
ABSTRACT MEAN VALUES

By TREOR EVANS

I. Introduction.
that is,

The entropic law for a binary operation - on a set S,

(x+ y) + (z+w) (x+z) + (y+w) for all x,y,z,w in S,
has been studied by many authors (see [13] and the references given there).
In particular, this law or its n-ary generalization is a natural condition to
assume in characterizing mean value functions on the real numbers, [1], [2].
This paper is a study of the n-ary generalization of the entropic law and has
two main objects (i) to describe the structure of an n-ary operation on an
abstract set satisfying the law, (ii) to give algebraic versions of some of the
characterizations of mean value functions on the real numbers which have
been discussed by various authors.

In [9] and [12], Kolmogorov and Nagumo have shown that if M n 1,
2, 3, is an infinite sequence of strictly increasing continuous symmetric
idempotent functions on the real numbers such that for all k < n, and all
Xl X2 Xn

M,,(x x x,) M,,(M M M Xk+ X,
(where M denotes M(xl x2 x)),

then each Mn is a generalized arithmetic mean.
We prove that if the same algebraic conditions hold for an infinite sequence

of operations M1, Ms, Mn, on a set S with the continuity and order
conditions replaced by the assumption that S contains an element g such
that the mapping x -- M (x, g, g, g) is one-one onto S, for each n, then
each M is an arithmetic mean on a certain commutative semigroup (S, ).
We obtain the above result as a consequence of the algebraic analogue of

the following result due to Aczdl [1]. If M is a continuous, strictly increasing
idempotent function of n variables on the reals such that, for any n X n matrix
of real numbers, M satisfies the generalized entropic law

M{M(rl), M(r2) M(r)} M{M(c), M(c2), M(c)}

where r, r., r=, c, c., c are the row and column vectors of the
matrix, then M is a generalized weighted arithmetic mean.
We prove that if an n-ary operation M on a set S satisfies the algebraic

conditions assumed by Aczdl and if S contains an element g satisfying the
regularity condition that at least two of the mappings

x -- M(x, g, g, g), x M(g, x, g, g), x M(g, g, g, x)
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are one-one onto S, then we can construct a commutative semigroup with zero,
(S, W) such that M is a weighted arithmetic mean on (S, W) in the sense that

where rl, r., rn are fixed endomorphisms of the semigroup which commute
in pairs and whose sum rl r2 + rn is the identity mapping.

In the preceding result, if we do not assume that M is idempotent but that
S contains one idempotent element, with the same regularity properties as
the element g above, then we obtain a similar characterization for M but without
the condition that r - r. - -t- rn is the identity mapping. This result
generalizes a theorem of Toyoda [14] who assumed a stronger solvability of
equations condition on the operation M.

Using the above result, we derive a structure theorem for an n-ary operation
M on a set S satisfying the generalized entropic law. We assume only that
S contains at least one element with certain regularity properties. Then we
may construct on S a commutative semigroup with zero such that

M(Xl x2 ,... Xn) OlX + 02X2 + + OnXn " d

where a a. an are fixed pairwise commuting endomorphisms of the
semigroup and d is a fixed element of S. This generalizes the structure theory
for entropic quasigroups given by Murdoch [11] and Bruck [3], as well as a
theorem obtained by Aczl [1] for the real continuous case.

2. Notation and terminology. The algebra consisting of a set S and an
n-ary operation II defined on S will be denoted by (S, II). We will often use
parentheses-free notation in denoting the value of an operation and write
IIxx2 Xn for the element which the n-ary operation H assigns to the sequence
xl x xn of elements of S. Mappings of S into itself will be written
on the left. Thus a is an endomorphism for the operation II if

II(ax)(ax2) (axn) aIIxx x, for all Xl X2 Xn

A modified vector notation will be useful. We will write x for the sequence
x, x, xn, or write simply x if there is no ambiguity. If x, x., xN

for the subsequence x ,x,/, ,xiis a sequence of N elements, we will write x
is the element x and if i > j, x is to be interpreted as the emptyIf i j, x,

sequence. If a is a mapping of S into itself and x is a sequence x, x2, xn
of elements of S, then, by (ax) we will mean the sequence axe, axe., ax..
Thus, the condition that a is an endomorphism with respect to the operation
II may be written as

II(ax) aIIx for all x.

