Undergraduate Texts in Mathematics

Fred H. Croom

Basic Concepts of Algebraic Topology

Springer-Verlag New York • Heidelberg • Berlin

Undergraduate Texts in Mathematics

Editors
F. W. Gehring
P. R. Halmos

Advisory Board
C. DePrima
I. Herstein
J. Kiefer

Fred H. Croom

Basic Concepts of Algebraic Topology

Springer-Verlag

Fred H. Croom

The University of the South
Sewanee, Tennessee 37375
USA

Editorial Board

F. W. Gehring
P. R. Halmos
University of Michigan
Department of Mathematics
Ann Arbor, Michigan 48104 USA
University of California,
Department of Mathematics
Santa Barbara, California 93106
USA

AMS Subject Classifications: 55-01

Library of Congress Cataloging in Publication Data
Croom, Fred H 1941-
Basic concepts of algebraic topology.
(Undergraduate texts in mathematics)
Bibliography: p.
Includes index.

1. Algebraic topology. I. Title.

QA612.C75 $514.2 \quad$ 77-16092

All rights reserved.

No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag.
© 1978 by Springer-Verlag, New York Inc.
Softcover reprint of the hardcover 1st edition 1978

Preface

This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory.

The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis.

The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduction to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.

The core of the course is the first four chapters-geometric complexes, simplicial homology groups, simplicial mappings, and the fundamental group. After completing Chapter 4, the reader may take the chapters in any order that suits him. Those particularly interested in the homology sequence and singular homology may choose, for example, to skip Chapter 5 (covering spaces) and Chapter 6 (the higher homotopy groups) temporarily and proceed directly to Chapter 7. There is not so much material here, however, that the instructor will have to pick and choose in order to
cover something in every chapter. A normal class should complete the first six chapters and get well into Chapter 7.

No one semester course can cover all areas of algebraic topology, and many important areas have been omitted from this text or passed over with only brief mention. There is a fairly extensive list of references that will point the student to more advanced aspects of the subject. There are, in addition, references of historical importance for those interested in tracing concepts to their origins. Conventional square brackets are used in referring to the numbered items in the bibliography.

For internal reference, theorems and examples are numbered consecutively within each chapter. For example, "Theorem IV.7" refers to Theorem 7 of Chapter 4. In addition, important theorems are indicated by their names in the mathematical literature, usually a descriptive name (e.g., Theorem 5.4, The Covering Homotopy Property) or the name of the discoverer (e.g., Theorem 7.8, The Lefschetz Fixed Point Theorem.)

A few advanced theorems, the Freudenthal Suspension Theorem, the Hopf Classification Theorem, and the Hurewicz Isomorphism Theorem, for example, are stated in the text without proof. Although the proofs of these results are too advanced for this course, the statements themselves and some of their applications are not. Students at the beginning level of algebraic topology can appreciate the beauty and power of these theorems, and seeing them without proof may stimulate the reader to pursue them at a more advanced level in the literature. References to reasonably accessible proofs are given in each case.

The notation used in this text is fairly standard, and a real attempt has been made to keep it as simple as possible. A list of commonly used symbols with definitions and page references follows the table of contents. The end of each proof is indicated by a hollow square, \square.

There are many exercises of varying degrees of difficulty. Only the most extraordinary student could solve them all on first reading. Most of the problems give standard practice in using the text material or complete arguments outlined in the text. A few provide real extensions of the ideas covered in the text and represent worthy projects for undergraduate research and independent study beyond the scope of a normal course.

I make no claim of originality for the concepts, theorems, or proofs presented in this text. I am indebted to Wayne Patty for introducing me to algebraic topology and to the many authors and research mathematicians whose work I have read and used.

I am deeply grateful to Stephen Puckette and Paul Halmos for their help and encouragement during the preparation of this text. I am also indebted to Mrs. Barbara Hart for her patience and careful work in typing the manuscript.

Fred H. Croom

Contents

List of Symbols ix
Chapter 1
Geometric Complexes and Polyhedra 1
1.1 Introduction 1
1.2 Examples 3
1.3 Geometric Complexes and Polyhedra 8
1.4 Orientation of Geometric Complexes 12
Chapter 2
Simplicial Homology Groups 16
2.1 Chains, Cycles, Boundaries, and Homology Groups 16
2.2 Examples of Homology Groups 19
2.3 The Structure of Homology Groups 22
2.4 The Euler-Poincaré Theorem 25
2.5 Pseudomanifolds and the Homology Groups of S^{n} 30
Chapter 3
Simplicial Approximation 39
3.1 Introduction 39
3.2 Simplicial Approximation 40
3.3 Induced Homomorphisms on the Homology Groups 50
3.4 The Brouwer Fixed Point Theorem and Related Results 53
Chapter 4
The Fundamental Group 60
4.1 Introduction 60
4.2 Homotopic Paths and the Fundamental Group 61
4.3 The Covering Homotopy Property for S^{1} 69
4.4 Examples of Fundamental Groups 74
4.5 The Relation Between $H_{1}(K)$ and $\pi_{1}(|K|)$ 78
Chapter 5
Covering Spaces 83
5.1 The Definition and Some Examples 83
5.2 Basic Properties of Covering Spaces 86
5.3 Classification of Covering Spaces 91
5.4 Universal Covering Spaces 96
5.5 Applications 99
Chapter 6
The Higher Homotopy Groups 105
6.1 Introduction 105
6.2 Equivalent Definitions of $\pi_{n}\left(X, x_{0}\right)$ 106
6.3 Basic Properties and Examples 111
6.4 Homotopy Equivalence 118
6.5 Homotopy Groups of Spheres 121
6.6 The Relation Between $H_{n}(K)$ and $\pi_{n}(|K|)$ 124
Chapter 7
Further Developments in Homology 128
7.1 Chain Derivation 128
7.2 The Lefschetz Fixed Point Theorem 136
7.3 Relative Homology Groups 139
7.4 Singular Homology Theory 145
7.5 Axioms for Homology Theory 149
Appendix 1. Set Theory 155
Appendix 2. Point-set Topology 158
Appendix 3. Algebra 163
Bibliography 169
Index 173

List of Symbols

\in	element of 155		
\notin	not an element of 155		
\subset	contained in or subset of 155		
$=$	equals		
\neq	not equal to		
\varnothing	empty set 155		
$\{x: \ldots\}$	set of all x such that $\ldots \quad 155$		
\cup	union of sets 155		
\cap	intersection of sets 155		
\bar{A}	closure of a set 158		
$X \backslash A$	complement of a set 155		
$A \times B, \Pi X_{a}$	product of sets 155,157		
$\|x\|$	absolute value of a real or complex		
	number		
$\\|x\\|$	Euclidean norm 161		
\mathbb{R}	the real line 162		
$\mathbb{R} n$	n-dimensional Euclidean space $\quad 161$		
\mathbb{C}	the complex plane 69		
B^{n}	n-dimensional ball 162		
S^{n}	n-dimensional sphere 162		
$\left(x_{1}, x_{2}, \ldots, x_{n}\right)$	n-tuple 155		
$f: X \rightarrow Y$	function from X to $Y \quad 156$		
$g f: X \rightarrow Z$	composition of functions 156		
$\left.f\right\|_{C}$	restriction of a function 157		
$f(A)$	image of a set 156		
$f^{-1}(B)$	inverse image of a set 160		
$f^{-1}(y)$	inverse image of a point		
f^{-1}	inverse function 156		
$<, \leq$			

Geometric Complexes and Polyhedra

1.1 Introduction

Topology is an abstraction of geometry; it deals with sets having a structure which permits the definition of continuity for functions and a concept of "closeness" of points and sets. This structure, called the "topology" on the set, was originally determined from the properties of open sets in Euclidean spaces, particularly the Euclidean plane.

It is assumed in this text that the reader has some familiarity with basic topology, including such concepts as open and closed sets, compactness, connectedness, metrizability, continuity, and homeomorphism. All of these are normally studied in what is called "point-set topology"; an outline of the prerequisite information is contained in Appendix 2.

Point-set topology was strongly influenced by the general theory of sets developed by Georg Cantor around 1880, and it received its primary impetus from the introduction of general metric spaces by Maurice Frechet in 1906 and the appearance of the book Grundzüge der Mengenlehre by Felix Hausdorff in 1912.

Although the historical origins of algebraic topology were somewhat different, algebraic topology and point-set topology share a common goal: to determine the nature of topological spaces by means of properties which are invariant under homeomorphisms. Algebraic topology describes the structure of a topological space by associating with it an algebraic system, usually a group or a sequence of groups. For a space X, the associated group $G(X)$ reflects the geometric structure of X, particularly the arrangement of the "holes" in the space. There is a natural interplay between continuous maps $f: X \rightarrow Y$ from one space to another and algebraic homomorphisms $f^{*}: G(X) \rightarrow G(Y)$ on their associated groups.

Consider, for example, the unit circle S^{1} in the Euclidean plane. The circle has one hole, and this is reflected in the fact that its associated group is generated by one element. The space composed of two tangent circles (a figure eight) has two holes, and its associated group requires two generating elements.

The group associated with any space is a topological invariant of that space; in other words, homeomorphic spaces have isomorphic groups. The groups thus give a method of comparing spaces. In our example, the circle and figure eight are not homeomorphic since their associated groups are not isomorphic.

Ideally, one would like to say that any topological spaces sharing a specified list of topological properties must be homeomorphic. Theorems of this type are called classification theorems because they divide topological spaces into classes of topologically equivalent members. This is the sort of theorem to which topology aspires, thus far with limited success. The reader should be warned that an isomorphism between groups does not, in general, guarantee that the associated spaces are homeomorphic.

There are several methods by which groups can be associated with topological spaces, and we shall examine two of them, homology and homotopy, in this course. The purpose is the same in each case: to let the algebraic structure of the group reflect the topological and geometric structures of the underlying space. Once the groups have been defined and their basic properties established, many beautiful geometric theorems can be proved by algebraic arguments. The power of algebraic topology is derived from its use of algebraic machinery to solve problems in topology and geometry.

The systematic study of algebraic topology was initiated by the French mathematician Henri Poincaré (1854-1912) in a series of papers ${ }^{1}$ during the years 1895-1901. Algebraic topology, or analysis situs, did not develop as a branch of point-set topology. Poincaré's original paper predated Frechet's introduction of general metric spaces by eleven years and Hausdorff's classic treatise on point-set topology, Grundzüge der Mengenlehre, by seventeen years. Moreover, the motivations behind the two subjects were different. Point-set topology developed as a general, abstract theory to deal with continuous functions in a wide variety of settings. Algebraic topology was motivated by specific geometric problems involving paths, surfaces, and geometry in Euclidean spaces. Unlike point-set topology, algebraic topology was not an outgrowth of Cantor's general theory of sets. Indeed, in an address to the International Mathematical Congress of 1908, Poincaré referred to point-set theory as a "disease" from which future generations would recover.

Poincaré shared with David Hilbert (1862-1943) the distinction of being the leading mathematician of his time. As we shall see, Poincaré's geometric

[^0]insight was nothing short of phenomenal. He made significant contributions in differential equations (his original specialty), complex variables, algebra, algebraic geometry, celestial mechanics, mathematical physics, astronomy, and topology. He wrote thirty books and over five hundred papers on new mathematics. The volume of Poincare's mathematical works is surpassed only by that of Leonard Euler's. In addition, Poincaré was a leading writer on popular science and philosophy of mathematics.

In the remaining sections of this chapter we shall examine some of the types of problems that led to the introduction of algebraic topology and define polyhedra, the class of spaces to which homology groups will be applied in Chapter 2.

1.2 Examples

The following are offered as examples of the types of problems that led to the development of algebraic topology by Poincaré. They are hard problems, but the reader who has not studied them before has no cause for alarm. We will use them only to illustrate the mathematical climate of the 1890 's and to motivate Poincaré's fundamental ideas.

1.2.1 The Jordan Curve Theorem and Related Problems

The French mathematician Camille Jordan (1858-1922) was first to point out that the following "intuitively obvious" fact required proof, and the resulting theorem has been named for him.

Jordan Curve Theorem. A simple closed curve C (i.e., a homeomorphic image of a circle) in the Euclidean plane separates the plane into two open connected sets with C as their common boundary. Exactly one of these open connected sets (the "inner region") is bounded.

Jordan proposed this problem in 1892, but it was not solved by him. That distinction belongs to Oswald Veblen (1880-1960), one of the guiding forces in the development of algebraic topology, who published the first correct solution in 1905 [55].

Lest the reader be misguided by his intuition, we present the following related conjecture which was also of interest at the turn of the century.

Conjecture. Suppose D is a subset of the Euclidean plane \mathbb{R}^{2} and is the boundary of each component of its complement $\mathbb{R}^{2} \backslash D$. If $\mathbb{R}^{2} \backslash D$ has a bounded component, then D is a simple closed curve.

This conjecture was proved false by L. E. J. Brouwer (1881-1966) at about the same time that Veblen gave the first correct proof of the Jordan Curve Theorem. The following counterexample is due to the Japanese geometer Yoneyama (1917) and is known as the Lakes of Wada.

Figure 1.1

Consider the double annulus in Figure 1.1 as an island with two lakes having water of distinct colors surrounded by the ocean. By constructing canals from the ocean and the lakes into the island, we shall define three connected open sets. First, canals are constructed bringing water from the sea and from each lake to within distance $d=1$ of each dry point of the island. This process is repeated for $d=\frac{1}{2}, \frac{1}{4}, \ldots,\left(\frac{1}{2}\right)^{n}, \ldots$, with no intersection of canals. The two lakes with their canal systems and the ocean with its canal form three regions in the plane with the remaining "dry land" D as common boundary. Since D separates the plane into three connected open sets instead of two, the Jordan Curve Theorem shows that D is not a simple closed curve.

1.2.2 Integration on Surfaces and Multiply-connected Domains

Consider the annulus in Figure 1.2 enclosed between the two circles H and K.

Figure 1.2
We are interested in evaluating curve integrals

$$
\int_{C} p d x+q d y
$$

where $p=p(x, y)$ and $q=q(x, y)$ are continuous functions of two variables whose partial derivatives are continuous and satisfy the relation

$$
\frac{\partial p}{\partial y}=\frac{\partial q}{\partial x} .
$$

Since surve C_{1} can be continuously deformed to a point in the annulus, then

$$
\int_{C_{1}} p d x+q d y=0
$$

Thus C_{1} is considered to be negligible as far as curve integrals are concerned, and we say that C_{1} is "equivalent" to a constant path.

Figure 1.3
Green's Theorem insures that the integrals over curves C_{2} and C_{3} of Figure 1.3 are equal, so we can consider C_{2} and C_{3} to be "equivalent."

How can we give a more precise meaning to this idea of equivalence of paths? There are several possible ways, and two of them form the basic ideas of algebraic topology. First, we might consider C_{2} and C_{3} equivalent because each can be tranisformed continuously into the other within the annulus. This is the basic idea of homotopy theory, and we would say that C_{2} and C_{3} are homotopic paths. Curve C_{1} is homotopic to a trivial (or constant) path since it can be shrunk to a point. Note that C_{2} and C_{1} are not homotopic paths since C_{2} cannot be pulled across the "hole" that it encloses. For the same reason, C_{1} is not homotopic to C_{3}.

Another approach is to say that C_{2} and C_{3} are equivalent because they form the boundary of a region enclosed in the annulus. This second idea is the basis of homology theory, and C_{2} and C_{3} would be called homologous paths. Curve C_{1} is homologous to zero since it is the entire boundary of a region enclosed in the annulus. Note that C_{1} is not homologous to either C_{2} or C_{3}.

The ideas of homology and homotopy were introduced by Poincaré in his original paper Analysis Situs [49] in 1895. We shall consider both topics in some detail as the course progresses.

1.2.3 Classification of Surfaces and Polyhedra

Consider the problem of explaining the difference between a sphere S^{2} and a torus T as shown in Figure 1.4. The difference, of course, is apparent: the sphere has one hole, and the torus has two. Moreover, the hole in the sphere is somehow different from those in the torus. The problem is to explain this difference in a mathematically rigorous way which can be applied to more complicated and less intuitive examples.

Sphere S^{2}

Torus T

Figure 1.4

Consider the idea of homotopy. Any simple closed curve on the sphere can be continuously deformed to a point on the spherical surface. Meridian and parallel circles on the torus do not have this property. (These facts, like the Jordan Curve Theorem, are "intuitively obvious" but difficult to prove.)

From the homology viewpoint, every simple closed curve on the sphere is the boundary of the portion of the spherical surface that it encloses and also the boundary of the complementary region. However, a meridian or parallel circle on the torus is not the boundary of two regions of the torus since such a circle does not separate the torus. Thus any simple closed curve on the sphere is homologous to zero, but meridian and parallel circles on the torus are not homologous to zero.

The following intuitive example will make more precise this still vague idea of homology. It is based on the modulo 2 homology theory introduced by Heinrich Tietze in 1908. Consider the configuration shown in Figure 1.5 consisting of triangles $\langle a b c\rangle,\langle b c d\rangle,\langle a b d\rangle$, and $\langle a c d\rangle$, edges $\langle a b\rangle,\langle a c\rangle$, $\langle a d\rangle,\langle b c\rangle,\langle b d\rangle,\langle c d\rangle,\langle d f\rangle,\langle d e\rangle,\langle e f\rangle$, and $\langle f g\rangle$, and vertices $\langle a\rangle,\langle b\rangle,\langle c\rangle$, $\langle d\rangle,\langle e\rangle,\langle f\rangle$, and $\langle g\rangle$. The interior of the tetrahedron and the interior of triangle 〈def〉 are not included. This type of space is called a "polyhedron"; the definition of this term will be given in the next section.

Figure 1.5
A 2-chain is a formal linear combination of triangles with coefficients modulo 2. A 1 -chain is a formal linear combination of edges with coefficients modulo 2 . The 0 -chains are similarly defined for vertices. To simplify the
notation, we omit those terms with coefficient 0 and consider only those terms in a chain with coefficient 1 . Thus we write

$$
\langle a b c\rangle+\langle a b d\rangle
$$

to denote the 2-chain

$$
1 \cdot\langle a b c\rangle+1 \cdot\langle a b d\rangle+0 \cdot\langle a c d\rangle+0 \cdot\langle b c d\rangle .
$$

The boundary operator ∂ is defined as follows for chains of length one and extended linearly:

$$
\begin{aligned}
\partial\langle a b c\rangle & =\langle a b\rangle+\langle a c\rangle+\langle b c\rangle \\
\partial\langle a b\rangle & =\langle a\rangle+\langle b\rangle .
\end{aligned}
$$

A p-chain $c_{p}(p=1$ or 2) is a boundary means that there is a $(p+1)$ chain c_{p+1} with

$$
\partial c_{p+1}=c_{p} .
$$

We think of this intuitively as indicating that the union of the members of c_{p} forms the point-set boundary of the union of the members of c_{p+1}. For example,

$$
\langle a b\rangle+\langle b c\rangle+\langle c d\rangle+\langle d a\rangle=\partial(\langle a b c\rangle+\langle a c d\rangle),
$$

since terms which occur twice cancel modulo 2 . For any 2 -chain c_{2}, one easily observes that

$$
\partial \partial c_{2}=0 .
$$

A p-cycle $\left(p=1\right.$ or 2) is a p-chain c_{p} with $\partial c_{p}=0$. Since $\partial \partial$ is the trivial operator, then every boundary is a cycle. Intuitively speaking, a cycle is a chain whose terms either close a "hole" or form the boundary of a chain of the next higher dimension. We investigate the "holes" in the polyhedron by determining the cycles which are not boundaries.

Except for the 2-chain having all coefficients zero,

$$
\langle a b c\rangle+\langle b c d\rangle+\langle a c d\rangle+\langle a b d\rangle
$$

is the only 2 -cycle in our example, and it is nonbounding since the interior of the tetrahedron is not included. The reader should check to see that

$$
z=\langle d f\rangle+\langle f e\rangle+\langle d e\rangle
$$

is a nonbounding 1 -cycle and that any other 1 -cycle is either a boundary or the sum of z and a boundary. Thus any 1 -cycle is homologous to zero or homologous to the fundamental 1 -cycle z. This indicates the presence of two holes in the polyhedron, one enclosed by the nonbounding 2 -cycle and one enclosed by the nonbounding 1 -cycle z.

In Chapter 2 we shall make rigorous the notions of homology, chain, cycle, and boundary and use them to study the structure of general polyhedra.

1.3 Geometric Complexes and Polyhedra

We turn now to the problem of defining polyhedra, the subspaces of Euclidean n-space \mathbb{R}^{n} on which homology theory will be developed. Intuitively, a polyhedron is a subset of \mathbb{R}^{n} composed of vertices, line segments, triangles, tetrahedra, and so on joined together as in the example of mod 2 homology in the preceding section. Naturally we must allow for higher dimensions and considerable generality in the definition.

For each positive integer n, we shall consider n-dimensional Euclidean space

$$
\mathbb{R}^{n}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right): \text { each } x_{i} \text { is a real number }\right\}
$$

as a vector space over the field \mathbb{R} of real numbers and use some basic ideas from the theory of vector spaces. The reader who has not studied vector spaces should consult Appendix 3 before proceeding.

Definition. A set $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ of $k+1$ points in \mathbb{R}^{n} is geometrically independent means that no hyperplane of dimension $k-1$ contains all the points.

Thus a set $\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ is geometrically independent means that all the points are distinct, no three of them lie on a line, no four of them lie in a plane, and, in general, no $p+1$ of them lie in a hyperplane of dimension $p-1$ or less.

Example 1.1. The set $\left\{a_{0}, a_{1}, a_{2}\right\}$ in Figure 1.6(a) is geometrically independent since the only hyperplane in \mathbb{R}^{2} containing all the points is the entire plane. The set $\left\{b_{0}, b_{1}, b_{2}\right\}$ in Figure $1.6(\mathrm{~b})$ is not geometrically independent since all three points lie on a line, a hyperplane of dimension 1.

Definition. Let $\left\{a_{0}, \ldots, a_{k}\right\}$ be a set of geometrically independent points in \mathbb{R}^{n}. The k-dimensional geometric simplex or k-simplex, σ^{k}, spanned by

Figure 1.6
$\left\{a_{0}, \ldots, a_{k}\right\}$ is the set of all points x in \mathbb{R}^{n} for which there exist nonnegative real numbers $\lambda_{0}, \ldots, \lambda_{k}$ such that

$$
x=\sum_{i=0}^{k} \lambda_{i} a_{i}, \quad \sum_{i=0}^{k} \lambda_{i}=1
$$

The numbers $\lambda_{0}, \ldots, \lambda_{k}$ are the barycentric coordinates of the point x. The points a_{0}, \ldots, a_{k} are the vertices of σ^{k}. The set of all points x in σ^{k} with all barycentric coordinates positive is called the open geometric k-simplex spanned by $\left\{a_{0}, \ldots, a_{k}\right\}$.

Observe that a 0 -simplex is simply a singleton set, a 1 -simplex is a closed line segment, a 2 -simplex is a triangle (interior and boundary), and a 3simplex is a tetrahedron (interior and boundary). An open 0 -simplex is a singleton set, an open 1-simplex is a line segment with end points removed, an open 2 -simplex is the interior of a triangle, and an open 3-simplex is the interior of a tetrahedron.

Definition. A simplex σ^{k} is a face of a simplex $\sigma^{n}, k \leq n$, means that each vertex of σ^{k} is a vertex of σ^{n}. The faces of σ^{n} other than σ^{n} itself are called proper faces.

If σ^{n} is the simplex with vertices a_{0}, \ldots, a_{n}, we shall write

$$
\sigma^{n}=\left\langle a_{0} \ldots a_{n}\right\rangle
$$

Then the faces of the 2 -simplex $\left\langle a_{0} a_{1} a_{2}\right\rangle$ are the 2 -simplex itself, the 1 simplexes $\left\langle a_{0} a_{1}\right\rangle,\left\langle a_{1} a_{2}\right\rangle$, and $\left\langle a_{0} a_{2}\right\rangle$, and the 0 -simplexes $\left\langle a_{0}\right\rangle,\left\langle a_{1}\right\rangle$, and $\left\langle a_{2}\right\rangle$.

Definition. Two simplexes σ^{m} and σ^{n} are properly joined provided that they do not intersect or the intersection $\sigma^{m} \cap \sigma^{n}$ is a face of both σ^{m} and σ^{n}.

Figure 1.7 Examples of proper joining

Figure 1.8 Examples of improper joining

Definition. A geometric complex (or simplicial complex or complex) is a finite family K of geometric simplexes which are properly joined and have the property that each face of a member of K is also a member of K. The dimension of K is the largest positive integer r such that K has an r-simplex. The union of the members of K with the Euclidean subspace topology is denoted by $|K|$ and is called the geometric carrier of K or the polyhedron associated with K.

We shall be concerned, for the purposes of homology, with geometric complexes and polyhedra composed of a finite number of simplexes as defined above. Greater generality, at the expense of greater complexity, can be obtained by allowing an infinite number of simplexes. The reader interested in this generalization should consult the text by Hocking and Young [9].

There are several reasons for restricting our initial considerations to polyhedra. They are easily visualized and are sufficiently general to allow meaningful applications. Poincaré realized this and gave a definition of complex in his second paper on algebraic topology, Complément à l'Analysis Situs [50], in 1899. Furthermore, polyhedra are more general than they appear at first glance. A theorem of P. S. Alexandroff (1928) insures that every compact metric space can be indefinitely approximated by polyhedra. This allows us to carry over some topological theorems about polyhedra to compacta by suitable limiting processes. After a thorough introduction to homology theory of polyhedra, we shall look at one of its generalizations, singular homology theory, which applies to all topological spaces.

Definition. Let X be a topological space. If there is a geometric complex K whose geometric carrier $|K|$ is homeomorphic to X, then X is said to be a triangulable space, and the complex K is called a triangulation of X.

Definition. The closure of a k-simplex $\sigma^{k}, \mathrm{Cl}\left(\sigma^{k}\right)$, is the complex consisting of σ^{k} and all its faces.

Definition. If K is a complex and r a positive integer, the r-skeleton of K is the complex consisting of all simplexes of K of dimension less than or equal to r.

Example 1.2. (a) Consider a 3 -simplex $\sigma^{3}=\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle$. The 2 -skeleton of the closure of σ^{3} is the complex K whose simplexes are the proper faces of σ^{3}. The geometric carrier of K is the boundary of a tetrahedron and is therefore homeomorphic to the 2 -sphere

$$
S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: \sum_{i=1}^{3} x_{i}^{2}=1\right\} .
$$

Thus S^{2} is triangulable with K as one triangulation.
(b) The n-sphere

$$
S^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x_{i}^{2}=1\right\}
$$

is a triangulable space for $n \geq 0$. The n-skeleton of the closure of an $(n+1)$ simplex σ^{n+1} is one triangulation of S^{n}. The reader should verify this by solving Exercise 12.
(c) The Möbius strip is obtained by identifying two opposite ends of a rectangle after twisting it through 180 degrees. This can easily be done with a strip of paper. Figure 1.9 shows a triangulation of the Möbius strip. It is understood that the two vertices labeled a_{0} are identified, the two vertices labeled a_{3} are identified, corresponding points of the two segments $\left\langle a_{0} a_{3}\right\rangle$ are identified, and the resulting quotient space, the geometric carrier of the triangulation, is considered as a subspace of \mathbb{R}^{3}.

Figure 1.9
(d) A torus is obtained from a cylinder by identifying corresponding points of the circular ends with no twisting, as shown in Figure 1.10.

Figure 1.10

Verify the fact that the following diagram, with proper identifications, gives a triangulation of the torus.

Figure 1.11

1.4 Orientation of Geometric Complexes

Definition. An oriented n-simplex, $n \geq 1$, is obtained from an n-simplex $\sigma^{n}=\left\langle a_{0} \ldots a_{n}\right\rangle$ by choosing an ordering for its vertices. The equivalence class of even permutations of the chosen ordering determines the positively oriented simplex $+\sigma^{n}$ while the equivalence class of odd permutations determines the negatively oriented simplex $-\sigma^{n}$. An oriented geometric complex is obtained from a geometric complex by assigning an orientation to each of its simplexes.

If vertices a_{0}, \ldots, a_{p} of a complex K are the vertices of a p-simplex σ^{p}, then the symbol $+\left\langle a_{0} \ldots a_{p}\right\rangle$ denotes the class of even permutations of the indicated order a_{0}, \ldots, a_{p} and $-\left\langle a_{0} \ldots a_{p}\right\rangle$ denotes the class of odd permutations. If we wanted the class of even permutations of this order to determine the positively oriented simplex, then we would write

$$
+\sigma^{p}=\left\langle a_{0} \ldots a_{p}\right\rangle
$$

or

$$
+\sigma^{p}=+\left\langle a_{0} \ldots a_{p}\right\rangle
$$

Since ordering vertices requires more than one vertex, we need not worry about orienting 0 -simplexes. It will be convenient, however, to consider a 0 -simplex $\left\langle a_{0}\right\rangle$ as positively oriented.

Example 1.3. (a) In the 1 -simplex $\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle$, let us agree that the ordering is given by $a_{0}<a_{1}$. Then

$$
+\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle, \quad-\sigma^{1}=\left\langle a_{1} a_{0}\right\rangle .
$$

If we imagine that the segment $\left\langle a_{i} a_{j}\right\rangle$ is directed from a_{i} toward a_{j}, then $\left\langle a_{0} a_{1}\right\rangle$ and $\left\langle a_{1} a_{0}\right\rangle$ have opposite directions.
(b) In the 2 -simplex $\sigma^{2}=\left\langle a_{0} a_{1} a_{2}\right\rangle$, assign the order $a_{0}<a_{1}<a_{2}$. Then $\left\langle a_{0} a_{1} a_{2}\right\rangle,\left\langle a_{1} a_{2} a_{0}\right\rangle$, and $\left\langle a_{2} a_{0} a_{1}\right\rangle$ all denote $+\sigma^{2}$, while $\left\langle a_{0} a_{2} a_{1}\right\rangle,\left\langle a_{2} a_{1} a_{0}\right\rangle$, and $\left\langle a_{1} a_{0} a_{2}\right\rangle$ all denote $-\sigma^{2}$. (See Figure 1.12.) Then

$$
+\sigma^{2}=+\left\langle a_{0} a_{1} a_{2}\right\rangle, \quad-\sigma^{2}=-\left\langle a_{0} a_{1} a_{2}\right\rangle=+\left\langle a_{0} a_{2} a_{1}\right\rangle
$$

(Here $+\left\langle a_{0} a_{2} a_{1}\right\rangle$ denotes the class of even permutations of a_{0}, a_{2}, a_{1}, and $-\left\langle a_{0} a_{1} a_{2}\right\rangle$ denotes the class of odd permutations of a_{0}, a_{1}, and a_{2}.)

Figure 1.12

One method of orienting a complex is to choose an ordering for all its vertices and to use this ordering to induce an ordering on the vertices of each simplex. This is not the only method, however. An orientation may be assigned to each simplex individually without regard to the manner in which the simplexes are joined. From this point on, we assume that each complex under consideration is assigned some orientation.

Here is a word of comfort for those who suspect that different orientations will introduce great complexity into our considerations: they won't. We are developing a method of describing the topological structure of a polyhedron $|K|$ by determining the "holes" and "twisting" which occur in the associated complex K. In the final analysis, the determining factor is the topological structure of $|K|$ and not the particular triangulation nor the particular orientation. A triangulation is a convenient method of visualizing the polyhedron and converting it to a standard form. An orientation is simply a convenient vehicle for cataloguing the arrangement of the simplexes. Neither the particular triangulation nor the particular orientation makes any difference in the final outcome.

Definition. Let K be an oriented geometric complex with simplexes σ^{p+1} and $\boldsymbol{\sigma}^{\boldsymbol{p}}$ whose dimensions differ by 1 . We associate with each such pair $\left(\sigma^{p+1}, \sigma^{p}\right)$ an incidence number $\left[\sigma^{p+1}, \sigma^{p}\right]$ defined as follows: If σ^{p} is not a face of σ^{p+1}, then $\left[\sigma^{p+1}, \sigma^{p}\right]=0$. Suppose σ^{p} is a face of σ^{p+1}. Label the vertices a_{0}, \ldots, a_{p} of σ^{p} so that $+\sigma^{p}=+\left\langle a_{0} \ldots a_{p}\right\rangle$. Let v denote the vertex of σ^{p+1} which is not in σ^{p}. Then $+\sigma^{p+1}= \pm\left\langle v a_{0} \ldots a_{p}\right\rangle$. If $+\sigma^{p+1}=+\left\langle v a_{0} \ldots a_{p}\right\rangle$, then $\left[\sigma^{p+1}, \sigma^{p}\right]=1$. If $+\sigma^{p+1}=-\left\langle v a_{0} \ldots a_{p}\right\rangle$, then $\left[\sigma^{p+1}, \sigma^{p}\right]=-1$.

Example 1.4. (a) If $+\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle$, then $\left[\sigma^{1},\left\langle a_{0}\right\rangle\right]=-1$ and $\left[\sigma^{1},\left\langle a_{1}\right\rangle\right]=1$.
(b) If $+\sigma^{2}=+\left\langle a_{0} a_{1} a_{2}\right\rangle,+\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle$ and $+\tau^{1}=\left\langle a_{0} a_{2}\right\rangle$, then $\left[\sigma^{2}, \sigma^{1}\right]$ $=1$ and $\left[\sigma^{2}, \tau^{1}\right]=-1$.

Note that in Figure 1.12 the arrow indicating the orientation of σ^{2} agrees with the orientation of σ^{1} but disagrees with the orientation of τ^{1}.

Theorem 1.1. Let K be an oriented complex, σ^{p} an oriented p-simplex of K and $\sigma^{p-2} a(p-2)$-face of σ^{p}. Then

$$
\sum\left[\sigma^{p}, \sigma^{p-1}\right]\left[\sigma^{p-1}, \sigma^{p-2}\right]=0, \quad \sigma^{p-1} \in K
$$

Proof. Label the vertices v_{0}, \ldots, v_{p-2} of σ^{p-2} so that $+\sigma^{p-2}=\left\langle v_{0} \ldots v_{p-2}\right\rangle$. Then σ^{p} has two additional vertices a and b, and we may assume that $+\sigma^{p}=$ $\left\langle a b v_{0} \ldots v_{p-2}\right\rangle$. Nonzero terms occur in the sum for only two values of σ^{p-1}, namely

$$
\sigma_{1}^{p-1}=\left\langle a v_{0} \ldots v_{p-2}\right\rangle, \quad \sigma_{2}^{p-1}=\left\langle b v_{0} \ldots v_{p-2}\right\rangle .
$$

We must now treat four cases determined by the orientations of σ_{1}^{p-1} and σ_{2}^{p-1}.

Case I. Suppose that

$$
+\sigma_{1}^{p-1}=+\left\langle a v_{0} \ldots v_{p-2}\right\rangle, \quad+\sigma_{2}^{p-1}=+\left\langle b v_{0} \ldots v_{p-2}\right\rangle .
$$

Then

$$
\begin{array}{ll}
{\left[\sigma^{p}, \sigma_{1}^{p-1}\right]=-1,} & {\left[\sigma_{1}^{p-1}, \sigma^{p-2}\right]=+1} \\
{\left[\sigma^{p}, \sigma_{2}^{p-1}\right]=+1,} & {\left[\sigma_{2}^{p-1}, \sigma^{p-2}\right]=+1,}
\end{array}
$$

so that the sum of the indicated products is 0 .
Case II. Suppose that

$$
+\sigma_{1}^{p-1}=+\left\langle a v_{0} \ldots v_{p-2}\right\rangle, \quad+\sigma_{2}^{p-1}=-\left\langle b v_{0} \ldots v_{p-2}\right\rangle .
$$

Then

$$
\begin{array}{ll}
{\left[\sigma^{p}, \sigma_{1}^{p-1}\right]=-1,} & {\left[\sigma_{1}^{p-1}, \sigma^{p-2}\right]=+1} \\
{\left[\sigma^{p}, \sigma_{2}^{p-1}\right]=-1,} & {\left[\sigma_{2}^{p-1}, \sigma^{p-2}\right]=-1}
\end{array}
$$

so that the desired conclusion holds in this case also.
The remaining cases are left as an exercise.
Definition. In the oriented complex K, let $\left\{\sigma_{i}^{p}\right\}_{i=1}^{\alpha p}$ and $\left\{\sigma_{i}^{p+1}\right\}_{i=1}^{\alpha p}+1$ denote the
p-simplexes and $(p+1)$-simplexes of K, where α_{p} and α_{p+1} denote the
numbers of simplexes of dimensions p and $p+1$ respectively. The matrix

$$
\eta(p)=\left(\eta_{i j}(p)\right)
$$

where $\eta_{i j}(p)=\left[\sigma_{i}^{p+1}, \sigma_{j}^{p}\right]$, is called the pth incidence matrix of K.
Incidence matrices were used to describe the arrangement of simplexes in a complex during the early days of algebraic or "combinatorial" topology. They are less in vogue today because group theory has given a much more efficient method of describing the same property. The group theoretic formulation seems to have been suggested by the famous algebraist Emmy Noether (1882-1935) about 1925. As we shall see in Chapter 2, these groups follow quite naturally from Poincaré's original description of homology theory.

Exercises

1. Fill in the details of the mod 2 homology example given in the text.
2. Prove that a set of $k+1$ points in \mathbb{R}^{n} is geometrically independent if and only if no $p+1$ of the points lie in a hyperplane of dimension less than or equal to $p-1$.
3. Prove that a set $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ of points in \mathbb{R}^{n} is geometrically independent if and only if the set of vectors $\left\{a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right\}$ is linearly independent.
4. Show that the barycentric coordinates of each point in a simplex are unique.
5. A subset B of \mathbb{R}^{n} is convex provided that B contains every line segment having two of its members as end points.
(a) If a and b are points in \mathbb{R}^{n}, show that the line segment L joining a and b consists of all points x of the form

$$
x=t a+(1-t) b
$$

where t is a real number with $0 \leq t \leq 1$.
(b) Show that every simplex is a convex set.
(c) Prove that a simplex σ is the smallest convex set which contains all vertices of σ.
6. How many faces does an n-simplex have? Prove that your answer is correct.
7. Verify that the r-skeleton of a geometric complex is a geometric complex.
8. The Klein Bottle is obtained from a cylinder by identifying the two circular ends with the orientation of the two circles reversed. (It cannot be constructed in 3-dimensional space without self-intersection.) Modify the triangulation of the torus given in the text to produce a triangulation of the Klein Bottle.
9. Let K denote the closure of a 3 -simplex $\sigma^{3}=\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle$ with vertices ordered by

$$
a_{0}<a_{1}<a_{2}<a_{3} .
$$

Use this given order to induce an orientation on each simplex of K, and determine all incidence numbers associated with K.
10. Complete the proof of Theorem 1 .
11. In the triangulation M of the Möbius strip in Figure 1.9, let us call a 1 -simplex interior if it is a face of two 2 -simplexes. For each interior simplex σ_{i}, let $\bar{\sigma}_{i}$ and $\overline{\bar{\sigma}}_{i}$ denote the two 2 -simplexes of which σ_{i} is a face. Show that it is not possible to orient M so that

$$
\left[\bar{\sigma}_{i}, \sigma_{i}\right]=-\left[\overline{\bar{\sigma}}_{i}, \sigma_{i}\right]
$$

for each interior simplex σ_{i}. (This result is sometimes expressed by saying that M is nonorientable or that it has no coherent orientation.)
12. Let $\sigma^{n+1}=\left\langle a_{0} \ldots a_{n+1}\right\rangle$ be the $(n+1)$-simplex in \mathbb{R}^{n+1} with vertices as follows: a_{0} is the origin and, for $i \geq 1, a_{i}$ is the point with i th coordinate 1 and all other coordinates 0 . Let K denote the n-skeleton of the closure of σ^{n+1}. Show that S^{n} is triangulable by exhibiting a homeomorphism between S^{n} and $|K|$. (Hint: If σ^{n+1} is considered as a subspace of \mathbb{R}^{n+1}, then $|K|$ is its point-set boundary.)

2 Simplicial Homology Groups

Having defined polyhedron, complex, and orientation for complexes in the preceding chapter, we are now ready for the precise definition of the homology groups. Intuitively speaking, the homology groups of a complex describe the arrangement of the simplexes in the complex thereby telling us about the "holes" in the associated polyhedron.

Whether expressly stated or not, we assume that each complex under consideration has been assigned an orientation.

2.1 Chains, Cycles, Boundaries, and Homology Groups

Definition. Let K be an oriented simplicial complex. If p is a positive integer, a p-dimensional chain, or p-chain, is a function c_{p} from the family of oriented p-simplexes of K to the integers such that, for each p-simplex σ^{p}, $c_{p}\left(-\sigma^{p}\right)=-c_{p}\left(+\sigma^{p}\right)$. A 0 -dimensional chain or 0 -chain is a function from the 0 -simplexes of K to the integers. With the operation of pointwise addition induced by the integers, the family of p-chains forms a group called the p-dimensional chain group of K. This group is denoted by $C_{p}(K)$.

An elementary p-chain is a p-chain c_{p} for which there is a p-simplex σ^{p} such that $c_{p}\left(\tau^{p}\right)=0$ for each p-simplex τ^{p} distinct from σ^{p}. Such an elementary p-chain is denoted by $g \cdot \sigma^{p}$ where $g=c_{p}\left(+\sigma^{p}\right)$. With this notation, an arbitrary p-chain d_{p} can be expressed as a formal finite sum

$$
d_{p}=\sum g_{i} \cdot \sigma_{i}^{p}
$$

of elementary p-chains where the index i ranges over all p-simplexes of K.
The following facts should be observed from the definition of p-chains:
(a) If $c_{p}=\sum f_{i} \cdot \sigma_{i}^{p}$ and $d_{p}=\sum g_{i} \cdot \sigma_{i}^{p}$ are two p-chains on K, then

$$
c_{p}+d_{p}=\sum\left(f_{i}+g_{i}\right) \cdot \sigma_{i}^{p}
$$

(b) The additive inverse of the chain c_{p} in the group $C_{p}(K)$ is the chain $-c_{p}=\sum-f_{i} \cdot \sigma_{i}^{p}$.
(c) The chain group $C_{p}(K)$ is isomorphic to the direct sum of the group \mathbb{Z} of integers over the family of p-simplexes of K. That is, if K has α_{p} p-simplexes, then $C_{p}(K)$ is isomorphic to the direct sum of α_{p} copies of \mathbb{Z}. One isomorphism is given by the correspondence

$$
\sum_{i=1}^{\alpha_{p}} g_{i} \cdot \sigma_{i}^{p} \leftrightarrow\left(g_{1}, g_{2}, \ldots, g_{\alpha_{p}}\right)
$$

Algebraic systems other than the integers could be used as the coefficient set for the p-chains. Any commutative group, commutative ring, or field could be used thus making $C_{p}(K)$ a commutative group, a module, or a vector space. With two exceptions, we shall use only the integers as the coefficient set for chains. Incidentally, Poincare's original definition was given in terms of integers.

Definition. If $g \cdot \sigma^{p}$ is an elementary p-chain with $p \geq 1$, the boundary of $g \cdot \sigma^{p}$, denoted by $\partial\left(g \cdot \sigma^{p}\right)$, is defined by

$$
\partial\left(g \cdot \sigma^{p}\right)=\sum\left[\sigma^{p}, \sigma_{i}^{p-1}\right] g \cdot \sigma_{i}^{p-1}, \quad \sigma_{i}^{p-1} \in K .
$$

The boundary operator ∂ is extended by linearity to a homomorphism

$$
\partial: C_{p}(K) \rightarrow C_{p-1}(K)
$$

In other words, if $c_{p}=\sum g_{i} \cdot \sigma_{i}^{p}$ is an arbitrary p-chain, then we define

$$
\partial\left(c_{p}\right)=\sum \partial\left(g_{i} \cdot \sigma_{i}^{p}\right)
$$

The boundary of a 0 -chain is defined to be zero.
Strictly speaking, we should say that there is a boundary homomorphism

$$
\partial_{p}: C_{p}(K) \rightarrow C_{p-1}(K) .
$$

This extra subscript is cumbersome, however, and we shall usually omit it since the dimension involved is indicated by the chain group $C_{p}(K)$.

Theorem 2.1. If K is an oriented complex and $p \geq 2$, then the composition $\partial \partial: C_{p}(K) \rightarrow C_{p-2}(K)$ in the diagram

$$
C_{p}(K) \xrightarrow{\partial} C_{p-1}(K) \xrightarrow{\partial} C_{p-2}(K)
$$

is the trivial homomorphism.
Proof. We must prove that $\partial \partial\left(c_{p}\right)=0$ for each p-chain. To do this, it is sufficient to show that $\partial \partial\left(g \cdot \sigma^{p}\right)=0$ for each elementary p-chain $g \cdot \sigma^{p}$.

Observe that

$$
\begin{aligned}
\partial \partial\left(g \cdot \sigma^{p}\right) & =\partial\left(\sum_{\sigma p^{-1} \in K}\left[\sigma^{p}, \sigma_{i}^{p-1}\right] g \cdot \sigma_{i}^{p-1}\right)=\sum_{\sigma_{i}^{-1} \in K} \partial\left(\left[\sigma^{p}, \sigma_{i}^{p-1}\right] g \cdot \sigma_{i}^{p-1}\right) \\
& =\sum_{\sigma^{p}-1 \in K} \sum_{\sigma_{j}^{p-2} \in K}\left[\sigma^{p}, \sigma_{p}^{p-1}\right]\left[\sigma_{i}^{p-1}, \sigma_{j}^{p-2}\right] g \cdot \sigma_{j}^{p-2} .
\end{aligned}
$$

Reversing the order of summation and collecting coefficients of each simplex σ_{j}^{p-2} gives

$$
\partial \partial\left(g \cdot \sigma^{p}\right)=\sum_{\sigma_{j}^{p-2} \in K}\left(\sum_{\sigma_{i}^{p-1} \in K}\left[\sigma^{p}, \sigma_{i}^{p-1}\right]\left[\sigma_{i}^{p-1}, \sigma_{j}^{p-2}\right] g \cdot \sigma_{j}^{p-2}\right) .
$$

Since Theorem 1.1 insures that $\sum_{\sigma_{i}^{p-1} \in K}\left[\sigma^{p}, \sigma_{i}^{p-1}\right]\left[\sigma_{i}^{p-1}, \sigma_{j}^{p-2}\right]$ is 0 for each σ_{j}^{p-2}, it follows that $\partial \partial\left(g \cdot \sigma^{p}\right)=0$.

Definition. Let K be an oriented complex. If p is a positive integer, a p dimensional cycle on K, or p-cycle, is a p-chain z_{p} such that $\partial\left(z_{p}\right)=0$. The family of p-cycles is thus the kernel of the homomorphism $\partial: C_{p}(K) \rightarrow$ $C_{p-1}(K)$ and is a subgroup of $C_{p}(K)$. This subgroup, denoted by $Z_{p}(K)$, is called the p-dimensional cycle group of K. Since we have defined the boundary of every 0 -chain to be 0 , we now define 0 -cycle to be synonymous with 0 -chain. Thus the group $Z_{0}(K)$ of 0 -cycles is the group $C_{0}(K)$ of 0 -chains.

If $p \geq 0$, a p-chain b_{p} is a p-dimensional boundary on K, or p-boundary, if there is a $(p+1)$-chain c_{p+1} such that $\partial\left(c_{p+1}\right)=b_{p}$. The family of p-boundaries is the homomorphic image $\partial\left(C_{p+1}(K)\right)$ and is a subgroup of $C_{p}(K)$. This subgroup is called the p-dimensional boundary group of K and is denoted by $B_{p}(K)$.

If n is the dimension of K, then there are no p-chains on K for $p>n$. In this case we say that $C_{p}(K)$ is the trivial group $\{0\}$. In particular, there are no $(n+1)$-chains on K so that $C_{n+1}(K)=\{0\}$ and therefore $B_{n}(K)=\{0\}$.

The proof of the following theorem is left as an exercise:
Theorem 2.2. If K is an oriented complex, then $B_{p}(K) \subset Z_{p}(K)$ for each integer p such that $0 \leq p \leq n$, where n is the dimension of K.

We think intuitively of a p-cycle as a linear combination of p-simplexes which makes a complete circuit. The p-cycles which enclose "holes" are the interesting cycles, and they are the ones which are not boundaries of $(p+1)$ chains. We restrict our attention to nonbounding cycles and weed out the bounding ones. A p-cycle which is the boundary of a $(p+1)$-chain was said by Poincaré to be homologous to zero. The separation of cycles into these categories is accomplished by the following definition.

Definition. Two p-cycles w_{p} and z_{p} on a complex K are homologous, written $w_{p} \sim z_{p}$, provided that there is a $(p+1)$-chain c_{p+1} such that

$$
\partial\left(c_{p+1}\right)=w_{p}-z_{p}
$$

If a p-cycle t_{p} is the boundary of a $(p+1)$-chain, we say that t_{p} is homologous to zero and write $t_{p} \sim 0$.

This relation of homology for p-cycles is an equivalence relation and partitions $Z_{p}(K)$ into homology classes

$$
\left[z_{p}\right]=\left\{w_{p} \in Z_{p}(K): w_{p} \sim z_{p}\right\} .
$$

The homology class $\left[z_{p}\right.$] is actually the coset

$$
z_{p}+B_{p}(K)=\left\{z_{p}+\partial\left(c_{p+1}\right): \partial\left(c_{p+1}\right) \in B_{p}(K)\right\}
$$

Hence the homology classes are actually the members of the quotient group $Z_{p}(K) / B_{p}(K)$. We can use the quotient group structure to add homology classes.

Definition. If K is an oriented complex and p a non-negative integer, the p-dimensional homology group of K is the quotient group

$$
H_{p}(K)=Z_{p}(K) / B_{p}(K)
$$

2.2 Examples of Homology Groups

The following examples are intended to clarify the preceding definitions:
Example 2.1. Let K be the closure of a 2 -simplex $\left\langle a_{0} a_{1} a_{2}\right\rangle$ with orientation induced by the ordering $a_{0}<a_{1}<a_{2}$. Thus K has 0 -simplexes $\left\langle a_{0}\right\rangle,\left\langle a_{1}\right\rangle$, and $\left\langle a_{2}\right\rangle$, positively oriented 1 -simplexes $\left\langle a_{0} a_{1}\right\rangle,\left\langle a_{1} a_{2}\right\rangle$, and $\left\langle a_{0} a_{2}\right\rangle$ and positively oriented 2 -simplex $\left\langle a_{0} a_{1} a_{2}\right\rangle$.

