ABSTRACT MEAN VALUES

By TrEVOR Evans

1. Introduction. The entropic law for a binary operation + on a set S,
that is,

+y+et+w=+2+ Y+ w forall z,y,z,w in 8§,

has been studied by many authors (see [13] and the references given there).
In particular, this law or its nm-ary generalization is a natural condition to
assume in characterizing mean value functions on the real numbers, [1], [2].
This paper is a study of the n-ary generalization of the entropic law and has
two main objects (i) to describe the structure of an n-ary operation on an
abstract set satisfying the law, (ii) to give algebraic versions of some of the
characterizations of mean value functions on the real numbers which have
been discussed by various authors.

In [9] and [12], Kolmogorov and Nagumo have shown that if M, , n = 1,
2, 38, --- is an infinite sequence of strictly increasing continuous symmetric
idempotent functions on the real numbers such that for all £ < =, and all
T1,%z5 " 5 T,y

Mn(x1:x2;"' yxn) =Mn(Mk :Mlca"' yMk y w1 5 " )xn)’

(where M, denotes M, (x, , 2, - , Tx)),
then each M, is a generalized arithmetic mean.
We prove that if the same algebraic conditions hold for an infinite sequence

of operations M, , M,, --+-, M,, --- on a set S with the continuity and order
conditions replaced by the assumption that S contains an element g such
that the mapping x — M, (z, g, 9, - -+ , g) is one-one onto S, for each 7, then

each M, is an arithmetic mean on a certain commutative semigroup (S, +).

We obtain the above result as a consequence of the algebraic analogue of
the following result due to Aczél [1]. If M is a continuous, strictly increasing
idempotent function of n variables on the reals such that, for any n X » matrix
of real numbers, M satisfies the generalized entropic law

M{M>), M) -, M)} = M{M(c)), M(co), -+ , M(cn)}

wherer, , 1, -+ ,1,,¢,Cs, --- , C, are the row and column vectors of the
matrix, then M is a generalized weighted arithmetic mean.

We prove that if an n-ary operation M on a set S satisfies the algebraic
conditions assumed by Aczél and if S contains an element g satisfying the
regularity condition that at least two of the mappings

x_')M(x’gyg: te ,g),x—-»M(g,x,g, ) g): L, T M(gig) R g;x)
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are one-one onto S, then we can construct a commutative semigroup with zero,
(S, +) such that M is a weighted arithmetic mean on (S, +) in the sense that

M@, ,o0 , - ,2,) = &%, + 70, + -+ + 1,2,
where 7, , 75, + + + , 7, are fixed endomorphisms of the semigroup which commute
in pairs and whose sum 7, + 7, + --+ -+ 7, is the identity mapping.

In the preceding result, if we do not assume that M is idempotent but that
S contains one idempotent element, with the same regularity properties as
the element g above, then we obtain a similar characterization for M but without
the condition that r, + 7, + :-- -+ 7, is the identity mapping. This result
generalizes a theorem of Toyoda [14] who assumed a stronger solvability of
equations condition on the operation M.

Using the above result, we derive a structure theorem for an n-ary operation
M on a set S satisfying the generalized entropic law. We assume only that
S contains at least one element with certain regularity properties. Then we
may construct on S a commutative semigroup with zero such that

M(xl y Xz y o ,xn;=a,x1+a2x2+ oot o, + d

where o, , @, , +-- , o, are fixed pairwise commuting endomorphisms of the
semigroup and d is a fixed element of S. This generalizes the structure theory
for entropic quasigroups given by Murdoch [11] and Bruck [3], as well as a
theorem obtained by Aczél [1] for the real continuous case.

2. Notation and terminology. The algebra consisting of a set S and an
n-ary operation II defined on S will be denoted by (S, II). We will often use
parentheses-free notation in denoting the value of an operation and write
Ilz,z, - - - z, for the element which the n-ary operation IT assigns to the sequence
Z,, &2, -+, x, of elements of 8. Mappings of S into itself will be written
on the left. Thus « is an endomorphism for the operation II if

(ex,)(ax,) - - - (ax,) = ollzyxs --- 2, forall z, ,2,, -+ ,z,.

A modified vector notation will be useful. We will write x; for the sequence
Xy, Ts, ++* , T, , Or write simply x if there is no ambiguity. If z,, ., --- , ax
is a sequence of N elements, we will write x; for the subsequence z; , Z; 11, *++, ;.
If ¢ = j, x! is the element z; and if ¢ > 7, x| is to be interpreted as the empty
sequence. If « is a mapping of S into itself and x is a sequence z, , 5, + - , 2,
of elements of S, then, by (ax) we will mean the sequence oz, , ez, *- -, ax, .

