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TORSORS AND THE QUILLEN-BARR-BECK COHOMOLOGY
FOR RESTRICTED LIE ALGEBRAS

IOANNIS DOKAS

(communicated by Claude Cibils)

Abstract
In this paper we study Duskin-Glenn torsor cohomology in

the context of restricted Lie algebras. In particular, we give an
interpretation of the torsor cohomology groups which appear
in Cegarra-Aznar’s eight-term exact sequence. Thus, we prove
a classification theorem for the second Quillen-Barr-Beck coho-
mology in terms of 2-fold extensions of restricted Lie algebras.

This paper is dedicated to the memory of Jean-Louis Loday.

1. Introduction

First Hochschild in [16] and later Pareigis in [21] defined cohomology groups for
the category RLie of restricted Lie algebras. Following the general scheme for a coho-
mology theory of universal algebras by Quillen [23] and Barr and Beck [2], in [9] it is
considered a new approach for a cohomology theory of restricted Lie algebras. Thus,
for L ∈ RLie, any restricted Lie algebra, and (A, f) ∈ ab(RLie/L), any abelian group
object in the comma category of restricted Lie algebras over L, cotriple cohomology
groups H∗

G

(
L, (A, f)

)
are studied. Both Pareigis and Quillen-Barr-Beck cohomol-

ogy classify general abelian extensions of restricted Lie algebras, whereas Hochschild
cohomology classifies strongly abelian extensions. The use of the Quillen-Barr-Beck
method gives us the opportunity to define higher (co)homology groups in a natural
way.

For the category of restricted Lie algebras, it is proved by Eckmann and Stamm-
bach in [12] that there is a five-term exact sequence for Hochschild (co)homology.
In the framework of a Barr-exact category, Cegarra and Aznar in [7] proved that
there is an eight-term exact sequence in the first variable for Duskin-Glenn’s torsor
cohomology [10], [15].

In this paper we give, for the category of restricted Lie algebras, an interpretation
of the torsor cohomology groups which appear in the Cegarra-Aznar sequence. In
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particular, in Lemma 3.1 of Section 3 we compute the torsor 0-cohomology group
of an epimorphism. In Section 4, we show an equivalence between the category of
crossed modules of restricted Lie algebras and the category of internal groupoids in
RLie, a result which we apply in Section 5 to prove that there is an isomorphism
between the torsor 2-cohomology groups Tors2(L, (A, f)) and the abelian groups
Ext2p(L, (A, f)) of 2-fold extensions of restricted Lie algebras. Thus we are able to
obtain a classification theorem for the second Quillen-Barr-Beck cohomology in terms
of 2-fold extensions. As a consequence of these interpretations, from the Cegarra-
Aznar sequence we obtain that for an exact sequence of restricted Lie algebras 0 →
N → E

ϕ−→ L→ 0, there are naturally equivalent exact sequences

0 → Derp(L, (A, f)) → Derp(E, (A, f)) → Homw(L)

(
(Nab, (−)[p]), (A, f)

)
→

Ext1p(L, (A, f)) →→ Ext1p(E, (A, f)) → Ext2p(ϕ, (A, f)) →
Ext2p(L, (A, f)) → Ext2p(E, (A, f))

0 → H0
G(L, (A, f)) → H0

G(E, (A, f)) → Homw(L)

(
(Nab, (−)[p]), (A, f)

)
→

H1
G(L, (A, f)) →→ H1

G(E, (A, f)) → Ext2p(ϕ, (A, f)) →
H2

G(L, (A, f)) → H2
G(E, (A, f))

which replace Eckmann-Stammbach’s five-term exact sequence in the context of
Quillen-Barr-Beck cohomology. Since any extension of algebraic groups induces a
short exact sequence of restricted Lie algebras, we get an application in the theory of
algebraic groups in prime characteristic.

2. Preliminaries

2.1. Restricted Lie algebras
In modular Lie theory, in order to extend theorems which are valid in characteristic

zero we are led to consider restricted Lie algebras introduced by N. Jacobson in [18].
Let k denote a field of characteristic p ̸= 0 and Lie the category of Lie algebras over k.

Definition 2.1. A restricted Lie algebra L = (L, (−)[p]) over k is a Lie algebra L ∈
Lie together with a map (−)[p] : L→ L called the p-map such that the following
relations hold:

(αx)[p] = αp x[p] (1)

[x, y[p]] = [· · · [[x, y], y], · · · , y︸ ︷︷ ︸
p

] (2)

(x+ y)[p] = x[p] + y[p] +

p−1∑
i=1

si(x, y) (3)

where isi(x, y) is the coefficient of λi−1 in adp−1
λx+y(x) and adx : L→ L denotes the

adjoint representation given by adx(y) := [y, x], x, y ∈ L, α ∈ k. A Lie algebra homo-
morphism f : L→ L′ is called restricted if f(x[p]) = f(x)[p]. We denote by RLie the
category of restricted Lie algebras over k.



TORSORS AND THE QUILLEN-BARR-BECK COHOMOLOGY 205

Remark 2.2. Let L ∈ RLie be a restricted Lie algebra and x, y ∈ L. If Lx,y is the Lie
algebra generated by the elements x, y, then for 0 ⩽ i ⩽ p− 1, si(x, y) ∈ Lp

x,y, where
L1
x,y := Lx,y and

Ln
x,y := [Ln−1

x,y , Lx,y]

Remark 2.3. There is a notion of free restricted Lie algebra over a set. Therefore the
category RLie of restricted Lie algebras is a monadic category over Sets. It follows
that RLie is a Barr exact category.

Let L and L′ be restricted Lie algebras. The direct product of L and L′ is, as a
Lie algebra, their direct product in the category of Lie algebras

L× L′ = {(x, x′) : x ∈ L, x′ ∈ L′}

equipped with the p-map given by (x, x′)[p] := (x[p], x′[p]) for all (x, x′) ∈ L× L′. If
f : L→ R and f ′ : L′ → R are restricted Lie homomorphisms, then the pullback of
L and L′ over R is given by the following commutative diagram in RLie:

L×R L
′ pr′−−−−→ L′ypr

yf ′

L
f−−−−→ R

where

L×R L
′ := {(x, x′) ∈ L× L′ : f(x) = f ′(x′)} ⩽ L× L′

Example 2.4. Let A be any associative algebra over a field k with characteristic p ̸= 0.
We denote by ALie the induced Lie algebra with the bracket given by [x, y] := xy − yx,
for all x, y ∈ A. Then (A, (−)p) is a restricted Lie algebra where (−)p is the Frobenious
map given by x 7→ xp. Thus there is a functor (−)RLie : As → RLie from the category
of associative algebras to the category of restricted Lie algebras.

Example 2.5. Let A be an associative algebra over k. Then gln(A), the Lie algebra of
n× n matrices with coefficients in A, is a restricted Lie algebra.

Example 2.6. If V is a k-vector space, then a map f : V → V such that f(x+ y) =
f(x) + f(y) and f(αx) = αpf(x) for all x, y ∈ V and α ∈ k is called p-semi-linear.
Any pair (V, f) where V is k-vector space and f : V → V a p-semi-linear map is an
abelian restricted Lie algebra.

Example 2.7. If B is a k-algebra, that is not necessarily associative, then the set of
k-derivations Der(B) is endowed with the structure of a restricted Lie algebra. In
particular, if D ∈ Der(B) by the Leibniz formula, then we have

Dp(xy) =

i=p∑
i=0

(
p

i

)
Di(x)Dp−i(y)

for all x, y ∈ B. Since the char k = p, we have
(
p
i

)
= 0 for 1 ⩽ i ⩽ p− 1; therefore

Dp ∈ Der(B).

If (L, [p]) ∈ RLie is any restricted Lie algebra, then a derivation D ∈ Der(L) is
called a restricted derivation if D(x[p]) = adp−1

x (D(x)) for all x ∈ L.
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Example 2.8. Let G be an algebraic group over k. The associated Lie algebra Lie(G)
of G is endowed with the structure of a restricted Lie algebra (see [4], [30]).

Suppose that L and N are two restricted Lie algebras, and that η : L→ Der(N)
is any given restricted homomorphism such that η(x) is a restricted derivation for
every x ∈ L. Then, recall that the Lie product on the semi-direct product of L and
N is given by

[(l, n), (l′, n′)] = ([l, l′], η(l)n′ − η(l′)n+ [n, n′])

It follows from Jacobson’s Theorem 11 in [18] that the semi-direct product of L
and N is endowed with a p-map extending the p-maps on L and N (cf. Theorem 2.5
in [28]). We call this restricted Lie algebra the semi-direct product of L and N in the
category of restricted Lie algebras, and we denote it by L⋊N .

Let us recall below some definitions and results which we use in the next section.
We refer the reader to [9] for details.

Let L ∈ RLie be a restricted Lie algebra and U(L) its enveloping algebra. We
denote by u(L) := U(L)/ < xp − x[p], x ∈ L > the restricted enveloping algebra of L.
An L-module A is called restricted if x[p]a = (x(x(· · · (x︸ ︷︷ ︸

p

a) · · · ))). The category of

restricted Lie L-modules is equivalent to the category of u(L)-modules.

