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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 260, Number 2, August 1980 

HIGHER DIVIDED SQUARES IN 
SECOND-QUADRANT SPECrRAL SEQUENCES' 

BY 

W. G. DWYER 

ABsTRAcr. The geometric action of the Steenrod algebra on many mod 2 cohomol- 
ogy spectral sequences is complemented by the action of a completely different 
algebra. 

1. Introduction. The purpose of this paper is to show that many second-quadrant 
mod 2 cohomology spectral sequences have a so-far unsuspected type of structure- 
the action of an algebra of "higher divided squares". This action is related in an 
essential way to the known action of the Steenrod algebra. 

In more detail, suppose that X is a cosimplicial space [2, p. 267], that is, a 
collection {X ),,>,o of spaces together with maps between them that satisfy the 
dual of the usual simplicial identities. There is a natural mod 2 second-quadrant 
cohomology spectral sequence Er-P,q (p, q > 0) associated to X which sometimes 
converges to an identifiable limit. The Eilenberg-Moore spectral sequence [8], the 
generalized Eilenberg-Moore spectral sequence [1], and a few other more exotic 
spectral sequences can be obtained in this way. Rector [8] and Smith [11] have 
shown that this spectral sequence admits Steenrod squaring operations Sq': E[Ppq 

> E-Pq Ii which can be nonzero, at E2, for i < q - 1 (p > 0). This paper 
constructs higher divided square operations 

i: E2-p,q E-p-i2q 2<ip, 

with the property that if the class x in E2-P' survives to Ei-+ then d'(Six)= 
Sqq-i+ I(x). In this way the higher divided square operations ensure that at Eoo the 
action of the Steenrod algebra is unstable with respect to total degree (which is 

q - p). 
The Si's are constructed with the techniques of [4] and satisfy the Cartan formula 

and Adem relations derived there. 
RELATIONSHIP TO EARLIER woRK. From a formal or technical point of view this 

paper develops for second-quadrant spectral sequences the analogue of Singer's 
theory of Steenrod squares in first-quadrant spectral sequences [9], [10]. Neverthe- 
less the conclusions of the two theories are opposite to one another. There are too 
few "vertical" squaring operations in first-quadrant spectral sequences, and Singer 
constructs "horizontal" squaring operations that make up the deficit. There are too 
many vertical squaring operations in second-quadrant spectral sequences, and this 
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paper constructs new horizontal operations that conspire with differentials to 
annihilate the extra vertical classes. 

Let A be the category of the finite ordered sets {O, 1, .. . , n) (n > 0) and 

nondecreasing maps [6, p. 4] and let AOP be the opposite category. A mixed 
simplicial coalgebra is a functor from AP x A to the category of commutative 
Z/2-coalgebras. The singular complex of a cosimplicial space gives rise to a mixed 

simplicial coalgebra in a standard way [10, p. 352]. In order to emphasize the 
analogy with Singer's constructions most of the work in this paper will be done in 
the category of mixed simplicial coalgebras; in particular, this involves developing 
a purely algebraic approach to the geometric theory of Rector and Smith. 

I would like to thank the referee for some very helpful comments. 

2. Definitions and results. The constituents of a mixed simplicial object X will be 
written Xq; the upper integer is the cosimplicial index and the lower the simplicial 

one. In the same vein, d', s will stand for the "horizontal" coface and 
codegeneracy operators and di, si for the "vertical" face and degeneracy operators. 
An augmentation for a mixed simplicial object X is a simplicial object R together 
with a simplicial map X: R -- X* such that d0X = d 1X: R -* X1. 

Any simplicial Z/2 module R has an associated chain complex CR given by 

(CR)n = Rn d = EiOi_ Along the same lines, a mixed simplicial Z/2-module X 
has an associated double chain complex CX given by (CX)p,q = Xqp, with hori- 

zontal differential dh = = di and vertical differential dV = Yqo di. It is some- 
times useful to 'regard CX (with a single subscript) as a singly indexed chain 
complex with a decreasing filtration 

FP(CX)n = E (CX)-i,n+i, d = dh + dv. 

Note that from this point of view (CX)* is not positively graded. 
Suppose that X is a mixed simplicial Z/2-module. There is an increasingly 

filtered cochain complex Hom(CX, Z/2) defined by 

FpHomn(CX, Z/2) = [ f: (CX)n -Z/21f(FP+ 'CX) = 0]. 