Thus, the condition that « is an endomorphism with respect to the operation
II may be written as

I(ex) = ollx for all x.
Similarly, if e; , @, ++ , @, is a sequence of mappings of S into S, we will

write « for this sequence and write (ax) for the sequence ayx, asx, -+ , @z
where « is an element of S.
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Since exponents will not be needed, we will write z° for a sequence of length
i each term of which is z. In general, if E is any expression, E* or (E)* will
denote the sequence of ¢ E’s. E° will denote the empty sequence.

If g is an element of S, the mapping 7, : S — 8,7 = 1,2, - -+ , n defined by

<

7 x> Mg 'zg"™* forall =z

will be called the 4-th translation of g. If such a mapping is one-one onto
S, then g will be called i-regular. If each translation is one-one onto S, then
g will be called regular. An element e of S will be called an Z-unit if its ¢-th
translation is the identity mapping and will be called a unit if this is so for all 7.

An element g of S will be called an idempotent if IIg” = ¢ and the operation
I1 will be said to be idempotent if IIx" = z for all z.

We say that II is symmetric if, for each permutation ¢ on {1, 2, --- , n},
I satisfies, for all z, , 25, -+ , Z.,
Oz -+ Ty = Hxy1Zye - -+ Tyn -

We say that II is associative if it satisfies the following generalization of the
binary associative law,

Ix* " = Ox{'Mx*™", forall x7"7".

We will need to consider n X n arrays of n” elements of S. We denote the
element in the ¢-th row, j-th column by z,; and the array by X or (z.;), ¢, =
1,2, -+, n. The rows and columns of such an array X are sequences of n
elements which we will denote by r; , c; respectively and IIr; , Ilc; will denote
the elements which the n-ary operation II assigns to the sequences r; and c; .
By 11X, we will mean the sequence

Ir, ,r, , --- ,1Ir,

having IIr; as its 7-th element and IIILX or IT°X will denote the element II(IIr,)
(Tr;) -+ (Or,) of S.
If I satisfies the following law

O(Mr,)(Tr,) --- (Or,) = O(c,)Tc,) - -- (c,) forall n X n arrays X,

then IT will be called entropic and this law will be called the entropic law.
This name is due to Etherington for a binary operation [4].

If we use the usual matrix notation, X” to denote the transpose of X, that is,
the n X n array baving z;; in its ¢-th row, j-th column, then the entropic law
may be written as

I’X = I’X7 forall n X n arrays X.
An extension of this notation to the case where the entropic law is a relation
between two operations and the array X is not longer square, is discussed in [7].

3. Properties of entropic operations. We begin with a study of some of
the properties of an entropic operation II on a set S. The main theorem we
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obtain in this section is a characterization of an entropic operation on a set
which contains a two-place regular idempotent.

Lemma 3.1. If (8, II) s an eniropic algebra with a unit element, then I s
symmetric and assoctative.

Proof. Let e be the IT-unit in S. Let z, , z,, -+, z, be any elements of S
and let ¢ be any permutation on {1, 2, --- , n}. The entropic law applied
to the n X n array having, for< = 1,2, - -+ | n, the element z; in row ¢, column
¢~ ', and e in every other place, gives the symmetric property of II immediately.

Now let 2, , 22, - -+, Zsu_y be any 2n — 1 elements of S and consider the
array X having x, , z,, -+ -, x, as its first row, =, , Zps1, - , T2a—y 88 its n-th
column, and e in every other place. The entropic law applied to X reduces
to the associative law.

Lemma 3.2. If (S, II) 7s an eniropic algebra with a unit, then there is a comuta-
tive semigroup (S, +) with a zero element, such that

e, -z, =2, + 2+ -+ + 2,
forallz, , 22, -+, ztn S.
Proof. 1If e is the unit, we define an operation + on S by
z 4+ y = Mz %y

forallz,yin S. By Lemma 3.1, the operation + is commutative and associative.
Since e is a II-unit, (S, +) has ¢ as a zero.
If xje"™* = 2, + 22 + --+ + x,, then

IOx! e = IIxie™ " 'z,
= foen—i—‘(ne —lxi+l)
= II(IIxie" ")e" ;41
@ +z+ -+ )+ T

Hence, by induction, llx = z, + x, + -+ + z..
Our first generalization of this consists of replacing the condition that the
algebra has a unit with the requirement that it contains a regular idempotent.

