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Abstract. We prove that unitary two-dimensional topological field theories are

uniquely characterized by n positive real numbers λ1, . . . λn which can be regarded

as the eigenvalues of a hermitean handle creation operator. The number n is the

dimension of the Hilbert space associated with the circle and the partition functions

for closed surfaces have the form

Zg =
n
∑

i=1

λ
g−1
i

where g is the genus. The eigenvalues can be arbitary positive numbers. We show

how such a theory can be constructed on triangulated surfaces.
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1 Introduction

Topological quantum field theory (TQFT) [1, 4] has given considerable insight into

a number of unsolved problems in theoretical physics [3, 5] and also provided an

important research tool in pure mathematics [2, 6, 7]. Most work in this field has

been devoted to studying particular examples of such theories and uncovering their

physical content as well as their relation to low-dimensional topology.

The problem of classifying topological quantum field theories is a hard one in

more than two dimensions since it is intimately tied up with the classification of

topological manifolds in these dimensions. In two dimensions the situation is radi-

cally different since a compact orientable two-dimensional manifold is characterized

topologically by its genus and the number of boundary components. In [5] it was

shown that the two-dimensional theories have indeed a very simple structure.

The classification problem for TQFT in two dimensions was addressed in [8],

see also [9], using triangulated surfaces and fields associated with vertices. In these

papers topological theories were constructed with the partition function for a closed

surface of genus g given by

Zg = λg−1 (1)

where λ is an arbitrary positive number.

In the present paper we prove that the most general unitary TQFT in two

dimensions is in fact a direct sum of theories of this type. The proof is very simple. It

uses the fact that any two-dimensional surface can be constructed by gluing together

spheres with three or fewer boundary components and therefore any unitary TQFT

in two dimensions is determined by the partition functions for a sphere with three

or fewer holes. Unitarity implies that an associated handle creation operator is

hermitean and it follows that the theory is characterized up to equivalence by the

values of partition functions for closed surfaces.

The classification of unitary TQFT on triangulated surfaces with the fields de-

fined on links and taking values in a finite set has been discussed in a number of

recent papers [10, 11, 12]. It was first shown in [10] that the weight factors for

triangles can in this case be regarded as structure constants of a semisimple as-

sociative algebra and the physical Hilbert space can be identified with the center

of the algebra. It follows that in these theories the number λ in (1) is always the

inverse square of an integer. This is also the case in two-dimensional topological

gauge theories [13, 14]. Theories with fields defined on links can easily be realized

as vertex theories.

In the next section we describe the Atiyah axioms for unitary TQFT and point

out simplifications that occur in two dimensions. We then proceed to show that the
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theory is determined by the three loop function on the sphere and use the gluing

axiom to show that the partition function for a closed surface is necessarily a sum

of exponentials as in (1). In section 4 we construct a lattice TQFT of the most

general form. In the final section we comment on the classification problem in

higher dimensions.

2 The Atiyah axioms

In this section we recall the axioms for a unitary TQFT [4] as they apply in two

dimensions. We assume that all manifolds are smooth, oriented and compact unless

otherwise is stated. If M is an oriented manifold, we denote by M∗ the same

manifold with the orientation reversed.

A unitary TQFT in two dimensions comprises the following assignments: To

each closed 1-dimensional manifold Σ there is assigned a finite dimensional Hilbert

space HΣ with inner product <,>Σ. To each surface S (not necessarily closed) there

is assigned an element Z(S) ∈ HΣ, called the partition function for S, where Σ = ∂S

is the boundary of S. The Hilbert space associated with the empty 1-dimensional

manifold ∅ is H∅ = C so Z(S) ∈ C if S is closed. These objects satisfy the following

conditions:

1. If f : Σ1 7→ Σ2 is an orientation preserving diffeomorphism between 1-manifolds

then there is an associated unitary mapping

Uf : HΣ1
7→ HΣ2

(2)

such that Ug◦f = UgUf if g is an orientation preserving diffeomorphism from

Σ2 to another 1-manifold Σ3.