A 0 -chain on K is a sum of the form

$$
c_{0}=g_{0} \cdot\left\langle a_{0}\right\rangle+g_{1} \cdot\left\langle a_{1}\right\rangle+g_{2} \cdot\left\langle a_{2}\right\rangle
$$

where g_{0}, g_{1}, and g_{2} are integers. Hence $C_{0}(K)=Z_{0}(K)$ is isomorphic to the direct sum $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ of three copies of the group of integers. A 1 -chain on K is a sum of the form

$$
c_{1}=h_{0} \cdot\left\langle a_{0} a_{1}\right\rangle+h_{1} \cdot\left\langle a_{1} a_{2}\right\rangle+h_{2} \cdot\left\langle a_{0} a_{2}\right\rangle
$$

where h_{0}, h_{1}, and h_{2} are integers, so $C_{1}(K)$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. Also,

$$
\begin{equation*}
\partial\left(c_{1}\right)=\left(-h_{0}-h_{2}\right) \cdot\left\langle a_{0}\right\rangle+\left(h_{0}-h_{1}\right) \cdot\left\langle a_{1}\right\rangle+\left(h_{1}+h_{2}\right) \cdot\left\langle a_{2}\right\rangle . \tag{1}
\end{equation*}
$$

Hence c_{1} is a 1-cycle if and only if h_{0}, h_{1}, and h_{2} satisfy the equations

$$
-h_{0}-h_{2}=0, \quad h_{0}-h_{1}=0, \quad h_{1}+h_{2}=0
$$

This system gives $h_{0}=h_{1}=-h_{2}$ so that the 1-cycles are chains of the form

$$
\begin{equation*}
h \cdot\left\langle a_{0} a_{1}\right\rangle+h \cdot\left\langle a_{1} a_{2}\right\rangle-h \cdot\left\langle a_{0} a_{2}\right\rangle \tag{2}
\end{equation*}
$$

where h is any integer. Thus $Z_{1}(K)$ is isomorphic to the group \mathbb{Z} of integers.
The only 2 -simplex of K is $\left\langle a_{0} a_{1} a_{2}\right\rangle$, so the only 2-chains are the elementary ones $h \cdot\left\langle a_{0} a_{1} a_{2}\right\rangle$ where h is an integer. Thus $C_{2}(K) \cong \mathbb{Z}$. Since

$$
\begin{equation*}
\partial\left(h \cdot\left\langle a_{0} a_{1} a_{2}\right\rangle\right)=h \cdot\left\langle a_{0} a_{1}\right\rangle+h \cdot\left\langle a_{1} a_{2}\right\rangle-h \cdot\left\langle a_{0} a_{2}\right\rangle, \tag{3}
\end{equation*}
$$

then $\partial\left(h \cdot\left\langle a_{0} a_{1} a_{2}\right\rangle\right)=0$ only when $h=0$. Thus $Z_{2}(K)=\{0\}$, so $H_{2}(K)=\{0\}$.

From Equations (2) and (3), we observe that 1-cycles and 1-boundaries have precisely the same form so that $Z_{1}(K)=B_{1}(K)$, and hence $H_{1}(K)=\{0\}$.

From Equation (1) we observe that a 0 -cycle

$$
\begin{equation*}
g_{0} \cdot\left\langle a_{0}\right\rangle+g_{1} \cdot\left\langle a_{1}\right\rangle+g_{2} \cdot\left\langle a_{2}\right\rangle \tag{4}
\end{equation*}
$$

is a 0 -boundary if and only if there are integers h_{0}, h_{1}, and h_{2} such that

$$
-h_{0}-h_{2}=g_{0}, \quad h_{0}-h_{1}=g_{1}, \quad h_{1}+h_{2}=g_{2}
$$

Then $g_{0}+g_{1}=-g_{2}$ so that, for 0-boundaries, two coefficients are arbitrary, and the third is determined by the first two. Thus $B_{0}(K) \cong \mathbb{Z} \oplus \mathbb{Z}$. Since $Z_{0}(K) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, we now suspect that $H_{0}(K) \cong \mathbb{Z}$.

To complete the proof, observe that for any 0-cycle expressed in Equation (4),

$$
\begin{aligned}
g_{0} \cdot\left\langle a_{0}\right\rangle+g_{1} \cdot\left\langle a_{1}\right\rangle+ & g_{2} \cdot\left\langle a_{2}\right\rangle \\
& =\partial\left(g_{1} \cdot\left\langle a_{0} a_{1}\right\rangle+g_{2} \cdot\left\langle a_{0} a_{2}\right\rangle\right)+\left(g_{0}+g_{1}+g_{2}\right) \cdot\left\langle a_{0}\right\rangle .
\end{aligned}
$$

This means that any 0 -cycle is homologous to a 0 -cycle of the form $t \cdot\left\langle a_{0}\right\rangle$, t an integer. Hence each 0 -homology class has a representative $t \cdot\left\langle a_{0}\right\rangle$ so that $H_{0}(K)$ is isomorphic to \mathbb{Z}.

Summarizing the above calculations, we have $H_{0}(K) \cong \mathbb{Z}, H_{1}(K)=\{0\}$, and $H_{2}(K)=\{0\}$. The trivial groups $H_{1}(K)$ and $H_{2}(K)$ indicate the absence of holes in the polyhedron $|K|$. As we shall see later, the fact that $H_{0}(K)$ is isomorphic to \mathbb{Z} indicates that $|K|$ has one component.

Example 2.2. Let M denote the triangulation of the Möbius strip shown in Figure 2.1 with orientation induced by the ordering $a_{0}<a_{1}<a_{2}<a_{3}<$ $a_{4}<a_{5}$.

Figure 2.1
There are no 3 -simplexes in M, so $B_{2}(M)=\{0\}$. Suppose that

$$
\begin{aligned}
w=g_{0} \cdot\left\langle a_{0} a_{3} a_{4}\right\rangle & +g_{1} \cdot\left\langle a_{0} a_{1} a_{4}\right\rangle+g_{2} \cdot\left\langle a_{1} a_{4} a_{5}\right\rangle+g_{3} \cdot\left\langle a_{1} a_{2} a_{5}\right\rangle \\
& +g_{4} \cdot\left\langle a_{0} a_{2} a_{5}\right\rangle+g_{5} \cdot\left\langle a_{0} a_{2} a_{3}\right\rangle
\end{aligned}
$$

is a 2-cycle. When $\partial(w)$ is computed, the coefficient that appears with $\left\langle a_{3} a_{4}\right\rangle$ is g_{0}. In order to have $\partial(w)=0$, it must be true that $g_{0}=0$. Similar reasoning applied to the other horizontal 1 -simplexes shows that each coefficient in w must be 0 . Thus $Z_{2}(M)=\{0\}$, so $H_{2}(M)=\{0\}$. Using a bit of intuition, we suspect that the 1 -chains

$$
\begin{aligned}
z & =1 \cdot\left\langle a_{0} a_{1}\right\rangle+1 \cdot\left\langle a_{1} a_{2}\right\rangle+1 \cdot\left\langle a_{2} a_{3}\right\rangle-1 \cdot\left\langle a_{0} a_{3}\right\rangle \\
z^{\prime} & =1 \cdot\left\langle a_{0} a_{3}\right\rangle+1 \cdot\left\langle a_{3} a_{4}\right\rangle+1 \cdot\left\langle a_{4} a_{5}\right\rangle-1 \cdot\left\langle a_{0} a_{5}\right\rangle
\end{aligned}
$$

are 1-cycles. (Both of these chains make complete circuits beginning at a_{0}.) Direct computation verifies that z and z^{\prime} are cycles. However, $z-z^{\prime}$ traverses the boundary of M, so $z-z^{\prime}$ should be the boundary of some 2-chain. A straightforward computation shows that

$$
\begin{aligned}
z-z^{\prime}=\partial\left(1 \cdot\left\langle a_{0} a_{1} a_{4}\right\rangle\right. & +1 \cdot\left\langle a_{1} a_{2} a_{5}\right\rangle+1 \cdot\left\langle a_{0} a_{2} a_{3}\right\rangle-1 \cdot\left\langle a_{0} a_{2} a_{5}\right\rangle \\
& \left.-1 \cdot\left\langle a_{1} a_{4} a_{5}\right\rangle-1 \cdot\left\langle a_{0} a_{3} a_{4}\right\rangle\right)
\end{aligned}
$$

so that $z \sim z^{\prime}$.
A similar calculation verifies the fact that any 1-cycle is homologous to a multiple of z. Hence $H_{1}(M)=\{[g z]: g$ is an integer $\}$, so $H_{1}(M) \cong \mathbb{Z}$. This result indicates that the polyhedron $|M|$ has one hole bounded by 1-simplexes.

To determine $H_{0}(M)$, observe that any twoeleme ntary 0 -chains $1 \cdot\left\langle a_{i}\right\rangle$ and $1 \cdot\left\langle a_{j}\right\rangle(i, j$ range from 0 to 5) are homologous. For example,

$$
1 \cdot\left\langle a_{5}\right\rangle-1 \cdot\left\langle a_{0}\right\rangle=\partial\left(1 \cdot\left\langle a_{0} a_{4}\right\rangle+1 \cdot\left\langle a_{4} a_{5}\right\rangle\right)
$$

Hence $H_{0}(M)=\left\{\left[g \cdot\left\langle a_{0}\right\rangle\right]: g\right.$ is an integer $\}$, so $H_{0}(M) \cong \mathbb{Z}$. As in the preceding example, this indicates that $|M|$ has only one component.

Example 2.3. The projective plane is obtained from a finite disk by identifying each pair of diametrically opposite points. A triangulation P of the projective plane, with orientations indicated by the arrows, is shown in Figure 2.2.

Figure 2.2
There are no 3-simplexes, so $B_{2}(P)=\{0\}$. To compute $Z_{2}(P)$, observe that each 1-simplex σ^{1} of P is a face of exactly two 2 -simplexes σ_{1}^{2} and σ_{2}^{2}. Observe that when σ^{1} is $\left\langle a_{3} a_{4}\right\rangle,\left\langle a_{4} a_{5}\right\rangle$, or $\left\langle a_{5} a_{3}\right\rangle$, both incidence numbers [$\sigma_{1}^{2}, \sigma^{1}$] and $\left[\sigma_{2}^{2}, \sigma^{1}\right]$ are +1 . For all other choices of σ^{1}, the two incidence numbers are negatives of each other. Let us call $\left\langle a_{3} a_{4}\right\rangle,\left\langle a_{4} a_{5}\right\rangle$, and $\left\langle a_{5} a_{3}\right\rangle 1$-simplexes of type I and the others 1 -simplexes of type II.

Suppose that w is a 2-cycle. In order for the coefficients of the type II 1 -simplexes in $\partial(w)$ to be 0 , all the coefficients in w must have a common value, say g. But then

$$
\begin{equation*}
\partial(w)=2 g \cdot\left\langle a_{3} a_{4}\right\rangle+2 g \cdot\left\langle a_{4} a_{5}\right\rangle+2 g \cdot\left\langle a_{5} a_{3}\right\rangle \tag{5}
\end{equation*}
$$

since both incidence numbers for the type I 1 -simplexes are +1 . Hence w is a 2-cycle only when $g=0$, so $Z_{2}(P)=\{0\}$ and $H_{2}(P)=\{0\}$.

Observe that any 1-cycle is homologous to a multiple of

$$
z=1 \cdot\left\langle a_{3} a_{4}\right\rangle+1 \cdot\left\langle a_{4} a_{5}\right\rangle+1 \cdot\left\langle a_{5} a_{3}\right\rangle .
$$

Furthermore, Equation (5) shows that any even multiple of z is a boundary. Thus $H_{1}(P) \cong \mathbb{Z}_{2}$, the group of integers modulo 2 . This result indicates the twisting that occurs around the "hole" in the polyhedron $|P|$. (Recall, however, that the homology groups overlooked the twisted nature of the Möbius strip.)

In the computation of homology groups, it is sometimes convenient to express an elementary chain in terms of a negatively oriented simplex. In order to be able to do this later, let us agree that the symbol $g \cdot\left(-\sigma^{p}\right)$ may be used to denote the elementary p-chain $-g \cdot \sigma^{p}$. In other words, if $\left\langle a_{0} \ldots a_{p}\right\rangle$ represents a positively or negatively oriented p-simplex, then $g \cdot\left\langle a_{0} \ldots a_{p}\right\rangle$ denotes the elementary p-chain which assigns value g to the orientation determined by the class of even permutations of the given ordering and assigns value $-g$ to the orientation determined by the class of odd permutations. Return to Example 2.3 for an illustration of this notation. In that example, $\left\langle a_{5} a_{3}\right\rangle$ denotes a positively oriented 1 -simplex. The symbols $g \cdot\left\langle a_{5} a_{3}\right\rangle$ and $-g \cdot\left\langle a_{3} a_{5}\right\rangle$ now denote the same elementary 1-chain. An elementary 2 -chain $h \cdot\left\langle a_{0} a_{1} a_{2}\right\rangle$ may be written in any of six ways:

$$
\begin{aligned}
h \cdot\left\langle a_{0} a_{1} a_{2}\right\rangle & =h \cdot\left\langle a_{1} a_{2} a_{0}\right\rangle=h \cdot\left\langle a_{2} a_{0} a_{1}\right\rangle=-h \cdot\left\langle a_{1} a_{0} a_{2}\right\rangle \\
& =-h \cdot\left\langle a_{0} a_{2} a_{1}\right\rangle=-h \cdot\left\langle a_{2} a_{1} a_{0}\right\rangle .
\end{aligned}
$$

2.3 The Structure of Homology Groups

What possibilities are there for the homology groups $H_{p}(K)$ of a complex K if we take our coefficient group to be the integers? The answer is provided by group theoretic considerations.

Suppose that K has $\alpha_{p} p$-simplexes. Then $C_{p}(K)$ is isomorphic to $\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (α_{p} summands). In other words, $C_{p}(K)$ is a free abelian group on α_{p} generators. Since every subgroup of a free abelian group is a free abelian group, then $Z_{p}(K)$ and $B_{p}(K)$ are both free abelian groups. The quotient group

$$
H_{p}(K)=Z_{p}(K) / B_{p}(K)
$$

may not be free, but its possibilities are given by the decomposition theorem for finitely generated abelian groups (Appendix 3):

$$
H_{p}(K)=G \oplus T_{1} \oplus \cdots \oplus T_{m}
$$

where G is a free abelian group and each T_{i} is a finite cyclic group. The direct sum $T_{1} \oplus \cdots \oplus T_{m}$ is called the torsion subgroup of $H_{p}(K)$. As in the example with the projective plane, the torsion subgroup describes the "twisting" in the polyhedron $|K|$. Additional examples of twisting will be found in the exercises at the end of the chapter.

The existence of torsion subgroups explains why the integers modulo 2 are not generally used for the coefficient set in homology theory. The finite cyclic groups T_{1}, \ldots, T_{m} which compose the torsion subgroup are quotient groups of \mathbb{Z}. If we used the group \mathbb{Z}_{2} of integers modulo 2 rather than \mathbb{Z}, there would be no way to recognize torsion since \mathbb{Z}_{2} admits no proper subgroups. Note also that orientation is meaningless in the modulo 2 case. For problems in which orientation and the torsion subgroup are not important, the integers modulo 2 can be an effective choice for the coefficient group. In this regard, see the chapter on modulo 2 homology theory, including the Jordan Curve Theorem, in [15].

The next theorem shows that the homology groups of a complex are independent of the choice of orientation for its simplexes.

Theorem 2.3. Let K be a geometric complex with two orientations, and let K_{1}, K_{2} denote the resulting oriented geometric complexes. Then the homology groups $H_{p}\left(K_{1}\right)$ and $H_{p}\left(K_{2}\right)$ are isomorphic for each dimension p.

Proof. For a p-simplex σ^{p} of K, let ${ }^{i} \sigma^{p}$ denote the positive orientation of σ^{p} in the complex $K_{i}, i=1,2$. Then there is a function α defined on the simplexes of K such that $\alpha\left(\sigma^{p}\right)$ is ± 1 and

$$
{ }^{1} \sigma^{p}=\alpha\left(\sigma^{p}\right)^{2} \sigma^{p}
$$

Define a sequence $\varphi=\left\{\varphi_{p}\right\}$ of homomorphisms

$$
\varphi_{p}: C_{p}\left(K_{1}\right) \rightarrow C_{p}\left(K_{2}\right)
$$

by

$$
\varphi_{p}\left(\sum g_{i} \cdot{ }^{1} \sigma_{i}^{p}\right)=\sum \alpha\left(\sigma_{i}^{p}\right) g_{i} \cdot{ }^{2} \sigma_{i}^{p}
$$

where $\sum g_{i} \cdot{ }^{1} \sigma_{i}^{p}$ represents a p-chain on K_{1}.
For an elementary p-chain $g \cdot{ }^{1} \sigma^{p}$ on K_{1} with $p \geq 1$,

$$
\begin{aligned}
\varphi_{p-1} \partial\left(g \cdot{ }^{1} \sigma^{p}\right) & =\varphi_{p-1}\left(\sum_{\sigma^{p}-1} \in K\right. \\
& \left.g\left[{ }^{1} \sigma^{p},{ }^{1} \sigma^{p-1}\right] \cdot{ }^{1} \sigma^{p-1}\right) \\
& =\sum_{\sigma^{p-1} \epsilon K} \alpha\left(\sigma^{p-1}\right) g\left[{ }^{1} \sigma^{p},{ }^{1} \sigma^{p-1}\right] \cdot{ }^{2} \sigma^{p-1} \\
& =\sum_{\sigma^{p}-1}{ }^{1} K \\
& \alpha\left(\sigma^{p-1}\right) g \alpha\left(\sigma^{p-1}\right) \alpha\left(\sigma^{p}\right)\left[{ }^{2} \sigma^{p},{ }^{2} \sigma^{p-1}\right] \cdot{ }^{2} \sigma^{p-1} \\
& \alpha\left(\sigma^{p}\right) g \sum_{\sigma \cdot 1 \epsilon K}\left[{ }^{2} \sigma^{p},{ }^{2} \sigma^{p-1}\right] \cdot{ }^{2} \sigma^{p-1}=\partial\left(\alpha\left(\sigma^{p}\right) g \cdot{ }^{2} \sigma^{p}\right) \\
& =\partial \varphi_{p}\left(g \cdot{ }^{1} \sigma^{p}\right) .
\end{aligned}
$$

Thus the relation $\varphi_{p-1} \partial=\partial \varphi_{p}$ holds in the diagram

(As we shall see later, this is a very important relation.) If $z_{p} \in Z_{p}\left(K_{1}\right)$, then

$$
\partial \varphi_{p}\left(z_{p}\right)=\varphi_{p-1} \partial\left(z_{p}\right)=\varphi_{p-1}(0)=0,
$$

so $\varphi_{p}\left(z_{p}\right) \in Z_{p}\left(K_{2}\right)$. Hence $\varphi_{p}\left(Z_{p}\left(K_{1}\right)\right)$ is a subset of $Z_{p}\left(K_{2}\right)$.
If $\partial\left(c_{p+1}\right) \in B_{p}\left(K_{1}\right)$, then

$$
\varphi_{p} \partial\left(c_{p+1}\right)=\partial \varphi_{p+1}\left(c_{p+1}\right),
$$

so $\varphi_{p} \partial\left(c_{p+1}\right)$ is in $B_{p}\left(K_{2}\right)$. Thus φ_{p} maps $B_{p}\left(K_{1}\right)$ into $B_{p}\left(K_{2}\right)$ and induces a homomorphism φ_{p}^{*} from the quotient group $H_{p}\left(K_{1}\right)=Z_{p}\left(K_{1}\right) / B_{p}\left(K_{1}\right)$ to $H_{p}\left(K_{2}\right)=Z_{p}\left(K_{2}\right) / B_{p}\left(K_{2}\right)$ defined by

$$
\varphi_{p}^{*}\left(\left[z_{p}\right]\right)=\left[\varphi_{p}\left(z_{p}\right)\right]
$$

for each homology class [z_{p}] in $H_{p}\left(K_{1}\right)$.
Reversing the roles of K_{1} and K_{2} yields a sequence $\psi=\left\{\psi_{p}\right\}$ of homomorphisms:

$$
\psi_{p}: C_{p}\left(K_{2}\right) \rightarrow C_{p}\left(K_{1}\right)
$$

such that φ_{p} and ψ_{p} are inverses of each other for each p. This implies that ψ_{p}^{*} is the inverse of φ_{p}^{*} and hence that

$$
\varphi_{p}^{*}: H_{p}\left(K_{1}\right) \rightarrow H_{p}\left(K_{2}\right)
$$

is an isomorphism for each dimension p.
As remarked earlier, the structure of the zero dimensional homology group $H_{0}(K)$ indicates whether or not the polyhedron $|K|$ is connected. Actually the situation is quite simple; there is no torsion in dimension zero, and the rank of the free abelian group $H_{0}(K)$ is the number of components of the polyhedron $|K|$. Proving this is our next goal.

Definition. Let K be a complex. Two simplexes s_{1} and s_{2} are connected if either of the following conditions is satisfied:
(a) $s_{1} \cap s_{2} \neq \varnothing$;
(b) there is a sequence $\sigma_{1}, \ldots, \sigma_{p}$ of 1 -simplexes of K such that $s_{1} \cap \sigma_{1}$ is a vertex of $s_{1}, s_{2} \cap \sigma_{p}$ is a vertex of s_{2}, and, for $1 \leq i<p, \sigma_{i} \cap \sigma_{i+1}$ is a common vertex of σ_{i} and σ_{i+1}.

This concept of connectedness is an equivalence relation whose equivalence classes are called the combinatorial components of K. The complex K is said to be connected if it has only one combinatorial component.

It is left as an exercise for the reader to show that the components of $|K|$ and the geometric carriers of the combinatorial components of K are identical.

Theorem 2.4. Let K be a complex with r combinatorial components. Then $H_{0}(K)$ is isomorphic to the direct sum of r copies of the group \mathbb{Z} of integers.

Proof. Let K^{\prime} be a combinatorial component of K and $\left\langle a^{\prime}\right\rangle$ a 0 -simplex in K^{\prime}. Given any 0 -simplex $\langle b\rangle$ in K^{\prime}, there is a sequence of 1 -simplexes

$$
\left\langle b a_{0}\right\rangle,\left\langle a_{0} a_{1}\right\rangle,\left\langle a_{1} a_{2}\right\rangle, \ldots,\left\langle a_{p} a^{\prime}\right\rangle
$$

from b to a^{\prime} such that each two successive 1 -simplexes have a common vertex. If g is an integer, we define a 1 -chain c_{1} on the sequence of 1 -simplexes by assigning either g or $-g$ to each simplex (depending on orientation) so that $\partial\left(c_{1}\right)$ is $g \cdot\langle b\rangle-g \cdot\left\langle a^{\prime}\right\rangle$ or $g \cdot\langle b\rangle+g \cdot\left\langle a^{\prime}\right\rangle$. Hence any elementary 0 -chain $g \cdot\langle b\rangle$ is homologous to one of the 0 -chains $g \cdot\left\langle a^{\prime}\right\rangle$ or $-g \cdot\left\langle a^{\prime}\right\rangle$. It follows that any 0 -chain on K^{\prime} is homologous to an elementary 0 -chain $h \cdot\left\langle a^{\prime}\right\rangle$ where h is some integer.

Applying this result to each combinatorial component K_{1}, \ldots, K_{r} of K, there is a vertex a^{i} of K_{i} such that any 0 -cycle on K_{i} is homologous to a 0 -chain of the form $h_{i} \cdot\left\langle a^{i}\right\rangle$ where h_{i} is an integer. Then, given any 0 -cycle c_{0} on K, there are integers h_{1}, \ldots, h_{r} such that

$$
c_{0} \sim \sum_{i=1}^{r} h_{i} \cdot\left\langle a^{i}\right\rangle .
$$

Suppose that two such 0-chains $\sum h_{i} \cdot\left\langle a^{i}\right\rangle$ and $\sum g_{i} \cdot\left\langle a^{i}\right\rangle$ represent the same homology class. Then

$$
\begin{equation*}
\sum\left(g_{i}-h_{i}\right)\left\langle a^{i}\right\rangle=\partial\left(c_{1}\right) \tag{6}
\end{equation*}
$$

for some 1 -chain c_{1}. Since a^{i} and a^{j} belong to different combinatorial components when $i \neq j$, then Equation (6) is impossible unless $g_{i}=h_{i}$ for each i. Hence each homology class [c_{0}] in $H_{0}(K)$ has a unique representative of the form $\sum h_{i} \cdot\left\langle a^{i}\right\rangle$. The function

$$
\sum h_{i} \cdot\left\langle a^{i}\right\rangle \mathrm{g} \rightarrow\left(h_{1}, \ldots, h_{r}\right)
$$

is the required isomorphism between $H_{0}(K)$ and the direct sum of r copies of \mathbb{Z}.

Corollary. If a polyhedron $|K|$ has r components and triangulation K, then $H_{0}(K)$ is isomorphic to the direct sum of r copies of \mathbb{Z}.

2.4 The Euler-Poincaré Theorem

If $|K|$ is a rectilinear polyhedron homeomorphic to the 2-sphere S^{2} with V vertices, E edges, and F two dimensional faces, then

$$
V-E+F=2
$$

This result was discovered in 1752 by Leonhard Euler (1707-1783). Poincaré's first real application of homology theory was a generalization of Euler's formula to general polyhedra. That celebrated result, the Euler-Poincaré Theorem, is proved in this section.

Definition. Let K be an oriented complex. A family $\left\{z_{p}^{1}, \ldots, z_{p}^{r}\right\}$ of p-cycles is linearly independent with respect to homology, or linearly independent $\bmod B_{p}(K)$, means that there do not exist integers g_{1}, \ldots, g_{r} not all zero such that the chain $\sum g_{i} z_{p}^{i}$ is homologous to 0 . The largest integer r for which there exist $r p$-cycles linearly independent with respect to homology is denoted by $R_{p}(K)$ and called the p th Betti number of the complex K.

In the theorem that follows, we assume that the coefficient group has been chosen to be the rational numbers and not the integers. (This is one of two instances in which this change is made.) The reader should convince himself that linear independence with integral coefficients is equivalent to linear independence with rational coefficients and that this change does not alter the values of the Betti numbers.

Theorem 2.5. (The Euler-Poincaré Theorem). Let K be an oriented geometric complex of dimension n, and for $p=0,1, \ldots, n$ let α_{p} denote the number of p-simplexes of K. Then

$$
\sum_{p=0}^{n}(-1)^{p} \alpha_{p}=\sum_{p=0}^{n}(-1)^{p} R_{p}(K)
$$

where $R_{p}(K)$ denotes the pth Betti number of K.
Proof. Since K is the only complex under consideration, the notation will be simplified by omitting reference to it in the group notations. Note that C_{p}, Z_{p}, and B_{p} are vector spaces over the field of rational numbers.

Let $\left\{d_{p}^{i}\right\}$ be a maximal set of p-chains such that no proper linear combination of the d_{p}^{i} is a cycle, and let D_{p} be the linear subspace of C_{p} spanned by $\left\{d_{p}^{i}\right\}$. Then $D_{p} \cap Z_{p}=\{0\}$ so that, as a vector space, C_{p} is the direct sum of Z_{p} and D_{p}. Hence

$$
\begin{gathered}
\alpha_{p}=\operatorname{dim} C_{p}=\operatorname{dim} D_{p}+\operatorname{dim} Z_{p} \\
\operatorname{dim} Z_{p}=\alpha_{p}-\operatorname{dim} D_{p}, \quad 1 \leq p \leq n
\end{gathered}
$$

where the abbreviation "dim" denotes vector space dimension.
For $p=0, \ldots, n-1$, let $b_{p}^{i}=\partial\left(d_{p+1}^{i}\right)$. The set $\left\{b_{p}^{i}\right\}$ forms a basis for B_{p}. Let $\left\{z_{p}^{i}\right\}, i=1, \ldots, R_{p}$, be a maximal set of p-cycles linearly independent $\bmod B_{p}$. These cycles span a subspace G_{p} of Z_{p}, and

$$
Z_{p}=G_{p} \oplus B_{p}, \quad 0 \leq p \leq n-1
$$

Thus

$$
\operatorname{dim} Z_{p}=\operatorname{dim} G_{p}+\operatorname{dim} B_{p}=R_{p}+\operatorname{dim} B_{p}
$$

since $R_{p}=\operatorname{dim} G_{p}$. Then

$$
R_{p}=\operatorname{dim} Z_{p}-\operatorname{dim} B_{p}=\alpha_{p}-\operatorname{dim} D_{p}-\operatorname{dim} B_{p}, \quad 1 \leq p \leq n-1
$$

Observe that B_{p} is spanned by the boundaries of elementary chains

$$
\partial\left(1 \cdot \sigma_{i}^{p+1}\right)=\sum \eta_{i j}(p) \cdot \sigma_{g}^{p}
$$

where $\left(\eta_{i j}(p)\right)=\eta(p)$ is the p th incidence matrix. Thus $\operatorname{dim} B_{p}=\operatorname{rank} \eta(p)$. Since the number of d_{p+1}^{i} is the same as the number of b_{p}^{i}, then

$$
\operatorname{dim} D_{p+1}=\operatorname{dim} B_{p}=\operatorname{rank} \eta(p), \quad 0 \leq p \leq n-1 .
$$

Then

$$
\begin{aligned}
R_{p} & =\alpha_{p}-\operatorname{dim} D_{p}-\operatorname{dim} B_{p} \\
& =\alpha_{p}-\operatorname{rank} \eta(p-1)-\operatorname{rank} \eta(p), \quad 1 \leq p \leq n-1 .
\end{aligned}
$$

Note also that

$$
\begin{aligned}
& R_{0}=\operatorname{dim} Z_{0}-\operatorname{dim} B_{0}=\alpha_{0}-\operatorname{rank} \eta(0) \\
& R_{n}=\operatorname{dim} Z_{n}=\alpha_{n}-\operatorname{dim} D_{n}=\alpha_{n}-\operatorname{rank} \eta(n-1) .
\end{aligned}
$$

In the alternating sum $\sum_{p=0}^{n}(-1)^{p} R_{p}$, all the terms rank $\eta(p)$ cancel, and we have

$$
\sum_{p=0}^{n}(-1)^{p} R_{p}=\sum_{p=0}^{n}(-1)^{p} \alpha_{p} .
$$

Definition. If K is a complex of dimension n, the number

$$
\chi(K)=\sum_{p=0}^{n}(-1)^{p} R_{p}
$$

is called the Euler characteristic of K.
Chains, cycles, boundaries, the homology relation, and Betti numbers were defined by Poincaré in his paper Analysis Situs [49] in 1895. As mentioned earlier, he did not define the homology groups. The proof of the EulerPoincaré Theorem given in the text is essentially Poincare's original one. Complexes (in slightly different form) and incidence numbers were defined in Complément à l'Analysis Situs [50] in 1899.

The Betti numbers were named for Enrico Betti (1823-1892) and generalize the connectivity numbers that he used in studying curves and surfaces. Poincaré assumed, but did not prove, that the Betti numbers are topological invariants. In other words, he assumed that if the geometric carriers $|K|$ and $|L|$ are homeomorphic, then $R_{p}(K)=R_{p}(L)$ in each dimension p. The first rigorous proof of this fact was given by J. W. Alexander (1888-1971) in 1915. Topological invariance of the homology groups was proved by Oswald Veblen in 1922. One can thus speak of $H_{p}(|K|), R_{p}(|K|)$, and $\chi(|K|)$ since these homology characters are independent of the triangulation of the polyhedron $|K|$. It is important to know that the homology characters are topologically invariant. The proofs are lengthy, however, and are omitted. Anyone interested in following this topic further should consult references [2] and [17].

It is left as an exercise to show that the p th Betti number $R_{p}(K)$ of a complex K is the rank of the free part of the p th homology group $H_{p}(K)$. The p th Betti number indicates the number of " p-dimensional holes" in the polyhedron $|K|$.

Definition. A rectilinear polyhedron in Euclidean 3-space \mathbb{R}^{3} is a solid bounded by properly joined convex polygons. The bounding polygons are called faces, the intersections of the faces are called edges, and the intersections of the edges are called vertices. A simple polyhedron is a rectilinear polyhedron whose boundary is homeomorphic to the 2-sphere S^{2}. A regular polyhedron is a rectilinear polyhedron whose faces are regular plane polygons and whose polyhedral angles are congruent.

In Exercise 6 at the end of the chapter, the reader will find that the Betti numbers of the 2-sphere S^{2} are

$$
R_{0}\left(S^{2}\right)=1, \quad R_{1}\left(S^{2}\right)=0, \quad R_{2}\left(S^{2}\right)=1
$$

Then S^{2} has Euler characteristic

$$
\chi\left(S^{2}\right)=\sum_{p=0}^{2}(-1)^{p} R_{p}\left(S^{2}\right)=1-0+1=2
$$

Applying the Euler-Poincaré Theorem to S^{2} produces the following corollary:

Theorem 2.6 (Euler's Theorem). If S is a simple polyhedron with V vertices, E edges, and F faces, then $V-E+F=2$.

Proof. Things are complicated slightly here by the fact that the faces of S need not be triangular. This situation is corrected as follows: Consider a face τ of S having n_{0} vertices and n_{1} edges. Computing vertices - edges + faces gives $n_{0}-n_{1}+1$ for the single face τ. Choose a new vertex v in the interior of τ, and join the new vertex to each of the original vertices by a line segment as illustrated in Figure 2.3. In the triangulation of τ, one new vertex and n_{0}

τ Triangulated
Figure 2.3
new edges are added. In addition, the one face τ is replaced by n_{0} new faces. Then

$$
\text { vertices }- \text { edges }+ \text { faces }=\left(n_{0}+1\right)-\left(n_{1}+n_{0}\right)+n_{0}=n_{0}-n_{1}+1
$$

so that the sum $V-E+F$ is not changed in the triangulation process. Let $\alpha_{i}, i=0,1,2$, denote the number of i-simplexes in the triangulation of S obtained in this way. Then

$$
V-E+F=\alpha_{0}-\alpha_{1}+\alpha_{2}
$$

by the above argument. The Euler-Poincaré Theorem shows that

$$
\alpha_{0}-\alpha_{1}+\alpha_{2}=R_{0}\left(S^{2}\right)-R_{1}\left(S^{2}\right)+R_{2}\left(S^{2}\right)=2
$$

Hence

$$
V-E+F=2
$$

for any simple polyhedron.
Theorem 2.7. There are only five regular, simple polyhedra.
Proof. Suppose S is such a polyhedron with V vertices, E edges, and F faces. Let m denote the number of edges meeting at each vertex and n the number of edges of each face. Note that $n \geq 3$. Then

$$
\begin{gathered}
m V=2 E=n F, \\
V-E+F=2
\end{gathered}
$$

so that

$$
\frac{n F}{m}-\frac{n F}{2}+F=2
$$

Hence

$$
F(2 n-m n+2 m)=4 m,
$$

and it must be true that

$$
2 n-m n+2 m>0
$$

Since $n \geq 3$, this gives

$$
2 m>n(m-2) \geq 3(m-2)=3 m-6,
$$

so $m<6$. Thus m can only be $1,2,3,4$, or 5 .
The relations

$$
F(2 n-m n+2 m)=4 m, \quad n \geq 3, m<6
$$

produce the following possible values for $(m, n, F):(\mathrm{a})(3,3,4)$, (b) $(3,4,6)$, (c) $(4,3,8)$, (d) $(3,5,12)$, and (e) $(5,3,20)$.

For example, $m=4$ gives

$$
F(8-2 n)=16,
$$

allowing the possibility $F=8, n=3$. (The reader should solve the remaining
cases.) The five possibilities for (m, n, F) are realized in the tetrahedron, cube, octahedron, dodecahedron, and icosahedron shown in Figure 2.4.

Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

Figure 2.4

2.5 Pseudomanifolds and the Homology Groups of S^{n}

Algebraic topology developed from problems in mathematical analysis and geometry in Euclidean spaces, particularly Poincare's work in the classification of algebraic surfaces. The spaces of primary interest, called "manifolds", can be traced to the work of G. F. B. Riemann (1826-1866) on differentials and multivalued functions. A manifold is a generalization of an ordinary surface like a sphere or a torus; its primary characteristic is its "local" Euclidean structure. Here is the definition:

Definition. An n-dimensional manifold, or n-manifold, is a compact, connected Hausdorff space each of whose points has a neighborhood homeomorphic to an open ball in Euclidean n-space \mathbb{R}^{n}.

It should be noted that not all texts require that manifolds be compact and connected. Sometimes these conditions are omitted, and other properties, paracompactness and second countability, for example, are added. For many of the applications in this text, however, compactness and connectedness are required, and it will simplify matters to include them in the definition.

Definition. An n-pseudomanifold is a complex K with the following properties:
(a) Each simplex of K is a face of some n-simplex of K.
(b) Each $(n-1)$-simplex is a face of exactly two n-simplexes of K.
(c) Given a pair σ_{1}^{n} and σ_{2}^{n} of n-simplexes of K, there is a sequence of n simplexes beginning with σ_{1}^{n} and ending with σ_{2}^{n} such that any two successive terms of the sequence have a common $(n-1)$-face.

Example 2.4. (a) The complex K consisting of all proper faces of a 3-simplex $\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle$ (Figure 2.5) is a 2-pseudomanifold and is a triangulation of the 2-sphere S^{2}.

Figure 2.5
(b) The triangulation of the projective plane in Figure 2.2 is a 2-pseudomanifold.
(c) The triangulation of the torus in Figure 1.11 is a 2-pseudomanifold.
(d) The Klein Bottle is constructed from a cylinder by identifying opposite ends with the orientations of the circles reversed. A triangulation of the Klein Bottle as a 2-pseudomanifold is shown in Figure 2.6.

Figure 2.6 Triangulation of the Klein Bottle

The Klein Bottle cannot be embedded in Euclidean 3-space without selfintersection. Allowing self-intersection, it appears in the figure below.

Figure 2.7
Each space of Example 2.4 is a 2 -manifold. The n-sphere $S^{n}, n \geq 1$, is an n-manifold. Incidentally, this indicates why the unit sphere in \mathbb{R}^{n+1} is called the " n-sphere" and not the " $(n+1)$-sphere". The integer n refers to the local dimension as a manifold and not to the dimension of the containing Euclidean space. Note that each point of a circle has a neighborhood homeomorphic to an open interval in \mathbb{R}; each point of S^{2} has a neighborhood homeomorphic to an open disk in \mathbb{R}^{2}; and so on.

The relation between manifold (a type of topological space) and pseudomanifold (a type of geometric complex) is simple to state: If X is a triangulable n-manifold, then each triangulation K of X is an n-pseudomanifold. The homology groups of the pseudomanifold K reflect the connectivity, the "holes" and "twisting", of the associated manifold X. The computation of homology groups of pseudomanifolds is thus a worthwhile project. As we shall see in this section, these groups are often amenable to computation.

If X is a space each of whose triangulations is a pseudomanifold, it is sometimes said that " X is a pseudomanifold." Since a space and a triangulation of the space are different, this is an abuse of language. It is permissible only in situations in which the distinction between space and complex is not important, as in the computation of homology groups.

We shall restrict ourselves in this section to theorems and examples related to the homology groups of pseudomanifolds. Those interested in the fact that each triangulation of a triangulable n-manifold is an n-pseudomanifold can find the proof in many texts, for example [2].

Theorem 2.8. Let K be a 2-pseudomanifold with α_{0} vertices, $\alpha_{1} 1$-simplexes, and α_{2} 2-simplexes. Then
(a) $3 \alpha_{2}=2 \alpha_{1}$,
(b) $\alpha_{1}=3\left(\alpha_{0}-\chi(K)\right)$,
(c) $\alpha_{0} \geq \frac{1}{2}(7+\sqrt{49-24 \chi(K)})$.

Proof. Since each 1 -simplex is a face of exactly two 2 -simplexes, it follows that $3 \alpha_{2}=2 \alpha_{1}$ and hence that $\alpha_{2}=\frac{2}{3} \alpha_{1}$.

The Euler-Poincaré Theorem guarantees that

$$
\alpha_{0}-\alpha_{1}+\alpha_{2}=\chi(K) .
$$

Then

$$
\alpha_{0}-\alpha_{1}+\frac{2}{3} \alpha_{1}=\chi(K),
$$

and hence

$$
\alpha_{1}=3\left(\alpha_{0}-\chi(K)\right) .
$$

To prove (c), note that $\alpha_{0} \geq 4$ and that

$$
\alpha_{1} \leq C_{2}^{\alpha}{ }_{2}^{0}=\frac{1}{2} \alpha_{0}\left(\alpha_{0}-1\right)
$$

where $C_{2}^{\alpha}{ }_{2}$ denotes the number of combinations of α_{0} vertices taken two at a time. By elementary algebra,

$$
\begin{aligned}
6 \alpha_{2} & =4 \alpha_{1} \\
2 \alpha_{1} & =6 \alpha_{1}-6 \alpha_{2} \\
\alpha_{0}\left(\alpha_{0}-1\right) & \geq 6 \alpha_{1}-6 \alpha_{2} \\
\alpha_{0}^{2}-\alpha_{0}-6 \alpha_{0} & \geq 6 \alpha_{1}-6 \alpha_{2}-6 \alpha_{0}=-6 \chi(K) \\
\alpha_{0}^{2}-7 \alpha_{0} & \geq-6 \chi(K) \\
4 \alpha_{0}^{2}-28 \alpha_{0}+49 & \geq 49-24 \chi(K) \\
\left(2 \alpha_{0}-7\right)^{2} & \geq 49-24 \chi(K) \\
\alpha_{0} & \geq \frac{1}{2}(7+\sqrt{49-24 \chi(K)}) .
\end{aligned}
$$

Theorem 2.8 is useful in determining the 2-pseudomanifold triangulation of a polyhedron having the minimum number of simplexes in each dimension. Computing homology groups is at best a tedious procedure; it is simplified by using a minimal triangulation (a triangulation with the smallest number of simplexes).

Example 2.5. Consider, for example, the 2-sphere S^{2}. Since $\chi\left(S^{2}\right)=2$, then

$$
\begin{aligned}
& \left.\alpha_{0} \geq \frac{1}{2}(7+\sqrt{49-24 \chi(K})\right)=4 \\
& \alpha_{1}=3\left(\alpha_{0}-\chi(K)\right) \geq 3(4-2)=6 \\
& \alpha_{2}=\frac{2}{3} \alpha_{1} \geq \frac{2}{3} \cdot 6=4
\end{aligned}
$$

Hence any triangulation of S^{2} must have at least four vertices, at least six 1 -simplexes, and at least four 2 -simplexes. This minimal triangulation is achieved by the boundary complex of a tetrahedron (proper faces of a 3simplex) in Figure 2.5.

Example 2.6. Consider the projective plane P, a 2-manifold. As shown earlier, $H_{2}(P)=\{0\}$ and $H_{1}(P) \cong \mathbb{Z}_{2}$. Since P is connected, Theorem 2.4 shows that $H_{0}(P) \cong \mathbb{Z}$. Then

$$
R_{2}(P)=R_{1}(P)=0, \quad R_{0}(P)=1, \quad \chi(P)=1
$$

This gives

$$
\begin{aligned}
& \alpha_{0} \geq \frac{1}{2}(7+\sqrt{49-24 \chi(P)})=6, \\
& \alpha_{1} \geq 3(6-1)=15, \\
& \alpha_{2} \geq \frac{2}{3} \cdot 15=10,
\end{aligned}
$$

so that any triangulation of P must have at least six vertices, fifteen 1 -simplexes, and ten 2 -simplexes. The triangulation of P given in Figure 2.2 is thus minimal.

Definition. Let \dot{K} be an n-pseudomanifold. For each $(n-1)$-simplex σ^{n-1} of K, let σ_{1}^{n} and σ_{2}^{n} denote the two n-simplexes of which σ^{n-1} is a face. An orientation for K having the property

$$
\left[\sigma_{1}^{n}, \sigma^{n-1}\right]=-\left[\sigma_{2}^{n}, \sigma^{n-1}\right]
$$

for each $(n-1)$-simplex σ^{n-1} of K is a coherent orientation. An n pseudomanifold is orientable if it can be assigned a coherent orientation. Otherwise it is nonorientable.

The proof is lengthy, but it can be shown that orientability is a topological property of the underlying polyhedron $|K|$ and is not dependent on the particular triangulation K. We shall assume this without proof. It is left as an exercise for the reader to show that the projective plane and Klein Bottle are nonorientable while the 2 -sphere and torus are orientable.

Example 2.7. Let K denote the n-skeleton of the closure of an $(n+1)$-simplex σ^{n+1} in $\mathbb{R}^{n+1}, n \geq 1$. Then K is an n-pseudomanifold and is a triangulation of the n-sphere S^{n}. (Recall Exercise 12 in Chapter 1.)

The following notation will be helpful in determining a coherent orientation and is used only in this example. For an integer j with $0 \leq j \leq n+1$, let

$$
\sigma_{j}=\left\langle a_{0} \ldots \hat{a}_{j} \ldots a_{n+1}\right\rangle
$$

where the symbol \hat{a}_{j} indicates that the vertex a_{j} is deleted. The positively oriented simplex $+\sigma_{j}$ has the given ordering when j is even and the opposite ordering (an odd permutation of the given ordering) when j is odd. The $(n-1)$-simplex

$$
+\sigma_{i j}=+\left\langle a_{0} \ldots \hat{a}_{i} \ldots \hat{a}_{j} \ldots a_{n+1}\right\rangle
$$

is then a face of the two n-simplexes σ_{i} and σ_{j}.
It is left as an exercise for the reader to show that this orientation for the n-simplexes and $(n-1)$-simplexes gives

$$
\left[\sigma_{i}, \sigma_{i j}\right]=-\left[\sigma_{j}, \sigma_{i j}\right]
$$

in each case. It follows that any n-chain of the form $\sum_{\sigma_{i} \in K} g \cdot \sigma_{i}, g$ an integer, is an n-cycle. Furthermore, if

$$
z=\sum_{\sigma_{i} \in K} g_{i} \cdot \sigma_{i}
$$

is an n-cycle, then

$$
0=\partial(z)=\sum_{\sigma_{i,} \in K} h_{i j} \cdot \sigma_{i j}
$$

where $h_{i j}$ is either $g_{i}-g_{j}$ or $g_{j}-g_{i}$. Hence z is an n-cycle if and only if all the coefficients g_{i} have a common value g. Thus $Z_{n}\left(S^{n}\right) \cong \mathbb{Z}$. Since $B_{n}\left(S^{n}\right)=$ $\{0\}$, then $H_{n}\left(S^{n}\right) \cong \mathbb{Z}$.

A complete description of the homology groups of S^{n} is given by the following theorem:

Theorem 2.9. The homology groups of the n-sphere, $n \geq 1$, are

$$
H_{p}\left(S^{n}\right) \cong \begin{cases}\mathbb{Z} & \text { if } p=0 \text { or } p=n \\ \{0\} & \text { if } 0<p<n\end{cases}
$$

Proof. Since S^{n} is connected, Theorem 2.4 implies that $H_{0}\left(S^{n}\right) \cong \mathbb{Z}$. The above example shows that $H_{n}\left(S^{n}\right) \cong Z$. The following notation will be used in handling the case $0<p<n$: If $+\sigma^{p}=\left\langle a_{0} \ldots a_{p}\right\rangle$ and v is a vertex for which the set $\left\{v, a_{0}, \ldots, a_{p}\right\}$ is geometrically independent, then the symbol $v \sigma^{p}$ denotes the positively oriented $(p+1)$-simplex $+\left\langle v a_{0} \ldots a_{p}\right\rangle$. If $c=\sum g_{i} \cdot \sigma_{i}^{p}$ is a p-chain, then $v c$ denotes the $(p+1)$-chain

$$
v c=\sum g_{i} \cdot v \sigma_{i}^{p}
$$

Note that

$$
\partial\left(1 \cdot v \sigma^{p}\right)=1 \cdot \sigma^{p}-v \partial\left(1 \cdot \sigma^{p}\right) .
$$

Now consider a particular vertex v in the triangulation of S^{n} given in the
preceding example. Since any p-simplex containing v can be expressed in the form $v \sigma^{p-1}$, then any p-cycle z can be written

$$
z=\sum g_{i} \cdot \sigma_{i}^{p}+\sum h_{j} \cdot v \sigma_{j}^{p-1}
$$

where simplexes in the second sum have v as a vertex and those in the first sum do not. Since z is a p-cycle, then

$$
\begin{aligned}
0 & =\partial(z)=\partial\left(\sum g_{i} \cdot \sigma_{i}^{p}\right)+\partial\left(\sum h_{j} \cdot v \sigma_{j}^{p-1}\right) \\
& =\partial\left(\sum g_{i} \cdot \sigma_{i}^{p}\right)+\sum h_{j} \cdot \sigma_{j}^{p-1}-v\left(\partial \sum h_{j} \cdot \sigma_{j}^{p-1}\right)
\end{aligned}
$$

so that

$$
\partial\left(\sum h_{j} \cdot \sigma_{j}^{p-1}\right)=0, \quad \partial\left(\sum g_{i} \cdot \sigma_{i}^{p}\right)=-\sum h_{j} \cdot \sigma_{j}^{p-1} .
$$

This gives

$$
\begin{aligned}
\partial\left(\sum g_{i} v \sigma_{i}^{p}\right) & =\sum g_{i} \cdot \sigma_{i}^{p}-v \partial\left(\sum g_{i} \cdot \sigma_{i}^{p}\right) \\
& =\sum g_{i} \cdot \sigma_{i}^{p}+v \sum h_{j} \cdot \sigma_{g}^{p-1}=z .
\end{aligned}
$$

Thus every p-cycle on S^{n} is a boundary, so $H_{p}\left(S^{n}\right)=\{0\}$ for $0<p<n$.
The next theorem explains the meaning of orientability in terms of homology groups.

Theorem 2.10. An n-pseudomanifold K is orientable if and only if the nth homol-

 ogy group $H_{n}(K)$ is not the trivial group.Proof. Assume first that K is orientable and assign it a coherent orientation. Then if the $(n-1)$-simplex σ^{n-1} is a face of σ_{1}^{n} and σ_{2}^{n}, we have

$$
\left[\sigma_{1}^{n}, \sigma^{n-1}\right]=-\left[\sigma_{2}^{n}, \sigma^{n-1}\right] .
$$

This implies that any n-chain of the form

$$
c=\sum_{\sigma^{n} \in K} g \cdot \sigma^{n}
$$

(g a fixed integer) is an n-cycle. Thus $Z_{n}(K) \neq\{0\}$. Since $B_{n}(K)=\{0\}$, then $H_{n}(K) \neq\{0\}$.

To complete the proof it must be shown that K is orientable if $H_{n}(K) \neq\{0\}$. Suppose that

$$
z=\sum_{\sigma_{i} \in K} g_{i} \cdot \sigma_{i}^{n}
$$

is a nonzero n-cycle.
Since each pair of n-simplexes in K can be joined by a sequence of n simplexes (as specified in the definition of n-pseudomanifold) and each ($n-1$)-simplex is a face of exactly two n-simplexes, it follows that any two coefficients in z can differ only in sign. That is to say, $g_{i}= \pm g_{0}$ if $\partial(z)=0$. By reorienting σ_{i}^{n} if $g_{i}=-g_{0}$, we obtain an n-cycle

$$
\sum_{\sigma_{i}^{n} \in K} g_{0} \cdot \sigma_{i}^{n}=g_{0}\left(\sum_{\sigma_{i}^{n} \in K} 1 \cdot \sigma_{i}^{n}\right),
$$

so it follows that $\sum 1 \cdot \sigma_{i}^{n}$ is an n-cycle. But this means that each $(n-1)$ simplex must have positive incidence number with one of the n-simplexes of which it is a face and negative incidence number with the other. In other words, K is orientable.

Corollary. An n-pseudomanifold L is nonorientable if and only if $H_{n}(L)=\{0\}$.

The question of whether or not every n-manifold has a triangulation was raised by Poincaré. Here it was not required that manifolds be compact, and triangulations having an infinite number of simplexes were allowed. Under these conditions, Tibor Rado (1895-1965) proved in 1922 that every 2 manifold has a triangulation, and Edwin Moise (1918-) proved the corresponding result for 3-manifolds in 1952.

