we expand

the right hand side, we see that every term involves s, excepting only

the first, But e s = 0. Thus
nn
2 A | Y |

=e
n
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3.) Certainly, applying ey to a shuffle will yield zero. Now

suppose en(z) = 0 for some z in JnA. The leading term in e is 1, Thus,

n .
if we expand e as a polynomial in s,» We will see that z = X ais;(z)
i=1

for some a; € k and thus z is a shuffle,
Now, from the idempotence of e, We may conclude that
JnA ==eanA t (l—en)JnA.
But (l-en)JnA is the kernel of e,> and thus consists of the shuffles,
Thus, eanA is chain isomorphic to ChnA, and so when we apply the
functors -nAM and HomA(-,M) to J A and eanA and take homology, we

see that theorem 5.1 is proved.

6. The Second Splitting

From the foregoing, it is clear that a splitting of JnA exists
in all dimensions over a field of characteristic zero, It is equally
clear that the same splitting does not exist in all dimensions when the
characteristic of the field is greater than zero, since 2P.2 is con-
gruent to zero modulo p. In this second case, however, we do have another
very interesting splitting. In order to investigate this, we shall need
some facts about idempotents in arﬁitrary rings.,

6.1 Proposition ( Herstein (9)): Let T be a ( possibly non-
commutative ) ring., Let a be a non-nilpotent element of T such that
a2na is nilpotent. Then there is a polynomial q(x) which has integral

coefficients and aq(a) is a non-zero idempotent.




18

Proof: Suppose (a2--a)m = 0, Then, if we expand (a%-a)™ and

transfer all terms except a" to the right hand side, we have ar ='am+lp(a)

where p(x) is some polynomial which has integral coefficients. Now let
e = a"{p(a)}". If a" is not zero, then neither is e, since a" ='am+lp(a) =
arap(a) = a-amﬂp(a)'p(a) = .= a2m{p(a)}m =g,

Now we claim that e is idempotent., We have e? =‘a2m{p(a)}2m =

&L () ip(a) 12t = 2™ g (a) 12 = ™2™ () (p(a) )22

cee =apa)” =e.

Let us consider the polynomial p(x) which we constructed above.
We note that it depends on the integer m for which (a2—a)m is zero.
Thus, we should actually write pm(x) instead of just p{x). We now wish
to know exactly what pm(x) looks like,

6.2 Proposition: pm(x) =1t (1-x) t (%)% + .vo t (Lex)™L,

Proof: Clearly, pl(x) is 1, since a’-a =0 inplies a = 52 pl(x).
Now suppose (a2--a)m = 0, If we expand this, we will see that

2m 2m-1 2m«2 mm _
- cm"l,la ’t’ Cm_2’2a T e T ("l) a O

The above equation implies:

m_ _mfl, mtl, .\m-1 mtl m-2
& = (ML e GO, oa
Fouove t (-1
=™l - tmtm-1)/2}a F ...+ (<D™ 1M1
= Il m-2_m-2
a “((m-1) - cm_3’2a t .ot (=1) “a
Floc cat e t (<1)™2 M2t (enyigmmly

m-2,1 °m-2,1a

because of the well-known formula involving binomial coefficients,

t c, .+ Now the upper part of this equation is simply

C. . C, . =
i-1,3 i,3-1 1,3
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1+ (1-a) + (l--a)2 toaee (l--a)m“2 while the lower part is the ex-

m-1 mt 1

. Thus, a" =a (L + (Qea) t o0 ¥ (l—a)m“l)

pansion of (l-a)
mel
sop (x) =11+ (%) + .., + (1),

Let us now return to our consideration of J,A where A is a com~
mutative algebra over the field k which has characteristic p, For the
sake of simplicity, we shall temporarily assume that 2 is a primitive
root modulo p.Let us now set

- P-1 o). -
w, = 20(2P™12)-5 ). 1 (2-8,)
and consider w, as an element of kZz. The reason we choose the coef-

L

ficient 2 is explained by the following lemma.

6.3 Lemma: Let 2 be a primitive root modulo p. Then, ipi}2(2i—2)
is congruent to % modulo p.

Proof: First, we know that the product of all non-zero ele-
ments of ZP is -1 since they are all roots of the polynomial xp—l—l.
Next, if i is less than j and both are less than p, then 2i—2 is not
equal to 2j—2. If it were otherwise, then 2i would be equal to 2j and
s0 2j—i would be equal to 1. This would contradict our assumption that
2 @s a primitive rcot., Thus the factors in the above product are all
different., There are p-2 of them, Thus there is orly on: non-zero
element of ZP which is not contained in the factorization. This element

is obviously -2. Otherwise, 2.2 = -2 yould imply that 2% is zero.

Thus we have

p-1 p-1
g Lo(27-2) = (-H)(-2)(; L (27-2))
=(-3)( 1 ,n)
ne Z#
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= (~3)(-1)
= (%)

is the multiplicative group of units modulo p.

#

where Z
P
The above tells us that the constant term of w is one and lets
us prove the following proposition,
6.4 Proposition: wi - W, is nilpotent.
Proof: Let us remember that in the ring zzz, we have the

equation (%) ((22—2)-82)...(2—82)82 = 0. Now, we note that %2

2-(p-1)

is congruent to 2 -2 modulo p. Thus, if we consider the sequence

p-1

of factors of (%), we will have Sy» (2—52),...,((2 —2)—32),((2P—2)—s2),

ceas((2 —2)—82) and if we reduce this sequence modulo p, we see that
it repeats itself after p terms,
Suppose £ = m(p-1) -+ i. Then, when we reduce (%) modulo p,

we will have

)m+l mtl _
s

(-7 (2P Lo2)-s ), L ((2Hh2) s (2 2) -5 )M L (208 0

)

as an element of kzz and » = m~l if i is zero, It is m if i is not

zero, The coefficient (~1)* is unimportant, however. What is important

is wzsz =0 if i is zero and w$1lsz+l =0 if i is not zero,

Furthermore, by the remark following lemma 6.3, we see that

w -1 is a polynomial in s, which is lacking a constant term., Now then,

2

2 e s s
WoW, wz(wz—l). Thus, if i is not zero,

2 _mtl _  mfl mtl
(wzewz W (wz-l)

L
= Tl _mil
W, s, H(SZ)
= 0

in kx, for some polynomial H(x) in k(¥X}. If i is zero, we use the same
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reasoning to see that (wi—wz)m =0,

Now we set

- Il
ey =Wy 1Py

if & = m(p-1) + i and i is not zero, and we set

(wz)}m+l

e, ='w${pm(w2)}m

if & = m(p-1). From the foregoing, it is obvious that e, is an idem~

potent, Unfortunately, we do not yet know that it is a non-zero idem-

potent, It will be non-zero if w, is not zero as is shown by the follow-

ing propositions.
6.5 Proposition: w, is not nilpotent if #>p-1.

. r .
were nilpotent, Then, w, ™ 0 for some in-

Proof: Suppose w 9

2

teger r. If we expand wz as a polynomial in Sy We find that the poly-~
nomial has constant term one., Thus, we see that 1 =’szH(s£) where

H(x) is just some polynomial, Thus 5 is invertible,

Now we claim that if n>%, then S, is invertible, We shall pro-
ceed by induction. If n= 2% + 1, then consider l-sleH(sz+l). Then,

9, .,(1~s, . H(s 0.

241 kL
) = AE,

gg1)) = (L-s H(s,))3, ., =

,for some A, Then, sleH(s

Thus, l-s ( ) ='1—AE2

ENRACT AN ¥ o1 $1°

Raise both sides of the equation to the power p., Then we will have that

D — 4 PpP
g ¥ T E

vertible. By induction, s is invertible for n>{.