If f extends to an orientation preserving diffeomorphism between surfaces,

S1 7→ S2, where ∂Si = Σi, i = 1, 2, then Uf (Z(S1)) = Z(S2).

2. For any 1-manifold Σ,

HΣ∗ = H∗
Σ (3)

i.e. we have an identification between these spaces, which is equivalent to

giving a non-degenerate bilinear form

(, )Σ : HΣ ×HΣ∗ 7→ C (4)

such that

(x, y)Σ = (y, x)Σ∗. (5)
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This form is preserved by diffeomorphisms, i.e. for f : Σ1 7→ Σ2 as in axiom 1,

(x, y)Σ1
= (Ufx, Uf∗y)Σ2

(6)

for all x ∈ HΣ1
, y ∈ HΣ∗

1
, where f ∗ :7→ Σ∗

1 7→ Σ∗
2 denotes f regarded as an

orientation preserving map between Σ∗
1 and Σ∗

2.

Defining the conjugate linear isomorphism y 7→ y∗ from HΣ to HΣ∗ by

(x, y∗)Σ =< x, y >Σ (7)

for x, y ∈ HΣ, we furthermore assume that x∗∗ = x for all x ∈ HΣ and

Z(S∗) = Z(S)∗ (8)

for any surface S with boundary Σ.

3. If Σ = Σ1 ∪ Σ2 is a disjoint union of 1-manifolds then HΣ = HΣ1
⊗HΣ2

and

we have a corresponding factorization of the bilinear forms and unitary maps,

i.e. (, )Σ = (, )Σ1
⊗ (, )Σ2

, and if f1 : Σ1 7→ Σ′
1 and f2 : Σ2 7→ Σ′

2 are orientation

preserving diffeomorphisms, then Uf = Uf1 ⊗ Uf2 where f : Σ 7→ Σ′
1 ∪ Σ′

2

denotes the diffeomorphism that equals f1 on Σ1 and f2 on Σ2.

Let S1 and S2 be two surfaces such that ∂S1 = Σ1 ∪ Σ3 and ∂S2 = Σ2 ∪ Σ∗
3.

Let S be the surface obtained by gluing S1 and S2 together along their Σ3

boundary component,

S = S1 ∪Σ3
S2. (9)

Then Z(S) = (Z(S1), Z(S2))Σ3
where, by abuse of notation, (·, ·)Σ3

denotes

the pairing

HΣ1
⊗HΣ3

⊗HΣ2
⊗H∗

Σ3
7→ HΣ1

⊗HΣ2
(10)

induced by (4).

Concretely, if {xi}, {yj}, {zk} are bases for HΣ1
, HΣ2

, HΣ3
, respectively, and

{z∗k} is the dual basis for H∗
Σ3
, then we can write

Z(S1) =
∑

i,k

cik xi ⊗ zk (11)

Z(S2) =
∑

j,l

djl yj ⊗ z∗l (12)

for suitable constants cik, djl, and

Z(S) =
∑

i,j,k

cikdjk xi ⊗ yj. (13)
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4. Let Σ be an oriented 1-manifold and orient the cylinder Σ × [0, 1] such that

x 7→ (x, 0) is an orientation reversing map from Σ onto Σ × {0} whereas

x 7→ (x, 1) is an orientation preserving mapping from Σ onto Σ× {1}. Using

the canonical identification H∗
1 ⊗ H2 ≈ Hom(H1,H2), we may according to

axioms 2 and 3 regard Z(Σ × [0, 1]) as a linear map from HΣ×{0} to HΣ×{1}

and we assume that Z(Σ× [0, 1]) = Uf where f : Σ×{0} 7→ Σ×{1} is defined

by f((x, 0)) = (x, 1). Using the mapping Uf to identify the spaces HΣ×{0} and

HΣ×{1} we can write

Z(Σ× [0, 1]) = I (14)

where I is the identity mappping.