2.2. Beck derivations for RLie

Let L′ ∈ RLie/L be a restricted Lie algebra over L, and (A, f) a pair where A
is a restricted L-module, and f : A→ AL a p-semi-linear map, where AL = {a ∈ A :
xa = 0 for all x ∈ L}. Then we define

Derp(L
′, (A, f)) := {d ∈ Der(L′, A) : d(x[p]) = x · · ·x︸ ︷︷ ︸

p−1

dx+ f(d(x)), x ∈ L′}

Since f is p-semi-linear, Derp(L
′, (A, f)) is an abelian group under addition called

the group of Beck derivations. We denote by L×f A the semi-direct product in RLie
of L and A; that is, L×f A is the semi-direct product in Lie together with the p-map

(l, a)[p] = (l[p], l · · · l︸ ︷︷ ︸
p−1

a+ f(a))

where x ∈ L and a ∈ A. It is proved in [9, Lemma 1.4] that there is an isomorphism

HomRLie/L(L
′, L×f A) ≃ Derp(L

′, (A, f)) (4)

given by

ω 7→ prAω

where prA denotes the canonical projection. In his doctoral dissertation, Beck incor-
porates the various notions of module over enveloping algebras to the general notion
of a Beck module.
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2.3. Beck modules for RLie
For L ∈ RLie a restricted Lie algebra the next theorem gives a characterization of

the category of abelian group objects of the slice category RLie/L, i.e., the category
of Beck L-modules in RLie.

Theorem 2.9. The category of abelian group objects ab(RLie/L) is equivalent to the
category A whose objects are pairs (A, f) where A is a restricted L-module and f :
A→ AL is a p-semi-linear map from A into its submodule of invariants AL and
whose morphisms (A1, f1) → (A2, f2) are L homomorphisms α : A1 → A2 such that
f2α = αf1.

Proof. By isomorphism (4) it follows that L×f A is an abelian group object in the
slice category RLie/L. Conversely, by Lemma 1.6 in [9] it follows that any abelian
group object L′ ∈ ab(RLie/L) is isomorphic to a restricted Lie algebra of the form
L×f A for a well determined pair (A, f), where A is a restricted L-module and
f : A→ AL a p-semi-linear map.

Let Rf be the polynomial ring consisting of the set of polynomials
∑i=m

i=0 aif
i

where ai ∈ k, f an indeterminate, and fa = apf . We denote by w(L) the ring which
as k-vector space is w(L) := Rf ⊗k u(L) and such that Rf → w(L) and u(L) → w(L)
are algebra homomorphisms and

(P ⊗ 1)(1⊗ l) := P ⊗ l and (l ⊗ 1)(P ⊗ 1) := 0

for all P ∈ Rf and l ∈ L. Since it is easy to see that a pair (A, f) as in Theorem 2.9
is the same as a w(L)-module, we have another characterization of the category of
abelian group objects ab(RLie/L).

Theorem 2.10. The category of abelian group objects ab(RLie/L) is equivalent to
the category of w(L)-modules.

Proof. Theorem 1.8 in [9].

Hereafter, we identify a w(L)-module with a pair (A, f). Cartan and Eilenberg in
their book [6] describe a general context for the definition of (co)homology groups
for various algebraic structures. In each case, an appropriate notion of enveloping
algebra is used and the definition is given in terms of Ext and Tor functors. In this
context, Hochschild in [16] and B. Pareigis in [21] defined (co)homology groups for
the category of restricted Lie algebras. Moreover, cohomology as a derived functor
of derivations for several algebraic categories is studied by Barr and Rinehart in [3].
Besides, D. Quillen in [24], [23] develops an axiomatic homotopy theory and cohomol-
ogy groups in the context of model categories are defined. Through this development
(co)homology groups for universal algebras are introduced (see section 2 in [23]).
In [9], Quillen-Barr-Beck cohomology for the category of restricted Lie algebras is
defined. Moreover, in the papers [2], [1] the relation between cotriple cohomology
groups and the cohomology theories described in the Cartan-Eilenberg context is
given. It is proved that for the categories of groups, associative algebras, and Lie
algebras the two theories coincide (considering a shift in dimension). In contrast to
the cases of other algebraic categories, Quillen-Barr-Beck cohomology for restricted
Lie algebras does not coincide with Hochschild cohomology. Quillen-Barr-Beck coho-
mology and Pareigis cohomology classify general abelian extensions of restricted Lie
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algebras, whereas Hochschild cohomology classifies strongly abelian extensions, i.e.,
extensions such that the p-map on the kernel is zero. The Quillen-Barr-Beck method
provides the tools to define higher (co)homology groups in a natural way.

2.4. Quillen-Barr-Beck cohomology for RLie
Let L ∈ RLie be a restricted Lie algebra and (A, f) a w(L)-module. Let F : Sets →

RLie be the free functor, left adjoint to the forgetful functor U : RLie → Sets. The
adjunction (F,U) gives rise to a cotriple G in RLie/L. In [9] cotriple cohomology
groups are defined:

Hn
G(L, (A, f)) := Hn(Derp(G∗(L), (A, f)))

where G∗(L) denotes the cotriple resolution of L associated to the cotriple G. Below
we recall the definition of an n-torsor; for details and terminology we refer the reader
to [10], [11], and [15].

2.5. Torsors, interpretation of cotriple cohomology
Duskin in [10] gave an interpretation of the cotriple cohomology in terms of n-

dimensional torsors, generalizing to any dimension Beck’s interpretation of dimension
1. Let E be a monadic category over Sets and G = FU the associated cotriple. The
n-truncating functor

trn : Simpl(E) → trnSimpl(E)

from the category of simplicial objects of E to the category of n-truncated simplicial
objects admits a right adjoint

coskn : trnSimpl(E) → Simpl(E)

called Verdier’s coskeleton functor. The coskeleton functor is constructed by iterating
simplicial kernels. We denote by Coskn the composition functor

Coskn := coskn ◦ trn : Simpl(E) → Simpl(E)

Let A ∈ ab(E) be an abelian group object; then the simplicial object K(A,n) is
defined as the (n+ 1)-coskeleton of the following (n+ 1)-truncated simplicial object:

An+1

pr0

: //
prn //
kn //

A // 1 // · · · // 1

where 1 denotes the terminal object and kn = (−1)n
∑i=n

i=0 (−1)ipri for all n ⩾ 1. Let
X. =

(
(Xj)j⩾0, di, si

)
be a simplicial object and Λi(m− 1)(X.) the i-horn object of

the (m− 1)-truncated simplicial complex. Then there is a canonical map

(d0, · · · , d̂i, · · · , dm) : Xm → Λi(m− 1)(X.)

Definition 2.11 (Duskin). Let X ∈ E; then a K(A,n)-torsor in E over X relative to
U is defined as an augmented overX simplicial objectX. =

(
(Xj)j⩾0), di, si

)
together

with a simplicial morphism χ. : X. → K(A,n) such that:

1. X. → X is a U -split augmented simplicial object.



TORSORS AND THE QUILLEN-BARR-BECK COHOMOLOGY 209

2. χ. : X. → K(A,n) is a simplicial morphism such that the following squares are
pullbacks, for each m ⩾ n and all 0 ⩽ i ⩽ m:

Xm
χm−−−−→ K(A,n)my y

Λi(m− 1)(X.) −−−−→ Λi(m− 1)(K(A,n).)

where the no-named maps are the canonical ones.

3. The canonical map X. → Coskn−1(X.) is an isomorphism.

If (X,χ.) and (X ′, χ′
.) are twoK(A,n)-torsors overX, then a morphism ofK(A,n)-

torsors is an X-map f. : X. → X ′
. of augmented simplicial objects such that χ. = χ′

.f .
A K(A,n)-torsor over X is referred to as an n-torsor over X under A. The set of
the connected components of n-torsors is denoted by Torsn(X,A). If X ∈ E, then
it follows from (4.2) in [10] that an equivalent definition of n-torsor in the category
E/X is the following.

Definition 2.12 (Duskin). Let X ∈ E and A ∈ ab(E/X); then a K(A,n)-torsor over
X relative to U is an augmented over X simplicial object X. =

(
(Xj)j⩾0, di, si

)
together with a morphism χ : Xn → A over X such that:

1. X. → X is a U -split augmented simplicial object.

2. χ is a normalized cocycle, that is,
∑i=n+1

i=0 (−1)iχdi = 0 and χsi = 0, 0 ⩽ i ⩽
n− 1.

3. If sn : Xn−1 → Xn is the n-th component map of the U -splitting, then on the
underlying object level the commutative square

Xn−1
χsn−−−−→ A

(d0,...,dn−1)

y y
Kn−1 −−−−→ X

is a pullback, where Kn−1 is the (n− 2)-simplicial kernel.

4. The canonical map X. → Coskn−1(X.) is an isomorphism.

Theorem 2.13. For any object X ∈ E, and any abelian group object A ∈ ab(E/X),
there is a natural bijection

Hn
G(X,A) ≃ Torsn(X,A),

where Hn
G(X,A) is the n-th cotriple cohomology group of X with coefficients in A.