Similarly, if al a a. is a sequence of mappings of S into S, we will
write for this sequence and write (x) for the sequence ax, a:x, a.x
where x is an element of S.
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Since exponents will not be needed, we will write x for a sequence of length
i each term of which is x. In general, if E is any expression, E or (E)’ will
denote the sequence of i E’s. E will denote the empty sequence.

If g is an element of S, the mapping r S -- S, i 1, 2, n defined by

’ x IIg-lxg"- for all x

will be called the i-th translation of g. If such a mapping is one-one onto
S, then g will be called/-regular. If each translation is one-one onto S, then
g will be called regular. An element e of S will be called an/-unit if its i-th
translation is the identity mapping and will be called a unit if this is so for all i.
An element g of S will be called an idempotent if IIg g and the operation

H will be said to be idempotent if IIx x for all x.
We say that II is symmetric if, for each permutation on {1, 2, n},

II satisfies, for all xl, x, x,

IIxlx2 x,, IIxox2
We say that II is associative if it satisfies the following generalization of the
binary associative law,

2n--1-2 2--1 n--l- 2--I for all x
We will need to consider n n arrays of n elements of S. We denote the

element in the i-th row, j-th column by x and the array by X or (x;), i, j
1, 2, n. The rows and columns of such an array X are sequences of n
elements which we will denote by r c; respectively and IIr IIc will denote
the elements which the n-ary operation II assigns to the sequences r and c
By IIX, we will mean the sequence

IIr IIr2 IIrn
having IIr as its i-th element and IIIIX or II2X will denote the element II(IIr)
(lr) (Ir) of .

If II satisfies the following law

-I(II’l)(I2) (In) II(IiCl)(IIc2) (ICn) for all n X n arrays X,
then II will be called entropic and this law will be called the entropic law.
This name is due to Etherington for a binary operation [4].

If we use the usual matrix notation, Xr to denote the transpose of X, that is,
the n n array having x in its i-th row, j-th column, then the entropic law
may be written as

II2X II2X r for all n X n arrays X.

An extension of this notation to the case where the entropic law is a relation
between two operations and the array X is not longer square, is discussed in [7].

3. Properties of entropic operations. We begin with a study of some of
the properties of an entropic operation II on a set S. The main theorem we
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obtain in this section is a characterization of an entropic operation on a set
which contains a tw0-place regular idempotent.

LEMMA 3.1. If (S, II) is an entropic algebra with a unit element, then II is
symmetric and associative.

Proof. Let e be the H-unit in S. Let xl x x. be any elements of S
and let be any permutation on {1, 2, n}. The entropic law applied
to the n )< n array having, for i 1, 2, n, the element x in row i, column
-1i, and e in every other place, gives the symmetric property of II immediately.
Now let Xl x. x2-1 be any 2n 1 elements of S and consider the

array X having X X2 Xn as its first row, x,, Xn+l X2n-1 as its n-th
column, and e in every other place. The entropic law applied to X reduces
to the associative law.

LEMMA 3.2. If (S, H) is an entropic algebra with a unit, then there is a comuta-
tire semigroup (S, with a zero element, such that

IIxx. x. x + x + + x.

for all xl x. x, in S.

Proof. If e is the unit, we define an operation - on S by

x -- y IIxe’-y
for all x, y in S. By Lemma 3.1, the operation -- is commutative and associative.
Since e is a II-unit, (S, -t-) has e as a zero.
If "-nxle xl -t- x, -4- -4- x, then

Hx+le’-’-I Hxe"-’-’xi+,
n-i

llXle -’(He"-x,+l)

)e x+

(Xl + x. + + x) + X,/l

Hence, by induction, IIx x -- x -- -- x..
Our first generalization of this consists of replacing the condition that the

algebra has a unit with the requirement that it contains a regular idempotent.

LEMX 3.3. If (S, II) is an entropic algebra, then the i-th translation by an
idempotent g is an endomorphism (automorphism if g is i-regular). Furthermore,
any two such translations by an idempotent commute.

Proof. Let g be an idempotent in S and let x, x., x. be any n elements
orS. LetXbethen X narrayhavingxl,x, x as its i-th row and
g in every other place. Then

IIi r,xi, for all j,
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where ri is the i-th translation by g. Now, from II2X II2X r, we obtain

IIgi-l(IIx)gn-’ II(,x).
That is,

,IIx II(r,x).

