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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 30, No. 3. November 1971

 SPLITTINGS OF HOCHSCHILD'S COMPLEX
 FOR COMMUTATIVE ALGEBRAS

 PATRICK J. FLEURY'

 ABSTRACT. Barr has shown that one may split Hochschild's
 complex for commutative algebras into Harrison's complex plus a
 shuffle subcomplex when working over a field of characteristic
 zero. We construct a splitting here for the above complex over a
 ring containing a field which does not have characteristic two and

 this splitting has Barr's splitting as a special case.

 1. Introduction. In [1], Barr noted that Harrison's homology
 could be regarded as a direct summand of Hochschild's homology
 when working over a field, k, of characteristic zero. In order to split
 Hochschild's complex, Barr constructed an idempotent in k2n for all
 n 1 and showed that this idempotent was a chain map which had for
 its kernel the "shuffle" subcomplex. The purpose of this paper is to

 generalize this splitting to commutative algebras over rings con-
 taining fields of any characteristic not equal to two.

 2. The complex, shuffles and representations. In [1], it is shown
 that, if one considers a commutative algebra, A, over an arbitrary
 commutative ring, k, and then takes coefficients only in symmetric
 A-modules, Hochschild's complex in the nth dimension is just
 CA =A oA(n) The nth tensor power of A is denoted by A 00 and
 tensor products are taken over k unless otherwise specified. Sym-
 metric A-modules are known to be the same as left A-modules

 (see [1]). Then the map dn: CnA-Cn_1A by

 dn(ao al * * an)) =a0al a . - * * * Caa2? an

 + * + (_-l)naoan C) a, C)***C an-I

 will be A-linear and a boundary operator. We will denote the entire
 complex just defined by C*A, and, in agreement with the notation of
 other authors, we denote an element of CnA by ao[a1, * * *, an]. Let
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 406 P. J. FLEURY [November

 us note, for future reference, that di: CIA -*CoA is zero. From the
 foregoing we may now conclude that

 Hoch* (A, M) = H*(C*A OA M) and

 Hoch* (A, M) = H*(HomA (C*A, M)).

 Now let In denote the symmetric group on n-letters and define an
 action of 1. on CnA by

 1r-l(ao[ai, . . *, an]) = ao[aff(l), . . *, a(n)

 Thus CnA becomes a kX.-module. We shall define a shuffle, Si,n-i
 0?_ i?< n, in kln by So,n = Sn,O = 1 and

 Si,n-i(ao[ai ... ** an]) = ao[al] 0 Si-1,n-i([a2, . * an]) + (-i)tao[ai+,]
 0 s,n-i-1([ai, * , ai, ai+2, * , an]).

 Then we have the following proposition whose proof appears partly
 in [1 ]and partly in [3].

 2.1. PROPOSITION.

 dnSi,n-i(ao[ai, ... *Xan])

 -Si_1,ni(diao[ai, , ai] 0 [ai+i, a,])

 + (-1)isi,n-i-1(ao[ai, * , as] 0 dn-2[ai?,) * * an]),

 Because of the above, one may consider the shuffles as multiplica-
 tion in the differential graded algebra C*A. The complex C*A, has
 an augmentation, i.e., a map of complexes to A which is considered
 as a trivial complex over itself. The kernel of this mapping is a sub-
 complex of C*A and we will call it J*A. Since we noted before that
 di was zero, it is easy to see that JnA = CnA if n > O and JoA = 0. Now
 consider JA which we define to be that subcomplex of J*A generated
 by nontrivial shuffles. We now set Ch*A = J*A/J2 A. Then the differ-
 ential and grading of J*A induce a differential and grading on Ch*A.
 We define the nth Harrison homology and cohomology groups of A
 with coefficients in the left A-module M to be

 Harrn(A, M) = Hn(Ch*A OA M) and

 Harrn(A, M) = Hn(HomA(Ch*A, M))

 and we denote the total homology and cohomology by Harr*(A, M)
 and Harr*(A, M) respectively.

