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PREFACE 

The study of Harrison's cohomology groups was initiated by 

Harrison himself in (8) and continued by Barr in (2). Both of these 

papers dealt only with algebras over fields although all definitions 

hold true over an arbitrary ring. Here we make an attempt (suggested 

by Professor Barr) to study Harrison's groups in general over any ring. 

Unfortunately, complete meaningful results seem to be obtainable only 

when the ring contains the rational numbers. However, with mild assump­

tions on the existence of units in arbitrary rings, interesting par­

tial results are available. Further, using an idempotent arising out 

of the shuffles of Harrison's theory, one gets an interesting splitting 

of Hochschild's complex, 

For the first two years of graduate study, the author was sup­

ported by a one-half time teaching assistantship in the Department 

of Mathematics at the University of Illinois. For the third yearr he 

held a research assistantship under National Science Foundation grant 

GP5478. For the last two years, He was supported partly by a one-

fourth time teaching assistantship at McGill University and partly by 

grant NRC 215-77 of the National Research Council of Canada. Unaided 

by this help, this research would have been impossible. 

The author would like to thank especially his advisor, Professor 

Michael Barr for all of his patient aid, advice and encouragement for 

the length of time of this research. Thanks also go to all of those 

who wittingly or unwittingly helped but especially to Bob McConnell 

and Ann Fleury. 



iv 

TABLE OF CONTENTS 

Page 

THE SPLITTINGS 1 

1. The Hochschild Complex 1 

2. Differential Graded Algebras ,, 3 

3. The Action of Z 6 
n 

4. The Exact Sequence , 8 

5. The Splittings 9 

6. The Second Splitting 17 

RINGS CONTAINING THE RATIONALS 26 

1. Adj oint Functors, Cotriples and Symm 26 

2. The First Proposition 31 

3. The Finitely Generated Case , 35 

4. The Residue Field Case 40 

5. The General Case 43 

6. The Double Complex 48 

PARTIAL RESULTS UP TO DIMENSION 2p 49 

1. The Case of a Field of Characteristic p 49 

LIST OF REFERENCES 57 

VITA 58 



1 

THE SPLITTINGS 

1. The Hochschild Complex 

Let k be an arbitrary commutative ring and let A be an ar­

bitrary commutative algebra over k. Unless expressly mentioned to 

the contrary, all rings are assumed to have a unit element. The Hoch­

schild homology (and cohomology) modules of A will be defined using 

the following complex. In dimension n, n>0, we let 

S A - AaA(n)HA 
n 

denote the A-A bimodule in which A denotes the tensor product of 

A taken with itself n times. Unless expressly mentioned to the con­

trary, all tensor products will be taken over the base ring k. 

We define an A-A linear map 3 : S A >• S ,A in the 
e n n n-1 

following way. Let a-Ha-jB., .taa ,. e S A. Set 

8 n ( a o " " - ' " W " V l ^ - ' - ^ n U - a0Bala2H'"Bantl 

t ... f (-l)na0BalH...Hanan+1 

Then, because of Cartan and Eilenberg (5), page 174, we see that 

9 ,8 — 0, and we have defined a differential of degree -1. We 
n-1 n ' & 

shall denote the entire complex thus defined by S5,{A. 

We define the Hochschild homology and cohomology modules of A 

with coefficients in the A-A bimodule M to be: 

Hochft(A,M) - H(SS,CAHAHAM) 

and Hoch*(A,M) - H(HomA_A(SAA,M)) 
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We shall denote the n-th homology and cohomology modules by Hoch (A,M) 

and Hoch (A,M) respectively. 

The foregoing definitions can be somewhat simplified if we 

restrict the bimodules in which we are allowed to take coefficients. 

In the present case, we shall be concerned only with symmetric bimodules. 

That is, we are interested in those A-A bimodules, M, for which am = ma 

for all a in A and m in M. 

1.1 Proposition: If M is a symmetric A-A bimodule, then M is 

isomorphic to AH M. 

Proof: The A-A bimodule action on AH.M is given by (a.Ha.-KaHm) •= 

anaHma_,. We define f: M • AH.M by f(m) => lam and g: AH.M • • M 

1 2 A J e A 

by g(aam) •= am. The f and g are clearly A-A linear and fg(anm) = f(am) •= 

lnam = anm. Furthermore, gf(m) = gdsm) «= lm •= m. Thus, we see that f 

and g are isomorphisms. 

We shall use the above isomorphism in the following way. If M 

is a symmetric A-A bimodule, then 
S AH. .M - S AH. .AH.M 
n AHA n AHA A 

( r\) 
•= AHA HAH. .AH.M 

AHA A 

« AnA(n)HAM 

In a similar manner, using the adjointness of tensor and horn we es­

tablish that 

Horn. .(S A,M) e Hom.(AHA(n),M) 
AHA n A 

Proposition 1.1 now tells us that the category of symmetric 

A-A bimodules is naturally equivalent to the category of left A modules. 
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Thus, if we now consider left A modules as symmetric A-A bimodules, 

and we use the remarks following proposition 1.1, we may simplify Hoch-

schild's complex in the following way. We set C A "= AHA and we de­

fine 3 : C A > C .A by 

n n n - 1 J 

9 (a-Ha..H.. . s a ) =* a-a .Ha^H., .Ha„ - a n Ha n a 0 H.. .na„ n u l n o l 2 n 0 1 2 n 

t . . . t ( -1 ) " a . H a - a , . . a a .a„ 0 1 n - l n 

t ( - l ) n a ( ) a i Ha 1 Ha 2 H,. .Ha n > _ 1 

Then, as before ,9 ,9 = 0 and then we will have, if we denote the en-
' ' n-1 n ' 

tire complex by CAA 

Hoch8V(A,M) - H(CJVAHAM) 

and Hoch"(A,M) = H(HomA(C:VA,M)) 

From now on we shall denote the element a.Ha,H...Ha by 

0 1 n J 

a-.^..,...^ "j in order to conform to the notation of Barr (1). 

2. Differential Graded Algebras 

2.1 Definition: A differential graded algebra (U,9) over the 

commutative k-algebra A is a graded algebra U over A equipped with a 

graded A-module endomorphism of degree -1, 9: U »• U, such that 

99 ° 0 and the Leibniz formula is satisfied. I. e., 

9(Ul-u2) - 9(U;L)-u2 t (-l)
deg ul- vyaCug) 

We shall frequently abbreviate differential graded to DG. 

If we consider the complex CftA, we at once note that it is 

merely the underlying module of A tensored over k with itself many 
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times in each dimension. Thus, CftA looks quite a bit like the tensor 

algebra of A over k. It is thus natural to ask whether or not CftA can 

be made into a DG-algebra. The answer is yes, hpwever the multipli-' 

cation is much more complicated than mere tensor multiplication. 

In order to describe the multiplication, we must make use, first, 

of the fact that CftA is a simplicial A-module with faces and degenera­

cies given by: 
t 

di(aoI>i>''' >an3 ) " aoCai aiaitl' *'' 'an^ °~L-n 

sn(aoEal'''' ̂ n1 ) = a0&l ai'l9aitl'" * >a3 °-^-n 

These are easily seen to satisfy the following simplicial 

identities (see MacLane (11) ): 

d nd
J = dJ .d i<i s .ns

J •= sJ ,ns i<i n-1 n n-1 n J ntl n n+1 n —J 

[n-2un-l 
1 
s3 .d1^ 

i - j, jtl 

sJ _(T , i>jtl n-2 n-1 J 

Secondly, we make note of the fact that there is a natural 

isomorphism between C AH.C A and C.A. 
n A m mtn 

We define the product of a generator in dimension i and one 

in dimension n-i as follows. If i equals 0 or n, then 
sn,0(Cai «J> "8o.n(l>l a ? ) = = ^ l a J 

If i is not 0 or n, then 

si,n-i(^l a 3 ) " ^ " 8
i . l l n - i

( C a 2 » " " a 3 ) 

t (-D^a.^H s1>ni.1.1(B1,...,aitx,....anl) 

where the sign ~ denotes an omitted factor. We, of course extend 

these functions A-linearly, and then this becomes the "shuffle" 
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mult ip l ica t ion. 

2.2 Proposition: 8 s . . ( ( a . , . . . ,a"] ) *= 

s i - l ,n- i ( 3 i^ l»* ' ' ' a ? B ^ i t l ai? ) 

f ("1)lsi,n,i-l(^l'""a?ia3n-ilaitl"-"ar?) 

Proof: There is an A-linear map C.AH.C.A • C.A which is 
• 1 A 1 1 

given by aQ ̂  aTJ «aj[aj_,... ,a£] • a ^ f a ^ , . . . ,aiap. 

Then, if we apply this map to the shuffle map of Eilenberg and MacLane 

(6), we will have our shuffle multiplication. The proposition then 

follows from theorem 5.2 of the paper cited. 

The complex CftA, together with the above defined multiplication, 

is now an augmented DG-algebra. That is, there exists a map of DG-al-

gebî as from CAA to A where A is considered as a DG-algebra with trivial 

grading and differential. We are very interested in the kernel of this 

augmentation. In order to decide what that is, we note that the map 

91: C-jA y CQA is given by g ^ a ^ p ) ** aQa;L - aQa1 •= 0. Thus 

9.. is zero, and the kernel of the augmentation must then consist of that 

part of CS,CA of dimension greater than or equal to one. This kernel 

forms a subcomplex which we shall call JS.CA, or, if A is understood, 

sometimes merely J5,s. 
2 

Now consider JAA, which we define to be that subcomplex of 

CAA which is formed by all non-trivial shuffles. We now set 

ChAA - JAA/J.?CA 

Then the differential and grading of CftA induce a differential and 

grading on the quotient complex CtuA, We now define the n-th Harrison 

I 
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homology and cohomology groups of A with coefficients in the left A-

module M to be: 

Harrn(A,M) - H (Ch^A^M) 

and Harrn(A,M) - H (Hom,(Ch.,.A,M)) 
12 A *• 

we denote the total homology and cohomology by HarrA(A,M) and Harr (A,M) 

respectively. 

3. The Action of Z , n 

Let E denote the full permutation group on n letters and let 

IT be an arbitrary permutation. Any such permutation will define an A-

isomorphism of AHA by 

71 (li'--"ai? ,= &ir(l)',"'air(n)3 

Thus, we may make C A, n>l, into a kE module where k is our ground ring. 

We may then consider the shuffles s. .as elements of the group ring. 

Of special importance to us will be the element E of kE de­

fined in the following manner. Let the alternating representation 

sgn: Z •—*• k be defined by sgn(ir) •= 1 if ir is an element of the al­

ternating subgroup of Z and -1 otherwise. Then we may linearly extend 

sgn to a ring homomorphism also called sgn: kE : —*• k. We now set 

E^ - E (sgn(ir))-ir 
n ir e i n 

Now, if u e kE , then u«E = (sgn(u))«E . 
' n' n ° n 

3 .1 Lemma (Barr ( 2 ) ) : Let a . [ a . a"1 F J A. Then 
0 * - 1 ' ' n J n 

3nEn(aoCa! " £ > - °-
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Furthermore, if u e kE , and 3 u(a0[a. a l ) «=" 0 for all 

aQ£a a 1 e J A and arbitrary A, then u is some multiple of E . 

Proof: Let us compute 9 E (a.^ 1 ,.,. ,aT ). If ir is one of 

the permutations in E , then the term a. a /,\[a ,„..,.,,,a , C\ occurs 

with coefficient sgn(ir) in the boundary. This term also appears as 

the last term in the boundary of TT" a (anQi..,,,. ,a"] ) where a •=• (l...n). 