. P o s
but since %>p-1, E2+l 0., Thus, s is in-

P
so4p {H(s a1

Suppose now that n =m(p-1) + 1 and n>%, Then, 8, is inver~
tible, and an(sn) = 1 for some polynomial q(x). If we apply E to

both sides, we see (sgn(sn))(sgn(q(sn))En F==En. But, sgn(sn) is
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2m(P—l)+l-2 and this is zero., We now have a contradiction.

6.6 Proposition: W, is not zero if <p-l
Proof: We shall proceed by a sort of backward induction, We

know that wp_l is not zero, nor is it nilpotent. If wP , Were zero,

then, 9 = 0, But then, w = A+E

p-1 p-1'

2 = . . — L] L -
would have, LS S A Ep—l 0 since sgn(wp_l) is zero, But then

wp—l would be nilpotent and this is not true. Thus,'wp._2 is not zero

and the same reasoning shows that it is not nilpotent. Now we can

p-lwp-l = wp-28p-l Thus, we

show that wP_3 is neither zero nor nilpotent, Continuing in this way,

the proposition is proved.

The two previous propositions show that e, is a non-~zero idem~

2

potent, The next theorem shows that e, is a chain map.

6.7 Theorem: 82e2 '==e2__132

Proof: We assume that & =m(p-l) + i, First, if i>1l, we have

L mtl _  mfl
3pep = W, T{ppyy (wp)} Won1 Pt (Vg g R INAS)

If i = 0, the same reasoning works except we must replace mtl by m,

)}m'i‘l

The only problem occurs when i = 1, Then we will have e, equal to

w?+l{ mfl(wz)}mf and e, , equal to w {p (w, ) 1", Now we note._that
Pp+1 W) ==Pm(w2) T (1w, )™, Thus
azez =3 Wrn'l“l{P +1( )}mfl
- mH{me:L( Yo 1)}ml )
= M p Gy ) ™ e Gr, Oy O™
foen S, M)
Now every term of the form awzfi{pm(wz_l)}mTl"j(l—wznl)jm is zero since




23

1

“Wo_1 does not have a constant term and so every term of the above

form will have a factor of the form wl;g 152,‘«1

Thus the only possible non-zero term is the first. So we have

and this last is zero.

- (il mtl
3,8, (wz-l{Pm(wz-l)} )3,
— (.fl m
(w,_71p, (W, 3Hp (w, )},

m m
= (w,_;{p,(w,_;)}")0,

= 819
. m o mfl ‘4
since w, ; =w, ] Pm(wz-l) by proposition 6.1,
Using the e,'s we have constructed, we see that we have a

)

natural splitting of the complex J,A which is given in the n-th dimen- !
sion by (J'-"A)n = en(J*A)n t (l-en)(J,‘.,A)n. We would now like to find out
what the kernel of the splitting e, is. In order to do this we shall

apply the following filtration to J,A, We let FlJ*A be J,A. Next let

FOJ*A be J?‘A, the complex of non-trivial shuffles, If i is a negative

integer, we set FiJ*A equal to the subcomplex whose n-th dimensional

component is s;l(JiA)n. If i is a positive integer, we set FiJ*A equal
to J,A., It is clear that each FiJ,.:A is a complex and that FiJ*A con-
tains Fi-—lJ*A and so is a filtration, Note that the quotient complex

FlJ*A/FOJ*A is just the complex Ch,A.

6.8 Proposition: Let £ =m(p-1) + i, Then ez(P_mJ*A) = 0,

Proof: Let x ¢ (F_mJ*A) . Then, x = sm(y) where y E (J,%A) .

. mtl mtl - Tl _m mtl —
Then we consider w, {mel(wz)} (%) =w, Sz{Pm'l'l(wz)} (y) =0
since wrzﬂsr;ﬂsi 3 =0 for all i and j whose sum is R,
’ 3

6.9 Proposition: Let & =m(p-1) + i. Then, if ez(x) =0, we
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will have x ¢ (F J.A)z.

-m" %
t .
Proof: We know that e, =1 ) a,s” for some integer t.
i=1

Therefore, if ez(x) = 0, we see that

t [} .t .
' i i-l
x= 7 ~a,5,(x) =s,( ] o577 (x)) =8, (x,)
1 =1 174 ziﬂl i7e A §
for some x,. Thus ez(x) ==ezsz(xl) = 0, By the same reasoning, we see

that s, (x,) ==s§(x2). Thus, x € sz(JiA) . Continuing in this manner,
we find that x € s?(JiA)R for every m and the proposition is proved,
6.10 Theorem: Let k be a field of characteristic p where 2 is
a primitive root., Let A be a commutative algebra over k and M a left
A-module, Construct the complex J,A and filter it as before. Let

% =m(p-1) + i where 1l<i<p-l, Then there exist natural transformations
®,(A,M): Hoch, (A,M) ——— H, ((J,A/F_ J,A)8,M)

@, (A,H): HP(Hom, (J,A/F_J4A,M)———> Hoch,(A,)
such Ehat ¢2(A,M) is a split epimorphism and ¢£(A,M) is a split mono-
morphism,
Proof: In order to prove this theorem, we merely note that the

complex JuA/F_ J.A is isomorphic to the cokermel of e, and then the proof

2
follows immediately from the splitting,

In all that has gone before, the only property of fields that
was used was the property that 21—2 has an inverse if it is not zero,.
Thus, theorem 6,10 could have been stated equally well for rings con~
taining a field of characteristic p.

We have also assumed in the foregoing that 2 is a primitive root

modulo p, If this is not the case, we may obtain a version of theorem
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6,10 in the following way., Let n be the order of 2 in the multipli-
cative group of units modulo p. Then set

n
w, = c((2 —2)—82)...(2—82))

2
n .
where ¢ is the inverse of 3 g}2(2l«2). All our theorems hold with
slight modifications of proofs except for proposition 6.6, In that
case we have

6.6' Proposition: If 2 is not a primitive root modulo p, then

W, is not nilpotent for 2<p-1.

2

Proof: We know that w

o1 is not nilpotent. Suppose w

P"‘2 were,

m . .
Then wp__2 0 so wP_l A Ep—l for some A. Thus, applying the idem-

L . m =
potent ep-l which we constructed in 5, we see that ep—lwp—l ep—l
since e =0 and W' , is a polynomial in Sp—l with constant term

p-1°p-1 p-1

1. Also, since ep_l has signature zero, eP_l-A-E 0, Thus, e

p-1 p-1

is not nilpotent. If

is zero and this is a contradiction, Thus, WQ_Q

we continue in this way, the theorem is proved.

We now have the following version of theorem 6,10,

6.11 Theorem: Let k be a ring containing a field of charac-
teristic p. Let n be the order of 2 in the group of units modulo p.
Let A be a commutative algebra over k and M a left A-module, Construct
JyA and filter it as before, Let & =mn f i where l<i<n. Then there
exist natural transformations

®,(A,M): Hoch, (A,M) ——— H ((J,A/F_J,A)m M)
o%(a,m): HQ'(HomA(J*A/F_mJ*A,M)) > Hoch® (A, M)
such that ¢2(A,M) is a split epimorphism and ¢2(A,M) is a split mono-

morphism,
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RINGS CONTAINING THE RATIONALS

1. Adjoint Functors, Cotriples and Symm

We assume that the reader is familiar with most of the defi-
nitions in this section, but we include it to fix some notation and for
the sake of completeness. For a more detailed study of triples and co-

triples, the reader should refer to Barr and Beck (3) or Beck (4).