We refer to [4] for a detailed discussion of the axioms. Here we make a few

comments that apply especially in the two-dimensional case.

It is a standard consequence of the axioms that the unitary mapping Uf with f

as in axiom 1 only depends on the homotopy class of the diffeomorphism f . If Σ1

and Σ2 are connected, i.e. circles, there is only one homotopy class of orientation

preserving diffeomorphisms and we can write Uf = U(Σ1,Σ2). By axiom 1 it follows

that the mappings U(Σ1,Σ2) yield a canonical identification of all the Hilbert spaces

HΣ (where Σ is connected) with a single Hilbert space which we denote by H with

inner product <,>. With these identifications all the mappings U(Σ1,Σ2) are of

course the identity and by (5) and (6) a unique symmetric bilinear form (, ) is

defined on H. Similarly, by (6) and (7) the ∗-maps define a unique conjugate linear

involution x 7→ x∗ on H given by

(x, y∗) =< x, y > . (15)

It follows from the assumed factorization properties of the inner products, bi-

linear forms and unitary mappings that the vectorspace associated to a 1-manifold

with n boundary components Σ1, . . . ,Σn can be identified with H⊗n. If f is a dif-

feomorphism of Σ1 ∪ . . .∪Σn onto itself which permutes the boundary components,

then the mapping induced by Uf acts on H⊗n by the corresponding permutation

of factors in the tensor product. This implies that if S is a connected surface with

∂S = Σ1∪ . . .∪Σn then Z(S) ∈ H⊗n is a symmetric tensor since there exist orienta-

tion preserving diffeomorphisms that permute the boundary components of S in any

prescribed way. Moreover, since any surface S possesses an orientation resversing

diffeomorphism, we conclude that Z(S∗) = Z(S) and hence, by (8), that

Z(S) = Z(S)∗ (16)

for any surface S.
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Letting HR denote the real subspace of H defined by

HR = {x ∈ H : x = x∗} (17)

we have a direct sum decomposition over R,

H = HR ⊕ iHR. (18)

According to (15) and the symmetry of (, ) it follows that the restriction of the

inner product to HR is a real inner product on HR which equals the restriction of

the bilinear form to HR. We thus conclude from (16) that any two-dimensional

unitary TQFT is effectively real, i.e. we might have started from the outset with

real Hilbert spaces and partition functions satisfying the analogues of axioms 1-4

without (7) and (8).

3 Classification

Let us assume that we are given a unitary TQFT satisfying the axioms of the

previous section. Let us denote the partition function for a connected surface of

genus g with n boundary components by Zg,n and write Zg,0 = Zg. We choose

an orthonormal basis {xi} for HR which, according to (18), also constitutes an

orthonormal basis for H with x∗
i = xi. The one loop function on the sphere can

then be expressed as

Z0,1 =
∑

i

di xi. (19)

The two and three loop functions on the sphere can similarly be written as

Z0,2 =
∑

ij

qij xi ⊗ xj (20)

and

Z0,3 =
∑

ijk

Cijk xi ⊗ xj ⊗ xk, (21)

where qij and Cijk are real and symmetric under interchange of the indices. By

axioms 3 and 4 we have
∑

i

qij xi = x∗
j (22)

so qij = δij with respect to the chosen basis.

We define a handle operator H ∈ End(H) by gluing together two three loop

functions:

H =
∑

il

Hil xi ⊗ x∗
l (23)

6



where

Hil =
∑

jk

CijkCljk. (24)

This is the same as regarding Z1,2 as an operator on H. Applying H to the vector

Zg,1 clearly gives Zg+1,1. The operator H is hermitean by (8) i.e. symmetric on HR.