Proof. Theorem (8.9) in [10].

Glenn in [15] defined the notion of n-dimensional hypergroupoid and gave a slightly
different definition of n-torsor. If E is a monadic category over Sets whose objects
have an underlying group structure, then by Corollary 7.2.4 in [15] the two notions
of n-torsors coincide. Let ϕ : B → R be a regular epimorphism in E and Bp

∗ the
simplicial object (with augmentation ϕ), obtained by iterating the simplicial kernel
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construction. Then, A.M. Cegarra and E.R. Aznar in [7] define (7, Definition 1.1)
the abelian groups

Tors0(ϕ,A) := Homsimpl(E)(B
p
∗ ,K(A, 1))

and Tors1(ϕ,A) of connected components of 2-torsors over R with fixed augmenta-
tion ϕ (7, Definition 2.1). Moreover, it is proved in [7, Theorem 7.3] that there is an
eight-term exact sequence

HomE(R,A)
ϕ∗

−→ HomE(B,A) → Tors0(ϕ,A) → Tors1(R,A) → Tors1(B,A)

→ Tors1(ϕ,A) → Tors2(R,A) → Tors2(B,A). (5)

3. A 5-term exact sequence for Quillen-Barr-Beck cohomology

The Hochschild-Serre spectral sequence for (co)homology of Lie algebras gives rise
to exact sequences of terms of low degree. In particular, if

0 → N → E → L→ 0

is an exact sequence of Lie algebras and A is a left (resp. right) L-module, then we
have the following exact sequences:

0 → Der(L,A) → Der(E,A) → HomU(E)(Nab, A) → H2(L,A) → H2(E,A)

and

H2(E,A) → H2(L,A) → Nab ⊗U(L) A→ H1(E,A) → H1(L,A) → 0

where Nab := N/[N,N ].

For the case of Hochschild (co)homology of restricted Lie algebras, there are ana-
logue sequences. Precisely, if

0 → N → E → L→ 0

is an exact sequence of restricted Lie algebras and M is a right restricted b-module,
then B. Eckmann and U. Stammbach proved in [12] the existence of the following
5-term exact sequence:

HHoch
2 (E,A) → HHoch

2 (L,A) → Nab ⊗u(L) A→ HHoch
1 (E,A) → HHoch

1 (L,A) → 0

where Nab := N/[N,N ]′ and [N,N ]′ denotes the ideal generated by the elements
[x, y], z[p], where x, y, z ∈ N .

If N is a restricted Lie algebra we denote by Nab := N/[N,N ]p the quotient
restricted Lie algebra, where [N,N ]p is the p-ideal generated by the elements [x, y],
where x, y ∈ N . If ϕ : E → L is a restricted Lie epimorphism with kernel N , then the
p-map on N induces an Rf -action on Nab given by

f · (n+ [N,N ]p) := n[p] + [N,N ]p

Besides, Nab is an L-module via the action

x · (n+ [N,N ]p) := [s(x), n] + [N,N ]p
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where s : L→ E denotes a (any) set-theoretic section of ϕ and x ∈ L, n ∈ N . More-
over,

x · (n[p] + [N,N ]p) = [s(x), n[p]] + [N,N ]p

= [· · · [[s(x), n], n], · · ·n︸ ︷︷ ︸
p

] + [N,N ]p

= 0

It follows that (−)[p] : Nab → NL
ab and (Nab, (−)[p]) is a w(L)-module.

Lemma 3.1. If ϕ : E → L is a restricted Lie epimorphism with kernel N and (A, f)
is a w(L)-module, then we have an isomorphism

Tors0(ϕ, (A, f)) ≃ Homw(L)

(
(Nab, (−)[p]), (A, f)

)
Proof. Let E. be the simplicial restricted Lie algebra which is obtained by iterating
the simplicial kernel construction, i.e.,

E. : . . . E ×L E ×L E
d0

////
d2 // E ×L E

ttxx

d0

//
d1 // E

xx
// L

We have an isomorphism of restricted Lie algebras

E ⋊N ≃ E ×L E

given by

(x, n) 7→ (x, x+ n)

Therefore we get the following simplicial object:

E. : . . . E ⋊N ⋊N
d0

////
d2 // E ⋊N

ttyy

d0

//
d1 // E

yy
// L

where

d0(x, n, n
′) : = (x, n)

d1(x, n, n
′) : = (x, n′)

d2(x, n, n
′) : = (x+ n, n′ − n)

The abelian group Tors0(ϕ, (A, f)) is defined by

Tors0(ϕ, (A, f)) := HomSimpl(RLie/L)(E.,K(L×f A, 1))

and by Lemma 2.1 in [7] we obtain

Tors0(ϕ, (A, f))

= ker
(
HomRLie/L(E ⋊N,L×f A)

d∗
0−d∗

1+d∗
2−−−−−−−→ HomRLie/L(E ⋊N ⋊N,L×f A)

)
If τ ∈ Tors0(ϕ, (A, f)), then by isomorphism (4) any τ is associated to a Beck
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derivation dτ ∈ Derp(E ⋊N, (A, f)) such that

dτd0 − dτd1 + dτd2 = 0

i.e.,

dτ (x, n)− dτ (x, n
′) + dτ (x+ n, n′ − n) = 0 (6)

for all x ∈ E and n, n′ ∈ N . Since N = kerϕ, we get

dτ (0, [n, n
′]) = dτ

(
[(0, n), (0, n′)]

)
= (0, n)dτ

(
(0, n′)

)
− (0, n′)dτ

(
(0, n)

)
= 0

Besides,

dτ (0, [n, n
′][p]) = dτ

(
(0, [n, n′])[p]

)
= (0 , [n, n′]) · · · (0,︸ ︷︷ ︸

p−1

[n, n′])dτ (0, [n, n
′]) + f

(
dτ (0, [n, n

′])
)

= 0

Therefore a map τ̄ : Nab → A is defined by

τ̄(n+ [N,N ]p) := dτ (0, n)

for all n ∈ N . Moreover, for x ∈ L and n ∈ N we have

τ̄
(
x · (n+ [N,N ]p)

)
= τ̄([s(x), n] + [N,N ]p)

= dτ (0, [s(x), n])

= dτ
(
[(s(x), 0), (0, n)]

)
= (s(x), 0)dτ (0, n)− (0, n)dτ (s(x), 0)

= (s(x), 0)dτ (0, n)

= x · τ̄(n+ [N,N ]p)

τ̄(n[p] + [N,N ]p) = dτ (0, n
[p])

= dτ
(
(0, n)[p]

)
= (0, n) · · · (0, n)︸ ︷︷ ︸

p−1

dτ (0, n) + f(dτ (0, n))

= f(dτ (0, n))

It follows that τ̄ is a morphism of w(L)-modules. Conversely, let

τ̄ : Homw(L)

(
(Nab, (−)[p]), (A, f)

)
be a w(L)-homomorphism. We define τ : E ⋊N → L×f A given by

τ(x, n) :=
(
ϕ(x), τ̄(n+ [N,N ]p)

)
Then the associated derivation dτ (x, n) := τ̄(n+ [N,N ]p) satisfies the relation (6) and
it follows that τ ∈ Tors0(ϕ, (A, f)). If τ, τ ′ ∈ Tors0(ϕ, (A, f)), then by isomorphism
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(4) τ + τ ′ is associated to the Beck derivation dτ + dτ ′ . Thus it follows by defini-
tion that τ + τ ′ = τ̄ + τ̄ ′. Therefore the map τ̄ 7→ τ is a well defined homomorphism,
inverse to the homomorphism τ 7→ τ̄ .

We recall from Theorem 2.5 in [9] that the set Ext1p(L, (A, f)) of equivalent classes
of abelian extensions of restricted Lie algebras

0 → A→ E → L→ 0

is in bijection with the first Quillen-Barr-Beck cohomology groupH1
G(L, (A, f)). Thus

an abelian group structure is induced on the set Ext1p(L, (A, f)) and, by Theorem
2.13, there is an isomorphism

Ext1p(L, (A, f)) ≃ Tors1(L, (A, f))

Theorem 3.2. Let 0 → N → E → L→ 0 be an exact sequence of restricted Lie alge-
bras and let (A, f) be a w(L)-module. Then there are naturally equivalent exact
sequences

0 → Derp(L, (A, f)) → Derp(E, (A, f)) → Homw(L)

(
(Nab, (−)[p]), (A, f)

)
→

→ Ext1p(L, (A, f)) → Ext1p(E, (A, f))

0 → H0
G(L, (A, f)) → H0

G(E, (A, f)) → Homw(L)

(
(Nab, (−)[p]), (A, f)

)
→

→ H1
G(L, (A, f)) → H1

G(E, (A, f))

Proof. Since RLie is a monadic category over Sets whose objects have an underlying
group structure, the theorem follows from the above lemma and the exact sequence
(5).

