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Abstract. Let R be a commutative ring with unit which con-

tains the rational numbers. Let A be a commutative /?-algebra. In

this paper we prove that the cotriple homology and cohomology

modules of R for the symmetric algebra cotriple are the same as

Harrison's homology and cohomology modules.

In [1], Barr showed that Harrison's homology theory over a field of

characteristic zero was the same as cotriple homology for the symmetric

algebraic cotriple. In order to do this, he relied on the fact that, over a

field, the symmetric algebra of a module is a polynomial algebra and, thus,

is projective. However he did conjecture that his theorem was true even

when the ground ring was not a field but merely was a ring containing the

rational numbers. The purpose of this paper is to prove that conjecture.

This is part of the author's dissertation at the University of Illinois. The

author would like to express his apreciation to Professor Barr for all the

advice and encouragement received.

1. Preliminaries. We refer to [1] for the definition of cotriple and

cotriple homology. Let k be a commutative ring, kM the category of left

Ac-modules and ¡¿Alg the category of commutative Ac-algebras. There is a

functor £/:fcAlg—»-J.A/ which assigns to each Ac-algebra its underlying Ac-

module and to each algebra morphism its underlying module morphism.

It is well known that this functor has a left adjoint S:fcM—»-¿.Alg called the

symmetric algebra functor It can then be shown easily that the composition

SU together with natural transformations e:SU-*kAlg (multiplication)

and è:SU~*SUSU (front adjunction) is a cotriple which we shall now

abbreviate to S.

Now suppose A is a commutative Ac-algebra and let us consider the

Ac-algebras, A, SA, S2A, • • • . We have a map eA:SA—>-A. This gives rise

to two maps SeA, eSA:S2A^>-SA. In general, we have n + l maps from

Sn+1A to SnA given by S"-1 s S*A for i ranging from zero to n. We also
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have maps from Sn+1A to Sn+2A given by Sn~' ô S'A. Huber has shown in

[8] that A, SA, S2A, ■ • • together with the maps defined above form an

augmented simplicial object over the category of commutative ^-algebras.

There is a unique map from SnA to A which is arrived at by taking any

composite of the Sn~' e S'A's. We now obtain a complex of ^-modules

by taking

-*■ Diff SnA -* Diff S"-M -+-> Diff SA—0

where the boundary maps are alternating sums of faces of the simplicial

object and where Diff is defined as follows. If A' is a commutative k-

algebra and <p:A '—>- A is an algebra morphism we set Diff A' = A®A'jN

where N is that submodule of A<$A' generated by all elements of the form

a®a'x ■ a'2—aq)(ax)®a'2 — aq)(a2)<&a'x. If M is an ^-module, it is easily seen

that ftomA(Diïï A', M)^Dev(A', M) where Der(/4', M) is the abelian

group of all derivations from A' to M.

We now define the symmetric homology of A with coefficients in the

/4-module M to be the homology of the complex

• ■ ■->■ Diff SnA ®AM ^DiffSn~lA ®AM^- ■ • -> Diff SA ®AM--0

and we denote the «th homology module by Symm„(/L M). Similarly, we

define the symmetric cohomology of A to be the homology of the complex

O-^Hom^DiffS^, M)^HomA(DiftS2A, M)-+.-•.

We denote the «th symmetric cohomology module by Symm"(/1, M) and

note that it is also the homology of the following complex

0 -* Der(S/L M) -* Der(S2A, M) -+ • • • .

We now recall Harrison's homology theory. If A is a commutative k-

algebra, then we define the «th dimension of Hochschild's complex C„A

to be A®AW provided we take coefficients only in left (symmetric) A-

modules (see [1]). We then define shuffle maps sLn_i:A<8Ain)^>-Açg)Aln)

inductively as follows.