Let A and B be categories and U: A -———— B, F: B ———— A
be functors. We say that F is left adjoint to U (or coadjoint to U)
and U is right adjoint to F (or adjoint to F) if there is a natural
isomorphism of sets

o HomA(FB,A) —— HomB(B,UA)

for all objects, A, in A and, B, in B. We write a: F | U, In
particular, we find

HomA(FB,FB) & HomB(B,UFB) and HomA(FUA,A) = HomB(UA,UA).
Thus, there—exist natural-transforma'tions—e: FU —-—-———*—_P: and
n: B ———— UF called the unit and counit respectively. Here we are

identifying a category A with its identity functor 1

A.
The unit and counit satisfy the following diagrams ( see Beck (4)),
F—IE L FUP  and U2 UFU
F Fe U el
F U

Here we are using U and F to represent the identity natural transfor-

mation of a functor as well as the functor itself.




27

Now set G == FU and § = FnU. Then G = (G,e,8) is a cotriple on
the category A. That is, G: A—— A is a functor and e: G —— A,

§:6 —————— G2 are natural transformations such that

G eG | Ge G Gl 8G
. G2 GS G3

commute.

For a particular example of adjoint functors, let us consider
the following case. Let k be a commutative ring, kﬂ be the category
of left k-modules and ALg be the category of commutative k~algebras.
Then, there is a functor U: ké}g_——————* kﬂ which assigns to each
k-algebra its underlying k-module and to each algebra map its associated
module map., It is then well known (see, for example, Beck (4)) that this
functor has a left adjoint, S, which is the symmetric algebra functor,
Then the counit e€: SU ——————%-ké;g is the map which "remembers" mul-
tiplication and the unit n: kﬂl———v—~—+ US is front adjunction, We shall
abbreviate the cotriple arising from this adjoint pair simply by S.

For another example of a?joint functors, we need to consider
the following variation of the symmetric algebra functor. First, we
recall that the category R-M of commutative ring modules is the cate-
gory with objects (R,M) where R is a commutative ring and M is an R-
module. A morphism in R-M is a pair (¢,f): (RO,MO) —_— (Rl,Ml)
such that ¢: R, ——— R, is a ring homomorphism, f: Mor————-—+ Ml

0 1

is a map of abelian groups and the following abelian group diagram
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RoaM, e, R,EM,

M1 Mo
.

My

Mo

commutes. The maps My and M, are module multiplication,

If we now consider the category GCR of graded, strictly com-
mutative rings, we find an underlying module from GCR to R-M. It is
described by UR =‘(ﬁ0,§l) where ﬁi is the i-th direct summand of R.
Further, there is another functor, S, from R-M to GCR which is con-

structed by making S(R,M) into the symmetric algebra of M over R,

| Ut Rl

1.1 Proposition: S GCR

Proof: We note that US R<M. Thus the natural transformation
ReM ———— US is simply the identity. Now suppose R is an object of
GCR and we have (¢,f): (R,M) ——— UR. We need only show there is
a unique h: S(R,M) ———— R with Uh = (¢,f)., We now set h = 8(¢,f).
Then, obviously, Uh = (¢,f). Finally, h is unique since every mor-
phism with domain S(R,M) is determined by its values on the zero~th and
first dimensions.

The importance of the above proposition will become apparent
later when we are forced to use colimit arguments,

Now suppose A is a commutative k-algebra and let us consider

the k~algebras A, SA, SQA, +ves We have a map €: SA ——> A. This

gives rise to two maps, SeA: 82A —~————— SA and e5A: 32A ————t SA,

"1y to sPa given by 8" *es™A for

+1 n+2A

In general, we have nil maps from s”
i ranging between zero and n, We also have maps from s""4 to s

given by s""*ss*A, Huber has shown in (10) that A, SA, S2A, vee to-
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gether with the maps defined above form an augmented simplicial object
over the category of commutative k-algebras,
Suppose E is any functor from ]Alg to some abelian category A.

Then

—~————
L —— 2 Vg
' ¢ s E————— ES A > ESI&v 'LEA

will be a simplicial object in A, To this simplicial object, we may

associate a chain complex
] 2 9

h
n1‘lA in the n-~th dimension and in which A

which has ES

b= IZI (-1) s g sta
i=0

The homology of this complex is denoted by Hn(A,E)S, n>0, and these are

known as the homology objects of A with coefficients in E relative to

the cotriple S,

We shall now describe a particular functor which we shall use
as our coefficient functor. Consider two commutative k-algebras A and
A' and a k-algebra morphism between them, ¢: A'————> A. We can make
AmA' into an A-module by operating on the first factor via A, We
define the A-module Diff A' to be (AmA')/N where N is that submodule
of AmA' generated by all elements of the form amalal! - a¢(ai)na'

12 2
- a¢(aé)xai where a € A and aj, a) ¢ A'. Then, it is easily seen that
Hom,(Diff A',M) = Der(A',M) where Der(A',M) is the set of all k-linear
A
maps f: A! ————> M vwhere M is an A-module and f(aiaé) ==¢(ai)f(aé)
!

1 1

T ¢(aj)f(a;).

We now return to our consideration of the cotriple S. There

is a unique map from S"A to A which is arrived at by simply taking any
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composite of the s""*es™A 's. We now have a complex over the category

of A-modules by taking

o > Diff GPA e Diff SP714 . yo s vmeeeeet Diff SA > 0

The boundary maps are defined to be

.= [ (~1)'piff 8" es’a
i=0

We now define the symmetric homology of A with coefficients in the

A-module M to be the homology of the complex

with the n-th boundary given by anal We denote the n-~th homology

"
module by Symmn(A,M). Similarly, we define the symmetric cohomology of
A to be the homology of the complex

0 ———* HomA(Diff 8A,M) ——— HomA(Diff SQA,M) ——
with the bpundary given by HomA(an,M). We denote the n-th symmetric
cohomology module by Symm(A,M). We note that this second complex can

be written as

0 ———— Der(SA,M) ~———s Der(S2A,M) > Der(S"A,M) ———>
We are now in a position to state the main theorem of this chapter.
1.2 Theorem: Let k be any ring containing the rational numbers.
Let A be any commutative k-algebra and M any A module. Then
Symmn(A,M) = Harrnfl(A,M)

Harrnfl

7

Symm™(A,M) (a,M)

In order to facilitate proving this theorem, we shall spread the proof

out over several sections.
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2, The First Proposition

2,1 Proposition : Let k be any commutative ring containing

the rational numbers. Let R ==kEX] be the algebra of polynomials over
a set X, Then, for any Rmodule M, Harrn(R,M) =0 ='Harrn(R,M) for any
n>l, Further, Harrl(R,M) = Der(R,M) = MX and Harr, (R,M) = Diff Rm,M
= X+M where X+M denotes the coproduct of X copies of M,

Proof: We note that m commutes with direct limits as does the
idempotent e, which we constructed in the last chapter. Further,
homology commutes with direct limits. Now we note that k[X] is the
direct limit of the subalgebras k[?u] where Xa ranges over all finite
subsets of X, Thus, it suffices to show that Harrison's homology is
zero when R is a polynomial algebra in a finite number of indeterminates.

We shall first prove the proposition for projective R-modules,
Let X# be any set isomorphic to and disjoint from X, Let us set

R# ==k[k#]. Now RER# = RER as a k-algebra and so we may identify the

the two., Set R ==k[X] where X =={lxx# - xBl € RuR# | x € X}. Then,
RER = RBR#. Now we note that R operates trivially on k via the aug-

mentation R ———> k., Thus, we see that R = Rk as an ReR module.
We now note that R = k[X] = kaQ[X] and R = kaQ[}?_] where Q is
the field of rational numbers, Set R ==Q{§]. By theorem XI,3.1 of

Cartan and Eilenberg (5), we have the following isomorphisms.