Lemma 3.3. If (S, ) 7s an entropic algebra, then the i-th translation by an
idempotent g is an endomorphism (automorphism if g is i-regular). Furthermore,
any two such translations by an idempotent commute.

Proof. Let g be an idempotent in S and let z, , 2, , + - - , @, be any n elements
of S. Let X be the n X n array having z, , 2., -+ , Z, as its ¢~th row and
g in every other place. Then

HC,» = TZ; , for all j,
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where 7; is the i-th translation by g. Now, from II’X = II’X”, we obtain

g '(IIx)g"™* = M(r.x).
That is,

rIIx = I(r.x).

Hence r; is an endomorphism. Clearly, if ¢ is ¢-regular, r; is an automorphism.
To prove that 7, , 7; commute, we apply the entropic law to the array X
having an element x in its ¢-th row, j-th column, and ¢ in every other place.
The next two lemmas enable us to construct from an entropic algebra with
a regular idempotent, an entropic algebra with a unit.

Lemma 3.4. Let o, , o, * -+ , a, be endomorphisms of the entropic algebra
(S, II) which commute in pairs. Then the operation = on S defined by

I, - @ = Me@)(asrs) < (aa,)
s entropic. Furthermore, the a; are Z-endomorphisms.
Proof. Let X = (x;;) be an n X n array of elements of S. Then

>»*X = 23,31, -+ - 21,

(o, I1r]) (e, IIrs) - - - (e I0ry)

where 7/ is the sequence o, ;; , a2, *** , CTin
Hence 2°X = IOl (a,r!)I(asr}) -- - H(a,r’) since each a; is a I-endomorphism.
That is,

X = 1°Y

where Y is the n X n array having a;a;z;; in its ¢-th row, j-th column. Similarly,
Z*X" = 3¢, Zc, - Zc,
= T (e, ¢))(esCh) -« - (auCl)
where ¢} is sequence o,Z,; , aXs; , *** , %y . That is,
X" =1°Z

where Z is the n X n array having a,a;z;; in its +-th row, j-th column.

Now a,a; = a;a; and hence Z has a;a;x;; in its ¢-th row, j-th column. That
is, Z is the transpose of Y. Hence, = is entropic since

X =Y = I°Y" = 1’2 = 2°X".

To prove that «; is a Z-endomorphism, we compute. For any elements
Ty, %2, ,2, 108
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;2% = a1, 2,)(®s) -+ (ou,)
= Mo @) (@iets) -« (iaat,)
= I(o0%) (i) - - - (i)
= (o) (i) -+ - (ax,)
= Z(a;X).

Hence, «; is a Z-endomorphism.

Lemwma 3.5. Let g be a regular idempotent in the entropic algebra (S, II). Then
the operation Z on S defined by

2@y o Ty = M(ry @) (72" 22) -+ (12',)
(where 7, is the i-th translation by g) s entropic and has g as a Z-unit.

Proof. By Lemma, 3.3, the 7; are II-automorphisms which commute in pairs.
Hence the 7; are also II-automorphisms which commute in pairs, and so by
Lemma 3.4, the operation Z is entropic. Direct computation shows that g
is a Z-unit.

We are now in a position to state the first main result of this section.

TeEOREM 3.1. Let the entropic algebra (S, II) contain a regular idempotent.
Then there is a commutative semigroup with a zero (S, +), and automorphisms
Ti, T2, o0, T Of (S, +), which commute in pairs, such that

Ozyx, -+ 2, = 7% + 7022+ -+ + 72, forall z, ,2,,--+ ,2, in 8.

Proof. Define an operation = on S as in Lemma 3.5. Then, by Lemma, 3.1,
there is a commutative semigroup (S, +) with a zero element, such that

Ly Ty =2+ 2+ e 2,

Hence, Izx; --- 2, = 7%y, + 7522 + -+ + 7.2, where, by Lemma 3.4, the
7; are Z-automorphisms which commute in pairs.
Since

z+y = Zag"y,
we have
r® + 1y = 2(r2)g" (ry)
2(r:2)(7:9)" " (7:9)
= 7,3xg" %y
= 1z + y).