Hence r is an endomorphism. Clearly, if g is/-regular, r is an automorphism.
To prove that r ri commute, we apply the entropic law to the array X

having an element x in its i-th row, j-th column, and g in every other place.
The next two lemmas enable us to construct from an entropic algebra with

a regular idempotent, an entropic algebra with a unit.

LEMMA 3.4. Let al a, a, be endomorphisms of the entropic algebra
(S, II) which commute in pairs. Then the operation X on S defined by

xx x,, (,,x)(x)... (x)

is entropic. Furthermore, the a are Z-endomorphisms.

Proof. Let X (x) be an n X n array of elements of S. Then

H(alHr)(a2Hr)... (anHr)

where r is the sequence alX ax ax
Hence Z2X HH(ar)H(ar) H(ar) since each a, is a H-endomorphism.
That is,

2;2X II Y

where Y is the n X n array having aox in its i-th row, j-th column. Similarly,

2Xr= Z2clZc2...

n(cl)(c)... (c’)

where c.’ is sequence alxl. ax2. ax.; That is,

Xr= IIZ

where Z is the n X n array having aax in its i-th row, j-th column.
Now aa a;a and hence Z has aax in its i-th row, j-th column.

is, Z is the transpose of Y. Hence, 2 is entropic since

22X II=Y II=Yr= II=Z 2=Xr.

That

To prove that a is a 2:-endomorphism, we compute.
xl,x, ,xinS

For any elements
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,,zx ,,n(,,,,)(,) (.z)

I(,,z,)(,,x)

H(,x)(,x)... (x)

(x,)(,,)... (x)

(,x).

Hence, a is a Z-endomorphism.

LEMMX 3.5. Let g be a regular idempotent in the entroc algebra (S, H). Then
the operation Z on S defined by

z)... (.

(where r is the i-th translation by g) is entropic and has g as a Z-unit.

Proof. By Lemma 3.3, the r are H-automorphisms which commute in pairs.
Hence the r7 are also H-automorphisms which commute in pairs, and so by
Lemma 3.4, the operation Z is entropic. Direct computation shows that g
is a Z-unit.
We are now in a position to state the first main result of this section.

THEOnE 3.1. Let the entropic algebra (S, H) contain a regular empotent.
Then there is a commutative semigroup with a zero (S, +), a automorphisms
r r r. g (S, +), which commute in pairs, such that

Hxx x.= rx + rx + + rx. lor all x ,x ,x. in S.

Proof. Define an operation Z on S as in Lemma 3.5. Then, by mma 3.1,
there is a commutative semigroup (S, +) with a zero element, such that

Hence, Hxx x, rx + rx + + r.x. where, by Lemma 3.4, the
r, are Z-automorphisms which commute in pairs.
Since

we have

x - y xg’-2y,

fix + r,y Z(rix) g (riy)

(,x)(, "’-’g) Y)

rZxg y

r,(x + y).

Hence, the r, are automorphisms of the semigroup and the theorem is proved.
The final result of this section generalizes Theorem 3.1 by removing the



ABSTRACT MEAN VALUES 337

restriction of regularity on the idempotent for all but two argument places.
The result we obtain is a generalization of work of Toyoda [14]. First we prove
a lemma which helps simplify the computation later.

LEMMA 3.6. Let II be an entropic n-ary operation on a set S and let be a
permutation of {1, 2, n}. Then the operation on S defined by

is entropic.

Proof. Let X (x,) be an n X n array of elements of S and let X denote
the n X n array having x, in its i-th row, j-th column. Then

ZX HX ZXr H r

Hence 22X 2Xr and so 2 is entropic.

THEOREM 3.2. Let the entropic algebra (S, II) contain an idempotent, regular
in two places. Then there is a commutative semigroup with zero (S, and pair-
wise-commuting endomophisms rl r. r,, of (S, +), two of which are auto-
morphisms, such that

IIxlx2 x.--- rxl + r2x + + rx, lor all x ,x2 ,xn in S.

Proof. In view of Lemma 3.6, there is no loss of generality if we assume
in this proof that II is 1-regular and 2-regular. In this case, it will appear
that r r. are the automorphisms. In the general case, where II is p and q-
regular, r and r are the automorphisms.