The spectral sequence (Er, dr) of X is by definition the spectral sequence of this 

filtered cochain complex (see ?5 and [5, p. 326]). Note that (Er, dr) is a second- 

quadrant cohomology spectral sequence with ECyP,q = Hom(XqP, Z/2). If X has an 

augmentation A: R -- X then A defines, in an obvious way, a Z/2-homomorphism 

X*: H* Hom(CX, Z/2) -- H* Hom(CR, Z/2). 

When X* is an isomorphism the cohomology H* Hom(CR, Z/2) is filtered and is 

the "target" of the spectral sequence (Er, d,). The spectral sequence need not 

converge, but in any case let 

p: FpHq-P Hom(CR, Z/2) -*Epq 

be the natural projection. 
Suppose now that X is a mixed simplicial coalgebra and that R is a simplicial 

coalgebra (all coalgebras are commutative coalgebras over Z/2 as in [9]). ?4 
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contains a construction of products and Steenrod operations both on 
H* Hom(CR, Z/2) and on H* Hom(CX, Z/2). 

2.1. PROPOSITION. If X: R -- X is an augmentation, then X* preserves products and 
Steenrod operations. 

?5 contains a construction of products 

ErjP,q ) Er-? 
s t E -(p+s)q (r > 2) 

in the spectral sequence (Er, dr) of X, as well as a construction of Steenrod 
operations 

Sqk: 
E-p,q __p,q+k 

(r 
p 

2). 

2.2. PROPOSITION. Products and Steenrod operations on E2 determine products and 
Steenrod operations on Er for all r > 2. For example, if u E E2 survives to Er and 
represents [u] E Er, then Sqku survives to Er and [Sqku] = Sqk[u]. 

2.3. PROPOSITION. Under the above product pairing (Er, dr) is a spectral sequence of 
differential algebras. The Steenrod squares commute with the differentials. 

It follows that there are products and squaring operations on Eo. 

2.4. PROPOSITION. Suppose that X: R -* X is an augmentation and that X* is an 
isomorphism. Suppose that u E FpHq-P Hom(CR, Z/2) and v E 

FrHs-r Hom(CR, Z/2). Then uv E Fp+rH* Hom(CR, Z/2) and p(uv) = p(u)p(v). 
Moreover Sqku E FpH* Hom(CR, Z/2) and pSqku = Sqkp(u). 

Fix r > 2 and pick s > r. Let BsPp,q denote the subgroup of Er-p,q containing 
those elements x which survive to Es pq and have zero residue class [x] in Es-p,q. 

By definition, an operation 8: Er-p,q -* Er-a,b of indeterminacy s is a map ErP 
EJa,b/ a,b Er X / Bs- 
?5 contains a definition of higher divided square operations 

3i: Er-p,q _E- 2 -ir 2i p, 

of indeterminacy 2r - 2. Note, in particular, that at E2 the indeterminacy is trivial. 

2.5. PROPOSITION. Higher divided square operations on E2 determine higher divided 

square operations on Er for r > 2. In other words, if u E E2-pq survives to Er and 

represents [u] E Er- , then for r < i < p the class 3iu survives to Er and 3,[u] = 

[3iu] modulo the appropriate indeterminacy. 

REMARK. The indeterminacy of the operation 3, always lies in the kernel of all 
spectral sequence differentials. 

To avoid complicated notation, in the next statement no distinction is made 
between an element u in Er-P that survives to Es and its residue class in Es-P . 
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2.6. PROPOSITION. Suppose that u E r (r < p) and that dru = v, with v E 

Er-p+r,q-r+l Then 

(a) for r < i < min{2r - 2, p - 1, the classes Siu and Sqq-i+ lu both survive to 

Ei and di8iu = Sqq -i+ lu, 
(b) if p > 2r, so that Srv is defined, the classes 82r lI(U) and &qe-2r+2u + Srv both 

survive to E2rl - and 

d2r-182r-1(U) = Sqq-2r+2U + 3rV, 

(c) for 2r < i < p the classes Siu and Si-r+I(V) both survive to E2r-I and 
d2r_l3iu = 3i-r+i(V), 

(d) if r < p then drSpu = uv while if r = p then dr3pu = uv + Sqq-P+lu. 

REMARK. If U E Er then at E2ri all of the indeterminacy in the value of Siu has 
disappeared. 

2.7. PROPOSITION. The action of the Steenrod operations on E2 satisfies the Cartan 
formula and the Adem relations (both, in general, interpreted with Sqo 7# 1). The 
action of the higher divided squares on E2 satisfies the relations of [4, 2.1]. The two 
actions satisfy the commutation relation Sqk3S = 3jSqk/2 where Sqk/2 = 0 for k odd. 