Hence, the 7; are automorphisms of the semigroup and the theorem is proved.
The final result of this section generalizes Theorem 3.1 by removing the
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restriction of regularity on the idempotent for all but two argument places.
The result we obtain is a generalization of work of Toyoda [14]. First we prove
a lemma which helps simplify the computation later.

LemmA 3.6. Let I be an entropic n-ary operation on a set S and let ¢ be a
permutation of {1, 2, --- , n}. Then the operation T on S defined by

2Ty Ty = X%y -+ Ty

s entropic.

Proof. Let X = (z;;) be an n X n array of elements of S and let X, denote
the n X n array having x,;,,; in its 4-th row, j~th column. Then

»*X =mr’x,, 2°X"=1mXx;5.

Hence 2°X = 2*X” and so 2 is entropic.

THEOREM 3.2. Let the entropic algebra (S, II) contain an idempotent, regular
in two places. Then there is a commutative semigroup with zero (S, +) and pair-

wise-commuting endomophisms 7, , 72, +++ , 7, of (8, +), two of which are auto-
morphisms, such that

ez, 2, = 7%y + 702 + - + 7,2, forall z, ,2,,---,2, n 8.

Proof. In view of Lemma 3.6, there is no loss of generality if we assume
in this proof that IT is 1-regular and 2-regular. In this case, it will appear
that 7, , 7, are the automorphisms. In the general case, where II is p and ¢-
regular, 7, and 7, are the automorphisms.

Let g be the idempotent which is 1 and 2-regular. The mappings, z — Ilxg""’,
x — Igzg™* are one-one onto S and hence the binary operation @ on S defined by

¢ @y = Hayg"™®

has g as a regular idempotent. Furthermore, if we apply the entropic property
of IT to the n X n array having as entries, z,; for ¢, 7 = 1, 2 and ¢ in every other
place, we obtain

(@13 (‘B Z13) @ (%21 @ Tag) = (T1 @ Z31) @ (12 @ Z3s).

Hence the operation @ is entropic.

We now apply Theorem 3.1 for the case n = 2. Thus there is a commutative
semigroup with zero (S, 4) and commuting automorphisms 7, , 7, of (S, +)
such that

2Py = nx + ny.
That is, Oxyg"® = 7,z + my. Note that r, , 7, are II-translations by g.
We define an n-ary operation =, which by Lemma 3.4 is entropic on S.

2x&y - Ty = H(r %) (75 ' 22) a2y -+ T,

Thus, Zr,2.0"° = z, + 2, .
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Apply the entropic property of = to the n X n array having =, , 9,9, --- , ¢
as its first row, 2., ¢, 9, -+ , g as its second row, ¢, x5 , g, g, - - - g as its third
row and g in every other place. We get

Z0,2,%5" 0 = Z(ZT,%29" 0N (Zg 259" ") g"
= (xl -+ xz) + 7425

where 7; is the translation 2 — Zg’z¢""® and is thus by previous results an
endomorphism for 2 and also for (S, +).

Now, assume Zz,x, «-- 2,0"° = &, + 2, + 7325 + -+ -+ 7.; where the
mappings 75, - - - , 7; are pairwise commuting endomorphisms of (S, +). Apply
the entropic property of = to the n X n array having z, , g, 9, -+ , g as row ¢,
fort =1,2,---,¢,andg, 2,4,,9,9, '+, g asrow ¢ + 1, with ¢ in every other
place. We get

Exli/-blgn—i—l = E(Ex:gn—i)(zgixi+lgn—i~l)gn»2
=@ +x + nrs+ -+ 12) + 1o
where 7., is the mapping x — Zg¢z,,,0" *~" which is a translation of Z, hence

an endomorphism of = and of (S, 4). Furthermore, this mapping commutes
with all other translations by g. A simple induction now shows that

ZX =2, + X+ 72 + o0+ 1.2,
and since IIx = Z(7,x,)(r.%2)2; , we have
IIx = 712, + 722 + 7323 + -+ + 7.2,
where 7, , 7, are automorphisms and 75 , - -+ , 7, are endomorphisms of (S, +).

In fact, 7, is the 7-th translation by g with respect to the operation II. Thus,
the 7, commute in pairs. This concludes the proof of the theorem.

4. Abstract means. We will call an n-ary operation II on a set S, an Aczél
mean, if (i) II is entropic (ii) II is idempotent. These are the conditions other
than continuity and order which Aczel [1], [2] assumes for the continuous
real case.