That is, it will as the last term of the boundary of 

a0&ir(2) a7r(n)'aTr(l>l ' 
•n 1 

However, we note that sgn(a) *= (-1) ~ , so the second time the term ap-

pears, it has coefficient (-1) ~ (sgn(Tr)) "-sgndr). Furthermore, 

the term a,,[a , n v,... ,a ,. Na ,..-»,,.. ,a / C\ appears in the boun-
0L-Tf(l)' ' TT(I) Tf(itl) ' Tr(n)J ** 

dary of TT (af.[a1,... ,a"} ) and with opposite sign in the boundary of 

TT (i itl)(a_ra1,... ,a1 ). Thus, we see that 9 E is zero. 
0 1 rr n n 

Nov; let u be any element of kE , and suppose 9 u(a0[a.. ,.. .a"J ) 

0 for all an\a.9...,a ] in C A and arbitrary A. Consider any per­

mutation TT" which appears in u. The term 

aoCaTr(l) *'•• 'aTr(i)aTr(itD ' * *' »air(nP n ° W a P P e a r s i n t h e b o u n d a r y o f 

u(aja. a-^l^' This can be cancelled in all cases only by itself 

with opposite sign. Such a term will only be afforded in all cases 

-1 -1 

by using TT (i itl). Thus every term of the form ir (i itl) appears in 

u along with TT" , and this is sufficient to guarantee that u will be a 

multiple of E . 

Now let us suppose that our ground ring is the integers, that 
u is in kE , and that 9 u = 0. Then u = mE for some integer m. But 

n' n n 6 



8 

u«E «= mE n n 

•= m*n!'E n 

*= (sgn(u))-E . 
n 

Thus we see that sgn(u) =m ,n!. This observation will be very helpful 

to us when our ground ring is a field of characteristic zero. Un­

fortunately, when it is a field of characteristic p, and n>p, we must 

modify the case for the integers to get any information about u. 

4. The Exact Sequence 

Now let the ground ring k be a field, we have defined the com­

plex Chjt{A using the exact sequence 

(4.1) 0 > J*A y Js,:A • ChftA • 0 

We now need to know that this sequence splits, albeit non-naturally. 

2 (r\) (r\) 
Now, J A C J A is simply AH sn nA t ... t s , ,A and is con-

' n — n r J l,n-l n-1,1 

tained in J A "= AHA . The exact sequence of k-vector spaces 

0 -a. .A(n)t... ts . .A(n) U ( n ) 

l,n-l n-1,1 
• A(n)/ s. n ,A

(n) t ... t sn . .A
(n) ^ 0 

l,n-l n-1,1 / 

certainly has a k-splitting. Thus, since A is a k-vector space and is 

then projective, we find that 

.(n) , , .(n) . .(n) 
0 > AH ^ ^ + ... t S n_^ i A , AHA 

• AH{A(n)/ s. .A(n) t ... t s . .A(n)) • 0 
l,n-l n-l,l 

is exact and split as a sequence of A-modules. We thus see that the 

exact sequence (4.1) is an exact sequence of complexes for which the 
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sequence in the n-th dimension is split. Because of the splitting, 

both the sequences 

(4.2) 0 • Hom.(Ch A,M) >• Hom.(J A,M) 
A n ' A n ' 

A n -*• HomA(J_A,M) — — • 0 

(4.3) 0 »- J 2AH,M • J AH.M • Ch AHM • • 0 

n A n A n 

are exact for any A-module M. Thus we have two short exact sequen­

ces of complexes. Now, it is clear from Cartan and Eilenberg (5), 

page 169, that 
H (J..AH.M) •= Hoch (A,M) n •< A n 

- TorABA(A,M) n ' 

and H (HomA(J5,{A,M)) = Hoch
n(A,M) 

-Sct^CA.M) 

Thus, if we take homology, we have two long exact sequences: 

••• 3 — • H (J 2AH AM) • TorAHA(A,M) 
n " A n ' 

>• Harr (A,M) • H .(J?AB.M) ~* 
n ' n-1 « A 

••• !_» Harrn(A,M) • Ext^CA.M) 

>• H (Hom.(J2A,M)) *• Harrn+1(A,M) — ^ »• '" 
n A ** 

where 9 and 6 are the connecting homomorphisms. 

5. The Splittings 

We are interested in those cases for which Harrison's theory is 

a direct summand of Hochschild's theory. In (2), Barr has shown that, 

if k is a field of characteristic zero, then this is the case in every 
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dimension for all commutative algebras. We shall give a variation of 

his proof and then use our own techniques to find splittings in certain 

dimensions for fields of characteristic p. 

5.1 Theorem: Let k be a field of characteristic p. There are 

natural transformations of functors 

$.(A,M): Hoch.(A,M)„ >- Harr.(A,M) 

$X(A,M): Harr1(A,M) • Hoch1(A,M) 

If l<i<p~l, then $.(A,M) is a split epimorphism and $ (A,M) is a split 

monomorphism. If k happens to be a field of characteristic zero, then 

these splittings exist in each dimension. 

The fact that there exist natural transformations of functors 

is clear since Harrison's complex was defined as a quotient of Hoch­

schild 's complex in a functorial manner. For the rest, we shall show 

that there exist projections e.: J.A >• Ch.A which are also 

natural transformations and which split for l<i<p-l. We shall make use 

of several lemmas. 

5.2 Lemma: Let l<i<n. Let a. Pa,,..,,a .,3 e J ,,A, Then 
0*-l' ' ntl ntl 

9ntl(a0^al',-"anti:I) = °itl(a(Pal aitl7)H(Iait2'""arttl^ 

t (-^^aQCa^.-.^rDHO^^.ta.^ a ^ ) 

P r o o f : ^ntl ( a0 ai» • • • ' a
n t l J = a0al£a2 " " 'ant}) ~a0 &la2 "" 'ant J 

t . . . t ( - D ^ a ^ ^ an3 

a0a1^2 a n t? " a 0 & l a 2 , , , , , a n t P 
i t l 

t (-1) ^ a
0

a i t l ^ l § i t l ' " ' ' a n t ? ) 

t . . . 

fl ! 

- (-1) < a
0

a i t l ^ a l , , , , , a i t l , , , , , a n t l ^ ) 

t . . . t(-l)n+1(a0an+1[a1 a^ ) 
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" ( 9 i t l ( a oI>l a i t i : i ) ) B ( &i t2? - " " a n t i 1 ) 

t (-l)1(a0i>;L a - l W a . ^ a . ^ ^ + J ) 

- (-l)1(a0ta1 , . . . ,arj)H( [a i+1a i+2
 a

nti3> + • " 

t (- l) i(- l)n" i + 1(a ( J&1
 a i3)»<an n[a i + 1 a^ ) 

= ( 9 i t l ( aO Hi» • • • » a i t J J )H( feit2''' * 'ant J } 

t (- l)1(a0[a1 , . . . ,ap)H(9n + 1_ i([a i + 1
 a

n + 1 l ) ) 

We have noted earlier that each s. . may be considered as an 
i,n-i J 

element of kE and thus as an A-endomorphism of the A-module J A. We 

now define another element, s , of kE in the following way. First, we 

set s.. equal to zero. Next, if n>2, we set 
n-1 

s = J s. 
n • _ , i,n-i. 

i = l 

We already know that s. . need not be a chain map. We, can now show, 

however, that s is a chain map. 

5.3 Lemma ( Barr (2)): 9 s •= s n 9 
• •' n n n-l n 

Proof: We recall that, by proposition 2.2, we have, 

V i ^ - i ^ o C V - ' - ' V 0 = S i - l , n - i ( ( 9 i ( a
0 C a i a p ) » ( D i i t l , . . . , a J ) 

f (-1 ) l s i ,n-i-l ( aot a l ' ' *' >a3B(ViCaitl a 3 ) 

n-1 
Thus, 9 sn(a0Ca l 5 . . . ,an l) - a ( £ a± J * ^ a j ) ) 

i = l ' 
n-1 

. I 1
s i - l , n - i ( ( a i ( a O & l ' - ' " a i : , ) ) H ( ^ i t l *£» 

i = l 

f ( - 1 ) i s i , n - i - l ( ( a o n - a l ' " " a P ) H ( 3 n - i ( l > i t l ' - " ' a n = i ) ) ) 

= - s l , n -2 ( ( a oC a P ) H ( a n-1^2"-" a n^ ) ) 1 s l ,n-2 ( 92 ( ao£a l 'a 23 )H( E8» • • • ' a J » 

- ...H-lrt^^K.^ V^V^-l'S?" 
+ sn-2,l( W^i'-'-'Vj^^) 
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= slTn-2
(3n-l(a0 a l " - " a n )} + '" + Sn-2,l(9n-l(a0 al an ]) 

= Vl3n(a0 al""'an ) 

Thus the theorem is proved. 

5.4 Lemma: sgn(s. .) = c. . (We use the symbol c. . to i,n-i i,n-i i,n-i 

represent the binomial coefficient of n objects taken i at a time.) 

Proof: We shall first consider our ground ring to be the in­

tegers and look at ZE . Now we proceed by induction on n. The lemma 

is obvious for n = 2 since s. 1 *
= a e - ( 1 2 ) where e is the identity 

element of E . Now we assume we have proved the lemma for n-1. Then 

s. .(a0 a. a ) may be written in the following way: 

s. . (a. a.,... ,a ) =* s. '. . (a. an..,. ,a n ) H a 
i,n-i 0 1' ' n i,n-i-l 0 1' ' n-1 n 

t (-1) s. , ,(an an,.,. ,a.,.. ,a_ ) H a_. \H-1, 

1-1,n-i 0 1' ' i' n 

Thus s. . "= s. . , t (-1) s. , .(i itl it2 ... n). If we apply l.n-i i,n-i-l I-I,n-i rv J 

E e ZE to both sides of the above equation we will have n n u 

8gn(8i.n-i),En"t8gn(8i,n-i-l) + ("1)I1'"1(sgn(si-l,n-i) Sgn((i •••n>»>'E
n 

-tsgn(s. n , ,) t (-l)2(n"1)sgn(s, . n ,)}.E„ i,n-i-i i-I,n-i n 

={c. . . t c. n .}«E i,n-i-l i-I,n-i n 

H e .}-E i,n-i n 

Thus sgn(s. .) *= c. 
& i,n-i i,n-i 

Now if we replace the ring of integers by any arbitrary com­

mutative ring, there will be a canonical map, <j>: Z •—>- k, which 

is given simply by taking unit to unit. This extends to a map 

\b; ZE »• kE , This second map will take s. . e ZE to the 
r n n r i,n-i n 
same element in kE and it will also commute with the maps sgn from 
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ZE to Z and kE to k. Thus in the ring kE , the signature of s. n n Y & n' i,n-i 

is also c. 
i,n-i 
5.5 Corollary: sgn(s ) = 2 -2. 

Proof: sgn(s ) •= sgn(s, . t .,, t s , .) • n l,n-l n-1,1 

l,n-l n-1,1 

- 2n-2. 

5.6 Proposition: ((2n-2)-s )...(2-s )s. _. •= 0 for all l£i£n. 

Proof: Once again, we shall consider our base ring to be the 

integers first. Thus, we have s and s. . in ZE . We proceed by & ' n i,n-i n r J 

induction on n with the case for n =* 1 being trivial. If n •= 2, then 

32 = sl,l s0 = s., , = e - (12), Thus, 

(2 - s 2 ) S l 1 - (2e - e t (1 2))(e - (1 2)) 

- (e t (1 2))(e - (1 2)) 

- (e2 - (1 2)2) 

>= (e - e) 

= 0 

Now assume that the proposition is true for n-1. Then 

9 (<<2n""1-2)-s )...(2-s )s. .) = 
n n n i,n-i 

(((2n*"1-2)-sri .),..(2-s^ _))(s. . n .(9.Hl)t (-l^s. n . /lH9 n .)) n-1 n-1 i-I,n-i I i,n-i-l n-i 

because of propositions 2.2 and 5.3. Then, by induction, 

(((2n"1-2)-s„ .)...(2-s ))(s. . n .(9.Hi)) - 0 n-1 n i-I,n-i I 

and (((2n"1-2)-s„ . ) . . .(2-s ))(s. n . .(lHg^ .)) - 0 . 
n-1 n i,n-i-l n-i 

Thus, by proposition 3.1, we see that ((2 " -2)-s )...(2-s )s. . must ' J r c n n i,n-i 

be some multiple, say r. ., of E for all pairs i and n-i, Thus 
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((2n-2)-SM)((2
n"1-2)-STi)...(2^)s. n , ~((2n-2).-ST) r, n , E^ n n n i,n«-i n i,n-i n 

= r. .(2n-2-sgn(s )) E 
i,n-i e n n 

«=• 0. 

by corollary 5,5. By applying the same tricks we used in lemma 5,4, 

we see that the proposition is true for an arbitrary commutative ring. 