Let g be the idempotent which is 1 and 2-regular. The mappings, x IIxg-1,
x -- IIgxg- are one-one onto S and hence the binary operation ( on S defined by

x y Hxyg’-

has g as a regular idempotent. Furthermore, if we apply the entropic property
of II to the n X n array having as entries, x,- for i, j 1, 2 and g in every other
place, we obtain

(Xll O X12) O 2,1 O X22) (Xll O X21) O (X12 0 X22)"

Hence the operation ( is entropic.
We now apply Theorem 3.1 for the case n 2. Thus there is a commutative

semigroup with zero (S, -t-) and commuting automorphisms r r of (S, +)
such that

x ( y rlx

That is, IIxyg- rx + ry. Note that r r. are H-translations by g.
We define an n-ary operation 2, which by Lemma 3.4 is entropic on S.

2Z2 Xa

Thus, Zxlxg"- x + x:.
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Apply the entropic property of Z to the n X n array having xl, g, g, g
as its first row, x., g, g, g as its second row, g, x3, g, g, g as its third
row and g in every other place. We get

Zxlx2x3gn-3-- (xix2g’-2)(g2x3g’-3)g"-2

(X + X2) + T3X3
n3where ra is the translation x g xg and is thus by previous results an

endomorphism for Z and also for (S, +).
XNow, assume xx g x + x + rx + + rx where the

mappings ra, r are pairwise commuting endomorphisms of (S, T). Apply
the entropic property of Z to the n X n array having x, g, g, g as row t,
for 1, 2, i, and g, x+, g, g, g as row i W 1, with g in every other
place. We get

i+1 n--i--i )(g Xi+i g

(x,+x+x+ +
where r+ is the mapping x Zgx,+lg"-- which is a translation of , hence
an endomorphism of and of (S, +). Furthermore, this mapping commutes
with all other translations by g. A simple induction now shows that

and since Hx Z(rx)(rx)x we have

where r r are automorphisms and ra, r, are endomorphisms of (S,
In fact, r is the i-th translation by g with respect to the operation H. Thus,
the r commute in pairs. This concludes the proof of the theorem.

4. Abstract means. We will call an n-ary operation II on a set S, an Aczl
mean, if (i) II is entropic (ii) II is idempotent. These are the conditions other
than continuity and order which Aczel [1], [2] assumes for the continuous
real case.

THEOREM 4.1. Let II be an Aczdl mean on a set S containing an element regular
in at least two places. Then there is on S a commutative semigroup with zero
(S, +) such that

where r r. r, are fixed pairwise commuting endomorphisms of the semigroup
such that rl zr r. - + r, 1.

Proof. We have already proved most of this in Theorem 3.2.
for all x, rl - r + - r, is the identity mapping.

Since Hx x
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The conclusions of Theorem 4.1 take an especially simple form if we assume
II to be symmetric.

COIOLLAIY. If H is a symmetric Aczdl mean on a set S containing a regular
element, then

x +x.+ +xIIxlx2 Xn n

where is the operation in a commutative semigroup with zero (S, ), the elements
of this semigroup admitting unique division by n.

Proof. By Theorem 4.1

IIxx. x,, rXl + rx + +
where A- r2 + + is the identity mapping. Since II is symmetric
and the semigroup has a zero, 2 ,. Hence n.rx x for
all x in S. That is, the elements of the semigroup admit division by n. For
each x, an element y such that n.y x is unique since if n.y n.y, then
n.ryl n.ry or yl y..
We now turn to the generalization of the Kolmogorov-Nagumo results.

We will call an infinite sequence of n-ary operations II, n 1, 2, 3, on

a set S, a Kolmogorov-Nagumo mean or, briefly, a K-N mean if (i) II is sym-

metric for each n, (ii) II is idempotent for each n, (iii) for each n and k

_
n,

for all X X XIIx II(IIxi) Xk+

These are the conditions other than continuity and order which Kolmogorov
[9] and Nagumo [12] assume for the continuous real cse.