RzR ReR
Tor*

Tor,  (Rmk,Rak)

RnkuQﬁ
Tor,, (RNQQ?REQQ)

R’

(R,R)

1]
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R

RuQﬁ
Tor,, (RNQQ,RNQQ)

Y]

Torﬁ(R,R)n Torz(Q,Q)

Q

REQTOI'z(Q »Q)

Furthermore, TorﬁER(R,R) = Toran(R,R) = Hochy(R,R) = H(C.R).

R

Now Harr.(R,R) is a natural direct summand of H(C,R) and if
we can show it is zero, we can conclude Harri(R,M) is zero for i 1 and

M projective, Now
RuR o
Tor, (R,Q)

TOPﬁ(R,Q)ﬂTOPR(QaQ)

13

H(C,RmaQ)

13

n

QmTori(Q,Q)

~

Tore(Q,Q)

R

where the above tensor products are taken over the field Q and not the
ring k. We shall call a cycle, Y, in CnﬁxﬁQ alternating if EY =y
where € = (1/(n!))Z(sgn(mw))w, 7 ¢ Zn.

2.2 Lemma: Every cycle in CnﬁmﬁQ is homologous to an alternating

cycle,

~

Proof: Let X =={xl,...,xm}. Then, H(C*ﬁnﬁQ) ==Tor§(Q,Q) from
above. From MacLane (1l) page 205, it is well known that the above is

a Q-vector space of dimension A We shall now show that the al-

s 1=

ternating cycles span this space, Let us consider sequences of in-

tegers 1l<i <i

1=tos e

Look at en[?i 200 sXs J. Then these are cn,m~n alternating cycles

<i <m. There are exactly ¢ such sequences
— @ Y % men d )

which are linearly independent in CnﬁaﬁQ. If we can show they are

1
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linearly independent modulo boundaries, we will be done, However, if
we consider any boundary of the form anfl[ﬁl""’mn+£]’ where each m,
is a monomial, we see that each term of the boundary has an entry of
degree at least two unless some of the mi's happen to be units. 1In
that case, every term of the boundary will have a unit except fwo
wrich will cancel each other, Every boundary is a sum of boundaries

i
of the form we have just discussed., Thus, the cycles en[?i TERRL ]
1 n

are linearly independent modulo boundaries.

Now Harri(R,R) ==ei(H(C*R)) ==ei(RnQTor§(Q,Q). Pick any cy-
cle, v, in ChiR. Then v € CiR and y ==siy' + ai+lY" for v' e CiR and
Y'he CipRe But y ey =e(ey! A7) Sege iyt b A0 Y
Now e, has signature zero, so ese. ==(l/(n!))(eiEi) = 0, Thus,

Y ==ai+lei+ly"' Thus Harri(R,R) = 0 for i>1l., Since any free R

module is a coproduct of copies of R, and any projective R module is

a retract of a free R-module, we see that Harri(R,M) = 0 for any projec-
tive R-module M.

Also, Harrl(R,M) = RaM/M' where M' is the submodule generated
by all elements of the form [mlméjam - Y@;lmm2m - {mé]amlm and lzmm
where m, and m, are monomials. Thus, it is easily seen that Harrl(R,M)
is isomorphic to XM as was claimed and we are done for projective
R~ modules,

Now let M be any R- module, There exists an R-projective

resolution of M say

() ;Xz A}Xl >X0 L 'M _>O

Then we may form the tensor product of the complexes X, and ChyR
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0 v Cl}anRXn tr—— Ch2R1mRXn tr———

If we take homology going down, we get only the complex
+vy — Ch R& .M —— ,,, —— Ch Rg M ——> Ch.R&_ .M —— 0
n R 2R 1R
since ChiR is a projective R-module. The homology of this complex is
Harr, (R,M).

On the other hand, if we take homology going across, we will

get the complex

«vs —> Diff RxRXn Foue * Diff RxRXl ——— Diff RaRX0 ~ 0
Since Diff R is a free R-module, The homology of this complex is simply
Diff RxRM = X+M, Since the homologies taken both ways must be equal
because of MacLane (11), page 341, we have proposition 2.1 for homology.

If we use universal coefficient theorems, we will get the proposition

for cohomolog&.
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3. The Finitely Generated Case

Let us now specialize to the case of a noetherian ground ring
containing the rational numbers. In order to prove our main theorem,
we must know the following proposition,

8.1 Proposition: Let M be a finitely generated k-module and
N a finitely generated SM-module, Then, Harri(SM,N) and Harri(SM,N)
are finitely generated SM-modules.

We shall need %he following lemma,

3.2 Lemma: If k is any noetherian ring and M is a finitely
generated k-module, Then SM is noetherian,

Proof: Since M is finitely generated, say by {xl,..,xn}, there

is a free, finitely generated k-module, F, with free generators {Rl,..,ﬁn}

and an epimorphism of k-modules, F > M * 0 obtained by sending
21 to x.. Then there is a map SF ——— SM which is obviously a ring
epimorphism, By the Hilbert Basis Theorem (Zariski and Samuel (15),
page 201), SF is a noetherian ring and since an epimorphic image of a
noetherian ring is noetherian, proposition 3,2 is proved.

If we can show Hochi(SM,N) and Hochi(SM,N) are finitely
generated, then, since Harri(SM,N) and Harri(SM,N) are retracts of the
above, we will be done. We must now immerse ourselves in the depths
of relative homological algebra. Since our interest is not in this
subject as such, we refer the reader to MacLane (11), chapter 9,

for an exposition of it,
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We note that Hochi(SM,N) ==Tori(SMBSM’k)(SM,N) where the right
hand side stands for (SM=mSM,k)-relative homology theory. Similarly,

we see Hoch™(SM,N) = Ext* (SM,N).

(SM=sM,k)
We want an (SMmSM,k)«free allowable resolution of SM which will
(

allow us to calculate whether or not Tor,.

lSMmSM’k)(SM,N) is finitely
#

be a k-module isomorphic to and distinct fron{ M.

# € M#. Then SM#

generated. Let M

Let the isomorphism send m e M tom is isomorphic to

#
SM. Thus, TOPESMESM ’k)(SM,N) = Tor(SMESM’k)(SM,N) for any symmetric
#

SM~bimodule. Of course, we define the action of SM" on SM via the

isomorphism, Let M' be that submodule of SMaSM#

generated by elements
of the form lam# - mal, Then, M'! is isomorphic to M so SMmSM'  SMaSM,
Then, as an SMaSM'~module, N is isomorphic to Nmk where SM' acts on the
ground ring k via the usual augmentation map SM!' ——— k, Thus we
have ToriSMESM’k)(SM,N) . Tor§SMESM"k)(SMxk,Nmk).

We shall now describe an (SM',k)-relatively free allowable

resolution of k, 1i. e,, we will build a complex

LI BN 4 )Xn >l.' >Xl )XO _>-k d A_’LO

of (SM!,k)-relative free modules which possesses a k~contracting
homotopy of square zero. Using this complex, we will be able to get a

useful (SMmSM',k)-relatively free allowable resolution of SMmk,

&

Let Xn be SM'&AnM' where AnM' stands for the iterated exterior
product of M' with itself n-times. (We recall that M.M = MeM/L where

L is the k-submodule of MzM generated by elements of the form m, &m,

t m2aml.) We define a boundary homomorphism an: SM‘nAnM' —— SM'aAn_lM‘
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) =

! ! ! !
by an(ml s v e mrumr.*_lf\' » 'Amr‘.rn

fi )

n .
) (—l)l(mi'...'m'-m' ,BM

! LA RIS ! .,,....qm'
=1 r rti il rti rin

where fi!, . signifies omitting m', ..
i rii

well~defined SM'~module homomorphism and that 3

It is easy to see that Bn is a

n«lan = 0.