Now suppose we consider 

e' - ((2n~2)-s )((2n*°V2)-s )...(2-s ) e kE^ 

n n n n n 
2 

where k is a field of characteristic p. Then look at (e') . If we 
^ n 

2 
expand (e1) as a polynomial in s , we see that every term, excepting 
only the first, is a multiple of e's . But each term of this form is 

n n 
zero by proposition 5.6. Thus we have 

( en ) 2 " { i 1 2
( 2 i- 2 ) K ( 2 n- 2 )- sn )' ,' ( 2- sn ) 

n 
If we could multiply e' by the inverse of . n, «(2 -2) in our field k, 

we could convert e' into an idempotent map and be on our way. Unhappily, 

this is not always possible since that product may be equal to zero 

in the field k. We must then decide when it is possible to divide. 

n 
Certainly, it is possible to divide in dimension n by . n, „(2 -2) 

when we are working over a field of characteristic zero. Furthermore, 

if we are working with a field of characteristic p where 2 is a primitive 

root modulo p (i.e., the order of 2 in the group of units modulo p is 

p-1) then we may divide by the above product in dimensions up to but 

not including p. When 2 is not a primitive root modulo p, we may also 

divide up to dimension p? but in order to show this, we must have some 

more facts at our disposal. 
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Let us recall that lemma 3.1 holds true for any ring. In par­

ticular, we may consider the ring of integers modulo p where p is the 

characteristic of our field, a is some non-negative integer, and p 

n | 
is the largest power of p dividing . IT _(2 —2). We denote this ring by k' 

5.7 Lemma: Let n be any integer less than the prime p. Let us 

n 
consider the ring Z . If p divides . n, „(2 -2) then, 

((2n-2)-s )...(2-s ) - p a I a TT a e Z 
n n fa „ TT TT 

TT e E 
n 

Proof: We fix p and proceed by induction, If p is two and 

n is one, the lemma is obvious. Now suppose the prime p is odd, 

once again, if n is one or two, the lemma is obvious. Let us assume 

it is true for n-1. Consider ((2 -2)-s )..,(2-s ). this is expressible 
n n 

«« 

in the form we want if and only if it is congruent to zero in k'E . 

Since lemma 3.1 holds true there, we have 

9n(((2
n-2)-s)...(2-s )) - (2n-2)(((2n"1-2)-sTi .)...<2-s„ ,))* 

n n n n-1 n-1 n 

-8TI 1(((2I?r1-2)-s„ .) . . . (2-s„ . m 
n-i n-i n-i n 

- (2n-2)(((2n"1-2)-ST, ,)...(2-Bn 1))3„ 
n-1 n-i n 

since the second term is zero by proposition 5.6. 

Now suppose p divides 2 -2, Then p "" divides (2 "" -2). .(2 -2). 

By the induction assumption, we see that p divides 
(2n-2)((2n*1-2)-s .)...(2-s .) since pa~b divides 

n-l n-l ^ 
((2n"1-2)-s .)...(2-s„ ..). Thus, U(2n-2)-s )...(2-s )) is zero in 

n-1 n-l n n n 
k'E .. This tells us that ((2n-2)-s )...(2-s ) is a multiple of E in 

n-l n n n 
k'E . If we multiply the above by E , we have 

((2n-2)-sT,)...(2-sT,)-ET, - A-E -E^ 
n n n n n 
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•=» n!«X'E 
n 

<~ ((2n-2)-sgn(sn))...(2~sgn(sn)) En 

Thus nl«X "= 0. Since n<p, n! is a unit in k', so X must be zero. Thus 

we have shown that ((2n-2)-s )...(2-s ) is zero in k'E , 
n n n 

The above lemma tells us that we are now able to divide by the 

n 
product . n, - (2 -2) in a field of characteristic p in all dimensions 

less than p. Thus we now set 

e n ~ e n / {i2<2 ( 2 i- 2 ) } ^ P " 1 

We will then have the following proposition. 

5.8 Proposition: 1.) e : J A >• J A is a chain map. 

2.) e2 - e 
n n 

3.) the kernel of e consists of just those 
n J 

shuffles of dimension n. 

Proof: 1.) 9nen - 9 n { ( ( 2 n - 2 ) - s n ) . . , ( 2 - s n ) / £ n 2 (2 1 -2)} 

- {(2 n -2)((2 n~ 1 -2)-s n , ) . . . ( 2 - s n _)3 / . n 0 (2 i -2 )} 
n- l n - l n l = 2 

-{s^1((2-1-2)-s^1) . . .(2-sn„1)9n / . I ^ - 2 ) } 

- { ( ( 2 n ~ 1 - 2 ) - s ^ 1 ) . . . ( 2 ^ n _ 1 ) 9 n } / ± JQL 2 ( 2 ± - 2 ) 

- e .3 
n-1 n 

since the second term above i s zero by lemma 5.6. 

O n n . 
2.) e = e «{((2 -2)-s ) . . . ( 2 - s ) / . n „(2 1 -2)} . If we expand n n n n i *= 2 * 

the r ight hand s ide , we see that every term involves s excepting only 

the f i r s t . But e s «=• 0. Thus 
n n 

r e n ( i ^ 2 ( 2 l " 2 ) / i i 2 ( 2 l ' 2 ) ) 

e 
n 
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3.) Certainly, applying e to a shuffle will yield zero. Now 

suppose e (z) = 0 for some z in J A, The leading term in e is 1, Thus, 

n 
if we expand e as a polynomial in s , we will see that z r a J a.s(z) 

I •"• 1 

for some a. e k and thus z is a shuffle. 
I 

Now, from the idempotence of e , we may conclude that 

J A - e J A t (1-e )J A. n n n n n 

But (1-e )J A is the kernel of e , and thus consists of the shuffles, n n n' 

Thus, e J A is chain isomorphic to Ch A, and so when we apply the 

functors 'H.M and Hom.(«,M) to J A and e J A and take homology, we A A ' n n n ^J' 

see that theorem 5.1 is proved. 

6. The Second Splitting 

From the foregoing, it is clear that a splitting of J A exists 

in all dimensions over a field of characteristic zero. It is equally 

clear that the same splitting does not exist in all dimensions when the 

characteristic of the field is greater than zero, since 2-2 is con­

gruent to zero modulo p. In this second case, however, we do have another 

very interesting splitting. In order to investigate this, we shall need 

some facts about idempotents in arbitrary rings, 

6.1 Proposition ( Herstein (9)): Let T be a ( possibly non-

comrnutative ) ring. Let a be a non-nilpotent element of T such that 

2 
a -a is nilpotent. Then there is a polynomial q(x) which has integral 

coefficients and aq(a) is a non-zero idempotent. 
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Proof: Suppose (a -a) m •= 0. Then, if we expand (a -a) m and 

transfer all terms except a to the right hand side, we have a " a p(a) 

where p(x) is some polynomial which has integral coefficients. Now let 

e *=•* a (p(a)} . If a is not zero, then neither is e, since a *=• a p(a) " 

m / \ mtl / \ / \ 2m r / \im m 
a«a p(a) — a»a p(a)«p(a) •= ... ""a lp(a)} «=• a «e. 

Now we claim that e is idempotent, We have e — a {p(a)} = 

m-1 mtl , \t t N-,2m-l „ m-1 m, , N12m-1 „ m-2 mtl , w , N12m-2 a «a p(a){p(a)> »• a «a tp(a)} ^ a «a p(a){p(a)} ra 

m r , s-,m 
... = a {p(a)} •= e. 

Let us consider the polynomial p(x) which we constructed above. 

We note that it depends on the integer m for which (a -a) is zero. 

Thus, we should actually write p (x) instead of just p(x). We now wish 

to know exactly what p (x) looks like. 

6.2 Proposition: p (x) - I t (1-x) t (1-x)2 t ... t (l-x)1""1. 

2 2 
Proof: Clearly, p,(x) is 1, since a -a •=* 0 implies a "• a p,(x). 

Now suppose (a -a) = 0 . If we expand this, we will see that 

2m 2m-l . 2m-2 . , ..m m _ n a - c . .a t c 0 0a - ... t (-1) a - 0 
m-1,1 m-2,2 

The above equation implies: 

m _ mtl ,f T\Wtl/ , \m-l , / .Nmtl/ , \tn-2 
a - a - ( ( -1) (-1) V l 9 l t ( - 1 ) (-1) c ^ 2 j 2 a 

t . . . t <-i)n t la i n""1 ) 

= am+1(m - {m(m-l)/2}a t . . . t ( - l ) m V " 1 ) 

_ mt l / / , \ . j . / , \m-2 m-2 
= a ((m-1) - c a t . . . t (-1) a m-3,2 

t 1 - c . .a t . . . t (-Dm"2c . .a1""2 t ( - l ) m - 1 a m - 1 ) m-2,l m-2,1 

because of the well-known formula involving binomial coefficients, 

c. . . t c . . . "̂  c. .. Now the upper part of this equation is simply 
i-i,D IJD-I I»D 

file:///tn-2
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1 t (1-a) t (1-a) t ... t (1-a) " while the lower part is the ex­

pansion of (1-a) " , Thus, a = a (It (1-a) t ... t (1-a) ~ ) 

so p (x) •= 1 t (1-x) t ... t (1-x) " . 
m 

Let us now return to our consideration of JAA where A is a com­

mutative algebra over the field k which has characteristic p. For the 

sake of simplicity, we shall temporarily assume that 2 is a primitive 

root modulo p.Let us now set 

w^ -2((2p-1-2)-s£)...(2-s;l)) 

and consider w. as an element of kE . The reason we choose the coef-

ficient 2 is explained by the following lemma. 

p-1 L 

6.3 Lemma: Let 2 be a primitive root modulo p. Then, . JTC _(2 -2) 

is congruent to \ modulo p. 

Proof: First, we know that the product of all non-zero ele­

ments of Z is -1 since they are all roots of the polynomial xp~ -1. 

Next, if i is less than j and both are less than p, then 2 -2 is not 
• • • 

equal to 2"1-2. If it were otherwise, then 2 would be equal to 2-1 and 

so 2^~X would be equal to 1. This would contradict our assumption that 

2 is a primitive root. Thus the factors in the above product are all 

different. There are p-2 of them. Thus there is only on; non-zero 
element of Z which is not contained in the factorization. This element 

P 
is obviously -2. Otherwise, 2 -2 "= -2 would imply that 2 is zero. 

Thus we have 

.Pn 2(2^2) - (4)(-2)(.Pn 3(2^2)) 

-<-i)( n „n) 
n e Zw 

P 
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- (-£)(-D 

-(i) 
u 

where Z is the multiplicative group of units modulo p. 

The above tells us that the constant term of w is one and lets 

us prove the following proposition, 
2 

6,4 Proposition: w. - w, is nilpotent. 