THEOaEM4.3. Let II, n 1, 2, 3, be a K-N mean on a set S and let

S contain an element which is regular for each operation II. Then there is a
commutative semigroup with zero, (S, --), admitting the rationals as operators,
such that, for each n,

Xl + X2 + + XnIIxlx: Xn n

Proof. We first show that each II is entropic. Let X (xi), i, j 1,
2, n, be an n X n array of elements of S and let r, r2, r. be the row
sequences of X, c, c2, c. the column of sequences of X. The two sequences
of n elements x;

I’ r I’n C C2 Cn

differ only in the order of the elements and so by the symmetry of II

IIrr2 ...r. IIClC Cn
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By property (iii) of a K-N mean, we can write this as

II(IIrl)r2... r. II(IIel)’c2 c..
After n applications of this property and the symmetry of II, we obtain

II(IIrl)’(IIr)"... (IIr,)" II(IXCl)’(IXc2)

Again, by the symmetry of II, we may write this as

II(IIrI/r IIrn) II(IIc,Hc..-. He.)’.

An application of property (iii) of the K-N mean to each side enables us to
write this as

III(IIIIrlIIr IIr.) r,IIr nr)-’

II(IIII cl II c II e,)’(II t II C2 II

Repeating this use of property (iii) of a N-N mean and the symmetry of II,
we obtain

n .
II(IIIIrIIr... IIr.)n II(IIIIcflIc2..-IIc.)’.

That is,

n(nnX)’ n(nnX)’.

Binee II is idempotent, we can write this as

IIIIX IIIIXr.
Hence, II is entropic.
By Theorem 4.2, we now have, for n 2, 3, 4, a commutative semigroup

with zero defined on S such that

IIXX2 X,
n

where we write for the addition in the semigroup corresponding to II.

Since we used the same II-regular element to construct n, these semigroups
hve the sme zero. We now show that, for ech n, x . y x y for all

x, y. Let g be the II-regular element of S used in constructing the semigroups.
Then, by Theorem 4.1

.x ( y Hxyg
n

2

H(nxy)e--
(x__. y)/ (R),_,(x (R) u)/

n
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where division by n refers to the ( semigroup and division by 2 to the (.
semigroup. Hence

x(,, y

Let y g in this. We get x x/2 . x/2. Hence halves of elements with
respect to the (2 operation are also halves with respect to the ( operation.
Thus

Hence,

IIXlX2 x
x,+x+ +x,

where we write -I-" for (2 Since the elements in (S, -f) allow unique division
by n 2, 3, 4, the semigroup admits the rational numbers as operators.

5. Finite entropic algebras. We have described in Theorem 3.2 the structure
of entropic algebras containing an idempotent. The purpose of this section
is to obtain sufficient properties of finite entropic algebras to enable us to
weaken considerably, in this finite case, the assumptions we need for char-
acterizing entropic algebras which do not contain an idempotent. Throughout
this section, (S, H) will be a finite entropic algebra. We use continually the
following lemma, the proof of which we omit.

LEMMA 5.1. If al ai_1 ai+l a, are elements of S such that, for
all x, y,

i--1 -1IIa xai+l IIa ya+

implies x y, then, for any b in S there is a unique element x in S such that
Ha-1 x a,+l b.

If J is a non-empty subset of {1, 2, n}, we will say that g is J-regular
in (S, H) if g is j-regular for all j in J.
The fundamental result for this section is contained in the next lemma.

LEMMA 5.2. If Ha b in (S, H) and b is J-regular, then, for each i in J, a,
is J-regular.

Proof. Let i, j J and let x, y be elements of S such that

H(a,)-x(a,)n- H(a)-ly(a)"-

where we write (a) for a sequence of/ ai’s.
Let X be the n X n array having a a as for each column except
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the j-th which has x in the i-th place, and b in every other place. Let Y be
the n X n array obtained from X by replacing x by y in the i-th row, j-th column.
Then H2X II2Y. Since II is entropic, II2XT IIYT. An application of
the j-regularity and then of the /-regularity of b yields x y. By Lemma
5.1, this concludes the proof.