We must now show that this complex is kesplit, To define a
k-~module homomorphism from Xn to XnTl’ we need to define it on each

- ! 1 1e e mam ! ] = >
k-summand of SM xAnM . We set tr’n(m e mrnmrfl”"'“mrfn) 0 if

r is equal to zero, If r is not zero, then

| S e ! 1 1
tr,n(ml ces mrnmrfl”"'“mrfn) =

r
(/rn) ] m

-...-ﬁé'...-m;mmlhm; lA...Am;
i=1

!
1 j n

We should show that tr n is a well-defined morphism, but this is wholly
?

obvious since Er . M'%,, , xM! ——— Sr

M'EAn MY (M'x,..xM! stands
]

~l t1

for the cartesian product of M' with itself ritn times as a set) which
is defined by the above formula is well-defined, k-linear, symmetric
in the first r variables and skew symmetric in the last n variables,

Thus, Er n has a unique factorization through SPM'xAnM' and that fac-
?

torization gives rise to tr n
?

1~lM' be the map on the direct

sum which has components tr n OF each summand., We define t 1
, -

SM' to be mere front adjunction, We must now show that the tn‘s s0

Let t : SM'm M' e———— SM'mA
n n n

from k to

defined give us a k-homotopy with square zero,

There are three things involved here, First, we must have
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et_l ==lk. Next alto t t_q€ ==lxl. Thirdly, we must show that anTltn

t t, lan ==lx . The first equality is, of course, obvious.
n

Since X0 ==SM'nA0M' = SM', we have two cases for the second

equality, corresponding to whether or not the element we are dealing with,
say %, is in degree zero, If so, then to(x) =0, But also, t ls(x) =X
and we are done, If x is not in degree zero, we may suppose it is

homogeneous of degree p>0., Then x ==mi'...'m£xl. Thus, e(x) = 0,

1%
ty(x) = (1/p); L ym

LIS ol om! ]
PLEAREE mi . mpmmi and

| P
8 to(x) = (1/p); L ym

Te L] Te . ! = ==
Pt tmic. mpal (p/p) x = x

For the third equality, we again have two cases, First if
1 1 = 3 =2 1 1 2
X € SyM aAnM » then tn(x) 0. But, if x lnml,...mmP we will have
n

- ot NP 1 1
(j il( l) mjmlﬁ.'.ﬁmjh..‘ﬁmn)

t (x) = tn

nnlan -1

n .
j-1
= l n "l lmlﬁm'ﬁcllam!aoolhm')
(1o, D T

n & l 3 l
= (1/n) | -1 (sl m))
j=1 n

= (n/n)x
=x
1 1 = 1e . ! 1 '
Ifxe SrM mAnM , for r>0, then x mitess mrumr+l”"'"mr+n say,

r
te ofil o om! 1 1 1
) myteeetBE o mIBMIAR L ae AT )

Now ..t (x) “=’an,rl((J-/J:"fn):.L L. n

1 r,n

r
= (1/vt)( ] ((odmi=vveomlimmloneeoaml
i=1

n .
~1)Imt . o1 ot em! 1 ! a9 1
; 'Z—-l( 1) myeeooofileea,om) mr,rjamiamrﬂ,....,\mr_rja...hmr,rn))
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(*) = (n/rtn)x +

P n (]
“1)9m e - om ! o ! 1 ! 1 1
i .Z= l j £ l( l) ml L N mi * 0 mr mr.i-jmniAmr.I'lA L I ] Aﬁr‘*‘j A *mr"i_n

Also, () =

trtl,n-1 n

n .1
( 7 )3 mrel, omtem? )

! A
'tr"j'l,n-l j — l l T r_i,jmnr_i_lp.- . -Amr,i,jf\o (] hmr"fn

n ks

= 7 3@/ I om

.|l|.ﬁ!'l0..m'.m'
j=1 {1 i r vt

xmibmr+lh...ﬁﬁr+.h...am

!
1 il 3 rin

))

*m!e,..m'am
v

l +jhmr+lA|'0Amr+jA'|lAmr+n

(%%) = (n/rtn)x t

- j-1 1, Bl erg? om! ' mt! =Y 1
) Y (~1) LIEPRY ﬁi T T B s A e AT

Then, every term after the twsign in (¥*) occurs with opposite sign af-
ter the t-sign of (%%), Thus, tn_lan(x) + anfltn(X) = (n/rtn)x t (r/rtn)x
= %X, Thus t is a k-homotopy.

We now should show that t2 = 0. This can be done by calculation.
However, even if t2 were not zero, then td9t would be a contracting
homotopy and (tdt)2 = 0, This is shown by the identities 8tdt 1 t3t3 =
(1-t3)at + t3(1-dt) = ot + t3 =1 and (t3t)? = (£3t)(tdt) =
t(1-t3)(1-8t)t = t(1-t8-3t)t = 0.

Now the resolution

' e — SMESM'EAnM' > T > SMESM' ——————)- SMEk ——— 0
is an (SMmSM',k)-relatively free allowable resolution of SMmk. Thus,

1
Tor§SMESM ’k)(SMuk,Nak) is the homology of the complex

J

Nmk‘——-—~+ 0

Vo gt SMESM’EAnM'ﬂ Nﬂk N TR + SMESM'E

SMmSM! SMmSM!

which is
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ooy AnM'nNuk Y00 > M'eNek ——— Nak et ()
where the boundary of this complex is just zero, Thus the n-~th
homology module of this complex is AnM'aN. Since N is a finitely
génerated SM«module and M' is a finitely generated k-module, we see
that A M'sN is a finitely generated SM-module. Thus Harri(SM,N) is
finitely generated since it will be a retract of AnM'uN. The dual
proof works for cohomology, so Harri(SM,N) is finitely generated, This

completes the proof of proposition 3,1, I am indebted to Professor

Barr for pointing out the resolution of which we make so much use,

L, The Residue Field Case

For this section, we need not assume that the ground ring, k,
is noetherian, However, for expository reasons, we shall still assume
that M is a finitely generated k-module and SM is its associated sym-
metric algebra. Our aim is to calculate the Harrison‘homology and
cohomology of SM with coefficients in K where K is a residue field of
SM. In order to do this, we must know something about the structure
of SMaK,

First, if {xl,...,xn} are generators of M, then B =‘{xlnl,,..,xnnl}
are generators of MK, (The unit is the unit of K.) Since MmK is a K-
vector space, we may assume that the set B contains a basis of MeK as a
K-space, We may assume that this basis is {xlxl,...,xrnl}. Thus, as

2 }l

K-modules, MaeK = FmK where F is the free k-module on the basis {Rl,..., r




41

4.1 Proposition: M(n)nK = F(n)nK

Proof: We proceed by induction, We have already established

the case for n = 1, Suppose the theorem is true for n-l. Then

(n)

gk = Man Py

o MuM(n'l)mKnKK since Km K K

K
(n‘l)aK) N

13

(MaK)ﬂK(M

1]

(Fak)my (£ P Dak)
= FxF(n"l)uK

« p(n)

=K

4.2 Proposition: If S is the symmetric algebra functor over
k, then, SMmK = SFmK as k-modules.

Proof: Since the tensor product commutes with coproducts, we
have TMeK = TFmK where TM and TF are the respective tensor algebras of
F and M, Now it is well known (see Quillen (14) for example) that SM
is a direct summand of TM where the projection TM ——— SM is given
in the n«th dimension by jn = (1/n!)]o, o ¢ L. Thus,

jyml: TM@K ————— SMeK and j,ml: TFEK ———— SFEK are retracts.