In 1969 R. C. Kirby (1938-) and L. C. Siebenmann (1939-), using a somewhat different definition of triangulability, showed the existence of manifolds in higher dimensions which are not triangulable in their sense of the term. This answered a related triangulation problem which had been of interest for many years. The results of Kirby and Siebenmann can be found in [44].

A 2-manifold is called a closed surface. The topological power of the homology groups is demonstrated by the following classification theorem for closed surfaces.

Theorem 2.11. Two closed surfaces are homeomorphic if and only if they have

 the same Betti numbers in corresponding dimensions.The proof of Theorem 2.11 is omitted from this text because it would require a lengthy digression into the theory of closed surfaces and because, historically, the theorem preceded Poincare's formalization of algebraic topology. It was a motivating force behind Poincaré's work, however, and served as a model of the type of theorem to which topology would aspire. More will be said on this point in Chapter 4.

Theorem 2.11 was essentially known by about 1890 through the work of various mathematicians, notably Camille Jordan (1858-1922) and A. F. Möbius (1790-1860). Jordan is best known for his work in algebra and for proposing the Jordan Curve Theorem. Möbius invented the polyhedron that bears his name (the Möbius strip) and in so doing initiated the study of orientability. He used the term "one-sided" to mean nonorientable and "two-sided" to mean orientable for surfaces. The modern terms "orientable" and "nonorientable" were introduced by J. W. Alexander to generalize Möbius' concepts to higher dimensions.

Those who wish to see a proof of Theorem 2.11 should consult the texts by Cairns [2] or Massey [16].

Exercises

1. Suppose that K_{1} and K_{2} are two triangulations of the same polyhedron. Are the chain groups $C_{p}\left(K_{1}\right)$ and $C_{p}\left(K_{2}\right)$ isomorphic? Explain.
2. Suppose that complexes K_{1} and K_{2} have the same simplexes but different orientations. How are the chain groups $C_{p}\left(K_{1}\right)$ and $C_{p}\left(K_{2}\right)$ related?
3. Prove Theorem 2.2.
4. Let z_{p} be a p-cycle on a complex K. Explain why the homology class [z_{p}] and the coset $z_{p}+B_{p}(K)$ are identical.
5. Let K denote the complex consisting of all proper faces of a 2 -simplex $\left\langle a_{0} a_{1} a_{2}\right\rangle$ with orientation induced by the order $a_{0}<a_{1}<a_{2}$. Compute all homology groups of K.
6. Compute the homology groups and Betti numbers of the 2 -sphere S^{2}.
7. Compute the homology groups of the cylinder C triangulated in the accompanying figure. (Assign any orientation you like.)

8. Compute the homology groups of the torus.
9. Compute the homology groups of the Klein Bottle.
10. Prove that linear independence with respect to homology for integral coefficients is equivalent to linear independence with respect to homology for rational coefficients. Explain in particular why the Betti numbers are not altered by the change to rational coefficients.
11. Derive the possibilities for (m, n, F) referred to in the proof of Theorem 2.7. How do you rule out the cases $m=1$ and $m=2$?
12. Fill in the details in the proof of Theorem 2.3. Explain in particular the relation between [$\left.{ }^{1} \sigma^{p},{ }^{1} \sigma^{p-1}\right]$ and $\left[{ }^{2} \sigma^{p},{ }^{2} \sigma^{p-1}\right]$.
13. Prove that the geometric carriers of the combinatorial components of a complex K and the components of the polyhedron $|K|$ are identical.
14. Prove that the p th Betti number of a complex K is the rank of the free part of the p th homology group $H_{p}(K)$.
15. Find a minimal triangulation for the torus T. (Its homology groups are $H_{0}(T) \cong \mathbb{Z}, H_{1}(T) \cong \mathbb{Z} \oplus \mathbb{Z}$, and $H_{2}(T) \cong \mathbb{Z}$.)
16. Let K be a complex and K^{r} its r-skeleton. Show that $H_{p}(K)$ and $H_{p}\left(K^{r}\right)$ are isomorphic for $0 \leq p<r$. How are $H_{r}(K)$ and $H_{r}\left(K^{r}\right)$ related?
17. Why must an n-pseudomanifold have dimension n ?
18. Show explicitly that the torus is orientable and that the projective plane and Klein Bottle are nonorientable.
19. Complete the proof in Example 2.7 that the n-sphere S^{n} is orientable.
20. In the proof of Theorem 2.9, show that

$$
\partial\left(1 \cdot v \sigma^{p}\right)=1 \cdot \sigma^{p}-v \partial\left(1 \cdot \sigma^{p}\right)
$$

21. Let K denote the closure of an n-simplex. Prove that $H_{p}(K)=\{0\}$ for $0<p \leq n$. Use this to show that $H_{p}\left(S^{n}\right)=\{0\}$ for $0<p<n$.
22. Show that an orientable n-pseudomanifold has exactly two coherent orientations for its n-simplexes.
23. If K is an orientable n-pseudomanifold, prove that $H_{n}(K) \cong \mathbb{Z}$.
24. In the definition of n-pseudomanifold, replace (b) with (b'): Each ($n-1$)simplex is a face of at least one and at most two n-simplexes. The resulting conditions (a), (b'), and (c) define the term n-pseudomanifold with boundary.
(i) Define orientability for n-pseudomanifolds with boundary in analogy with the definition of orientability for n-pseudomanifolds.
(ii) Show that the Möbius strip is a nonorientable 2-pseudomanifold with boundary.
25. If K is a 2-pseudomanifold, prove that $\chi(K) \leq 2$. How is this fact used in Theorem 2.8?
26. Show that the projective plane P is the quotient space of the 2 -sphere obtained by identifying each pair $x,-x$ of diametrically opposite points.
27. References [9] and [2] may be helpful for (b) and (c).
(a) Define a 1 -dimensional complex K in \mathbb{R}^{3} for which $|K|$ is not homeomorphic to a subspace of \mathbb{R}^{2}.
(b) Prove that if K is a complex of dimension n, then $|K|$ can be rectilinearly imbedded in $\mathbb{R}^{2 n+1}$.
(c) Prove that every triangulation of an n-manifold is an n-pseudomanifold.

Simplicial Approximation

3.1 Introduction

We turn now to the problem of comparing polyhedra by means of their associated homology groups. Comparisons between two topological spaces are usually made on the basis of a continuous map, ideally a homeomorphism, from one space to another. Groups are compared by means of homomorphisms and isomorphisms. We shall show in this chapter that a continuous $\operatorname{map} f:|K| \rightarrow|L|$ induces for each non-negative integer p a homomorphism $f_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)$ on the associated homology groups. This will allow topological comparisons between the polyhedra $|K|$ and $|L|$ on the basis of algebraic similarities between their associated homology groups.

We have pointed out that if $|K|$ and $|L|$ are homeomorphic, then $H_{p}(K)$ and $H_{p}(L)$ are isomorphic in each dimension p. The reader should be warned that the converse is not true. Even if there is a continuous map $f:|K| \rightarrow|L|$ for which f_{p}^{*} is an isomorphism for each dimension p, it may not follow that $|K|$ and $|L|$ are homeomorphic. Thus we do not have the best possible situation in which a topological comparison is reduced to a purely algebraic one. However, as we shall see in this and later chapters, the method of comparing topological spaces through their homology groups is a very powerful tool.

Suppose then that there is a continuous map $f:|K| \rightarrow|L|$ from one polyhedron to another. How are the associated homomorphisms defined? The situation would be simple if f took simplexes of K to simplexes of L, i.e., if f were a "simplicial map." We could then induce homomorphisms from $C_{p}(K)$ to $C_{p}(L)$ and use these to define the required homomorphisms on the homology groups. If f does not take simplexes of K to simplexes of L, we replace f by a map which does as follows: Subdivide K into smaller simplexes
so that f "almost" maps each simplex of K into a simplex of L. We can then define explicitly a simplicial map which has the essential characteristics of f and use this new map to induce homomorphisms on the homology groups. The process of subdividing K is called "barycentric subdivision," and the associated simplicial map is called a "simplicial approximation." This intuitive description will be made more precise as we proceed. The existence of simplicial approximations to any continuous map $f:|K| \rightarrow|L|$ is the central result of this chapter.

3.2 Simplicial Approximation

Definition. Let K and L be complexes and $\left\{\varphi_{p}\right\}_{0}^{\infty}$ a sequence of homomorphisms $\varphi_{p}: C_{p}(K) \rightarrow C_{p}(L)$ such that

$$
\partial \varphi_{p}=\varphi_{p-1} \partial, \quad p \geq 1
$$

Then $\left\{\varphi_{p}\right\}_{0}^{\infty}$ is called a chain mapping from K into L.
In the preceding definition, the sequence $\left\{\varphi_{p}\right\}_{0}^{\infty}$ is written as an infinite sequence simply to avoid mention of the dimensions of K and L. When p exceeds $\operatorname{dim} K$ and $\operatorname{dim} L$, then $C_{p}(K)$ and $C_{p}(L)$ are zero groups and φ_{p} must be the trivial homomorphism which takes 0 to 0 .

Theorem 3.1. A chain mapping $\left\{\varphi_{p}\right\}_{0}^{\infty}$ from a complex K into a complex L induces homomorphisms

$$
\varphi_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)
$$

in each dimension p.
Proof. If $b_{p}=\partial\left(c_{p+1}\right)$ in $B_{p}(K)$, then

$$
\varphi_{p}\left(b_{p}\right)=\varphi_{p} \partial\left(c_{p+1}\right)=\partial \varphi_{p+1}\left(c_{p+1}\right)
$$

so $\varphi_{p}\left(b_{p}\right)$ is the boundary of the $(p+1)$-chain $\varphi_{p+1}\left(c_{p+1}\right)$. Thus φ_{p} maps $B_{p}(K)$ into $B_{p}(L)$.

We shall now show that φ_{p} maps $Z_{p}(K)$ into $Z_{p}(L)$. This is true for $p=0$ since $Z_{0}(K)=C_{0}(K)$ and $Z_{0}(L)=C_{0}(L)$. For $p \geq 1$, suppose that $z_{p} \in Z_{p}(K)$. Note that

$$
\partial \varphi_{p}\left(z_{p}\right)=\varphi_{p-1} \partial\left(z_{p}\right)=\varphi_{p-1}(0)=0,
$$

so $\varphi_{p}\left(z_{p}\right)$ is a p-cycle on L.
Since

$$
H_{p}(K)=Z_{p}(K) / B_{p}(K), \quad H_{p}(L)=Z_{p}(L) / B_{p}(L)
$$

then the induced homomorphism $\varphi_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)$ can be defined in the standard way:

$$
\varphi_{p}^{*}\left(z_{p}+B_{p}(K)\right)=\varphi_{p}\left(z_{p}\right)+B_{p}(L)
$$

or, equivalently,

$$
\varphi_{p}^{*}\left(\left[z_{p}\right]\right)=\left[\varphi_{p}\left(z_{p}\right)\right] .
$$

Definition. A simplicial mapping from a complex K into a complex L is a function φ from the vertices of K into those of L such that if $\sigma^{p}=$ $\left\langle v_{0} \ldots v_{p}\right\rangle$ is a simplex of K, then the vertices $\varphi\left(v_{i}\right), 0 \leq i \leq p$ (not necessarily distinct) are the vertices of a simplex of L. If the vertices $\varphi\left(v_{i}\right)$ are all distinct, then the p-simplex $\left\langle\varphi\left(v_{0}\right) \ldots \varphi\left(v_{p}\right)\right\rangle=\varphi\left(\sigma^{p}\right)$ is called the image of σ^{p}. If $\varphi\left(v_{i}\right)=\varphi\left(v_{j}\right)$ for some $i \neq j$, then φ is said to collapse σ^{p}.

Definition. Let φ be a simplicial mapping from K into L and p a non-negative integer. If $g \cdot \sigma^{p}$ is an elementary p-chain on K, define

$$
\varphi_{p}\left(g \cdot \sigma^{p}\right)= \begin{cases}0 & \text { if } \varphi \text { collapses } \sigma^{p} \\ g \cdot \varphi\left(\sigma^{p}\right) & \text { if } \varphi \text { does not collapse } \sigma^{p} .\end{cases}
$$

The function φ_{p} is extended by linearity to a homomorphism $\varphi_{p}: C_{p}(K) \rightarrow$ $C_{p}(L)$. That is to say, if $\sum g_{i} \cdot \sigma_{i}^{p}$ is a p-chain on K, then

$$
\varphi_{p}\left(\sum g_{i} \cdot \sigma_{i}^{p}\right)=\sum \varphi_{p}\left(g_{i} \cdot \sigma_{i}^{p}\right)
$$

The sequence $\left\{\varphi_{p}\right\}_{0}^{\infty}$ is called the chain mapping induced by φ.
Theorem 3.2. If $\varphi: K \rightarrow L$ is a simplicial mapping, then the sequence $\left\{\varphi_{p}\right\}_{0}^{\infty}$ of homomorphisms in the preceding definition is actually a chain mapping.

Proof. Since each φ_{p} is a homomorphism, then in order to show that $\partial \varphi_{p}=\varphi_{p-1} \partial$, it is sufficient to show that

$$
\partial \varphi_{p}\left(g \cdot \sigma^{p}\right)=\varphi_{p-1} \partial\left(g \cdot \sigma^{p}\right)
$$

for each elementary p-chain $g \cdot \sigma^{p}, p \geq 1$. Let $g \cdot \sigma^{p}$ be an elementary p-chain on K where $+\sigma^{p}=+\left\langle v_{0} \ldots v_{p}\right\rangle$. Suppose first that φ does not collapse σ^{p} so that

$$
\varphi_{p}\left(\sigma^{p}\right)=\left\langle\varphi\left(v_{0}\right) \ldots \varphi\left(v_{p}\right)\right\rangle .
$$

Let σ_{i}^{p} be the $(p-1)$-face of σ^{p} obtained by deleting the i th vertex, and let $\varphi\left(\sigma^{p}\right)_{i}$ be defined in the analogous manner. Then

$$
\begin{aligned}
\partial \varphi_{p}\left(g \cdot \sigma^{p}\right) & =\partial\left(g \cdot \varphi\left(\sigma^{p}\right)\right)=\sum_{i=0}^{p}(-1)^{i} g \cdot \varphi\left(\sigma^{p}\right)_{i}=\sum_{i=0}^{p}(-1)^{i} g \cdot \varphi\left(\sigma_{i}^{p}\right) \\
& =\varphi_{p-1}\left(\sum_{i=0}^{p}(-1)^{i} g \cdot \sigma_{i}^{p}\right)=\varphi_{p-1} \partial\left(g \cdot \sigma^{p}\right) .
\end{aligned}
$$

Suppose that φ collapses σ^{p}. Without loss of generality we may assume that $\varphi\left(v_{0}\right)=\varphi\left(v_{1}\right)$. Then $\varphi_{p}\left(g \cdot \sigma^{p}\right)=0$, so $\partial \varphi_{p}\left(g \cdot \sigma^{p}\right)=0$, and

$$
\varphi_{p-1} \partial\left(g \cdot \sigma^{p}\right)=\varphi_{p-1}\left(\sum_{i=0}^{p}(-1)^{i} g \cdot \sigma_{i}^{p}\right)=\sum_{i=0}^{p}(-1)^{i} \varphi_{p-1}\left(g \cdot \sigma_{i}^{p}\right) .
$$

For $i \geq 2, \sigma_{i}^{p}$ contains v_{0} and v_{1}. Since $\varphi\left(v_{0}\right)=\varphi\left(v_{1}\right)$, then φ collapses σ_{i}^{p}, $i \geq 2$, and we have

$$
\varphi_{p-1} \partial\left(g \cdot \sigma^{p}\right)=\sum_{i=0}^{p}(-1)^{i} \varphi_{p-1}\left(g \cdot \sigma_{i}^{p}\right)=\varphi_{p-1}\left(g \cdot \sigma_{0}^{p}\right)-\varphi_{p-1}\left(g \cdot \sigma_{1}^{p}\right) .
$$

But $\sigma_{0}^{p}=\left\langle v_{1} v_{2} \ldots v_{p}\right\rangle, \sigma_{1}^{p}=\left\langle v_{0} v_{2} \ldots v_{p}\right\rangle$ and $\varphi\left(v_{0}\right)=\varphi\left(v_{1}\right)$ so that

$$
\varphi_{p-1}\left(g \cdot \sigma_{0}^{p}\right)=\varphi_{p-1}\left(g \cdot \sigma_{1}^{p}\right)
$$

Hence $\varphi_{p-1} \partial\left(g \cdot \sigma^{p}\right)=0$. Thus both $\varphi_{p-1} \partial\left(g \cdot \sigma^{p}\right)$ and $\partial \varphi_{p}\left(g \cdot \sigma^{p}\right)$ are 0 when φ collapses σ^{p}. Therefore $\partial \varphi_{p}=\varphi_{p-1} \partial$, so $\left\{\varphi_{p}\right\}_{0}^{\infty}$ is a chain mapping.

Question: The proof of Theorem 3.2 was given under the assumption that σ^{p} and its faces σ_{i}^{p} have orientations induced by the ordering $v_{0}<v_{1}<\cdots<v_{p}$. Why is it sufficient to consider only this orientation?

Definition. Let $|K|$ and $|L|$ be polyhedra with triangulations K and L respectively and let φ be a simplicial mapping from the vertices of K into the vertices of L. Then φ is extended to a function $\varphi:|K| \rightarrow|L|$ as follows: If $x \in|K|$, there is a simplex $\sigma^{r}=\left\langle a_{0} \ldots a_{r}\right\rangle$ in K such that $x \in \sigma^{r}$. Then

$$
x=\sum_{i=0}^{r} \lambda_{i} a_{i}
$$

where the λ_{i} are the barycentric coordinates of x. Define

$$
\varphi(x)=\sum_{i=0}^{\tau} \lambda_{i} \varphi\left(a_{i}\right) .
$$

This extended function $\varphi:|K| \rightarrow|L|$ is called a simplicial mapping from $|K|$ into $|L|$.

The proof of the following theorem is left as an exercise:
Theorem 3.3. Every simplicial mapping $\varphi:|K| \rightarrow|L|$ is continuous.
Example 3.1. Let K denote the 2 -skeleton of a 3-simplex and L the closure of a 2 -simplex with orientations as indicated by the arrows in Figure 3.1.

Figure 3.1
Let φ be the simplicial map from K to L defined for vertices by

$$
\varphi\left(v_{0}\right)=\varphi\left(v_{3}\right)=a_{0}, \quad \varphi\left(v_{1}\right)=a_{1}, \quad \varphi\left(v_{2}\right)=a_{2} .
$$

The extension process for simplicial maps determines a simplicial mapping $\varphi:|K| \rightarrow|L|$ which
(a) maps $\left\langle v_{0} v_{1}\right\rangle,\left\langle v_{1} v_{2}\right\rangle$, and $\left\langle v_{2} v_{0}\right\rangle$ linearly onto $\left\langle a_{0} a_{1}\right\rangle,\left\langle a_{1} a_{2}\right\rangle$, and $\left\langle a_{2} a_{0}\right\rangle$ respectively;
(b) maps $\left\langle v_{1} v_{3}\right\rangle$ and $\left\langle v_{2} v_{3}\right\rangle$ linearly onto $\left\langle a_{1} a_{0}\right\rangle$ and $\left\langle a_{2} a_{0}\right\rangle$ respectively;
(c) collapses $\left\langle v_{0} v_{3}\right\rangle$ to the vertex a_{0};
(d) collapses $\left\langle v_{0} v_{3} v_{2}\right\rangle$ and $\left\langle v_{0} v_{1} v_{3}\right\rangle$;
(e) maps each of $\left\langle v_{0} v_{1} v_{2}\right\rangle$ and $\left\langle v_{3} v_{1} v_{2}\right\rangle$ linearly onto $\left\langle a_{0} a_{1} a_{2}\right\rangle$.

For the induced homomorphisms $\left\{\varphi_{p}\right\}$ on the chain groups we have the following:
(0) $\varphi_{0}: C_{0}(K) \rightarrow C_{0}(L)$ is defined by

$$
\begin{aligned}
\varphi_{0}\left(g \cdot\left\langle v_{0}\right\rangle+g_{1} \cdot\left\langle v_{1}\right\rangle+g_{2} \cdot\left\langle v_{2}\right\rangle\right. & \left.+g_{3} \cdot\left\langle v_{3}\right\rangle\right) \\
& =\left(g_{0}+g_{3}\right) \cdot\left\langle a_{0}\right\rangle+g_{1} \cdot\left\langle a_{1}\right\rangle+g_{2} \cdot\left\langle a_{2}\right\rangle .
\end{aligned}
$$

(1) $\varphi_{1}: C_{1}(K) \rightarrow C_{1}(L)$ is defined by

$$
\begin{aligned}
& \varphi_{1}\left(h_{1} \cdot\left\langle v_{0} v_{1}\right\rangle+h_{2} \cdot\left\langle v_{1} v_{2}\right\rangle+h_{3} \cdot\left\langle v_{0} v_{2}\right\rangle+h_{4} \cdot\left\langle v_{1} v_{3}\right\rangle\right. \\
&+\left.h_{5} \cdot\left\langle v_{0} v_{3}\right\rangle+h_{6} \cdot\left\langle v_{2} v_{3}\right\rangle\right) \\
&=\left(h_{1}-h_{4}\right) \cdot\left\langle a_{0} a_{1}\right\rangle+h_{2} \cdot\left\langle a_{1} a_{2}\right\rangle+\left(h_{6}-h_{3}\right) \cdot\left\langle a_{2} a_{0}\right\rangle .
\end{aligned}
$$

(2) $\varphi_{2}: C_{2}(K) \rightarrow C_{2}(L)$ is defined by

$$
\begin{aligned}
\varphi_{2}\left(k_{1} \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle+k_{2} \cdot\left\langle v_{1} v_{2} v_{3}\right\rangle+k_{3} \cdot\left\langle v_{0} v_{1} v_{3}\right\rangle+k_{4} \cdot\right. & \left.\left\langle v_{0} v_{3} v_{2}\right\rangle\right) \\
& =\left(k_{1}+k_{2}\right) \cdot\left\langle a_{0} a_{1} a_{2}\right\rangle .
\end{aligned}
$$

Definition. If σ is a geometric simplex, the open simplex $O(\sigma)$ associated with σ consists of those points in σ all of whose barycentric coordinates are positive. If v is a vertex of a complex K, then the star of $v, \operatorname{st}(v)$, is the family of all simplexes σ in K of which v is a vertex. Thus $\operatorname{st}(v)$ is a subset of K. The open star of $v, \operatorname{ost}(v)$, is the union of all the open simplexes $o(\sigma)$ for which v is a vertex of σ. Note that $\operatorname{ost}(v)$ is a subset of the polyhedron $|K|$.

Example 3.2. If a is a vertex, $o(\langle a\rangle)=\{a\}$. For a 1 -simplex $\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle$, $\mathbf{o}\left(\sigma^{1}\right)$ is the open segment from a_{0} to a_{1} (not including either a_{0} or a_{1}). For a 2-simplex $\sigma^{2}, o\left(\sigma^{2}\right)$ is the interior of the triangle spanned by the three vertices.

In Figure 3.2, $\operatorname{st}\left(v_{0}\right)$ consists of the simplexes $\left\langle v_{0}\right\rangle,\left\langle v_{0} v_{1}\right\rangle,\left\langle v_{0} v_{2}\right\rangle,\left\langle v_{0} v_{3}\right\rangle$, $\left\langle v_{0} v_{4}\right\rangle$, and $\left\langle v_{0} v_{1} v_{2}\right\rangle$.

Figure 3.2

The open star of v_{0}, ost $\left(v_{0}\right)$, is the set theoretic union of $\left\{v_{0}\right\}$, the open segments from v_{0} to v_{1}, v_{0} to v_{2}, v_{0} to v_{3}, v_{0} to v_{4}, and the interior of $\left\langle v_{0} v_{1} v_{2}\right\rangle$. Note that ost $\left(v_{0}\right)$ is not the interior of $\operatorname{st}\left(v_{0}\right)$ in any sense. The star of a vertex is a set of simplexes of K; the open star of a vertex is the union of certain point sets in the polyhedron $|K|$.

Definition. Let $|K|$ and $|L|$ be polyhedra with triangulations K and L respectively and $f:|K| \rightarrow|L|$ a continuous map. Then K is star related to L relative to f means that for each vertex p of K there is a vertex q of L such that

$$
f(\operatorname{ost}(p)) \subset \operatorname{ost}(q)
$$

Definition. Let X and Y be topological spaces and f, g continuous functions from X into Y. Then f is homotopic to g means that there is a continuous function $H: X \times[0,1] \rightarrow Y$ from the product space $X \times[0,1]$ into Y such that, for all $x \in X$,

$$
H(x, 0)=f(x), \quad H(x, 1)=g(x) .
$$

The function H is called a homotopy between f and g.
Note: In order to simplify notation involving homotopies, we shall use I to denote the closed unit interval $[0,1]$.

Example 3.3. Consider the functions f and g from the unit circle S^{1} into the plane given pictorially in Figure 3.3. Using the usual vector addition and scalar multiplication, a homotopy H between f and g is defined by

$$
H(x, t)=(1-t) f(x)+\operatorname{tg}(x), \quad x \in S^{1}, t \in I
$$

Figure 3.3
The homotopy H essentially shows how to continuously "deform" $f(x)$ into $g(x)$. Observe that if the horizontal axis were removed from the range space, then the indicated functions would not be homotopic.

Definition. Let K and L be complexes and $f:|K| \rightarrow|L|$ a continuous function. A simplicial mapping $g:|K| \rightarrow|L|$ which is homotopic to f is called a simplicial approximation of f.

Example 3.4. Let L be the closure of a p-simplex $\sigma^{p}=\left\langle a_{0} \ldots a_{p}\right\rangle$, and let K be an arbitrary complex. Then any continuous map $f:|K| \rightarrow|L|$ has as a simplicial approximation the constant map $g:|K| \rightarrow|L|$ which collapses all of K to the vertex a_{0}.

As illustrated in Figure 3.4, proving that f is homotopic to g requires only the convexity of $|L|$. We define a homotopy $H:|K| \times I \rightarrow|L|$ by

$$
H(x, t)=(1-t) f(x)+t a_{0}, \quad x \in|K|, t \in I .
$$

Then H is continuous and

$$
H(x, 0)=f(x), \quad H(x, 1)=a_{0}=g(x), \quad x \in|K| .
$$

This example illustrates one method by which homotopies will be defined in later applications.

Figure 3.4
Example 3.5. Let both K and L be the 1 -skeleton of the closure of a 2 -simplex σ^{2}. Then the polyhedra $|K|$ and $|L|$ are both homeomorphic to the unit circle S^{1}, so we may consider any function from $|K|$ to $|L|$ as a function from S^{1} to itself. For our function f, let us choose a rotation through a given angle α. Then, referring S^{1} to polar coordinates, $f: S^{1} \rightarrow S^{1}$ is defined by

$$
f(1, \theta)=(1, \theta+\alpha), \quad(1, \theta) \in S^{1}, 0 \leq \theta \leq 2 \pi
$$

A homotopy H between f and the identity map is defined by

$$
H((1, \theta), t)=(1, \theta+t \alpha), \quad(1, \theta) \in S^{1}, t \in I .
$$

Thus H agrees with the identity map when $t=0$ and agrees with f when $t=1$. At any "time" t between 0 and 1 the " t-level of the homotopy," $H(\cdot, t)$, performs a rotation of the circle through the angle $t \alpha$.

We are now ready to begin the process of replacing a continuous map $f:|K| \rightarrow|L|$ by a homotopic simplicial map g. Let us first consider the case in which K is star related to L relative to f. The following lemma will be needed; its proof is left as an exercise.

Lemma. Vertices v_{0}, \ldots, v_{m} in a complex K are vertices of a simplex of K if and only if $\bigcap_{i=0}^{m} \operatorname{ost}\left(v_{i}\right)$ is not empty.

Theorem 3.4. Let K and L be polyhedra with triangulations K and L respectively and $f:|K| \rightarrow|L|$ a continuous function such that K is star related to L relative to f. Then f has a simplicial approximation $g:|K| \rightarrow|L|$.
Proof. Since K is star related to L relative to f, there exists for each vertex p of K a vertex $g(p)$ of L such that

$$
f(\operatorname{ost}(p)) \subset \operatorname{ost}(g(p))
$$

To see that this vertex map g is simplicial, suppose that v_{0}, \ldots, v_{n} are vertices of a simplex in K. According to the lemma, this is equivalent to saying that the intersection $\bigcap_{i=0}^{n} \operatorname{ost}\left(v_{i}\right)$ is not empty. Hence

$$
\varnothing \neq f\left(\bigcap_{i=0}^{n} \operatorname{ost}\left(v_{i}\right)\right) \subset \bigcap_{i=0}^{n} f\left(\operatorname{ost}\left(v_{i}\right)\right) \subset \bigcap_{i=0}^{n} \operatorname{ost}\left(g\left(v_{i}\right)\right),
$$

so $\bigcap_{i=0}^{n} \operatorname{ost}\left(g\left(v_{i}\right)\right)$ is not empty. The lemma thus insures that $g\left(v_{0}\right), \ldots, g\left(v_{n}\right)$ are vertices of a simplex in L. Then g is a simplicial vertex map and has an extension to a simplicial map $g:|K| \rightarrow|L|$.

Let $x \in|K|$ and let σ be the simplex of K of smallest dimension which contains x. Let a be any vertex of σ. Observe that $f(x) \in f(\operatorname{ost}(a))$ (why?) and that $f(\operatorname{ost}(a)) \subset \operatorname{ost}(g(a))$. Also, $g(x) \in \operatorname{ost}(g(a))$ since the barycentric coordinate of $g(x)$ with respect to $g(a)$ is greater than or equal to the (nonzero) barycentric coordinate of x with respect to a.

Let a_{0}, \ldots, a_{k} denote the vertices of σ. According to the preceding paragraph, both $f(x)$ and $g(x)$ belong to $\bigcap_{i=0}^{k} \operatorname{ost}\left(g\left(a_{i}\right)\right)$. Thus $g\left(a_{0}\right), \ldots, g\left(a_{k}\right)$ are vertices of a simplex τ in L containing both $f(x)$ and $g(x)$. Since each simplex is a convex set, then the line segment joining $f(x)$ and $g(x)$ must lie entirely in $|L|$. The map $H:|K| \times I \rightarrow|L|$ defined by

$$
H(x, t)=(1-t) f(x)+\operatorname{tg}(x), \quad x \in K, t \in I
$$

is then a homotopy between f and g, and g is a simplicial approximation of f. \square
Theorem 3.4 shows that if K is star related to L relative to f, then there is a simplicial map homotopic to f. This is a big step toward our goal of replacing f by a simplicial approximation. But what if K is not star related to L relative to f ? That is, what if K has some vertices b_{0}, \ldots, b_{n} such that $f\left(\operatorname{ost}\left(b_{i}\right)\right)$ is not contained in the open star of any vertex in L ? We then retriangulate K systematically to produce simplexes of smaller and smaller diameters thus reducing the size of $\operatorname{ost}\left(b_{i}\right)$ and the size of $f\left(\operatorname{ost}\left(b_{i}\right)\right)$ to the point that the new complex obtained from K is star related to L relative to f. This process of dividing a complex into smaller simplexes is called "barycentric subdivision." The precise definition follows.

Definition. Let $\sigma^{r}=\left\langle a_{0} \ldots a_{r}\right\rangle$ be a simplex in \mathbb{R}^{n}. The point $\dot{\sigma}^{r}$ in σ^{r} all of whose barycentric coordinates with respect to a_{0}, \ldots, a_{r} are equal is called
the barycenter of σ^{r}. Note that if σ^{0} is a 0 -simplex, then $\dot{\sigma}^{0}$ is the vertex which determines σ^{0}.

The collection $\left\{\dot{\sigma}^{k}: \sigma^{k}\right.$ is a face of $\left.\sigma^{r}\right\}$ of all barycenters of faces of σ^{r} are the vertices of a complex called the first barycentric subdivision of $\mathrm{Cl}\left(\sigma^{r}\right)$. A subset $\dot{\sigma}_{0}, \ldots, \dot{\sigma}_{p}$ of the vertices $\dot{\boldsymbol{\sigma}}^{k}$ are the vertices of a simplex in the first barycentric subdivision provided that σ_{j} is a face of σ_{j+1} for $j=0, \ldots, p-1$.

If K is a geometric complex, the preceding process is applied to each simplex of K to produce the first barycentric subdivision $K^{(1)}$ of K. For $n>1$, the nth barycentric subdivision $K^{(n)}$ of K is the first barycentric subdivision of $K^{(n-1)}$.

The first barycentric subdivision of K is assigned an orientation consistent with that of K as follows: Let $\left\langle\dot{\sigma}^{0} \dot{\sigma}^{1} \ldots \dot{\sigma}^{p}\right\rangle$ be a p-simplex of $K^{(1)}$ which occurs in the barycentric subdivision of a p-simplex σ^{p} of K. Then the vertices of $\sigma^{p}=\left\langle v_{0} \ldots v_{p}\right\rangle$ may be ordered so that $\dot{\sigma}^{i}$ is the barycenter of $\left\langle v_{0} \ldots v_{i}\right\rangle$ for $i=0, \ldots, p$. We then consider $\left\langle\dot{\sigma}^{0} \ldots \dot{\sigma}^{p}\right\rangle$ to be positively oriented if $\left\langle v_{0} \ldots v_{p}\right\rangle$ is positively oriented and negatively oriented if $\left\langle v_{0} \ldots v_{p}\right\rangle$ is negatively oriented. There are other simplexes of $K^{(1)}$ whose orientations are not defined by this process, and they may be oriented arbitrarily. An orientation for $K^{(1)}$ defined in this way is said to be concordant with the orientation of K. The same process applies inductively to higher barycentric subdivisions.

We assume in the sequel that barycentric subdivisions are concordantly oriented.

Example 3.6. Consider the complex $K=\mathrm{Cl}\left(\sigma^{1}\right)$ consisting of a 1 -simplex $\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle$ and two 0 -simplexes $\sigma_{0}^{0}=\left\langle a_{0}\right\rangle$ and $\sigma_{1}^{0}=\left\langle a_{1}\right\rangle$. Then $\dot{\sigma}_{0}^{0}=a_{0}$, $\dot{\sigma}_{1}^{0}=a_{1}$, and $\dot{\sigma}^{1}$ is the midpoint of σ^{1}, as indicated in Figure 3.5. Hence the first barycentric subdivision of K has vertices a_{0}, a_{1}, and $\dot{\boldsymbol{\sigma}}^{1}$. Since the only faces of σ^{1} are $\left\langle a_{0}\right\rangle$ and $\left\langle a_{1}\right\rangle$, then the only 1-simplexes of $K^{(1)}$ are $\left\langle a_{0} \dot{\sigma}^{1}\right\rangle$ and $\left\langle a_{1} \dot{\sigma}^{1}\right\rangle$.

Consider σ^{1} to be oriented by $a_{0}<a_{1}$ so that $\left\langle a_{0} a_{1}\right\rangle$ represents the positive orientation. Then $\left\langle a_{0} \dot{\sigma}^{1}\right\rangle$ occurs in the subdivision of the positively oriented simplex $\left\langle a_{0} a_{1}\right\rangle$, and hence $\left\langle a_{0} \dot{\sigma}^{1}\right\rangle$ is a positively oriented simplex in $K^{(1)}$. On the other hand, $\left\langle a_{1} \dot{\sigma}^{1}\right\rangle$ is produced in the subdivision of the negatively oriented simplex $\left\langle a_{1} a_{0}\right\rangle$, so $\left\langle a_{1} \dot{\sigma}^{1}\right\rangle$ has negative orientation.

Figure 3.5

Example 3.7. For the complex $\mathrm{Cl}\left(\sigma^{2}\right)$ in Figure 3.6(a), the barycenters of all simplexes are indicated in (b) and the first barycentric subdivision is shown in (c). The orientation for $\left\langle v_{0} v_{3} v_{4}\right\rangle$ is determined as follows: Vertex v_{3} is the barycenter of $\left\langle v_{0} v_{1}\right\rangle$, and v_{4} is the barycenter of $\left\langle v_{0} v_{1} v_{2}\right\rangle$. Thus, following the definition of concordant orientation, $\left\langle v_{0} v_{3} v_{4}\right\rangle$ is assigned positive orientation since it is produced in the subdivision of the positively oriented simplex $\left\langle v_{0} v_{1} v_{2}\right\rangle$. Note in Figure 3.6 that some simplexes of the barycentric subdivision are not assigned orientations by this process.

(a)

(b)

(c)

Figure 3.6
Definition. If K is a complex, the mesh of K is the maximum of the diameters of the simplexes of K.

It should be obvious that the mesh of the first barycentric subdivision $K^{(1)}$ of a complex K is less than the mesh of K. Hence it is reasonable to expect that the limiting value of mesh $K^{(s)}$ as s increases indefinitely is zero. Proving this requires some preliminary observations.

Let us first recall the definition of the Euclidean norm. If $x=\left(x_{1}, \ldots, x_{n}\right)$ is a point in \mathbb{R}^{n}, the norm of x is the number

$$
\|x\|=\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1 / 2}
$$

For x, y in \mathbb{R}^{n}, the distance $d(x, y)$ from x to y is simply $\|x-y\|$. Proofs of the following facts are left as exercises:
(a) If x and y are points in a simplex σ, then there is a vertex v of σ such that

$$
\|x-y\| \leq\|x-v\|
$$

(b) The diameter of a simplex of positive dimension is the length of its longest 1 -face. Hence the mesh of a complex K of positive dimension is the length of its longest 1 -simplex. (Any complex of dimension zero must, of course, have mesh zero.)

Theorem 3.5. For any complex K, limit ${ }_{s \rightarrow \infty}$ mesh $K^{(s)}=0$.
Proof. Consider the first barycentric subdivision $K^{(1)}$ of K and let $\langle\dot{\sigma} \dot{\boldsymbol{\tau}}\rangle$ be one of its 1 -simplexes. Then σ is a face of τ. The definition of barycenter for the simplex τ insures that

$$
\dot{\tau}=(1 /(p+1)) \sum_{i=0}^{p} v_{i}
$$

where v_{0}, \ldots, v_{p} are the vertices of τ.

By observation (a) above, there must be a vertex v of τ such that

$$
\|\dot{\boldsymbol{\tau}}-\dot{\boldsymbol{\sigma}}\| \leq\|\dot{\boldsymbol{\tau}}-\boldsymbol{v}\| .
$$

Then

$$
\begin{aligned}
\|\dot{\tau}-\dot{\sigma}\| & \leq\|\dot{\tau}-v\|=\left\|(1 /(p+1))\left(\sum_{i=0}^{p} v_{i}\right)-v\right\| \\
& =\left\|(1 /(p+1)) \sum_{i=0}^{p}\left(v_{i}-v\right)\right\| \leq(1 /(p+1)) \sum_{i=0}^{p}\left\|v_{i}-v\right\| \\
& \leq(p /(p+1)) \operatorname{mesh} K .
\end{aligned}
$$

Letting n denote the dimension of K, we have $p \leq n$ so

$$
\|\dot{\tau}-\dot{\sigma}\| \leq(n /(n+1)) \text { mesh } K .
$$

Since the mesh of $K^{(1)}$ is the maximum value of $\|\dot{\tau}-\dot{\sigma}\|$ for all 1 -simplexes $\langle\dot{\boldsymbol{\sigma}} \dot{\boldsymbol{\gamma}}\rangle$ in $K^{(1)}$, then

$$
\operatorname{mesh} K^{(1)} \leq(n /(n+1)) \text { mesh } K .
$$

The inductive definition of $K^{(s)}$ now insures that

$$
\operatorname{mesh} K^{(s)} \leq(n /(n+1))^{s} \text { mesh } K
$$

Recalling that $\operatorname{limit}_{s \rightarrow \infty}(n /(n+1))^{s}=0$, we have the desired result.
We are now ready for the main result of this chapter.
Theorem 3.6 (The Simplicial Approximation Theorem). Let $|K|$ and $|L|$ be polyhedra with triangulations K and L respectively and $f:|K| \rightarrow|L|$ a continuous function. There is a barycentric subdivision $K^{(k)}$ of K and a continuous function $g:|K| \rightarrow|L|$ such that
(a) g is a simplicial map from $K^{(k)}$ into L, and
(b) g is homotopic to f.

Proof. We shall apply Theorem 3.4 to obtain the simplicial approximation g once an integer k for which $K^{(k)}$ is star related to L relative to f is determined. This is done using a Lebesgue number argument. Since $|L|$ is a compact metric space, the open cover $\{\operatorname{ost}(v): v$ is a vertex of $L\}$ has a Lebesgue number $\eta>0$. Since f is uniformly continuous (its domain is a compact metric space), there is a positive number δ such that if $\|x-y\|<\delta$ in $|K|$, then $\|f(x)-f(y)\|<\eta$ in $|L|$. Thus, if the barycentric subdivision $K^{(k)}$ has mesh less than $\delta / 2$, then $K^{(k)}$ is star related to L relative to f.

The function $g:|K| \rightarrow|L|$ determined by Theorem 3.4 has the required properties.

The study of simplicial approximations to continuous functions was initiated by L. E. J. Brouwer in 1912. The Simplicial Approximation Theorem was discovered by J. W. Alexander in 1926; the proofs given above for Theorems 3.4 and 3.6 are essentially his original ones [27].

After a long, difficult sequence of proofs, it may be comforting to know that the existence of simplicial approximations is the important thing. We will not have to perform tedious constructions of simplicial approximations; any simplicial approximation of the type guaranteed by the Simplicial Approximation Theorem will usually do quite nicely.

3.3 Induced Homomorphisms on the Homology Groups

Definition. Let $|K|$ and $|L|$ be polyhedra with triangulations K and L respectively and $f:|K| \rightarrow|L|$ a continuous map. By the Simplicial Approximation Theorem, there is a barycentric subdivision $K^{(k)}$ of K and a simplicial mapping $g:|K| \rightarrow|L|$ which is homotopic to f. Theorems 3.1 and 3.2 insure that g induces homomorphisms $g_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)$ in each dimension p. This sequence of homomorphisms $\left\{g_{p}^{*}\right\}$ is called the sequence of homomorphisms induced by f.

The preceding definition raises a question about the uniqueness of the sequence of homomorphisms induced by f. It can be shown, however, that the sequence $\left\{g_{p}^{*}\right\}$ is unique and, in particular, does not depend on the admissible choices for the degree k of the barycentric subdivision or on the admissible choices for the simplicial map g. The sequence is thus usually written $\left\{f_{p}^{*}\right\}$ instead of $\left\{g_{p}^{*}\right\}$ since it is completely determined by f. Showing that the sequence is unique requires some concepts that we have not yet developed. The proof will therefore be postponed until Section 1 of Chapter 7. Those who cannot wait to see the proof may read that section now.

We shall illustrate the utility of induced homomorphisms by proving that two Euclidean spaces of different dimensions are not homeomorphic. This was first proved by L. E. J. Brouwer in 1911; it is, of course, not a surprising result. Any reader who feels that this is a trivial application, however, is invited to produce his own proof before reading further.

The following lemma is left as an exercise:

Lemma. If $f:|K| \rightarrow|L|$ and $h:|L| \rightarrow|M|$ are continuous maps on the indicated polyhedra, then $(h f)_{p}^{*}: H_{p}(K) \rightarrow H_{p}(M)$ is the composition

$$
h_{p}^{*} f_{p}^{*}: H_{p}(K) \rightarrow H_{p}(M)
$$

in each dimension p.
Theorem 3.7 (Invariance of Dimension). If $m \neq n$, then
(a) S^{m} and S^{n} are not homeomorphic, and
(b) \mathbb{R}^{m} and \mathbb{R}^{n} are not homeomorphic.

Proof. (a) Suppose to the contrary that there is a homeomorphism $h: S^{m} \rightarrow S^{n}$ from S^{m} onto S^{n} with inverse $h^{-1}: S^{n} \rightarrow S^{m}$. Then $h^{-1} h$ and $h h^{-1}$ are the identity maps on S^{m} and S^{n} respectively. Note that the identity map i on a
polyhedron $|K|$ induces the identity isomorphism $i_{p}^{*}: H_{p}(K) \rightarrow H_{p}(K)$ in each dimension p. Then

$$
\begin{aligned}
& \left(h h^{-1}\right)_{p}^{*}=h_{p}^{*} h_{p}^{-1 *}: H_{p}\left(S^{n}\right) \rightarrow H_{p}\left(S^{n}\right), \\
& \left(h^{-1} h\right)_{p}^{*}=h_{p}^{-1 *} h_{p}^{*}: H_{p}\left(S^{m}\right) \rightarrow H_{p}\left(S^{m}\right)
\end{aligned}
$$

are identity isomorphisms in each dimension, so h_{p}^{*} is an isomorphism between $H_{p}\left(S^{m}\right)$ and $H_{p}\left(S^{n}\right)$. Comparison of homology groups (Theorem 2.9) reveals that this is impossible since $m \neq n$. Hence S^{m} and S^{n} are not homeomorphic when $m \neq n$.
(b) Recall from point-set topology that S^{n} is the one point compactification of \mathbb{R}^{n}. Thus if \mathbb{R}^{m} and \mathbb{R}^{n} are homeomorphic, it must be true that their one point compactifications S^{m} and S^{n} are homeomorphic too. This contradicts part (a) if $m \neq n$.

A special case of the definition of induced homomorphisms for maps on spheres will be of particular importance.

Definition. Let $f: S^{n} \rightarrow S^{n}, n \geq 1$, be a continuous function from the n-sphere into itself. Let K be a triangulation of S^{n}. Since K is an orientable n pseudomanifold, Theorem 2.10 and its proof show that it is possible to orient K so that the n-chain

$$
z_{n}=\sum_{\sigma^{n} \in K} 1 \cdot \sigma^{n}
$$

is an n-cycle whose homology class $\left[z_{n}\right]$ is a generator of the infinite cyclic group $H_{n}(K)$. This homology class is called a fundamental class. If $f_{n}^{*}: H_{n}(K) \rightarrow H_{n}(K)$ is the homomorphism in dimension n induced by f, then there is an integer ρ such that

$$
f_{n}^{*}\left(\left[z_{n}\right]\right)=\rho\left[z_{n}\right] .
$$

The integer ρ is called the degree of the map f and is denoted $\operatorname{deg}(f)$.
The degree of a map on S^{n} was originally defined by L. E. J. Brouwer. The above definition is a modern version equivalent to his original one which is stated here for comparison. The student should feel free to use whichever definition fits best in a particular situation since they are equivalent.

Alternate Definition. Suppose that $f: S^{n} \rightarrow S^{n}$ is a continuous map and S^{n} is triangulated by a complex K. Choose a barycentric subdivision $K^{(k)}$ of K for which there is a simplicial mapping $\varphi:\left|K^{(k)}\right| \rightarrow|K|$ homotopic to f. Let τ be any positively oriented n-simplex in K. Let p be the number of positively oriented n-simplexes σ in $K^{(k)}$ such that $\varphi(1 \cdot \sigma)=1 \cdot \tau$, and let q be the number of positively oriented n-simplexes μ in $K^{(k)}$ such that $\varphi(1 \cdot \mu)=-1 \cdot \tau$. Then the integer $p-q$ is independent of the choice of τ (the same integer $p-q$ results for each n-simplex of K) and is called the degree of the map f.

In Brouwer's definition it can be shown that the degree of f is independent of the admissible choices for $K, K^{(k)}$, and φ (see, for example, [9], section 6-14).

Intuitively, the definition states that the degree of a map $f: S^{n} \rightarrow S^{n}$ is the number of times that f "wraps the domain around the range."

Theorem 3.8. (a) If $f: S^{n} \rightarrow S^{n}$ and $g: S^{n} \rightarrow S^{n}$ are continuous maps, then $\operatorname{deg}(g f)=\operatorname{deg}(g) \cdot \operatorname{deg}(f)$.
(b) The identity map $i: S^{n} \rightarrow S^{n}$ has degree +1 .
(c) A homeomorphism $h: S^{n} \rightarrow S^{n}$ has degree ± 1.

Proof. (a) Choose a triangulation K of S^{n} with fundamental class [z_{n}] and consider the induced homomorphisms

$$
f_{n}^{*}: H_{n}(K) \rightarrow H_{n}(K), \quad g_{n}^{*}: H_{n}(K) \rightarrow H_{n}(K)
$$

Then

$$
\begin{gathered}
(g f)_{n}^{*}\left(\left[z_{n}\right]\right)=\operatorname{deg}(g f) \cdot\left[z_{n}\right] \\
g_{n}^{*} f_{n}^{*}\left(\left[z_{n}\right]\right)=g_{n}^{*}\left(\operatorname{deg}(f) \cdot\left[z_{n}\right]\right)=\operatorname{deg}(g) \cdot \operatorname{deg}(f) \cdot\left[z_{n}\right]
\end{gathered}
$$

Since the lemma preceding Theorem 3.7 insures that $(g f)_{n}^{*}=g_{n}^{*} f_{n}^{*}$, then $\operatorname{deg}(g f)=\operatorname{deg}(g) \cdot \operatorname{deg}(f)$.
(b) In Brouwer's definition of degree, it is obvious that for the identity map $i, p=1$ and $q=0$ so $\operatorname{deg}(i)=1-0=1$.
(c) Letting h^{-1} denote the inverse of h, we have

$$
1=\operatorname{deg}(i)=\operatorname{deg}\left(h h^{-1}\right)=\operatorname{deg}(h) \operatorname{deg}\left(h^{-1}\right)
$$

Since $\operatorname{deg}(h)$ must be an integer, then $\operatorname{deg}(h)= \pm 1$. It also follows that h and h^{-1} have the same degree.

The following theorem was proved by Brouwer in 1912:
Theorem 3.9 (Brouwer's Degree Theorem). If two continuous maps $f, g: S^{n} \rightarrow$ S^{n} are homotopic, then they have the same degree.

Proof. Let K be a triangulation of S^{n} and let $h: S^{n} \times I \rightarrow S^{n}$ be a homotopy such that

$$
h(x, 0)=f(x), \quad h(x, 1)=g(x), \quad x \in S^{n}
$$

For convenience in notation we let h_{t} denote the restriction of h to $S^{n} \times\{t\}$. Thus $h_{0}=f$ and $h_{1}=g$.

Let ϵ be a Lebesque number for the open cover $\left\{\operatorname{ost}\left(w_{i}\right): w_{i}\right.$ is a vertex of $\left.K\right\}$. Since h is uniformly continuous, there is a positive number δ such that if A and B are subsets of S^{n} and I respectively with diameters $\operatorname{diam}(A)<\delta$ and $\operatorname{diam}(B)<\delta$, then $\operatorname{diam}(h(A \times B))<\epsilon$. Let $K^{(k)}$ be a barycentric subdivision of K of mesh less than $\delta / 2$ so that if v is a vertex of $K^{(k)}$, then $\operatorname{diam}(\operatorname{ost}(v))<\delta$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{q}=1
$$

be a partition of I for which successive points differ by less than δ. Then each set $h\left(\operatorname{ost}\left(v_{i}\right) \times\left[t_{j-1}, t_{j}\right]\right), v_{i}$ a vertex of $K^{(k)}$ and t_{j-1}, t_{j} successive members of the partition, has diameter less than ϵ and is therefore contained in ost $\left(w_{i j}\right)$ for some vertex $w_{i j}$ of K.