The relations of [4, 2.1] imply that if u E Ef-pq and v E E2-r,s the following 
three properties hold. 

(i) If p = r and q = s, then 

3,(u + v) = 3,u + 3,v, 3p(u + v) =pu + 3pv + uv, 2 < i <p. 

(ii) If 2 < i < p + r, then 

[v28i(u) if r = 0, 

Si(Uv) = u28i(v) if p = 0, 

tO otherwise. 

(iii) If 2 < i < p and 2 < j < 2i, then 

a78i(u)~ Y 
i 

j( k 
)iSi+j - k SkU) 

=+ ~ i - k 
2 <k i-1 

3. Chain and cochain diagonal approximations. The aim of this section is to recall 
the properties of some natural chain and cochain homomorphisms. 

If R and S are simplicial Z/2-modules, let R ? S denote the dimensionwise 
tensor product (R 0 S)n = RnC 0 Sn with the tensor product face and degeneracy 
operators. If A and B are graded Z/2-modules, let A X B denote the graded tensor 
product 

(A 0 B)n (A i C) Bj). 
i +j = n 

The Leibnitz differential 

d(a 0 b) = d(a) 0 b + a 0 d(b) 

makes A 0 B into a chain complex if A and B are chain complexes. 
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Let T denote the switching map 

C(R S) -C(S R) or CR ? CS -CS CR. 
3.1. LEMMA. There exist natural maps 

Dk: C(R 0 S)i -(CR 0 CS)i+k, i,k > 0, 

such that 
(i) Do is a chain homotopy equivalence which induces the identity map C(R 0 S)O 
(CR 0 CS)O, and 
(ii) dDk + Dkd = Dk_I + TDk IT(k > 0). 

The collection { Dk ) is a simplicial Eilenberg-Zilber map in the sense of [9] and is 
constructed in [3]. It is convenient to adopt the convention that Dk = 0 for k < 0. 

Suppose now that U = { U') is a cosimplicial Z/2-module [2, p. 267]. Associated 
to U is a cochain complex CU given by (CU)n = Un, d = In+ d'. If V is another 
cosimplicial Z/2-module, the "codimensionwise" tensor product U 0 V and the 
graded tensor product CU X CV are defined in the obvious way. 

Let T be one of the switching maps. C(U 0 V) -- C(V 0 U) or CU X CV 
CV X CU. A map0 k: C(U 0 V) -* CU ? CV of degree k is said to be admissi- 
ble if 

(a) 0 kT = Tpk, 

(b) the restriction of pk to Ui 0 Vi is zero unless i = k, 
(c) the image of 4 k: Uk 0& Vk (CU X CV)2k iS contained in (CU)k 0 (CV)k 

= Uk 0& Vk, and 
(d) the map Uk 0 Vk _ Uk 0 Vk induced by p k according to (c) restricts to 

the identity on the intersection of the kernels of the codegeneracy maps 

sk: uk 0& vk >uk-1 
0 

vk 
1, 0 < i < k - 1. 

3.2. LEMMA. There exist natural maps 

Ak: C(U ? V)i __(CU CV)i+k 0 kS i, 
and natural admissible maps p k of degree k (k > 0) such that 

(i) the map A = AO + TA0T + 0? is a cochain homotopy equivalence that induces 
the identity map C(U 0 V)? -> (CU X CV)?, and 

(ii) Akild + dAk-I = Ak + TAkT + pk (k > 0). 

REMARKS. Equation (ii) only makes sense when applied to an element x of degree 
> k, since Ak(x) is not defined otherwise. The awkward definition of admissible 
map could be avoided by working systematically with normalized cochain com- 
plexes, but this would lead to other complications. 

PROOF OF LEMMA 3.2. Let R and S be the simplicial Z/2-modules which are the 
Z/2-duals of U and V, and let N(R 0 S) be the normalized chain complex of the 
simplicial Z/2-module R 0 S [5, p. 236]. The natural projection C(R 0 S) 
N(R 0 S) has a natural section [6, p. 94], so that if U and V are finitely generated 
in each codimension the maps of Lemma 3.2 can be constructed by composing the 
maps CR X CS -- N(R 0 S) of [4, Proposition 3.3] with this section and dualiz- 
ing. The general case is handled by using the fact that U and V can each be 
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expressed as a direct limit of cosimplicial Z/2-modules which are finitely generated 
in each codimension. 