Since j, is obviously a natural transformation of functors, we have

SMzeK = SF=K.
. (n) , . opin)
4,3 Corollary; SM ""mK = SF “mK
. (n) 5 (n)
4,4 Corollary: SMaSM ESMK = SFmSF ESFK
Proof: From corollary 4,3, we have SM(n)nK = SF(n)mK. However,
(n)_, . oy(n)d . (n) (n) . . ooln) "
SM " 'mK = SM ‘?SMnSMK = SMmSM ESMK and SF' "mK = SF nSFmSFK =
srasF (™K,

Corollary 4.4 now tells us that J*SMES K = J*SFaSFK. Thus we

M
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have Ch,SMm MK = Ch,SF®..K. By proposition 5.2', page 28, of Cartan

S SF

and Eilenberg (5), we also have,

HomSM(J*SM,K) @ HomSM(J*SM,HomK(K,K))

[H

Hom, (J,SMm., K ,K)

SM
HomK(J*SFnSFK,K)

1]

R

Homg (34 SF,K)

Now SF is simply the polynomial algebra over k of {21,...,2r}.

R

Thus, we have Hoch,(8M,K) Hoch*(klkl,...,xf],K) and similarly we have

Hoch“(SM,K) o Hoch“(k[k .,xﬁ],K). Now Harr,(SM,K) = e,(Hoch,(SM,K))=

1o
e*(Hoch*(k[kl,...,xr],K)) = Hare,(SF,K) and dually for cohomology. But
from section 2, we know that Harrison's homology theory and cohomology
theory are zero in dimensions greater than one for a polynomial al-
gebra.

4,5 Theorem; If M is finitely generated over k, Q is in k, and
K is a residue field of SM{ then, Harri(SM,K) =0 ==Harri(SM,K) for i>l.
Furthermore, Harrl(SM,K) = Diff SMaSMK = MeK and Harrl(SM,K) = Der(SM,K)
s Homk(M,K)

Proof: Because of the foregoing, we need only prove the part
concerning Harrison's homology and cohomology in the first dimension.
Now, Harrl(SM,K) = SMeK/L where L is the k~submodule generated by all

elements of the form Eala2] Bl - [az]xal'l - [al] naz'l. Then consider

the SM-exact sequence

0 > N > SMeSM ~———> Diff SM —~—————> 0
where N is the SM-submodule needed to define Diff SM. Then we will

find that we have an exact sequence
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NnSMK ———— SM&SMESMK e Diff SMm

The last term of this sequence is Diff SMaS

MK-—-—-—-——~-~)~0

S

MK = SMHK/NESMK = SMeK/L

since Nm, K is obviously L, Further, it is easy to see that Diff SM =

SM
SM=M so we obtain the second isomorphism, By dualizing, we obtain the

proof for cohomology.

5. The General Case

Before we proceed any further, we find it convenient to state
two lemmas concerning finitely generated modules over commutative rings,

5.1 Lemma: If E finitely generated over R and I <R is an ideal
such that IE = E, Then there is an r € I such that re = e for all e € E,

Proof: This is simply lemma 2, page 215 of Zariski and Samuel (15),

5,2 Lemma: Let E be finitely generated over R. If ME = E for
all maximal ideals M &R, then E = 0.

Proof: From lemma 5.1, we see that each maximal ideal contains
at least one element p with pe = e for all e € E, If l-p is a unit in
R for any such p in any maximal ideal, we are done! If not, consider
the ideal, I, generated by all the l-p's. We cl;im that the ideal I
must now be the entire ring. If not, Then I & M' where M' is a maximal
ideal., Then there is q € M'! and qe = e for all e ¢ E. But then,

l-g ¢ I. Thus, 1 =q t (1-q) € M' and this is impossible. Since I =R,

L
we see 1= . L lr*i(l--pi). But then

2 L
e=1we=(; 2 ,r,(1-p)le=, % ,r.(lp, e =0,

We shall for the time being be concerned with noetherian
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rings. for the outlines of the theory of modules over such rings, we
refer the reader to Zariski and Samuel (15), chapter U,

5.3 Theorem: Let k be a noetherian ring containing the
rational numbers. Let M be a finitely generated k~module and N a
finitely generated SM-module., Then Harrn(SM,N) =0 ==Harrn(SM,N) for
n>1l, Further, Harrl(SM,N) =~ Diff SMgN =~ MzN and Harrl(SM,N) = Der(SM,N)
= Homk(M,N).

Proof: The second part of the theorem is obtained using the
same reasoning used in theorem 4.5, The first part of the theorem is
a bit harder., In order to show it, we adapt for our purposes the
proof of a theorem of Harrison (Harrison (8), theorem 2.2),

Suppose there is a finitely generated N with Harrn(SM,N) =0,
n>l, Consider the set of all submodules {Ni}i ¢ 1 Such that
Harrn(SM,N/Ni) % 0, This set is not empty since it certainly contains
the zero submodule, Since k is noetherian, we know that SM is and we
apply the maximal principle to this set, Thus, N' is a maximal sub-
module such that Harrn(SM,N/N') % 0,

Let P be any maximal ideal of SM, We recall that N':P ;

{x e N | Px <N'} , We have an exact sequence
Harr" (SM,N':P/N') ————> Harr" (SM,N/N') ——— Harrn(SM,N/N':P)
since
0 ——— N';P/N! ——— N/N! ——— N/N":P ———> 0
is exact,
Since SM acts on N':P via the field SM/P, N':P/N' is a

finite dimensional vector space over SM/P and homology commutes with
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direct sum, we see that Harrn(SM,N' :P/N') = 0. Thus the following
sequence is exact.
0 ——— Harr" (SM,N/N') ———— Harr"(SM,N/N':P)

Now, Harrn(SM,N/N') # 0 and N' is a maximal submodule with this
property. Thus, since N':P _ N', either Harrn(SM,N/N':P) =0 or
N':P = N', The first case is a contradiction so we must consider the
second., Since N' is a submodule of N, it is the intersection of a
finite number of primary submodules and the radicals of these sub-
modules are prime, By theorem 11, page 214 of Zariski and Samuel (15),
P is not contained in any of these radicals., Thus, by a remark on
page 215 of (15), P is not contained in the set-theoretic union of the
radicals, Thus, there is an o in P which is in none of the primes

associated to N. We will then have an exact sequence of SM«modules

0 ————— N/N! —2—— N/N! = N/N' t N =m——t 0

Now N' + o+N %= N' since N':;a = N', We now have the exact sequence
Harr" (SM,N/N') ————> Harr (SM,N/N!) === 0
because of the maximality of N',

Thus, P(Harrn(SM,N/N')) ==Harrn(SM,N/N') for all maximal ideals
in SM. Now, by proposition 3.1, Harr"(SM,N/N') is finitely generated,
so, lemma 5,2 tells us that it is zero and this is a contradiction.

The dual proof works for homology.,

In the still more general case where k is not necessarily
noetherian and M and N are not necessarily finitely generated, we must
employ subterfuges depending on colimits, By proposition 1,1, S(-,-)

is a functor on the category of ring modules and is a left adjoint.
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thus it commutes with colimits. Now any ring k containing the
rationals is the direct limit of its finitely generated subrings over
the rationals, and thus is the colimit of noetherian rings., If M is any
k-module, it is a direct limit of finitely generated k-modules {My}.
Each My’ when considered as a ka«module, with ka finitely generated
over Q, is the direct limit of finitely generated ka«modules, MYB'
Thus, S(k,M) is the colimit of S(ka’MYB)' Similarly, N is the
direct limit of Ndv which are finitely generated ka—modules. Thus,

since direct limits commute with tensor products and idempotents, we

see that ChnS(k,M)x N is the direct limit of

S(k,M)

ChnS(ka,M )= (See Godement (7), page 10,) It is well-

v8 %5 Cic o )by
known that homology commutes with direct limits, so we have the following
theorem,

5.4 Theorem: Let k be any commutative ring containing Q.
Let M be a k-module and N an SM-module, Then Harrn(SM,N) = 0 for n>l
and Harrl(SM,N) = Diff SME,N.