Thus if $t_{j-1} \leq t \leq t_{j}$, the value of the simplicial map φ_{t} approximating h_{t} given by the Simplicial Approximation Theorem may be defined by letting $\varphi_{t}\left(v_{i}\right)=w_{i j}$. We therefore conclude that all the maps h_{t} for $t_{j-1} \leq t \leq t_{j}$ have the same degree. Since any two successive intervals $\left[t_{j-1}, t_{j}\right]$ and [t_{j}, t_{j+1}] have t_{j} in common, it follows that the degree of h_{t} is constant for $0 \leq t \leq 1$. In particular, $h_{0}=f$ and $h_{1}=g$ have the same degree.

The preceding method of proof can be extended to show that homotopic maps from one polyhedron to another induce identical sequences of homomorphisms on the homology groups. Along with the preceding theorem, Brouwer proved a partial converse: If f and g are continuous maps on the 2-sphere which have the same degree, then they are homotopic. This conclusion was extended to arbitrary dimension by Heinz Hopf (1894-1971) in 1927. The combined results form the famous Hopf Classification Theorem, which is stated here without proof:

Theorem 3.10 (The Hopf Classification Theorem). Two continuous maps f, g from S^{n} to S^{n} are homotopic if and only if they have the same degree.

Hopf extended Brouwer's definition of degree to maps from polyhedra into spheres and, in 1933, extended his classification theorem to such maps: If X is a polyhedron of dimension not exceeding n, then two maps f and g from X into S^{n} are homotopic if and only if they have the same degree. Proofs can be found in [20] and in Hopf's original paper [41].

3.4 The Brouwer Fixed Point Theorem and Related Results

Definition. If $f: X \rightarrow X$ is a continuous function from a space X into itself, then a point x_{0} in X is a fixed point of f means that $f\left(x_{0}\right)=x_{0}$.

Theorems about fixed points have far reaching applications in mathematics. The existence of a solution for a differential or integral equation, for example, is often equivalent to the existence of a fixed point of a linear operator on a function space. (In this connection see Picard's Theorem from differential equations.) In this section we shall prove the classic fixed point theorem of L. E. J. Brouwer and some related results about S^{n}.

Definition. A continuous function $g: X \rightarrow Y$ from a space X into a space Y which is homotopic to a constant map is said to be null-homotopic or inessential.

Definition A space X is contractible means that the identity function $i: X \rightarrow X$ is null-homotopic. In other words, X is contractible if there is a point x_{0} in X and a homotopy $H: X \times I \rightarrow X$ such that

$$
H(x, 0)=x, \quad H(x, 1)=x_{0}, \quad x \in X .
$$

The homotopy H is called a contraction of the space X.

Example 3.8. The unit disk $D=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}$ is contractible. We let $x_{0}=(0,0)$ be the origin and define a contraction by

$$
H\left(\left(x_{1}, x_{2}\right), t\right)=\left((1-t) x_{1},(1-t) x_{2}\right), \quad\left(x_{1}, x_{2}\right) \in D, t \in I
$$

Imagining the disk as a sheet of rubber, the contraction essentially "squeezes" the disk to a single point.

This intuitive idea of contractibility suggests that the circle is not contractible. This is in fact true and is a consequence of the following theorem of L. E. J. Brouwer.

Theorem 3.11 The n-sphere S^{n} is not contractible for any $n \geq 0$.
Proof. The identity map on S^{n} has degree 1 for $n \geq 1$, and any constant map has degree 0 . Since homotopic maps have the same degree (Theorem 3.9), then the identity is not null-homotopic, and S^{n} is not contractible for $n \geq 1$.

For the case $n=0$, we observe that

$$
S^{0}=\left\{x \in \mathbb{R}: x^{2}=1\right\}=\{-1,1\}
$$

is a discrete space and therefore not contractible.
Theorem 3.12 (The Brouwer No Retraction Theorem). There does not exist a continuous function from the $(n+1)$-ball

$$
B^{n+1}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: \sum x_{i}^{2} \leq 1\right\}
$$

onto S^{n} which leaves each point of S^{n} fixed, $n \geq 0$.
Proof. Assuming that a map $f: B^{n+1} \rightarrow S^{n}$ such that $f(x)=x$ for each x in S^{n} does exist, define a homotopy

$$
H: S^{n} \times I \rightarrow S^{n}
$$

by

$$
H(x, t)=f((1-t) x), \quad x \in S^{n}, t \in I .
$$

Here $(1-t) x$ denotes the usual scalar product (real number multiplied by a vector) in \mathbb{R}^{n}. Then H is a contraction on S^{n} contradicting Theorem 3.11. Thus no such map f exists.

Theorem 3.13 (The Brouwer Fixed Point Theorem). If $f: B^{n+1} \rightarrow B^{n+1}$ is continuous map from the $(n+1)$-ball into itself and $n \geq 0$, then f has at least one fixed point.

Proof. Suppose on the contrary that f has no fixed point. Then for each $x \in B^{n+1}, f(x)$ and x are distinct points. For any x consider the half-line from $f(x)$ through x, and let $g(x)$ denote the intersection of this ray with S^{n}, as shown in Figure 3.7.

Then $g: B^{n+1} \rightarrow S^{n}$ is continuous, and $g(x)=x$ for each $x \in S^{n}$. This contradicts the preceding theorem, so we conclude that the assumption that f has no fixed point must be false.

Figure 3.7

The Brouwer Fixed Point Theorem was first proved by Brouwer in 1912. The proof given in the text is not his original one.

Definition. For each integer i with $1 \leq i \leq n+1$, the map

$$
r_{i}: S^{n} \rightarrow S^{n}
$$

defined by

$$
\begin{aligned}
& r_{i}\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \\
& \quad=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n+1}\right), \quad\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n}
\end{aligned}
$$

(with obvious modifications when $i=1$ or $n+1$) is called the reflection of S^{n} with respect to the x_{i} axis.

Definition. The map $r: S^{n} \rightarrow S^{n}$ defined by

$$
r(x)=-x, \quad x \in S^{n}
$$

is called the antipodal map on S^{n}.
For $x=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in S^{n}, r_{i}(x)$ and x differ only in the i th coordinate, and the i th coordinate of $r_{i}(x)$ is the negative of the i th coordinate of x. The antipodal map r takes each point x in S^{n} to the diametrically opposite point $r(x)=-x$ each of whose coordinates is the negative of the corresponding coordinate of x. It should be clear that the antipodal map r is the composition $r_{1} r_{2} \ldots r_{n+1}$ of the reflections of S^{n} in the respective axes. The proof of the following lemma is left as an exercise.

Lemma. (a) Each reflection r_{i} on S^{n} has degree -1.
(b) The antipodal map on S^{n} has degree $(-1)^{n+1}$.

Definition. A continuous unit tangent vector field, or simply vector field, on S^{n} is a continuous function $f: S^{n} \rightarrow S^{n}$ such that x and $f(x)$ are perpendicular for each x in S^{n}.

In order to get an intuitive picture of a vector field, let us first review the concept of perpendicular vectors. Recall from sophomore Calculus that two vectors $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in the plane are perpendicular if and only if their dot product (or inner product)

$$
x \cdot y=x_{1} y_{1}+x_{2} y_{2}=0
$$

Perpendicularity is extended to vectors of higher dimension by the following definition: Two vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n} are perpendicular if and only if their dot product (Appendix 2)

$$
x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=0
$$

A vector field f on S^{n} is then interpreted as follows: f is a continuous function which associates with vector x of unit length in \mathbb{R}^{n+1} a unit vector $f(x)$ in \mathbb{R}^{n+1} such that x and $f(x)$ are perpendicular. If we imagine that $f(x)$ is transposed so that it begins at point x on S^{n}, then $f(x)$ must be tangent to the sphere S^{n}. This idea is illustrated in Figure 3.8.

Figure 3.8
It should be clear that the following scheme describes a vector field on S^{1}. For each x in S^{1}, let $f(x)$ denote a vector of unit length beginning at point x and pointing in the clockwise direction tangent to S^{1}. Having all vectors $f(x)$ point in the counterclockwise direction also produces a vector field on S^{1}. The requirement of continuity for f rules out the possibility of having $f(x)$ in the clockwise direction for some values of x and in the counterclockwise direction for others.

Theorem 3.14 (The Brouwer-Poincaré Theorem). There is a vector field on $S^{n}, n \geq 1$, if and only if n is odd.

Proof. If n is odd, a vector field f on S^{n} can be defined by

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \ldots,\right. & \left.x_{n+1}\right) \\
& =\left(x_{2},-x_{1}, x_{4},-x_{3}, \ldots, x_{n+1},-x_{n}\right), \quad\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in S^{n} .
\end{aligned}
$$

It is clear that f is a continuous function from S^{n} into S^{n}. The proof that f is a vector field is completed by observing that, for each x in S^{n},

$$
x \cdot f(x)=\left(x_{1} x_{2}-x_{1} x_{2}\right)+\left(x_{3} x_{4}-x_{3} x_{4}\right)+\cdots+\left(x_{n} x_{n+1}-x_{n} x_{n+1}\right)=0
$$

Suppose now that $g: S^{n} \rightarrow S^{n}$ is a vector field where n is an even integer. This assumption will lead to a contradiction. Define a homotopy $h: S^{n} \times I \rightarrow S^{n}$ by

$$
h(x, t)=x \cos (t \pi)+g(x) \sin (t \pi), \quad x \in S^{n}, t \in I .
$$

Then

$$
\begin{aligned}
\|h(x, t)\|^{2} & =h(x, t) \cdot h(x, t) \\
& =\|x\|^{2} \cos ^{2}(t \pi)+2 x \cdot g(x) \cos (t \pi) \sin (t \pi)+\| g(x){ }^{2} \sin ^{2}(t \pi) \\
& =1^{2} \cos ^{2}(t \pi)+(2)(0) \cos (t \pi) \sin (t \pi)+1^{2} \sin ^{2}(t \pi) \\
& =1
\end{aligned}
$$

so h is a homotopy on S^{n}. But

$$
h(x, 0)=x, \quad h(x, 1)=-x, \quad x \in S^{n},
$$

so h is a homotopy between the identity map and the antipodal map on S^{n}. However, the identity map has degree 1 and the antipodal map has degree $(-1)^{n+1}=-i$ since n is even. This contradicts Brouwer's Theorem on the degree of homotopic maps (Theorem 3.9). Thus S^{n} has a vector field if and only if n is odd.

The main part of the Brouwer-Poincaré Theorem (there is no vector field on a sphere of even dimension) was conjectured by Poincaré and first proved by Brouwer. For $n=2$, the result can be visualized as follows: Imagine a 2 -sphere with a unit vector emanating from each point; think of each vector as a hair. Finding a vector field for S^{2} is equivalent to describing a method for "combing the hairs" so that each one is tangent to the sphere and so that their directions vary continuously. In other words, there must be no parts or whorls in the hairs. According to the Brouwer-Poincaré Theorem, such a hairstyle is impossible for spheres of even dimension. Because of this analogy, the theorem is sometimes called the "Tennis Ball Theorem."

Exercises

1. Give an example of two polyhedra $|K|$ and $|L|$ for which $H_{p}(K)$ and $H_{p}(L)$ are isomorphic for each value of p, but $|K|$ and $|L|$ are not homeomorphic.
2. Verify in the proof of Theorem 3.1 that φ_{p}^{*} is a homomorphism. Show in particular that if $\left[z_{p}\right]=\left[w_{p}\right]$ in $H_{p}(K)$, then $\left[p_{p}\left(z_{p}\right)\right]=\left[p_{p}\left(w_{p}\right)\right]$ in $H_{p}(L)$.
3. Prove Theorem 3.3.
4. (a) For the simplicial map φ of Example 3.1, describe the induced homomorphisms $\varphi_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)$.
(b) Prove that if L is replaced by its 1 -skeleton, then the map f is not simplicial.
5. Choose triangulations for the 2-sphere S^{2} and torus T, and let $\varphi: S^{2} \rightarrow T$ be a simplicial map. Prove that the induced homomorphism $\varphi_{p}^{*}: H_{p}\left(S^{2}\right) \rightarrow H_{p}(T)$ is trivial for $p \geq 1$. Show that this result does not hold if the roles of S^{2} and T are interchanged.
6. Let X and Y be topological spaces and let M denote the set of all continuous maps f from X into Y. For brevity let us agree that $f \sim g$ means that f is homotopic to g. Prove that \sim is an equivalence relation on M.
7. (a) Prove that every convex subset of \mathbb{R}^{n} is contractible.
(b) Given that Y is contractible, prove that every continuous function from a space X into Y is null-homotopic.
8. Prove that vertices $v_{0}, v_{1}, \ldots, v_{m}$ of a complex K are vertices of a simplex in K if and only if $\bigcap_{i=0}^{m} \operatorname{ost}\left(v_{i}\right)$ is not empty.
9. Prove the following facts:
(a) If x and y are points in a simplex σ, then there is a vertex v of σ such that $\|x-y\| \leq\|x-v\|$.
(b) The diameter of a simplex $\sigma^{p}, p \geq 1$, is the maximum length of its 1 -faces.
(c) The mesh of a complex K is the maximum length of its 1 -simplexes if K has positive dimension.
10. Answer the following questions about the proof of Theorem 3.4:
(a) If σ is the simplex of smallest dimension in K containing a given point x, why is x in ost $\left(a_{i}\right)$ for each vertex a_{i} of σ ?
(b) Why is the function H continuous?
11. Complete the details in the proof of Theorem 3.6 by proving the following:
(a) If v is a vertex of K, then the diameter of ost (v) does not exceed twice the mesh of K.
(b) If v is a vertex of K, then ost (v) is an open subset of $|K|$. (Recall that $|K|$ has the Euclidean subspace topology.)
(c) Prove that every polyhedron is a compact metric space.
(d) Show that the function g in the proof of Theorem 3.6 has the required properties.
12. Prove that the antipodal map on S^{n} has degree $(-1)^{n+1}$.
13. (a) Prove the lemma preceding Theorem 3.7: If $f:|K| \rightarrow|L|$ and $h:|L| \rightarrow|M|$ are continuous maps, then $(h f)_{p}^{*}=h_{p}^{*} f_{p}^{*}$ in each dimension p.
(b) Prove that if two polyhedra $|K|$ and $|L|$ are homeomorphic, then $H_{p}(K) \cong H_{p}(L)$ in each dimension p.
14. Prove the following fact about maps $f, g: S^{n} \rightarrow S^{n}$: If $\operatorname{deg}(f)=\operatorname{deg}(g)$, then $g_{n}^{*}=f_{n}^{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$.
15. Prove that a discrete space X is contractible if and only if X has only one point.
16. Is every subspace of a contractible space contractible? Explain.
17. Show that if $|K|$ is contractible, then $H_{p}(K)=\{0\}$ for $p \geq 1$ and $H_{0}(K) \cong \mathbb{Z}$.
18. In the text the Brouwer Fixed Point Theorem was proved as a consequence of the Brouwer No Retraction Theorem. Reverse this process to show that the Fixed Point Theorem implies the No Retraction Theorem.
19. Definition. Let X be a topological space and B a subspace of X. If there is a continuous map $f: X \rightarrow B$ which leaves each point of B fixed, then B is called a retract of X. The function f is a retraction of X onto B.

Let A and K be complexes for which A is a subset of K and $|A|$ is a retract of $|K|$. Prove that $H_{p}(K)$ has a subgroup isomorphic to $H_{p}(A)$ in each dimension p.
20. Prove the Brouwer No Retraction Theorem by comparing the homology groups of S^{n} and B^{n+1}. (Hint: Assuming that there is a retraction $f: B^{n+1} \rightarrow S^{n}$, let $i: S^{n} \rightarrow B^{n+1}$ denote the inclusion map. Then $f i: S^{n} \rightarrow S^{n}$ is the identity map. Consider the homomorphism induced on $\mathrm{H}_{n}\left(\mathrm{~S}^{n}\right)$.
21. Let f, g be continuous maps from a space X into S^{n} such that $f(x)$ and $g(x)$ are never antipodal points, i.e., $f(x)=-g(x)$ for no x. Prove that f and g are homotopic.
22. Find an explicit formula for the vector field on S^{1} which produces tangent vectors with the clockwise orientation. Repeat for the counterclockwise orientation.
23. Prove that every vector field on S^{n} (n odd) is homotopic to the identity map and to the antipodal map.
24. Let n be an even positive integer and $f: S^{n} \rightarrow E^{n+1}$ a continuous map such that x and $f(x)$ are perpendicular for each $x \in S^{n}$. Prove that there is a point x in S^{n} for which $f(x)=0$.
25. Consider the circle S^{1} with multiplication given by the complex numbers. Prove that the map $f(x)=x^{n}, n$ a positive integer, has degree n. What is the degree of the map $g(x)=1 / x$?
26. Let $g: S^{n} \rightarrow S^{n}$ be a continuous map for which the range is a proper subset of S^{n}. Prove that g is null-homotopic and that $\operatorname{deg}(g)=0$.
27. (a) Let $g: S^{n} \rightarrow S^{n}$ be a continuous map for which there is a continuous extension $G: B^{n+1} \rightarrow S^{n}$. Prove that g is null-homotopic.
(b) Prove the converse: If $g: S^{n} \rightarrow S^{n}$ is null-homotopic, then g has a continuous extension $G: B^{n+1} \rightarrow S^{n}$. (Hint: B^{n+1} can be considered to be the quotient space of $S^{n} \times[0,1]$ obtained by identifying $S^{n} \times\{1\}$ to a single point.)
28. Let K, L, and M be complexes and $f:|K| \rightarrow|L|$ and $g:|L| \rightarrow|M|$ continuous functions. If K is star related to L relative to f and L is star related to M relative to g, prove that K is star related to M relative to $g f$.
29. Show that every continuous function $f:|K| \rightarrow|L|$ from a polyhedron $|K|$ to a polyhedron $|L|$ can be arbitrarily approximated in terms of distance by a simplicial approximation. More precisely, prove the following:
Theorem. Let $f:|K| \rightarrow|L|$ be a continuous map on the indicated polyhedra and ϵ a positive number. There are barycentric subdivisions $K^{(1)}$ and $L^{(j)}$ and a continuous map $g:|K| \rightarrow|L|$ such that
(a) g is a simplicial map with respect to $K^{(i)}$ and $L^{(j)}$,
(b) g is homotopic to f, and
(c) the distance $\|f(x)-g(x)\|$ is less than ϵ for all x in $|K|$.
30. (a) Prove that every barycentric subdivision of an n-pseudomanifold is an n-pseudomanifold.
(b) If K is an orientable pseudomanifold, is each barycentric subdivision of K orientable? Prove that your answer is correct.
(c) Repeat part (b) for the nonorientable case.

4

The Fundamental Group

4.1 Introduction

We turn now to the investigation of the structure of a topological space by means of paths or curves in the space. Recall that in Chapter 1 we decided that two closed paths in a space are homotopic provided that each of them can be "continuously deformed into the other." In Figure 4.1, for example, paths C_{2} and C_{3} are homotopic to each other and C_{1} is homotopic to a constant path. Path C_{1} is not homotopic to either C_{2} or C_{3} since neither C_{2} nor C_{3} can be pulled across the hole that they enclose.

In this chapter we shall make precise this intuitive idea of homotopic paths. The basic idea is a special case of the homotopy relation for continuous functions which we considered in the proof of the Simplicial Approximation Theorem (Theorem 3.6).

Figure 4.1

4.2 Homotopic Paths and the Fundamental Group

Definition. A path in a topological space X is a continuous function α from the closed unit interval $I=[0,1]$ into X. The points $\alpha(0)$ and $\alpha(1)$ are the initial point and terminal point of α respectively. Paths α and β with common initial point $\alpha(0)=\beta(0)$ and common terminal point $\alpha(1)=\beta(1)$ are equivalent provided that there is a continuous function $H: I \times I \rightarrow X$ such that

$$
\begin{aligned}
H(t, 0)=\alpha(t), & & H(t, 1)=\beta(t), \quad t \in I, & \\
H(0, s)=\alpha(0)=\beta(0), & & H(1, s)=\alpha(1)=\beta(1), & s \in I .
\end{aligned}
$$

The function H is called a homotopy between α and β. For a given value of s, the restriction of H to $I \times\{s\}$ is called the s-level of the homotopy and is denoted $H(\cdot, s)$.

Definition. A loop in a topological space X is a path α in X with $\alpha(0)=\alpha(1)$. The common value of the initial point and terminal point is referred to as the base point of the loop. Two loops α and β having common base point x_{0} are equivalent or homotopic modulo x_{0} provided that they are equivalent as paths. In other words, α and β are homotopic modulo x_{0} (denoted $\alpha \sim_{x_{0}} \beta$) provided that there is a homotopy $H: I \times I \rightarrow X$ such that

$$
H(\cdot, 0)=\alpha, \quad H(\cdot, 1)=\beta, \quad H(0, s)=H(1, \mathrm{~s})=x_{0}, \quad s \in I .
$$

Since $H(0, s)$ and $H(1, s)$ always have value x_{0} regardless of the choice of s in $[0,1]$, it is sometimes said that the base point "stays fixed throughout the homotopy."

Example 4.1. The paths α and β in Figure 4.2 are equivalent. A homotopy H demonstrating the equivalence is defined by

$$
H(t, s)=s \beta(t)+(1-s) \alpha(t), \quad(s, t) \in I \times I
$$

The homotopy essentially "pulls α across to β " without disturbing the end points. If the space had a "hole" between the ranges of α and β, then the paths would not be equivalent.

Figure 4.2

The following lemma from point-set topology will be used repeatedly in this chapter. Its proof is left as an exercise.

The Continuity Lemma. Let X be a topological space with closed subsets A and B such that $A \cup B=X$. Let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ be continuous maps to a space Y such that $f(x)=g(x)$ for each x in $A \cap B$. Then the map $h: X \rightarrow Y$ defined by

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { if } x \in B\end{cases}
$$

is continuous.

Theorem 4.1. (a) Equivalence of paths is an equivalence relation on the set of paths in a space X.
(b) Equivalence of loops is an equivalence relation on the set of loops in X with base point x_{0}.

Proof. We shall prove (b) and leave to the reader the obvious modifications needed for a proof of (a).

Consider the set of loops in X having base point x_{0}. Any such loop α is equivalent to itself under the homotopy

$$
F(t, s)=\alpha(t), \quad(t, s) \in I \times I
$$

Thus the relation $\sim_{x_{0}}$ is reflexive.
Suppose $\alpha \sim_{x_{0}} \beta$. Then there is a homotopy $H: I \times I \rightarrow X$ satisfying

$$
H(\cdot, 0)=\alpha, \quad H(\cdot, 1)=\beta, \quad H(0, s)=H(1, s)=x_{0}, \quad s \in I .
$$

Then the homotopy

$$
\bar{H}(t, s)=H(t, 1-s), \quad(s, t) \in I \times I
$$

shows that $\beta \sim_{x_{0}} \alpha$ and hence that equivalence of loops is a symmetric relation.

Suppose now that for the loops α, β, and γ we have $\alpha \sim_{x_{0}} \beta$ and $\beta \sim_{x_{0}} \gamma$. Then there are homotopies H and K such that

$$
\begin{array}{llll}
H(\cdot, 0)=\alpha, & H(\cdot, 1)=\beta, & H(0, s)=H(1, s)=x_{0}, & s \in I, \\
K(\cdot, 0)=\beta, & K(\cdot, 1)=\gamma, & K(0, s)=K(1, s)=x_{0}, & s \in I .
\end{array}
$$

The required homotopy L between α and γ is defined by

$$
L(t, s)= \begin{cases}H(t, 2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ K(t, 2 s-1) & \text { if } \frac{1}{2} \leq s \leq 1\end{cases}
$$

The continuity of L follows from the Continuity Lemma with $A=I \times\left[0, \frac{1}{2}\right]$ and $B=I \times\left[\frac{1}{2}, 1\right]$. Thus $\alpha \sim_{x_{0}} \gamma$, so $\sim_{x_{0}}$ is an equivalence relation.

Definition. If α and β are paths in X with $\alpha(1)=\beta(0)$, then the path product $\alpha * \beta$ is the path defined by

$$
\alpha * \beta(t)= \begin{cases}\alpha(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\ \beta(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1 .\end{cases}
$$

The continuity of $\alpha * \beta$ is an immediate consequence of the Continuity Lemma.

Thinking of the variable t as time, a path α in X can be visualized by the motion of a point beginning at $\alpha(0)$ and tracing a continuous route to $\alpha(1)$. A product $\alpha * \beta$ is then visualized as follows: The moving point begins at $\alpha(0)$ and follows path α at twice the normal rate, arriving at $\alpha(1)$ when $t=\frac{1}{2}$. The point then follows path β at twice the normal rate and arrives at $\beta(1)$ at time $t=1$. Note that the condition $\alpha(1)=\beta(0)$ is required for the product of paths in order to avoid discontinuities.

We shall be primarily concerned with products of loops α and β having common base point x_{0}. In this case the product $\alpha * \beta$ is also a loop with base point x_{0}. The following lemma is left as an exercise:

Lemma. Suppose that loops $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$ in a space X all have base point x_{0} and satisfy the relations $\alpha \sim_{x_{0}} \alpha^{\prime}$ and $\beta \sim_{x_{0}} \beta^{\prime}$. Then the products $\alpha * \beta$ and $\alpha^{\prime} * \beta^{\prime}$ are homotopic modulo x_{0}.

Definition. Consider the family of loops in X with base point x_{0}. Homotopy modulo x_{0} is an equivalence relation on this family and therefore partitions it into disjoint equivalence classes, $[\alpha]$ denoting the equivalence class determined by loop α. The class $[\alpha]$ is called the homotopy class of α. The set of such homotopy classes is denoted by $\pi_{1}\left(X, x_{0}\right)$. If $[\alpha]$ and $[\beta]$ belong to $\pi_{1}\left(X, x_{0}\right)$, then the product $[\alpha] \circ[\beta]$ is defined as follows:

$$
[\alpha] \circ[\beta]=[\alpha * \beta] .
$$

Thus the product of two homotopy classes is the class determined by the path product of their representative elements. The preceding lemma insures that the product \circ is a well-defined operation on $\pi_{1}\left(X, x_{0}\right)$. The set $\pi_{1}\left(X, x_{0}\right)$ with the \circ operation is called the fundamental group of X at x_{0}, the first homotopy group of X at x_{0}, or the Poincaré group of X at x_{0}.

Theorem 4.2. The set $\pi_{1}\left(X, x_{0}\right)$ is a group under the o operation.
Proof. To show that $\pi_{1}\left(X, x_{0}\right)$ is a group, we must show that there is a loop c for which [c] is an identity element, that each homotopy class [α] has an inverse $[\bar{\alpha}]=[\alpha]^{-1}$, and that the multiplication \circ is associative. Let us prove each of these as a separate lemma.

Lemma A. $\pi_{1}\left(X, x_{0}\right)$ has an identity element [c] where c is the constant loop whose only value is x_{0}.

Proof. The constant loop c is defined by

$$
c(t)=x_{0}, \quad t \in I .
$$

If α is a loop in X based at x_{0}, then

$$
c * \alpha(t)= \begin{cases}x_{0} & \text { if } 0 \leq t \leq \frac{1}{2} \\ \alpha(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

To show that $[c * \alpha]=[\alpha]$, we require a homotopy $H: I \times I \rightarrow X$ such that

$$
\begin{aligned}
& H(\cdot, 0)=c * \alpha, \quad H(\cdot, 1)=\alpha \\
& H(0, s)=H(1, s)=x_{0}, \quad s \in I .
\end{aligned}
$$

These requirements are filled by defining

$$
H(t, s)= \begin{cases}x_{0} & \text { if } 0 \leq t \leq(1-s) / 2 \\ \alpha\left(\frac{2 t+s-1}{s+1}\right) & \text { if }(1-s) / 2 \leq t \leq 1\end{cases}
$$

After checking to see that H has the required properties, we will see how it was obtained. Note that

$$
\begin{gathered}
H(t, 0)=\left\{\begin{array}{ll}
x_{0} & \text { if } 0 \leq t \leq \frac{1}{2} \\
\alpha(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1
\end{array}\right\}=c * \alpha(t), \\
H(t, 1)=\left\{\begin{array}{ll}
x_{0} & \text { if } 0 \leq t \leq 0 \\
\alpha(t) & \text { if } 0 \leq t \leq 1
\end{array}\right\}=\alpha(t), \\
H(0, s)=x_{0}, \quad H(1, s)=\alpha\left(\frac{2+s-1}{s+1}\right)=\alpha(1)=x_{0}, \quad s \in I .
\end{gathered}
$$

Continuity of H is assured by the Continuity Lemma since $(2 t+s-1)$ divided by $(s+1)$ is a continuous function of (t, s) and the two parts of the definition of H agree when $t=(1-s) / 2$.

The homotopy H was obtained from the diagram shown in Figure 4.3 by the analysis that follows. To define a homotopy H on the unit square which

Figure 4.3
agrees with $c * \alpha$ on the bottom and with α on the top, let us intuitively assume that we will define the s-level $H(\cdot, s)$ to have value x_{0} at each point (t, s) from $t=0$ out to the diagonal line L. Then we wish $H(\cdot, s)$ to follow the route of α. Since L has equation $t=(1-s) / 2$ and the "time" remaining when $t=(1-s) / 2$ is

$$
1-\frac{(1-s)}{2}=\frac{1+s}{2}
$$

the desired effect is accomplished by defining

$$
H(t, s)= \begin{cases}x_{0} & \text { if } 0 \leq t \leq(1-s) / 2 \\ \alpha\left(\left(t-\frac{(1-s)}{2}\right) \cdot \frac{2}{1+s}\right) & \text { if }(1-s) / 2 \leq t \leq 1\end{cases}
$$

This expression reduces to the formula for H given previously.
We have now proved the following: If $[\alpha] \in \pi_{1}\left(X, x_{0}\right)$, then

$$
[c] \circ[\alpha]=[c * \alpha]=[\alpha]
$$

so that [c] is a left identity for $\pi_{1}\left(X, x_{0}\right)$.
In order to see that $[c]$ is a right identity as well, we need to show that $[\alpha * c]=[\alpha]$. This is accomplished by the homotopy

$$
H^{\prime}(t, s)= \begin{cases}\alpha\left(\frac{2 t}{s+1}\right) & \text { if } 0 \leq t \leq(s+1) / 2 \\ x_{0} & \text { if }(s+1) / 2 \leq t \leq 1\end{cases}
$$

The intuitive picture is left to the reader.

Lemma B. For each homotopy class $[\alpha]$ in $\pi_{1}\left(X, x_{0}\right)$, the inverse of $[\alpha]$ with respect to the operation \circ and the identity element $[c]$ is the class $[\bar{\alpha}]$ where $\bar{\alpha}(t)=\alpha(1-t), t \in I$.

Proof. The path $\bar{\alpha}(t)=\alpha(1-t)$ is commonly called the reverse of the path α. It begins at $\alpha(1)=x_{0}$ and traces the route of α backwards. We must prove that

$$
[\alpha] \circ[\bar{\alpha}]=[\bar{\alpha}] \circ[\alpha]=[c] .
$$

Note that

$$
\begin{aligned}
{[\alpha] \circ[\bar{\alpha}] } & =[\alpha * \bar{\alpha}], \\
\alpha * \bar{\alpha}(t) & = \begin{cases}\alpha(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\
\alpha(2-2 t) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
\end{aligned}
$$

The path $\alpha * \bar{\alpha}$ follows α and then follows the reverse of α to the starting point x_{0}. We shall define a homotopy K for which the s-level $K(\cdot, s)$ follows route α out to $\alpha(s)$ and then retraces its steps back to x_{0}. This is accomplished by defining

$$
K(t, s)= \begin{cases}\alpha(2 t s) & \text { if } 0 \leq t \leq \frac{1}{2} \\ \alpha(2 s-2 t s) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

It is easily observed that

$$
\begin{aligned}
& K(\cdot, 0)=c, \quad K(\cdot, 1)=\alpha * \bar{\alpha} \\
& K(0, s)=K(1, s)=x_{0}, \quad s \in I
\end{aligned}
$$

and that K is continuous.
Thus

$$
[\alpha] \circ[\bar{\alpha}]=[\alpha * \bar{\alpha}]=[c]
$$

so $[\bar{\alpha}]$ is a right inverse for $[\alpha]$. Since the reverse of the reverse of α is itself α (i.e., $\overline{\bar{\alpha}}=\alpha$), the same proof shows that

$$
[\bar{\alpha}] \circ[\alpha]=[\bar{\alpha}] \circ[\overline{\bar{\alpha}}]=[c]
$$

and hence $[\bar{\alpha}]=[\alpha]^{-1}$ is a two-sided inverse for $[\alpha]$.
Lemma C. The multiplication \circ is associative.
Proof. Let $[\alpha],[\beta]$, and $[\gamma]$ be members of $\pi_{1}\left(X, x_{0}\right)$. We must prove that

$$
([\alpha] \circ[\beta]) \circ[\gamma]=[\alpha] \circ([\beta] \circ[\gamma])
$$

or, equivalently,

$$
[(\alpha * \beta) * \gamma]=[\alpha *(\beta * \gamma)]
$$

A little arithmetic shows that

$$
(\alpha * \beta) * \gamma(t)= \begin{cases}\alpha(4 t) & \text { if } 0 \leq t \leq \frac{1}{4} \\ \beta(4 t-1) & \text { if } \frac{1}{4} \leq t \leq \frac{1}{2} \\ \gamma(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

and

$$
\alpha *(\beta * \gamma)(t)= \begin{cases}\alpha(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\ \beta(4 t-2) & \text { if } \frac{1}{2} \leq t \leq \frac{3}{4} \\ \gamma(4 t-3) & \text { if } \frac{3}{4} \leq t \leq 1\end{cases}
$$

The reader should apply the method illustrated in Lemma A to Figure 4.4, obtain the homotopy

$$
L(t, s)= \begin{cases}\alpha\left(\frac{4 t}{s+1}\right) & \text { if } 0 \leq t \leq(s+1) 4 \\ \beta(4 t-1-s) & \text { if }(s+1) / 4 \leq t \leq(s+2) / 4 \\ \gamma\left(\frac{4 t-2-s}{2-s}\right) & \text { if }(s+2) / 4 \leq t \leq 1\end{cases}
$$

and verify that it is a homotopy modulo x_{0} between $(\alpha * \beta) * \gamma$ and $\alpha *(\beta * \gamma)$. This completes the proof that \circ is associative and the proof of Theorem 4.2.

The technique for obtaining the homotopies in the proof of Theorem 4.2 is extremely important in homotopy theory. The reader should be certain that

Figure 4.4
he understands the method by solving the relevant exercises at the end of the chapter.

Definition. A space X is path connected means that each pair of points in X can be joined by a path. In other words, if x_{0} and x_{1} are points in X, then there is a path in X with initial point x_{0} and terminal point x_{1}.

Theorem 4.3. If a space X is path connected and x_{0}, x_{1} are points in X, then the fundamental groups $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(X, x_{1}\right)$ are isomorphic.

Proof. Let $\rho: I \rightarrow X$ be a path such that

$$
\rho(0)=x_{0}, \quad \rho(1)=x_{1} .
$$

If α is a loop based at x_{0}, then $(\bar{\rho} * \alpha) * \rho$ is a loop based at x_{1}. Here $\bar{\rho}$ denotes the reverse of ρ :

$$
\bar{\rho}(t)=\rho(1-t), \quad 0 \leq t \leq 1 .
$$

We define a function $P: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$ by

$$
P([\alpha])=[(\bar{\rho} * \alpha) * \rho], \quad[\alpha] \in \pi_{1}\left(X, x_{0}\right) .
$$

It should be clear that the image of $[\alpha]$ is independent of the choice of path in $[\alpha]$ so that P is well defined.

Several observations are necessary before showing that P is an isomorphism. First, Lemma B with minor modifications shows that $[\rho * \bar{\rho}]$ and [$\bar{\rho} * \rho$] are the identity elements of $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(X, x_{1}\right)$ respectively. Second, Lemma C can be easily modified to show that for any paths α, β, γ for which $(\alpha * \beta) * \gamma$ and $\alpha *(\beta * \gamma)$ are defined, the indicated triple products are equivalent. Thus in $[(\bar{\rho} * \alpha) * \rho]$, we may ignore the inner parentheses and simply write $[\bar{\rho} * \alpha * \rho$] since the equivalence class is the same regardless of the way in which the terms of the product are associated.

Now consider $[\alpha],[\beta]$ in $\pi_{1}\left(X, x_{0}\right)$.

$$
\begin{aligned}
P([\alpha] \circ[\beta]) & =P([\alpha * \beta])=[\bar{\rho} * \alpha * \beta * \rho]=[\bar{\rho} * \alpha * \rho * \bar{\rho} * \beta * \rho] \\
& =[\bar{\rho} * \alpha * \rho] \circ[\bar{\rho} * \beta * \rho]=P([\alpha]) \circ P([\beta]) .
\end{aligned}
$$

Thus P is a homomorphism.
The function $Q: \pi_{1}\left(X, x_{1}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ defined by

$$
Q([\sigma])=[\rho * \sigma * \bar{\rho}], \quad[\sigma] \in \pi_{1}\left(X, x_{1}\right)
$$

is the inverse of P. To see this, observe that for $[\alpha] \in \pi_{1}\left(X, x_{0}\right)$,

$$
\begin{aligned}
Q P([\alpha]) & =Q([\bar{\rho} * \alpha * \rho])=[\rho * \bar{\rho} * \alpha * \rho * \bar{\rho}] \\
& =[\rho * \bar{\rho}] \circ[\alpha] \circ[\rho * \bar{\rho}]=[\alpha] .
\end{aligned}
$$

Thus $Q P$ is the identity map on $\pi_{1}\left(X, x_{0}\right)$ and, by symmetry, we observe that $P Q$ must be the identity map on $\pi_{1}\left(X, x_{1}\right)$. Thus the indicated fundamental groups are isomorphic.

Because of the preceding theorem, mention of a base point for the fundamental group of a path connected space is often omitted. We shall refer sometimes to "the fundamental group of X " and write $\pi_{1}(X)$, when X is path connected, since the same abstract group will result regardless of the choice of the base point. This applies primarily to the process of computing the fundamental group of a given space. Theorem 4.3 does not guarantee, however, that the isomorphism between $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(X, x_{1}\right)$ is unique; quite often different paths lead to different isomorphisms. For this reason, there are many applications of the fundamental group in which the specification of a base point is important. When comparing fundamental groups of two spaces X and Y on the basis of a continuous map $f: X \rightarrow Y$, for example, it is usually necessary to specify a base point for each space.

Definition. A path connected space X is simply connected provided that $\pi_{1}(X)$ is the trivial group.

Theorem 4.4. Every contractible space is simply connected.

Proof. Let X be a contractible space. There is a point x_{0} in X and a homotopy $H: X \times I \rightarrow X$ such that

$$
H(x, 0)=x, \quad H(x, 1)=x_{0}, \quad x \in X
$$

It is easy to see that X is path connected. If $x \in X$, the function

$$
\alpha_{x}=H(x, \cdot): I \rightarrow X
$$

is a path from $H(x, 0)=x$ to $H(x, 1)=x_{0}$. Thus any two points x and y are joined by the path $\alpha_{x} * \bar{\alpha}_{y}$ where $\bar{\alpha}_{y}$ is the reverse of α_{y}.

Assume for a moment that H has the additional property

$$
H\left(x_{0}, s\right)=x_{0}, \quad s \in I .
$$

For $[\alpha] \in \pi_{1}\left(X, x_{0}\right)$, define a homotopy $h: I \times I \rightarrow X$ by

$$
h(t, s)=H(\alpha(t), s) .
$$

Then

$$
\begin{gathered}
h(t, 0)=\alpha(t), \quad h(t, 1)=x_{0}, \quad t \in I \\
h(0, s)=h(1, s)=x_{0}, \quad s \in I .
\end{gathered}
$$

Here we have used our additional assumption $H\left(x_{0}, s\right)=x_{0}$ to produce $h(0, s)=h(1, s)=x_{0}$. Thus h demonstrates that α is equivalent to c, the constant loop whose only value is x_{0}. Then $[\alpha]=[c]$ and $\pi_{1}\left(X, x_{0}\right)$ consists only of an identity element.

But what happens if the path $H\left(x_{0}, \cdot\right): I \rightarrow X$ is not constant? We must then modify each level of the homotopy h to produce at each level a loop based at x_{0}. The procedure is illustrated in Figure 4.5, and the revised definition of h is left as an exercise for the reader.

Figure 4.5

4.3 The Covering Homotopy Property for S^{1}

This section is devoted to determining the fundamental group of the circle. It will be convenient to consider the unit circle S^{1} as a subset of the complex plane; we thus consider \mathbb{R}^{2} as the set of all complex numbers $x=x_{1}+i x_{2}$ where $i=\sqrt{-1}$.

We shall refer several times to the function $p: \mathbb{R} \rightarrow S^{1}$ defined by

$$
p(t)=\exp (2 \pi i t), \quad t \in \mathbb{R} .
$$

Here exp denotes the exponential function on the complex plane. In particular, if t is in the set \mathbb{R} of real numbers, then

$$
\exp (2 \pi i t)=\cos (2 \pi t)+i \sin (2 \pi t)
$$

Note that p maps each integer n in \mathbb{R} to 1 in S^{1} and wraps each interval [$n, n+1$] exactly once around S^{1} in the counterclockwise direction.

Definition. If $\sigma: I \rightarrow S^{1}$ is a path, then a path $\tilde{\sigma}: I \rightarrow \mathbb{R}$ such that $p \tilde{\sigma}=\sigma$ is called a covering path of σ or a lifting of σ to the real line \mathbb{R}. If $F: I \times I \rightarrow S^{1}$ is a homotopy, then a homotopy $\tilde{F}: I \times I \rightarrow \mathbb{R}$ such that $p \tilde{F}=F$ is called a covering homotopy or a lifting of F.

Theorem 4.5 (The Covering Path Property). If $\sigma: I \rightarrow S^{1}$ is a path in S^{1} with initial point 1 , then there is a unique covering path $\tilde{\sigma}: I \rightarrow \mathbb{R}$ with initial point 0.
Proof. Let U_{1} denote the open arc on S^{1} beginning at 1 and extending in the counterclockwise direction to $-i$, and let U_{2} denote the open arc from -1 counterclockwise to i, as shown in Figure 4.6. Then U_{1} and U_{2} are open sets in $S^{1}, U_{1} \cup U_{2}=S^{1}$ and

$$
\begin{aligned}
& p^{-1}\left(U_{1}\right)=\bigcup_{n=-\infty}^{\infty}\left(n, n+\frac{3}{4}\right), \\
& p^{-1}\left(U_{2}\right)=\bigcup_{n=-\infty}^{\infty}\left(n-\frac{1}{2}, n+\frac{1}{4}\right) .
\end{aligned}
$$

Figure 4.6
Note that p maps each interval ($n, n+\frac{3}{4}$) homeomorphically onto U_{1} and maps each interval $\left(n-\frac{1}{2}, n+\frac{1}{4}\right)$ homeomorphically onto U_{2}.

Here is the intuitive idea behind the proof. Subdivide the range of the path σ into sections so that each section is contained either in U_{1} or in U_{2}. If a particular section is contained in U_{1}, we choose one of the intervals $V=\left(n, n+\frac{3}{4}\right)$ and consider the restriction $\left.p\right|_{V}$ of p to this interval. Composing $\left(\left.p\right|_{V}\right)^{-1}$ with this section of the path "lifts" the section to a section of a path in \mathbb{R}. The same method applies to sections lying in U_{2}. To insure continuity we must be careful that the initial point of a given lifted section be the terminal point of the lifted section that precedes it.

This method is applied inductively as follows. Let ϵ be a Lebesgue number for the open cover $\left\{\sigma^{-1}\left(U_{1}\right), \sigma^{-1}\left(U_{2}\right)\right\}$ of I. Choose a sequence

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=1
$$

of numbers in I with each successive pair differing by less than ϵ. Then the image $\sigma\left(\left[t_{i}, t_{i+1}\right]\right)$ of any subinterval $\left[t_{i}, t_{i+1}\right], 0 \leq i \leq n-1$, must be contained in either U_{1} or U_{2}.

Now, $\sigma\left(\left[t_{0}, t_{1}\right]\right)$ must be contained in U_{2} since

$$
\sigma\left(t_{0}\right)=\sigma(0)=1 \notin U_{1} .
$$

Let $V_{1}=\left(-\frac{1}{2}, \frac{1}{4}\right)$ and define $\tilde{\sigma}$ on $\left[t_{0}, t_{1}\right]$ by

$$
\tilde{\sigma}(t)=\left(\left.p\right|_{V_{1}}\right)^{-1} \sigma(t)
$$

Proceeding inductively, suppose that σ has been defined on the interval [t_{0}, t_{k}]. Then

$$
\sigma\left(\left[t_{k}, t_{k+1}\right]\right) \subset U
$$

where U is either U_{1} or U_{2}. Let V_{k+1} be the component of $p^{-1}(U)$ to which $\tilde{\sigma}\left(t_{k}\right)$ belongs. Note that V_{k+1} is one of the intervals $\left(n, n+\frac{3}{4}\right)$ or ($n-\frac{1}{2}, n+\frac{1}{4}$). Then $\left.p\right|_{v_{k+1}}$ is a homeomorphism, and the desired extension of $\tilde{\sigma}$ to $\left[t_{k}, t_{k+1}\right]$ is obtained by defining

$$
\tilde{\sigma}(t)=\left(\left.p\right|_{v_{k+1}}\right)^{-1} \sigma(t), \quad t \in\left[t_{k}, t_{k+1}\right] .
$$

The continuity of $\tilde{\sigma}$ is guaranteed by the Continuity Lemma since the lifted sections agree at the endpoints t_{k}. This inductive step extends the definition of $\tilde{\sigma}$ to $\left[t_{0}, t_{n}\right]=I$.

To prove that $\tilde{\sigma}$ is the only such covering path, suppose that σ^{\prime} also satisfies the required properties $p \sigma^{\prime}=\sigma$ and $\sigma^{\prime}(0)=0$. Then the path $\tilde{\sigma}-\sigma^{\prime}$ has initial point 0 and

$$
p\left(\tilde{\sigma}(t)-\sigma^{\prime}(t)\right)=p \tilde{\sigma}(t) / p \sigma^{\prime}(t)=\sigma(t) / \sigma(t)=1, \quad t \in I
$$

so $\tilde{\sigma}-\sigma^{\prime}$ is a covering path of the constant path whose only value is 1 . Since p maps only integers to 1 , then $\tilde{\sigma}-\sigma$ must have only integral values. Thus, since I is connected, $\tilde{\sigma}-\sigma^{\prime}$ can have only one integral value. This one value must be the initial value, 0 . Therefore $\tilde{\sigma}-\sigma^{\prime}=0$, so $\tilde{\sigma}=\sigma^{\prime}$. The required lifting $\tilde{\sigma}$ is therefore unique.

Corollary (The Generalized Covering Path Property). If σ is a path in S^{1} and r is a real number such that $p(r)=\sigma(0)$, then there is a unique covering path $\tilde{\sigma}$ of σ with initial point r.

Proof. The path $\sigma / \sigma(0)$ is a path in S^{1} with initial point $\sigma(0) / \sigma(0)=1$ and therefore has a unique covering path η with initial point 0 . The path $\tilde{\sigma}: I \rightarrow \mathbb{R}$ defined by

$$
\tilde{\sigma}(t)=r+\eta(t), \quad t \in I,
$$

is the required covering path of σ with initial point r. The uniqueness of $\tilde{\sigma}$ follows from that of η.

Theorem 4.6 (The Covering Homotopy Property). If $F: I \times I \rightarrow S^{1}$ is a homotopy such that $F(0,0)=1$, then there is a unique covering homotopy $\tilde{F}: I \times I \rightarrow \mathbb{R}$ such that $\tilde{F}(0,0)=0$.

Proof. The proof is similar to that of the Covering Path Property; in fact, we use the same open sets U_{1}, U_{2} in S^{1}. By a Lebesgue number argument, there must exist numbers

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1, \quad 0=s_{0}<s_{1}<\cdots<s_{m}=1
$$

such that F maps any rectangle $\left[t_{i}, t_{i+1}\right] \times\left[s_{k}, s_{k+1}\right]$ into either U_{1} or U_{2}. Since

$$
F(0,0)=1 \notin U_{1},
$$

then $F\left(\left[t_{0}, t_{1}\right] \times\left[s_{0}, s_{1}\right]\right)$ must be contained in U_{2}. Let $V_{1}=\left(-\frac{1}{2}, \frac{1}{4}\right)$ and define \widetilde{F} on $\left[t_{0}, t_{1}\right] \times\left[s_{0}, s_{1}\right]$ by

$$
F(t, s)=\left(\left.p\right|_{V_{1}}\right)^{-1} F(t, s)
$$

Now extend the definition of F over the rectangles $\left[t_{i}, t_{i+1}\right] \times\left[s_{0}, s_{1}\right]$ in succession as in the proof of the Covering Path Property, being careful that the definitions agree on common edges of adjacent rectangles. This defines F on the strip $I \times\left[s_{0}, s_{1}\right]$.

Proceeding inductively, suppose that F has been defined on $\left(I \times\left[s_{0}, s_{k}\right]\right) \cup$ $\left(\left[t_{0}, t_{i}\right] \times\left[s_{k}, s_{k+1}\right]\right)$. We wish to extend the domain to include $\left[t_{i}, t_{i+1}\right] \times$ [s_{k}, s_{k+1}], as shown in Figure 4.7. Let

$$
A=\left\{(x, y) \in\left[t_{i}, t_{i+1}\right] \times\left[s_{k}, s_{k+1}\right]: x=t_{i} \text { or } y=s_{k}\right\}
$$

be the common boundary of the present domain of F and $\left[t_{i}, t_{i+1}\right] \times$ $\left[s_{k}, s_{k+1}\right]$. Now, $F\left(\left[t_{i}, t_{i+1}\right] \times\left[s_{k}, s_{k+1}\right]\right)$ is contained in either U_{1} or U_{2}. Denote this containing set by U, and let V be the component of $p^{-1}(U)$ which contains $\tilde{F}(A)$. Define \widetilde{F} on $\left[t_{i}, t_{i+1}\right] \times\left[s_{k}, s_{k+1}\right]$ by

$$
\tilde{F}(t, s)=\left(\left.p\right|_{v}\right)^{-1} F(t, s)
$$

Figure 4.7

The continuity of \tilde{F} follows from the Continuity Lemma since the old and new definitions of \tilde{F} agree on the closed set A. This induction extends the domain of \tilde{F} to $\left[t_{0}, t_{n}\right] \times\left[s_{0}, s_{m}\right]=I \times I$.

To see that \widetilde{F} is the only covering homotopy of F with $\tilde{F}(0,0)=0$, suppose that F^{\prime} is another one. Then the homotopy $\tilde{F}-F^{\prime}$ has the properties

$$
\begin{gathered}
\left(\tilde{F}-F^{\prime}\right)(0,0)=\tilde{F}(0,0)-F^{\prime}(0,0)=0 \\
p\left(\tilde{F}-F^{\prime}\right)(t, s)=p \tilde{F}(t, s) / p F^{\prime}(t, s)=F(t, s) / F(t, s)=1,
\end{gathered}
$$

for all (t, s) in $I \times I$. Thus, as in the case of covering paths, $F-F^{\prime}$ can have only one integral value, namely 0 . Then $F=F^{\prime}$ and the covering homotopy is unique.