Proof: Let us remember that in the ring ZE., we have the 

equation (*) ((2A-2)-sJi)... (2-s£)sA = 0. Now, we note that 2£-2 

is congruent to 2 " p~ -2 modulo p. Thus, if we consider the sequence 

of factors of (*), we will have s£, (2-s£),... ,((2
p"1-2)-s£),((2

p-2)-sJl), 

...,((2 -2)-s{) and if we reduce this sequence modulo p, we see that 

it repeats itself after p terms, 

Suppose £ = m(p-l) -f- i. Then, when we reduce (*) modulo p, 

we will have 

(-l)r((2^1-2)-s£)
m...((2i+1-2)-sAA(2

i-2)-s£)
m+\..(2-s£)

mtV+1-0 

as an element of kE. and r = m-1 if i is zero. It is m if i is not 

zero, The coefficient (-1) is unimportant, however. What is important 
m m _ r . . J - . . , mil mtl _ « . » - . . . is w s = 0 if I is zero and w s *= 0 if I is not zero. 

Furthermore, by the remark following lemma 6.3, we see that 

w -1 is a polynomial in s. which is lacking a constant term. Now then 

2 
w2.~wfi. ^ ™H.^H~^' T ^ U s s if i *-s no^ zero, 

(v-r-rv" mtl 
„ mtl mtl.., N 

~ W A sa H(8£> 

in kE for some polynomial H(x) in k[x] . If i is zero, we use the same 
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0 m 

reasoning to see that (Wg-w.) •= 0. 

Now we set 

„ mtlr / \-imtl 
e A ~ \ { p m t l ( V } 

if I =• m(p-l) t i and i is not zero, and we set 

_, m f / X T m e A~V p m ( V } 

if I c=m(p-l). From the foregoing, it is obvious that e. is an idem-

potent. Unfortunately, we do not yet know that it is a non-zero idem-

potent. It will be non-zero if w. is not zero as is shown by the follow-

ing propositions. 

6.5 Proposition: w. is not nilpotent if &>p-l. 

Proof: Suppose w. were nilpotent, Then, w. *=• 0 for some in­

teger r. If we expand w. as a polynomial in s., we find that the poly­

nomial has constant term one, Thus, we see that 1 =• s.H(s.) where 

H(x) is just some polynomial. Thus sff is invertible. 

Now we claim that if n>&, then s is invertible. We shall pro­

ceed by induction. If n •= £ t 1, then consider 1-s. ..H(Sj,,-). Then, 

9£ti-(1"suiH(sm)) ~ ( 1~ s* H ( s* ) ) 9m - °-

Thus, l-s wH(s u l) -
 XE£tlfor S O m e X" T h e n' SAtlH(sAtl) " -"-"^Atr 

Raise both sides of the equation to the power p. Then we will have that 

s £ t i { H ( s a t i ) } P " ^ X P E U I b u t s i n c e £^P" 1 ' E P U " 0> T h u s ' S £t l i s i n " 
vertible. By induction, s is invertible for n>£. J ' ' n — 

Suppose now that n •=* m(p-l) t 1 and n>&, Then, s is inver­

tible, and s q(s ) = 1 for some polynomial q(x). If we apply E to 

both sides, we see (sgn(s ))(sgn(q(s ))E •=" E , But, sgn(s ) is 

n ^ n n n n 

file:///-imtl


22 

2 p -2 and this is zero. We now have a contradiction. 

6.6 Proposition: w. is not zero if £<p-l 

Proof: We shall proceed by a sort of backward induction. We 

know that w , is not zero, nor is it nilpotent. If w . were zero, 

then, 3 nw , •" w .3 . "3 0. But then, w n *" X*E .. Thus, we ' p-1 p-1 p-2 p-1 ' p-1 p-1 ' 
2 

would have, w . *= w .»X«E . *= 0 since sgn(w n) is zero. But then 
p-l p-i p-l r p-l 

w 1 would be nilpotent and this is not true. Thus,' w _ is not zero 
and the same reasoning shows that it is not nilpotent. Now we can 

show that w _ is neither zero nor nilpotent. Continuing in this way, p-d 

the proposition is proved, 

The two previous propositions show that e. is a non-zero idem-

potent, The next theorem shows that e. is a chain map. 

6.7 Theorem: 3»e. = eo_i3o 

Proof: We assume that £ = m(p-l) t i. First, if i>l, we have 

* „ ~ mtlr / M^tl __ mtlr , vimtl = ^ 9£e£ " 9£W£ { p m t l ( V } w£-l{pmtl(w£-l>} Vl9£ 

If i •=• 0, the same reasoning works except we must replace mtl by m. 

The only problem occurs when i = 1. Then we will have e. equal to 

w™ *Pmtl^
w£^m and e£_i e (l u a l to w£-.i^p

m^
w£-l^m* N o w we n o1 : e- t h a 1 : 

pmtl(w£) " P « ( V + (1"W^)m' ThUS 
~ „ r, mtl r , \ \mt l 
9 £ e £ ~ 9 £ w £ { p m t l ( w £ ) } 

_ mtl r / - ximtl^ 

"w i - i { p»ti (Vi ) } \ 
_ i mtlr / s mt l . mt l r / \&ti \^\ 

(w£-i{p» (w£-i ) f ravA(Vi' (1-Vi) } 

. rati,, »m(m-l)«a 
t ... t w w ( i - w w ) >a£ 

Now every term of the form aw. n {p (w„ ,)} "•,(l-w0 n r is zero since 
£-1 m £-1 £-1 
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1-Wj, . does not have a constant term and so every term of the above 

form will have a factor of the form w. -.S. , and this last is zero. 

Thus the only possible non-zero term is the first. So we have 

- < V i - W i > ) m ) \ 
- VA 

since w . = w. . *Pm(w,, ,) by proposition 6.1. 

Using the e.'s we have constructed, we see that we have a 

natural splitting of the complex JAA which is given in the n-th dimen­

sion by (JAA) •= e (JAA) t (1-e )(JAA) . We would now like to find out 

'' n n " n n «* n 

what the kernel of the splitting eft is. In order to do this we shall 

apply the following filtration to JAA, We let F..JAA be JAA. Next let 

2 
FQJAA be JAA, the complex of non-trivial shuffles. If i is a negative 

integer, we set F.JAA equal to the subcomplex whose n-th dimensional 

-i 2 component is s (JAA) . If i is a positive integer, we set F.JAA equal 

to JAA. It is clear that each F.JAA is a complex and that F.JAA con­

tains F. -jJAA and so is a filtration. Note that the quotient complex 

FAA/F JftA is just the complex ChAA. 

6.8 Proposition: Let £ « m(p-l) t i. Then e£(F^ JAA) •= 0. 

m 0 

Proof: Let x e (F JAA) . Then, x •= s (y) where y e (JAA) . 

mv >J mtlr / v-iintl/. \ „ mtl m r , N 1mtl, \ _ n Then we consider w£ {p^Cw^)) (x) - w^ 8
4
{Pmtl(w4)} (y) - 0 

mtl mtl 
since w„ s. s. . "= 0 for all i and j whose sum is £. 

£ & i,] J 

6-9 Proposition: Let £ «= m(p-l) t i. Then, if e,(x) •=" 0, we 
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will have x e (F JAA) . 
t * 

Proof: We know that e. " I t 7 a.s for some integer t. 
i -" i 

Therefore, if e.(x) •= 0, we see that 

t . t . 
x - J - ^ ( x ) - s ^ I -ousj" (x)) - sA(x1) 

for some x.. Thus e (x) «= e s A x ) -» 0. By the same reasoning, we see 

2 2 

that s.(x1) =s.(x 2). Thus, x e s.(JAA) . Continuing in this manner, 

we find that x e s (JAA) for every m and the proposition is proved. 

6.10 Theorem: Let k be a field of characteristic p where 2 is 

a primitive root. Let A be a commutative algebra over k and M a left 

A-module. Construct the complex JAA and filter it as before. Let 

£ =* m(p-l) t i where l<i<p-l. Then there exist natural transformations 
*A(A,M): Hoch^A.M) * H^U^A/F^A^M) 

.A/ #£(A,M): H*(HomA(JAA/F_mJAA,M)) • HochA(A,M) 

»£< such that *0(A,M) is a split epimorphism and * (A,M) is a split mono­

morphism. 

Proof: In order to prove this theorem, we merely note that the 

complex JAA/F__ JAA is isomorphic to the cokernel of e and then the proof 

follows immediately from the splitting. 

In all that has gone before, the only property of fields that 

was used was the property that 2 -2 has an inverse if it is not zero. 

Thus, theorem 6,10 could have been stated equally well for rings con­

taining a field of characteristic p. 

We have also assumed in the foregoing that 2 is a primitive root 

modulo p. If this is not the case, we may obtain a version of theorem 
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6.10 in the following way. Let n be the order of 2 in the multipli­

cative group of units modulo p. Then set 

w£ -c((2
n-2)-s£)...(2-s£)) 

n 
where c is the inverse of . II _(2 -2). AJ.1 our theorems hold with 

l =• 2 

slight modifications of proofs except for proposition 6.6. In that 

case we have 

6.6' Proposition: If 2 is not a primitive root modulo p, then 

w. is not nilpotent for £<p-l. 

Proof: We know that w 1 is not nilpotent. Suppose w - were. 

Then w . = 0 so w n = A * E . for some X. Thus, applying the idem-p-2 p-1 p-1 » v v J e> 

potent e n which we constructed in 5, we see that e .w , *= e n e p-1 ' p-1 p-1 p-1 

since e ,s . •= 0 and w . is a polynomial in s .. with constant term 
p-1 p-1 p-1 F y p-1 

1. Also, since e n has signature zero, e 'X'E . •= 0. Thus, e , p-1 6 p-1 p-1 ' p-1 

is zero and this is a contradiction. Thus, w „ is not nilpotent. If 

we continue in this way, the theorem is proved. 

We now have the following version of theorem 6.10. 

6.11 Theorem: Let k be a ring containing a field of charac­

teristic p. Let n be the order of 2 in the group of units modulo p. 

Let A be a commutative algebra over k and M a left A-module. Construct 

JAA and filter it as before. Let £ •=• mn t i where l<i<n. Then there 

exist natural transformations 

$A(A,M): HochA(A,M) • H ^ t ^ A / F ^ A ^ M ) 

*A(A,M): HA(Hom.(JAA/F JAA,M)) — > Hoct/UjM) 
A ,c -m " 

such that <I» (A,M) is a split epimorphism and * (A,M) is a split mono­

morphism. 



26 

RINGS CONTAINING THE RATIONALS 

•"•• Adjoint Functors, Cotriples and Symm 

We assume that the reader is familiar with most of the defi­

nitions in this section, but we include it to fix some notation and for 

the sake of completeness. For a more detailed study of triples and co-

triples, the reader should refer to Barr and Beck (3) or Beck (4). 

Let A and B be categories and U: A •—*• B, F: B •—*• A 

be functors. We say that F is left adjoint to U (or coadjoint to U) 

and U is right adjoint to F (or adjoint to F) if there is a natural 

isomorphism of sets 

a: Hom.(FB,A) -»• Homfi(B,UA) 

•| U. In for all objects, A, in A and, B, in jB. We write a: F 

particular, we find 

HomA(FB,FB) « Hon>B(B,UFB) and HomA(FUA,A) * HomB(UA,UA). 

Thus, there exist natural transformations e: FU *• A and 

n: B_ — • UF called the unit and counit respectively. Here we are 

identifying a category A with its identity functor 1.. 

The unit and counit satisfy the following diagrams ( see Beck (4)), 

F nF •*• FUF and U^ "n •» UFU 

Fe eU 

'F U 

Here we are using U and F to represent the identity natural transfor­

mation of a functor as well as the functor itself. 
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Now set G •= FU and 6 «= FnU. Then G *= (G,e,5) is a cotriple on 

the category A. That is, G: A >• A is a functor and e: G • A 

2 
6: G • <3 are natural transformations such that 

6 . „2 . 6 
and 

commute. 

For a particular example of adjoint functors, let us consider 

the following case. Let k be a commutative ring, ,M be the category 

of left k-modules and , Alg be the category of commutative k-algebras. 