TueorEM 4.1. Let II be an Aczél mean on a set S containing an element regular
in at least two places. Then there is on S a commutative semigroup with zero
(S, +) such that

Oz, -+ - To = 712 + 7oe + - + 72,

where 7, , T, ** + , T, are fixed patrwise commuting endomorphisms of the semigroup
suchthat 1y + 75 + +++ + 7, = 1.

Proof. We have already proved most of this in Theorem 3.2. Since Ilz" = =z
forall z, 7, + 7. + --- + 7, is the identity mapping.



ABSTRACT MEAN VALUES 339

The conclusions of Theorem 4.1 take an especially simple form if we assume
IT to be symmetric.

CoroLLARY. If II is a symmetric Aczél mean on a set S containing a reqular
element, then

onte+ -+,

n

Hxlxz e X, =

where + is the operation in a commutative semigroup with zero (S, +), the elements
of this semigroup admitting unique diision by n.

Proof. By Theorem 4.1

Ozxs -+ 2 = 7% + 700 + -+ + 7.2,
where 7, + 7, + -+ -+ 7, is the identity mapping. Since II is symmetric
and the semigroup has a zero, 1, = 7, = --- = 7, . Hence n-r.x = z for

all z in S. That is, the elements of the semigroup admit division by n. For
each z, an element y such that n-y = « is unique since if n-y, = n-y, , then
NTY, = N-TY, OL Yy = Ys .

We now turn to the generalization of the Kolmogorov-Nagumo results.

We will call an infinite sequence of n-ary operations II, n = 1, 2, 3, --- , on
a set S, a Kolmogorov-Nagumo mean or, briefly, a K-N mean if (i) IT is sym-

metric for each n, (ii) II is idempotent for each n, (iii) for each » and ¥ < n,

n n k
Ix = I(x})"x;,, forall z, ,2,, -+, &, .

These are the conditions other than continuity and order which Kolmogorov
[9] and Nagumo [12] assume for the continuous real case.

TaEOREM 4.3. Let II, n = 1,2, 3, --- , be a K-N mean on a set S and let

S contain an element which is regular for each operation II. Then there is a

commutative semigroup with zero, (S, ), admitiing the rationals as operators,
such that, for each n,

o _untt -+,

Hxlxz ree X, n

Proof. We first show that each II is entropic. Let X = (x), 7,5 = 1,
2, -+, n,beann X n array of elements of Sand let r, , r,, --- r, be the row
sequences of X, ¢, , €, - - - ¢, the column of sequences of X. The two sequences
of n® elements z;;

I, I, - ,T,, €1 ,C, -, Cy
differ only in the order of the elements and so by the symmetry of IT

IOrge, -+-r, = IIcyC, -+ - ¢,
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By property (iii) of a K-N mean, we can write this as

I r,)r, + - r, = ITc,)"c; -+ €, .
After n applications of this property and the symmetry of II, we obtain

n3 n n? n n

(0 (TIr)” -+~ (II5,)" = TQIe:)"(Ie,)” - (e,

Again, by the symmetry of II, we may write this as
II(r Ir, - - - IIr,)" = O(Ic,Ic, - -- lc,)".
An application of property (iii) of the K-N mean to each side enables us to
write this as
(I, Ir, - - - Ir,)"(In,0r, - - - Or,)

n?n on n

=T ¢, ¢, -+ M)A e, M, -+ Mg,

Repeating this use of property (iii) of a K-N mean and the symmetry of II,
we obtain

n? nn n n? non n

(I, r, --- Or,)" = I(Ic,Ic, --- Oc,)".
That is,

n? n n? nan

OIIX)” = O@mx’)™.
Since T is idempotent, we can write this as
X = nmx”’.

Hence, II is entropic.

By Theorem 4.2, we now have, forn = 2, 3, 4, - - - a commutative semigroup
with zero defined on S such that
e, - - - @, = 2 C'B"‘%G_)?: - D

where we write @, for the addition in the semigroup corresponding to II.

Since we used the same II-regular element to construct @, , these semigroups
have the same zero. We now show that, for each n, z @, y = x P. y for all

z,y. Let g be the II-regular element of S used in constructing the semigroups.
Then, by Theorem 4.1

x n Y — " n—2

" = Ilzyg
n 2
I(Izy)*g" ™

- (@D 9)/2 D (x D> y)/2
n
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where division by n refers to the P, semigroup and division by 2 to the @,
semigroup. Hence

X x
x@ny= @22y®n @22'3/.