 Of special importance to us in the ring kln will be the element En
 defined in the following manner. Let sgn:ln-+k be the group homo-

This content downloaded from 
��������������18.9.61.111 on Thu, 08 Sep 2022 01:29:18 UTC�������������� 

All use subject to https://about.jstor.org/terms



 19711 SPLITTINGS OF IIOCHSCHILD'S COMPLEX 407

 morphism sending elements of the alternating subgroup to 1 and other

 elements to -1. Then we may extend sgn to a ring homomorphism

 also called sgn:kn -+k. Let En= iEZn (sgn(r)) ir. If uEUn,
 then, clearly, u En = sgn (u) En.

 2.2. LEMMA (BARR [1]). Let ao[al, *, an]E.JnA. Then
 dnEn(ao [a,, ,an]) =0. Furthermore, if uEk2n and

 dnu(ao[ai, * * *, a,]) = 0

 for all ao [ai, , anj I JnA, and arbitrary A, then u is some multiple
 of En.

 3. The splittings. We are interested in splitting Hochschild's
 complex. Barr has shown that, if one works over a field of char-
 acteristic zero, then the complex can be split in such a way that
 Harrison's groups are direct summands of Hochschild's. We shall
 use techniques which will give us Barr's theorem as a special case of
 a more general theorem.

 Earlier, we noted that each Si,n-i could be considered as an element
 of k2O. We now define another element, Sn, of Un in the following
 way. If n= 1, s1=0; if n>2, Sn= It is clear that
 Si,n_i JnA A--JnA need not be a chain map, but Barr in [1] proves
 3.1, 3.2 and 3.3.

 3.1. LEMMA. dnsnn = Snldn

 3.2. LEMMA. sgn(si,n_i) = ().

 3.3. COROLLARY. sgn(sn) = 2n_2.

 3.4. PROPOSITION. ((2n-2)-Sn) * * * (2-Sn)Si,n-i=0forall 1 ?i <n
 and all n > 1.

 PROOF. We proceed by induction, the case for n =1 being trivial.
 Now assume the proposition is true for n -1. Then

 dn((2n-1 -2) -Sn) * . . (2 -Sn)Sin-i

 = ((2 n- 1-2) - Sn) . . . (2 - Sn)(Si_ 0ni(dj 1)
 + (-O Sim-i 10 0 dn_;))

 by 2.1 and 3.1. By induction, both terms in the above sum are zero.

 This implies ((2-1-2) -Sn) . . . (2 -Sn)Sin-i is some multiple, say
 r, of En. Thus

 ((2n - 2) - Sn) . . . (2 - Sn)Si-i= ((2" - 2) - sn) r En
 = ((2n - 2) - sgn(sn)) r En = 0.
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 408 P. J. FLEURY [November

 Now suppose we consider en=((2n-2)-Sn) ... (2 -sn) k2n
 where k is a field of characteristic p. Now consider (e')2. If we

 expand (en)2 in terms of Sn, then every term, excepting only the
 first, is a multiple of e,Sn and is zero by Proposition 3.4. Thus (e')2

 = 1Ij2gi5n (2i-2)}e'. If we could multiply en by the inverse of
 fl2Sis.n (2i-2) we could make e' into an idempotent. Unhappily,
 this is not always possible since that product might be zero in k.

 Certainly, it is possible when we are working over a field of char-
 acteristic zero. Furthermore, if we are working with a field of char-
 acteristic p, and 2 is a primitive root modulo p, then we may divide
 by the above product in dimensions up to but not including p. In
 order to investigate this further, we shall need some facts about
 idempotents in arbitrary rings.

 3.5. PROPOSITION. Let T be a (possibly noncommutative) ring. Let
 a be a nonnilpotent element of T such that a 2- a is nilpotent and let
 m be the least integer with (a2-a)m = 0. Then there is a nonzero poly-

 nomial, pm(x), with integral coefficients and a-mI{ Pm(a) } n is a nonzero
 idempotent.