4. Products and Steenrod operations. This section gives the construction of 
products and Steenrod operations, first for simplicial and then for mixed simplicial 
coalgebras. 

Suppose that R is a simplicial coalgebra, and let 

X: Hom(CR, Z/2) C Hom(CR, Z/2) -* Hom(CR E CR, Z/2) 
be the natural pairing map. Let 4A: R -- R ? R be the coproduct, and define 
cochain operations 

,u: HomP(CR, Z/2) C) Homq(CR, Z/2) -- HomP +q(CR, Z/2), 

Sk: Homn(CR, Z/2) -* Homn+k(CR, Z/2) 

by the formulas jl(x X y) = 4* D*X(x ? y), 

Sk(x) = D4*D* kX(X x) + 4* D*- k+X(X ? dx). 
Then ,u and Sk pass to products and Steenrod squares on H* Hom(CR, Z/2). 
These have all of the usual properties, except that in general Sq0 =# 1 [7, p. 198]. 

The mixed simplicial case needs a few preliminaries. Suppose first that X and Y 
are mixed simplicial Z/2-modules. The conWonentwise tensor product of X and Y is 
written X C Y: it is a mixed simplicial Z/2-module with the usual tensor product 
face, coface, -, etc. operators. The bigraded tensor product of the double 
complexes CX and CY is written CX X CY. It is the double complex defined by 

(Cx ^J CY)-p,q = (CX)-i,k ? (CY)-_,i 
i+j=p 
k+l=q 

and has vertical and horizontal differentials which are given by the Leibnitz rule. 
There is an intermediate object, called the horizontal tensor product of X and Y. 
This is the double complex C(X OH Y) given by 

C(X?H Y)p,q= j ( )H )-p,q = EXq @Y 
i+j=p 

with horizontal differential (Xd') ? 1 + 1 C (Id') and vertical differential 
I(di ? di). 

Define homomorphisms 

H: C(X ? Y) -* C(X H Y), Gs: C(X OHY) -* CS X CY, 

where H is homogeneous of bidegree (0, 0) and G, is homogeneous of bidegree 
(0, s), as follows. The restriction of H to C(X ? Y)_p,q iS 

A(X*I, Yq)Xqp ? yqP xi 0 yj 
i+j=p 

and the restriction of G, to the summand Xq? J Yqj of C(X ? HY)Xp,q (i + j = P) iS 

Ds(X*, X}*): Xq I) Yq2 k Xk+ 
k + I=q +s 
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Let T denote the appropriate switching map. It follows that 

dvGs + Gsdv= GsI + TGsl T, dhGs = Gsdh, 

dVH = Hdv, dhH = Hdh, H = THT. 
Define maps Kk: C(X ? Y) -* CX C CY homogeneous of bidegree (0, k) by 
Kk = GkH. A computation shows that dKk + Kkd = Kk-l + TKk - IT, where d = 
dh + dV is the total differential. 

Suppose that X is a mixed simplicial coalgebra, and let 

X: Hom(CX, Z/2) ? Hom(CX, Z/2) -* Hom(CX E CX, Z/2) 
be the natural pairing map. Let 4i: X -- X ? X be the coproduct, and define 
cochain operations 

,u: Hom (CX, Z/2) E Homq(CX, Z/2) -- HomP+ q(CX, Z/2), 

Sk: Hom (CX, Z/2) -- Homn+k(CX, Z/2) 

by the formulas 

jU(X y) = 4,*KO*X(X Yy), Sk(x) = *Kn*-kx(x x) + 4*Kn*-k+X(X dx). 
Then ,u and Sk pass to products and Steenrod squares on H* Hom(CX, Z/2). 

Proposition 2.1 can be proved in the same way as [9, Proposition 1.11. The main 
ingredient is (i) of Lemma 3.2. 

Note that the squaring operations on H* Hom(CX, Z/2) satisfy the "instability" 
condition Sqkx = 0 if k > dim x, since Kk* = O if k < 0. 

5. The spectral sequence of a mixed simplicial coalgebra. Suppose that X is a 
mixed simplicial coalgebra. The spectral sequence { E-Pq, dr} of X is defined in the 
usual way. 

Er-p,q= p,q/[ dZr-p-r+lq+r-2 + Z-p+l,q-1] 

where 

Z7, pq = E Fp Homq -p(CX, Z/2)jdx E Fpr, Hom(CX, Z/2)}. 