Then, there is a functor U: . Alg — >• JM which assigns to each 

k-algebra its underlying k-module and to each algebra map its associated 

module map. It is then well known (see, for example, Beck (4)) that this 

functor has a left adjoint, S, which is the symmetric algebra functor, 

Then the counit e: SU • >• . Alg is the map which "remembers" mul­

tiplication and the unit n: ,M •——*- US is front adjunction. We shall 

abbreviate the cotriple arising from this adjoint pair simply by S. 

For another example of adjoint functors, we need to consider 

the following variation of the symmetric algebra functor. First, we 

recall that the category R-M of commutative ring modules is the cate­

gory with objects (R,M) where R is a commutative ring and M is an R-

module. A morphism in R-M is a pair (<J>,f): (RQ,Mn) — >• (R1 ,M..) 

such that <j>: R0 ——>• R. is a ring homomorphism, f: MQ • M.. 

is a map of abelian groups and the following abelian group diagram 
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R Q H M A • '^
Hf ) R„«M, 

Vl V2 

f 

0 1 

commutes. The maps u.. and u_ are module multiplication. 

If we now consider the category GCR of graded, strictly com­

mutative rings, we find an underlying module from GCR to R-M. It is 

described by UR *=> (R0,R.) where R. is the i-th direct summand of R. 

Further, there is another functor, S, from R-M to GCR which is con­

structed by making S(R,M) into the symmetric algebra of M over R. 

1.1 Proposition: S • 1 U: R-M GCR 

Proof: We note that US R-M. Thus the natural transformation 

R-M > US is simply the identity. Now suppose R is an object of 

GCR and we have (<j>,f): (R,M) • > UR. We need only show there is 

a unique h: S(R,M) > R with Uh «•=» (<|»,f). We now set h « S(<j>,f). 

Then, obviously, Uh = (<j>,f). Finally, h is unique since every mor-

phism with domain S(R,M) is determined by its values on the zero-th and 

first dimensions. 

The importance of the above proposition will become apparent 

later when we are forced to use colimit arguments. 

Now suppose A is a commutative k-algebra and let us consider 

2 
the k-algebras A, SA, S A, ,... We have a map e: SA — — — * A. This 

2> 2 
gives rise to two maps, SeA: S A «~-—•—»• SA and eSA: S A — - - — — > • SA, 

XT * * 

In general, we have ntl maps from S A to S A given by S "" eS A for 

• ntl nt2 
i ranging between zero and n, We also have maps from S A to S A 

given by S 6S A, Huber has shown in (10) that A, SA, S A, ... to-
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gether with the maps defined above form an augmented simplicial object 

over the category of commutative k-algebras. 

Suppose E is any functor from . Alg to some abelian category A. 

Then 
> 
-> „ „2. ••••»' ) • •. < ES A •. > ESA • • EA 

will be a simplicial object in A, To this simplicial object, we may 

associate a chain complex 

2 9 

-y ES A ~* ESA y 0 

ntl which has ES A in the n-th dimension and in which 

n 

n 
I (-l)1ESn-1£S1A 

i - 0 

The homology of this complex is denoted by H (A,E)C, n>0, and these are 
n o — 

known as the homology objects of A with coefficients in E relative to 

the cotriple S, 

We shall now describe a particular functor which we shall use 

as our coefficient functor. Consider two commutative k-algebras A and 

A' and a k-algebra morphism between them, <j>: A' •—• A. We can make 

AHA' into an A-module by operating on the first factor via A. We 

define the A-module Diff A' to be (AHA')/N where N is that submodule 

of AHA' generated by all elements of the form anaiai - a<j)(a')Ha' 

- a<()(a')Hai where a e A and a', a' e A', Then, it is easily seen that 

Hom.(Diff A',M) =* Der(A',M) where Der(A',M) is the set of all k-linear 

maps f: A' r-> M where M is an A-module and f(a'a') *= <|>(a')f(a') 

t <>(a;pf(aj_'). 

We now return to our consideration of the cotriple S. There 

is a unique map from S A to A which is arrived at by simply taking any 
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composite of the S " eS A 's. We now have a complex over the category 

of A-modules by taking 

... • • Dif f S nA - y Dif f S 1 1 * ^ « — — • . . . > Dif f SA y 0 

The boundary maps are defined to be 

9 - I (-l^Diff Sn'ieSiA 
n i - 0 

We now define the symmetric homology of A with coefficients in the 

A-module M to be the homology of the complex 

... -*• Diff S nAH M • -*•.. ,• y Diff S 2 A H A M • •—• Diff S A H A M >• 0 

with the n-th boundary given by 9 a l M . We denote the n-th homology 

module by Symm (A,M). Similarly, we 

A to be the homology of the complex 

module by Symm (A,M). Similarly, we define the symmetric cohomology of 

" A — " "'»"' ' — A ^ ' " " "2" 
0 y HomA(Diff SA,M) • Horn.(Diff S A,M) 

with the bpundary given by Horn.(3 ,M). We denote the n-th symmetric 
A n 

cohomology module by Symm (A,M). We note that this second complex can 

be written as 

0 • • Der(SA,M) -*• Der(S2A,M) •.., *• Der(S nA,M) — — — » 
We are now in a position to state the main theorem of this chapter. 

1.2 Theorem: Let k be any ring containing the rational numbers. 

Let A be any commutative k-algebra and M any A module. Then 

Symm n(A,M) = Harr n + 1(A,M) 

Symm n(A,M) « Harr n t l(A,M) 

In order to facilitate proving this theorem, we shall spread the proof 

out over several sections. 



31 

2. The First Proposition 

2,1 Proposition : Let k be any commutative ring containing 

the rational numbers. Let R •• kj_Xj be the algebra of polynomials over 

a set X. Then, for any R-module M, Harr (R,M) *= 0 D Harr (R,M) for any 

n>l. Further, Harr1(R,M) - Der(R,M) - MX and Harr (R,M) - Diff RH M 

= X«M where X«M denotes the coproduct of X copies of M, 

Proof: We note that H commutes with direct limits as does the 

idempotent e which we constructed in the last chapter. Further, 

homology commutes with direct limits. Now we note that kjjfj is the 

direct limit of the subalgebras k(x 3 where X ranges over all finite 

subsets of X, Thus, it suffices to show that Harrison's homology is 

zero when R is a polynomial algebra in a finite number of indeterminates. 

We shall first prove the proposition for projective R-modules. 

Let X be any set isomorphic to and disjoint from X, Let us set 

R = k|V\J. Now RHR - RHR as a k-algebra and so we may identify the 

the two. Set R «= kfyQ where X •= {1HX# - XHI e RHR | x e X}. Then, 

RHR - RHR . Now we note that R operates trivially on k via the aug­

mentation R r-> k, Thus, we see that R - Rnk as an RHR module. 

We now note that R •= k[X) = kn Q{x] and R = kHQQ[xJ where Q is 

the field of rational numbers. Set R •= Q\X]. By theorem XI.3.1 of 

Cartan and Eilenberg (5), we have the following isomorphisms. 

Tor^R.R) - To4HR(RHk,RHk) 

RHkH_R" 
« TorA

 4 (RH QQ,RH QQ) 
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RH R 
- TorA

 v
 (RH QQ,RH QQ) 

R 6 
« TorJ(R,R)a TorJ(Q,Q) 

« RHQTorJ(Q,Q) 

Furthermore, TorJ9R(R,R) « TorJHR(R,R) « HochA(R,R) * H(CAR). 

Now HarrAXR,R) is a natural direct summand of H(CAR) and if 

we can show it is zero, we can conclude Harr.(R,M) is zero for i 1 and 

M projective. Now 

H(C ARH-Q) « Tor^(R,Q) 

« Tor|(R,Q)HTorR(Q,Q) 

« QnTorR(Q,Q) 

- TorR(Q,Q) 

where the above tensor products are taken over the field Q and not the 

ring k. We shall call a cycle, y> in C RH^Q alternating if e y •=• y 

where e •=» (l/(n! ))E(sgn(ir))ir, ir e E . 

n n 

2.2 Lemma: Every cycle in C RBgQ is homologous to an alternating 

cycle. 

Proof: Let X - {x1,.,.,x }. Then, H(C ARH-Q) ^Tor^QjQ) from 

above. From MacLane (11) page 205, it is well known that the above is 
a Q-vector space of dimension c . We shall now show that the al-r n,m-n 

ternating cycles span this space, Let us consider sequences of in­

tegers lli-,f.i«l •. • .li <i". There are exactly c ^ such sequences. 

Look at e |~x ,x. T. Then these are c alternating cycles 
n1-1, ' I •* n,m-n 

1 n ' 

which are linearly independent in C RngQ. If we can show they are 
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linearly independent modulo boundaries, we will be done. However, if 

we consider any boundary of the form 3 . _ [jn.,,., ,m . . ] , where each m. 

is a monomial, we see that each term of the boundary has an entry of 

degree at least two unless some of the m.'s happen to be units. In 

that case, every term of the boundary will have a unit except two 

which will cancel each other. Every boundary is a sum of boundaries 

of the form we have just discussed. Thus, the cycles e £x. ,..,,x. "\ 
1 n 

are linearly independent modulo boundaries. 

Now Harr.(R,R) •= e.(H(CAR)) «= e.(RH Tor
R(Q,Q). Pick any cy­

cle, Y» in Ch.R, Then y e C.R and y = E.Y' t 3. + 1 Y
n for Y' e C.R and 

v " e C..-R. But v — e.v = e.(e.Y' t d ,,,y" ) =* e.e ,y* t 9.,1e.,-Y
M. 

' itl ' i' l i' itl i i itl itl 

Now e. has signature zero, so e.e. *= (l/(n!))(e.E.) *= 0, Thus, 

Y •= 9'+ie- + iY"' Thus Harr.(R,R) «= 0 for i>l. Since any free R 

module is a coproduct of copies of R, and any projective R module is 

a retract of a free R-module, we see that Harr.(R,M) •=• 0 for any projec­

tive R-module M. 

Also, Harr..(R,M) •= RaM/M' where M' is the submodule generated 

by all elements of the form {jn.nu]Bm - \m.TlHm„m - ̂ m_jHm-m and lnm 

where m. and m„ are monomials. Thus, it is easily seen that Harr1(R,M) 

is isomorphic to X*M as was claimed and we are done'for projective 

R- modules. 

Now let M be any R- module. There exists an R-projective 

resolution of M say 

,., • x 2 • x • xQ — T — y M y o 

Then we may form the tensor product of the complexes XA and ChAR 
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0 •**-

0 •*-

-*- ChnRHnX «-
Nl R n 

ChnRHDX «-
1 R n-1 

- Ch 2RH RX n <« • • 

Ch0RHDX . «-
2 R n-1 

0 •*- Ch l RH RX 0 - c W o «-

0 0 

If we take homology going down, we get only the complex 

-*• ... y ChuRB^M • Ch,RH„M »• 0 •*• Ch R B _ M n R -> Ch2RHRM -*• Ch-jRHĵ M 

since Ch.R is a projective R-module. The homology of this complex is 

HarrA(R,M). 

On the other hand, if we take homology going across, we will 

get the complex 

—y...- • Diff R H „ X , • Diff R H „ X „ y 0 -> Diff R H D X R n 
•+ Diff R B _ X . 

K 1 
-*• Diff R H D X . 

K U 
Since Diff R is a free R-module, The homology of this complex is simply 

Diff R H D M " X«M. Since the homologies taken both ways must be equal 

because of MacLane (11), page 341, we have proposition 2.1 for homology. 

If we use universal coefficient theorems, we will get the proposition 

for cohomology. 
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3* The Finitely Generated Case 

Let us now specialize to the case of a noetherian ground ring 

containing the rational numbers. In order to prove our main theorem, 

we must know the following proposition. 

3.1 Proposition: Let M be a finitely generated k-module and 

N a finitely generated SM-module, Then, Harr1(SM,N) and Harr.(SM,N) 

are finitely generated SM-modules. 

We shall need the following lemma. 

3.2 Lemma: If k is any noetherian ring and M is a finitely 

generated k-module, Then SM is noetherian. 