LEMMA 5.3. If g is i-regular in (S, H), then so is Hgn.
Proof. Let x, y be elements of S such that

II(Hgn) ’-lx(Hgn)n-’ H(IIgn) ’-ly(IIg’)n-’

Let be the element of S satisfying IIg-’tgn- g. By Lemma 5.2, is/-regular.
Let xl, Yl be such that

Now let X be the n n array having t, t, xl, t, [(i 1) t’s preceding
x and (n i) following] as its i-th row and g in every other place. Let Y be
the n X n array obtained by replacing x by Yi in the i-th row, i-th column.
Then II2X-- II2Y and so IIXr IIYr. From this and the fact that g is i-
regular, x yl Hence x y.

LEMM/k 5.4. Let a a_ a/ an be J-regular elements in (S, II)
where i J and J contains at least two elements. Then, for any b in S, there is
a unique x in S such that

iIa- bxa/,

Proof. Let x, y be such that

1]a-I la-i axa/l y +.

We will prove that x y. Let X be the n X n array which has a, a_,
x, a/ an as its i-th row, t t_ ai ti+ t as its j-th row
where j J, j i and t satisfies H(a)-It(a) a for 1, i 1,
i 1, n, and hs a a_ a a+ a for every other row.
Let Y be the n X n array obtained from X by replacing x by y. Then HX
HY and so HXr HYr. Two applications of the /-regularity of a yield

We now have all the results we need for the finite case. Specifically, from
the above lemmas, we known that if a finite entropic algebra contains an element
g which is i and j-regular, then (i) Hg" is also i nd j-regular, (ii) there is a
unique element in S, also i and j-regular, such that (for i < )

(iii) for any b in S, there is a unique element x in S such that

where is the element described in (ii).
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It is quite easy to prove that in a finite entropic algebra (S, II), the set of
all J-regular elements (where J contains at least two elements) is closed under
II. Thus, we can sum up the results of this section as:if a finite entropic algebra
(S, H) contains at least one J-regular element, then (S, H) contains a J-regular
subalgebra, where by J-regular subalgebra of an entropic algebra, finite or
infinite, we mean a subalgebra of J-regular elements such that if i , J and
al a_l a/l a belong to the subalgebra, then there is a unique
element x, for each b, such that IIa-1 x a?/l b. Furthermore, if b is in the
subalgebra, so is x.

6. The structure of entropic algebras. We discuss in this section the structure
of an entropic algebra (S, II) which does not contain a regular idempotent.
We construct a new operation 2 on S in terms of II such that 2 is entropic
and S contains a 2-idempotent. If certain regularity conditions are assumed
for (S, II), then this 2-idempotent is also regular in (S, 2) and hence we are
able to use the results of 3 to describe the structure of the operation 2.

LEMMA 6.1. Let al a_ a/ a,, be elements in the entropic algebra
(S, H). Then the operation on S defined by

X Ha-l(Hx)a+l
is entropic.

Proof. In view of Lemma 3.6. it is sufficient to prove this for i 1..Let
X be an n X n array (xi) of elements of S. We compute 22X and 2;2Xr.

2;X 2(Zr)(22r)...

II{II(Zrl)(2;r)... (Zr.)}a

Since 2;r II(IIr)a, we obtain ZX H(IIY)a where Y is the n X n array
having IIr a, a a as its i-th row. Since II is entropic,

Hy Hyr

H(H2X)II(a2)n...

H(H2Zr)II(a2)n... II(an)

IIZT

where Z is the n X n array having IIc, a., a3, a as its i-th row. Hence,
IIY IIZ and

22X H(HZ)a
II.{II(22c,)(2;c) (2;c.)}a

Z(ZCl)(Ze)... (c)

2Xr.
Hence, 2; is entropic.
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LEMMA 6.2. Let g, be elements in an entropic algebra (S, II) such that

I’-()g-’- tg- .
Then the operation on S defined by

Zx IIg’-l(IIx)g-’-’ tg-i

is entropic and has g as an idempotent.

Proof. This follows immediately by Lemma 6.1 and direct computation of Zg’.
We are now in a position to state the first structure theorem for entropic

algebras.

THEOREM 6.1. Let (S, II) be an entropic algebra such that S contains a two
place regular subalgebra. Then, there is a commutative semigroup (S, W), pairwise
commuting endomorphisms al a2 a. of (S, ) and a one-one mapping

of S onto itself, such that

IIXlX x (O/lX + ol2x + + olnXn) ]or all Xl x2 x,, in S.