4. Internal groupoids and crossed modules

Crossed modules in groups were introduced by Whitehead [31] in the study of
relative homotopy groups. Brown and Spencer in [5] noted that internal categories
within the category of groups are equivalent to crossed modules. In the more gen-
eral context of categories of groups with operations, crossed modules and internal
categories are studied by Porter in [22]. Moreover, internal categories in a Mal’tsev
variety are studied by Janelidze in [19]. Also, in [13], Ellis introduced and studied
the non-abelian tensor product of Lie algebras. Below we consider the case of the
category of restricted Lie algebras.

Let us recall the definition of an internal category in a category C with pullbacks.
An internal category C = (C0, C1, e, s, t, θ) in C is a diagram in C

C1 ×C0 C1
θ // C1

t
//

s // C0

eoo

such that te = se = idC0 with a morphism θ : C1 ×C0 C → C1, where C1 ×C0 C1
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denotes the pullback

C1 ×C0 C1
p2−−−−→ C1

p1

y s

y
C1

t−−−−→ C0,

satisfying: tθ = tp2 and sθ = sp1, the associative law relation

C1 ×C0 C1 ×C0 C1
θ×id−−−−→ C1 ×C0 C1

id×θ

y θ

y
C1 ×C0 C1 −−−−→

θ
C0

and the left and right unit laws for composition of morphisms

C1

idC1

$$J
JJ

JJ
JJ

JJ
J

(idC1
,et)
// C1 ×C0 C1

θ

��

C
(es,idC1

)
oo

idC1zzuu
uu
uu
uu
uu

C1

The morphisms t, s, e are called the target, source, and unit morphisms respectively.
An internal category is called internal groupoid if for any c ∈ C there is a c′ ∈ C such
that θ(c, c′) = es(c) and θ(c′, c) = et(c).

An internal functor between two internal categories C and D in C is defined to
be a pair of morphisms f0 : C0 → D0 and f1 : C1 → D1 of C such that the following
diagrams are commutative:

C1 ×C0 C1

θC

��

f1×f1 // D1 ×D0 D1

θD

��
C1

f1 // D1

and

C1

f1

��

s
//

t //
C0

f0

��

e // C1

f1

��
D1 s

//
t //

D0
e // D1

We denote by Grp the category whose objects are internal groupoids in RLie and
whose morphisms are internal functors. J.-L. Loday and C. Kassel define in [20] the
notion of crossed modules for the category of Lie algebras. In the same way crossed
modules for the category of restricted Lie algebras are defined (cf. [8]).

Definition 4.1. Let µ :M → N be a homomorphism of restricted Lie algebras. The
triple (M,N, µ) is called a crossed module if there is given a restricted homomor-
phism η : N → Der(M) such that η(n) is a restricted derivation for all n ∈ N and
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the following relations hold:

µ(η(n)(m)) = [n, µ(m)], n ∈ N, m ∈M (7)

η(µ(m))(m′) = [m,m′], m,m′ ∈M (8)

Example 4.2. Let L be a restricted Lie algebra and I an ideal of L. If i : I ↪→ L
denotes the inclusion homomorphism, then the (I, L, i) is a crossed module in RLie.

A morphism between two crossed modules (M,N, µ) and (M ′, N ′, µ) is defined to
be a pair of restricted Lie homomorphisms f1 :M →M ′ and f0 : N → N ′ such that
the following diagram is commutative:

M

f1
��

µ // N

f0
��

M ′ µ′
// N ′

and

f1
(
η(n)(m)

)
= η′

(
f0(n)

)(
f1(m)

)
, for all n ∈ N, m ∈M

The corresponding category of crossed modules in RLie is denoted by CM.

Theorem 4.3. The categories of crossed modules and internal groupoids in RLie are
equivalent.

Proof. To any crossed module (M,N, µ) we associate the diagram in RLie

(M ⋊N)×N (M ⋊N)
θ // (M ⋊N)

t
//

s // N
eoo

where s, t :M ⋊N → N are restricted Lie homomorphisms given by

s(m,n) := n,

t(m,n) := n+ µ(m),

and e : N →M ⋊N by

e(n) := (0, n)

for all m ∈M and n ∈ N . The multiplication

θ : (M ⋊N)×N (M ⋊N) →M ⋊N

is given by

θ((m,n), (m′, n+ µ(m))) = (m+m′, n)

A straightforward calculation shows that θ is a Lie algebra homomorphism. Moreover,
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we note that

θ((m, 0), (0, µ(m))[p]) = θ((m, 0)[p], (0, µ(m))[p])

= θ((m[p], 0), (0, µ(m)[p]))

= θ((m[p], 0), (0, µ(m[p])))

= (m[p], 0)

= (θ((m, 0), (0, µ(m))))[p]

and in the same way we see that

θ(((0, n), (0, n))[p]) = (θ((0, n), (0, n)))[p]

and

θ(((0, 0), (m′, 0))[p]) = (θ((0, 0), (m′, 0)))[p]

Since θ is a Lie algebra homomorphism, we deduce that θ is actually a restricted Lie
homomorphism. Then one can easily check that the conditions of associativity and
unit and right laws are satisfied. Besides, if we define

(m,n)′ := (−m,n+ µ(m))

for all m ∈M and n ∈ N , then we see that the above diagram in RLie defines an
internal groupoid in RLie.

If

M

f1
��

µ // N

f0
��

M ′ µ′
// N ′

is a morphism of crossed modules, then we see that the following diagram is commu-
tative

M ⋊N

(f1,f0)

��

s
//

t //
N

f0
��

e // M ⋊N

(f1,f0)

��
M ′ ⋊N ′

s′
//

t′ //
N ′ e′ // M ′ ⋊N ′

For m1,m2 ∈M and n ∈ N we have

(f1, f0)θ
(
(m1, n), (m2, n+ µ(m1))

)
= (f1, f0)(m1 +m2, n)

=
(
f1(m1 +m2), f0(n)

)
=

(
f1(m1) + f1(m2), f0(n)

)
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and

θ′
(
(f1, f0)× (f1, f0)

)(
(m1, n), (m2, n+ µ(m1))

)
=

= θ′
((
f1(m1), f0(n)

)
,
(
f1(m2), f0(n+ µ(m1))

))
= θ′

((
f1(m1), f0(n)

)
,
(
f1(m2), f0(n) + µ′f1(m1)

))
=

(
f1(m1) + f1(m2), f0(n)

)
Therefore the following diagram is commutative:

(M ⋊N)×N (M ⋊N)

θ

��

(f1,f0)×(f1,f0) // (M ′ ⋊N ′)×N ′ (M ′ ⋊N ′)

θ′

��
M ⋊N

(f1,f0) // M ′ ⋊N ′

In this way a functor F : CM → Grp is constructed. To go in the other direction, let

N ′ ×N N ′ θ // N ′

t
//

s // N

eoo

be an internal groupoid in RLie with multiplication θ. Then we associate to it a crossed
module (M,N, µ) whereM := Ker s and µ := t |M and with action η : N → Der(M)
given by

η(n)(m) = [e(n),m]

for all n ∈ N and m ∈M . In effect,

η(n[p])(m) = [e(n[p]),m]

= [(e(n))[p],m]

= (η(n))p(m)

and

η(n)(m[p]) = [e(n),m[p]]

= adp−1
m (η(n)(m))

Since te = se = id |N , we get

θ(m+ e(n),m′ + e(n+ µ(m))) = θ(m+ e(n), et(m+ e(n))) + θ(es(m′),m′)

Besides, by unities properties of the groupoid we have that

θ(m+ e(n), et(m+ e(n))) + θ(es(m′),m′) = m+ e(n) +m′

Thus we obtain

θ(m+ e(n),m′ + e(n+ µ(m))) = m+m′ + e(n)

Since θ is a Lie algebra homomorphism, we have

θ([(m,m′ + eµ(m)), (0,m′′)]) = [θ(m,m′ + eµ(m)), θ(0,m′′)]
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and

[eµ(m),m′′] + [m′,m′′] = [m,m′′] + [m′,m′′]

We deduce that
η(µ(m))(m′′) = [e(µ(m)),m′′]

= [m,m′′]

Moreover, we have

µ(η(n)(m)) = t([e(n),m])

= [te(n), t(m)]

= [n, µ(m)]

Let (N,N ′, e, s, t, θ) and (L,L′, e′, s′, t′, θ′) be two groupoids with associated crossed
modules (M,N, µ) and (M ′, L, µ′) respectively. If a pair of morphisms (f0, f1) defines
an internal functor between the groupoids (N,N ′, e, s, t, θ) and (L,L′, e′, s′, t′, θ′),
then the following diagram is commutative:

N ′

f1
��

s
//

t //
N

f0
��

e // N ′

f1
��

L′
s′

//
t′ //

L
e′ // L′

For n ∈ N and m ∈M we have

f1|Ker s([e(n),m]) = [f1|Ker s(e(n)), f1|Ker s(m)]

= [e′f0(n), f1|Ker s(m)]

Hence, the diagram below is a morphism of crossed modules:

M

f1|ker s

��

µ // N

f0
��

M ′ µ′
// L

Therefore a functor G : Grp → CM is defined which is a quasi-inverse for F .