Let y = ¢ in this. We get x = z/2 @, /2. Hence halves of elements with
respect to the P, operation are also halves with respect to the @, operation.
Thus

X X
x@ny= %21/@2 632?]

@ y.
Hence,
" =x1+x2+"'+xn

Iz -+ 2, "

where we write + for @, . Since the elements in (S, +) allow unique division
by n = 2, 3,4, -, the semigroup admits the rational numbers as operators.

5. Finite entropic algebras. We have described in Theorem 3.2 the structure
of entropic algebras containing an idempotent. The purpose of this section
is to obtain sufficient properties of finite entropic algebras to enable us to
weaken considerably, in this finite case, the assumptions we need for char-
acterizing entropic algebras which do not contain an idempotent. Throughout
this section, (S, II) will be a finite entropic algebra. We use continually the
following lemma, the proof of which we omit.

Lemma 5.1. Ifa,, -+, 0y, Gisy, -+ , G, are elements of S such that, for
all z, y,

Ha; 'za%,, = Ia; 'yat.,

implies x = vy, then, for any b in S there is a unique element x in S such that
IMa;™ z a%,, = b.

If J is a non-empty subset of {1, 2, --- , n}, we will say that ¢ is J-regular
in (8, I) if ¢ is j-regular for all j in J.
The fundamental result for this section is contained in the next lemma.

Lemma 5.2. IfHOa = b en (S, II) and b 7s J-regular, then, for each © in J, a;
is J-regular.

Proof. Let 7, jeJ and let z, y be elements of S such that
H(ai)j—lx(ai)"—i = H(ai)i_ly(as)"_i

where we write (a;)* for a sequence of k a.’s.
Let X be the n X n array having a, , @, , --- , a, for each column except
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the j-th which has z in the 4-th place, and b in every other place. Let Y be
the n X n array obtained from X by replacing « by y in the ¢-th row, j-th column.
Then II’X = II’Y. Since I is entropic, I’X” = II’Y”. An application of
the j-regularity and then of the ¢-regularity of b yields z = y. By Lemma
5.1, this concludes the proof.

Lemma 5.3. If g vs i-regular tn (S, II), then so is Ig".
Proof. Let z, y be elements of S such that
I(g")" 2" = MIg") 'ydlg") ™.

Let ¢ be the element of S satisfying 13" '#g"* = ¢g. By Lemma 5.2, ¢ is i-regular.
Let z, , ¥, be such that

O, =2, Wyt =y.

Now let X be the n X n array havingt, --- , ¢, @, ,¢t, ---,t[{(t — 1) t's preceding
z and (n — 1) following] as its ¢-th row and g in every other place. Let Y be
the n X n array obtained by replacing z, by y, in the ¢-th row, ¢-th column.
Then II’°X = II’Y and so I’X” = II’Y”. From this and the fact that g is ¢-
regular, x, = y, . Hence z = y.

Lemma 5.4. Letay,, +++ , Qizq, Gisr, ** , G, be J-regular elements in (S, )
where © ¢ J and J contains at least two elements. Then, for any b in S, there is
a unique z tn S such that

Ha} 'za%,, = b.

Proof. Let x, y be such that

a, 'zaj,, = Ia; 'yal,, .

We will prove that £ = y. Let X be the n X n array which hasa,, - -- , a;_,,
X, Gisy,y v, Qa8 its t-throw, &, <+ , tiey, @, tiyy, -+ , t, a8 its j-th row
where j ¢ J, j % ¢ and ¢, satisfies II(a,) " 't(a)"™' = a, fork =1, -+ , 4 — 1,
14+ 1, .-+ ,n,and hasa,, -+, @y, , Qiyy, -+, a, for every other row.
Let Y be the n X n array obtained from X by replacing by y. Then II’X =
I°Y and so I’X” = II’Y”. Two applications of the i-regularity of a; yield
z =y.

We now have all the results we need for the finite case. Specifically, from
the above lemmas, we known that if a finite entropic algebra contains an element
g which is ¢ and j-regular, then (i) IIg" is also 7 and j-regular, (ii) there is a
unique element ¢ in S, also ¢ and j-regular, such that (for 1 < j)

g Mgy~ g™ = g

(iii) for any b in S, there is a unique element x in S such that

Hg{—lxg7—i—l'tgn~i — b

il

where ¢ is the element described in (ii).