(1) -V» = *n,o = id,

*._«(* ® Û1 ® ' • • ® Ä»)

(2) =aQ®ax® íi-i.n-íK ® • • • ® an)

+ (-l)'ü0 ® ai+1 ® ^-.„-¿-xK ® • • • 9 âi+x ® • • • ® an)

where""" signifies deletion. We recall from [1] that the sum of the images

of the shuffles forms a subcomplex of Ct A called Sh.,.,4. We then set

Harrison's complex, Ch+A, equal to the quotient complex CtA/Sh^A. If
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M is a left /i-module, we set

Hairn(A, M) = Hn(Ch*A ®A M),

Harr"C4, M) = Hn(HomA(CK A, M)).

The main theorem of this paper is then

Theorem 1.1. Let k be any commutative ring containing the rational

numbers. Let A be any commutative k-algebra and N any left A-module.

Then

Symm„04, N) a¿ Harrn+1(/1, N),       Symm"(^, N) gg Harr"+1(^, N).

2. The main lemma. Theorem 1.1 relies heavily on the following

lemma and the resolution we use to prove it. From this point on, we shall

always assume that Ac is a commutative ring containing the rational

numbers.

Lemma 2.1. Let M be a k-module and N an SM-module. Then

Harr„(SM, Af)=0=Harrn(5Af, N)for n>\. Furthermore Harr^SM, N) =

DifT SM ®SM N and Harr^SM, A0=Der(SM, N).

Proof. The second part of the lemma is a direct calculation which we

omit. In order to prove the first part of the lemma, we must make use of

the techniques of relative homological algebra. Since our interest is not in

this subject as such, we refer the reader to Chapter 9 of [10] for an ex-

position of it.

With this in mind, we note that Hoch^SM, N)=Tor¡SM®siI'k)(SM, N)

where the right-hand side stands for (SM<g>SM, Ac)-relative homology

theory. Similarly, we see that Hoch^SM, N)=Ext{SM®SM,k))(SM, N).

We now shall examine a resolution of S M which will allow us to calculate

these groups in more detail.

Let M# be a Ac-module isomorphic to and distinct from M. Let the iso-

morphism send me M to m# s M#. Then SM# is isomorphic to SM.

Th*sTorfM®SM-k)(SM, N)^TorfM®SM#M(SM, N) for any symmetric

SAZ-bimodule, N, where the action ofSM# is defined via the isomorphism.

Let M' be that submodule of SM®SM# generated by elements of the

form \®m#—m®l. Then M' is isomorphic to M so SM®SM'^SM<giSM.

Then as an SM&SM' module, N is isomorphic to A^Ac where SM' acts

on the ground ring k via the usual augmentation map SM'->-k. Thus we

have 7or(fM®SMM(SM,N)^TorfM®SM''k)(SM®k,N®k). We will

now construct the Koszul complex of (SM', Ac)-relative free modules and

use this complex to get a useful (SM<giSM', Ac)-relatively free allowable

resolution of SM®k.

For convenience, we shall use M rather than M' for the time being and
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make adjustments later. Let Xn be SM®An M where f\n M stands for the

exterior product of M with itself « times. We define a boundary operator

dn:Xn-+Xn_x by

d„(mx.mr ® mr+l A • • • A mr+n)

n

= 2 (~ 1)Í_1(ml.mr ' mr+i ® mr+l A • • • A Wr+¿ A • • • A mr+n)

where mr+i signifies the deletion of mr+i. It is easy to see that dn is a

well-defined SM-module homomorphism and that dn_xdn=0.

We must now show that this complex is Ar-split. To define a Ä:-module

morphism from Xn to Xn+1 we need to define it on each /osummand of

SM®An M. We set tT,n(mx.mr®mr+1A- • -Amr+n)=0 if r=0. If r

is not zero, then

tT.n(™x.mr ® mr+x A • • ■ A mr+„)

1       r

=-y (mx.m,.mT ® m, A mT+1 A • • ■ A mr+n).
r + «7ri

It is easy to see that tr_„ is well defined, since if UTn:Mx- ■ -xM—*■

Sr_xM<giAn+x M is defined by the above formula, then it is ^-linear,

symmetric in the first /--variables and skew symmetric in the last «-variables.

Thus Ur¡n has a unique factorization through SrM®An M which is tr „.