5. The second cohomology group and 2-fold extensions

Gerstenhaber in [14] studies 2-fold extensions in certain categories of interest
including the category of Lie algebras. Also, the case of Lie algebras is studied by
Shimada-Uehara-Brenneman-Iwai in [27]. Besides, in [20] J.-L. Loday and C. Kas-
sel consider 2-fold extensions of Lie algebras associated to a crossed module. In this
section we study 2-fold extensions in the category of restricted Lie algebras.

Let (F,E, µ) be a crossed module in RLie. If (A, (−)[pA]) := ker µ, then by (8) we
get that

µ(a) · x = [a, x] = 0

for all a ∈ A and x ∈ F . Thus, A is contained in the center of F . Moreover, from (7),
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we have that

µ(e · a) = [e, µ(a)] = 0

thus e · a ∈ A for all e ∈ E and a ∈ A.
The restriction on A of the action of E on F endows A with the structure of a

restricted E-module. Since η(e) is a restricted derivation for all e ∈ E, we have

e · a[pA] = adp−1
a (e · a)

= 0

Therefore the pair (A, (−)[pA]) is a w(E)-module. Besides, µ(e · x) = [e, µ(x)] for all
e ∈ E and x ∈ F ; thus we obtain that Img (µ) is a restricted ideal of E. Since

(e+ µ(x)) · a = e · a+ [x, a]

= e · a+ 0

one sees that A is also a restricted L-module where L := coker µ. Therefore (A, (−)[pA])
becomes a w(L)-module.

5.1. 2-fold extensions
Let (A, f) be a w(L)-module. We denote by E2(L, (A, f)) the category whose

objects are exact sequences in RLie

0 → A
i−→ F

µ−→ E
ϕ−→ L→ 0

where (F,E, µ) is a crossed module, such that the induced w(L)-module structure on
A is the given one. This implies that f is the p-map of the restricted Lie algebra A.
The morphisms are commutative diagrams of the form

0 −−−−→ A
i−−−−→ F

µ−−−−→ E
ϕ−−−−→ L −−−−→ 0yid

yf

ye

yid

0 −−−−→ A
i′−−−−→ F ′ µ′

−−−−→ E′ ϕ′

−−−−→ L −−−−→ 0

where the morphisms f and e respect the actions. Two objects E1, E2 ∈ E2(L, (A, f))
are called elementary equivalent if there is a morphism in E2(L, (A, f)) from one to
the other. We consider the equivalence relation generated by elementary equivalence.
We denote by Ext2p(L, (A, f)) the set of equivalence classes in E2(L, (A, f)).

For ϕ : E → L, a fixed epimorphism in RLie, we consider the sub-category
E2(ϕ, (A, f)) of E2(L, (A, f)) whose objects are 2-fold extensions

0 → A
i−→ F

µ−→ E
ϕ−→ R→ 0

and morphisms

0 −−−−→ A
i−−−−→ F

µ−−−−→ E
ϕ−−−−→ L −−−−→ 0yid

yf

yid

yid

0 −−−−→ A
i′−−−−→ F ′ µ′

−−−−→ E
ϕ−−−−→ L −−−−→ 0

We denote by Ext2p(ϕ, (A, f)) the set of equivalence classes in E2(ϕ, (A, f)).
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Next we give an interpretation of 2-torsors over a restricted Lie algebra L in terms

of 2-fold extensions. Let ϕ : E0
ϕ−→ L be a restricted Lie epimorphism and (A, f) ∈

ab(RLie/L). Following [7], we define the category TORS(ϕ, (A, f)) whose objects are
2-torsors over L with fixed augmentation ϕ and whose morphisms are torsor maps
f. : E. → E′

. with f0 = idE0 . The corresponding category of connected components is
denoted by Tors1(ϕ, (A, f)).

Lemma 5.1. Let L ∈ RLie be a restricted Lie algebra and (A, f) a w(L)-module.
Then we have bijections

Tors2(L, (A, f)) ≃ Ext2p(L, (A, f))

and

Tors1(ϕ, (A, f)) ≃ Ext2p(ϕ, (A, f))

Proof. Let (E., ϵ) be a 2-torsor over L under (A, f), with augmentation ϕ : E0 → L.
We consider the Moore complex M(E.) of (E.), which is given by M(E.)0 = E0 and,
for n ⩾ 1, by

M(E.)n = ∩n
i ker di = ker (En → Λ0(n− 1)(E.))

and whose differential is defined by restriction of the 0-face operator of E.. Therefore
by conditions 1 and 3 of Definition 2.11 the associated Moore complexM(E.) is given
by the following exact sequence in RLie:

M(E.) : 0 → Ker d1 ∩ ker d2
d0−→ ker d1

d0−→ E0
ϕ−→ L→ 0

It follows from condition 2 of Definition 2.11 that we have a pullback diagram

E2

(d1,d2)

$$

ϵ2

**

≃
PPP

PPP

((PP
PPP

P

Λ0(1)(E.)×L (L×f A)

��

// L×f A

prL

��
Λ0(1)(E.) // L

where

Λ0(1)(E.) = {(e1, e′1), |d1(e1) = d1(e
′
1), e1, e

′
1 ∈ E1}

and

E2 ≃ Λ0(1)(E.)×L (L×f A)

The restriction of ϵ2 on Ker d1 ∩ ker d2 induces an isomorphism

ϵ̄2 : Ker d1 ∩ ker d2
∼−→ A

Thus we obtain an exact sequence in RLie

0 → A
d0 ϵ̄2

−1

−−−−→ Ker d1
d0−→ E0

ϕ−→ L→ 0 (9)
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The simplicial truncated diagram

E1

d0

//
d1 // E0

s0oo

defines an internal groupoid. In particular, E1 ≃ Ker d1 ⋊ E0 and the multiplication
is necessarily given by

θ
(
x+ s0(e0), x

′ + s0(d0(x) + e0)
)
= x+ s0(e0) + x′

since

θ
(
x+ s0(e0), x

′ + s0(d0(x) + e0)
)
= θ

(
x+ s0(e0), s0d0(x) + s0(e0)

)
+ θ(0, x′)

= θ(id, s0d0)(x+ s0(e0)) + θ(s0d1, id)(x
′)

= x+ s0(e0) + x′

for all x, x′ ∈ Ker d1 and e0 ∈ E0. By Theorem 4.3 it follows that ker d1
d0−→ E0 is a

crossed module in RLie associated to the above internal groupoid.
Next we prove that the Lie action of L on A coincides with the Lie action induced

from the exact sequence (9) (cf. [29]). Let Λ2(1)(E.) be the 2-horn

Λ2(1)(E.) := {(e1, e′1), |d0(e1) = d0(e
′
1), e1, e

′
1, E1}

We denote by pr : Λ2(1)(E.) → E1 the projection given by pr(e1, e2) := e1. By Defi-
nition 2.11 and its condition 2 the following diagram is a pullback:

E2

(d0,d1)

��

ϵ2 // L×f A

prL

��
Λ2(1)(E.)

λ //

s′

OO

L

sL

OO

where λ := ϕd0pr. Therefore there is a section s
′ : Λ2(1)(E.) → E2 such that (d0, d1)s

′

= id and ϵ2s
′ = sLλ, where sL : L→ L×f A is given by sL(x) = (x, 0) for all x ∈ L.

If x ∈ L and e0 ∈ E0 such that ϕ(e0) = x, then

d0ϵ̄2
−1(0, x · a) = d0ϵ̄2

−1
(
[sLϕ(e0), (0, a)]

)
= d0ϵ̄2

−1
(
[sLϕd0pr(id, s0d0)s0(e0), (0, a)]

)
where (id, s0d0) : E1 → Λ2(1)(E.) is given by

(id, s0d0)(e1) :=
(
e1, s0d0(e1)

)
for all e1 ∈ E1. Besides,

ϵ2
(
[s′(id, s0d0)s0(e0), ϵ̄2

−1(0, a)]
)
= [ϵ2s

′(id, s0d0)s0(e0), (0, a)]

= [sLϕd0pr(id, s0d0)s0(e0), (0, a)]

Therefore,

d0ϵ̄2
−1(0, x · a) = d0

(
[s′(id, s0d0)s0(e0), ϵ

−1
2 (0, a)]

)
=

(
[d0s

′(id, s0d0)s0(e0), d0ϵ̄2
−1(0, a)]

)



222 IOANNIS DOKAS

Since (d0, d1)s
′ = id, we get d0s

′(id, s0d0)s0(e0) = s0(e0) and

d0e
−1
2 (0, x · a) =

(
[d0s

′(id, s0d0)s0(e0), d0ϵ̄2
−1(0, a)]

)
= [s0(e0), d0ϵ̄2

−1(0, a)]

Moreover, we have

d0ϵ̄2
−1(0, x[p] · a) = [s0

(
e
[p]
0

)
, d0ϵ̄2

−1(0, a)]

= [
(
s0(e0

)[p]
, a]