Proof. If g is i, j-regular in (S, ), then by the results of the preceding
section, there is an i-j regular element such that IIg-l(IIgn)g--tg"-i g.
Furthermore, for/ either i or j, and any b in S, the equation

IIg-l(IIgk-lxgn-k)g--Itg- b

Hence g is i, j-regular with respect to the operationhas a unique solution.
2; on S defined by

Ex IIg-(Hx)g--tg’-

and by Lemma 6.2, 2 is entropic with g as an idempotent. By Theorem 3.2,
there is a commutative semigroup with zero (S, +), and pairwise commuting
endomorphisms al, a, a of (S, ) (with a, a; automorphisms) such that

X alX + a2X + anXn for all x x2 ,... x in S.

Again, by the results of the previous section, the mapping- x Hg-xg--ltg-is one-one onto S. Thus, Hx CZx and the theorem follows.
One problem remainsthe description of the mapping in the above theorem

in terms of the semigroup. We need for this the following lemma.

LEMM 6.3. Let (S, +) be a commutative semigroup with zero and let
be one-one mappings of S onto itself such that

1(Xll + X12 + + Xln)

+ 2(X21 + X22 + + X2 + + On(Xnl + Xn2 + + Xnn)

(x + xi + + x) + (x1 + x + + x)

+ +(x +x + + x,) ]orall x.
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Then there is an automorphism of (S, and fixed elements a a a
such that for each i

,x x-}- a, ]or all x.

Proof. In the above identity, for fixed i and all j except 1, i, let x; 7’0,
and let all other x, be zero except x, and x,,. Let x, 7’0. We get

Since are permutations on (S, %), we have

x xWk for all x

where b is a fixed regular element of S. Substituting for the in the original
identity and cancelling the k, which we may do since they are relar elements,
we get

1(x + xi + + x,) + ,(x + x + +
+ + i(Xin + X2n + + Xnn)*

In this, let x 0, i 1, 2, and let all other x be zero except xi, x.
We get

I(Xll + X12 + 1o 1X11 + 1X12 for all x x
Let x x :0 in this. It follows that 0 has an additive inverse and
hence is a regular element. We now define a one-one mapping a of S onto
itself by

x ax+0 for all x.

It follows immediately that

a(x+ y) ax+ay for all x,y.

Hence a is an automorphism of (S, +). Now

where a as the sum of two regular elements is a regular element. This con-
cludes the proof of the lemma.
We are now in a position to prove the main structure theorem for entropic

algebras.

TEOnEM 6.2. Let (S, ) be an entropic algebra such that S contains a regular
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subalgebra. Then there is a commutative semigroup with zero (S, 4-) such that

IlXiX2 Xn ClXI + c2X2 + + OlnXa + d ]or all x x x
where are fixed pairwise commuting automorphisms of the semigroup
and d is a fixed regular element in it.

Proof. From Theorem 6.1, we know that there is a commutative semigroup
with zero defined on S and a one-one mapping of S onto itself such that,
for all x. x, x,

where , , are pairwise commuting automorphisms of the semigroup.
We wish to determine in terms of the semigroup structure.
The entropic law H2X H2Xr, in terms of 6, and the semigroup operation is

In this, write a, and y forx Cancelling by on the left
we obtain the identity of the preceding lemma.

Hence, there is an automorphism a of the semigroup and elements al, a2, a
such that

:x x + a,

From this, it follows that tx 7ax + 7a,. This gives us some information
about , and a but all we need for our purposes is that tx px d, where
p is an automorphism of the semigroup and d is a fixed regular element in it.
We now have

HXlX2 Xn alX + aX2 + anZn d

where a p and is an automorphism of the semigroup.
It remains to check that the a, a commute in pairs. This follows imme-

diately by applying the entropic law HX H2XT with H written in terms
of the semigroup (S, +) to the n X n array having x in its i-th row, j-th column
and the zero of the semigroup in all other places.

COaOARY 1. If (S, H) is a finite entropic groupoid containi a regular
element, then the conclusion stated in the theorem holds.

COROllARY 2. U (Q, ) is an entropic quasigroup, then there is an abelian
group (Q, +), commuting automorphisms a a of (Q, +) and an element d

of (Q, +) such that
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x oy alx+a2y+d ]or all x,y in

The result in Corollary 2 has been obtained by Bruck [3].

Q.
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