The differential d on Hom(CX, Z/2) induces 

dr: Ep,q ,> Ep r,q-r+ 

Let Hom(CX, Z/2) X Hom(CX, Z/2) have the standard increasing filtration 
associated with a tensor product of increasingly filtered complexes. Then it is clear 
that the cochain multiplication map 

,u: Hom(CX, Z/2) X Hom(CX, Z/2) -* Hom(CX, Z/2) 

is filtration-preserving, and so passes to a pairing on the spectral sequence (Er, dr) 
of X. It follows easily that this pairing has the properties stated in Propositions 2.2, 
2.3 and 2.4. 

The cochain level Steenrod maps 

Sk: Homn(CX, Z/2) -- Homn +k(CX, Z/2) 

are filtration doubling, and so can be used to define spectral sequence operations 
E, - Er-2PP+q+k of indeterminancy 2r - 1. These operations are identically 
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zero unless p = 0. One way to overcome this difficulty and also eliminate the 
problem of indeterminancy is to deform the maps Sk so that they preserve 
filtration. This leads directly to the construction of higher divided squares, and to 
spectral sequence Steenrod operations that are not unstable with respect to total 
degree. 

For the moment, let X and Y be mixed simplicial Z/2-modules as in ?4. Define 
homomorphisms 

pk Hk: C(X ? Y) -+ C(X OHY) (k > 0) 

which are homogeneous of degree (-k, 0) as follows. The restriction of pk to 
C(X ? Y)p,q is 

~k(X*, y*): Xp?0yp 'Oyq 
+ 

(Xq, Yq ) Xq @ Y 
q q qq 

i+j=p+k 

and the restriction of Hk to C(X Y)_p,q is zero if p < k and is otherwise equal 
to 

Ak(X* y*): Xp?0yp 'Oyq 
^ (Xq, Yq ): Xq @ Yq 2 Xq q* 

i+j=p+k 

Give C(X OH Y), considered as a singly indexed complex, the usual decreasing 
filtration 

FPC(X ?HY)n = E C(X ?HY)-i,n+i 
i,>p 

and let T denote any one of the appropriate switching maps. The following 
properties of the maps pk, Hk are either trivial or are immediate consequences of 
the formulas in ?3. 

dvPk = pkdv, PkTpk 

dvHk=Hkdv, Ho+ TH?T + Po+ H. 
In addition, it is easy to see that if x E FPC(X ? Y) then modulo 
F2+l 'C(X OH Y) there are congruences 

pk(X) 0 (k 7#p), 

dhHk(x) + Hkdh(x) -Hk+l(x) + THk+lT(x) + pk+1(X) 

For any integer k (positive or negative) define a map 

Jk: C(X ? Y) -_CX ? CY 

homogeneous of degree k with respect to total degree, by 

Jk(x) = 2 GiT'HjT'(x). 
i-j=k 

(Because of the way in which the Hi were defined only a finite number of terms on 
the right-hand side are nonzero for any particular x.) Let d = dh + dV be the total 
differential. A calculation shows that for x E FPC(X ? Y) the congruence 

dJk(x) + Jkd(x) Jk -I(x) + TJklT(x) + Gk-lH(x) + Gk+p-IPP(x) 

holds modulo F2P+ (CX X CY). 
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Suppose that X is a mixed simplicial coalgebra with diagonal map 4i and pairing 
X as in ?4. For any integer k define a cochain operation 

Xk: Hom (CX, Z/2) -- Hom +k(CX, Z/2) 
by 

Xk(x) = Jn-kX(X ? Xx)+ ,*Jn-k+*X(X ? dx). 

Dualizing the congruences above shows that for x E Fp Hom'(CX, Z/2) the 
congruence 

Ekd(x) + dXk(x) 

sk+(x) + 4,*(Pp)*(G* k+p-lX(X ? X)+ Gn-k+pX(X ? dX)) 

holds modulo Fp_ - Hom(CX, Z/2). 
Let Sk: Homn(CX, Z/2) > Homn+k(CX, Z/2) be the cochain map defined by 

?k(X) = Sk(X) + Xk-ld(x) + dXk-l(x). 

Then Sk is filtration-preserving, dSk = ?kd, and, for any cocycle x E 
Hom(CX, Z/2), Sk(x) is visibly cohomologous to Sk(x). It follows immediately 
that the maps Sk pass to Steenrod operation E7-p,q E,-P q+k that have all of the 
properties described in Propositions 2.2-2.4. These operations may well be nonzero 
even if k > q -p. 