= [s0(e0), [s0(e0), [· · · [s0(e0),︸ ︷︷ ︸
p

d0ϵ̄2
−1(0, a)]]]]

Therefore the induced w(L)-module structure by the 2-fold exact sequence coincides
with the initial structure and we obtain an extension in E2(L, (A, f))

0 → A
d0 ϵ̄2

−1

−−−−→ Ker d1
d0−→ E0

ϕ−→ L→ 0

Notice that a 2-torsor over L with augmentation ϕ is associated to a 2-fold extension
in E2(ϕ, (A, f)). Besides, a morphism of 2 torsors

· · · E2

ϵ2

��
























f2

��

////
//
E1

f1

��

//// E0

f0

��

ϕ // L

id

��
E2

ϵ′2{{xx
xx
xx
xx
x

////
//
E′

1
//// E′

0

ϕ′
// L

L×f A

induces a morphism of 2-fold extensions

0 // A

id

��

d0ϵ̄2
−1

// Ker d1

f1|ker d1

��

d0 // E0
ϕ //

f0

��

L

id

��

// 0

0 // A
d′
0ϵ̄

′
2
−1

// ker d′1
d′
0 // E′

0

ϕ′
// L // 0

Thus are induced maps

ψ : Tors2(L, (A, f)) → Ext2p(L, (A, f))

and

ψ′ : Tors2(ϕ, (A, f)) → Ext2p(ϕ, (A, f))

Conversely, let

0 → A
i−→ F

µ−→ E0
ϕ−→ L→ 0

be a 2-fold extension in E2(L, (A, f)). By Theorem 4.3 is associated an augmented
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over L internal groupoid Γ:

E1 := (E0 ⋊ F )

d1

//
d0 // E0

s0oo ϕ // L // 0

where d1(e0, x) := e0, d0(e0, x) := µ(x) + e0 and s0(e0) := (e0, 0) for all e0 ∈ E0 and
x ∈ F . Let E. := cosk1(Γ) be the 1-coskeleton of Γ. If(

(µ(z) + e0, x), (e0, y), (e0, z)
)
∈ E2

where x, y, z ∈ F and e0 ∈ E0, then x+ z − y ∈ A.
We define a linear map ϵ2 : E2 → L×f A given by

ϵ2

(
(µ(z) + e0, x), (e0, y), (e0, z)

)
= (ϕ(e0), x+ z − y)

Then ϵ2 is a Lie algebra homomorphism since

ϵ2

([(
(µ(z), x), (0, y), (0, z)

)
,
(
(µ(z′), x′), (0, y′), (0, z′)

)])
=

= ϵ2
(
(µ([z, z′]), [z, x′]− [z′, x] + [x, x′]), (0, [y, y′]), (0, [z, z′])

)
= (ϕ(0), [y − x, x′]− [y′ − x′, x] + [x, x′] + [y − x, y′ − x′]− [y, y′])

= (0, 0)

and

[ϵ2
(
(µ(z), x), (0, y), (0, z)

)
, ϵ2

(
(µ(z′), x′), (0, y′), (0, z′)

)
] =

=
[
(0, x+ z − y), (0, x′ + z′ − y′)

]
= (0, [x+ z − y, x′ + z′ − y′]) = (0, 0)

Besides,

ϵ2

([(
(µ(z), x), (0, y), (0, z)

)
,
(
(e0, 0), (e0, 0), (e0, 0)

)])
=

= ϵ2
(
[µ(z), e0],−e0 · x), (0,−e0 · y), (0,−e0 · z)

)
= ϵ2

(
(−µ(e0 · z),−e0 · x), (0,−e0 · y), (0,−e0 · z)

)
= (0,−e0 · x+ e0 · y,−e0 · z)

and[
ϵ2
(
(µ(z), x), (0, y), (0, z)

)
, ϵ2

(
(e0, 0), (e0, 0), (e0, 0)

)]
= [(0, x+ z − y), (ϕ(e0), 0)]

=
(
0,−e0 · (x+ z − y)

)
Obviously,

ϵ2

([(
(e0, 0), (e0, 0), (e0, 0)

)
,
(
(e′0, 0), (e

′
0, 0), (e

′
0, 0)

)])
=

= [ϵ2
(
(e0, 0), (e0, 0), (e0, 0)

)
, ϵ2

(
(e′0, 0), (e

′
0, 0), (e

′
0, 0)

)
]

=
(
[ϕ(e0), ϕ(e

′
0)], 0

)
Since z + x = y + a for some a ∈ A, the Lie algebra L(z+x),y generated by (z + x)
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and y is zero. By Remark 2.2 we obtain

(z + x− y)[p] = (z + x)[p] − y[p] +

i=p∑
i=1

si
(
(z + x), y

)
= (z + x)[p] − y[p]

= z[p] + x[p] +
i=1∑
i=0

si(z, x)− y[p]

By relation (8) we have µ(z) · x = [z, x]; thus

ϵ2

((
(µ(z), x), (0, y), (0, z)

)[p]
)

= ϵ2

((
(µ(z), x)[p], (0, y)[p], (0, z)[p]

))
= ϵ2

((
(µ(z)[p], 0) + (0, x[p])

+

i=p∑
i=1

si
(
(µ(z), 0), (0, x)

))
, (0, y[p]), (0, z[p])

)

= ϵ2

((
µ(z[p]), x[p] +

i=p∑
i=1

si(z, x)
)
, (0, y[p]), (0, z[p])

)

= (0, x[p] +

i=p∑
i=1

si(z, x) + z[p] − y[p])

= ϵ2

(
(µ(z), x), (0, y), (0, z)

)[p]

Also, ϕ is a restricted Lie homomorphism so

ϵ2

((
(e0, 0), (e0, 0), (e0, 0)

)[p]
)

= ϵ2

(
(e0, 0), (e0, 0), (e0, 0)

)[p]

Since ϵ2 is a Lie algebra homomorphism, we see that ϵ2 is actually a restricted Lie
homomorphism. Besides, ϵ2 is a cocycle, i.e.,

ϵ2(d0 − d1 + d2 − d3) = 0

In particular, let κ = (t0, t1, t2, t3) ∈ E3 where

t0 :=
(
(µ(z) + e0, y − z + a1), (µ(w) + e0, y − w + a3), (µ(w) + e0, z − w + a2)

)
t1 :=

(
(µ(z) + e0, y − z + a1), (e0, y), (e0, z)

)
t2 :=

(
(µ(w) + e0, y − w + a3), (e0, y), (e0, w)

)
t3 :=

(
(µ(w) + e0, z − w + a2), (e0, z), (e0, w)

)
Then using the addition of the group structure of L×f A we get

ϵ2(d0 − d1 + d2 − d3)(κ) =
(
ϕ(e0), a1 + a2 − a3 − a1 + a3 − a2

)
=

(
ϕ(e0), 0

)
Moreover, ϵ2 is a normalized cocycle, i.e.,

ϵ2s0 = ϵ2s1 = 0
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Precisely, let (e0, x) ∈ E1; then

s0
(
(e0, x)

)
=

(
(e0, x), (e0, x), (e0, 0)

)
and

ϵ2
(
s0
(
e0, x)

)
=

(
ϕ(e0), x+ 0− x

)
=

(
ϕ(e0), 0

)
Besides,

s1
(
(e0, x)

)
=

(
(µ(x) + e0, 0), (e0, x), (e0, x)

)
and

ϵ2
(
s1
(
e0, x)

)
=

(
ϕ(e0), 0 + x− x

)
=

(
ϕ(e0), 0

)
Let σ be a section of the cokernel map of i : A→ F and s a section of ϕ. We consider

the map s1 : E0 → E1 given by s1(e0) :=
(
e0, σ(sϕ(e0)− e0)

)
. The maps s1, s define

a U -splitting on the truncated complex

E1

d1

//
d0 // E0

s0oo ϕ // L // 0

and a U -splitting is induced on the coskeleton E..
If

K1
pr1

//
pr0 //

E0

ϕ // L // 0

is the simplicial kernel of E0 → L, then

K1 := {(µ(z) + e0, e0) : e0 ∈ E0, z ∈ F}

The 2-th component of the U -split s2 : E1 → E2 is given by

s2 := (s1d0, s1d1, id)

Thus

s2
(
(e0, z)

)
=

(
(µ(z) + e0, y − z + a), (e0, y), (e0, z)

)
where y := σ(sϕ(e0)− e0) and a ∈ A.