Proof: Since M is finitely generated, say by {x..,,.,x }, there 

is a free, finitely generated k-module, F, with free generators {&.,..,£ } 

and an epimorphism of k-modules, F—• y M • • 0 obtained by sending 

St. to x.. Then there is a map SF y SM which is obviously a ring 

epimorphism. By the Hilbert Basis Theorem (Zariski and Samuel (15), 

page 201), SF is a noetherian ring and since an epimorphic image of a 

noetherian ring is noetherian, proposition 3,2 is proved. 

If we can show Hoch.(SM,N) and Hoch (SM,N) are finitely 

generated, then, since Harr.(SM,N) and Harr (SM,N) are retracts of the 

above, we will be done. We must now immerse ourselves in the depths 

of relative homological algebra. Since our interest is not in this 

subject as such, we refer the reader to MacLane (11), chapter 9, 

for an exposition of it. 
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We note that Hochi(SM,N) »= Tori
(SM"SM,k)(SM,N) where the right 

hand side stands for (SMHSM,k)-relative homology theory. Similarly, 

we see Hoch^SM.N) - E x t ^ ^ ^ S M . N ) . 

We want an (SMHSM,k)-free allowable resolution of SM which will 

allow us to calculate whether or not Tor. HSM'k)(SM,N) is finitely 

generated. Let M be a k-module isomorphic to and distinct frorn̂ M. 

Let the isomorphism send m e M to m e M , Then SM is isomorphic to 

-u _,. _ (SMHSM jk),,,., „N _ (SMHSM,k)/f,„ „N _ 

SM. Thus, Tor. ' (SM,N) * Tor ' (SM,N) for any symmetric 

SM-bimodule, Of course, we define the action of SM on SM via the 

isomorphism. Let M' be that submodule of SMHSM generated by elements 
# 

of the form lnm - imal, Then, M' is isomorphic to M so SMHSM' SMHSM. 
Then, as an SMHSM'-module, N is isomorphic to Nnk where SM' acts on the 

ground ring k via the usual augmentation map SM' —• —*• k, Thus we 

. „ (SMHSM,k),_„ „v -, (SMHSM',k),0., . .. . . have Tor. ' (SM,N) - Tor. ' (SMnk,NHk). 

We shall now describe an (SM',k)-relatively free allowable 

resolution of k, i. e,, we will build a complex 

, , y x > y . . . —* X. • >• X - ^ — - > k < • • y 0 
n 1 0 

of (SM',k)-relative free modules which possesses a k-contracting 

homotopy of square zero. Using this complex, we will be able to get a 

useful (SMHSM',k)-relatively free allowable resolution of SMnk, 
Let X be SM'HA M' where A M' stands for the iterated exterior 

n n n 

product of M' with itself n-times. (We recall that MrtM "= MHM/L where 

L is the k-submodule of MHM generated by elements of the form m.Hm2 

t m,,Hm,,) We define a boundary homomorphism 3 : SM'HA M' • SM'HA ,M' 

2 1 n n n-l 
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by 3n(m' ... m;Hm r + r... Am; + n)-

n 

. I /-i>1<mi-"--m;-m;tiHin
r+r'--m;tr<--inrtn) 

1 1 

where m' . signifies omitting m' .. It is easy to see that 3 is a 

well-defined SM'-module homomorphism and that 3 .3 *» 0. 

We must now show that this complex is k-split. To define a 

k-module homomorphism from X to X ... , we need to define it on each 

k-summand of SM'HA M'. We set t (m' •,.. •m'Hm' ,^.. .^m' ) " 0 if 
n r,n l r rtl rtn 

r is equal to zero. If r is not zero, then 

t (m' • . . . •m'Hm' . ^ . . . ^ m ' . ) <= 
r , n 1 r r t l r t n 

r 
( 1 / r t n ) I m ' • . . . - m l • . . . •m 'Hm' m' ,s. . . ^ m ' 

J , — • ] • ' • J r j r x r n 

We should show that t is a well-defined morphism, but this is wholly 

obvious since t : M'x,..xM' < y S nM'nA ,.M' (M'x...*M' stands 
r,n r-1 ntl 

for the cartesian product of M' with itself rtn times as a set) which 

is defined by the above formula is well-defined, k-linear, symmetric 

in the first r variables and skew symmetric in the last n variables. 

Thus, t has a unique factorization through S M'HA M' and that fac­

torization gives rise to t . 

6 r,n 
Let t : SM'H M' «—• y SM'HA ,.M' be the map on the direct 

n n ntl 

sum which has components t on each summand. We define t 1 from k to 

SM" to be mere front adjunction. We must now show that the t 's so 

defined give us a k-homotopy with square zero. 

There are three things involved here, First, we must have 
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et . = 1, . Next 3.t„ t t .e «=» 1„ , Thirdly, we must show that 3 ,,t - I k 1 0 -1 X1
 J' ntl n 

t t n3 •= 1„ . The first equality is, of course, obvious. n-1 n X <4 J J 9 

n 

Since X- «= SM'HAQM' - SM', we have two cases for the second 

equality, corresponding to whether or not the element we are dealing with, 

say x, is in degree zero. If so, then t.(x) ** 0, But also, t .e(x) "" x 

and we are done, If x is not in degree zero, we may suppose it is 

homogeneous of degree p>0. Then x •=» m' •,,, 'm'Hl, Thus, e(x) *=• 0, 
P 

t„(x) <=> (1/p). E .m'«.. .'m! •., .•m'nm! and 
0 i B l 1 1 P 1 

P 
3..t (x) = (1/p). E. m' •,,. 'm! •... 'm'sl *° (p/p) x •=• x 

For the third equality, we again have two cases, First if 

x e S.M'HA M', then t (x) "=> 0. But, if x •=* lnm'^...^m' we will have 0 n n ' 1 p 

n . . 
t .3(x)=t .( I (-l)3 m'.Hm' . . . J U M M B 1 ) n-1 n n-1 . u . i 1 n n 

] = 1 J J 

n . . 
(1/n) I (-D:i'"x(lHmUm' ....m'_...^m') 

j ~ 1 D 1 D 

~ 1 

(n/n)x 

2 

n 
(1/n) I (-l)^x(-l)^(lHm' ...^m') 

j - 1 

If x e S M'HA M', for r>0, then x *= m'•...-m'sm' .„,,,„m'. say. r n ' ' 1 r rtl rtn J 

r 
N o w 9ntltr,n(x) " W ' 1 ' 1 " * 1 0 . ^ "l"''' 'ffii'''' ' ^ i ^ r t r ' ' - mrtn ) 

' l •= 1 

r 
- (l/rtn)( I ((n)m|'.,.'m^Bim' 1-'"-

in
rtn 

i = 1 
n 
I (-l)Dmj_.....^!.....mr.m; Hm!.m; + r...^ + ,...m;tn)) 

i *= 1 
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(*) - (n/rtn)x t 

r n 

j 

Also, t (x) rtl,n-l n 

i' n 

i I 1 • I i^1^1"!' •'' ,fli''' * '^^rtj^i^rtl Kir'' *^tn 

n . 1 
V ^ n - A I .(-1):i" «1i'-..-m

r-
m;+j™'rti-—

i!irtj-"'>mrtn) 

n . . 
^ (-1)11" ((l/rtn)(< I m|',..'m|'...«m^'m^+^Hm|f>mri+1r>..,^mrt^..,^mri+n 

"* ml ''' ,mi"nWj'jnrtr •' '^rtj^' * "^rtn^ 

(Aft) _ (n/rtn)x t 

n r 
J £ (-1)D" mj_-...'mj-...'m^«m' Bm^m^^...^!..^..,^' 

j - 1 i - 1 

Then, every term after the t-sign in (*) occurs with opposite sign af­

ter the t-sign of ('*«'«). Thus, t .3 (x) t 3 ,.t (x) •= (n/rtn)x t (r/rtn)x 
n-1 n ntl n 

•= x. Thus t is a k-homotopy. 
2 

We now should show that t *= 0. This can be done by calculation. 
2 

However, even if t were not zero, then t9t would be a contracting 
o 

homotopy and (tdt) = 0. This is shown by the identities 9t9t 1 t3t3 = 

(l-t3)3t t t3(l-3t) - 3t t t9 - 1 and (t9t)2 - (t3t)(t3t) «-

t(l-t9)(l-3t)t - t(l-t3-3t)t - 0. 

Now the resolution ... • SMHSM'HA M' y ... • SMHSM' — — — y SMnk • • • > 0 
n 

is an (SMHSM',k)-relatively free allowable resolution of SMnk. Thus, 

Tors,c ' (SMnkjNHk) is the homology of the complex 
+ SMBSM'HAnM'HSMHSM,NHk *-... • SMHSM'HSMHSM,Nak • 0 

which is 
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.., • A M'aNak y.,. y M'aNak •—• Nak • 0 
n i 

where the boundary of this complex is just zero, Thus the n-th 

homology module of this complex is A M'aN. Since N is a finitely 

generated SM-module and M' is a finitely generated k-module, we see 

that A M'aN is a finitely generated SM-module. Thus Harr.(SM,N) is 

finitely generated since it will be a retract of A M'aN. The dual 

proof works for cohomology, so Harr (SM,N) is finitely generated. This 

completes the proof of proposition 3.1. I am indebted to Professor 

Barr for pointing out the resolution of which we make so much use. 

4. The Residue Field Case 

For this section, we need not assume that the ground ring, k, 

is noetherian. However, for expository reasons, we shall still assume 

that M is a finitely generated k-module and SM is its associated sym­

metric algebra. Our aim is to calculate the Harrison homology and 

cohomology of SM with coefficients in K where K is a residue field of 

SM. In order to do this, we must know something about the structure 

of SMHK. 

First, if {x-,,.,,x } are generators of M, then B « {x.al,,.,,x Hi} 
i n l ' ' n 

are generators of MaK. (The unit is the unit of K.) Since MaK is a K-

vector space, we may assume that the set B contains a basis of MHK as a 

K-space, We may assume that this basis is {x.al,.,,,x al}. Thus, as 

K-modules, MaK * FaK where F is the free k-module on the basis {£.,...,8 }. 
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4.1 Proposition; M(n)aK * F(nJaK 

Proof: We proceed by induction. We have already established 

the case for n *= 1, Suppose the theorem is true for n-1. Then 

M(n)aK « M a M ^ ' a K 

« MaM(n"1)aKHKK since KaKK K 

* (MaK)aK(M
(n'1)aK) 

* (FaK)HK(F
(n"*1)aK) 

- F H F ^ ' B K 

« F(n)nK 

1,1,2 Proposition: If S is the symmetric algebra functor over 

k, then, SMaK * SFHK as k-modules. 

Proof: Since the tensor product commutes with coproducts, we 

have TMHK - TFaK where TM and TF are the respective tensor algebras of 

F and M. Now it is well known (see Quillen (14) for example) that SM 

is a direct summand of TM where the projection TM ————• SM is given 

in the n-th dimension by j •= (1/nJ )Ja, a e E . Thus,, 
17 n u n 

jAHl: TMHK y SMHK and jAal: TFHK y SFHK are retracts. 
J 54 J it 

Since j A is obviously a natural transformation of functors, we have 

SMHK «= SFHK. 

4.3 Corollary; SM(n)aK « S F ^ a K 

4.4 Corollary: SMaSM(n)aSMK * SFaSF
(n)agFK 

Proof: From corollary 4,3, we have SM B K - SF aK, However, 

SM(n)aK = SM(n)aSMaOMK « SMHSM
(n)HCMK and SF

(n)aK - SF(n)HSFHor,K -
SM SM SF 

SFHSF(n)HK. 