Write Fj for FJ Hom(CX, Z/2) and suppose that x E Z -p,q so that x E Fp and 
dx E Fp 1. A straightforward filtration calculation shows that 

Xk(X) E F2, k < q-p, 

EFp+-k, q-p <k <q, 

EJFp, q Sk. 

In particular if x E Z (r > 1), then for 2 < k < p the element ,qk(x) lies in 

Fp + k* A little manipulation of the formulas above shows that for 2 < k < p the 
congruences 

dyq-k(x) + yq-kd(x)= 4*(PP)*(Gk* IX(x X x) + Gk*X(x ? dx)) 

holds modulo Fp_ - To see this, use the fact that the cochain operations Sk satisfy 
Skx = 0 if k > dim x + 1. The same congruence holds for k = p if the term 

* H* G**X(x ? dx) is added to the right-hand side. 
If x E Zr-Pq (r > 2) represents {x) E E, define Si({x}) for r < i < p to be 

the residue class in E -Pi2q of the element :-i(x) E ZjPi2q* The inde- 

terminacy properties of the operations Si and all of the properties listed in 
Propositions 2.5 and 2.6 are straightforward consequences of the congruences listed 
above. It is useful to keep in mind that at E2 the operations Si are linear or at worst 
quadratic (Proposition 2.7, see ?6). 

REMARK. An operation "Si" exists on the El-level, in the sense that if x E ZI-p,q 
(p > 0) represents a class {x) E E1- which survives to E2, then q '(x) belongs 
to z -p- 1,2q and d {q-l(x)) - Sq!{x). 
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6. Operations on the E2-term. Suppose that X = {XqP) is a mixed simplicial 
coalgebra. For each p > 0, {X*P) is a simplicial coalgebra; let A(p) denote the 
corresponding cohomology algebra H* Hom(C(XP), Z/2). The transposes of the 
coface and codegeneracy operators of X give the collection A = {A(p)) the 
structure of a simplicial object in the category of graded commutative Z/2 
algebras, and the E2-term of the spectral sequence of X can be computed in terms 
of the (graded) homotopy groups of A. 

E2-pq= (7TvpA)q (6.1) 

(The homotopy groups of a simplicial commutative Z/2-algebra are by definition 
the homology groups of the associated normalized chain complex [5, p. 236]. The 
homotopy groups of a graded algebra themselves inherit a natural grading.) 

The machinery of [4], slightly refined to take the grading of A into account, 
provides algebraically defined higher divided square operations 

31alg: (1JpA)q 
-_ ('7Tp+iA)2q' 2 < i < p, 

and algebraically defined pairing maps 

(gTpA)q ? (gA), -- (rrp+sA)q+t, 

In addition, the Steenrod operations (?4) 

Sq: A(p)q > A(p)q+i 
commute with face and degeneracy operators and so pass to operations 

S?lg: ('7TpA)q > (SrrpA)q+ i- 

6.2. LEMMA. At E2 the operations Sq' and Si constructed in ?5 agree via (6.1) with 
the operations S?jg and 8a09g At E2 the pairing constructed in ?5 agrees via (6.1) with 
the algebraic pairing described above. 

The proof of this is essentially the same as the proof of [9, Proposition 5.1]. It 
involves inspecting the leading terms of the cochain formulas for Sq {x), 6i{x) 
and {x) { y) and using, in the Sqi case, property (d) of an "admissible map" (?3). 

PROOF OF PROPOSITION 2.7. If R is a simplicial coalgebra, the action of the 
Steenrod squares on H* Hom(CR, Z/2) satisfies the Adem relations and the 
Cartan formula (both, in general, interpreted with Sq0 =# 1) [7, ?7]. It follows from 
Lemma 6.2 that the action of the Steenrod squares on E2 similarly satisfies the 
Adem relations. It also follows directly from Lemma 6.2 that the action of the 
higher divided squares on E2 satisfies the relations of [4, Theorem 2.1]. For the 
remaining statements, let Sq = Sqo + Sql + Sq2 + - - - and note that by the 
Cartan formula Sq acts as a simplicial algebra endomorphism of A. If Sq# denotes 
the induced map on ff A it follows by naturality that for x E ff A, y E 7rqA there 
are equalities 

Sq#S6(x) = 6iSq#(x), Sq#(xy) = Sq#(x)Sq#(y), 2 < i < p. 
The proof is finished by separating each of the above equations into its homoge- 
neous parts. 
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