Moreover, one can see that on the underlying object level the following square is
a pullback:

E1
ϵ2s2−−−−→ L×f A

(d0,d1)

y prL

y
K1

ϕpr0−−−−→ L

It follows from Definition 2.12 that (E., ϵ.) is a 2-torsor over L relative to U , where
ϵ. : E. → K

(
(A, f), 2

)
is the simplicial morphism obtained by the normalized cocycle

ϵ2. Also, one can see that the Moore complex M(E.) of E. is the exact sequence

0 → A→M
µ−→ E0

ϕ−→ L→ 0

Notice that a 2-fold extension in E2(ϕ, (A, f)) is associated to a 2-torsor over L with
augmentation ϕ.
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If

0 // A

id

��

i // F

f1

��

µ // E0
ϕ //

f0

��

L

id

��

// 0

0 // A
i′ // F ′ µ′

// E′
0

ϕ′
// L // 0

is a morphism of 2-fold extensions, then we obtain a morphism of 2-torsors

· · · E2

ϵ2

��
























f2

��

////
//
E0 ⋊ F

(f0,f1)

��

//// E0

f0

��

ϕ // L

id

��

// 0

E′
2

ϵ′2{{xx
xx
xx
xx
x

////
//
E′

0 ⋊ F ′ // // E′
0

ϕ′
// L // 0

L×f A

Since we have, for t =
(
(µ(z) + e0, x), (e0, y), (e0, z)

)
∈ E2 and x, y, z ∈ F ,

ϵ′2
(
f2(t)

)
= ϵ′2

((
f0(µ(z) + e0), f1(x)

)
,
(
f0(e0), f1(y)

)
,
(
f0(e0), f1(z)

))
= ϵ′2

((
µ′(f1(z)) + f0(e0), f1(x)

)
,
(
f0(e0), f1(y)

)
,
(
f0(e0), f1(z)

))
=

(
ϕ′(f0(e0)), f1(x) + f1(z)− f1(y)

)
=

(
ϕ(e0), f1(x+ z − y)

)
= ϵ2

(
(µ(z) + e0, x), (e0, y), (e0, z)

)
= ϵ2(t)

thus maps

ω : Ext2p(L, (A, f)) → Tors2(L, (A, f))

and

ω : Ext2p(ϕ, (A, f)) → Tors2(ϕ, (A, f))

are induced. Clearly, the map ψ is inverse to ω and ψ′ is inverse to ω′.

5.2. Sum of 2-torsors and 2-fold extensions
First we recall the construction of a sum of torsors given in [15]. Let E = (E, ϵ) and

E ′ = (E′, ϵ′) be two 2-torsors over L under (A, f). We consider the product simplicial
object E × E ′ formed of products dimension by dimension. Then E × E ′ is a 2-torsor
over L× L under (A, f)× (A, f). Let ∆ be the diagonal map L→ L× L. By Corol-
lary 3.8.3 in [15] a 2-torsor ∆∗(E × E ′) over L under (A, f)× (A, f) is constructed.
In particular, in 0 dimension, ∆∗(E × E ′)0 is obtained by a pullback along ∆:

∆∗(E × E ′)0 −−−−→ E0 × E ′
0y y

L
∆−−−−→ L× L
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If K̄ is the simplicial kernel of ∆∗(E × E ′)0 → L and K is the simplicial kernel of
E0 × E ′

0 → L× L, then ∆∗(E × E ′)1 is the pullback

∆∗(E × E ′)1 −−−−→ E1 × E ′
1y y

K̄ −−−−→ K

The simplicial object ∆∗(E × E ′) is defined (see Proposition 3.8.1 in [15]) to be

cosk1
(
∆∗(E × E ′)1 //// ∆∗(E × E ′)0

// L
)

The addition homomorphism

(L×f A)×L (L×f A) → L×f A

is given by

∇ : ((l, a), (l, b)) 7→ (l, a+ b)

By Proposition 4.3 in [15] (see also Definition 2.4 in [7]), the addition homomor-
phism induces the existence of a 2-torsor ∇∗(∆

∗(E × E ′)) over L under (A, f) called
the sum of E and E ′ such that one has a commutative diagram

∆∗(E × E ′)
h.−−−−→ ∇∗(∆

∗(E × E ′))

δ.

y ∇∗δ.

y
K
(
(A, f)× (A, f), 2

) ∇.−−−−→ K
(
(A, f), 2

)
Moreover, the above square has the universal property that if G is any 2-torsor above
L under (A, f) such that

∆∗(E × E ′)
h′
.−−−−→ G

δ.

y γ.

y
K
(
(A, f)× (A, f), 2

) ∇.−−−−→ K
(
(A, f), 2

)
then there exists a unique map

λ. : ∇∗(∆
∗(E × E ′)) → G

such that γ.λ. = ∇∗δ. and λ.h. = h′.. The sum of 2-torsors induces a group structure
on the set Tors2p(L, (A, f)).

Besides, the Baer sum of two 2-fold extensions and a group structure on
Ext2p(L, (A, f)) are defined following the general constructions of Yoneda’s theory.
Furthermore, the interested reader could also consult [14] (see Definition 5) and [3]
(see page 424). Extensions of restricted Lie algebras are discussed in [16]. The Baer
sum of 2-fold extensions of restricted Lie algebras is induced by their sum as 2-fold
extensions of Lie algebras.
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Let

(E) : 0 → A
i−→ F

µ−→ E
ϕ−→ L→ 0

and

(E′) : 0 → A
i′−→ F ′ µ′

−→ E′ ϕ′

−→ L→ 0

be two extensions in E2(L, (A, f)). Then the Baer sum of (E) and (E′) is defined as
the extension

(E + E′) : 0 → (A×A)/K → (F × F ′)/K −→ E ×L E
′ → L→ 0

where K := ker∇ and ∇ : A×A→ A is given by ∇(a, a′) := a+ a′ for all a, a′ ∈ A.
The restricted ideal K consists of the elements (a,−a). We identify (A×A)/K with
A and we get

(E + E′) : 0 → A→ (F × F ′)/{(a,−a) : a ∈ A} −→ E ×L E
′ → L→ 0

Theorem 5.2. Let L ∈ RLie be a restricted Lie algebra and (A, f) a w(L)-module.
Then there is an isomorphism of groups

Tors2(L, (A, f)) ≃ Ext2p(L, (A, f))

Proof. Let E,E′ ∈ E2(L, (A, f)) be two extensions

0 → A→ F
µ−→ E0

ϕ−→ L→ 0

and

0 → A→ F ′ µ′

−→ E′
0

ϕ′

−→ L→ 0

with associated 2-torsors

ω(E) := cosk1
(
(E0 ⋊ F ) // // E0

// L
)

and

ω(E′) := cosk1
(
(E′

0 ⋊ F ′) // // E′
0

// L
)

We recall that the sum (E + E′) of the extensions (E) and (E′) is given by

(E + E′) : 0 → A→ (F × F ′)/{(a,−a) : a ∈ A} −→ E0 ×L E
′
0 → L→ 0

From the definition of ∆∗(ω(E)× ω(E′)
)
we have that

∆∗(ω(E)× ω(E′)
)
0
≃ E0 ×L E

′
0

and ∆∗(ω(E)× ω(E′)
)
1
is the pullback

∆∗(ω(E)× ω(E′)
)
1
−−−−→ (E0 ⋊ F )× (E′

0 ⋊ F ′)y d

y
K̄ −−−−→ K

where K̄ is the simplicial kernel

K̄ //// E0 ×L E
′
0

// L
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and K is the simplicial kernel

K //// E0 × E′
0

// L× L

Thus

K̄ := {
(
(e0, e

′
0), (e0 + µ(x), e′0 + µ′(x′)

)
: ϕ(e0) = ϕ′(e′0),

e0 ∈ E0, e
′
0 ∈ E′

0, x ∈ F, x′ ∈ F ′}

and

K := {
(
(e0, e

′
0), (e0 + µ(x), e′0 + µ′(x′)

)
: e0 ∈ E0, e

′
0 ∈ E′

0, x ∈ F, x′ ∈ F ′}

The canonical morphism d is given by

d
(
(e0, x), (e

′
0, x

′)
)
=

(
(e0 + µ(x), e′0 + µ′(x′)), (e0, e

′
0)
)

Therefore

∆∗(ω(E)× ω(E′))1 =

= {
(
(e0, e

′
0), (e0 + µ(x), e′0 + µ′(x′)), (e0 + µ(x), a− x), (e′0 + µ′(x), a′ − x′)

)
:

ϕ(e0) = ϕ′(e′0), x ∈ F, x′ ∈ F ′, a, a′ ∈ A, e0 ∈ E0, e
′
0 ∈ E0}

There is a natural morphism of truncated simplicial objects

tr1
(
∆∗(ω(E)× ω(E′)

))
→ tr1

(
ω(E + E′)

)
∆∗(ω(E)× ω(E′))1

�� ��

ξ // (E0 ×L E
′
0)⋊

(
(F × F ′)/(a,−a)|a ∈ A}

)
����

E0 ×L E
′
0

��

id // E0 ×L E
′
0

��
L L

where ξ is given by

ξ
(
(e0, e

′
0), (e0 + µ(x), e′0 + µ′(x′)), (e0 + µ(x), a− x), (e′0 + µ′(x), a′ − x′)

)
=

=
(
(e0 + µ(x), e′0 + µ′(x′)), (a− x, a′ − x′)

)
Next we prove that ξ is a Lie algebra homomorphism. Let e0, h0 ∈ E0 and x, y ∈ F .