For cohomology we must change our proof since dualizing will
get us an inverse limit and homology does not commute with inverse
limits. In the notation we introduced prior to theorem 5.4, let us

set S(ka’My ) = A and consider the complex Ch,A. This will have no

B
homology or cohomology above the first dimension for any coefficient
module, Let R_ be the n-cycles of Ch A, Let D_ =Ch A/R ., Then,

n n n n''n

D, is isomorphic to the A-module of (n-1)-boundaries, We have an exact

sequence

0 — R * Ch_A + D — 0
n
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Also we have an isomorphism U Dn+r~——~——+ Rn‘
Now 8 _: Ch A ——— Ch_ .A may be factored as
n n nwl
3 n i
n_, n_, n=l
ChnA ——? Dn > Rn«l —— Chn—lA

Thus, the diagram below commutes,

|n1'2

Hom(R nt1°Rn ) —=— Hom(Dn_m,Rn)
; ih1 | Jnt2
ntl n+2

J
. o — Hom(ChnA,Rn)-——-—~+ Hom(Ch lA,Rn) — Hom(Chn+2,Rn) ——

nt

~

£ 34
ln 3n 1
nTl

Hom(Rn,Rn) — H°m£Dn+l’Rn)

0

Now, Harrn+l(A,Rn) =0, Thus, Ker(é_ ) ==Im(6 ). However, both

nt2

3540 and Nh4o are monomorphisms., Thus Ker(6n+2) Im(3h+l) However
s e (] = a= "
the opposite inclusion also holds so Ker($ T2) Im(3€+ ) = Im(j’ 1”“+1)
v l' ¢ f "
Now, Im(6n+l) Im(jn+ln’+llf) Thus Im(j%* * N rl:.‘) Im(j‘+ln‘+l)

Thus, Im(ig) ==Hom(Rn,Rn). This implies there exists a map from ChnA
to R, which is the identity when restricted to R, Thus the complex
Ch,A splits and since the boundary factors in the manner shown above,
this splitting is natural, Since the complex Ch,S(k,M) is the direct

limit of these split complexes and naturality implies coherence with
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the colimit diagram, Thus the cohomology of the complex is zero too
and we have the following theorem,

5.5 Theorem: Let k be any commutative ring containing the
rationals. Let M be a k-module and N be an SMemodule, Then, Harrn(SM,N)

= 0 for n>1 and Harrl(SM,N) = Der(SM,N) = Homk(M,N).

6. The Double Complex

We now have all the tools we need to complete the proof of

theorem 1.2, Let us consider a double complex Ei 5 where Ei

- -
eiTl(SJ*lA)(lTl)mM. There are two boundary maps; the first is

¥: . o ™ E. . which is the restriction of the Hochschild
1 1,] i-1,]
II

boundary and the second is D.": E, . —~——~——rE, ,
J 1,3 i,j-1

triple boundary map for the cotriple S,

which is the ¢o-~

There is a map of k-modules YA: A —— SA by front adjunction.

This gives rise to a contracting homotopy in the complex

ey T———— S2AEM —— SAEM > AEM > 0
Thus, the n-fold tensor product of the homotopy composed with e, gives

rise to a contracting homotopy in

Vo —— en((SQA)(n))nM —— en((SA)(n))mM —— en(A(n))mM SN

Thus, HII(E) is simply the complex Ch*AxAM so HIHII(E) is Harr,(A,M).

On the other hand, we have shown H%(E) is Diff SJ+lAuAM concentrated

in bidegree (j,0). Thus, H (E) is Symm,(A,M) and by theorem 6,1,

IIHI
page 342, of MacLane (1l), we are done,
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PARTIAL RESULTS UP TO DIMENSION 2p

1, The Case of a Field of Characteristic p

Let us now consider a perfect field of characteristic p, It
would be very nice if we were able to report that Harri(R,M) = 0 for
i>1 for all polynomial algebras R over k and all R-modules M. Then we
would be able to show that Harrison's theory coincides with the theory
afforded by the symmetric algebra cotriple for the case of characteris-
tic p as well as for the characteristic zero case. Unfortunately, this
is not true as Andre has shown by example (see Barr (2)). However, we
can show that Harri(R,M) = 0 for 1l<i<2p.

FPirst we must examine the skew-commutative graded algebra func-
tor, This is the left adjoint to the underlying functor, U, which
goes from the category of graded, skew-commutative k~algebras to the
category of graded k-modules, It may be constructed explicitly in the
following manner. Let M be a graded k-module., Let TM be the tensor

algebra on M with the following grading. The degree of a B...B3, is

1
deg(al) t deg(a2) T oeee T deg(ai). Then, SM is TM modulo the two
&, &

sided ideal generated by elements. of the form.a B, .3, - (-1) J Tl

1
a.®,,.ga.ma., .8,,.82, where 4, stands for the degree of a,. It is now
1 j gt i N 3
easy to see that S is left adjoint to U. Also, it is clear that
SM = A(M1®M3® )xS(M0®M2® cee )

where A is the exterior algebra functor and S is the symmetric algebra

functor and both are defined with respect to the field k, We shall
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use S in the following lemma,

1.1 Lemma: Let R be a polynomial algebra, Then Harri(R,k)
= 0 for 1l<i<2p.

Proof: Once again we shall assume that R is finitely generated
and afterwards use colimit arguments. We must now consider the spec~
tral sequence of the complex C*Rka which is obtained through the
use of the filtration C*RﬂRk 2 J*Rka 2 JiRaRk D svve We set
k, and, in general, Fi =‘JiRan. Then we see

R

2 _ 2
that F, ©F,,, and we set Er,s HrTs(Fs/stl)' We note that E_

Harrrfl(R,k).

Fo = CyRmpk, F, = J,Re

s 1

Since the sequence is bounded both above and below, the sequence
will converge to the homology of C*Rka which we already know to be
Torz(k,k). Assmus has shown in (1) that Torﬁ(k,k) is a Hopf algebra
over the field k and since the multiplication is the shuffle product,
we know it is skew-commutative. Therefore, by the structure theorem
of Borel (Milnor and Moore (12)), Torg(k,k) is the tensor product of
an exterior algebra where the generators are of odd degree and mono-
genic algebras kaj/(xPa), a>1l where the éenerators are of even
degree,

Now let an element of Torz(k,k) be called decomposable if it
can be represented by a shuffle and indecomposable otherwise. Let W,
represent the complementary subspace to the decomposable objects in
Torﬁ(k,k). The Borel theorem tells us that Tori(k,k) “‘(SW*)H for

n<2p, We wish to show that there exists an epimorphism

0 —— Torﬁ(k,k) ———— Harr_(k,k)
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for n<2p.

We shall proceed by induction using the spectral sequence

m

{Er S,am}. The case for r + s = 1 is trivial since Tori(k,k) and
L]

Harrl(R,k) are both the free k«module on the set X where R ='k[X].
Since there are no decomposable elements in the first dimension, we see

L ==TorR(k k) and so ﬁ —————— Harr (R,k) is epic. Furthermore, we

note that the differentials out of E are zero,

0,1

Assume now that the assertion is true for r t s = n-l. By

Quillen (14), E? . 1s generated as an algebra by E up to degree 2p-1l1,

%,1
Thus, since the differentials are derivations, all differentials issuing

m © 2 o
from E are zero for r + s =n, Thus, E =E~ /B for » + s = n.
r,8 r,s r,s'"r,s

Thus the graded module TorR(k,k) may be written as

R 2 no2 o "
Tor (k,k) ==l Z:oE ned ==i zaoEi,n«i/Bi,n-i t Harr (R,k).