ABSTRACT MEAN VALUES 343

It is quite easy to prove that in a finite entropic algebra (S, II), the set of
all J-regular elements (where J contains at least two elements) is closed under
II. Thus, we can sum up the results of this section as: if a finite entropic algebra
(S, II) contains at least one J-regular element, then (S, II) contains a J-regular
subalgebra, where by J-regular subalgebra of an entropic algebra, finite or
infinite, we mean a subalgebra of J-regular elements such that if 7 ¢ J and
@y, ", @iey, @iyy , *** G, belong to the subalgebra, then there is a unique
element z, for each b, such that ITa;™" x a?,, = b. Furthermore, if b is in the
subalgebra, so is z.

6. The structure of entropic algebras. We discuss in this section the structure
of an entropic algebra (S, II) which does not contain a regular idempotent.
We construct a new operation = on S in terms of II such that = is entropic
and S contains a Z-idempotent. If certain regularity conditions are assumed
for (8, II), then this =-idempotent is also regular in (S, 2) and hence we are
able to use the results of §3 to describe the structure of the operation .

Lemma 6.1. Leta,, -+, @iy, Gy, - - , G, be elements in the entropic algebra
(S, ). Then the operation = on S defined by

x = Ma; '(IIx)a’.,
s entropic.

Proof. In view of Lemma 3.6. it is sufficient to prove this for z = 1. Let
X be an n X n array (z;;) of elements of S. We compute =*°X and 2*X”.

3’X = 2(Cr)(Cr) - - (Cr.)
= I{II(Zr,)(Zr,) --- (Zr,)}as .

Since Zr; = II(Ilr,)a; , we obtain Z°X = I(I°Y)a? where Y is the n X n array
having Ir; , a, , a5, -+ , a, as its ¢-th row. Since II is entropiec,

I’y = m’y”
NI X)(a,)" - - - M(a,)"
OIr X "H(a,)" - - - (a,)"

i

i

— HZZT
where Z is the n X n array having Ilc; , a5, a5, - - - , a, as its -th row. Hence,
m°Y = I°Z and
X = (I’ 2)a}

It

I{II(Z¢,)(Zc,) - -+ (Zc.)}a;
2(Zc)(Zey) -+ (Ze,)
= 2*X".

Hence, 2 is entropic.
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LemMA 6.2. Let g, t be elements in an entropic algebra (S, II) such that
g~ (g"g"™ " 'tg"™" = g.
Then the operation = on S defined by
2x = Mg (x)g' ™~ g™
18 entropic and has g as an idempotent.

Proof. This follows immediately by Lemma 6.1 and direct computation of Zg".
We are now in a position to state the first structure theorem for entropic
algebras.

TaEOREM 6.1. Let (S, II) be an entropic algebra such that S contains a two
place regular subalgebra. Then, there is a commutative semigroup (S, +), pairwise

commuting endomorphisms a, , as , -+ , a, of (S, +) and a one-one mapping
¢ of S onto tself, such that
Oz.x, - T, = ¢plont, + asts + -+ + ox,) forall = , 22, -+ ,x, tn 8.

Proof. If g is 4, jregular in (S, +), then by the results of the preceding
section, there is an 4-j regular element ¢ such that Ig'*(llg")g’ " "'tg"™" = g¢.
Furthermore, for k either < or 7, and any b in S, the equation

Hgi—l(ngk—lxgn—k)gi—i—ltgn—i — b

has a unique solution. Hence g is ¢, j-regular with respect to the operation
= on 8 defined by
>x = Hg' \(Ix)g' " tg"’

and by Lemma 6.2, = is entropic with g as an idempotent. By Theorem 3.2,
there is a commutative semigroup with zero (S, 4), and pairwise commuting
endomorphisms a; , a,, - - - , &, of (S, +) (with & , o; automorphisms) such that
X = oy + oty + -+ + ez, forall z, ,2,,--- z, in 8.
Again, by the results of the previous section, the mapping

¢-1 :x_éngc’—lxg'—i—ltgn—i

is one-one onto S. Thus, IIx = ¢Zx and the theorem follows.
One problem remains—the description of the mapping ¢ in the above theorem
in terms of the semigroup. We need for this the following lemma.

LemMma 6.3. Let (S, +) be a commutative semigroup with zero and let ¢, ,
¢s, -+, ¢, be one-one mappings of S onto itself such that

&1 (@ + T2 + -+ 21)
@y F Too + o F Ta) o @ Tz + - T)
= ¢ (T F Xox + -0 F Ta) F Pe(@ip F Too + 0+ Tao)
+ -+ @, + e + - ) forall oz
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Then there is an automorphism a of (S, +) and fixed elements a, , a; , -+ , @,
such that for each ©

¢z = ar + a; forall .