 3.6. PROPOSITION. Pm(X) = 1+(1-x) + * * * +(1-X)ml-.

 The proof of 3.6 is an easy (but messy) induction, so we omit it.
 For 3.5 we refer the reader to Herstein [6, p. 22]. We note, for future
 reference, that Proposition 3.5 implies am =am+lpm(ca). Let us now
 return to our consideration of J*A. Let j be the order of two in the
 group of units modulo p. Let r be the inverse of H25ij (2i-2) in
 that group of units. Let us now set

 Wn = r(((2 j - 2) - Sn) . . (2- Sn))-

 Then wn will be a polynomial in Sn with constant coefficient 1.

 3.7. PROPOSITION. w2-Wn is nilpotent.

 PROOF. In the ring Z2n we have the equation

 (*) ((2n - 2) - Sn) * * * (2 - Sn)Si = 0.

 We know that 2n-2 is congruent to 2n-i-2 modulo p. Thus, if we

 consider the sequence of factors of (*), we will have sij, (2 -sn), . *
 (2V-2)-s, (2j+1-2)-sn, . . . , (2n-2)-Sn and if we reduce the
 sequence following sij modulo p, we see that it repeats itself after
 j terms. Suppose n = mj+i, 1 ? i <j. Then, when we reduce (*) modulo
 p we will have
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 I97I] SPLITTINGS OF HOCHSCHILD'S COMPLEX 409

 (-1)m((2j - 2) - Sn)m . . . ((2i+1 - 2) - Sn)m

 * ((2i - 2) - Sn)m+l * * * (2 - Sn)m+'(Sn)mSi,j = 0

 as an element of Un- This implies that (WnS.)m+lSi,j = 0. By a remark
 above wn -1 is a polynomial in Sn which lacks a constant term. Thus

 (Wn Wn)m+l= (Wn)m+(Wn-1)m+ = (Wn)m+(Sn)m+H(Sn)= O in k2n
 where H(x) is some polynomial in k [x]. Now let us set

 en= { Wn(Pm+1(Wn)) }m+1. From the foregoing, it is obvious that en
 is an idempotent. We do not yet know it is nonzero and before we

 can show this, we must have the following theorem.

 3.8. THEOREM. dnen = en-ldn

 PROOF. We assume n = mj +i, 1 < i <j. If i > 1, we have

 dnen = dn(wn { Pm+l(wn) })M+ = {Wn-iPnm(w,i)W } m+ldn = en-ldn

 If i = 1, then en = { Wn(Pm+l(Wn)) }Im?+ and en-1 = { Wn-lPm(Wn-1) }m. Now
 we note that Pm+l(Wn) = Pm(Wn) + (1 1w) m. Thus

 dnen = dn { WnPm?+l(Wn) } m+1 = { Wn-iPm+i(Wn--i) } m ldn

 - {Wni(pm(Vni))}m+1 + (m+ 1)(Wn-1 )m+l(pm(Wn-1))m(1 - Wn_i)m

 + * * * + (wn-1)M+1(I - Wni)m(m+l)}dn.

 Now every term of the form a(wn-i)m+l {P PM(wni1) } m+1-t(1 -wn1)t7n
 is zero since 1 -wn- does not have a constant term and, thus, every
 term of the above form will have a factor of the form (Wn,iSi)m and
 this last is zero. Now the only possible nonzero term is the first.
 So we have

 dnen = {Wn -(pm(Wn-l)) } m+ldn

 = (Wn-1) m+ 1 * Pm(Wn-1) *{ Pm(Wn- 1) } -dn

 = (Wn-l)mj Pm(Wn-i) } Mdn = en-ldn

 since (Wn1)m = (Wnl1) m+1pm(Wn-l) by the remark after Proposition 3.6.