We now choose the basis {xi} to consist of the eigenvectors of H and let λ1, . . . λn

denote the eigenvalues of H (not necessarily distinct), n = dimH. Then by axiom

3

Zg = < Z0,1, H
gZ0,1 > (25)

=
∑

i

λ
g
i |di|

2 (26)

for any g ≥ 0. Furthermore,

Zg+1 = TrHg =
∑

i

λ
g
i (27)

for all g ≥ 0. It follows that

∑

i

λ
g
i |di|

2 =
∑

i

λ
g−1
i (28)

for all g ≥ 1.

Eq. (28) implies that all the eigenvalues are nonegative. In order to prove this

we order the eigenvalues according to their absolute value so that |λi| ≥ |λj| if i ≤ j

and assume λ1 6= 0. Clearly (28) cannot hold for all g unless λ1 is positive and we

conclude also that
k
∑

i=1

λ
g
i |di|

2 = kλ
g−1
1 (29)

where k is the multiplicity of λ1. Subtracting (29) from (28) and repeating the above

argument we conclude that all the eigenvalues are nonegative. Below we show that

a zero eigenvalue cannot occur and we can choose a basis such that di = λ
− 1

2

i .

Consider the operators Ci on HR defined by

Ci =
∑

jk

Cijk xj ⊗ x∗
k. (30)

By the symmetry of Cijk and the four loop function these operators are mutually

commuting and symmetric so they can be simultaneously diagonalized and we can

choose a new self-dual basis such that Cijk = δijδikCiii. Using the definition of the

handle operator we now find that C2
iii = λi and H is diagonal in this basis. If λi = 0,

then Ciii = 0. This contradicts axiom 4 which states that

∑

ijk

Cijkdk xi ⊗ x∗
j = I (31)
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and implies that all Ciii 6= 0 and Ciiidi = 1.

It is not hard to convince oneself that any positive operator can arise as a handle

operator. In fact we give an explicit construction in the next section.

We conclude this section by showing that all the information in a two-dimensional

unitary TQFT is contained in the spectrum of H . We begin by making precise what

we mean by the equivalence of two unitary TQFT in two dimensions. Let T be a

theory satisfying the axioms of section 2 and let T ′ be another one whose objects

are distinguished from those of T by a prime. We say that T and T ′ are equivalent

if for any 1-manifold Σ there exists a unitary mapping

VΣ : HΣ 7→ H′
Σ (32)

such that the following conditions hold:

1. For any orientation preserving diffeomorphism f : Σ1 7→ Σ2 between 1-

manifolds

U ′
f = VΣ2

UfV
∗
Σ1
. (33)

2. For any oriented surface S

Z ′(S) = V∂S(Z(S)) (34)

with the understanding that Z ′(S) = Z(S) if S is closed.

3. For any 1-manifold Σ we have

(VΣx, VΣ∗y)′Σ = (x, y)Σ. (35)

Let T, T ′ be a pair of unitary TQFT’s whose handle operators have the spectrum

λ1, . . . , λn. Then, by previous arguments, they are both equivalent to theories where

all Hilbert spaces for connected boundary components coincide and equal H and H′,

respectively. We have seen that by a suitable choice of bases the three loop functions

then take the form

Z3,0 =
∑

i

√

λi xi ⊗ xi ⊗ xi. (36)

Let us call such a basis a canonical basis. Furthermore, qij = δij , di = λ
− 1

2

i with

respect to a canonical basis. An equivalence between T and T ′ is now obtained by

mapping a canonical basis for H to a canonical basis for H′.

We finally remark that two unitary TQFT’s whose partition functions take the

same value for all closed surfaces have handle operators with identical spectra, in

view of (27), and are therefore equivalent.
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4 Construction

In [8] a field theoretical construction was given of a TQFT on triangulated surfaces,

using fields defined on vertices, such that Zg = Nχ, where N could take any positive

value and χ is the Euler characteristic. In order to obtain a theory whose partition

functions for closed surfaces are sums of exponentials we can take a direct sum of

theories of this type.