Proof. In the above identity, for fixed ¢ and all j except 1, 7, let z;; = ¢;'0,
and let all other z,, be zero except z,; and z,;; . Let z,; = ¢;'0. We get

¢|’xl’l = ¢1x,‘1 + ¢1¢;10 for all T -
Since ¢, , ¢; are permutations on (S, +), we have
¢ = ¢x + k; forall z

where k; is a fixed regular element of 8. Substituting for the ¢; in the original
identity and cancelling the %, , which we may do since they are regular elements,
we get

(@ + T+ 0 F @) F A(@e F T + o @)
+ ot 3@ F e+ F Taw)
= ¢ @ F+ 21+ 0 F ) F Ii@rs T + o F T)
+ ot i@t T+ ).

In this, let z;; = ¢;'0, ¢ > 1, 2, and let all other z;; be zero except z,, , Z;5 -
We get

(T + 212) + 6,0 = ¢21; + iz, forall 2y, , 20 .

Let z,; = ;2 = ¢7'0 in this. It follows that ¢,0 has an additive inverse and
hence is a regular element. We now define a one-one mapping « of S onto
itself by

¢r = ax + ¢,0 forall .
It follows immediately that
ax+y) =ar 4+ ay forall =z,y.
Hence « is an automorphism of (S, +). Now
¢z = ¢z + k;
= azr + ¢0 4+ k;
= ar + a;

where a; , as the sum of two regular elements is a regular element. This con-
cludes the proof of the lemma.

We are now in a position to prove the main structure theorem for entropic
algebras.

TraeorEM 6.2. Let (S, II) be an entropic algebra such that S contains a regular
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subalgebra. Then there is a commultative semigroup with zero (S, +) such that
ey o 2, = a2y + oy + -+ + a2, +d forall x, ,2,,:-¢ ,2,

where oy , ay, * -+, aare fixed pairwise commuting automorphisms of the semigroup
and d s a fized reqular element in 1.

Proof. From Theorem 6.1, we know that there is a commutative semigroup
with zero defined on S and a one-one mapping ¢ of S onto itself such that,
forall z, , 2o, -+, .,

Iz, =+ o = ¢(Biy + Botts + +++ + BuZa)

where 8, , 8, -+ - , B, are pairwise commuting automorphisms of the semigroup.
We wish to determine ¢ in terms of the semigroup structure.
The entropic law II’X =1I>X", in terms of ¢, 8; and the semigroup operation is

¢{Bl¢(.31x11 + e B o+ BBy + -+ ﬁnxnn)}

= ¢{Bl¢(61x11 + -+ ﬁnxnl) + oo+ ﬁn¢(61x1n + -+ ﬁnxnn)}'

In this, write o; = B8.¢8;' and y.; for 8,8,z;; . Cancelling by ¢ on the left
we obtain the identity of the preceding lemma.

al(yll+ tre +yln)+ e +an(ynl+ ctt +ynn)
=oayn+t -+ yu)+ 0 F @t ot Y-

Hence, there is an automorphism « of the semigroup and elements a, , a;, - - - , a,
such that

BB’ = ox + a; .

From this, it follows that ¢z = 8; a8z + 8;7'a;. This gives us some information
about 8; and a; , but all we need for our purposes is that ¢z = pxr + d, where
p is an automorphism of the semigroup and d is a fixed regular element in it.
We now have

Mo, - 2, = oy® + oy + -+ + a0 + d

where a; = pB; and is an automorphism of the semigroup.

It remains to check that the a; , «; commute in pairs. This follows imme-
diately by applying the entropic law II’X = II’X” with IT written in terms
of the semigroup (S, +) to the n X n array having z in its ¢-th row, j-th column
and the zero of the semigroup in all other places.

CoroLLaRY 1. If (S, II) 7s a finite entropic groupoid containing a regular
element, then the conclusion stated tn the theorem holds.

COROLLARY 2. If (Q, o) is an entropic quasigroup, then there is an abelian
group (Q, +), commuting automorphisms a; , o, of (@, +) and an element d
of (Q, +) such that
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zoy=oax+ay+d forall z,y in Q.

The result in Corollary 2 has been obtained by Bruck [3].
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