 3.9. PROPOSITION. en is nonzero.

 PROOF. We shall proceed by induction. Since the field we are work-
 ing over does not have characteristic two, it is easily seen that e2

 is not zero. Now let n be the smallest integer with en =0. Then
 en_1$O. Consider the commutative polynomial algebra over k in a
 countable number of variables, say k [x1, * * * ]. Then, since en is
 zero, en[Xi, * , Xn] =0. Thus

 dnen[Xli * * i Xn] = en-idnkx1, ... , xnj = O.
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 410 P. 1. FLEURY [November

 Then

 enl(xl[x2, *Xn - [Xlx2x2, . Xn +

 + (-)n xn[xi, , . . X Xn-1]) = 0.

 Since the terms inside the parentheses are linearly independent over

 klin then we see e.-i[xl, . . ., xixi+1, * , x, n]= for all i. Suppose
 ir and a are two elements of Tn which appear in en-1. Then

 7([Xi) . . . X XiXi+bl . . . X Xn) = o([Xi, * * * , XXi+b, . . . Xnj)

 if and only if 7r =u. Thus, in order for eni( [xi, * * *, xXXi+l, * * , xn])
 to be zero, en-1 must be zero. This is a contradiction and we are done.

 Using the ens'S we have constructed, we see that there is a natural
 splitting of the complex J*A which is given in the nth dimension

 by (J*A)n=en(J*A)n+(l-en)(J*A)n. We would now like to deter-
 mine the kernel of en. Apply the following filtration to J*A. We let
 FjJ*A be J*A if i> 0, FoJ*A =JA, and FjJ*A be the subcomplex
 whose nth dimensional summand is (sn)-*(JA)n if i <0. Clearly each
 FjJ*A is a complex and FjJ*A contains Fi_1J*A and so is a filtration.
 We note that the complex FiJ*A/FoJ*A is merely Ch*A.

 3.10. PROPOSITION. Let n=mj+i, 1 <i?j. Then en(F_mJ*A)n =0.

 PROOF. Let xC (F_mJ*A)n. Then x = (Sn)m(y) for y some nontrivial
 shuffle. Then

 en(x) = (Wn,)m+1(Sn)m { pm+l(Wn) }I n+(y) = 0

 since (Wn)m+l(Sn)m`Si =0 for all shuffles s j.

 3.11. PROPOSITION. Let n=mj+i, 1 ?i?j. If en(x) =0, then
 xCE (FmJ*A)n.

 PROOF. We know that en=1+ =i aj(sn)' for some integer t.
 Therefore, if en(x) =0, x= - = 1 (sn)'(x) =sn(xi) for some xi. By
 the same reasoning, Sn(Xi) = (sX)2(X2). Thus xC-Sn (JA)n. Continuing
 in this manner, we find that XE(Sn)m (JA)n for every m and the
 proposition is proved.

 We can now state our main theorem.

 3.12. THEOREM. Let k be a ring containing a field of characteristic

 p (ps 2). Let j be the order of 2 in the group of units of k. Let A be a
 commutative algebra over k and M a left A-module. Construct J*A and
 filter it as before. Let n = mj +i, 1 < i <j. Then there exist natural trans-
 formations
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 I97I] SPLITTINGS OF HOCHSCHILD'S COMPLEX 411

 q5n(A, M): Hochn(A, M)-* H((J*A/F-mJ*A) OA M),
 4n(A, M): Hn(HonA(J*A/F_mJ*A, M) ->Hochn (A, M)

 such that k5n(A, M) is a split epimorphism and k5n(A, M) is a split
 monomorphism.

 The proof follows from the foregoing discussion.

 It is also possible, using our filtration, to build a subcomplex of

 J*A called K*A and show that the homology of K*A is a natural
 direct summand of J*A. We set (K*A)n= (FmJ*A)n if n=mj+i,
 1 < i <j. Then the proof that K*A is a complex is routine and the
 foregoing discussion obtains for us the following theorem.

 3.13. THEOREM. Let k, A, j and M be as before. Then there exist
 natural transformations

 i/i,(A, M): Hochn(A, M) -* Hn((J*A/K*A) OA M),

 VI/I(A, M): Hn(HomA(J*A/K*A, M)) ->Hochn(A, M)

 such that 6ln(A, M) is a split epimorphism and Vtn(A, M) is a split
 monomorphism.
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