Definition. Let α be a loop in S^{1} with base point 1 . The Covering Path Property insures that there is exactly one covering path $\tilde{\alpha}$ of α with initial point 0 . Since

$$
1=\alpha(1)=p \tilde{\alpha}(1)=\exp (2 \pi i \tilde{\alpha}(1))
$$

then $\tilde{\alpha}(1)$ must be an integer. This integer is called the degree of the loop α.
Theorem 4.7. Two loops α and β in S^{1} with base point 1 are equivalent if and only if they have the same degree.

Proof. Let $\tilde{\alpha}$ and $\tilde{\beta}$ denote the covering paths of α and β respectively having initial point 0 in \mathbb{R}.

Suppose first that α and β have the same degree so that $\tilde{\alpha}(1)=\tilde{\beta}(1)$. Define a homotopy $H: I \times I \rightarrow \mathbb{R}$ by

$$
H(t, s)=(1-s) \tilde{\alpha}(t)+s \tilde{\beta}(t), \quad(t, s) \in I \times I
$$

Then H demonstrates the equivalence of $\tilde{\alpha}$ and $\tilde{\beta}$ as paths in \mathbb{R}. Note in particular that $H(1, s)$ is the common degree of α and β for each s in I. The homotopy

$$
p H: I \times I \rightarrow S^{1}
$$

shows the equivalence of α and β as loops in S^{1}.
Suppose now that α and β are equivalent loops in S^{1} and that $K: I \times I \rightarrow S^{1}$ is a homotopy such that

$$
\begin{gathered}
K(\cdot, 0)=\alpha, \quad K(\cdot, 1)=\beta \\
K(0, s)=K(1, s)=1, \quad s \in I .
\end{gathered}
$$

By the Covering Homotopy Property, there is a covering homotopy $\widetilde{K}: I \times I \rightarrow \mathbb{R}$ such that

$$
\tilde{K}(0,0)=0, \quad p \tilde{K}=K
$$

Then

$$
p \tilde{K}(0, s)=K(0, s)=1, \quad s \in I
$$

so $\tilde{K}(0, s)$ must be an integer for each value of s. Since I is connected, $\tilde{K}(0, \cdot)$ must have only the value $\tilde{K}(0,0)=0$. A similar argument shows that $\tilde{K}(1, \cdot)$ is also a constant function.

Since

$$
p \tilde{K}(\cdot, 0)=K(\cdot, 0)=\alpha, \quad p \tilde{K}(\cdot, 1)=K(\cdot, 1)=\beta
$$

then $\tilde{K}(\cdot, 0)=\tilde{\alpha}$ and $\tilde{K}(\cdot, 1)=\tilde{\beta}$ are the unique covering paths of α and β respectively with initial point 0 . Thus

$$
\text { degree } \alpha=\tilde{\alpha}(1)=\widetilde{K}(1,0)=\widetilde{K}(1,1)=\widetilde{\beta}(1)=\text { degree } \beta
$$

so α and β must have the same degree.

Corollary. The fundamental group $\pi_{1}\left(S^{1}\right)$ is isomorphic to the group \mathbb{Z} of integers under addition.

Proof. Consider $\pi_{1}\left(S^{1}, 1\right)$, and define a function

$$
\operatorname{deg}: \pi_{1}\left(S^{1}, 1\right) \rightarrow \mathbb{Z}
$$

by

$$
\operatorname{deg}[\alpha]=\text { degree } \alpha
$$

The preceding theorem insures that deg is well-defined and one-to-one.
To see that deg maps $\pi_{1}\left(S^{1}, 1\right)$ onto \mathbb{Z}, let n be an integer. The loop γ in S^{1} defined by

$$
\gamma(t)=\exp (2 \pi i n t)
$$

is covered by the path

$$
t \rightarrow n t, \quad t \in I,
$$

and therefore has degree n. Thus $\operatorname{deg}[\gamma]=n$.
Suppose now that $[\alpha]$ and $[\beta]$ are in $\pi_{1}\left(S^{1}, 1\right)$. We must show that

$$
\operatorname{deg}([\alpha] \circ[\beta])=\operatorname{deg}[\alpha]+\operatorname{deg}[\beta] .
$$

If $\tilde{\alpha}$ and $\tilde{\beta}$ are the unique covering paths of α and β which begin at 0 , then the path $f: I \rightarrow \mathbb{R}$ defined by

$$
f(t)= \begin{cases}\tilde{\alpha}(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\ \tilde{\alpha}(1)+\tilde{\beta}(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

is the covering path of $\alpha * \beta$ with initial point 0 . Thus degree $(\alpha * \beta)=$ $f(1)=\tilde{\alpha}(1)+\tilde{\beta}(1)=$ degree $\alpha+$ degree β. Then

$$
\begin{aligned}
\operatorname{deg}([\alpha] \circ[\beta]) & =\operatorname{degree}(\alpha * \beta)=\text { degree } \alpha+\text { degree } \beta \\
& =\operatorname{deg}[\alpha]+\operatorname{deg}[\beta] .
\end{aligned}
$$

The most important topic of this section has been the Covering Homotopy Property. We shall see it again in a more general form in Chapter 5, and those who take additional courses in algebraic topology will find that it is one of the most useful concepts in homotopy theory.

4.4 Examples of Fundamental Groups

We now know that the fundamental group of a circle is the group of integers and that the fundamental group of any contractible space is trivial. The observant reader has probably surmised that the fundamental group is difficult to compute, even for simple spaces.

Homeomorphic spaces have isomorphic fundamental groups. The proof of this fact is left as an exercise. In this section we shall present less stringent conditions which insure that two spaces have isomorphic fundamental groups. This will allow us to determine the fundamental groups of several spaces similar to S^{1}. In the latter part of the section we shall prove a theorem which shows that the fundamental group of the n-sphere S^{n} is trivial for $n>1$.

Definition. Let X be a space and A a subspace of X. Then A is a deformation retract of X means that there is a homotopy $H: X \times I \rightarrow X$ such that

$$
\begin{gathered}
H(x, 0)=x, \quad H(x, 1) \in A, \quad x \in X, \\
H(a, t)=a, \quad a \in A, t \in I .
\end{gathered}
$$

The homotopy H is called a deformation retraction.
Theorem 4.8. If A is a deformation retract of a space X and x_{0} is a point of A, then $\pi_{1}\left(X, x_{0}\right)$ is isomorphic to $\pi_{1}\left(A, x_{0}\right)$.

Proof. Let $H: X \times I \rightarrow X$ be a deformation retraction of X onto A. Then if α is a loop in X with base point $x_{0}, H(\alpha(\cdot), 1)$ is a loop in A with base point x_{0}. We therefore define $h: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(A, x_{0}\right)$ by

$$
h([\alpha])=[H(\alpha(\cdot), 1)] .
$$

For $[\alpha],[\beta]$ in $\pi_{1}\left(X, x_{0}\right)$,

$$
\begin{aligned}
h([\alpha] \circ[\beta]) & =h([\alpha * \beta])=[H(\alpha * \beta(\cdot), 1)]=[H(\alpha(\cdot), 1) * H(\beta(\cdot), 1)] \\
& =h([\alpha]) \circ h([\beta]),
\end{aligned}
$$

so h is a homomorphism.
The fact that $H(\alpha(\cdot), 1)$ is equivalent to $H(\alpha(\cdot), 0)=\alpha$ as loops in X insures that h is one-to-one. If $[\gamma]$ is in $\pi_{1}\left(A, x_{0}\right)$, then γ determines a homotopy class (still called $[\gamma])$ in $\pi_{1}\left(X, x_{0}\right)$. Since H leaves each point of A fixed, then

$$
h([\gamma])=H(\gamma(\cdot), 1)=[\gamma]
$$

so h maps $\pi_{1}\left(X, x_{0}\right)$ onto $\pi_{1}\left(A, x_{0}\right)$. This completes the proof that h is an isomorphism.

Example 4.2. Consider the punctured plane $\mathbb{R}^{2} \mid\{p\}$ consisting of all points in \mathbb{R}^{2} except a particular point p. Let A be a circle with center p as shown in Figure 4.8.

Figure 4.8
For $x \in \mathbb{R}^{2}\{\{p\}$, the half line from p through x intersects the circle A at a point $r(x)$. This function r is clearly a retraction of $\mathbb{R}^{2} \backslash\{p\}$ onto A. Define a homotopy $H:\left(\mathbb{R}^{2} \backslash\{p\}\right) \times I \rightarrow \mathbb{R}^{2} \backslash\{p\}$ by

$$
H(x, t)=\operatorname{tr}(x)+(1-t) x, \quad x \in \mathbb{R}^{2} \mid\{p\}, t \in I .
$$

It is easy to see that H is a deformation retraction, so A is a deformation retract of $\mathbb{R}^{2} \backslash\{p\}$. Thus

$$
\pi_{1}\left(\mathbb{R}^{2} \backslash\{p\}\right) \cong \pi_{1}(A) \cong \mathbb{Z}
$$

Example 4.3. Consider an annulus X in the plane. Both the inner and outer circles of X are deformation retracts, so $\pi_{1}(X)$ is the group of integers.

Example 4.4. Each of the following spaces is contractible, so each has fundamental group $\{0\}$:
(a) a single point,
(b) an interval on the real line,
(c) the real line,
(d) Euclidean n-space \mathbb{R}^{n},
(e) any convex set in \mathbb{R}^{n}.

Theorem 4.9. Let X and Y be spaces with points x_{0} in X and y_{0} in Y. Then

$$
\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \cong \pi_{1}\left(X, x_{0}\right) \oplus \pi_{1}\left(Y, y_{0}\right)
$$

Proof. Let p_{1} and p_{2} denote the projections of the product space $X \times Y$ on X and Y respectively:

$$
p_{1}(x, y)=x, \quad p_{2}(x, y)=y, \quad(x, y) \in X \times Y .
$$

Any loop α in $X \times Y$ based at $\left(x_{0}, y_{0}\right)$ determines loops

$$
\alpha_{1}=p_{1} \alpha, \quad \alpha_{2}=p_{2} \alpha
$$

in X and Y based at x_{0} and y_{0} respectively. Conversely, any pair of loops α_{1} and α_{2} in X and Y based at x_{0} and y_{0} respectively determines a loop $\alpha=$ $\left(\alpha_{1}, \alpha_{2}\right)$ in $X \times Y$ based at $\left(x_{0}, y_{0}\right)$. The function

$$
h: \pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow \pi_{1}\left(X, x_{0}\right) \oplus \pi_{1}\left(Y, y_{0}\right)
$$

defined by

$$
h([\alpha])=\left(\left[\alpha_{1}\right],\left[\alpha_{2}\right]\right), \quad[\alpha] \in \pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)
$$

is the required isomorphism.
Example 4.5. The torus T is homeomorphic to the product $S^{1} \times S^{1}$. Hence

$$
\pi_{1}(T) \cong \pi_{1}\left(S^{1}\right) \oplus \pi_{1}\left(S^{1}\right) \cong \mathbb{Z} \oplus \mathbb{Z}
$$

Example 4.6. An n-dimensional torus T^{n} is the product of n unit circles. Hence $\pi_{1}\left(T^{n}\right)$ is isomorphic to the direct sum of n copies of the group of integers.

Example 4.7. A closed cylinder C is the product of a circle S^{1} and a closed interval $[a, b]$. Thus

$$
\pi_{1}(C) \cong \pi_{1}\left(S^{1}\right) \oplus \pi_{1}([a, b]) \cong \mathbb{Z} \oplus\{0\} \cong \mathbb{Z}
$$

Theorem 4.10. Let X be a space for which there is an open cover $\left\{V_{i}\right\}$ of X such that
(a) $\bigcap V_{i} \neq \varnothing$,
(b) each V_{i} is simply connected, and
(c) for $i \neq j, V_{i} \cap V_{j}$ is path connected. Then X is simply connected.

Proof. Since each of the open sets V_{i} is path connected and their intersection is not empty, it follows easily that X is path connected. Let x_{0} be a point in $\bigcap V_{i}$. We must show that $\pi_{1}\left(X, x_{0}\right)$ is the trivial group.

Let [α] be a member of $\pi_{1}\left(X, x_{0}\right)$. Then $\alpha: I \rightarrow X$ is a continuous map, so the set of all inverse images $\left\{\alpha^{-1}\left(V_{i}\right)\right\}$ is an open cover of the unit interval I. Since I is compact, this open cover has a Lebesgue number ϵ. Then there is a partition

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=1
$$

of I such that if $0 \leq j \leq n-1$, then $\alpha\left(\left[t_{j}, t_{j+1}\right]\right)$ is a subset of some V_{i}. (We need only require that successive terms of the partition differ by less than ϵ.)

Let us alter the notation of the open cover $\left\{V_{i}\right\}$, if necessary, so that

$$
\alpha\left(\left[t_{j}, t_{j+1}\right]\right) \subset V_{j}, \quad 0 \leq j \leq n-1
$$

Letting

$$
\alpha_{j}(s)=\alpha\left((1-s) t_{j}+s t_{j+1}\right), \quad s \in I,
$$

we have a sequence $\left\{\alpha_{j}\right\}_{j=0}^{n-1}$ of paths in X such that $\alpha_{j}(I)$ is a subset of the simply connected set V_{j}, and

$$
[\alpha]=\left[\alpha_{0} * \alpha_{1} * \alpha_{2} * \cdots * \alpha_{n-1}\right] .
$$

This process is illustrated for $n=4$ in Figure 4.9.

Figure 4.9
Since $V_{j-1} \cap V_{j}$ is path connected, there is a path ρ_{j} from x_{0} to $\alpha\left(t_{j}\right)$, $1 \leq j \leq n-1$, lying entirely in $V_{j-1} \cap V_{j}$. (Note that $\alpha\left(t_{j}\right)$ is the terminal point of α_{j-1} and the initial point of α_{j}.) Since the product $\bar{\rho}_{j} * \rho_{j}$ of ρ_{j} and its reverse is equivalent to the constant loop at x_{0}, then

$$
\begin{aligned}
{[\alpha] } & =\left[\alpha_{0} * \bar{\rho}_{1} * \rho_{1} * \alpha_{1} * \bar{\rho}_{2} * \rho_{2} * \alpha_{2} * \cdots * \bar{\rho}_{n-1} * \rho_{n-1} * \alpha_{n-1}\right] \\
& =\left[\alpha_{0} * \bar{\rho}_{1}\right] \circ\left[\rho_{1} * \alpha_{1} * \bar{\rho}_{2}\right] \circ \cdots \circ\left[\rho_{n-2} * \alpha_{n-2} * \bar{\rho}_{n-1}\right] \circ\left[\rho_{n-1} * \alpha_{n-1}\right] .
\end{aligned}
$$

The term in this product determined by α_{j} is the homotopy class of a loop lying in the simply connected set V_{j}. Hence each term of the product represents the identity class, so $[\alpha]$ must be the identity class as well. Thus $\pi_{1}(X)=\{0\}$, and X is simply connected.

Example 4.8. It is left as an exercise for the reader to show that $S^{n}, n>1$, has an open cover with two members satisfying the requirements of Theorem 4.10. It then follows that $\pi_{1}\left(S^{n}\right)=\{0\}$ for $n>1$.

4.5 The Relation between $H_{1}(K)$ and $\pi_{1}(|K|)$

The fundamental group is defined for every topological space, and we have defined homology groups for polyhedra. If $|K|$ is a polyhedron with triangulation K, how are the groups $H_{1}(K)$ and $\pi_{1}(|K|)$ related? For our examples thus far (interval, circle, torus, cylinder, annulus, and n-sphere), $\pi_{1}(|K|)$ and $H_{1}(K)$ are isomorphic. This is not true in general. The precise answer is given by Theorem 4.11 which is stated here with only an outline of the proof. Complete proofs can be found in [2], Section 8-3 and in [6], Section 12.

Theorem 4.11. If K is a connected complex, then $H_{1}(K)$ is isomorphic to the quotient group $\pi_{1}(|K|) / F$ where F is the commutator subgroup of $\pi_{1}(|K|)$. Thus whenever $\pi_{1}(|K|)$ is abelian, $\pi_{1}(|K|)$ and $H_{1}(K)$ are isomorphic.

Outline of proof. Choose a vertex v of K as the base point for the fundamental group. For each oriented 1 -simplex σ_{i} of K, let α_{i} denote a linear homeomorphism from $[0,1]$ onto σ_{i}; the α_{i} are called elementary edge paths. An edge loop is a product of elementary edge paths with v as initial point and terminal point. Note that an edge loop $\alpha_{1} * \alpha_{2} * \cdots * \alpha_{n}$ corresponds in a natural way to a 1 -cycle $1 \cdot \sigma_{1}+1 \cdot \sigma_{2}+\cdots+1 \cdot \sigma_{n}$.

Although we shall not go into the lengthy details, it is true that (a) if an edge loop is equivalent to the constant loop at v, then the corresponding $1-$ cycle is a boundary; (b) if two edge loops are equivalent, then their corresponding 1-cycles are homologous; and (c) each loop in $|K|$ with base point v is equivalent to an edge loop.

A homomorphism.

$$
f: \pi_{1}(|K|, v) \rightarrow H_{1}(K)
$$

may now be defined as follows: For $[\alpha] \in \pi_{1}(|K|, v)$, let $\hat{\alpha}=\alpha_{1} * \alpha_{2} * \cdots * \alpha_{n}$ be an edge loop equivalent to α. Define the value $f([\alpha])$ to be the homology class determined by the 1 -cycle which corresponds to $\hat{\alpha}$. Then f is a homomorphism from $\pi_{1}(|K|, v)$ onto $H_{1}(K)$ whose kernel is the commutator subgroup F. It follows from the First Homomorphism Theorem (Appendix 3) that the quotient group $\pi_{1}(|K|, v) / F$ is isomorphic to $H_{1}(K)$.

The fundamental group was defined by Poincaré in Analysis Situs, the same paper in which he introduced homology theory, and the relation between homology and homotopy given in Theorem 4.11 was known to him.

Poincaré did not prove the relation, but he stated in Analysis Situs that "fundamental equivalence" of paths in the homotopy sense corresponded precisely to homological equivalence of 1-chains except for commutativity. Since the commutator subgroup F of a group G is the smallest subgroup for which G / F is abelian, it is sometimes said that $H_{1}(K)$ is " $\pi_{1}(|K|)$ made abelian."

Both the homology and homotopy relations investigate the structure of a topological space by examining the connectivity or "holes in the space." Note that homotopy is more easily defined and conceptually simpler. It does not require elaborate explanations of chains, boundaries, cycles, or quotient groups. Homotopy applies immediately to general topological spaces and does not require the special polyhedral structure that we used for homology. Thus homotopy has some real advantages over homology.

Taking the other point of view, homology is in some ways preferable to homotopy. The fundamental group is difficult to determine rigorously, even for simple spaces. Recall, for example, our computation of $\pi_{1}\left(S^{1}\right)$ and the proof of Theorem 4.4 showing that each contractible space is simply connected. We found in Chapter 2 that homology groups are effectively calculable, for pseudomanifolds at least, because of the simplicial structure of the underlying complexes. Note also that the fundamental group overlooks the existence of higher dimensional holes in $S^{n}, n>1$. To describe higher dimensional connectivity by the homotopy concept, we need a generalization of the fundamental group to higher dimensions. That is to say, we need homotopy analogues of the higher dimensional homology groups. After giving some applications of the fundamental group in Chapter 5, we shall study the higher homotopy groups in Chapter 6.

In defining the homology and homotopy relations, Poincaré hoped to give an algebraic system of topological invariants that could be used to classify topological spaces, especially manifolds. Ideally, one would hope for a sequence of groups which are reasonably amenable to computation and have the property that two spaces are homeomorphic if and only if their corresponding groups are isomorphic. As pointed out earlier (Theorem 2.11), the homology characters, and thus the homology groups, provide such a classification for 2-manifolds. Poincare's hope that the homology groups would provide a similar classification for 3-manifolds was not fulfilled. Poincaré himself showed in 1904 that two 3-manifolds may have isomorphic homology groups and not be homeomorphic. More specifically, he found a 3-manifold whose homology groups are isomorphic to those of the 3-sphere S^{3} but which is not simply connected, and therefore not homeomorphic to S^{3}.

Poincaré was greatly preoccupied with the classification problem. He hoped that the fundamental group would overcome the deficiencies of homology theory in the classification of 3-manifolds. It does not, however, for J. W. Alexander showed in 1919, seven years after Poincaré's death, that there exist nonhomeomorphic 3-manifolds having isomorphic homology groups and isomorphic fundamental groups [26]. Alexander's examples
involved fundamental groups of order five and left unanswered the famous Poincaré Conjecture:

The Poincaré Conjecture. Every simply connected 3-manifold is homeomorphic to the 3-sphere.

The classification problem, even for 3-manifolds, and the Poincaré Conjecture remain unsolved. Nonetheless, the fundamental group has been a powerful tool and a great stimulus for research in algebraic topology. It seems to lie at the very base of many difficult mathematical problems. We shall see some of its power as we study an important class of spaces, the covering spaces, in Chapter 5.

Exercises

1. Prove the Continuity Lemma.
2. Show that multiplication in $\pi_{1}\left(X, x_{0}\right)$ is well defined. In other words, show that if $\alpha \sim_{x_{0}} \alpha^{\prime}$ and $\beta \sim_{x_{0}} \beta^{\prime}$, then

$$
\alpha * \beta \sim_{x_{0}} \alpha^{\prime} * \beta^{\prime}
$$

3. Complete the details in the proofs of Lemmas A and C.
4. Given a space X and loops α, β, γ, and δ with base point x_{0} in X, exhibit a homotopy which shows that

$$
(\alpha * \beta) *(\gamma * \delta) \sim_{x_{0}} \alpha *((\beta * \gamma) * \delta)
$$

5. Let α and β be paths in a space X both having initial point x_{0} and terminal point x_{1}. Prove that α is equivalent to β if and only if the product $\alpha * \bar{\beta}$ of α and the reverse of β is equivalent to the constant loop at x_{0}.
6. Let ρ be a loop in X with base point x_{0}. Prove that the induced homomorphism given by the proof of Theorem 4.3,

$$
P: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right),
$$

is the identity isomorphism if and only if the homotopy class [ρ] belongs to the center of $\pi_{1}\left(X, x_{0}\right)$.
7. Let ρ and ρ^{\prime} be paths in a space X both having initial point x_{0} and terminal point x_{1}. Give a necessary and sufficient condition that the homomorphisms induced by ρ and ρ^{\prime} in the proof of Theorem 4.3 be identical. Prove that your condition is correct.
8. Complete the proof of Theorem 4.4.
9. Give an example of a simply connected space which is not contractible.
10. Give an example of a contractible space X and a point x_{0} in X for which there is no contraction of X to x_{0} which leaves x_{0} fixed throughout the contracting homotopy.
11. In analogy with the Generalized Covering Path Property, state and prove a "Generalized Covering Homotopy Property" for S^{1}.
12. Prove that a path connected space is simply connected if and only if every pair of paths in X having common initial point and common terminal point are equivalent.
13. Let $f: X \rightarrow Y$ be a continuous function. Prove that the function $f_{*}: \pi_{1}\left(X, x_{0}\right)$ $\rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$ defined by

$$
f_{*}([\alpha])=[f \alpha], \quad[\alpha] \in \pi_{1}\left(X, x_{0}\right),
$$ is a homomorphism. Show in particular that f_{*} is well-defined.

14. Prove that homeomorphic spaces have isomorphic fundamental groups.
15. In the proof of Theorem 4.5, explain why the covering path $\tilde{\alpha}$ has initial point 0 .
16. Explain why the loop $\gamma_{n}: I \rightarrow S^{1}$ defined by

$$
\gamma_{n}(t)=\exp (2 \pi i n t), \quad t \in I
$$

has degree \boldsymbol{n} for each integral value of \boldsymbol{n}.
17. Determine the fundamental group of the Möbius strip.
18. Prove that every deformation retract of a space X is a rectract of X. Show by example that the converse is false.
19. Let X be a space consisting of two 2 -spheres joined at a point. Prove that $\pi_{1}(X)=\{0\}$.
20. Let X be a space consisting of two circles joined at a point. Prove that $\pi_{1}(X)$ is a free group on two generators and hence that there are nonabelian fundamental groups.
21. Show that the function h in the proof of Theorem 4.9 is an isomorphism.
22. Show that the n-sphere $S^{n}, n>1$, satisfies the hypotheses of Theorem 4.10 and that $\pi_{1}\left(S^{n}\right)=\{0\}$.
23. Prove that each of the following spaces is contractible:
(a) the real line,
(b) a convex set in \mathbb{R}^{n},
(c) the upper hemisphere H of $S^{n}: H=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n}: x_{n+1} \geq 0\right\}$,
(d) $S^{n} \backslash\{p\}$ where p is a particular point in S^{n}.
24. Let p be a point in S^{1}. Prove that $S^{1} \times\{p\}$ is a retract but not a deformation retract of $S^{1} \times S^{1}$.
25. Prove that the fundamental group of punctured n-space $\mathbb{R}^{n} \backslash\{p\}$ is trivial for $n>2$.
26. Let G be a topological group with identity element e. If α, β are loops in G with base point e, we can define a new product - by

$$
\alpha \cdot \beta(t)=\alpha(t) \beta(t)
$$

where juxtaposition of $\alpha(t)$ and $\beta(t)$ indicates their group product in G.
(a) Prove that the operation - on loops based at e induces a group operation on $\pi_{1}(G, e)$.
(b) Show that the operation induced by \cdot is exactly the same as the usual product \circ on $\pi_{1}(G, e)$. (Hint: Prove that $(\alpha * c) \cdot(c * \beta)=\alpha * \beta$ where c is the constant loop at e.)
(c) Prove that $\pi_{1}(G, e)$ is abelian. (Hint: Compare $(\alpha * c) \cdot(c * \beta)$ and $(c * \alpha) \cdot(\beta * c)$.
27. If K is a complex with combinatorial components K_{1}, \ldots, K_{r}, how is $H_{1}(K)$ related to the groups $\pi_{1}\left(\left|K_{1}\right|\right), \ldots, \pi_{1}\left(\left|K_{r}\right|\right)$?
28. Give an intuitive explanation of each of the following statements:
(a) The degree of a loop α in S^{1} is the number of times that α wraps the interval I around the circle.
(b) The circle has one "hole" so its fundamental group is the group \mathbb{Z} of integers.
(c) The fundamental groups of a torus and a figure eight (two circles joined at a point) are not isomorphic.
29. (a) Show that a loop in a space X may be considered a continuous map from S^{1} into X. (Hint: Consider the quotient space of I obtained by identifying 0 and 1 to a single point.)
(b) Let α be a loop in S^{1}. Explain the relation between the degree of α in the homotopy sense and its degree in the homology sense.
30. Let X be a space consisting of two spheres S^{m} and S^{n}, where $m, n \geq 2$, tangent at a point. Prove that $\pi_{1}(X)=\{0\}$.

Covering Spaces

5

This chapter is designed to show the power of the fundamental group. We shall consider a class of mappings $p: E \rightarrow B$, called "covering projections," from a "covering space" E to a "base space" B to which we can extend the Covering Homotopy Property discussed in Chapter 4. Precise definitions are given in the next section.

The fundamental group is instrumental in determining and classifying the topological spaces that can be covering spaces of a given base space B. For a large class of spaces, the possible covering spaces of B are determined by the subgroups of $\pi_{1}(B)$. In addition, the theory of covering spaces will allow us to determine the fundamental groups of several rather complicated spaces.

5.1 The Definition and Some Examples

Recall from Chapter 4 that a space X is path connected provided that each pair of points in X can be joined by a path in X. A space that satisfies this property locally is called "locally path connected."

Definition. A topological space X is locally path connected means that X has a basis of path connected open sets. In other words, if $x \in X$ and O is an open set containing x, then there exists an open set U containing x and contained in O such that U is path connected.

Definition. A maximal path connected subset of a space X is called a path component. Thus A is a path component of X means that A is path connected and is not a proper subset of any path connected subset of X. The path components of a subset B of X are the path components of B in its subspace topology.

It is assumed throughout this chapter that all spaces considered are path connected and locally path connected unless stated otherwise.

Definition. Let E and B be spaces and $p: E \rightarrow B$ a continuous map. Then the pair (E, p) is a covering space of B means that for each point x in B there is a path connected open set $U \subset B$ such that $x \in U$ and p maps each path component of $p^{-1}(U)$ homeomorphically onto U. Such an open set U is called an admissible neighborhood or an elementary neighborhood. The space B is the base space and p is a covering projection.

In cases where the covering projection is clearly understood, one sometimes refers to E as the covering space. We shall, however, try to avoid ambiguity by referring to the covering space properly as (E, p).

Example 5.1. Consider the map $p: \mathbb{R} \rightarrow S^{1}$ from the real line to the unit circle defined in Chapter 4:

$$
p(t)=e^{2 \pi l t}=\cos (2 \pi t)+i \sin (2 \pi t), \quad t \in \mathbb{R}
$$

Then p is a covering projection. Any proper open interval or arc on S^{1} can serve as an elementary neighborhood. For the particular point 1 in S^{1}, let U denote the right hand open interval on S^{1} from $-i$ to i. Then

$$
p^{-1}(U)=\bigcup_{n=-\infty}^{\infty}\left(n-\frac{1}{4}, n+\frac{1}{4}\right)
$$

and the path components of $p^{-1}(U)$ are the real intervals $\left(n-\frac{1}{4}, n+\frac{1}{4}\right)$. Note that p maps each of these homeomorphically onto U, as illustrated in Figure 5.1.

Figure 5.1
Example 5.2. For any positive integer n, let $q_{n}: S^{1} \rightarrow S^{1}$ be the map defined by

$$
q_{n}(z)=z^{n}, \quad z \in S^{1}
$$

where z^{n} is the nth power of the complex number z. Then (S^{1}, q_{n}) is a covering space of S^{1}. Representing the circle in polar coordinates, the action of q_{n} is described as follows: q_{n} takes any point $(1, \theta)$ to $(1, n \theta)$. Let U be an open interval on S^{1} subtended by an angle $\theta, 0 \leq \theta \leq 2 \pi$, and containing a point x. Then $p^{-1}(U)$ consists of n open intervals each determining an angle θ / n and each containing one nth root of x. These n intervals are the path components
of $p^{-1}(U)$, and each is mapped by p homeomorphically onto U. Thus any proper open interval in S^{1} is an admissible neighborhood.

A repetition of Example 5.2 for negative values of n is left as an exercise.
Example 5.3. If X is a space (which, according to our assumption, must be path connected and locally path connected), then the identity map $i: X \rightarrow X$ is a covering projection, so (X, i) is a covering space of X.

Example 5.4. Let P denote the projective plane, and let $p: S^{2} \rightarrow P$ be the natural map which identifies each pair of antipodal or diametrically opposite points, as in Exercise 26 of Chapter 2. To show the existence of admissible neighborhoods, let w be a point in P which is the image of two antipodal points x and $-x$. Let O be a path connected open set in S^{2} containing x such that O does not contain any pair of antipodal points. (A small disc centered at x will do nicely.) Then $p(O)$ is an open set containing w, and $p^{-1} p(O)$ has path components O and the set of points antipodal to points in O. Note that p maps each of these path components homeomorphically onto $p(O)$, so $p(O)$ is an admissible neighborhood. Thus $\left(S^{2}, p\right)$ is a covering space of P.

Example 5.5. Consider the map $r: \mathbb{R}^{2} \rightarrow S^{1} \times S^{1}$ from the plane to the torus defined by

$$
r\left(t_{1}, t_{2}\right)=\left(e^{2 \pi l t_{1}}, e^{2 \pi i t_{2}}\right), \quad\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}
$$

Then $\left(\mathbb{R}^{2}, r\right)$ is a covering space of $S^{1} \times S^{1}$. This example is essentially a generalization of the covering projection $p: \mathbb{R} \rightarrow S^{1}$ of Example 1. For any point $\left(z_{1}, z_{2}\right)$ in $S^{1} \times S^{1}$, let U denote a small open rectangle formed by the product of two proper open intervals in S^{1} containing z_{1} and z_{2} respectively. Then U is an admissible neighborhood whose inverse image consists of a countably infinite family of open rectangles in the plane.

Example 5.6. Let Q denote-an infinite spiral, and let $q: Q \rightarrow S^{1}$ denote the projection described pictorially in Figure 5.2. Each point on the spiral is projected to the point on the circle directly beneath it.

Figure 5.2

It is easy to see that (Q, q) is a covering space of S^{1}. In this example it is important that the spiral be infinite; a finite spiral projected in the same manner is not a covering space. By examining Figure 5.3, one can see that the points $p\left(x_{0}\right)$ and $p\left(x_{1}\right)$ lying under the ends of the spiral do not have admissible neighborhoods.

Figure 5.3
Example 5.7. The following is not an example of a covering space. Let R be a rectangle which is mapped by the projection onto the first coordinate to an interval A, as shown in Figure 5.4. If U is an open interval in A, then $p^{-1}(U)$ is a strip in R consisting of all points above U. This strip cannot be mapped homeomorphically onto U, so this situation does not allow admissible neighborhoods.

Figure 5.4

5.2 Basic Properties of Covering Spaces

In this section we shall prove some basic properties of covering spaces from the definition. The most important of these is the Covering Homotopy Property.

The following characterization of local path connectedness is left as an exercise:

Lemma. A space X is locally path connected if and only if each path component of each open subset of X is open.

Theorem 5.1. Every covering projection is an open mapping.
Proof. Let $p: E \rightarrow B$ be a covering projection. We must show that for each open set V in $E, p(V)$ is open in B. Let $x \in p(V)$, let \tilde{x} be a point of V such that $p(\tilde{x})=x$, and let U be an admissible neighborhood for x. Let W be the path component of $p^{-1}(U)$ which contains \tilde{x}. Since E is locally path connected, the preceding lemma implies that W is open in E. Since p maps W homeomorphically onto U, then p maps the open set $W \cap V$ to an open subset $p(W \cap V)$ in B. Thus $x \in p(W \cap V)$ and $p(W \cap V)$ is an open set contained in $p(V)$. Since x was an arbitrary point of $p(V)$, it follows that $p(V)$ is a union of open sets and is, therefore, an open set. Thus p is an open mapping.

Theorem 5.2. Let (E, p) be a covering space of B and X a space. If f and g are continuous maps from X into E for which $p f=p g$, then the set of points at which f and g agree is an open and closed subset of X. (We do not assume in this theorem that X is path connected or locally path connected.)

Proof. Let $A=\{x \in X: f(x)=g(x)\}$ be the set of points at which f and g agree. To see that A is open, let x be a member of A and U an admissible neighborhood of $p f(x)$. The path component V of $p^{-1}(U)$ to which $f(x)$ belongs is an open set in E, and hence $f^{-1}(V)$ and $g^{-1}(V)$ are open in X. Since $f(x) \in V$ and $f(x)=g(x)$, then x belongs to $f^{-1}(V) \cap g^{-1}(V)$. We shall show that $f^{-1}(V) \cap g^{-1}(V)$ is a subset of A and conclude that A is open since it contains a neighborhood of each of its points.

Let $t \in f^{-1}(V) \cap g^{-1}(V)$. Then $f(t)$ and $g(t)$ are in V and are mapped by p to the common point $p f(t)=p g(t)$. Since p maps V homeomorphically onto U, it must be true that $f(t)=g(t)$. Then $t \in A$, and it follows that A is an open set.

Suppose that A is not closed, and let y be a limit point of A not in A. Then $f(y) \neq g(y)$. The point $p f(y)=p g(y)$ has an elementary neighborhood W, and $f(y)$ and $g(y)$ must belong to distinct path components V_{0} and V_{1} of $p^{-1}(W)$. (Why?) Since y belongs to the open set $f^{-1}\left(V_{0}\right) \cap g^{-1}\left(V_{1}\right)$, then $f^{-1}\left(V_{0}\right) \cap g^{-1}\left(V_{1}\right)$ must contain a point $t \in A$. But this is a contradiction since the point $f(t)=g(t)$ would have to belong to the disjoint sets V_{0} and V_{1}. Thus A contains all its limit points and is a closed set.

Corollary. Let (E, p) be a covering space of B, and let f, g be continuous maps from a connected space X into E such that $p f=p g$. If f and g agree at a point of X, then $f=g$.
Proof. In a connected space X, the only sets that are both open and closed are X and the empty set \varnothing. Thus $A=X$ or $A=\varnothing$, so f and g must be precisely equal or must disagree at every point. Note that the corollary requires only that X be connected, not path connected or locally path connected.

Here is a situation that arises often in mathematics, particularly in topology. Suppose that spaces E and B are to be compared using a continuous map
$p: E \rightarrow B$ and that there is given another map $f: C \rightarrow B$ from a space C into B. Then a $\operatorname{map} f: C \rightarrow E$ for which the diagram below is commutative, that is for which $p \tilde{f}=f$, is called a lifting or covering of f.

In this section we shall be interested in lifting two kinds of maps: paths and homotopies between paths. Theorem 5.2 and its corollary will be useful in showing the uniqueness of liftings.

Definition. Let (E, p) be a covering space of B, and let $\alpha: I \rightarrow B$ be a path.
A path $\tilde{\alpha}: I \rightarrow E$ such that $p \tilde{\alpha}=\alpha$ is called a lifting or covering path of α. If $F: I \times I \rightarrow B$ is a homotopy, then a homotopy $\widetilde{F}: I \times I \rightarrow E$ for which $p \tilde{F}=F$ is called a lifting or covering homotopy of F.

We are now ready to extend the Covering Path Property and Covering Homotopy Property that were proved earlier for the circle to covering spaces. The proofs of these important properties are merely generalizations of the proofs used in Chapter 4.

Theorem 5.3 (The Covering Path Property). Let (E, p) be a covering space of B and $\alpha: I \rightarrow B$ a path in B beginning at a point b_{0}. If e_{0} is a point in E with $p\left(e_{0}\right)=b_{0}$, then there is a unique covering path of α beginning at e_{0}.

Proof. Here is the basic idea of the proof: Subdivide the range of the path α into sections so that each section lies in an admissible neighborhood. If U is one of these admissible neighborhoods, then p maps each path component of $p^{-1}(U)$ homeomorphically onto U. We can then choose a path component V of $p^{-1}(U)$ and consider the restriction $\left.p\right|_{V}$ of p to V, a homeomorphism from V onto U. Composing with $\left(\left.p\right|_{V}\right)^{-1}$ "lifts" one section of α to E.

This method is applied inductively. Let $\left\{U_{j}\right\}$ be an open cover of B by admissible neighborhoods, and let ϵ be a Lebesgue number for the corresponding open cover $\left\{\alpha^{-1}\left(U_{j}\right)\right\}$ of I. Choose a sequence

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

of numbers in I with each successive pair differing by less than ϵ. Then each subinterval $\left[t_{i}, t_{i+1}\right], 0 \leq i \leq n-1$, is mapped by α into an admissible neighborhood U_{i+1}.

First consider $\alpha\left(\left[t_{0}, t_{1}\right]\right)$, which is contained in U_{1}. Let V_{1} denote the path component of $p^{-1}\left(U_{1}\right)$ to which the desired initial point e_{0} belongs. Then, for $t \in\left[t_{0}, t_{1}\right]$, define

$$
\tilde{\alpha}(t)=\left(\left.p\right|_{V_{1}}\right)^{-1} \alpha(t) .
$$

Proceeding inductively, suppose that $\tilde{\alpha}$ has been defined on the interval [t_{0}, t_{k}]. Then

$$
\alpha\left(\left[t_{k}, t_{k+1}\right]\right) \subset U_{k+1}
$$

so we let V_{k+1} be the path component of $p^{-1}\left(U_{k+1}\right)$ to which $\tilde{\alpha}\left(t_{k}\right)$ belongs. Since $\left.p\right|_{v_{k+1}}$ is a homeomorphism, the desired extension of $\tilde{\alpha}$ to $\left[t_{k}, t_{k+1}\right]$ is obtained by defining

$$
\tilde{\alpha}(t)=\left(\left.p\right|_{v_{k+1}}\right)^{-1} \alpha(t), \quad t \in\left[t_{k}, t_{k+1}\right] .
$$

The continuity of $\tilde{\alpha}$ follows from the Continuity Lemma since the lifted sections match properly at the end points.

The uniqueness of the covering path $\tilde{\alpha}$ can be proved from the uniqueness of each lifted section. However, it is simpler to apply the Corollary to Theorem 5.2. If α^{\prime} is another covering path of α with $\alpha^{\prime}(0)=e_{0}$, then $\tilde{\alpha}$ and α^{\prime} agree at 0 and hence must be identical.

Theorem 5.4 (The Covering Homotopy Property). Let (E, p) be a covering space of B and $F: I \times I \rightarrow B$ a homotopy such that $F(0,0)=b_{0}$. If e_{0} is a point of E with $p\left(e_{0}\right)=b_{0}$, then there is a unique covering homotopy $\tilde{F}: I \times I \rightarrow E$ such that $\tilde{F}(0,0)=e_{0}$.

Having seen this property proved for a special case in Chapter 4, and having seen the proof of the Covering Path Property for covering spaces, the reader should be able to prove Theorem 5.4 for himself. A proof can be modeled after the proof of Theorem 5.3 by subdividing $I \times I$ into rectangles in the way that I was subdivided into intervals.

The Covering Homotopy Property has many important applications. One of the most important is the following criterion for determining when two paths in a covering space are equivalent.

Theorem 5.5 (The Monodromy Theorem). Let (E, p) be a covering space of B, and suppose that $\tilde{\alpha}$ and $\tilde{\beta}$ are paths in E with common initial point e_{0}. Then $\tilde{\alpha}$ and $\tilde{\beta}$ are equivalent if and only if $p \tilde{\alpha}$ and $p \tilde{\beta}$ are equivalent paths in B. In particular, if $p \tilde{\alpha}$ and $p \tilde{\beta}$ are equivalent, then $\tilde{\alpha}$ and $\tilde{\beta}$ must have common terminal point.

Proof. If $\tilde{\alpha}$ and $\tilde{\beta}$ are equivalent by a homotopy G then the homotopy $p G$ demonstrates the equivalence of $p \tilde{\alpha}$ and $p \tilde{\beta}$.

For a proof of the other half of the theorem, let b_{0} and b_{1} denote the common initial point and common terminal point respectively of $p \tilde{\alpha}$ and $p \tilde{\beta}$. Let $H: I \times I \rightarrow B$ be a homotopy demonstrating the equivalence of $p \tilde{\alpha}$ and $p \tilde{\beta}$:

$$
\begin{gathered}
H(\cdot, 0)=p \tilde{\alpha}, \quad H(\cdot, 1)=p \tilde{\beta}, \\
H(0, t)=b_{0}, \quad H(1, t)=b_{1}, \quad t \in I .
\end{gathered}
$$

By the Covering Homotopy Property, there is a covering homotopy \tilde{H} of H with $\tilde{H}(0,0)=e_{0}$. Both $\tilde{\alpha}$ and the initial level $\tilde{H}(\cdot, 0)$ are covering paths of $p \tilde{\alpha}$, and they have common value e_{0} at 0 . Thus $\tilde{H}(\cdot, 0)=\tilde{\alpha}$ by the Corollary to Theorem 5.2. Similarly, we conclude that $\tilde{H}(\cdot, 1)=\tilde{\beta}$.

It remains to be seen that $\tilde{H}(0, \cdot)$ and $\tilde{H}(1, \cdot)$ are constant paths. But
$\tilde{H}(0, \cdot)$ is a lifting of the constant path $H(0, \cdot)$ with $\tilde{H}(0,0)=e_{0}$. Since the unique lifting of a constant path is obviously a constant path, then $\tilde{H}(0, \cdot)$ must be the constant path whose only value is e_{0}. The same argument shows that $\tilde{H}(1, \cdot)$ must be the constant path whose only value is

$$
\tilde{\alpha}(1)=\tilde{H}(1,0)=\tilde{H}(1,1)=\tilde{\beta}(1)
$$

Thus \tilde{H} is a homotopy that demonstrates the equivalence of $\tilde{\alpha}$ and $\tilde{\beta}$.
Theorem 5.6. If (E, p) is a covering space of B, then all the sets $p^{-1}(b), b \in B$, have the same cardinal number.

Proof. Let b_{0} and b_{1} be points in B. We must define a one-to-one correspondence between $p^{-1}\left(b_{0}\right)$ and $p^{-1}\left(b_{1}\right)$. This is accomplished as follows: Let α be a path in B from b_{0} to b_{1}. For $x \in p^{-1}\left(b_{0}\right)$, let $\tilde{\alpha}_{x}$ denote the unique covering path of α beginning at x. Then the terminal point $\tilde{\alpha}_{x}(1)$ is a point in $p^{-1}\left(b_{1}\right)$. This associates with each x in $p^{-1}\left(b_{0}\right)$ a point

$$
f(x)=\tilde{\alpha}_{x}(1)
$$

in $p^{-1}\left(b_{1}\right)$. By considering the reverse path from b_{1} to b_{0}, one can define in the same manner a function

$$
g: p^{-1}\left(b_{1}\right) \rightarrow p^{-1}\left(b_{0}\right)
$$

The functions f and g are easily shown to be inverses of each other, so $p^{-1}\left(b_{0}\right)$ and $p^{-1}\left(b_{1}\right)$ must have the same cardinal number.

Definition. If (E, p) is a covering space of B, the common cardinal number of the sets $p^{-1}(b), b \in B$, is called the number of sheets of the covering. A covering of n sheets is called an n-fold covering.

Consider, for example, the covering projection $p: S^{2} \rightarrow P$ of Example 5.4. Since p identifies pairs of antipodal points, the number of sheets of this covering is two. Thus (S^{2}, p) is referred to as the "double covering" of the projective plane.

The covering projection $p: \mathbb{R} \rightarrow S^{1}$ of Example 5.1 maps each integer and only the integers to $1 \in S^{1}$. Thus the number of sheets of this covering is countably infinite.

We close this section with a result relating the fundamental groups of E and B where (E, p) is a covering space of B. Choose base points e_{0} in E and $b_{0}=p\left(e_{0}\right)$ in B. Then if α is a loop in E based at e_{0}, the composition $p \alpha$ is a loop in B with base point b_{0}. Thus p induces a function

$$
p_{*}: \pi_{1}\left(E, e_{0}\right) \rightarrow \pi_{1}\left(B, b_{0}\right)
$$

defined by

$$
p_{*}([\alpha])=[p \alpha], \quad[\alpha] \in \pi_{1}\left(E, e_{0}\right)
$$

This function p_{*} is a group homomorphism and is called the homomorphism induced by p.

Theorem 5.7. If (E, p) is a covering space of B, then the induced homomorphism $p_{*}: \pi_{1}\left(E, e_{0}\right) \rightarrow \pi_{1}\left(B, b_{0}\right)$ is one-to-one.

The proof, an easy application of the Monodromy Theorem (Theorem 5.5), is left as an exercise.

5.3 Classification of Covering Spaces

The fundamental group of the base space B provides a criterion for determining when two covering spaces of B are equivalent. Each covering space determines a collection of subgroups, a conjugacy class of subgroups, of $\pi_{1}(B)$. We shall see that two covering spaces are homeomorphic if and only if they determine the same collection of subgroups.

Here is the terminology used in comparing covering spaces:
Definition. Let $\left(E_{1}, p_{1}\right)$ and $\left(E_{2}, p_{2}\right)$ be covering spaces of the same space B. A homomorphism from $\left(E_{1}, p_{1}\right)$ to $\left(E_{2}, p_{2}\right)$ is a continuous map $h: E_{1} \rightarrow E_{2}$ for which $p_{2} h=p_{1}$. In other words, this diagram must be commutative for h to be a homomorphism.

A homomorphism $h: E_{1} \rightarrow E_{2}$ of covering spaces which is also a homeomorphism is called an isomorphism. If there is an isomorphism from one covering space to another, the two covering spaces are called isomorphic.

It is left as an exercise for the reader to prove that a homomorphism of covering spaces is actually a covering projection; i.e., if $h: E_{1} \rightarrow E_{2}$ is a homomorphism, then (E_{1}, h) is a covering space of E_{2}.

Theorem 5.8. Let (E, p) be a covering space of B. If $b_{0} \in B$, then the groups $p_{*} \pi_{1}(E, e)$, as e varies over $p^{-1}\left(b_{0}\right)$, form a conjugacy class of subgroups of $\pi_{1}\left(B, b_{0}\right)$.

Proof. Recall that subgroups H and K of a group G are conjugate subgroups if and only if

$$
H=x^{-1} K x
$$

for some $x \in G$. The theorem then makes two assertions: (a) for any e_{0}, e_{1} in $p^{-1}\left(b_{0}\right)$, the subgroups $p_{*} \pi_{1}\left(E, e_{0}\right)$ and $p_{*} \pi_{1}\left(E, e_{1}\right)$ are conjugate, and (b) any subgroup of $\pi_{1}\left(B, b_{0}\right)$ conjugate to $p_{*} \pi_{1}\left(E, e_{0}\right)$ must equal $p_{*} \pi_{1}(E, e)$ for some e in $p^{-1}\left(b_{0}\right)$.

To prove (a), consider two points e_{0} and e_{1} in $p^{-1}\left(b_{0}\right)$. Let $\rho: I \rightarrow E$ be a path from e_{0} to e_{1}. According to Theorem 4.3, the function $P: \pi_{1}\left(E, e_{0}\right) \rightarrow$ $\pi_{1}\left(E, e_{1}\right)$ defined by

$$
P([\alpha])=[\bar{\rho} * \alpha * \rho], \quad[\alpha] \in \pi_{1}\left(E, e_{0}\right)
$$

is an isomorphism. In particular,

$$
\pi_{1}\left(E, e_{1}\right)=P \pi_{1}\left(E, e_{0}\right)
$$

so

$$
p_{*} \pi_{1}\left(E, e_{1}\right)=p_{*} P \pi_{1}\left(E, e_{0}\right)
$$

It follows from the definition of P, however, that

$$
p_{*} P \pi_{1}\left(E, e_{0}\right)=[p \rho]^{-1} \circ \pi_{1}\left(E, e_{0}\right) \circ[p \rho]
$$

so $p_{*} \pi_{1}\left(E, e_{0}\right)$ and $p_{*} \pi_{1}\left(E, e_{1}\right)$ are conjugate subgroups of $\pi_{1}\left(B, b_{0}\right)$. Note that we are using the fact that $[p \rho]$ is an element of $\pi_{1}\left(B, b_{0}\right)$.

To prove (b), suppose that H is a subgroup conjugate to $p_{*} \pi_{1}\left(E, e_{0}\right)$ by some element [δ] in $\pi_{1}\left(B, b_{0}\right)$:

$$
H=[\delta]^{-1} \circ p_{*} \pi_{1}\left(E, e_{0}\right) \circ[\delta] .
$$

Let δ be the unique covering path of δ beginning at e_{0}. Then δ has a terminal point $e \in p^{-1}\left(b_{0}\right)$, and the argument for part (a) shows that

$$
p_{*} \pi_{1}(E, e)=[p \delta]^{-1} \circ p_{*} \pi_{1}\left(E, e_{0}\right) \circ[p \delta \tilde{\delta}]=[\delta]^{-1} \circ p_{*} \pi_{1}\left(E, e_{0}\right) \circ[\delta]=H
$$

Thus

$$
p_{*} \pi_{1}(E, e)=H
$$

and the set $\left\{p_{*} \pi_{1}(E, e): e \in p^{-1}\left(b_{0}\right)\right\}$ is precisely a conjugacy class of subgroups of $\pi_{1}\left(B, b_{0}\right)$.