Corollary 4.4 now tells us that JASMagMK = JASFag K. Thus we 
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have ChASMBgMK - ChASFagFK. By proposition 5.2', page 28, of Cartan 

and Eilenberg (5), we also have, 

HomSM(JASM,K) « HomSM(JASM,HomK(K,K)) 

- HomK(JASMaSMK,K) 

« HomK(JASFagpK,K) 

« HomSF(JftSF>,K) 

Now SF is simply the polynomial algebra over k of {x-,...,£ }, 

Thus, we have HochA(SM,K) * HochA(k|x1,.,.,x "]>
K) and similarly we have 

Hoch"(SM,K) « Hoch'C(k[x1,...,xr],K). Now HarrA(SM,K) « eA(HochA(SM,K))* 

eA(HochA(k|x1,...,x ],K)) - HarrA(SF,K) and dually for cohomology. But 

from section 2, we know that Harrison's homology theory and cohomology 

theory are zero in dimensions greater than one for a polynomial al­

gebra . 

4,5 Theorem; If M is finitely generated over k, Q is in k, and 

K is a residue field of SM, then, Harr.(SM,K) •= 0 •= Harr1(SM,K) for i>l. 

Furthermore, Harr^SMjK) * Diff SMagMK = MaK and Harr^SMjK) - Der(SM,K) 

= Hom]<(M,K) 

Proof: Because of the foregoing, we need only prove the part 

concerning Harrison's homology and cohomology in the first dimension. 

Now, Harr (SM,K) *=" SMaK/L where L is the k-submodule generated by all 

elements of the form (%-arjal - {arjaa.'l - [ajaa *1. Then consider 

the SM-exact sequence 

0 y N >• SMaSM — »• Diff SM — y 0 

where N is the SM-submodule needed to define Diff SM. Then we will 

find that we have an exact sequence 
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N H v • SMHSMH01,K — y Diff SIta-JC • 0 
bM SM SM 

The last term of this sequence is Diff SMagMK * SMaK/Na K = SMaK/L 

since NagMK is obviously L. Further, it is easy to see that Diff SM * 

SMaM so we obtain the second isomorphism. By dualizing, we obtain the 

proof for cohomology. 

5. The General Case 

Before we proceed any further, we find it convenient to state 

two lemmas concerning finitely generated modules over commutative rings, 

5.1 Lemma: If E finitely generated over R and I f R is an ideal 

such that IE •=* E, Then there is an r e I such that re •=• e for all e e E. 

Proof: This is simply lemma 2, page 215 of Zariski and Samuel (15), 

5.2 Lemma: Let E be finitely generated over R. If ME ̂  E for 

all maximal ideals M C R , then E = 0. 
i 

Proof: From lemma 5.1, we see that each maximal ideal contains 

at least one element p with pe •= e for all e e E. If 1-p is a unit in 

R for any such p in any maximal ideal, we are done,i< If not, consider 

the ideal, I, generated by all the 1-p's. We claim that the ideal I 

must now be the entire ring. If not, Then I e& M' where M' is a maximal 

ideal. Then there is q e M' and qe = e for all e e E. But then, 

l-q e I. Thus, 1 "= q t (l-q) e M' and this is impossible. Since I •=* R, 
S, 

we see 1 ra . "£ nr.(l-p.), But then 
I •=* 1 i r i 

£ £ 
e - l«e - (i JL 1r i(l-p i))e •= ± S, ^ ( l - p ^ e - 0. 

We shall for the time being be concerned with noetherian 
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rings, for the outlines of the theory of modules over such rings, we 

refer the reader to Zariski and Samuel (15), chapter 4. 

5.3 Theorem: Let k be a noetherian ring containing the 

rational numbers. Let M be a finitely generated k-module and N a 

finitely generated SM-module. Then Harrn(SM,N) - 0 — Harr (SM,N) for 

n>l. Further, Harr (SM,N) « Diff SMHN * M H N and Harr1(SM,N) - Der(SM,N) 

- Homk(M,N). 

Proof: The second part of the theorem is obtained using the 

same reasoning used in theorem 4,5. The first part of the theorem is 

a bit harder. In order to show it, we adapt for our purposes the 

proof of a theorem of Harrison (Harrison (8), theorem 2.2), 

Suppose there is a finitely generated N with Harr (SM,N) •= 0, 

n>l. Consider the set of all submodules {N.}. T such that 
I I e I 

Harr (SM,N/N.) ̂  0. This set is not empty since it certainly contains 

the zero submodule. Since k is noetherian, we know that SM is and we 

apply the maximal principle to this set. Thus, N' is a maximal sub-

module such that Harr"(SM,N/N') + 0. 

Let P be any maximal ideal of SM, We recall that N':P •=" 

{x £ H | P x c H ' } , We have an exact sequence 

Harrn(SM,N':P/N') — • Harrn(SM,N/N') * Harrn(SM,N/N':P) 

since 

0 »• N' :P/N' • »• N/N' y N/N' :P >• 0 

is exact, 

Since SM acts on N':P via the field SM/P, N':P/N' is a 

finite dimensional vector space over SM/P and homology commutes with 
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direct sum, we see that Harrn(SM,N':P/N') = 0 . Thus the following 

sequence is exact. 

0 y Harrn(SM,N/N') • Harrn(SM,N/N':P) 

Now, Harr (SM,N/N') i° 0 and N' is a maximal submodule with this 

property. Thus, since N':P_N', either Harr (SM,N/N':P) " O or 

N':P «=N'. The first case is a contradiction so we must consider the 

second. Since N' is a submodule of N, it is the intersection of a 

finite number of primary submodules and the radicals of these sub-

modules are prime. By theorem 11, page 214 of Zariski and Samuel (15), 

P is not contained in any of these radicals. Thus, by a remark on 

page 215 of (15), P is not contained in the set-theoretic union of the 

radicals. Thus, there is an a in P which is in none of the primes 

associated to N. We will then have an exact sequence of SM-modules 

0 y N/Nt — 2 y N/ Nt _ ~ > N/Nt + a. N _ • o 

Now N' t a*N T^N' since N';a *=N'. We now have the exact sequence 

Harr11 (SM, N/N') • Harrn(SM,N/N') >• 0 

because of the maximality of N'. 

Thus, P(Harrn(SM,N/N')) - Harr11 (SM,N/N') for all maximal ideals 

in SM, Now, by proposition 3.1, Harr (SM,N/N') is finitely generated, 

so, lemma 5.2 tells us that it is zero and this is a contradiction. 

The dual proof works for homology. 

In the still more general case where k is not necessarily 

noetherian and M and N are not necessarily finitely generated, we must 

employ subterfuges depending on colimits. By proposition 1.1, S(-,-) 

is a functor on the category of ring modules and is a left adjoint. 
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thus it commutes with colimits. Now any ring k containing the 

rationals is the direct limit of its finitely generated subrings over 

the rationals, and thus is the colimit of noetherian rings. If M is any 

k-module, it is a direct limit of finitely generated k-modules {M }. 

Each M , when considered as a k -module, with k finitely generated 

over Q, is the direct limit of finitely generated k -modules, M ft. 

Thus, S(k,M) is the colimit of S(k ,M ). Similarly, N is the 

direct limit of N. which are finitely generated k -modules. Thus, 

since direct limits commute with tensor products and idempotents, we 

see that Ch StkjMja.,,, wNN is the direct limit of n ' S(k,M) 

1 S(k ,M „)&„,, ,, %N_ . (See Godement (7), page 10.) It is well-
n or YB S(k sM..o) 5v 

Ch 

known that homology commutes with direct limits, so we have the following 

theorem. 

5.4 Theorem; Let k be any commutative ring containing Q. 

Let M be a k-module and N an SM-module. Then Harr (SM,N) — 0 for n>l 

and Harrn(SM,N) -Diff SMa„.,N. 

1 ' SM 

For cohomology we must change our proof since dualizing will 

get us an inverse limit and homology does not commute with inverse 

limits. In the notation we introduced prior to theorem 5.4, let us 

set S(k ,M _) •= A and consider the complex ChAA. This will have no 

homology or cohomology above the first dimension for any coefficient 
module. Let R be the n-cycles of Ch A, Let D — Ch A/R , Then, 

n n n n n 

D is isomorphic to the A-module of (n-1)-boundaries. We have an exact 
n r 

sequence 

^ R , >. ch A y D •—>• 0 
n n n 
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Also we have an isomorphism n .,: D .,«-
ntl ntl 

*V 
Now 3„ : Ch_ A — • Ch n A may be factored as 

n—1 n n 

Ch A n 
'n •*• D n 

n 
•*• R 

n-1 
'n-1 

Thus, the diagram below commutes. 

*• Ch .A n-1 

n" 
Hom(R .,,R ) '"' • ) Hom(D ._,R ) y ntl' n -*0' ~ 

ntl 
ntl nt2, 

nt2' n; 

nt2 

y Hom(Ch A,R ) "•• >> Hom(Ch ..A.R ) • ••• > Hom(Ch ,„,R ) n ' n nil ' n nt2' n 

i* 
n 

Hom(R .R) n n 
'ntl 

Jn 1 

- Hom(Dn+1,Rn) 

Now, Harrn+1(A,R ) = 0 . Thus, Ker(6 ..) - Im(6 . . ) . However, both ' ' n ' ni*2 ntl ' 

j5'*.. and r\*.n are monomorphisms. Thus Ker(6 ._) c=-Im( jft..). However 
nt2 nt2 * nt2 — ntl 

the opposite inclusion also holds so Ker(6 ,„) — Im(j*..) "" Im(jA+..ri
s'!.,). 

Now, Im(6 ,_) = Im(j*..1n* ift). Thus Im(j* n* i*) - Im(j*...n* ). ' ntl Jntl ntl n Jntl nhl n Jntl ntl 

Thus, Im(iA) •= Hom(R ,R ). This implies there exists a map from Ch A 

to R which is the identity when restricted to R . Thus the complex 

ChAA splits and since the boundary factors in the manner shown above, 

this splitting is natural, Since the complex ChAS(k,M) is the direct 

limit of these split complexes and naturality implies coherence with 
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the colimit diagram. Thus the cohomology of the complex is zero too 

and we have the following theorem. 

5.5 Theorem: Let k be any commutative ring containing the 

rationals. Let M be a k-module and N be an SM-module. Then, Harr (SM,N) 

- 0 for n>l and Harr1(SM,M) « Der(SM,N) - HOIIL (M,N). 

6* The Double Complex 

We now have all the tools we need to complete the proof of 

theorem 1.2. Let us consider a double complex E. . where E. . 

Jtl (itl) e.+1(S A) aM. There are two boundary mapsj the first is 

D.: E. . >• E. n . which is the restriction of the Hochschild 

II 
boundary and the second is D. : E. . • »-•..-> E. . n which is the co­ll i,: i»D-l 

triple boundary map for the cotriple S. 

There is a map of k-modules uVA: A •—y SA by front adjunction. 

This gives rise to a contracting homotopy in the complex 

2 
... *- S AHM > >• SAaM -*—• • AHM —--—• • •> 0 

Thus, the n-fold tensor product of the homotopy composed with e gives 

rise to a contracting homotopy in 

... ye ((S2A)(n))aM »- e ((SA)(n))aM • e (A(n))aM- —*• 0 

n n n 

Thus, H (E) is simply the complex ChAAa.M so H H (E) is HarrA(A,M). 

"1 *1 "1*1 

On the other hand, we have shown H^(E) is Diff SJ Aa.M concentrated 

in bidegree (j,0). Thus, H _HT(E) is SymmA(A,M) and by theorem 6,1, 

page 342, of MacLane (11), we are done, 
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PARTIAL RESULTS UP TO DIMENSION 2p 

1' The Case of a Field of Characteristic ja 

Let us now consider a perfect field of characteristic p. It 

would be very nice if we were able to report that Harr.(R,M) *"• 0 for 

i>l for all polynomial algebras R over k and all R-modules M. Then we 

would be able to show that Harrison's theory coincides with the theory 

afforded by the symmetric algebra cotriple for the case of characteris­

tic p as well as for the characteristic zero case. Unfortunately, this 

is not true as Andre has shown by example (see Barr (2)). However, we 

can show that Harr.(R,M) - 0 for l<i<2p. 