Since W, —— Harri(R,k) is epimorphic for i<n<l, we have dim(Eﬁ S)
?

==d3.m(SSHarr*(R,k))r P §.d1m<SsW*)r 4 s for r + s < n. Then,

n«2
. R . 2
d:Lm(Torn(k,k)) = ch.m(:L 2; oEl n-l/ i,nei & Har':o (R,k))

n-2 o

==l z,odlm(E ,nvl/Bi,n—i> + dlm(Harrn(R,k))
n«2

= ) dlm(S W) 1 dim(W)
i=0

= dim(Tori(k,k)

for n<2p. Thus B; . must be zero for 0<i<n-2, Thus all differentials

’n"'l

emanating from Ei s where r ¥ s = n must be zero., Thus, we see that
]

Wn -————»-Tori(k,k) —————— Harrn(R,k)
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1 = E2 for rtl<2p, Now, because of the
) r,l

convergence of the spectral sequence, we have

2
Bl Fr(HP,rl(c,.,RaRk))/Frﬂ(}xrﬂ(c*Ran)).

But the right hand side is zero for r>0, since HrTl(C*Ran) is generated \ ’

is epic, This implies Ez

by cycles of the form ErTl([kil,...,xir;a ) where E ., is the element

which we constructed in the first chapter. These

of the group ring kzrfl

generators are contained in both Fr(H (C*Rka)) ==Im(Hrﬂ(Fr) —

rTl
— Hrfl(FO)) and Fr?l(Hr+l<C*RﬂRk)) gﬁIm(HrTI(FrTl) —'—'—ﬁ'Hrfl(FO))'
Thus, E2 = Harr__.(R,k) = 0 for 1l<r<2p~2, Using the same techniques
r,1 rtl o

we used before, we find that the lemma works for any set of variables.
1.2 Proposition: Let (X) denote the ideal in k[X] generated

by the set X. There is an R-exact sequence of complexes

(*#) 0 ——— Ch,Ra (X) ———> ChyRe R * ChyR —— ChyRm k ————> 0

Proof: We consider the R-exact sequence of R~modules

0 -+ (X) * R ~ k + 0

Then ChnR ==Rn(R(n)/shn(R)) where shn(R) is the shuffle submodule of

(n)

R'™’, Clearly, ChnRaRM ==(R(n)/shn(R))ﬂM for any R-module M. Since k

is a field, the following sequence is exact,

0 —— ®R™/sn_®)w(x) —— @™ /sh_ @R —— ®P/sh_(R))ak — 0
Moreover, the boundary homomorphisms in Ch.R obviously commute with the
homomorphisms of the exact sequence so the sequence (%) is exact as a \
sequence of complexes,

If we now take homology arising from the complexes above, and
consider the long exact sequence arising from that homology, we find

we get an epimorphism Hn(Ch*RnR(X)) ———— Hn(Ch*R) for 1l<n<2p. Now
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consider the exact sequence of R«modules
s 0 — o0t

0 — (X) > 0

Using the above techniques, we get an exact sequence of complexes
T onyRe (07~ chyRe (07T —— 0
it1

0 —— ChyRa(X)

Now R acts on (X)i/(X)
itl

via the augmentation R ~~——— k, Thus,
since (X)/(X) may be considered as a vector space over k and so
a direct sum of copies of k and since homology commutes with direct
itl

sums, we find Hn(Ch*RmR(X)l/(X) ) = 0 for 1<n<2p, Thus the long

exact sequence tells us that there is an epimorphism from Hn(Ch*RmR(X)iTl)
to Hn(Ch*RER(X)i) for 1<n<2p, Thus, by induction, we see that there
is an epimorphism from Hn(Ch*RxR(X)i) to Hn(Ch*R) for all i and 1 n 2p,
Let us now return to the study of JnR. As a k-vector space,
JnR has a basis consisting of elements of the form My Myseeesm =V,
where the m, are monomials in R, Let deg(v) ==deg(mo) toees F deg(mn).
If we have any arbitrary element of JnR’ we set its degree equal to
the degree of the highest basis element in its expansion as a unique
linear combination of elements of the above basis.,
Now suppose c is a cycle in ChnR, 1<n<2p, Then ¢ is the image
of some € under the canonical quotient mapping JnR —r ChnR. Let
deg(@) = t. Then, because of the epimorphisms we calculated before,

there is a cyecle, c', in JnRxR and c'-C € JiR T 9

n+lJn+lR'

L] o L] - 2
Since the degree induces a grading wherever it goes, on JnR t anTlJnTlR
as well as JnR, this cannot happen unless both & and c¢' are in the
above complex. Thus, we see that the homology class of c in Hn(Ch*R)

must be zero, Thus Hn(Ch*R) = 0 for l<n<2p,
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Once again, since homology commutes with direct sums, we see
that Hn(Ch*RnRP) =0 for free R-modules F and 1l<n<2p. This, in turn,
implies Hn(Ch*RnRP) = 0 for l<n<2p for all projective R-modules, P,

For a general R~module M, we need to congider a Reprojective

resolution of M, say

] )Xl 'LXO > M > 0

Tensor the projective resolution with the complex Ch.R to get the double

complex:

(%) .

.o o

<
<
<

If we take homology going down in (%) we will get zero since each Ch,R
is a projective Rw-module. Taking homology across will not change this.
On the other hand, if we take homology across, we will get a set of
complexes like

vy —> Harri(R,Xl) —_— Harri(R,xo) —— Harri(R,M) —~—— 0

which must be acyclic., Thus, since Harri(R,X) = 0 for 1<i<2p we see
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Harri(R,M) = 0 for 1l<i<2p, It is easily seen that Harrl(R,M) =i
In order to complete the proof for cohomology, we make use of the
following lemma from MacLane (1l), page 78,

1.3 Lemma: If K is a chain complex composed of vector spaces
over a field k, and V is any vector space over that field, There is a
natural isomorphism H™(K,V) = Hom(Hn(K),V).
We now note that
Homk(ChnRka,k) = HomR(ChnR,Homk(k,k)) = HomR(ChnR,k)
from the adjointness of tensor and Hom, Thus we see that Harrn(R,k) =

Hom(Harrn(R,k),k) and this is zero for 1l<n<2p. From the exact sequences

0 > (X) > R r k » 0
and

itl

P——-——*o

0 s ()T s - (00
as before, we find that there is an epimorphism from Harrn(R,(X)i)
to Harrn(R,R) for all i and 1<n<2p, This implies that every cocycle
in HomR(ChnR,R) is the sum of a coboundary and a cocycle which has its
image in (X):.L for all i. But then that cocycle must be zero and so
the original cocycle is a coboundary which implies that Harrn(R,R) = 0
Thus Harr™(R,F) = 0 for 1<n<2p and all free R-modules F, This im~
plies the theorem for projective R-modules, For an arbitrary R-module,
we take a projective resolution and use the double complex as before.

Heretofore, we have been working with a perfect field. In the

more general case, when k is not perfect, we only need to make minor

adjustments. As a matter of fact, we only need to note that k(x] =

ke, ZPEX] where Z, is the prime subfield of k. Then we see
p
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3 k= k0 () (0) = knzp(Zp By m, zP[x} (n) e ka, Jngp[x]

P P
Thus, Ch k [X]ukmM e ChnZP X EZP[X]M where M is any k[XImodule. Since
Z_ is finite, it is perfect and the foregoing arguments hold for k,
We may now state the main theorem of this chapter,

1.4 Theorem: Let k be a field of characteristic p»0. Let
R ==k[X] be a polynomial algebra over k and let M be an R~module. Then
Harrn(R,M) =0 ==Harrn(R,M) for 1l<n<2p and Harrl(R,M) = ¥° and

Harrl(R,M) = Der(R,M).

»
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