Definition. The conjugacy class of subgroups $\left\{p_{*} \pi_{1}(E, e): e \in p^{-1}\left(b_{0}\right)\right\}$ described in the preceding theorem is called the conjugacy class determined by the covering space (E, p).

The main result of this section comes next. Two covering spaces of a space B are isomorphic if and only if they determine the same conjugacy class of the fundamental group of B. We must specify a base point b_{0} in B to make the representation $\pi_{1}(B)=\pi_{1}\left(B, b_{0}\right)$ concrete. However, according to Theorem 4.3, the choice of base point does not affect the structure of the fundamental group.

Theorem 5.9. Let B be a space with base point b_{0}. Covering spaces $\left(E_{1}, p_{1}\right)$ and $\left(E_{2}, p_{2}\right)$ of B are isomorphic if and only if they determine the same conjugacy class of subgroups of $\pi_{1}\left(B, b_{0}\right)$.

Proof. The "only if" part of the proof is left as an exercise. For the "if" part, assume that the conjugacy classes of the two covering spaces are identical. Then there must be points $e_{1} \in p_{1}^{-1}\left(b_{0}\right)$ and $e_{2} \in p_{2}^{-1}\left(b_{0}\right)$ such that

$$
p_{1 *} \pi_{1}\left(E_{1}, e_{1}\right)=p_{2 *} \pi_{1}\left(E_{2}, e_{2}\right)
$$

The covering space isomorphism $h: E_{1} \rightarrow E_{2}$ is defined by the following scheme: For $x \in E_{1}$, let α be a path in E_{1} from e_{1} to x. Then $p_{1} \alpha$ is a path in
B from b_{0} to $p_{1}(x)$. This path has a unique covering path $\widetilde{p_{1} \alpha}$ in E_{2} beginning at e_{2} and ending at some point y in E_{2}. We then define $h(x)=y$. This definition is illustrated in Figure 5.5.

Figure 5.5
Can this h possibly be well-defined in view of the myriad choices for the path α ? Does it have any chance of being continuous? The answer to both questions is "yes"; the function h is, in fact, a homeomorphism.

To show that h is well-defined, let β be another path in E_{1} from e_{1} to x. Since α and β both begin at e_{1} and terminate at x, the product path $\alpha * \bar{\beta}$ is a loop in E_{1} based at e_{1}. Thus

$$
p_{1 *}([\alpha * \bar{\beta}])=\left[p_{1} \alpha * p_{1} \bar{\beta}\right] \in p_{1 *} \pi_{1}\left(E_{1}, e_{1}\right)
$$

But $p_{1 *} \pi_{1}\left(E_{1}, e_{1}\right)$ and $p_{2 *} \pi_{1}\left(E_{2}, e_{2}\right)$ are equal, so there is a member $[\gamma] \in$ $\pi_{1}\left(E_{2}, e_{2}\right)$ such that

$$
\left[p_{1} \alpha * p_{1} \bar{\beta}\right]=\left[p_{2} \gamma\right] .
$$

Thus the loops $p_{1} \alpha * p_{1} \bar{\beta}$ and $p_{2} \gamma$ are equivalent loops in B. Using the Covering Homotopy Property (Theorem 5.4) to lift a homotopy between $p_{1} \alpha * p_{1} \beta$ and $p_{2} \gamma$ to E_{2}, we obtain a loop γ^{\prime} in E_{2} based at e_{2} for which

$$
p_{2} \gamma^{\prime}=p_{1} \alpha * p_{1} \bar{\beta}
$$

Divide γ^{\prime} into the product of two paths α^{\prime} and $\bar{\beta}^{\prime}$ as follows:

$$
\alpha^{\prime}(t)=\gamma^{\prime}(t / 2), \quad \beta^{\prime}(t)=\gamma^{\prime}((2-t) / 2), \quad t \in I .
$$

It is a simple matter to observe that

$$
p_{2} \alpha^{\prime}=p_{1} \alpha, \quad p_{2} \beta^{\prime}=p_{1} \beta
$$

Since α^{\prime} and β^{\prime} have initial point e_{2}, they are the unique covering paths of $p_{1} \alpha$ and $p_{1} \beta$ with respect to the covering (E_{2}, p_{2}); i.e.,

$$
\alpha^{\prime}=\widetilde{p_{1} \alpha}, \quad \beta^{\prime}=\widetilde{p_{1} \beta}
$$

Then

$$
\widetilde{p_{1} \alpha}(1)=\alpha^{\prime}(1)=\gamma^{\prime}\left(\frac{1}{2}\right), \quad \widetilde{p_{1} \beta(1)}=\beta^{\prime}(1)=\gamma^{\prime}\left(\frac{1}{2}\right)
$$

so the same value $h(x)=\gamma^{\prime}\left(\frac{1}{2}\right)$ results regardless of the choice of the path from e_{1} to x. This concludes the proof that h is well-defined.

In showing that h is continuous we shall use the fact that the admissible neighborhoods form a basis for the topology of B. The proof of this is left as an exercise.

Let O be an open set in E_{2} and x a member of $h^{-1}(O)$. It must be shown that there is an open set V in E_{1} for which $x \in V$ and $h(V) \subset O$. Since the definition of h requires that $p_{2} h=p_{1}$ and since p_{2} is an open mapping (Theorem 5.1), then $p_{1}(x)$ belongs to the open set $p_{2}(O)$ in B. Since the admissible neighborhoods form a basis for B, there is an admissible neighborhood U such that

$$
p_{1}(x) \in U, \quad U \subset p_{2}(O)
$$

Let W be the path component of $p_{2}^{-1}(U)$ to which $h(x)$ belongs. Then $h(x)$ belongs to the open set $O^{\prime}=O \cap W$, and the restriction

$$
f=p_{2} \mid O^{\prime}: O^{\prime} \rightarrow p_{2}\left(O^{\prime}\right)
$$

is a homeomorphism. Since $p_{2}\left(O^{\prime}\right)$ is open in B, then $p_{1}^{-1} p_{2}\left(O^{\prime}\right)$ is open in E_{1}. Let V be a path connected open set in E_{1} which contains x and is contained in $p_{1}^{-1} p_{2}\left(O^{\prime}\right)$.

To see that $h(V) \subset O$, let $t \in V$. Let α be a path in E_{1} from e_{1} to x and β a path in V from x to t. Then

$$
h(x)=\widetilde{p_{1} \alpha}(1), \quad h(t)=\widetilde{p_{1} \alpha * p_{1} \beta}(1)
$$

But since $f=p_{2} \mid O^{\prime}$ is a homeomorphism, the covering path of $p_{1} \alpha * p_{1} \beta$ is $\widetilde{p_{1} \alpha} * f^{-1} p_{1} \beta$. Thus

$$
h(t)=f^{-1} p_{1} \beta(1)=f^{-1} p_{1}(t)
$$

This point is in O^{\prime} because $p_{1}(t) \in p_{2}\left(O^{\prime}\right)$ and f is a homeomorphism between O^{\prime} and $p_{2}\left(O^{\prime}\right)$. Since $O^{\prime} \subset O$, it follows that $h(t) \in O$ and hence that $h(V) \subset O$.

The proof thus far has shown that there is a covering space homomorphism h from E_{1} to E_{2}. By looking at constant paths, it is easy to see that $h\left(e_{1}\right)=e_{2}$. The reader may be tiring at this point, especially in view of the fact that the existence of a continuous inverse for h must be shown. However, the proof thus far has essentially done that. Reversing the roles of E_{1} and E_{2}, there must exist a continuous map $g: E_{2} \rightarrow E_{1}$ such that

$$
p_{1} g=p_{2}, \quad g\left(e_{2}\right)=e_{1}
$$

Consider the composite map gh from E_{1} to E_{1} :

$$
p_{1} g h=p_{2} h=p_{1} i_{1}
$$

where i_{1} is the identity map on E_{1}. Since $g h$ and i_{1} agree at e_{1}, the Corollary to Theorem 5.2 implies that $g h$ is the identity map on E_{1}. By symmetry, $h g$ must be the identity map on E_{2}, and h is an isomorphism between (E_{1}, p_{1}) and (E_{2}, p_{2}).

Notation: It is often necessary to make the statement " f is a function from space X to space Y which maps a particular point x_{0} in X to the point y_{0} in
Y." We shall shorten this cumbersome expression by referring to f as a function from the "pair" $\left(X, x_{0}\right)$ to the pair (Y, y_{0}) and writing $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$.

Minor modifications in the proof of Theorem 5.9 establish the following result. Details of the proof are left as an exercise.

Theorem 5.10. Let E, B, and X be spaces with base points e_{0}, b_{0}, and x_{0} respectively, and suppose that (E, p) is a covering space of B with $p\left(e_{0}\right)=b_{0}$. If $f:\left(X, x_{0}\right) \rightarrow\left(B, b_{0}\right)$ is a continuous map for which

$$
f_{*} \pi_{1}\left(X, x_{0}\right) \subset p_{*} \pi_{1}\left(E, e_{0}\right)
$$

then there is a continuous map $\tilde{f}:\left(X, x_{0}\right) \rightarrow\left(E, e_{0}\right)$ for which $p \tilde{f}=f$.
In proving Theorem 5.10, keep in mind our agreement that all spaces considered in this chapter are path connected and locally path connected. Actually, Theorem 5.10 remains valid if the requirement on X is reduced to connectedness.

Let us return to our original examples of covering spaces to find the conjugacy class determined by each one. Note that the fundamental group of each base space in these examples is abelian, so each conjugacy class has only one member.

Example 5.8. For the covering (\mathbb{R}, p) over S^{1}, the fundamental group of \mathbb{R} is trivial so

$$
p_{1 *} \pi_{1}(\mathbb{R})=\{0\}
$$

and the conjugacy class consists of only the trivial subgroup of $\pi_{1}\left(S^{1}\right)$.
Example 5.9. The map $q_{n}: S^{1} \rightarrow S^{1}$ defined by

$$
q_{n}(z)=z^{n}, \quad z \in S^{1}
$$

wraps S^{1} around itself n times. Thus if $[\alpha] \in \pi_{1}\left(S^{1}\right)$, the loop $q_{n} \alpha$ has degree

$$
\operatorname{deg}\left(q_{n} \alpha\right)=n \operatorname{deg} \alpha .
$$

Representing $\pi_{1}\left(S^{1}\right)$ as the group of integers, it follows that $q_{n *} \pi_{1}\left(S^{1}, 1\right)$ is the subgroup of \mathbb{Z} consisting of all multiples of the integer n.

Example 5.10. If $i: X \rightarrow X$ is the identity map, then

$$
i_{*} \pi_{1}(X)=\pi_{1}(X)
$$

so the conjugacy class in this case contains only the fundamental group of X.
Example 5.11. Consider the double covering (S^{2}, p) over the projective plane P. The 2-sphere is simply connected, so the conjugacy class contains only the trivial subgroup.

Example 5.12. The plane is simply connected, so the conjugacy class of $\left(\mathbb{R}^{2}, r\right)$ over the torus also contains only the trivial subgroup.

Example 5.13. The infinite spiral Q is contractible and thus has trivial fundamental group. Then (Q, q) determines the conjugacy class of $\pi_{1}\left(S^{1}\right)$ consisting of only the trivial subgroup. This is the conjugacy class determined in Example 5.8, so Theorem 5.9 shows that (Q, q) and (\mathbb{R}, p) are isomorphic covering spaces of S^{1}.

The only subgroups of $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ are the groups W_{n} of all multiples of the non-negative integer n. Since \mathbb{Z} is abelian, each singleton set $\left\{W_{n}\right\}$ is a conjugacy class. The subgroup $W_{0}=\{0\}$ corresponds to the covering space (\mathbb{R}, p) of Example 5.8 , and W_{n} corresponds to the covering $\left(S^{1}, q_{n}\right)$ of Example 5.9, $n=1,2, \ldots$. By the classification of covering spaces given in Theorems 5.8 and 5.9 , any covering space of S^{1} must be isomorphic either to (\mathbb{R}, p) or to one of the coverings $\left(S^{1}, q_{n}\right)$. The next section and the exercises at the end of the chapter provide additional examples of base spaces for which all possible covering spaces can be listed.

5.4 Universal Covering Spaces

If B is a topological space, there is always a covering space corresponding to the conjugacy class of the entire fundamental group, namely (B, i) where i is the identity map on B. This covering space is of little interest for obvious reasons. At the other extreme, the covering space corresponding to the conjugacy class of the trivial subgroup $\{0\}$ of $\pi_{1}(B)$ is the most interesting. This covering space, if it exists for a particular base space, is called the "universal covering space." This section will examine the relation between a base space B and its universal covering space.

Definition. Let B be a space. A covering space (U, q) of B for which U is simply connected is called the universal covering space of B.

The appropriateness of the appellation "the universal covering space" is explained by the next theorem.

Theorem 5.11. (a) Any two universal covering spaces of a base space B are isomorphic.
(b) If (U, q) is the universal covering space of B and (E, p) is a covering space of B, then there is a continuous map $r: U \rightarrow E$ such that (U, r) is a covering space of E.

Proof. Statement (a) follows immediately from Theorem 5.9 since any universal covering space determines the conjugacy class of the trivial subgroup.

For part (b), consider the diagram

and choose base points u_{0}, e_{0}, and b_{0} in U, E, and B respectively for which

$$
q\left(u_{0}\right)=p\left(e_{0}\right)=b_{0}
$$

Since $\pi_{1}(U)$ is trivial, then

$$
q_{*} \pi_{1}\left(U, u_{0}\right) \subset p_{*} \pi_{1}\left(E, e_{0}\right)
$$

and Theorem 5.10 guarantees the existence of a continuous map $\tilde{q}:\left(U, q_{0}\right) \rightarrow$ $\left(E, e_{0}\right)$ for which $p \tilde{q}=q$. This means that $r=\tilde{q}$ is a covering space homomorphism, and therefore a covering projection, for U over E.

Definition. Let (E, p) be a covering space of B. An isomorphism from (E, p) to itself is called an automorphism. Under the operation of composition, the set of automorphisms of (E, p) forms a group. This group is called the group of automorphisms of (E, p) and is denoted by $A(E, p)$.

Proofs of the following remarks are left as exercises:
(a) If f and g are automorphisms of (E, p) and $f(x)=g(x)$ for some x, then $f=g$.
(b) The only member of $A(E, p)$ that has a fixed point is the identity map.

Theorem 5.12. If (U, q) is the universal covering space of B, then $A(U, q)$ is isomorphic to $\pi_{1}(B)$. The order of $\pi_{1}(B)$ is the number of sheets of the universal covering space.
Proof. Choose a base point b_{0} in B and a point u_{0} in U for which $q\left(u_{0}\right)=b_{0}$. We shall first define a function $T: A(U, q) \rightarrow \pi_{1}(B)$.

For $f \in A(U, q), f\left(u_{0}\right)$ is a point in U. Let γ be a path in U from u_{0} to $f\left(u_{0}\right)$. Since $q f=q$, then $f\left(u_{0}\right) \in q^{-1}\left(b_{0}\right)$, and hence $q \gamma$ is a loop in B with base point b_{0}. We thus define T by

$$
T(f)=[q \gamma], \quad f \in A(U, q)
$$

Since U is simply connected, the choice of path γ from u_{0} to $f\left(u_{0}\right)$ does not affect the homotopy class $[q \gamma]$. Thus T is well-defined.

To see that T is a homomorphism, let $f_{1}, f_{2} \in A(U, q)$ and let γ_{1}, γ_{2} denote paths in U from u_{0} to $f_{1}\left(u_{0}\right)$ and $f_{2}\left(u_{0}\right)$ respectively. Then

$$
T\left(f_{1}\right)=\left[q \gamma_{1}\right], \quad T\left(f_{2}\right)=\left[q \gamma_{2}\right] .
$$

The product path $\gamma_{1} * f_{1} \gamma_{2}$ is a path from u_{0} to $f_{1} f_{2}\left(u_{0}\right)$. Thus

$$
\begin{aligned}
T\left(f_{1} f_{2}\right) & =\left[q\left(\gamma_{1} * f_{1} \gamma_{2}\right)\right]=\left[q \gamma_{1} * q f_{1} \gamma_{2}\right]=\left[q \gamma_{1} * q \gamma_{2}\right] \\
& =\left[q \gamma_{1}\right] \circ\left[q \gamma_{2}\right]=T\left(f_{1}\right) \circ T\left(f_{2}\right),
\end{aligned}
$$

so T is a homomorphism.

To see that T is one-to-one, suppose that $T\left(f_{1}\right)=T\left(f_{2}\right)$. Thus the loops $q \gamma_{1}$ and $q \gamma_{2}$ determined by f_{1} and f_{2} are equivalent. The Monodromy Theorem (Theorem 5.5) then implies that $f_{1}\left(u_{0}\right)=f_{2}\left(u_{0}\right)$. Thus $f_{1}=f_{2}$, since distinct automorphisms must disagree at every point.

It remains to be shown that T maps $A(U, q)$ onto $\pi_{1}\left(B, b_{0}\right)$. Let $[\alpha] \in \pi_{1}\left(B, b_{0}\right)$, and let $\tilde{\alpha}$ denote the unique covering path of α beginning at u_{0}. Since U is simply connected, we can apply Theorem 5.10 to the diagram

to obtain a continuous lifting h of q such that $h\left(u_{0}\right)=\tilde{\alpha}(1)$. Since commutativity of the diagram requires $q h=q$, then h is a homomorphism. Reversing the roles of $\tilde{\alpha}(1)$ and u_{0} determines a homomorphism k on (U, q) such that $k(\tilde{\alpha}(1))=u_{0}$. But then $h k$ and $k h$ are the identity map on U since they are homomorphisms which agree with the identity at some point. Thus $k=h^{-1}$, h is an automorphism, and

$$
T(h)=[q \tilde{\alpha}]=[\alpha] .
$$

This completes the proof that $A(U, q)$ and $\pi_{1}(B)$ are isomorphic.
The proof that the order of $\pi_{1}(B)$ is the number of sheets of the universal covering space can be gleaned from what has already been done. The fact that T is one-to-one establishes a one-to-one correspondence between $q^{-1}\left(b_{0}\right)$ and a subset of $\pi_{1}\left(B, b_{0}\right)$. In proving that T is onto, we showed that every homotopy class $[\alpha]$ in $\pi_{1}\left(B, b_{0}\right)$ corresponds to a point $\tilde{\alpha}(1)$ in $q^{-1}\left(b_{0}\right)$. Thus the cardinal number of $q^{-1}\left(b_{0}\right)$, which is the number of sheets of (U, q), must equal the order of $\pi_{1}(B)$.

The real line is simply connected, so the covering space (\mathbb{R}, p) of Example 5.8 is the universal covering space of the unit circle. Since the plane is simply connected, then the covering space $\left(\mathbb{R}^{2}, r\right)$ of Example 5.12 is the universal covering space of the torus.

Example 5.14. Consider the double covering $\left(S^{2}, p\right)$ of the projective plane P defined in Example 5.4. Since $\pi_{1}\left(S^{2}\right)=\{0\}$, then $\left(S^{2}, p\right)$ is the universal covering space of P. Moreover, Theorem 5.12 allows us to determine $\pi_{1}(P)$ by determining $A\left(S^{2}, p\right)$. Since p identifies pairs of antipodal points, then (S^{2}, p) has two automorphisms, the identity map and the antipodal map. Thus $A\left(S^{2}, p\right)$ is the cyclic group of order two, and $\pi_{1}(P)$ is the same group. Thus $\pi_{1}(P)$ is essentially the group of integers modulo 2.

This example generalizes to higher dimensions as follows:
Definition. Let P^{n} denote the quotient space of the n-sphere S^{n} obtained by identifying each pair of antipodal points x and $-x$. Then P^{n} is called projective n-space.

The quotient map $p: S^{n} \rightarrow P^{n}$ is a covering projection. By repeating the reasoning of Example 5.14, the reader can show that the fundamental group of each projective space $P^{n}, n \geq 2$, is isomorphic to the group of integers modulo 2. A moment's reflection will show that P^{1} is homeomorphic to S^{1} and hence that $\pi_{1}\left(P^{1}\right)$ is not the group of integers mod 2 .

The classification of covering spaces given in Theorem 5.9 shows that two covering spaces of a space B are isomorphic if and only if they determine the same conjugacy class of subgroups of $\pi_{1}(B)$. This leaves open the question of the existence of covering spaces. Given a conjugacy class in $\pi_{1}(B)$, is there a covering space that determines this class? In particular, does every space have a universal covering space? The answer is negative for both questions. Two of the exercises for this chapter give examples of spaces that have no universal covering space. Necessary and sufficient conditions for the existence of a universal covering space are known, but presenting them would take us rather far afield. Readers interested in pursuing this topic should consult references [16] and [20].

5.5 Applications

This section gives two illustrations of the interplay between covering spaces and fundamental groups. The first elucidates the structure of a particular fundamental group, and the second proves part of the famous Borsuk-Ulam Theorem.

Example 5.15. Thus far, all our examples of fundamental groups have been abelian. We shall use covering spaces to provide an example of a nonabelian one.

Let the base space B consist of two tangent circles,

$$
B=\left\{(z, w) \in S^{1} \times S^{1}: z=1 \text { or } w=1\right\}
$$

and let

$$
E=\left\{(x, y) \in \mathbb{R}^{2}: x \text { or } y \text { is an integer }\right\} .
$$

Then the map $p: E \rightarrow B$ defined by

$$
p(x, y)=\left(e^{2 \pi i x}, e^{2 \pi i y}\right), \quad(x, y) \in \mathbb{R}^{2}
$$

is a covering projection. Referring to Figure $5.6, p$ maps each horizontal segment of a square of E once around the left hand circle and each vertical segment of a square of E once around the right hand circle of B.

Figure 5.6

5 Covering Spaces

Let γ denote the loop in E based at $(0,0)$ indicated by the arrows, and let $[\alpha]$ and $[\beta]$ denote generators of the fundamental groups of the left and right circles of B respectively. Then $[\gamma]$ is not the identity of $\pi_{1}(E)$, so

$$
p_{*}([\gamma])=[\alpha] \circ[\beta] \circ[\alpha]^{-1} \circ[\beta]^{-1}
$$

is not the identity in $\pi_{1}(B)$ since p_{*} is one-to-one (Theorem 5.7). But if $\pi_{1}(B)$ were abelian, the commutator $[\alpha] \circ[\beta] \circ[\alpha]^{-1} \circ[\beta]^{-1}$ would be the identity element of $\pi_{1}(B)$. Thus $\pi_{1}(B)$ is not abelian. Those readers familiar with free groups may want to prove that $\pi_{1}(B)$ is the free group generated by [α] and $[\beta]$.

The following theorem was conjectured by S. Ulam and proved by K. Borsuk in 1933:

Theorem 5.13 (The Borsuk-Ulam Theorem). There is no continuous map $f: S^{n} \rightarrow S^{n-1}$ for which $f(-x)=-f(x)$ for all $x \in S^{n}, n \geq 1$.

The theorem states that there is no continuous map from S^{n} to a sphere of lower dimension which maps antipodal points to antipodal points. Such a map would be said to "preserve antipodal points" and would be called "antipode preserving." Since S^{0} is a discrete space of two points and therefore not connected, the result is clear for the case $n=1$. We shall use a covering space argument for the case $n=2$. A proof for the entire theorem can be found in [20].

Proceeding with the case $n=2$ by contradiction, suppose that $f: S^{2} \rightarrow S^{1}$ is a continuous map for which $f(-x)=-f(x)$ for all $x \in S^{2}$. Consider the diagram

where $\left(S^{2}, p\right)$ and $\left(S^{1}, q\right)$ denote the double coverings of the projective spaces P^{2} and P^{1}. Even though p^{-1} is not single valued, the fact that f preserves antipodal points guarantees that

$$
h=q f p^{-1}: P^{2} \rightarrow P^{1}
$$

is well-defined and continuous. Note also that the diagram is commutative. Since $\pi_{1}\left(P^{2}\right)$ is cyclic of order 2 and $\pi_{1}\left(P^{1}\right) \cong \pi_{1}\left(S^{1}\right)$ is infinite and cyclic, the induced homomorphism

$$
h_{*}: \pi_{1}\left(P^{2}\right) \rightarrow \pi_{1}\left(P^{1}\right)
$$

must be trivial. Let y_{0} be a point of S^{2}, and let $b_{0}=q f\left(y_{0}\right)$ be the base point of P^{1}. If α is a path in S^{2} from y_{0} to $-y_{0}$, then $q f \alpha$ is a loop in P^{1}. This loop is not equivalent to the constant loop c at b_{0} for the following reason: If
$q f \alpha \sim_{b_{0}} c$, the Monodromy Theorem (Theorem 5.5) guarantees that $f \alpha$ is equivalent to the constant loop based at $f\left(y_{0}\right)$. Since f preserves antipodal points, then

$$
f \alpha(1)=f\left(-y_{0}\right)=-f\left(y_{0}\right)
$$

so $f \alpha$ is not a loop, and hence cannot possibly be equivalent to a loop. Thus

$$
[q f \alpha] \neq[c] .
$$

Then

$$
h_{*}([p \alpha])=[h p \alpha]=\left[q f p^{-1} p \alpha\right]=[q f \alpha]
$$

is not the identity of $\pi_{1}\left(B, b_{0}\right)$, and h_{*} is not the trivial homomorphism. This is a contradiction showing that our original assumption that such a map as f exists must be false.

Corollary 1. Let $g: S^{2} \rightarrow \mathbb{R}^{2}$ be a continuous map such that $g(-x)=-g(x)$ for all x in S^{2}. Then $g(x)=0$ for some x in S^{2}.

Proof. Suppose on the contrary that $g(x)$ is never 0 . Then the map $f: S^{2} \rightarrow S^{1}$ defined by

$$
f(x)=g(x) /\|g(x)\|, \quad x \in S^{2}
$$

contradicts the Borsuk-Ulam Theorem for the case $n=2$.
Corollary 2. Let $h: S^{2} \rightarrow \mathbb{R}^{2}$ be a continuous map. Then there is at least one pair $x,-x$ of antipodal points for which $h(x)=h(-x)$.
Proof. Assume to the contrary that $h(x)=h(-x)$ for no x in S^{2}. Then the function $g: S^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
g(x)=h(x)-h(-x), \quad x \in S^{2}
$$

contradicts Corollary 1.
The last corollary has an interesting physical interpretation. Imagine the surface of the earth to be a 2-dimensional sphere, and suppose that the functions $a(x)$ and $t(x)$ which measure the atmospheric pressure and temperature at x are continuous. Then the map $h: S^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
h(x)=(a(x), t(x)), \quad x \in S^{2}
$$

is continuous. Corollary 2 guarantees that there is at least one pair of antipodal points on the surface of the earth having identical atmospheric pressures and identical temperatures!

The theory of covering spaces developed during the late nineteenth and early twentieth centuries from the theory of Riemann surfaces. Covering spaces were studied, in fact, before the introduction of the fundamental group. Poincaré introduced universal covering spaces in 1883 to prove a theorem about analytic functions [53]. He considered the universal covering space (U, q) of a space B to be the "strongest" covering space of B in the following sense: A curve γ in U is closed if and only if for every covering space (E, p)
of B and every curve γ^{\prime} in E for which $p \gamma^{\prime}=q \gamma, \gamma^{\prime}$ is a closed curve. Exercises at the end of the chapter show that this condition is satisfied if U is simply connected and that (U, q) is indeed the "strongest" covering space of B in the sense of Theorem 5.11.

Covering spaces provided the first example of the power of the fundamental group in classifying topological spaces. We have seen in Theorem 5.9 that the fundamental group accomplishes for covering spaces the type of classification that the homology groups provide for closed surfaces (Theorem 2.11). In addition, the theory of covering spaces was the precursor of the general fiber spaces of Witold Hurewicz and J. P. Serre which are crucial in any advanced course in algebraic topology.

We shall not return in this book to the important and difficult problem of determining fundamental groups. Those interested in this problem should proceed to Van Kampen's Theorem which shows that, under the proper conditions, $\pi_{1}(X)$ can be determined from the fundamental groups of certain subspaces of X. This theorem and related results can be found in [16] and [19].

ExERCISES

1. (a) Give an example of a space that is path connected but not locally path connected.
(b) Give an example of a space that is locally path connected but not path connected.
2. Prove that a space X is locally path connected if and only if each path component of each open subset of X is open.
3. Is each component of a space contained in a path component, or is it the other away around? Prove your answer, and give an example to show that components and path components may not be identical.
4. Show that the projection of a "hairpin" onto an interval, as indicated in Figure 5.7, is not a covering projection.

Figure 5.7
5. Definition. A function $f: X \rightarrow Y$ is a local homeomorphism provided that each point x in X has an open neighborhood U such that f maps U homeomorphically onto $f(U)$.
(a) Prove that every covering projection is a local homeomorphism.
(b) Give an example to show that a local homeomorphism may fail to be a covering projection.
6. Let (E, p) be a covering space of B. Show that the family of admissible neighborhoods is a basis for the topology of B.
7. Repeat Example 5.2 in the case n is a negative integer.
8. Prove the Covering Homotopy Property (Theorem 5.4).
9. Prove the following generalizations of the Covering Homotopy Property:
(a) Theorem. Let (E, p) be a covering space of B, X a simply connected space, $f: X \rightarrow E$ a continuous map, and $H: X \times I \rightarrow B$ a homotopy such that $H(\cdot, 0)=p f$. Then there is a covering homotopy $\tilde{H}: X \times I \rightarrow E$ of H such that $\tilde{H}(\cdot, 0)=f$.
(b) Prove the preceding theorem under the assumption that X is a compact Hausdorff space that is not necessarily simply connected.
10. Complete the details in the proof of Theorem 5.6.
11. Prove Theorem 5.7.
12. Prove that a homomorphism of covering spaces is a covering projection.
13. Show that isomorphism of covering spaces is an equivalence relation.
14. Complete the proof of Theorem 5.9.
15. Prove Theorem 5.10.
16. Determine all covering spaces of the torus and exhibit a representative covering space from each isomorphism class.
17. If B is a simply connected space and (E, p) is a covering space of B, prove that p is a homeomorphism from E onto B.
18. Show that the map $p: E \rightarrow B$ of Example 5.15 is a covering projection.
19. (a) Prove that the set $A(E, p)$ of all automorphisms of a covering space (E, p) is a group.
(b) Prove that members f, g of $A(E, p)$ must be identical or must agree at no point of E.
(c) Prove that the identity map is the only member of $A(E, p)$ that has a fixed point.
20. Prove that if B is simply connected, then (B, i) is the universal covering space of B. (Here i denotes the identity map.)
21. Prove that the fundamental group $\pi_{1}\left(P^{n}\right)$ of projective n-space P^{n} is isomorphic to the group of integers modulo 2 for $n \geq 2$. What about $n=1$?
22. Prove that any continuous map $f: P^{n} \rightarrow S^{1}, n \geq 2$, from projective n-space to the unit circle is null-homotopic.
23. If (E, p) is a covering space of B and (F, q) is a covering space of C, prove that $(E \times F, p \times q)$ is a covering space of $B \times C$, where $p \times q$ denotes the natural product map.
24. Use Theorem 5.12 to prove that $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ and $\pi_{1}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$.
25. Let G and \tilde{G} be path connected and locally path connected topological groups and $p: \widetilde{\boldsymbol{G}} \rightarrow \boldsymbol{G}$ a group homomorphism for which $(\tilde{\boldsymbol{G}}, p$) is a covering space of G. Prove that the kernel of p is isomorphic to $A(\tilde{G}, p)$.
26. Prove that an infinite product of circles has no universal covering space.
27. Let X be the subset of the plane consisting of the circumferences of circles having radius $1 / n$ and center at $(1 / n, 0)$ for $n=1,2, \ldots$. Show that X has no universal covering space.
28. Let (E, p) be a covering space of B, and let e_{0}, b_{0} be points of E and B respectively with $p\left(e_{0}\right)=b_{0}$.
(a) Show that there is a one-to-one correspondence between $p^{-1}\left(b_{0}\right)$ and the set of left cosets $\pi_{1}\left(B, b_{0}\right) / p_{*} \pi_{1}\left(E, e_{0}\right)$.
(b) Definition. The covering space (E, p) is called regular if $p_{*} \pi_{1}\left(E, e_{0}\right)$ is a normal subgroup of $\pi_{1}\left(B, b_{0}\right)$.

Show that regularity is not dependent on the choice of base point e_{0} in $p^{-1}\left(b_{0}\right)$. (Hint: Use conjugacy classes.)
(c) Prove that the automorphism group $A(E, p)$ is isomorphic to the quotient group $\pi_{1}\left(B, b_{0}\right) / p_{*} \pi_{1}\left(E, e_{0}\right)$ if (E, p) is regular. Deduce Theorem 5.12 as a corollary.
29. Let us say that a covering space (U, q) of B satisfies Property P if it is the "strongest" covering space of B in the sense of Poincaré: A curve γ in U is closed if and only if for every covering space (E, p) of B and every curve γ^{\prime} in E for which $p \gamma^{\prime}=q \gamma, \gamma^{\prime}$ is a closed curve.

Prove:
(a) If U is simply connected, then (U, q) satisfies Property P.
(b) Any two covering spaces of B which satisfy Property P are isomorphic.
(c) If (U, q) satisfies Property P and (E, p) is any covering space of B, then there is a homomorphism $r: U \rightarrow E$ for which (U, r) is a covering space of E.

The Higher Homotopy Groups

6.1 Introduction

The fundamental group of a connected polyhedron provides more information than does its first homology group. This is evident from Theorem 4.11 since the first homology group is completely determined by the fundamental group. For this reason, the need for higher dimensional analogues of the fundamental group was recognized early in the development of algebraic topology. Definitions of these "higher homotopy groups" were given in the years 1932-1935 by Eduard Cech (1893-1960) and Witold Hurewicz (19041956). It was Hurewicz who gave the most satisfactory definition and proved the fundamental properties.

Let us consider in an intuitive way the possible methods of defining the second homotopy group $\pi_{2}\left(X, x_{0}\right)$ of a space X at a point x_{0} in X. Recall that $\pi_{1}\left(X, x_{0}\right)$ is the set of homotopy classes of loops in X based at x_{0}. Our first problem is to define what one might call a " 2 -dimensional loop."

A "1-dimensional loop" is a continuous map $\alpha: I \rightarrow X$ for which the boundary points 0 and 1 have image x_{0}. We might then define a 2 -dimensional loop to be a continuous map $\beta: I \times I \rightarrow X$ from the unit square into X which maps the boundary of the square to x_{0}.

From a slightly different point of view, we can consider a loop α in X as a continuous map from S^{1} to X which takes 1 to x_{0}. This follows from the observation that the quotient space of the unit interval I obtained by identifying 0 and 1 to a single point is simply S^{1}. Thus another possible definition of 2-dimensional loop is a continuous map from the 2 -sphere S^{2} into X. Note that both of these definitions of 2-dimensional loop generalize to higher dimensions by considering higher dimensional cubes and spheres.

There is a third possibility. Perhaps a 2-dimensional loop should be a
"loop of loops." That is to say, perhaps a 2-dimensional loop should be a function β having domain I with each value $\beta(t)$ a loop in X, and having the additional property $\beta(0)=\beta(1)$. This idea is the point of genius in Hurewicz' approach. Carrying it out will involve defining a topology for the set $\Omega\left(X, x_{0}\right)$ of loops in X with base point x_{0}. Once this topology is determined, one can define $\pi_{2}\left(X, x_{0}\right)$ to be the fundamental group of $\Omega\left(X, x_{0}\right)$.

It is remarkable that all three approaches lead to the same group $\pi_{2}\left(X, x_{0}\right)$. The next section presents the definitions based on these three ideas and shows that the same group is determined in each case.

6.2 Equivalent Definitions of $\pi_{n}\left(X, x_{0}\right)$

We shall take the three definitions in the order in which they have been discussed. If n is a positive integer, the symbol I^{n} denotes the unit n-cube

$$
I^{n}=\left\{t=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: 0 \leq t_{i} \leq 1 \text { for each } i\right\}
$$

and ∂I^{n}, called the boundary of I^{n}, denotes its point set boundary

$$
\partial I^{n}=\left\{t=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in I^{n}: \text { some } t_{i} \text { is } 0 \text { or } 1\right\} .
$$

Note that the boundary symbol ∂ must not be confused with the boundary operator of homology theory.

Definition A. Let X be a space and x_{0} a point of X. For a given positive integer n, consider the set $F_{n}\left(X, x_{0}\right)$ of all continuous maps α from the unit n-cube I^{n} into X for which $\alpha\left(\partial I^{n}\right)=x_{0}$. Define an equivalence relation $\sim_{x_{0}}$ on $F_{n}\left(X, x_{0}\right)$ as follows: For α and β in $F_{n}\left(X, x_{0}\right), \alpha$ is equivalent modulo x_{0} to β, written $\alpha \sim_{x_{0}} \beta$, if there is a homotopy $H: I^{n} \times I \rightarrow X$ such that

$$
\begin{aligned}
& H\left(t_{1}, \ldots, t_{n}, 0\right)=\alpha\left(t_{1}, \ldots, t_{n}\right) \\
& H\left(t_{1}, \ldots, t_{n}, 1\right)=\beta\left(t_{1}, \ldots, t_{n}\right),
\end{aligned}
$$

and

$$
H\left(t_{1}, \ldots, t_{n}, s\right)=x_{0}, \quad\left(t_{1}, \ldots, t_{n}\right) \in \partial I^{n}, s \in I
$$

In shorter form the requirements on the homotopy H are

$$
\begin{gathered}
H(\cdot, 0)=\alpha, \quad H(\cdot, 1)=\beta \\
H\left(\partial I^{n} \times I\right)=x_{0}
\end{gathered}
$$

Under this equivalence relation on $F_{n}\left(X, x_{0}\right)$, the equivalence class determined by α is denoted [α] and called the homotopy class of α modulo x_{0} or simply the homotopy class of α.

Define an operation $*$ on $F_{n}\left(X, x_{0}\right)$ as follows: For α, β in $F_{n}\left(X, x_{0}\right)$,

$$
\alpha * \beta\left(t_{1}, \ldots, t_{n}\right)= \begin{cases}\alpha\left(2 t_{1}, t_{2}, \ldots, t_{n}\right) & \text { if } 0 \leq t_{1} \leq \frac{1}{2} \\ \beta\left(2 t_{1}-1, t_{2}, \ldots, t_{n}\right) & \text { if } \frac{1}{2} \leq t_{1} \leq 1\end{cases}
$$

Note that the $*$ operation is completely determined by the first coordinate of the variable point $\left(t_{1}, \ldots, t_{n}\right)$ and that the continuity of $\alpha * \beta$ follows
from the Continuity Lemma. The $*$ operation induces an operation \circ on the set of homotopy classes of $F_{n}\left(X, x_{0}\right)$:

$$
[\alpha] \circ[\beta]=[\alpha * \beta] .
$$

With this operation, the set of equivalence classes of $F_{n}\left(X, x_{0}\right)$ is a group. This group is called the nth homotopy group of X at x_{0} and is denoted by $\pi_{n}\left(X, x_{0}\right)$.

As in the case of the fundamental group, the definition requires that some details be verified:
(1) The relation $\sim_{x_{0}}$ is an equivalence relation on $F_{n}\left(X, x_{0}\right)$.
(2) The operation $*$ determines the operation \circ completely. In other words, if $\alpha \sim_{x_{0}} \alpha^{\prime}$ and $\beta \sim_{x_{0}} \beta^{\prime}$, then $\alpha * \beta \sim_{x_{0}} \alpha^{\prime} * \beta^{\prime}$.
(3) With the \circ operation, $\pi_{n}\left(X, x_{0}\right)$ is actually a group. Its identity is the class [c] determined by the constant map $c\left(I^{n}\right)=x_{0}$. The inverse $[\alpha]^{-1}$ of $[\alpha]$ is the class $[\bar{\alpha}]$ where $\bar{\alpha}$, called the reverse of α, is defined by

$$
\bar{\alpha}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\alpha\left(1-t_{1}, t_{2}, \ldots, t_{n}\right), \quad\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in I^{n}
$$

Since the definition of $\pi_{n}\left(X, x_{0}\right)$ is completely analogous to that of $\pi_{1}\left(X, x_{0}\right)$ except for the extra coordinates, the proofs of these details are left as exercises.

The quotient space of I^{n} obtained by identifying ∂I^{n} to a point is homeomorphic to the n-sphere S^{n}. Let us assume that the point of identification is the point $1=(1,0, \ldots, 0)$ of S^{n} having first coordinate unity and all other coordinates zero. Then $\pi_{n}\left(X, x_{0}\right)$ can be defined in terms of maps from $\left(S^{n}, 1\right)$ to $\left(X, x_{0}\right)$ as follows:

Definition B. For a given positive integer n, consider the set $G_{n}\left(X, x_{0}\right)$ of all continuous maps α from S^{n} to X such that $\alpha(1)=x_{0}$. Define an equivalence relation on $G_{n}\left(X, x_{0}\right)$ in the following way: For α, β in $G_{n}\left(X, x_{0}\right), \alpha$ is equivalent modulo x_{0} to β, written $\alpha \sim_{x_{0}} \beta$, if there is a homotopy $H: S^{n} \times I \rightarrow X$ such that

$$
\begin{gathered}
H(\cdot, 0)=\alpha, \quad H(\cdot, 1)=\beta \\
H(1, s)=x_{0}, \quad s \in I .
\end{gathered}
$$

The equivalence class [α] determined by α is called the homotopy class of α. The set of homotopy classes is denoted by $\pi_{n}\left(X, x_{0}\right)$.

In view of the discussion preceding Definition B, it should be clear that there is a natural one-to-one correspondence between $F_{n}\left(X, x_{0}\right)$ and $G_{n}\left(X, x_{0}\right)$ under which a map α in $G_{n}\left(X, x_{0}\right)$ corresponds to the map $\alpha^{\prime}=\alpha q$ where q is the map from I^{n} to S^{n} which identifies ∂I^{n} to the point 1 . Also, two members α and β in $G_{n}\left(X, x_{0}\right)$ are equivalent modulo x_{0} if and only if their counterparts α^{\prime} and β^{\prime} are equivalent in $F_{n}\left(X, x_{0}\right)$. Thus Definitions A and B give equivalent definitions of the set $\pi_{n}\left(X, x_{0}\right)$. The elements [α] are usually more easily visualized in terms of Definition B.

6 The Higher Homotopy Groups

The \circ operation for Definition B is defined in terms of the identification of I^{n} to S^{n}. Let $\alpha, \beta \in G_{n}\left(X, x_{0}\right)$. The identification map q takes the sets

$$
\begin{aligned}
& A=\left\{\left(t_{1}, \ldots, t_{n}\right) \in I^{n}: t_{1} \leq \frac{1}{2}\right\}, \\
& B=\left\{\left(t_{1}, \ldots, t_{n}\right) \in I^{n}: t_{1} \geq \frac{1}{2}\right\}
\end{aligned}
$$

to hemispheres A^{\prime} and B^{\prime} respectively of S^{n} whose intersection

$$
A^{\prime} \cap B^{\prime}=q(A \cap B)
$$

if homeomorphic to S^{n-1}. Imagine that $A^{\prime} \cap B^{\prime}$ is identified to the base point 1 by an identification map r. The resulting space consists of two n-spheres tangent at their common base point as in Figure 6.1. The product $\alpha * \beta$ is now defined by

$$
\alpha * \beta(x)= \begin{cases}\alpha r(x) & \text { if } x \in A^{\prime} \\ \beta r(x) & \text { if } x \in B^{\prime} .\end{cases}
$$

The group operation \circ is defined by

$$
[\alpha] \circ[\beta]=[\alpha * \beta] .
$$

Observe that the operation for Definition B has been designed expressly to show that Definitions A and B describe isomorphic groups.

Figure 6.1
The third description of the nth homotopy group requires a topology for the set of loops in X based at x_{0}.

Definition. Let F be a collection of continuous functions from a space Y into a space Z. If K is a compact subset of Y and U an open subset of Z, let

$$
W(K, U)=\{\alpha \in F: \alpha(K) \subset U\} .
$$

The family of all such sets $W(K, U)$, as K ranges over the compact sets in Y and U ranges over the open sets in Z, is a subbase for a topology for F. This topology is called the compact-open topology for F.

Since we shall apply the compact-open topology only to the set of loops in a space X, we repeat the definition for this case.

Definition. Let X be a space and x_{0} a point of X. Consider the set $\Omega\left(X, x_{0}\right)$ of all loops in X with base point x_{0}. If K is a compact subset of I and U is open in X, let

$$
W(K, U)=\left\{\alpha \in \Omega\left(X, x_{0}\right): \alpha(K) \subset U\right\}
$$

The family of all such sets $W(K, U)$, where K is compact in I and U is open in X, is a subbase for a topology for $\Omega\left(x, x_{0}\right)$. This topology is the compact-open topology for $\Omega\left(X, x_{0}\right)$. Note that basic open sets in the compact-open topology have the form

$$
\bigcap_{i=1}^{r} W\left(K_{i}, U_{i}\right)
$$

where K_{1}, \ldots, K_{r} are compact sets in I and U_{1}, \ldots, U_{r} are open in X. A loop α belongs to this basic open set if and only if $\alpha\left(K_{i}\right) \subset U_{i}$ for each $i=1,2, \ldots, r$.

Theorem 6.1. If X is a metric space, the compact-open topology for $\Omega\left(X, x_{0}\right)$ is the same as its topology of uniform convergence.

Proof. Let d denote the metric on X. Recall that the topology of uniform convergence on $\Omega\left(X, x_{0}\right)$ is determined by the metric ρ defined as follows: If α and β are in $\Omega\left(X, x_{0}\right)$, then $\rho(\alpha, \beta)$ is the supremum (or least upper bound) of the distances from $\alpha(t)$ to $\beta(t)$ for t in I :

$$
\rho(\alpha, \beta)=\sup \{d(\alpha(t), \beta(t)): t \in I\} .
$$

Then the topology of uniform convergence has as a basis the set of all spherical neighborhoods

$$
S(\alpha, r)=\left\{\beta \in \Omega\left(X, x_{0}\right): d(\alpha, \beta)<r\right\}
$$

where $\alpha \in \Omega\left(X, x_{0}\right)$ and r is a positive number.
Let T and T^{\prime} denote respectively the compact-open topology and the topology of uniform convergence for $\Omega\left(X, x_{0}\right)$. To see that $T \subset T^{\prime}$, let $W(K, U)$ be a subbasic open set in T, where K is compact in I and U is open in X. Let $\alpha \in W(K, U)$. Since the compact set $\alpha(K)$ is contained in U, there is a positive number ϵ such that any point of X at a distance less than ϵ from $\alpha(K)$ is also in U. Consider the basic open set $S(\alpha, \epsilon)$ in T^{\prime}. If $\beta \in S(\alpha, \epsilon)$, then for each t in $K, d(\alpha(t), \beta(t))<\epsilon$. Thus $\beta(t)$ must be in U since its distance from a point of $\alpha(K)$ is less than ϵ. Hence $\beta(K) \subset U$, so $\beta \in W(K, U)$. We now have

$$
\alpha \in S(\alpha, \epsilon) \subset W(K, U)
$$

so $W(K, U)$ must be open in T^{\prime}. Then $T \subset T^{\prime}$ since T^{\prime} contains a subbase for T.

To see that $T^{\prime} \subset T$, let $S(\gamma, r)$ with center γ and radius $r>0$ be a basic open set in T^{\prime}. To prove that $S(\gamma, r)$ is in T, it is sufficient to find a member of T which contains γ and is contained in $S(\gamma, r)$. (Why?) Let $\left\{U_{j}\right\}$ be a cover of
X by open sets having diameters less than r, and let η be a Lebesgue number for the open cover $\left\{\gamma^{-1}\left(U_{j}\right)\right\}$ of I. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a subdivision of I with successive points differing by less than η. Then for $i=1,2, \ldots, n, \gamma$ maps each of the compact sets $K_{i}=\left[t_{i-1}, t_{i}\right]$ into one of the open sets of the cover $\left\{U_{j}\right\}$. Choose such an open set, say U_{i}, for each i so that

$$
\gamma\left(K_{i}\right) \subset U_{i}, \quad i=1,2, \ldots, n .
$$

Then

$$
\gamma \in \bigcap_{i=1}^{n} W\left(K_{i}, U_{i}\right),
$$

and this set is open in T. If $\beta \in \bigcap_{i=1}^{n} W\left(K_{i}, U_{i}\right)$, then $\rho(\gamma, \beta)$ cannot exceed the maximum of the diameters of U_{1}, \ldots, U_{n}. Thus $\rho(\gamma, \beta)<r$, so $\beta \in S(\gamma, r)$. Then $S(\gamma, r)$ is open in T, and T contains T^{\prime} since it contains a basis for T^{\prime}. Since it has been shown that $T \subset T^{\prime}$ and $T^{\prime} \subset T$, then $T=T^{\prime}$.

Definition C. Let X be a space with $x_{0} \in X$, and consider the set $\Omega\left(X, x_{0}\right)$ of loops in X based at x_{0} with the compact-open topology. If $n \geq 2$, the nth homotopy group of X at x_{0} is the $(n-1)$ th homotopy group of $\Omega\left(X, x_{0}\right)$ at c, where c is the constant loop at x_{0}. Thus

$$
\begin{aligned}
\pi_{2}\left(X, x_{0}\right) & =\pi_{1}\left(\Omega\left(X, x_{0}\right), c\right), \ldots \\
\pi_{n}\left(X, x_{0}\right) & =\pi_{n-1}\left(\Omega\left(X, x_{0}\right), c\right) .
\end{aligned}
$$

Definition C for the higher homotopy groups was given by Witold Hurewicz in 1935. His definition was originally applied only to metric spaces, and $\Omega\left(X, x_{0}\right)$ was assigned the topology of uniform convergence. The compactopen topology, which permitted the extension of Hurewicz' definition to arbitrary spaces, was introduced by R. H. Fox (1913-1973) in 1944. The inductive definition expresses each homotopy group ultimately as a fundamental group of a space of loops. This will be helpful in our applications later. This definition has one obvious disadvantage, however. It does not lend itself easily to intuitive considerations. How, for example, can one imagine $\pi_{3}\left(X, x_{0}\right)$ as the fundamental group of the iterated loop space of X ?

Each of the three definitions of the higher homotopy groups has advantages and shortcomings. To understand homotopy theory, one must know all three and must be able to apply the one that fits best in a given situation.

The three definitions A, B, and C of the higher homotopy groups are all equivalent. We have discussed the equivalence of A and B and now turn to a comparison of A with C . This discussion will be for the case $n=2$ since the extension to higher values of n requires little more than writing additional coordinates.