Let tn : Xn-^-Xn+1 be the map on the direct sum which has component

rr„ on the rth summand. Let t_x:k^-SM be front adjunction. It is then a

straightforward although somewhat tedious calculation to show that the

r„'s so defined form a ^-contracting homotopy.

From the foregoing, we see that

-► SM' 0 A M' -> SM' ®AM'^-> SM' »AjW'^Í^O
n 71—1 0

is an (SM', <V)-relatively free allowable resolution of k. Thus

->SM® SM' ® A M' -*■ S M (g) SM' ® A M' -+
n n—1

-> SM ® SM' ® AM' ^SM®k->0
0

is an (SM&SM', ^-relatively free allowable resolution of SM®k. Thus

Torl¥S]iI®SM'-k)(SM®k, N®k) is the homology of the complex which has

SM®SM'®An M' &SM&SM- N®k in the nth dimension. But because

the action of M' on k is trivial and because we take the tensor product

over SM®SM' once, we see that the maps in this complex are all zero.

Thus the «th homology module of this complex is just A„ M'®N®k.

Similarly Exi$8M®SM',ki{SM<8)k, N®k) is the homology of the complex
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with HomSi1&sM'(SMc¡>SM'tg)An M', N®k) in the «th dimension. Again

the differential turns out to be zero so the «th cohomology module is

Homs(AB M', N®k).

The shuffle product induces a map on Hochschild homology

Hochp(SM, SM) '3x.M«,8M Hoc\(SM, N) -* Hochp+Q(SM, N).

When we consider the Koszul complex, we find that the map induced is

just exterior multiplication. Since this map is clearly surjective on genera-

tors, we conclude that every element of Hochn(SM, N) for n^.2 is rep-

resented by a shuffle. In [1], Barr shows that Harrison's homology over a

field of characteristic zero is a direct summand of Hochschild's homology

and that the former consists of those homology classes which are not

represented by shuffles. Barr's proof carries over to a ring containing the

rationals, so we may conclude that Harrri(5A/, N)=0 for «_2 since

everything in Hoch,t(SM, N) is represented by a shuffle.

Similarly, there is a map

Hochv+«(SM, N) -* HomSlM&sM(HochI,(SM, SM), Hoch"(SM, N)).

If we use the Koszul complex, this map is given by the following. We pick

/e Homfc(Ap+s M', N®k) and set

f(mx A • • • A mp)(mp+x.mp+T <g> l)^ A • • • A mq)

= (mp+x.mP+r ® l)f(mx A • ■ • A mp A mx A • • • A mQ).

This map is obviously injective so if/disappears on exterior products,

it must be zero. Thus if a cocycle disappears on shuffles it must be a co-

boundary. But Barr also shows that Harrison's cohomology classes are

exactly those classes of the Hochschild Theory which are represented by

cocycles which are zero on shuffles. Thus Harr'^SM, N)=0 for n^.2. Thus

Lemma 2.1 is proved.

3. The double complex. We now have all the tools needed to complete

the proof of Theorem 1.1. Let us consider the double complex Eitj where

EiJ = Chi+1(Si+1A)®M. There are two boundary maps Ët''Ettf*-Et_u

which is the restriction of the Hochschild boundary and the second is

DY:Eij-*Eu_1 which is the cotriple boundary map for the cotriple S.

There is a map of Ac-modules ipA :A->SA by front adjunction. This gives

rise to a contracting homotopy in the complex

■ • • -» S3A ® M -*■ S2A ® M -* SA <g> M ->■ A ® M -> 0.

Thus the n-fold tensor product of the homotopy gives rise to a contracting

homotopy in

-► Ch„(SM) <g> M — Chn(SA) ®M~* Ch(A) ® M -> 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



74 P.   J.   FLEURY

Thus, Hn(E) is simply the complex Ch^.A®AM, so HlHll(E) is

Harr*(,4, M). On the other hand, we have shown that HhJ(E) is

Diff Si+1A®AM concentrated in bidegree (j, 0). Thus HzHn(E) is

Symm^fyl, M) and by Theorem 6.1, p. 342 of [10], we are done. The

proof for cohomology is similar.
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