First we must examine the skew-commutative graded algebra func­

tor. This is the left adjoint to the underlying functor, U, which 

goes from the category of graded, skew-commutative k-algebras to the 

category of graded k-modules. It may be constructed explicitly in the 

following manner. Let M be a graded k-module. Let TM be the tensor 

algebra on M with the following grading. The degree of a.a...aa. is 

deg(a.) t deg(a2) t ... t deg(ai). Then, SM is TM modulo the two 

a. aJjn 
sided ideal generated by elements, of the form,a..B,, ,aa. - (-1) 

a,H,..Ha.na..,H,,.Ha. where a. stands for the degree of a.. It is now 
1 D ]tl i D 1 

easy to see that S is left adjoint to U. Also, it is clear that 

SM a A(M1 ® M3 <3> ... )HS(M Q ® M2 <D ... ) 

where A is the exterior algebra functor and S is the symmetric algebra 

functor and both are defined with respect to the field k, We shall 
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use S in the following lemma, 

1,1 Lemma: Let R be a polynomial algebra. Then Harr.(R,k) 

•=• 0 for Ki<2p. 

Proof: Once again we shall assume that R is finitely generated 

and afterwards use colimit arguments. We must now consider the spec­

tral sequence of the complex CARaRk which is obtained through the 

2 
use of the filtration C ARak 3 JARa k o J^Rsuk =>.... We set 

F »~ CARa_k, F. — J ARH k, and, in general, F. — JARBLk. Then we see 

that F. s F u . and we set E 2 — H . (F /F . , ) . We note that E 2 , 
l — itl r,s rts s stl r,l 

Harrr+1(R,k). 

Since the sequence is bounded both above and below, the sequence 

will converge to the homology of CARa k which we already know to be 
R R 

TorA(k,k). Assmus has shown in (1) that TorA(k,k) is a Hopf algebra 

over the field k and since the multiplication is the shuffle product, 

we know it is skew-commutative. Therefore, by the structure theorem 

of Borel (Milnor and Moore (12)), TorA(k,k) is the tensor product of 

an exterior algebra where the generators are of odd degree and mono-
a 

genie algebras kC*]/(x ), a>l where the generators are of even degree. 
T3 

Now let an element of TorA(k,k) be called decomposable if it 

can be represented by a shuffle and indecomposable otherwise. Let WA 

represent the complementary subspace to the decomposable objects in 

TorR(k,k). The Borel theorem tells us that TorR(k,k) - (SWA) for 

n<2p. We wish to show that there exists an epimorphism 

W • y TorR(k,k) —>• Harr (k,k) 
n n n 



51 

for n<2p. 

We shall proceed by induction using the spectral sequence 

{E ,3 }. The case f6r r t s — 1 is trivial since Tor,(k,k) and r,s m 1 

Harr.(R,k) are both the free k-module on the set X where R — k(}Q. 

Since there are no decomposable elements in the first dimension, we see 

R ' 
W1 = Tor. (k,k) and so W.. — —• Harr. (R,k) is epic. Furthermore, we 

2 
note that the differentials out of E are zero, 

u,i 

Assume now that the assertion is true for r t s — n-1. By 

2 2 
Quillen (14), E A A is generated as an algebra by EA up to degree 2p-l, 
Thus, since the differentials are derivations, all differentials issuing 

m °° 2 , °° from E are zero for r t s — n. Thus, E •= E /B for r t s -" n. r,s ' r,s r,s r,s 
Thus the graded module Tor (k,k) may be written as 

W S 9 n^2 9 co 
Tor (k,k) = J ET . - > ET ./B. . t Harr (R,k). 

n i - 0 1'n~1 i - 0 1'n"1 1'n~1 
2 

Since W. > Harr.(R,k) is epimorphic for i<n-l, we have dim(E ) 

= dim(S HarrA(R,k)) . < dim(S WA) , for r t s < n. Then, s « ' r t s — s " r t s — ' 

VI n " 2 9 
dim(Tor (k,k)) - dim( T ET ./B? .©Harr(R,k)) n • _ « i,n-i i,n-i n i •=> 0 ' ' 

n ~ 2 9 
- J dim(ET ./B. .) t dim(Harr (R,k)) 

• L « i,n-i i,n-i n ' 
l •=• 0 ' ' 
n-2 
7 dim(S W,:) t dim(W) 

• _ « n " n n 

- dim(TorR(k,k) n 

oo 
for n<2p. Thus B. . must be zero for 0<i<n-2, Thus all differentials * i,n-i 

2 
emanating from E where r t s ra n must be zero. Thus, we see that 

W y TorR(k,k) • • • • > Harr (R,k) 
n n n 
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oo 2 

is epic, This implies E . — E for rtl<2p, Now, because of the 

convergence of the spectral sequence, we have 
Er,l " Fr(H^l(C*^Ic))/Frtl(HPtl(C*R,,Rk))-

But the right hand side is zero for r>0, since H . (CJRaJO is generated 
rTl K 

by cycles of the form E . ({x. ,..,,x. 1 ) where E . is the element 

of the group ring kE .. which we constructed in the first chapter. These 

generators are contained in both F (H ... ( C A R H J O ) •= Im(H . (F ) 

— Hrtl<F0» and F^AH^AC^)) -' I - n t t ^ F ^ ) • H ^ ) ) . 
2 

Thus, E . — Harr ,..(R,k) •= 0 for l<r<2p-2. Using the same techniques 

we used before, we find that the lemma works for any set of variables. 

1.2 Proposition; Let (X) denote the ideal in k[x~J generated 

by the set X. There is an R-exact sequence of complexes 

(A) o y C h A R a R ( X ) y C h A R H R R - Ch AR y C h A R a R k y 0 

Proof: We consider the R-exact sequence of R-modules 

0 — y (X) -> R + k • y 0 
Then Ch R — RH(R /sh (R)) where sh (R) is the shuffle submodule of n n n 

R ( n\ Clearly, Ch RH CM - (R
(n)/sh (R))HM for any R-module M. Since k n K n 

is a field, the following sequence is exact, 

0 ;-*• (R(n)/sh (R))B(X) • (R(n)/sh (R))aR *• (R(n)/sh (R))ak >• 0 
n n n 

Moreover, the boundary homomorphisms in Ch AR obviously commute with the 

homomorphisms of the exact sequence so the sequence (8'0 is exact as a 

sequence of complexes. 

If we now take homology arising from the complexes above, and 

consider the long exact sequence arising from that homology, we find 

we get an epimorphism H (ChARa^(X)) — « • H (ChAR) for Kn<2p4 Now 
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consider the exact sequence of R-modules 

0 • ( X)
i + 1 _ • (X)1 > (X)i/(X)itl ~ ~+ 0 

Using the above techniques, we get an exact sequence of complexes 

0 • ChARaR(X)
ltl • ChARaR(X)

1 -—• ChARaR(X)
1/(X)1+1 • 0 

i 1*1*1 
Now R acts on (X) /(X) via the augmentation R -*———*• k. Thus, 

i itl since (X) /(X) may be considered as a vector space over k and so 

a direct sum of copies of k and since homology commutes with direct 

sums, we find H (Ch.RB_,(X)1/(X)1+1) - 0 for Kn<2p. Thus the long 
n '» K 

itl exact sequence tells us that there is an epimorphism from H (ChARaR(X) ) 

to H (ChARaR(X)
1) for l<n<2p. Thus, by induction, we see that there 

is an epimorphism from H (ChARn (X) ) to H (ChAR) for all i and 1 n 2p, 

Let us now return to the study of J R. As a k-vector space, 

J R has a basis consisting of elements of the form m m.,,.. ,m •=* v, 

where the m. are monomials in R. Let deg(v) •= deg(m.) t ... I- deg(m ). l 0 n 

If we have any arbitrary element of J R, we set its degree equal to 

the degree of the highest basis element in its expansion as, a unique 

linear combination of elements of the above basis. 

Now suppose c is a cycle in Ch R, l<n<2p, Then c is the image 

of soma c under the canonical quotient mapping J R —• y Ch R. Let 

deg(c) — t. Then, because of the epimorphisms we calculated before, 

ttl 2 
there is a cycle, c', in J RH_,(X) and c'-6 e J R t 9 .,J .,R. J ' ' n R n ntl ntl 

2 
Since the degree induces a grading wherever it goes, on J R t 9 +1J .,R 

as well as J R, this cannot happen unless both 8 and c' are in the 

above complex. Thus, we see that the homology class of c in Hri(ChAR) 
n 

must be zero. Thus H (ChAR) — 0 for l<n<2p. 
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Once again, since homology commutes with direct sums, we see 

that H (Ch^Ri^F) — 0 for free R-modules F and l<n<2p. This, in turn, 

implies H (ChARH„P) — 0 for l<n<2p for all projective R-modules, P. 

For a general R-module M, we need to consider a R-projective 

resolution of M, say 

-*• X, »' m "i «• •*• X, -*• M •*• 0 

Tensor the projective resolution with the complex ChAR to get the double 

complex: 

<*) 

0 *-

0 -*-

Ch. 
. ^ i " 

Ch-jRŝ M «-

Ch2RHRX. -

Ch2RHRM +• 

0 0 

If we take homology going down in (*) we will get zero since each Ch.R 

is a projective R-module. Taking homology across will not change this. 

On the other hand, if we take homology across, we will get a set of 

complexes like 

.,, •—• Harr.CR^) »- Harr.(R,XQ) • Harr.(R,M) —*• 0 

which must be acyclic. Thus, since Harr.(R,X) — 0 for Ki<2p we see 



55 

Harr.(R,M) - 0 for Ki<2p. It is easily seen that Harr (R,M) - MX 

In order to complete the proof for cohomology, we make use of the 

following lemma from MacLane (11), page 78, 

1,3 Lemma; If K is a chain complex composed of vector spaces 

over a field k, and V is any vector space over that field, There is a 

natural isomorphism Hn(K,V) * Hom(H (K),V). 

We now note that 

Horn, (Ch RaDk,k) « Hom_(Ch R,Hom, (k,k)) « Hom_(Ch R,k) K n K R n J c K n 

from the adjointness of tensor and Horn, Thus we see that Harr (R,k) -

Hom(Harr (R,k),k) and this is zero for l<n<2p. From the exact sequences 

0 • (x) — y R y k >• 0 

and 

0 y (X)itl _ ( x )i „ (x)i/(x)itl t „ 0 

as before, we find that there is an epimorphism from Harr (R^X)1) 

to Harr (R,R) for all i and l<n<2p, This implies that every cocycle 

in Honu(Ch R,R) is the sum of a coboundary and a cocycle which has its 

image in (X) for all i. But then that cocycle must be zero and so 

the original cocycle is a coboundary which implies that Harr (R,R) — 0 

Thus Harrn(R,F) •= 0 for Kn<2p and all free R-modules F. This im­

plies the theorem for projective R-modules. For an arbitrary R-module, 

we take a projective resolution and use the double complex as before. 

Heretofore, we have been working with a perfect field. In the 

more general case, when k is not perfect, we only need to make minor 

adjustments. As a matter of fact, we only need to note that k\YJ * 

kaz Z {x} where Z is the prime subfield of k. Then we see 
p p p 
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J kP0~k[xlakOa(n) -=kaz (Z M • Z W ( n ) ) -k» J Z [jQ 
P P P P P P 

Thus, Ch k\x]akrx1M * Ch Z X a„ ,-..,M where M is any k[Xjmodule. Since 

Z is finite, it is perfect and the foregoing arguments hold for k. 

We may now state the main theorem of this chapter, 

1.4 Theorem: Let k be a field of characteristic p>0. Let 

R — kLxJ be a polynomial algebra over k and let M be an R-module. Then 

Harr (R,M) - 0 - Harrn(R,M) for Kn<2p and Harr^RjM) « MX and 

Harr^RjM) « Der(R,M). 
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