Suppose then that α is a member of $F_{2}\left(X, x_{0}\right)$; i.e., α is a continuous map
from the unit square I^{2} to X which takes ∂I^{2} to x_{0}. Then α determines a member $\hat{\alpha}$ of $\Omega\left(\Omega\left(X, x_{0}\right), c\right)$ defined by

$$
\hat{\alpha}\left(t_{1}\right)\left(t_{2}\right)=\alpha\left(t_{1}, t_{2}\right), \quad t_{1}, t_{2} \in I .
$$

Each value $\hat{\alpha}\left(t_{1}\right)$ is a continuous function from I into X because α is continuous. Note that

$$
\hat{\alpha}\left(t_{1}\right)(0)=\hat{\alpha}\left(t_{1}\right)(1)=x_{0}
$$

since $\left(t_{1}, 0\right)$ and $\left(t_{1}, 1\right)$ are in ∂I^{2}. Thus $\hat{\alpha}\left(t_{1}\right) \in \Omega\left(X, x_{0}\right)$, and obviously $\hat{\alpha}(0)=\hat{\alpha}(1)$ is the constant loop c whose only value is x_{0}. But is $\hat{\alpha}$ continuous as a function from I into $\Omega\left(X, x_{0}\right)$? To see that it is, let $W(K, U)$ be a subbasic open set in $\Omega\left(X, x_{0}\right)$. As usual, K is compact in I and U is open in X. Let $t_{1} \in \hat{\alpha}^{-1}(W(K, U))$. Then

$$
\hat{\alpha}\left(t_{1}\right)(K)=\alpha\left(\left\{t_{1}\right\} \times K\right) \subset U .
$$

Since K is compact, there is an open set O in I such that $t_{1} \in O$ and

$$
\alpha(O \times K) \subset U .
$$

Thus

$$
t_{1} \in O \subset \hat{\alpha}^{-1}(W(K, U)),
$$

so $\hat{\alpha}^{-1}(W(K, U))$ is an open set and $\hat{\alpha}$ is continuous. Thus each member of $F_{2}\left(X, x_{0}\right)$ determines in a natural way a member of $\Omega\left(\Omega\left(X, x_{0}\right), c\right)$.

Suppose that we reverse the process and begin with a member $\hat{\alpha}$ of $\Omega\left(\Omega\left(X, x_{0}\right), c\right)$. Then $\hat{\alpha}$ determines a function $\alpha: I^{2} \rightarrow X$ defined by

$$
\alpha\left(t_{1}, t_{2}\right)=\hat{\alpha}\left(t_{1}\right)\left(t_{2}\right), \quad\left(t_{1}, t_{2}\right) \in I^{2} .
$$

It is an easy exercise to see that $\alpha \in F_{2}\left(X, x_{0}\right)$. We have thus established a one-to-one correspondence between $F_{2}\left(X, x_{0}\right)$ and $\Omega\left(\Omega\left(X, x_{0}\right), c\right)$.

Suppose that $H: I^{2} \times I \rightarrow X$ is a homotopy demonstrating the equivalence of α and β as prescribed in Definition A. Then the homotopy

$$
\hat{H}: I \times I \rightarrow \Omega\left(X, x_{0}\right)
$$

defined by

$$
\hat{H}\left(t_{1}, s\right)\left(t_{2}\right)=H\left(t_{1}, t_{2}, s\right), \quad t_{1}, t_{2}, s \in I,
$$

demonstrates the equivalence of the loops $\hat{\alpha}$ and $\hat{\beta}$. Reversing the argument shows that $\hat{\alpha}$ equivalent to $\hat{\beta}$ implies α equivalent to β. Thus there is a one-toone correspondence between homotopy classes $[\alpha]$ of Definition A and homotopy classes [$\hat{\alpha}$] of Definition C. Since the $*$ operation in Definition A is completely determined in the first coordinate, it follows that for any $\alpha, \beta \in F_{2}\left(X, x_{0}\right),[\alpha * \beta]$ corresponds to $[\hat{\alpha} * \hat{\beta}]$ and hence that the two definitions of $\pi_{2}\left(X, x_{0}\right)$ lead to isomorphic groups.

6.3 Basic Properties and Examples

Many theorems about the fundamental group generalize to the higher homotopy groups. The following three results can be proved by methods very similar to those used to prove their analogues in Chapter 4.

Theorem 6.2. If the space X is path connected and x_{0} and x_{1} are points of X, then $\pi_{n}\left(X, x_{0}\right)$ is isomorphic to $\pi_{n}\left(X, x_{1}\right)$ for each $n \geq 1$.

As in the case of the fundamental group, we shall sometimes omit reference to the base point and refer to the " nth homotopy group of X, " $\pi_{n}(X)$, when X is path connected and we are concerned only with the algebraic structure of the group.

Theorem 6.3. If X is contractible by a homotopy that leaves x_{0} fixed, then $\pi_{n}\left(X, x_{0}\right)=\{0\}$ for each $n \geq 1$.

Theorem 6.4. Let X and Y be spaces with points x_{0} in X and y_{0} in Y. Then

$$
\pi_{n}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \cong \pi_{n}\left(X, x_{0}\right) \oplus \pi_{n}\left(Y, y_{0}\right), \quad n \geq 1 .
$$

Example 6.1. The following spaces are contractible, so each has nth homotopy group $\{0\}$ for each value of n :
(a) the real line,
(b) Euclidean space of any dimension,
(c) an interval,
(d) a convex figure in Euclidean space.

We saw in Chapter 4 that the fundamental group is usually difficult to determine. This is doubly true of the higher homotopy groups. The homotopy groups $\pi_{k}\left(S^{n}\right)$ of the n-sphere, for example, have never been completely determined. (The hard part is the case $k>n$.) Finding the homotopy groups of S^{n} is one of the major unsolved problems of algebraic topology. The groups $\pi_{k}\left(S^{n}\right)$ for $k \leq n$ are computed in the following examples.

Example 6.2. For $k<n$, the k th homotopy group $\pi_{k}\left(S^{n}\right)$ is the trivial group. To see this, let [α] be a member of $\pi_{k}\left(S^{n}\right)$, and consider α as a continuous map from $\left(S^{k}, 1\right)$ to $\left(S^{n}, 1\right)$. Represent S^{k} and S^{n} as the boundary complexes of simplexes of dimensions $k+1$ and $n+1$ respectively. By the Simplicial Approximation Theorem (Theorem 3.6), α has a simplicial approximation $\alpha^{\prime}: S^{k} \rightarrow S^{n}$ for which $[\alpha]=\left[\alpha^{\prime}\right]$. But since a simplicial map cannot map a simplex onto a simplex of higher dimension, then α^{\prime} is not onto. Let p be a point in S^{n} which is not in the range of α^{\prime}. Then $S^{n} \backslash\{p\}$ is contractible since it is homeomorphic to \mathbb{R}^{n}, and hence α^{\prime}, a map whose range is contained in a contractible space, is null-homotopic. Thus

$$
[\alpha]=\left[\alpha^{\prime}\right]=[c]
$$

so $\pi_{k}\left(S^{n}\right)$ is the trivial group whose only member is the class [c] determined by the constant map.

Example 6.3. For $n \geq 1$, the nth homotopy group $\pi_{n}\left(S^{n}\right)$ is isomorphic to the group \mathbb{Z} of integers. (The case $n=1$ was considered in some detail in Chapter 4.)

Consider $\pi_{n}\left(S^{n}\right), n \geq 2$, as the set of homotopy classes of maps $\alpha:\left(S^{n}, 1\right) \rightarrow\left(S^{n}, 1\right)$ as in Definition B. Define $\rho: \pi_{n}\left(S^{n}\right) \rightarrow \mathbb{Z}$ by

$$
\rho([\alpha])=\text { degree of } \alpha, \quad[\alpha] \in \pi_{n}\left(S^{n}\right)
$$

Brouwer's Degree Theorem (Theorem 3.9) insures that ρ is well-defined, and the Hopf Classification Theorem (Theorem 3.10), which was stated without proof in Chapter 3, shows that it is one-to-one. The identity map $i:\left(S^{n}, 1\right) \rightarrow\left(S^{n}, 1\right)$ has degree 1 , and the description of the $*$ operation in Definition B shows that the map

$$
i^{k}=i * i * \cdots * i \quad(k \text { terms })
$$

has degree k. Thus [i] is a generator of $\pi_{n}\left(S^{n}\right)$, and

$$
\rho\left([i]^{k}\right)=k, \quad \rho\left([i]^{-k}\right)=-k
$$

for any positive integer k. It follows easily that ρ is an isomorphism.
Example 5.15 shows that the fundamental group of a space may fail to be abelian. The higher homotopy groups are all abelian, as we shall see shortly. This property is the result of the $*$ operation in $\Omega\left(X, x_{0}\right)$. The next theorem illustrates the method of proof and serves as an introduction to the more complicated proof of the commutativity of $\pi_{n}\left(X, x_{0}\right)$ for $n \geq 2$.

Theorem 6.5. Let G be a topological group with identity element e. Then $\pi_{1}(G, e)$ is abelian.

Proof. The operation on G induces an operation - on the set $\Omega(G, e)$ of loops in G based at e defined by

$$
\alpha \cdot \beta(t)=\alpha(t) \beta(t), \quad \alpha, \beta \in \Omega(G, e), t \in I
$$

where the juxtaposition of $\alpha(t)$ and $\beta(t)$ indicates their product in G. This operation induces an operation ${ }^{\circ}$ on $\pi_{1}(G, e)$:

$$
[\alpha] \circ[\beta]=[\alpha \cdot \beta], \quad[\alpha],[\beta] \in \pi_{1}(G, e) .
$$

Let c denote the constant loop at e, and let $[\alpha]$ and $[\beta]$ be members of $\pi_{1}(G, e)$. Observe that

$$
\begin{aligned}
& (\alpha * c) \cdot(c * \beta)(t)= \begin{cases}\alpha(2 t) e=\alpha(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\
e \beta(2 t-1)=\beta(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases} \\
& (c * \alpha) \cdot(\beta * c)(t)= \begin{cases}e \beta(2 t)=\beta(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\
\alpha(2 t-1) e=\alpha(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
\end{aligned}
$$

This gives

$$
(\alpha * c) \cdot(c * \beta)=\alpha * \beta, \quad(c * \alpha) \cdot(\beta * c)=\beta * \alpha
$$

Then

$$
\begin{aligned}
{[\alpha] \circ[\beta] } & =[\alpha * \beta]=[(\alpha * c) \cdot(c * \beta)]=[\alpha * c] \circ[c * \beta] \\
& =[c * \alpha] \circ[\beta * c]=[(c * \alpha) \cdot(\beta * c)]=[\beta * \alpha]=[\beta] \circ[\alpha]
\end{aligned}
$$

so $\pi_{1}(G, e)$ is abelian.

Here is an additional curious fact. The operations \circ and \circ are precisely equal:

$$
[\alpha] \circ[\beta]=[\alpha * \beta]=[(\alpha * c) \cdot(c * \beta)]=[\alpha * c] \circ[c * \beta]=[\alpha] \circ[\beta] .
$$

Not all of the group properties were used in the proof of Theorem 6.5. The existence of a multiplication with identity element e is sufficient, and even that assumption can be weakened. The following definition describes the property that makes the proof work.

Definition. An H-space or Hopf space is a topological space Y with a continuous multiplication (indicated by juxtaposition) and a point y_{0} in Y for which the map defined by multiplying on the left by y_{0} and the map defined by multiplying on the right by y_{0} are both homotopic to the identity map on Y by homotopies that leave y_{0} fixed. In other words, there exist homotopies L and R from $Y \times I$ into Y such that

$$
\begin{array}{lll}
L(y, 0)=y_{0} y, & L(y, 1)=y, & L\left(y_{0}, t\right)=y_{0} \\
R(y, 0)=y y_{0}, & R(y, 1)=y, & R\left(y_{0}, t\right)=y_{0}
\end{array}
$$

for all y in Y and t in I. The point y_{0} is called the homotopy unit of Y.
Note that any topological group is an H-space. H-spaces were first considered by Heinz Hopf, and they are named in his honor.

Example 6.4. If X is a space and x_{0} a point of X, then the loop space $\Omega\left(X, x_{0}\right)$ with the compact-open topology is an H-space. The multiplication is the * operation, and the homotopy unit is the constant map c. The required homotopies L and R are defined for α in $\Omega\left(X, x_{0}\right)$ and s in I by

$$
\begin{aligned}
& L(\alpha, s)(t)= \begin{cases}x_{0} & \text { if } 0 \leq t \leq(1-s) / 2 \\
\alpha\left(\frac{2 t+s-1}{s+1}\right) & \text { if }(1-s) / 2 \leq t \leq 1,\end{cases} \\
& R(\alpha, s)(t)= \begin{cases}\alpha\left(\frac{2 t}{s+1}\right) & \text { if } 0 \leq t \leq(s+1) / 2 \\
x_{0} & \text { if }(s+1) / 2 \leq t \leq 1 .\end{cases}
\end{aligned}
$$

The reader is left the exercise of proving that the multiplication $*$ and the homotopies L and R are continuous with respect to the compact-open topology.

Theorem 6.6. If Y is an H-space with homotopy unit y_{0}, then $\pi_{1}\left(Y, y_{0}\right)$ is abelian.

Proof. The operation on Y induces an operation - on $\Omega\left(Y, y_{0}\right)$ as in the proof of Theorem 6.5:

$$
\alpha \cdot \beta(t)=\alpha(t) \beta(t), \quad \alpha, \beta \in \Omega\left(Y, y_{0}\right), t \in I .
$$

This operation likewise induces an operation on $\pi_{1}\left(Y, y_{0}\right)$:

$$
[\alpha] \triangleright[\beta]=[\alpha \cdot \beta], \quad[\alpha],[\beta] \in \pi_{1}\left(Y, y_{0}\right) .
$$

Letting c denote the constant loop at y_{0},

$$
\begin{aligned}
& (\alpha * c) \cdot(c * \beta)(t)= \begin{cases}\alpha(2 t) y_{0} & \text { if } 0 \leq t \leq \frac{1}{2} \\
y_{0} \beta(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1,\end{cases} \\
& (c * \alpha) \cdot(\beta * c)(t)= \begin{cases}y_{0} \beta(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\
\alpha(2 t-1) y_{0} & \text { if } \frac{1}{2} \leq t \leq 1 .\end{cases}
\end{aligned}
$$

Since multiplication on the left by y_{0} and multiplication on the right by y_{0} are both homotopic to the identity map on Y, then

$$
\begin{aligned}
& {[(\alpha * c) \cdot(c * \beta)]=[\alpha * \beta],} \\
& {[(c * \alpha) \cdot(\beta * c)]=[\beta * \alpha] .}
\end{aligned}
$$

Thus

$$
\begin{aligned}
{[\alpha] \circ[\beta] } & =[\alpha * \beta]=[(\alpha * c) \cdot(c * \beta)]=[(c * \alpha) \cdot(\beta * c)] \\
& =[\beta * \alpha]=[\beta] \circ[\alpha] .
\end{aligned}
$$

It follows as in the proof of Theorem 6.5 that the operations \circ and \circ are equal.

Theorem 6.7. The higher homotopy groups $\pi_{n}\left(X, x_{0}\right), n \geq 2$, of any space X are abelian.

Proof. The second homotopy group

$$
\pi_{2}\left(X, x_{0}\right)=\pi_{1}\left(\Omega\left(X, x_{0}\right), c\right)
$$

is abelian since $\Omega\left(X, x_{0}\right)$ is an H-space with the constant loop c as homotopy unit. Proceeding inductively, suppose that the ($n-1$)th homotopy group $\pi_{n-1}\left(Y, y_{0}\right)$ is abelian for every space Y. Then

$$
\pi_{n}\left(X, x_{0}\right)=\pi_{n-1}\left(\Omega\left(X, x_{0}\right), c\right)
$$

must be abelian, and the proof is complete.
Definition. Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a continuous map on the indicated pairs. If $[\alpha] \in \pi_{n}\left(X, x_{0}\right), n \geq 1$, then the composition $f \alpha: I^{n} \rightarrow Y$ is a continuous map which takes ∂I^{n} to y_{0}, so $f \alpha$ represents an element $[f \alpha]$ in $\pi_{n}\left(Y, y_{0}\right)$. Thus f induces a function

$$
f_{*}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(Y, y_{0}\right)
$$

defined by

$$
f_{*}([\alpha])=\left[f_{\alpha}\right], \quad[\alpha] \in \pi_{n}\left(X, x_{0}\right) .
$$

The function f_{*} is called the homomorphism induced by f in dimension n.
To be very precise we should refer to f_{*}^{n}, indicating the dimension n, but this notation is cumbersome, and we shall avoid it. The dimension in question
will always be known from the subscripts on the homotopy groups involved. The reader is left the exercise of showing that f_{*} is actually a well-defined homomorphism.

Theorem 6.8. (a) If $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and $g:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$ are continuous maps on the indicated pairs, then the induced homomorphism $(g f)_{*}$ is the composite map

$$
g_{*} f_{*}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(Z, z_{0}\right)
$$

in each dimension n.
(b) If $h:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a homeomorphism, then the homomorphism h_{*} induced by h is an isomorphism for each value of n.

Proof. (a) If $[\alpha] \in \pi_{n}\left(X, x_{0}\right)$, then

$$
(f g)_{*}([\alpha])=[g f \alpha]=g_{*}([f \alpha])=g_{*} f_{*}([\alpha])
$$

so

$$
(g f)_{*}=g_{*} f_{*} .
$$

(b) Suppose that $h^{-1}:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ is the inverse of h. Then for [α] in $\pi_{n}\left(X, x_{0}\right)$,

$$
\left(h^{-1}\right)_{*} h_{*}([\alpha])=\left[h^{-1} h \alpha\right]=[\alpha],
$$

so $\left(h^{-1}\right)_{*} h_{*}$ is the identity map on $\pi_{n}\left(X, x_{0}\right)$. By symmetry it follows that $h_{*}\left(h^{-1}\right)_{*}$ is the identity map on $\pi_{n}\left(Y, y_{0}\right)$, so h_{*} is an isomorphism.

It was proved in Chapter 5 that a covering projection $p: E \rightarrow B$ induces a monomorphism (i.e., a one-to-one homomorphism) $p_{*}: \pi_{1}(E) \rightarrow \pi_{1}(B)$. The next theorem, discovered by Hurewicz, shows that the induced homomorphism for the higher homotopy groups is even better.

Theorem 6.9. Let (E, p) be a covering space of B, and let e_{0} in E and b_{0} in B be points such that $p\left(e_{0}\right)=b_{0}$. Then the induced homomorphism

$$
p_{*}: \pi_{n}\left(E, e_{0}\right) \rightarrow \pi_{n}\left(B, b_{0}\right)
$$

is an isomorphism for $n \geq 2$.
Proof. To see that p_{*} is onto, consider an element $[\alpha]$ in $\pi_{n}\left(B, b_{0}\right)$. Think of α as a continuous map from $\left(S^{n}, \overline{1}\right)$ to $\left(B, b_{0}\right)$. (The symbol $\overline{1}$ is used here as the base point of S^{n} to avoid confusion with the number 1 which will also play an important role in this proof.) Since $n \geq 2$, the fundamental group $\pi_{1}\left(S^{n}, \overline{1}\right)$ is trivial, and hence

$$
\alpha_{*} \pi_{1}\left(S^{n}, \overline{1}\right)=\{0\} \subset p_{*} \pi_{1}\left(E, e_{0}\right)
$$

where α_{*} is the homomorphism induced by α on the fundamental group. Thus Theorem 5.10 shows that α has a continuous lifting

$$
\tilde{\alpha}:\left(S^{n}, \overline{1}\right) \rightarrow\left(E, e_{0}\right)
$$

such that $p \tilde{\alpha}=\alpha$. Then $\tilde{\alpha}$ determines a member $[\tilde{\alpha}]$ in $\pi_{n}\left(E, e_{0}\right)$ for which

$$
p_{*}([\alpha])=[p \tilde{\alpha}]=[\alpha],
$$

so p_{*} maps $\pi_{n}\left(E, e_{0}\right)$ onto $\pi_{n}\left(B, b_{0}\right)$.
To see that p_{*} is one-to-one, suppose that $[\beta]$ belongs to its kernel; i.e.,

$$
p_{*}([\beta])=[p \beta]=[c]
$$

where c is the constant map $c\left(S^{n}\right)=b_{0}$. As maps from $\left(S^{n}, \overline{1}\right)$ to $\left(B, b_{0}\right), p \beta$ and c are equivalent, so there is a homotopy $H: S^{n} \times I \rightarrow B$ satisfying

$$
\begin{gathered}
H(t, 0)=p \beta(t), \quad H(t, 1)=b_{0}, \quad t \in S^{n}, \\
H(\overline{1}, s)=b_{0}, \quad s \in I .
\end{gathered}
$$

The fundamental group $\pi_{1}\left(S^{n} \times I,(\overline{1}, 0)\right)$ is trivial since $n \geq 2$, so Theorem 5.10 applies again to show the existence of a lifting

$$
\tilde{H}: S^{n} \times I \rightarrow E
$$

such that

$$
p \tilde{H}=H, \quad \tilde{H}(\overline{1}, 0)=e_{0} .
$$

The lifted homotopy \tilde{H} is a homotopy between β and the constant map $d\left(S^{n}\right)=e_{0}$. To see this, observe first that

$$
p \tilde{H}(\cdot, 0)=p \beta, \quad \tilde{H}(\overline{1}, 0)=\beta(\overline{1})
$$

The Corollary to Theorem 5.2 insures that $\tilde{H}(\cdot, 0)=\beta$ since S^{n} is connected. The same argument shows that $\tilde{H}(\cdot, 1)=d$. It remains to be seen that $\tilde{H}(\overline{1}, s)=e_{0}$ for each s in I. The path

$$
\tilde{H}(\overline{1}, \cdot): I \rightarrow E
$$

has initial point e_{0} and covers the constant path $c=H(\overline{1}, \cdot)$. Since the unique covering path of c which begins at e_{0} is the constant path at e_{0}, then

$$
\tilde{H}(\overline{1}, s)=e_{0}, \quad s \in I
$$

Thus $\tilde{H}: S^{n} \times I \rightarrow E$ is a homotopy such that

$$
\begin{gathered}
\tilde{H}(\cdot, 0)=\beta, \quad \tilde{H}(\cdot, 1)=d, \\
\tilde{H}(\overline{1}, s)=e_{0}, \quad s \in I
\end{gathered}
$$

so $[\beta]=[d]$ is the identity element of $\pi_{n}\left(E, e_{0}\right)$. Thus the kernel of p_{*} contains only the identity element of $\pi_{n}\left(E, e_{0}\right)$, so p_{*} is one-to-one.

Example 6.5. Consider the universal covering space (\mathbb{R}, p) of the unit circle \boldsymbol{S}^{1}. By Theorem 6.9,

$$
p_{*}: \pi_{n}(\mathbb{R}) \rightarrow \pi_{n}\left(S^{1}\right)
$$

is an isomorphism for $n \geq 2$. But all the homotopy groups of the contractible space \mathbb{R} are trivial, so

$$
\pi_{n}\left(S^{1}\right)=\{0\}, \quad n \geq 2
$$

Example 6.6. Consider the double covering (S^{n}, p) over projective n-space P^{n}. Theorem 6.9 insures that

$$
\pi_{k}\left(P^{n}\right) \cong \pi_{k}\left(S^{n}\right), \quad k \geq 2, n \geq 2
$$

Recalling Example 6.3, we have

$$
\pi_{n}\left(P^{n}\right) \cong \mathbb{Z}, \quad n \geq 2
$$

6.4 Homotopy Equivalence

This section examines an equivalence relation for topological spaces which was introduced by Hurewicz in 1936. The relation is weaker than homeomorphism but strong enough to insure that equivalent spaces have isomorphic homotopy groups in corresponding dimensions.

Definition. Let X and Y be topological spaces. Then X and Y are homotopy equivalent or have the same homotopy type provided that there exist continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ for which the composite maps $g f$ and $f g$ are homotopic to the identity maps on X and Y respectively. The map f is called a homotopy equivalence, and g is a homotopy inverse for f.

It should be clear that homeomorphic spaces are homotopy equivalent.
Theorem 6.10. The relation " X is homotopy equivalent to Y " is an equivalence relation for topological spaces.

Proof. The relation is reflexive since the identity map on any space X is a homotopy equivalence. The symmetric property is implicit in the definition; note that both f and g are homotopy equivalences and that each is a homotopy inverse for the other.

To see that the relation is transitive, let $f: X \rightarrow Y$ and $h: Y \rightarrow Z$ be homotopy equivalences with homotopy inverses $g: Y \rightarrow X$ and $k: Z \rightarrow Y$ respectively. We must show that X and Z are homotopy equivalent. The most likely candidate for a homotopy equivalence between X and Z is $h f$ with $g k$ as the leading contender for homotopy inverse. Let $L: Y \times I \rightarrow Y$ be a homotopy such that $L(\cdot, 0)=k h$ and $L(\cdot, 1)$ is the identity map on Y. Then the map $M: X \times I \rightarrow X$ defined by

$$
M(x, t)=g L(f(x), t), \quad(x, t) \in X \times I
$$

is a homotopy such that

$$
\begin{aligned}
& M(\cdot, 0)=g L(f(\cdot), 0)=(g k)(h f), \\
& M(\cdot, 1)=g L(f(\cdot), 1)=g f
\end{aligned}
$$

so $(g k)(h f)$ is homotopic to $g f$ and hence homotopic to the identity map on X. A completely analogous argument shows that $(h f)(g k)$ is homotopic to the identity on Z, so X and Z are homotopy equivalent.

Example 6.7. A circle and an annulus are homotopy equivalent. To see this, consider the unit circle S^{1} and the annulus $A=\left\{y \in \mathbb{R}^{2}: 1 \leq|y| \leq 2\right\}$ shown in Figure 6.2.

Figure 6.2
A homotopy equivalence $f: S^{1} \rightarrow A$ and homotopy inverse $g: A \rightarrow S^{1}$ are defined by

$$
\begin{array}{ll}
f(x)=x, & x \in S^{1}, \\
g(y)=y /\|y\|, & y \in A .
\end{array}
$$

Then $g f$ is the identity map on S^{1}, and

$$
f g(y)=y \| y \mid, \quad y \in A
$$

The required homotopy between $f g$ and the identity on A is given by

$$
H(y, t)=t y+(1-t) y \| y \mid
$$

Theorem 6.11. A space X is contractible if and only if it has the homotopy type of a one point space.
Proof. Suppose X is contractible with homotopy $H: X \times I \rightarrow X$ and point x_{0} in X such that

$$
H(x, 0)=x, \quad H(x, 1)=x_{0}, \quad x \in X .
$$

Then X is homotopy equivalent to the singleton space $\left\{x_{0}\right\}$ by homotopy equivalence $f: X \rightarrow\left\{x_{0}\right\}$ and homotopy inverse $g:\left\{x_{0}\right\} \rightarrow X$ defined by

$$
f(x)=x_{0}, \quad g\left(x_{0}\right)=x_{0}, \quad x \in X
$$

Suppose now that $f: X \rightarrow\{a\}$ is a homotopy equivalence between X and the one point space $\{a\}$ with homotopy inverse $g:\{a\} \rightarrow X$. Then there is a homotopy K between $g f$ and the identity map on X :

$$
K(x, 0)=x, \quad K(x, 1)=g f(x)=g(a), \quad x \in X .
$$

The homotopy K is thus a contraction, and X is contractible.
Example 6.7 is a special case of the next result.
Theorem 6.12. If X is a space and D a deformation retract of X, then D and X are homotopy equivalent.

Proof. There is a homotopy $H: X \times I \rightarrow X$ such that

$$
\begin{gathered}
H(x, 0)=x, \quad H(x, 1) \in D, \quad x \in X, \\
H(a, t)=a, \quad a \in D, t \in I .
\end{gathered}
$$

Let $f: D \rightarrow X$ denote the inclusion map $f(a)=a$, and define $g: X \rightarrow D$ by

$$
g(x)=H(x, 1), \quad x \in X .
$$

Then $g f$ is the identity map on D, and H is a homotopy between $f g$ and the identity on X; thus f is a homotopy equivalence with homotopy inverse g.

Definition. Let X and Y be spaces with points x_{0} in X and y_{0} in Y. Then the pairs (X, x_{0}) and (Y, y_{0}) are homotopy equivalent or have the same homotopy type means that there exist continuous maps $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and $g:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ for which the composite maps $g f$ and $f g$ are homotopic to the identity maps on X and Y respectively by homotopies that leave the base points fixed. In other words, it is required that there exist homotopies $H: X \times I \rightarrow X$ and $K: Y \times I \rightarrow Y$ such that

$$
\begin{array}{rlll}
H(x, 0)=g f(x), & H(x, 1)=x, & H\left(x_{0}, t\right)=x_{0}, & x \in X, t \in I, \\
K(y, 0)=f g(y), & K(y, 1)=y, & K\left(y_{0}, t\right)=y_{0}, & y \in Y, t \in I .
\end{array}
$$

The map f is called a homotopy equivalence with homotopy inverse g.
The proof of the next theorem is similar to the proof of Theorem 6.10 and is left as an exercise.

Theorem 6.13. Homotopy equivalence between pairs is an equivalence relation.
Theorem 6.14. If the map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a homotopy equivalence between the indicated pairs, then the induced homomorphism

$$
f_{*}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(Y, y_{0}\right)
$$

is an isomorphism for each positive integer n.
Proof. Let $g:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a homotopy inverse for f and H a homotopy between $g f$ and the identity map on X which leaves x_{0} fixed. Let $[\alpha] \in \pi_{n}\left(X, x_{0}\right)$, and consider α as a function from I^{n} to X such that $\alpha\left(\partial I^{n}\right)=$ x_{0}. Define a homotopy $K: I^{n} \times I \rightarrow X$ by

$$
K(t, s)=H(\alpha(t), s), \quad t \in I^{n}, s \in I
$$

Then

$$
\begin{gathered}
K(\cdot, 0)=g f \alpha, \quad K(\cdot, 1)=\alpha \\
K\left(\partial I^{n} \times I\right)=H\left(\left\{x_{0}\right\} \times I\right)=x_{0}
\end{gathered}
$$

so that

$$
[g f \alpha]=[\alpha]
$$

This means that

$$
g_{*} f_{*}[\alpha]=[\alpha],
$$

so g_{*} is a left inverse for f_{*}. Since f is a homotopy inverse for g, we conclude by symmetry that g_{*} is also a right inverse for f_{*}, so f_{*} is an isomorphism.

Actually, Theorem 6.14 can be strengthened to show that a homotopy equivalence $f: X \rightarrow Y$ with $f\left(x_{0}\right)=y_{0}$ induces an isomorphism between $\pi_{n}\left(X, x_{0}\right)$ and $\pi_{n}\left(Y, y_{0}\right)$ for each n. The proof is more complicated because the homotopies may not leave the base points fixed. The reader might like to try proving this stronger result.

6.5 Homotopy Groups of Spheres

As mentioned earlier, the homotopy groups $\pi_{k}\left(S^{n}\right)$ are not completely known. Previous examples have shown that

$$
\begin{array}{ll}
\pi_{k}\left(S^{n}\right)=\{0\}, & k<n, \\
\pi_{k}\left(S^{1}\right)=\{0\}, & k>1, \\
\pi_{n}\left(S^{n}\right) \cong \mathbb{Z} . &
\end{array}
$$

It may seem natural to conjecture that $\pi_{k}\left(S^{n}\right)$ is trivial for $k>n$ since the corresponding result holds for the homology groups. This would simply mean that every continuous map $f: S^{k} \rightarrow S^{n}$ where $k>n$ is homotopic to a constant map. This is in fact not true. The first example of such an essential, or non-null-homotopic, map was given by H. Hopf in 1931. The spheres involved were of dimensions three and two, and Hopf's example showed that $\pi_{3}\left(S^{2}\right)$ is not trivial. Actually, $\pi_{3}\left(S^{2}\right)$ is isomorphic to the group of integers. Many other results are known about $\pi_{k}\left(S^{n}\right)$, but no one has yet succeeded in determining $\pi_{k}\left(S^{n}\right)$ in all possible cases. In this section we shall examine Hopf's examples and the results of H. Freudenthal (1905-) on which much of the knowledge of the higher homotopy groups of spheres is based.

Example 6.8. The Hopf map $p: S^{3} \rightarrow S^{2}$.
Let \mathbb{C} denote the field of complex numbers. Consider S^{3}, the unit sphere in Euclidean 4 -space, as a set of ordered pairs of complex numbers, each pair having length 1 :

$$
S^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C} \times \mathbb{C}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}
$$

Define an equivalence relation \equiv on S^{3} by

$$
\left(z_{1}, z_{2}\right) \equiv\left(z_{1}^{\prime}, z_{2}^{\prime}\right)
$$

if and only if there is a complex number λ of length 1 such that

$$
\left(z_{1}, z_{2}\right)=\left(\lambda z_{1}^{\prime}, \lambda z_{2}^{\prime}\right)
$$

For $\left(z_{1}, z_{2}\right)$ in S^{3}, let $\left\langle z_{1}, z_{2}\right\rangle$ denote the equivalence class determined by (z_{1}, z_{2}), let

$$
T=\left\{\left\langle z_{1}, z_{2}\right\rangle:\left(z_{1}, z_{2}\right) \in S^{3}\right\}
$$

be the set of equivalence classes, and let $p: S^{3} \rightarrow T$ be the projection map

$$
p\left(z_{1}, z_{2}\right)=\left\langle z_{1}, z_{2}\right\rangle, \quad\left(z_{1}, z_{2}\right) \in S^{3}
$$

Assign T the quotient topology determined by p; a set O is open in T provided that $p^{-1}(O)$ is open in S^{3}. For $\left\langle z_{1}, z_{2}\right\rangle$ in T, the inverse image $p^{-1}\left(\left\langle z_{1}, z_{2}\right\rangle\right)$, called the fiber over $\left\langle z_{1}, z_{2}\right\rangle$, is a circle in S^{3}.

We shall show that T is homeomorphic to S^{2}, use the homeomorphism to replace T by S^{2}, and obtain the Hopf map $p: S^{3} \rightarrow S^{2}$. Strictly speaking, the Hopf map is the map $h p: S^{3} \rightarrow S^{2}$ where $h: T \rightarrow S^{2}$ is the homeomorphism whose existence we must now show.

Let

$$
D=\{z \in \mathbb{C}:|z| \leq 1\}
$$

denote the unit disc in \mathbb{C}. The 2 -sphere is the quotient space of D obtained by identifying the boundary of D to a point. To see that T satisfies the same description, consider the map $f: D \rightarrow T$ defined by

$$
f(z)=\left\langle\sqrt{1-|z|^{2}}, z\right\rangle, \quad z \in D
$$

Then f is a closed, continuous map. For $\left\langle z_{1}, z_{2}\right\rangle$ in T,

$$
\begin{aligned}
f^{-1}\left(\left\langle z_{1}, z_{2}\right\rangle\right) & =\left\{z \in D:\left\langle z_{1}, z_{2}\right\rangle=\left\langle\sqrt{1-|z|^{2}}, z\right\rangle\right\} \\
& =\left\{z \in D: \sqrt{1-|z|^{2}}=\lambda z_{1}, z=\lambda z_{2} \text { for some } \lambda \in S^{1}\right\}
\end{aligned}
$$

If $z_{1} \neq 0$, the equations

$$
\sqrt{1-|z|^{2}}=\lambda z_{1}, \quad z=\lambda z_{2}, \quad\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1
$$

imply

$$
\lambda z_{1}=\left|z_{1}\right|, \quad \lambda=\left|z_{1}\right| / z_{1} .
$$

Thus $f^{-1}\left(\left\langle z_{1}, z_{2}\right\rangle\right)$ is a single point if $z_{1} \neq 0$. If $z_{1}=0$, then

$$
\begin{aligned}
f^{-1}\left(\left\langle z_{1}, z_{2}\right\rangle\right) & =f^{-1}\left(\left\langle 0, z_{2}\right\rangle\right) \\
& =\left\{z \in D: \sqrt{1-|z|^{2}}=0, z=\lambda \text { for some } \lambda \in S^{1}\right\}=S^{1}
\end{aligned}
$$

so $f^{-1}\left(\left\langle 0, z_{2}\right\rangle\right)$ is the boundary of D. Hence, using f as quotient map, T is the quotient space of D obtained by identifying the boundary S^{1} to a point. Then T is homeomorphic to S^{2}, so we replace T by S^{2} and have the Hopf $\operatorname{map} p: S^{3} \rightarrow S^{2}$.

Showing that p is not homotopic to a constant map requires more background than we have had, but here is a sketch of the basic idea. Suppose to the contrary that $H: S^{3} \times I \rightarrow S^{2}$ is a homotopy between p and a constant map. Although the Hopf map is not a covering projection, it is close enough to permit a covering homotopy $\tilde{H}: S^{3} \times I \rightarrow S^{2}$ as shown in this diagram.

The map \tilde{H} is a homotopy between the identity map on S^{3} and a constant map. But this implies that S^{3} is contractible, an obvious contradiction. Thus p is not homotopic to a constant map, so $\pi_{3}\left(S^{2}\right) \neq\{0\}$.

Example 6.9. The Hopf maps $S^{7} \rightarrow S^{4}$ and $S^{15} \rightarrow S^{8}$.
Think for a minute about the construction of the Hopf map $p: S^{3} \rightarrow S^{2}$. The construction was made possible by representing S^{3} as ordered pairs of complex numbers. Using the division ring \mathbb{Q} of quaternions, we represent S^{7}, the unit sphere in Euclidean 8-space, as ordered pairs of members of \mathbb{Q} :

$$
S^{7}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{Q}:\left\|z_{1}\right\|^{2}+\left\|z_{2}\right\|^{2}=1\right\}
$$

The quotient space T in this case is the quotient space of the unit disc

$$
D=\{z \in \mathbb{Q}:\|z\| \leq 1\}
$$

obtained by identifying the boundary of D to a single point. Since D has real dimension four, this quotient space is homeomorphic to S^{4}. The Hopf map $p: S^{7} \rightarrow S^{4}$ with fiber S^{3} is then defined as in Example 6.8. This map shows that $\pi_{7}\left(S^{4}\right) \neq\{0\}$.

In E^{16}, one can perform a similar construction by representing the unit sphere S^{15} as ordered pairs of Cayley numbers. This produces the Hopf map $p: S^{15} \rightarrow S^{8}$ with fiber S^{7} and shows that $\pi_{15}\left(S^{8}\right) \neq\{0\}$.

There is for each pair k, n of positive integers a natural homomorphism

$$
E: \pi_{k}\left(S^{n}\right) \rightarrow \pi_{k+1}\left(S^{n+1}\right)
$$

called the suspension homomorphism. To define this ingenious function, consider $\pi_{k}\left(S^{n}\right)$ as homotopy classes of maps from $\left(S^{k}, 1\right)$ to $\left(S^{n}, 1\right)$ where we denote the base point of each sphere by 1 . Consider S^{n} as the subspace of S^{n+1} consisting of all points of S^{n+1} having last coordinate 0 . In this identification, S^{n} is usually called the "equator" of S^{n+1}. Continuing this geographical metaphor, call the points $(0, \ldots, 0,1)$ and $(0, \ldots, 0,-1)$ of S^{n+1} the "north pole" and "south pole" respectively.

Suppose now that $[\alpha] \in \pi_{k}\left(S^{n}\right)$. Then α is a continuous map from S^{k} to S^{n}. Extend α to a continuous map $\hat{\alpha}: S^{k+1} \rightarrow S^{n+1}$ as follows: $\left.\hat{\alpha}\right|_{S^{k}}$ is just α, and it maps the equator of S^{k+1} to the equator of S^{n+1}. We require that $\hat{\alpha}$ map the north pole of S^{k+1} to the north pole of S^{n+1} and the south pole of S^{k+1} to the south pole of S^{n+1}. The function is then extended radially as shown in Figure 6.3. The arc from the north pole to a point x in S^{k} is mapped linearly onto the arc from the north pole of S^{n+1} to $\alpha(x)$. This defines $\hat{\alpha}$ on the "northern hemisphere," and the "southern hemisphere" is treated the same way. The extended map $\hat{\alpha}$ is called the suspension of α.

The suspension homomorphism E, called the "Einhängung" by Freudenthal, is defined by

$$
E([\alpha])=[\hat{\alpha}], \quad[\alpha] \in \pi_{k}\left(S^{n}\right) .
$$

Figure 6.3
The reader is left the exercise of showing that E is a homomorphism. Freudenthal defined the suspension homomorphism and proved the following theorem in 1937. Proofs can be found in [11] and in Freudenthal's original paper [37].

Theorem 6.15 (The Freudenthal Suspension Theorem). The suspension homomorphism

$$
E: \pi_{k}\left(S^{n}\right) \rightarrow \pi_{k+1}\left(S^{n+1}\right)
$$

is an isomorphism for $k<2 n-1$ and is onto for $k \leq 2 n-1$.
Although we shall not prove the Freudenthal Suspension Theorem, we illustrate its utility with two corollaries. These results have already been derived in Examples 6.2 and 6.3.

Corollary. The homotopy groups $\pi_{k}\left(S^{n}\right)$ are trivial for $k<n$.
Proof. For any positive integer $r<k$, we have $k+r+1<2 n$, and hence

$$
k-r<2(n-r)-1 .
$$

Then

$$
\pi_{k}\left(S^{n}\right) \cong \pi_{k-1}\left(S^{n-1}\right) \cong \cdots \cong \pi_{1}\left(S^{n-k+1}\right)
$$

Since $n-k+1>1$ for $k<n$, then $\pi_{1}\left(S^{n-k+1}\right)$ and its isomorphic image $\pi_{k}\left(S^{n}\right)$ are both trivial groups.

Corollary. The homotopy groups $\pi_{n}\left(S^{n}\right), n \geq 1$, are all isomorphic to the group \mathbb{Z} of integers.
Proof. We rely on our previous arguments to show that

$$
\pi_{1}\left(S^{1}\right) \cong \pi_{2}\left(S^{2}\right) \cong \mathbb{Z}
$$

If $n \geq 2$, then $n<2 n-1$ and the Freudenthal Suspension Theorem shows that

$$
\pi_{2}\left(S^{2}\right) \cong \pi_{3}\left(S^{3}\right) \cong \pi_{4}\left(S^{4}\right) \cong \cdots \cong \pi_{n}\left(S^{n}\right)
$$

6.6 The Relation Between $H_{n}(K)$ and $\pi_{n}(|K|)$

The last theorem of this chapter extends Theorem 4.11 to show a relationship between the homology groups and the homotopy groups of polyhedra. Proofs can be found in [20] and [5]

Theorem 6.16 (The Hurewicz Isomorphism Theorem). Let K be a connected complex and $n \geq 2$ a positive integer. If the first $n-1$ homotopy groups of $|K|$ are trivial, then $H_{n}(K)$ and $\pi_{n}(|K|)$ are isomorphic.

For an application of the Hurewicz Isomorphism Theorem, let us again consider $\pi_{n}\left(S^{n}\right)$.

Example 6.10. Consider the n-sphere S^{n} for $n \geq 2$. Since $\pi_{k}\left(S^{n}\right)=\{0\}$ for $k<n$, the Hurewicz Isomorphism Theorem implies that

$$
\pi_{n}\left(S^{n}\right) \cong H_{n}\left(S^{n}\right) \cong \mathbb{Z}
$$

The pioneering work on the higher homotopy groups was done by Witold Hurewicz in a sequence of four papers, his famous "Four Notes," published in 1935-1936 [42]. These papers contain definitions of the higher homotopy groups, the relation between $\pi_{n}(E)$ and $\pi_{n}(B)$ for covering spaces (Theorem 6.9), the homotopy equivalence relation, the proof that homotopy equivalent spaces have isomorphic homotopy groups (Theorem 6.14), and the Hurewicz Isomorphism Theorem (Theorem 6.16).

The homotopy groups do not provide for general topological spaces the type of classification given for 2-manifolds by Theorem 2.11 and for covering spaces by Theorem 5.9. The reader is asked in one of the exercises for this chapter to find an example of spaces X and Y which have isomorphic homotopy groups in each dimension but which are not homotopy equivalent (and therefore not homeomorphic). The induced homomorphism

$$
f_{*}: \pi_{n}(X) \rightarrow \pi_{n}(Y)
$$

has been successful in classifying the homotopy type of spaces known as "CW-complexes." These spaces can be used to approximate arbitrary topological spaces. The reader interested in pursuing CW-complexes should consult [20] or the work of their inventor, J. H. C. Whitehead (1904-1960) [57].

Although the homotopy groups have not been completely successful in showing when spaces are homeomorphic, they are extremely useful in showing when spaces are not homeomorphic. This is, in fact, the way in which algebraic topology has been most successful. To show that X and Y are not homeomorphic, compute the homotopy groups $\pi_{n}(X)$ and $\pi_{n}(Y)$. If $\pi_{n}(X)$ is not isomorphic to $\pi_{n}(Y)$ for some n, then X and Y are not homeomorphic. The same method can be used with the homology groups.

Recall from Chapter 4 that the Poincaré Conjecture asserts that every simply connected 3-manifold is homeomorphic to S^{3}. Our work on homotopy groups shows that the corresponding conjecture in dimension four is false. The 4-manifold $S^{2} \times S^{2}$ is simply connected, but it is not homeomorphic to S^{4} since

$$
\pi_{2}\left(S^{2} \times S^{2}\right) \cong \mathbb{Z} \oplus \mathbb{Z} \text { and } \pi_{2}\left(S^{4}\right)=\{0\}
$$

Hurewicz' introduction of homotopy type led to the following extension of the Poincaré Conjecture:

Generalized Poincaré Conjecture. Every n-manifold which is homotopy equivalent to S^{n} is homeomorphic to S^{n}.

This conjecture was proved to be true for $n>4$ by S. Smale (1930-) in 1960 [54]. It is still unresolved in the cases $n=3$ and $n=4$.

Exercises

1. Complete the details in Definition A of the higher homotopy groups:
(a) The relation $\sim_{x_{0}}$ is an equivalence relation.
(b) If $\alpha \sim_{x_{0}} \alpha^{\prime}$ and $\beta \sim_{x_{0}} \beta^{\prime}$, then $\alpha * \beta \sim_{x_{0}} \alpha^{\prime} * \beta^{\prime}$.
(c) $\pi_{n}\left(X, x_{0}\right)$ is a group under the operation \circ.
2. Complete the details in the discussion of the equivalence of Definitions A and C of the higher homotopy groups.
3. (a) Prove Theorem 6.2.
(b) Prove Theorem 6.3.
(c) Prove Theorem 6.4.
4. Let $f: X \rightarrow S^{n}$ be a continuous map such that $f(X)$ is a proper subset of S^{n}. Prove that f is null-homotopic.
5. Use homotopy groups to prove the Brouwer No Retraction Theorem (Theorem 3.12).
6. Show that the sets $W(K, U)$ in the definition of the compact-open topology form a subbase.
7. (a) Show that the space $\Omega\left(X, x_{0}\right)$ with its compact-open topology is an H space for any space X.
(b) Show that the homotopy classes $[\alpha]$ of $\pi_{1}\left(X, x_{0}\right)$ are precisely the path components of $\Omega\left(X, x_{0}\right)$.
8. Show that the function $f_{*}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(Y, y_{0}\right)$ induced by a continuous map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a homomorphism.
9. Prove that the operation a in Theorems 6.5 and 6.6 is well-defined.
10. If $f: X \rightarrow Y$ is a homotopy equivalence, prove that any two homotopy inverses of f are homotopic.
11. Definition. If $f: X \rightarrow Y$ is a continuous map, a continuous map $g: Y \rightarrow X$ is a left homotopy inverse for f provided that $g f$ is homotopic to the identity map on X. Right homotopy inverse is defined analogously.
Prove that if $f: X \rightarrow Y$ has left homotopy inverse g and right homotopy inverse h, then f is a homotopy equivalence.
12. Definition. Continuous maps f and g from $\left(X, x_{0}\right)$ to (Y, y_{0}) are homotopic modulo base points provided that there is a homotopy $H: X \times I \rightarrow Y$ such that

$$
H(\cdot, 0)=f, \quad H(\cdot, 1)=g, \quad H\left(\left\{x_{0}\right\} \times I\right)=y_{0} .
$$

Prove that maps which are homotopic modulo base points induce identical homomorphisms from $\pi_{n}\left(X, x_{0}\right)$ to $\pi_{n}\left(Y, y_{0}\right)$.
13. Prove that the map f of Example 6.8 is closed and continuous.
14. If X is homotopy equivalent to X^{\prime} and Y is homotopy equivalent to Y^{\prime}, prove that $X \times Y$ is homotopy equivalent to $X^{\prime} \times Y^{\prime}$.
15. Show that if the pairs (X, x_{0}) and (Y, y_{0}) are homotopy equivalent, then the loop spaces $\Omega\left(X, x_{0}\right)$ and $\Omega\left(Y, y_{0}\right)$ are homotopy equivalent.
16. Let (E, p) and (F, q) be covering spaces of base space B, and let $h: E \rightarrow F$ be a covering space homomorphism such that $h\left(e_{0}\right)=f_{0}$, where e_{0} and f_{0} are the base points of E and F respectively. Show that the induced homomorphism

$$
h_{*}: \pi_{n}\left(E, e_{0}\right) \rightarrow \pi_{n}\left(F, f_{0}\right)
$$

is an isomorphism for $n \geq 2$. What can be said about h_{*} if $n=1$?
17. Show that the Freudenthal map

$$
E: \pi_{k}\left(S^{n}\right) \rightarrow \pi_{k+1}\left(S^{n+1}\right)
$$

is a homomorphism.
18. Definition. Let $f: X \rightarrow Y$ be a continuous map. The quotient space of the disjoint union $(X \times I) \cup Y$ obtained by identifying $(x, 1)$ with $f(x), x \in X$, is called the mapping cylinder of f.

Show that the mapping cylinder of $f: X \rightarrow Y$ is homotopy equivalent to Y.
19. Show that the unit sphere S^{n-1} and punctured n-space $\mathbb{R}^{n} \backslash\{p\}$ have the same homotopy type.
20. Here are some homotopy groups of spheres. Use them to determine other homotopy groups of spheres. (The symbol \mathbb{Z}_{p} denotes the group of integers modulo p).
(a) $\pi_{12}\left(S^{7}\right)=\{0\}$.
(b) $\pi_{14}\left(S^{8}\right) \cong \mathbb{Z}$.
(c) $\pi_{18}\left(S^{9}\right) \cong \mathbb{Z}_{240}$.
(d) $\pi_{18}\left(S^{10}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
21. Prove that homotopy equivalence for pairs is an equivalence relation.
22. Give an example of spaces X and Y having isomorphic homotopy groups in each dimension which do not have the same homotopy type.

7
 Further Developments in Homology

The preceding chapters have introduced homology groups for polyhedra and homotopy groups for arbitrary spaces. The homotopy groups are more general since they apply to more spaces. The process of extending homology to spaces more general than polyhedra began in the years 1921-1933 and has continued to the present day. The pioneers in this work were Oswald Veblen, Solomon Lefschetz, Leopold Vietoris, and Eduard Čech. In this chapter we shall examine some additional theory and applications of simplicial homology groups, notably the famous fixed point theorem and relative homology groups discovered by Lefschetz, and the singular homology groups, also due to Lefschetz, which extend homology theory to arbitrary spaces.