Let us explain what we mean by the direct sum of two TQFT’s. Suppose we have

two theories with loop functions Zg,n and Z ′
g,n and Hilbert spaces H and H′ for each

connected boundary component. The direct sum is a TQFT with the Hilbert space

H̃ = H ⊕ H′ for each boundary component and loop functions Z̃g,n = Zg,n + Z ′
g,n

where we regard Zg,n +Z ′
g,n in a natural way as an element of H̃⊗n, n 6= 0. Unitary

maps and bilinear forms are defined in the obvious way. One can then check that

the direct sum satisfies the axioms if the original theories do so.

Here we give an alternative and more direct construction of a TQFT with an

arbitrary handle operator using triangulations and local weights. Let S be a trian-

gulated surface of genus g and N1, . . . , Nn a sequence of n not necessarily distinct

positive numbers. Let J = {1, . . . , n}. A colouring of S is a mapping from the

vertices of S, V(S), into J . The image of a vertex under a colouring is called its

colour. Given a colouring φ of S we define the weight of the vertex v to be Ni where

i = φ(v). The weight w∆ of a triangle ∆ in S with corners whose colours are i, j, k

is defined to be N
− 1

2

i if i = j = k but zero otherwise. The partition function for a

closed surface S is now defined to be

Z(S) =
∑

φ

∏

v∈V(S)

Nφ(v)

∏

∆∈T (S)

w∆, (37)

where the sum is over all colourings of S and T (S) denotes the set of all triangles

in S. It is easy to see that if S is connected the only colourings which contribute

are those that assign the same colour to all vertices and

Z(S) =
n
∑

i=1

N
χ
i . (38)

Now let S be a connected triangulated surface with b boundary components. Let

|∂S| be the number of verticies in ∂S and define

ζi(S) = N
− 1

2
|∂S|

i

∑

φ

∏

v∈V(S)

Nφ(v)

∏

∆∈T (S)

w∆, (39)

where φ now runs over all colourings which are i on the boundary. Clearly ζi(S) =

N
χ(S)
i . We define an n-dimensional Hilbert space H by assigning a vector xi to each
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colour and let {xi} be an orthonormal basis for H and we set x∗
i = xi. The partition

function for S is now defined by regarding ζi(S) as a coordinate of Z(S) with respect

to the chosen basis, i.e.

Z(S) =
∑

i

ζi(S)x
⊗b
i . (40)

It is not hard to check that the theory so defined satisfies all the axioms and N
− 1

2

i

are the eigenvalues of the handle operator.

5 Discussion

In this paper we have classified all two-dimensional unitary TQFT’s and shown

how they can be obtained using locally defined weights on triangulated surfaces.

Obviously one would like to generalize some of these results to higher dimensions.

The notions of equivalence and direct sums extend in a straightforward fashion

to dimensions higher than 2. As we have seen any two-dimensional unitary TQFT

can be written as a direct sum of theories for which the space associated with the

circle is 1-dimensional. It is appropriate to call such theories irreducible. It seems to

be of importance to introduce a notion of irreducibility and to establish associated

decomposition properties for TQFT’s in general. A large class of 3-dimensional

TQFT’s has been constructed [15, 16, 17, 18] generalizing the theory of Turaev

and Viro [7] and these theories serve as candidates for irreducible theories since the

dimension of the Hilbert space of the sphere is always 1 and thus they cannot be

decomposed.

A natural question to ask is whether it is true in higher dimensions that the

partition functions for closed manifolds determine a theory up to equivalence as is

the case in two dimensions. If the partition functions for manifolds M with ∂M = Σ

span the Hilbert space associated to Σ for all boundaries Σ, then it is not hard to

show that this is the case. However, this condition is in general not fulfilled. In

the two-dimensional case it holds only if the spectrum of the handle operator is

non-degenerate.
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