If we set t := e0 · y − h0 · x+ [x, y], then

[e0 + µ(x), h0 + µ(y)] = [e0, h0] + [e0, µ(y)] + [µ(x), h0] + [µ(x), µ(y)]

= [e0, h0] + µ(e0 · y − h0 · x+ [x, y])

= [e0, h0] + µ(t)

and

[(e0 + µ(x), a0 − x), (h0 + µ(y), a1 − y)] =

=
(
[e0, h0] + µ(t), (e0 + µ(x)) · (a1 − y)− (h0 + µ(y)) · (a0 − x) + [x, y]

)
=

(
[e0, h0] + µ(t), e0 · a1 − h0 · a0 − t

)
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Let x1, y1 ∈ ∆∗(ω(E)× ω(E′))1, where

x1 :=
(
(e0, e

′
0), (e0 + µ(x), e′0 + µ′(x′)), (e0 + µ(x), a0 − x), (e′0 + µ′(x), a′0 − x′)

)
y1 :=

(
(h0, h

′
0), (h0 + µ(y), h′0 + µ′(y′)), (h0 + µ(y), a1 − y), (h′0 + µ′(y), a′1 − y′)

)
If we set t′ := e′0 · y′ − h′0 · x′ + [x′, y′], then we have

ξ
(
[(x1, y1)]

)
=

= ξ
(
([e0, h0], [e

′
0, h

′
0]), ([e0, h0] + µ(t), [e′0, h

′
0] + µ′(t′)), ([e0, h0] + µ(t),

e0 · a1 − h0 · a0 − t), ([e′0, h
′
0] + µ(t′), e′0 · a′1 − h′0 · a′0 − t′)

)
=

(
[e0, h0] + µ(t), [e′0, h

′
0] + µ′(t′)), (e0 · a1 − h0 · a0 − t, e′0 · a′1 − h′0 · a′0 − t′)

)
=

[(
(e0 + µ(x), e′0 + µ′(x′)), (a0 − x, a′0 − x′)

)
,(

(h0 + µ(y), h′0 + µ′(y′)), (a1 − y, a′1 − y′)
)]

Therefore ξ is a Lie algebra homomorphism. Besides, one can easily see that

ξ

((
(e0, e

′
0), (e0, e

′
0), (e0, 0), (e

′
0, 0)

)[p])
=

(
ξ
(
(e0, e

′
0), (e0, e

′
0), (e0, 0), (e

′
0, 0)

))[p]

Since [a, x] = 0 and µ(x) · (a− x) = 0, we have(
µ(x), a− x

)[p]
=

(
µ(x[p]), a[p] − x[p]

)
ξ

((
(0, 0), (µ(x), µ′(x′)), (µ(x), a− x), (µ′(x), a′ − x′)

)[p])
=(

ξ
(
(0, 0), (µ(x), µ′(x′)), (µ(x), a− x), (µ′(x), a′ − x′)

))[p]

It follows that ξ is a restricted Lie homomorphism. By applying the coskeleton
functor cosk1(−) to the truncated simplicial complexes, a morphism is induced:

ξ· : (∆
∗(ω(E)× ω(E′)

)
→ ω(E + E′)

Next we prove that we have the following commutative diagram

∆∗(ω(E)× ω(E′))2
ξ2−−−−→ ω(E + E′)2

δ2

y ω2

y
(A, f)× (A, f)

∇−−−−→ (A, f)

Let (k0, k1, k2) ∈ ∆∗(ω(E)× ω(E′))2 where

k0 :=
(
(e0 − µ(y), e′0 − µ′(y′)), (e0, e

′
0), (e0, a0 − y), (e′0, a

′
0 − y′)

)
k1 :=

(
(e0 − µ(y), e′0 − µ′(y′)), (e0 + µ(x), e′0 + µ′(x′)), (e0 + µ(x), a1 − (x+ y)),

(e′0 + µ′(x), a′1 − (x′ + y′))
)

k2 :=
(
(e0, e

′
0), (e0 + µ(x), e′0 + µ′(x′)), (e0 + µ(x), a2 − x), (e′0 + µ′(x), a′2 − x′)

)
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Then by definition of the normalized cocycle δ2 we obtain

∇δ2(k0, k1, k2) =∇
(
(ϕ(e0), (a0 − y)+ (a2 − x)− (a1 − (x+ y))),

(ϕ′(e′0), (a
′
0 − y′) + (a′2 − x′)− (a′1 − (x′ + y′)))

)
Hence,

∇δ2(k0, k1, k2) =
(
ϕ(e0), (a0 + a2 − a1) + (a′0 + a′2 − a′1)

)
Besides,

ω2ξ2(k0, k1, k3)

= ω2

((
(e0, e

′
0), (a0 − y, a′0 − y′)

)
,
(
(e0 + µ(x), e′0 + µ′(x′),

(a1 − (x+ y), a′1 − (x′ + y′))
)
,
(
(e0 + µ(x), e′0 + µ′(x′)), (a2 − x, a′2 − x′)

))
Thus

ω2ξ2(k0, k1, k3) =
(
ϕ(e0), (a0 + a2 − a1) + (a′0 + a′2 − a′1)

)
It follows that

∆∗(ω(E)× ω(E′))
ξ·−−−−→ ω(E + E′)

δ.

y yω.

K
(
(A, f)× (A, f), 2

) ∇.−−−−→ K
(
(A, f), 2

)
From the universal property of∇∗∆

∗(ω(E)× ω(E′)) (see Subsection 5.2), there exists
a unique map

λ. : ∇∗∆
∗(ω(E)× ω(E′)) → ω(E + E′)

Thus ∇∗∆
∗(ω(E)× ω(E′)) and ω(E + E′) are in the same component.

Remark 5.3. From Proposition 2.6 in [7], Tors1(ϕ, (A, f)) is an abelian group and by
Lemma 5.1 this is transferred to a group structure on the set Ext2p(ϕ, (A, f)).

Theorem 5.4. Let L ∈ RLie be a restricted Lie algebra and (A, f) a w(L)-module.
Then

H2
G(L, (A, f)) ≃ Ext2p(L, (A, f))

Proof. This theorem follows from Theorem 5.2 and Theorem 2.13.

Remark 5.5. We note that in the Cartan-Eilenberg context, crossed modules in vari-
ous algebraic categories are associated to the third cohomology group. In the Quillen-
Barr-Beck context, crossed modules are associated to the second cohomology group
since there is a shift by 1 in the notation. Besides, G. Hochschild in [17] gives an inter-
pretation of the third Hochschild cohomology in terms of space of restricted kernel
classes.

5.3. Eight-term exact sequence
The five-term exact sequence of Theorem 3.2 for Quillen-Barr-Beck cohomology

for restricted Lie algebras can be extended to an eight-term exact sequence by the
following theorem.
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Theorem 5.6. Let 0 → N → E
ϕ−→ L→ 0 be an exact sequence of restricted Lie alge-

bras and let (A, f) be a w(L)-module. Then there are naturally equivalent exact
sequences

0 → Derp(L, (A, f)) → Derp(E, (A, f)) → Homw(L)

(
(Nab, (−)[p]), (A, f)

)
→

Ext1p(L, (A, f)) →→ Ext1p(E, (A, f)) → Ext2p(ϕ, (A, f)) →
Ext2p(L, (A, f)) → Ext2p(E, (A, f))

0 → H0
G(L, (A, f)) → H0

G(E, (A, f)) → Homw(L)

(
(Nab, (−)[p]), (A, f)

)
→

H1
G(L, (A, f)) →→ H1

G(E, (A, f)) → Ext2p(ϕ, (A, f)) →
H2

G(L, (A, f)) → H2
G(E, (A, f))

Proof. This theorem follows from Theorem 5.4 and the eight-term exact sequence
(5).

5.4. Application to extensions of algebraic groups

Let k be an algebraic closed field of prime characteristic and G an algebraic group
over k. Since char k = p, we have that the associated Lie algebra Lie(G) is actually
a restricted Lie algebra. In fact in this way a functor Lie : Gr → RLie is defined from
the category of algebraic groups to the category of restricted Lie algebras (see [4]).

Let K,G be algebraic groups; then M. Rosenlicht in [25] and J.-P. Serre in [26]
define as an extension of G by K a short exact sequence of groups

0 → K
κ−→ H

ν−→ G → 0

such that κ, ν are separable rational homomorphisms.

Proposition 5.7. Let 0 → K → H
ν−→ G → 0 be an exact sequence of algebraic groups

and (A, f) a w(Lie(G))-module. Then the following sequence is exact:

0 → Derp(Lie(G), (A, f)) → Derp(Lie(H), (A, f)) →
Homw(Lie(G))

(
(Lie(K)ab, (−)[p]), (A, f)

)
→ H1

G(Lie(G), (A, f)) →
H1

G(Lie(H), (A, f)) → Ext2p(Lie(ν), (A, f)) →
H2

G(Lie(G), (A, f)) → H2
G(Lie(H), (A, f))

Proof. Since the induced sequence of restricted Lie algebras

0 → Lie(K) → Lie(H)
Lie(ν)−−−−→ Lie(G) → 0

is exact (see [25]), the result follows from Theorem 5.6.
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