7.1 Chain Derivation

Chain mappings were introduced in Chapter 3 for the purpose of defining induced homomorphisms on the homology groups. We turn now to a particular chain mapping, the "chain derivation" $\varphi=\left\{\varphi_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(1)}\right)\right\}$, from the chain groups of a complex K to those of its first barycentric subdivision $K^{(1)}$. This will allow us to see that $H_{p}(K) \cong H_{p}\left(K^{(1)}\right)$, a problem that was glossed over in Chapter 3, and to establish the machinery necessary for a proof of Lefschetz' celebrated fixed point theorem.

Notation: If $\sigma^{p}=\left\langle v_{0} \ldots v_{p}\right\rangle$ is a p-simplex and v a vertex for which $\left\{v, v_{0}, \ldots, v_{p}\right\}$ is geometrically independent, then the symbol $v \sigma^{p}$ denotes the $(p+1)$-simplex

$$
v \sigma^{p}=\left\langle v v_{0} \ldots v_{p}\right\rangle .
$$

If $c=\sum g_{i} \cdot \sigma_{i}^{p}$ is a p-chain, then $v c$ denotes the $(p+1)$-chain

$$
v c=\sum g_{i} \cdot v \sigma_{i}^{p}
$$

This notation was used in Theorem 2.9.
The proof of the following lemma is left as an exercise:
Lemma. Let c be a p-chain on a complex K and v a vertex for which the $(p+1)$ chain $v c$ is defined. Then

$$
\partial(v c)=c-v \partial c .
$$

Definition. Let K be a complex. A chain mapping

$$
\varphi=\left\{\varphi_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(1)}\right)\right\}
$$

is defined inductively as follows: Each 0 -simplex σ^{0} of K is a 0 -simplex of the barycentric subdivision $K^{(1)}$, so we may consider $C_{0}(K)$ as a subgroup of $C_{0}\left(K^{(1)}\right)$. Define $\varphi_{0}: C_{0}(K) \rightarrow C_{0}\left(K^{(1)}\right)$ to be the inclusion map:

$$
\varphi_{0}(c)=c, \quad c \in C_{0}(K)
$$

For an elementary p-chain $1 \cdot \sigma^{p}$ on K, define

$$
\varphi_{p}\left(1 \cdot \sigma^{p}\right)=\dot{\sigma}^{p} \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right),
$$

where $\dot{\boldsymbol{\sigma}}^{p}$ denotes the barycenter of σ^{p}, and extend φ_{p} by linearity to a homomorphism $\varphi_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(1)}\right)$:

$$
\varphi_{p}\left(\sum g_{i} \cdot \sigma_{i}^{p}\right)=\sum \varphi_{p}\left(g_{i} \cdot \sigma_{i}^{p}\right), \quad \sum g_{i} \cdot \sigma_{i}^{p} \in C_{p}(K)
$$

The sequence $\varphi=\left\{\varphi_{p}\right\}$ of homomorphisms defined in this way is the first chain derivation on K. For $n>1$, the nth chain derivation on K is the composition of $\varphi^{(n-1)}$, the $(n-1)$ th chain derivation on K, with the first chain derivation of the $(n-1)$ th barycentric subdivision $K^{(n-1)}$. Thus the nth chain derivation on K is a chain mapping $\varphi^{(n)}=\left\{\varphi_{p}^{(n)}: C_{p}(K) \rightarrow C_{p}\left(K^{(n)}\right)\right\}$.

Example 7.1. Let us examine the first chain derivation of the complex $K=\mathrm{Cl}\left(\sigma^{2}\right)$, the closure of a 2 -simplex $\sigma^{2}=+\left\langle v_{0} v_{1} v_{2}\right\rangle$, shown with the barycentric subdivision $K^{(1)}$ in Figure 7.1.

Figure 7.1
In the figure, the additional vertices v_{3}, v_{4}, v_{5}, and v_{6} denote the barycenters of $\left\langle v_{0} v_{1}\right\rangle,\left\langle v_{0} v_{2}\right\rangle,\left\langle v_{1} v_{2}\right\rangle$, and $\left\langle v_{0} v_{1} v_{2}\right\rangle$ respectively. Then $\varphi_{0}: C_{0}(K) \rightarrow$ $C_{0}\left(K^{(1)}\right)$ is the inclusion map, and

$$
\begin{aligned}
\varphi_{1}\left(1 \cdot\left\langle v_{0} v_{1}\right\rangle\right) & =v_{3} \varphi_{0} \partial\left(1 \cdot\left\langle v_{0} v_{1}\right\rangle\right)=v_{3}\left(1 \cdot\left\langle v_{1}\right\rangle-1 \cdot\left\langle v_{0}\right\rangle\right) \\
& =1 \cdot\left\langle v_{3} v_{1}\right\rangle-1 \cdot\left\langle v_{3} v_{0}\right\rangle ;
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{1}\left(1 \cdot\left\langle v_{0} v_{2}\right\rangle\right)= & v_{4} \varphi_{0} \partial\left(1 \cdot\left\langle v_{0} v_{2}\right\rangle\right)=v_{4}\left(1 \cdot\left\langle v_{2}\right\rangle-1 \cdot\left\langle v_{0}\right\rangle\right) \\
= & 1 \cdot\left\langle v_{4} v_{2}\right\rangle-1 \cdot\left\langle v_{4} v_{0}\right\rangle ; \\
\varphi_{1}\left(1 \cdot\left\langle v_{1} v_{2}\right\rangle\right)= & v_{5} \varphi_{0} \partial\left(1 \cdot\left\langle v_{1} v_{2}\right\rangle\right)=v_{5}\left(1 \cdot\left\langle v_{2}\right\rangle-1 \cdot\left\langle v_{1}\right\rangle\right) \\
= & 1 \cdot\left\langle v_{5} v_{2}\right\rangle-1 \cdot\left\langle v_{5} v_{1}\right\rangle ; \\
\varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)= & v_{6} \varphi_{1} \partial\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)=v_{6} \varphi_{1}\left(1 \cdot\left\langle v_{1} v_{2}\right\rangle-1 \cdot\left\langle v_{0} v_{2}\right\rangle+1 \cdot\left\langle v_{0} v_{1}\right\rangle\right) \\
= & 1 \cdot\left\langle v_{6} v_{5} v_{2}\right\rangle-1 \cdot\left\langle v_{6} v_{5} v_{1}\right\rangle-1 \cdot\left\langle v_{6} v_{4} v_{2}\right\rangle+1 \cdot\left\langle v_{6} v_{4} v_{0}\right\rangle \\
& +1 \cdot\left\langle v_{6} v_{3} v_{1}\right\rangle-1 \cdot\left\langle v_{6} v_{3} v_{0}\right\rangle .
\end{aligned}
$$

Theorem 7.1. Each chain derivation is a chain mapping.
Proof. Since the composition of chain mappings is a chain mapping, it is sufficient to show that the first chain derivation is a chain mapping. Let $\varphi=\left\{\varphi_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(1)}\right)\right\}$ be a chain derivation in the notation of the definition. It must be shown that the diagram

is commutative for $p \geq 1$. Thus it is sufficient to show that

$$
\partial \varphi_{p}\left(1 \cdot \sigma^{p}\right)=\varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)
$$

for each elementary p-chain $1 \cdot \sigma^{p}$. For $p=1$,

$$
\begin{aligned}
\partial \varphi_{1}\left(1 \cdot \sigma^{1}\right) & =\partial\left(\dot{\sigma}^{1} \varphi_{0} \partial\left(1 \cdot \sigma^{1}\right)\right)=\varphi_{0} \partial\left(1 \cdot \sigma^{1}\right)-\dot{\sigma}^{1} \partial \varphi_{0} \partial\left(1 \cdot \sigma^{1}\right) \\
& =\varphi_{0} \partial\left(1 \cdot \sigma^{1}\right)-\dot{\sigma}^{1} \partial \partial\left(1 \cdot \sigma^{1}\right)=\varphi_{0} \partial\left(1 \cdot \sigma^{1}\right) .
\end{aligned}
$$

These equalities follow, in order, from the definition of φ_{1}, the lemma $\partial(v c)=$ $c-v \partial c$, the fact that φ_{0} is the inclusion map, and $\partial \partial=0$. Thus $\partial \varphi_{1}=\varphi_{0} \partial$, so the desired conclusion holds for $p=1$. Proceeding inductively, let $1 \cdot \sigma^{p}$ be an elementary p-chain on K. Then

$$
\begin{aligned}
\partial \varphi_{p}\left(1 \cdot \sigma^{p}\right) & =\partial\left(\dot{\sigma}^{p} \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)\right)=\varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)-\dot{\sigma}^{p} \partial \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right) \\
& =\varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)-\dot{\sigma}^{p} \varphi_{p-2} \partial \partial\left(1 \cdot \sigma^{p}\right)=\varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right) .
\end{aligned}
$$

The next to last equality uses the inductive assumption $\partial \varphi_{p-1}=\varphi_{p-2} \partial$. Thus $\partial \varphi_{p}=\varphi_{p-1} \partial$ for elementary p-chains and hence for all p-chains.

Theorem 7.2. Let K be a complex with first chain derivation $\varphi=\left\{\varphi_{p}\right\}$. There is a chain mapping

$$
\psi=\left\{\psi_{p}: C_{p}\left(K^{(1)}\right) \rightarrow C_{p}(K)\right\}
$$

such that $\psi_{p} \varphi_{p}$ is the identity map on $C_{p}(K)$ for each $p \geq 0$.
Proof. Such a chain mapping ψ is called a left inverse for φ. Let f be any simplicial map from $K^{(1)}$ to K having this property: If $\dot{\sigma}$ is a vertex of $K^{(1)}$, then $f(\dot{\sigma})$ is a vertex of the simplex σ of which $\dot{\sigma}$ is the barycenter. Let $\psi=\left\{\psi_{p}\right\}$ be
the chain mapping induced by f. Observe that if τ^{p} is a p-simplex of $K^{(1)}$, then

$$
\psi_{p}\left(1 \cdot \tau^{p}\right)=\eta \cdot \sigma^{p}
$$

where η is 0,1 or -1 and σ^{p} is the p-simplex of K which produces τ^{p} in its barycentric subdivision.

Clearly $\psi_{0} \varphi_{0}$ is the identity map on $C_{0}(K)$. Suppose that $\psi_{p-1} \varphi_{p-1}$: $C_{p-1}(K) \rightarrow C_{p-1}(K)$ is the identity, and consider $\psi_{p} \varphi_{p}: C_{p}(K) \rightarrow C_{p}(K)$. If $1 \cdot \sigma^{p}$ is an elementary p-chain on K, then

$$
\psi_{p} \varphi_{p}\left(1 \cdot \sigma^{p}\right)=\psi_{p}\left(\dot{\sigma}^{p} \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)\right)=m \cdot \sigma^{p}
$$

for some integer m. But

$$
\partial\left(m \cdot \sigma^{p}\right)=\partial \psi_{p} \varphi_{p}\left(1 \cdot \sigma^{p}\right)=\psi_{p-1} \partial \varphi_{p}\left(1 \cdot \sigma^{p}\right)=\psi_{p-1} \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)=\partial\left(1 \cdot \sigma^{p}\right)
$$

so

$$
m \partial\left(1 \cdot \sigma^{p}\right)=\partial\left(m \cdot \sigma^{p}\right)=\partial\left(1 \cdot \sigma^{p}\right)
$$

and hence $m=1$. Thus

$$
\psi_{p} \varphi_{p}\left(1 \cdot \sigma^{p}\right)=1 \cdot \sigma^{p}
$$

so $\psi_{p} \varphi_{p}$ is the identity map on $C_{p}(K)$.
Example 7.2. The preceding theorem is not as complicated as it may appear. Consider the chain derivation $\varphi=\left\{\varphi_{p}\right\}_{0}^{2}$ of Example 7.1. We may define the simplicial map f from $K^{(1)}$ to K, the closure of the 2 -simplex $\left\langle v_{0} v_{1} v_{2}\right\rangle$, in any manner consistent with having $f\left(v_{i}\right)$ a vertex of the simplex of which v_{i} is the barycenter. Thus we must have

$$
f\left(v_{0}\right)=v_{0}, \quad f\left(v_{1}\right)=v_{1}, \quad f\left(v_{2}\right)=v_{2}
$$

One possible definition for f on the remaining vertices is

$$
f\left(v_{3}\right)=f\left(v_{4}\right)=v_{0}, \quad f\left(v_{5}\right)=v_{1}, \quad f\left(v_{6}\right)=v_{2} .
$$

Let $\psi=\left\{\psi_{p}\right\}_{0}^{2}$ be the chain mapping induced by f, as in the proof of Theorem 7.2. Then

$$
\begin{aligned}
& \psi_{0}\left(1 \cdot\left\langle v_{0}\right\rangle\right)=\psi_{0}\left(1 \cdot\left\langle v_{3}\right\rangle\right)=\psi_{0}\left(1 \cdot\left\langle v_{4}\right\rangle\right)=1 \cdot\left\langle v_{0}\right\rangle ; \\
& \psi_{0}\left(1 \cdot\left\langle v_{1}\right\rangle\right)=\psi_{0}\left(1 \cdot\left\langle v_{5}\right\rangle\right)=1 \cdot\left\langle v_{1}\right\rangle ; \\
& \psi_{0}\left(1 \cdot\left\langle v_{2}\right\rangle\right)=\psi_{0}\left(1 \cdot\left\langle v_{6}\right\rangle\right)=1 \cdot\left\langle v_{2}\right\rangle . \\
& \psi_{1}\left(1 \cdot\left\langle v_{0} v_{4}\right\rangle\right)=0 ; \quad \psi_{1}\left(1 \cdot\left\langle v_{0} v_{6}\right\rangle\right)=1 \cdot\left\langle v_{0} v_{2}\right\rangle ; \quad \text { etc. } \\
& \psi_{2}\left(1 \cdot\left\langle v_{3} v_{1} v_{6}\right\rangle\right)=1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle ; \quad \psi_{2}\left(1 \cdot\left\langle v_{0} v_{4} v_{6}\right\rangle\right)=0 ; \quad \text { etc. }
\end{aligned}
$$

Consider, for example,

$$
\psi_{1} \varphi_{1}\left(1 \cdot\left\langle v_{0} v_{1}\right\rangle\right)=\psi_{1}\left(1 \cdot\left\langle v_{3} v_{1}\right\rangle-1 \cdot\left\langle v_{3} v_{0}\right\rangle\right)=1 \cdot\left\langle v_{0} v_{1}\right\rangle-0=1 \cdot\left\langle v_{0} v_{1}\right\rangle .
$$

Let us compute $\psi_{2} \varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)$, where $\varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)$ is expressed as in Example 7.1:

$$
\begin{aligned}
\varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)= & 1 \cdot\left\langle v_{6} v_{5} v_{2}\right\rangle-1 \cdot\left\langle v_{6} v_{5} v_{1}\right\rangle-1 \cdot\left\langle v_{6} v_{4} v_{2}\right\rangle \\
& +1 \cdot\left\langle v_{6} v_{4} v_{0}\right\rangle+1 \cdot\left\langle v_{6} v_{3} v_{1}\right\rangle-1 \cdot\left\langle v_{6} v_{3} v_{0}\right\rangle .
\end{aligned}
$$

Since f collapses all 2-simplexes except $\left\langle v_{6} v_{3} v_{1}\right\rangle$, then

$$
\psi_{2} \varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)=\psi_{2}\left(1 \cdot\left\langle v_{6} v_{3} v_{1}\right\rangle\right)=1 \cdot\left\langle v_{2} v_{0} v_{1}\right\rangle=1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle .
$$

Definition. A pair $\varphi=\left\{\varphi_{p}\right\}_{0}^{\infty}$ and $\mu=\left\{\mu_{p}\right\}_{0}^{\infty}$ of chain mappings from a complex K to a complex L are chain homotopic means that there is a sequence $\mathscr{D}=\left\{D_{p}\right\}_{-1}^{\infty}$ of homomorphisms $D_{p}: C_{p}(K) \rightarrow C_{p+1}(L)$ such that

$$
\partial D_{p}+D_{p-1} \partial=\varphi_{p}-\mu_{p}, \quad D_{-1}=0
$$

The sequence \mathscr{D} is called a deformation operator or a chain homotopy.
The chain homotopy relation was designed explicitly to produce the next theorem.

Theorem 7.3. If φ and μ are chain homotopic chain mappings from complex K to complex L, then the induced homomorphisms φ_{p}^{*} and μ_{p}^{*} from $H_{p}(K)$ to $H_{p}(L)$ are equal, $p \geq 0$.

Proof. Since φ and μ are chain homotopic, there is a deformation operator $\mathscr{D}=\left\{D_{p}\right\}_{-1}^{\infty}$ as specified in the definition. For $\left[z_{p}\right] \in H_{p}(K)$,

$$
\varphi_{p}^{*}\left(\left[z_{p}\right]\right)-\mu_{p}^{*}\left(\left[z_{p}\right]\right)=\left[\varphi_{p}\left(z_{p}\right)-\mu_{p}\left(z_{p}\right)\right]=\left[\partial D_{p}\left(z_{p}\right)+D_{p-1}\left(\partial z_{p}\right)\right]=0 .
$$

The final equality follows because $\partial z_{p}=0$ for any cycle and $\partial D_{p}\left(z_{p}\right)$ is a boundary. Thus $\varphi_{p}^{*}=\mu_{p}^{*}$ for each value of p.

Definition. Complexes K and L are chain equivalent means that there are chain mappings φ from K to L and ψ from L to K such that the composite chain mappings $\psi \varphi=\left\{\psi_{p} \varphi_{p}\right\}$ and $\varphi \psi=\left\{\varphi_{p} \psi_{p}\right\}$ are chain homotopic to the identity chain mappings on K and L respectively.

It is left to the reader to show that chain homotopy is an equivalence relation for chain mappings and that chain equivalence is an equivalence relation for complexes.

Theorem 7.4. Chain equivalent complexes K and L have isomorphic homology groups in corresponding dimensions.
Proof. If φ and ψ are the chain mappings required by the definition of chain equivalence, then Theorem 7.3 insures that

$$
\begin{aligned}
& \psi_{p}^{*} \varphi_{p}^{*}: H_{p}(K) \rightarrow H_{p}(K) \\
& \varphi_{p}^{*} \psi_{p}^{*}: H_{p}(L) \rightarrow H_{p}(L)
\end{aligned}
$$

are the identity maps, so φ_{p}^{*} is an isomorphism for each value of p.
One objective of this section is to prove that the homology groups of a complex K are isomorphic to those of its barycentric subdivision $K^{(1)}$. In view of Theorem 7.4, it is sufficient to show that K and $K^{(1)}$ are chain equivalent.

For this we need chain mappings φ from K to $K^{(1)}$ and ψ from $K^{(1)}$ to K for which $\psi \varphi$ and $\varphi \psi$ are chain homotopic to the appropriate identity chain maps. We have φ, the first chain derivation of K; we also have ψ, the left inverse provided by Theorem 7.2. We know that $\psi \varphi$ is the identity chain map on K, and we must show that $\varphi \psi$ is chain homotopic to the identity chain map on $K^{(1)}$. This is a rather large assignment; it is accomplished by the next proof.

Theorem 7.5. A complex K and its first barycentric subdivision are chain equivalent.

Proof. In view of the preceding discussion, it is sufficient to show that $\varphi \psi$ is chain homotopic to the identity map on $K^{(1)}$. This requires a deformation operator $\mathscr{D}=\left\{D_{p}: C_{p}\left(K^{(1)}\right) \rightarrow C_{p+1}\left(K^{(1)}\right)\right\}$ such that $D_{-1}=0$ and, for each elementary p-chain $1 \cdot \tau^{p}$ on $K^{(1)}$,

$$
1 \cdot \tau^{p}-\varphi_{p} \psi_{p}\left(1 \cdot \tau^{p}\right)=\partial D_{p}\left(1 \cdot \tau^{p}\right)-D_{p-1} \partial\left(1 \cdot \tau^{p}\right)
$$

We must have $D_{-1}=0$. To define D_{0}, let w be a vertex of $K^{(1)}$. Then

$$
\psi_{0}(1 \cdot\langle w\rangle)=1 \cdot\langle v\rangle
$$

where v is a vertex of some simplex σ of K of which w is the barycenter. Then

$$
\varphi_{0} \psi_{0}(1 \cdot\langle w\rangle)=\varphi_{0}(1 \cdot\langle v\rangle)=1 \cdot\langle v\rangle .
$$

Thus

$$
1 \cdot\langle w\rangle-\varphi_{0} \psi_{0}(1 \cdot\langle w\rangle)=1 \cdot\langle w\rangle-1 \cdot\langle v\rangle=\partial(1 \cdot\langle v w\rangle)
$$

so we define

$$
D_{0}(1 \cdot\langle w\rangle)=1 \cdot\langle v w\rangle
$$

The function D_{0} is defined by this procedure for every elementary 0 -chain $1 \cdot\langle w\rangle$ and extended by linearity to a homomorphism $D_{0}: C_{0}\left(K^{(1)}\right) \rightarrow$ $C_{1}\left(K^{(1)}\right)$. Proceeding inductively, suppose that D_{0}, \ldots, D_{p-1} have all been defined, and let $1 \cdot \tau^{p}$ be an elementary p-chain on $K^{(1)}$. Then, for every ($p-1$)-chain c,

$$
c-\varphi_{p-1} \psi_{p-1}(c)=\partial D_{p-1}(c)+D_{p-2} \partial(c)
$$

so

$$
\partial D_{p-1}(c)=c-\varphi_{p-1} \psi_{p-1}(c)-D_{p-2} \partial c
$$

Consider

$$
z=1 \cdot \tau^{p}-\varphi_{p} \psi_{p}\left(1 \cdot \tau^{p}\right)-D_{p-1} \partial\left(1 \cdot \tau^{p}\right)
$$

Then

$$
\begin{aligned}
\partial z= & \partial\left(1 \cdot \tau^{p}\right)-\partial \varphi_{p} \psi_{p}\left(1 \cdot \tau^{p}\right)-\partial D_{p-1} \partial\left(1 \cdot \tau^{p}\right) \\
= & \partial\left(1 \cdot \tau^{p}\right)-\varphi_{p-1} \psi_{p-1} \partial\left(1 \cdot \tau^{p}\right) \\
& -\left(\partial\left(1 \cdot \tau^{p}\right)-\varphi_{p-1} \psi_{p-1} \partial\left(1 \cdot \tau^{p}\right)-D_{p-2} \partial \partial\left(1 \cdot \tau^{p}\right)\right)=0 .
\end{aligned}
$$

This means that z is a cycle on $K^{(1)}$. An argument analogous to that used in
the proof of Theorem 2.9 shows that z is the boundary of a $(p+1)$-chain c_{p+1} on $K^{(1)}$. We then define

$$
D_{p}\left(1 \cdot \tau^{p}\right)=c_{p+1}
$$

and extend by linearity. This completes the definition of the deformation operator \mathscr{D} and shows that K and $K^{(1)}$ are chain equivalent.

Theorem 7.6. The homology groups $H_{p}(K)$ and $H_{p}\left(K^{(n)}\right)$ are isomorphic for all integers $p \geq 0, n \geq 1$, and each complex K.

Proof. The inductive definition of $K^{(n)}$ and Theorem 7.5 show that K and $K^{(n)}$ are chain equivalent for $n \geq 1$. Theorem 7.4 then shows that $H_{p}(K) \cong$ $H_{p}\left(K^{(n)}\right), p \geq 0$.

Deformation operators were invented by Solomon Lefschetz (1884-1972). The proof of Theorem 7.5 given above is due to Lefschetz [13, 15].

Let $|K|$ and $|L|$ be polyhedra with triangulations K and L respectively and $f:|K| \rightarrow|L|$ a continuous map. We now have the machinery necessary to prove that the induced homomorphisms $f_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)$ are uniquely determined by f. Recall that this problem was postponed in Chapter 3. According to the Simplicial Approximation Theorem (Theorem 3.6), there is a barycentric subdivision $K^{(k)}$ of K and a simplicial mapping g from $K^{(k)}$ to L such that, as functions from $|K|$ to $|L|, f$ and g are homotopic. There is some freedom in the choices of g and the degree k of the barycentric subdivision. From the proof of Theorem 3.6, k must be large enough so that $K^{(k)}$ is star related to L relative to f. The simplicial map g is given by the proof of Theorem 3.4; for a vertex u of $K^{(k)}, g(u)$ may be any vertex of L satisfying

$$
f(\operatorname{ost}(u)) \subset \operatorname{ost}(g(u))
$$

To show that the sequence of homomorphisms is independent of the admissible choices for g, it is sufficient to prove that any admissible change in the value of g at one vertex does not alter the induced homomorphisms $g_{p}^{*}: H_{p}\left(K^{(k)}\right) \rightarrow H_{p}(L)$. Any simplicial map satisfying the requirements of Theorem 3.4 can be obtained from any other one by a finite sequence of such changes at single vertices. Suppose then that g and h are two simplicial mappings from $K^{(k)}$ into L which have identical values at each vertex of $K^{(k)}$ except for one vertex v and that, for this vertex, ost $(g(v))$ and $\operatorname{ost}(h(v))$ both contain $f(\operatorname{ost}(v))$. We shall show that the chain mappings $\left\{g_{p}: C_{p}\left(K^{(k)}\right) \rightarrow C_{p}(L)\right\}$ and $\left\{h_{p}: C_{p}\left(K^{(k)}\right) \rightarrow C_{p}(L)\right\}$ are chain homotopic and conclude from Theorem 7.3 that the induced homomorphisms g_{p}^{*} and h_{p}^{*} from $H_{p}\left(K^{(k)}\right)$ to $H_{p}(L)$ are identical for each value of p.

For our deformation operator $\mathscr{D}=\left\{D_{p}: C_{p}\left(K^{(k)}\right) \rightarrow C_{p+1}(L)\right\}_{-1}^{\infty}$, we must have $D_{-1}=0$. For any vertex u of $K^{(k)}$ with $u \neq v$, define $D_{0}(1 \cdot\langle u\rangle)=0$, and define

$$
D_{0}(1 \cdot\langle v\rangle)=1 \cdot\langle h(v) g(v)\rangle .
$$

Now extend D_{0} by linearity to a homomorphism from $C_{0}\left(K^{(k)}\right)$ to $C_{1}(L)$.

Note that

$$
\begin{aligned}
\partial D_{0}(1 \cdot\langle v\rangle)+D_{-1} \partial(1 \cdot\langle v\rangle) & =\partial(1 \cdot\langle h(v) g(v)\rangle)=1 \cdot\langle g(v)\rangle-1 \cdot\langle h(v)\rangle \\
& =g_{0}(1 \cdot\langle v\rangle)-h_{0}(1 \cdot\langle v\rangle) .
\end{aligned}
$$

If u is a vertex of $K^{(k)}$ different from v, then

$$
g_{0}(1 \cdot\langle u\rangle)=h_{0}(1 \cdot\langle u\rangle), \quad D_{0}(1 \cdot\langle u\rangle)=0
$$

so the desired relation

$$
\partial D_{p}+D_{p-1} \partial=g_{p}-h_{p}
$$

holds for $p=0$.
For the general case, let $1 \cdot \sigma^{p}$ be an elementary p-chain in $C_{p}\left(K^{(k)}\right)$. If v is not a vertex of σ^{p}, then we define $D_{p}\left(1 \cdot \sigma^{p}\right)=0$ in $C_{p+1}(L)$. If v is a vertex of σ^{p}, then $\sigma^{p}=v \sigma^{p-1}$ for some $(p-1)$-simplex σ^{p-1}, and we define

$$
D_{p}\left(1 \cdot \sigma^{p}\right)=1 \cdot h(v) g(v) \tau
$$

where τ is the $(p-1)$-simplex in L which is the image of σ^{p-1} under both g and h. As usual, D_{p} is extended linearly to a homomorphism from $C_{p}\left(K^{(k)}\right)$ to $C_{p+1}(L)$. Then for the case in which v is a vertex of σ^{p},

$$
\begin{aligned}
\partial D_{p}\left(1 \cdot \sigma^{p}\right)+D_{p-1} & \partial\left(1 \cdot \sigma^{p}\right) \\
& =\partial(1 \cdot h(v) g(v) \tau)+D_{p-1} \partial\left(1 \cdot v \sigma^{p-1}\right) \\
& =1 \cdot g(v) \tau-h(v) \partial(1 \cdot g(v) \tau)+D_{p-1}\left(1 \cdot \sigma^{p-1}-v \partial\left(1 \cdot \sigma^{p-1}\right)\right) \\
& =1 \cdot g(v) \tau-h(v)[1 \cdot \tau-g(v) \partial(1 \cdot \tau)]-D_{p-1}\left(v \partial\left(1 \cdot \sigma^{p-1}\right)\right) \\
& =1 \cdot g(v) \tau-1 \cdot h(v) \tau+h(v) g(v) \partial(1 \cdot \tau)-h(v) g(v) \partial(1 \cdot \tau) \\
& =g_{p}\left(1 \cdot v \sigma^{p-1}\right)-h_{p}\left(1 \cdot v \sigma^{p-1}\right)=g_{p}\left(1 \cdot \sigma^{p}\right)-h_{p}\left(1 \cdot \sigma^{p}\right) .
\end{aligned}
$$

Thus

$$
\partial D_{p}+D_{p-1} \partial=g_{p}-h_{p}, \quad p \geq 0
$$

and the chain mappings induced by g and h must be chain homotopic. Theorem 7.3 now guarantees that $g_{p}^{*}=h_{p}^{*}$, so we conclude that the induced homomorphism f_{p}^{*} is independent of the allowable choices of the simplicial map g.

Question: Where did we use the assumption that $\operatorname{ost}(g(v))$ and $\operatorname{ost}(h(v))$ both contain $f(\operatorname{ost}(v))$?

The homomorphism $f_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)$ is actually the composition $g_{p}^{*} \mu_{p}^{*}$ from the diagram

$$
H_{p}(K) \xrightarrow{\mu_{p}^{*}} H_{p}\left(K^{(k)}\right) \xrightarrow{g_{p}^{*}} H_{p}(L)
$$

where μ_{p}^{*} is the isomorphism induced by chain derivation. For a barycentric subdivision $K^{(r)}$ of higher degree, let $\psi_{p}^{*}: H_{p}(K) \rightarrow H_{p}\left(K^{(r)}\right)$ be the isomorphism induced by chain derivation and $j_{p}^{*}: H_{p}\left(K^{(r)}\right) \rightarrow H_{p}(L)$ the homomorphism induced by an admissible simplicial map. It is left as an exercise for the reader to show that $g_{p}^{*} \mu_{p}^{*}=j_{p}^{*} \psi_{p}^{*}$ and hence that f_{p}^{*} is also independent of the allowable choices for the degree of the barycentric subdivision $K^{(k)}$.

7.2 The Lefschetz Fixed Point Theorem

This section is devoted to the most famous of all the theorems about fixed points of continuous maps. Lefschetz introduced in 1926 a number $\lambda(f)$ associated with each continuous map $f:|K| \rightarrow|K|$ from a polyhedron into itself. If the Lefschetz number $\lambda(f)$ is not zero, then f has at least one fixed point. (The Lefschetz number does not specify the number of fixed points.) Brouwer's Fixed Point Theorem (Theorem 3.13) can be proved as a simple corollary.

In this section we assume that rational numbers rather than integers are used as the coefficient group for chains. Thus the p th chain group $C_{p}(K)$ of a complex K is considered a vector space over the field of rational numbers.

Definition. Let K be a complex with $\left\{\sigma_{i}^{p}\right\}$ its set of p-simplexes, and let $\varphi=\left\{\varphi_{p}\right\}$ be a chain mapping on K. For a p-simplex σ_{i}^{p} of K,

$$
\varphi_{p}\left(1 \cdot \sigma_{i}^{p}\right)=\sum_{\sigma_{j}^{p} \in K} a_{i j}^{p} \cdot \sigma_{j}^{p}
$$

for some rational numbers $a_{i j}^{p}$, one for each p-simplex σ_{j}^{p} of K. Then σ_{i}^{p} is a fixed simplex of φ provided that $a_{i i}^{p}$, the coefficient of σ_{i}^{p} in the expansion of $\varphi_{p}\left(1 \cdot \sigma_{i}^{p}\right)$, is not zero. The number $(-1)^{p} a_{i i}^{p}$ is called the weight of the fixed simplex σ_{i}^{p}. Let

$$
A_{p}=\left(a_{i j}^{p}\right)
$$

be the matrix whose entry in row i and column j is $a_{i j}^{p}$. Since the trace of a square matrix is the sum of its diagonal elements, then

$$
\operatorname{trace} A_{p}=\sum a_{i i}^{p}
$$

and the number

$$
\lambda(\varphi)=\sum_{p}(-1)^{p} \operatorname{trace}\left(A_{p}\right)
$$

is the sum of the weights of all the fixed simplexes of φ. The number $\lambda(\varphi)$ is called the Lefschetz number of φ. (Note that if $\lambda(\varphi) \neq 0$, then φ must have at least one fixed simplex in some dimension p.)

The matrix $A_{p}=\left(a_{i j}^{p}\right)$ is the matrix of φ_{p} as a linear transformation from the vector space $C_{p}(K)$ into itself relative to the basis of elementary p-chains $\left\{1 \cdot \sigma_{i}^{p}\right\}$. Since the trace of the matrix of a linear transformation is not affected by a change of basis, the Lefschetz number $\lambda(\varphi)$ is the same regardless of the choice of basis for $C_{p}(K)$.

Example 7.3. Let $\varphi_{p}: C_{p}(K) \rightarrow C_{p}(K)$ be the identity map on $C_{p}(K)$ for some complex $K, p \geq 0$. Then

$$
a_{i i}^{p}=1, \quad a_{i j}^{p}=0 \quad \text { for } i \neq j
$$

and each simplex is a fixed simplex. Thus

$$
\lambda(\varphi)=\sum(-1)^{p} \operatorname{trace} A_{p}=\sum(-1)^{p} \alpha_{p}=\chi(K)
$$

where α_{p} is the number of simplexes of dimension p and $\chi(K)$ is the Euler characteristic of K. Thus the Lefschetz number is a generalization of the Euler characteristic.

Theorem 7.7. Let $\varphi=\left\{\varphi_{p}\right\}$ be a chain mapping on a complex K. The Lefschetz number $\lambda(\varphi)$ is completely determined by the induced homomorphisms $\varphi_{p}^{*}: H_{p}(K) \rightarrow H_{p}(K)$ on the homology groups.

Proof. The proof is similar to the proof of the Euler-Poincaré Theorem (Theorem 2.5), and we use the same notation. Then $\left\{z_{p}^{i}\right\} \cup\left\{b_{p}^{i}\right\}$ is a basis for the cycle vector space $Z_{p},\left\{b_{p}^{i}\right\}$ is a basis for the boundary space $B_{p},\left\{d_{p}^{i}\right\}$ is a basis for $D_{p}, b_{p}^{i}=\partial d_{p+1}^{i}$, and n is the dimension of K, as in the proof of Theorem 2.5. Note that $\left\{b_{p}^{i}\right\} \cup\left\{z_{p}^{i}\right\} \cup\left\{d_{p}^{i}\right\}$ is a basis for C_{p}. For any b_{p}^{i},

$$
\varphi_{p}\left(b_{p}^{i}\right)=\sum_{j} a_{i, j}^{p} b_{p}^{j}, \quad 0 \leq p \leq n-1,
$$

for some rational coefficients $a_{i j}^{p}$ since the linear transformation φ_{p} takes B_{p} into B_{p}. For any $z_{p}^{i}, 0 \leq p \leq n, \varphi_{p}\left(z_{p}^{i}\right)$ must be a cycle, so there are coefficients $a_{i j}^{\prime p}, e_{i j}^{p}$ such that

$$
\varphi_{p}\left(z_{p}^{i}\right)=\sum_{j} a_{i j}^{\prime p} b_{p}^{j}+\sum_{j} e_{i j}^{p} z_{p}^{j} .
$$

For any $d_{p}^{i}, 1 \leq p \leq n$, there are coefficients $a_{i j}^{\prime \prime p}, e_{i j}^{\prime p}$, $g_{i j}^{p}$ such that

$$
\varphi_{p}\left(d_{p}^{i}\right)=\sum_{j} a_{i j}^{\mu p} b_{p}^{j}+\sum_{j} e_{i j}^{i} z_{p}^{j}+\sum_{j} g_{i j}^{p} d_{p}^{j} .
$$

Then

$$
\lambda(\varphi)=\sum_{i=0}^{n}(-1)^{p}\left(\operatorname{trace} A_{p}+\operatorname{trace} E_{p}+\operatorname{trace} G_{p}\right)
$$

where

$$
A_{p}=\left(a_{i j}^{p}\right), \quad E_{p}=\left(e_{i j}^{p}\right), \quad G_{p}=\left(g_{i j}^{p}\right),
$$

and $A_{n}=G_{0}$ is the zero matrix. Now

$$
\partial \varphi_{p+1}\left(d_{p+1}^{i}\right)=\varphi_{p} \partial\left(d_{p+1}^{i}\right)=\varphi_{p}\left(b_{p}^{i}\right)=\sum a_{i j}^{p} b_{p}^{j} .
$$

Also,

$$
\begin{aligned}
\partial \varphi_{p+1}\left(d_{p+1}^{i}\right) & =\partial\left(\sum a_{i j}^{n p+1} b_{p+1}^{j}+\sum e_{i j}^{\prime p+1} z_{p+1}^{j}+\sum g_{i j}^{p+1} d_{p+1}^{j}\right) \\
& =\sum g_{i j}^{p+1} \partial\left(d_{p+1}^{j}\right)=\sum g_{i j}^{p+1} b_{p}^{j} .
\end{aligned}
$$

Then

$$
a_{i j}^{p}=g_{i j}^{p+1}, \quad A_{p}=G_{p+1}, \quad 0 \leq p \leq n-1,
$$

and the sum

$$
\lambda(\varphi)=\sum_{i=0}^{n}(-1)^{p}\left(\operatorname{trace} A_{p}+\operatorname{trace} E_{p}+\operatorname{trace} G_{p}\right)
$$

telescopes to give

$$
\lambda(p)=\sum_{i=0}^{n}(-1)^{p} \text { trace } E_{p} .
$$

This means that the Lefschetz number $\lambda(\varphi)$ is completely determined by the action of the maps φ_{p} on the generating cycles z_{p}^{i} of $H_{p}(K)$. The coefficients $e_{i j}^{p}$ are determined by the induced homomorphisms $\varphi_{p}^{*}: H_{p}(K) \rightarrow H_{p}(K)$ because the homology classes $\left[z_{p}^{i}\right.$] generate $H_{p}(K)$:

$$
\varphi_{p}^{*}\left(\left[z_{p}^{i}\right]\right)=\sum_{j} e_{i j}^{p}\left[z_{p}^{j}\right] .
$$

Thus the induced homomorphisms completely determine the coefficients $e_{i j}$ which completely determine $\lambda(\varphi)$, so the theorem follows.

Thus far we have defined the Lefschetz number for chain mappings. This definition must be extended to continuous mappings.

Definition. Let K be a complex and $f:|K| \rightarrow|K|$ a continuous function. Let $K^{(s)}$ be a barycentric subdivision of K and g a simplicial map from $K^{(s)}$ to K which is a simplicial approximation of f (Theorem 3.6). Then g induces a chain mapping $\left\{g_{p}: C_{p}\left(K^{(s)}\right) \rightarrow C_{p}(K)\right\}$. Let $\mu=\left\{\mu_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(s)}\right)\right\}$ be the s th chain derivation on K. The Lefschetz number $\lambda(f)$ of f is the Lefschetz number of the composite chain mapping $\left\{g_{p} \mu_{p}: C_{p}(K) \rightarrow C_{p}(K)\right\}$.

It appears that the Lefschetz number is influenced by the possible choices for g and s. The number is independent of these choices, however, since it is completely determined by the induced homomorphisms

$$
f_{p}^{*}=g_{p}^{*} \mu_{p}^{*}: H_{p}(K) \rightarrow H_{p}(K)
$$

and f_{p}^{*} is independent of the allowable choices for g and s.
Theorem 7.8 (The Lefschetz Fixed Point Theorem). Let K be a complex and $f:|K| \rightarrow|K|$ a continuous map. If the Lefschetz number $\lambda(f)$ is not 0 , then f has a fixed point.
Proof. Suppose to the contrary that f has no fixed point. Since $|K|$ is compact, there is a number $\epsilon>0$ such that if $x \in|K|$, then the distance $\|f(x)-x\| \geq \epsilon$. By replacing K with a suitable barycentric subdivision if necessary, we may assume that mesh $K<\epsilon / 3$. According to the proof of the Simplicial Approximation Theorem (Theorem 3.6), there is a positive integer s and a simplicial map g from $K^{(s)}$ to K homotopic to f such that, for each x in $|K|, f(x)$ and $g(x)$ lie in a common simplex of K. Then $\|f(x)-g(x)\|<\epsilon / 3$ for all $x \in|K|$.

Suppose that some simplex σ of K contains a point x such that $g(x)$ is also in σ. Then

$$
\|f(x)-x\| \leq\|f(x)-g(x)\|+\|g(x)-x\|<2 \epsilon / 3
$$

which contradicts the fact that $\|f(x)-x\| \geq \epsilon$. Thus σ and $g(\sigma)$ are disjoint for all σ in K. Consider the sth chain derivation $\mu=\left\{\mu_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(s)}\right)\right\}$ and the chain mapping $\left\{g_{p}: C_{p}\left(K^{(s)} \rightarrow C_{p}(K)\right\}\right.$ induced by g. If σ^{p} is a p simplex of K, then $\mu_{p}\left(1 \cdot \sigma^{p}\right)$ is a chain on $K^{(s)}$ all of whose simplexes with nonzero coefficient are contained in σ^{p}. Since σ^{p} and $g\left(\sigma^{p}\right)$ are disjoint, then $g_{p} \mu_{p}\left(1 \cdot \sigma^{p}\right)$ is a p-chain on K none of whose simplexes with nonzero coefficient
intersects σ. Thus $g_{p} \mu_{p}$ has no fixed simplex, and the Lefschetz number of the chain mapping $\left\{g_{p} \mu_{p}\right\}$ is zero. But this is the Lefschetz number of f, contradicting the hypothesis $\lambda(f) \neq 0$.

Corollary (The Brouwer Fixed Point Theorem). If σ^{n} is an n-simplex, n a positive integer, and $f: \sigma^{n} \rightarrow \sigma^{n}$ a continuous map, then f has a fixed point.
Proof. Let $K=\mathrm{Cl}\left(\sigma^{n}\right)$. Then $H_{0}(K) \cong \mathbb{Z}, H_{p}(K)=\{0\}$ for $p>0$. Let v be a vertex of σ^{n} so that the homology class $[1 \cdot\langle v\rangle]$ may be considered a generator of $H_{0}(K)$ (Theorem 2.4). Then

$$
f_{0}^{*}([1 \cdot\langle v\rangle])=[1 \cdot\langle v\rangle],
$$

and the coefficient matrix E_{0} of Theorem 7.7 has trace 1. (Why?) Each matrix E_{p} for $p>0$ has only zero entries, and hence

$$
\lambda(f)=\sum(-1)^{p} \text { trace } E_{p}=1
$$

Thus $\lambda(f) \neq 0$, so f must have a fixed point.
Corollary. Every continuous map from S^{n} to $S^{n}, n \geq 1$, whose degree is not 1 or -1 has a fixed point.
Proof. Recall from Theorem 2.9 that $H_{0}\left(S^{n}\right) \cong H_{n}\left(S^{n}\right) \cong \mathbb{Z}$ and $H_{p}\left(S^{n}\right)=$ $\{0\}$ otherwise. If $[1 \cdot\langle v\rangle]$ and $\left[z_{n}\right]$ are generators of $H_{0}\left(S^{n}\right)$ and $H_{n}\left(S^{n}\right)$ respectively, then

$$
\begin{aligned}
f_{0}^{*}([1 \cdot\langle v\rangle]) & =[1 \cdot\langle v\rangle] \\
f_{n}^{*}\left(\left[z_{n}\right]\right) & =d\left[z_{n}\right]
\end{aligned}
$$

where d is the degree of f. Then

$$
\lambda(f)=1+(-1)^{n} d
$$

so $\lambda(f) \neq 0$ if d is not 1 or -1 .
Corollary. Iff: $S^{n} \rightarrow S^{n}$ is the antipodal map, then the degree off is $(-1)^{n+1}$. Proof. Since f has no fixed point, then $\lambda(f)=0$. Hence

$$
0=1+(-1)^{n} d
$$

where d is the degree of f. This gives $d=(-1)^{n+1}$.
The Lefschetz Fixed Point Theorem was discovered by Lefschetz in 1926 [47, 48]. A simpler proof, the one used in this book, was published by H. Hopf in 1928 [40].

7.3 Relative Homology Groups

Suppose that K is a complex and L is a complex contained in K. It often happens that one knows the homology groups of either K of L and needs to know the homology groups of the other. The groups $H_{p}(K)$ and $H_{p}(L)$ can
be compared using the "relative homology groups" $H_{p}(K / L)$ to which this section is devoted. The intuitive idea is to "remove" all chains on L by considering quotient groups. The groups $H_{p}(K), H_{p}(L)$, and $H_{p}(K / L)$ form a sequence of groups and homomorphisms called the "homology sequence." Using this sequence, one can often compute any one of the groups $H_{p}(K)$, $H_{p}(L)$, or $H_{p}(K / L)$ provided that enough information is known about the others.

Definition. A subcomplex of a complex K is a complex L with the property that each simplex of L is a simplex of K.

Note that not every subset of a complex is a subcomplex; the subset must be a complex in its own right. The p-skeleton of a complex is one type of subcomplex. Note also that the empty set \varnothing is a subcomplex of each complex K; the relative homology groups $H_{p}(K / L)$ will reduce to $H_{p}(K)$ when $L=\varnothing$.

Definition. Let K be a complex with subcomplex L. By assigning value 0 to each simplex of the complement $K \backslash L$, each chain on L can be considered a chain on K, and we can consider $C_{p}(L)$ as a subgroup of $C_{p}(K), p \geq 0$. The relative p-dimensional chain group of K modulo L, or relative p-chain group (with integer coefficients), is the quotient group

$$
C_{p}(K / L)=C_{p}(K) / C_{p}(L) .
$$

Thus each member of $C_{p}(K / L)$ is a coset $c_{p}+C_{p}(L)$ where $c_{p} \in C_{p}(K)$.
For $p \geq 1$, the relative boundary operator

$$
\partial: C_{p}(K / L) \rightarrow C_{p-1}(K / L)
$$

is defined by

$$
\partial\left(c_{p}+C_{p}(L)\right)=\partial c_{p}+C_{p-1}(L), \quad\left(c_{p}+C_{p}(L)\right) \in C_{p}(K / L)
$$

where ∂c_{p} denotes the usual boundary of the p-chain c_{p}. It is easily observed that the relative boundary operator is a homomorphism.

The group of relative p-dimensional cycles on K modulo L, denoted by $Z_{p}(K / L)$, is the kernel of the relative boundary operator

$$
\partial: C_{p}(K / L) \rightarrow C_{p-1}(K / L), \quad p \geq 1
$$

We define $Z_{0}(K / L)$ to be the chain group $C_{0}(K / L)$.
For $p \geq 0$, the group of relative p-dimensional boundaries on K modulo L, denoted by $B_{p}(K / L)$, is the image $\partial\left(C_{p+1}(K / L)\right)$ of $C_{p+1}(K / L)$ under the relative boundary homomorphism.

The relative p-dimensional simplicial homology group of K modulo L is the quotient group

$$
H_{p}(K / L)=\frac{Z_{p}(K / L)}{B_{p}(K / L)}, \quad p \geq 0
$$

In order for the homology group $H_{p}(K / L)$ to make sense, every relative p-boundary must be a relative p-cycle. In other words, we must have $B_{p}(K / L)$
$\subset Z_{p}(K / L)$ for the quotient group to be defined. The verification of this fact is left as an easy exercise

The members of $H_{p}(K / L)$ are denoted $\left[z_{p}+C_{p}(L)\right]$ where $z_{p}+C_{p}(L)$ is a relative p-cycle. It is required that ∂z_{p} be a $(p-1)$-chain on L, not that z_{p} be an actual cycle. However, if z_{p} is a cycle, then $z_{p}+C_{p}(L)$ is certainly a relative cycle.

Example 7.4. Let K be the 1 -skeleton of a 2 -simplex $\left\langle v_{0} v_{1} v_{2}\right\rangle$ and L the subcomplex determined by the vertex v_{0}. Let us determine $H_{0}(K / L)$ and $H_{1}(K / L)$. For the case $p=0$,

$$
\begin{gathered}
C_{0}(K)=Z_{0}(K) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \\
C_{0}(L)=Z_{0}(L) \cong \mathbb{Z}, \quad C_{0}(K / L)=Z_{0}(K / L) \cong \mathbb{Z} \oplus \mathbb{Z}
\end{gathered}
$$

The members of $Z_{0}(K / L)$ are chains of the form

$$
z=g_{1} \cdot\left\langle v_{1}\right\rangle+g_{2} \cdot\left\langle v_{2}\right\rangle+C_{0}(L), \quad g_{1}, g_{2} \in \mathbb{Z}
$$

where

$$
C_{0}(L)=\left\{g \cdot\left\langle v_{0}\right\rangle: g \text { is an integer }\right\} .
$$

But

$$
\partial\left(g_{1} \cdot\left\langle v_{0} v_{1}\right\rangle+g_{2} \cdot\left\langle v_{0} v_{2}\right\rangle\right)=g_{1} \cdot\left\langle v_{1}\right\rangle+g_{2} \cdot\left\langle v_{2}\right\rangle+\left(-g_{1}-g_{2}\right) \cdot\left\langle v_{0}\right\rangle
$$

so

$$
\partial\left(g_{1} \cdot\left\langle v_{0} v_{1}\right\rangle+g_{2} \cdot\left\langle v_{0} v_{2}\right\rangle+C_{1}(L)\right)=g_{1} \cdot\left\langle v_{1}\right\rangle+g_{2} \cdot\left\langle v_{2}\right\rangle+C_{0}(L)
$$

Thus every relative 0 -cycle is a relative 0 -boundary. This means that

$$
Z_{0}(K / L)=B_{0}(K / L), \quad H_{0}(K / L)=\{0\} .
$$

Now suppose $p=1$. Let

$$
w=h_{1} \cdot\left\langle v_{0} v_{1}\right\rangle+h_{2} \cdot\left\langle v_{1} v_{2}\right\rangle+h_{3} \cdot\left\langle v_{0} v_{2}\right\rangle+C_{1}(L)
$$

be a relative 1-chain. (Since $C_{1}(L)=\{0\}, 1$-chains and relative 1-chains are essentially the same.) Then

$$
\partial w=\left(h_{1}-h_{2}\right) \cdot\left\langle v_{1}\right\rangle+\left(h_{2}+h_{3}\right) \cdot\left\langle v_{2}\right\rangle+C_{0}(L) .
$$

Then w is a relative 1-cycle if and only if $h_{1}=h_{2}=-h_{3}$. Hence $Z_{1}(K / L) \cong \mathbb{Z}$. Since K has no 2-simplexes, then $B_{1}(K / L)=\{0\}$ and $H_{1}(K / L) \cong \mathbb{Z}$. Since there are no simplexes of dimension 2 or higher, then $H_{p}(K / L)=\{0\}, p \geq 2$.

Example 7.5. Let K denote the closure of a 2 -simplex $\sigma^{2}=\left\langle v_{0} v_{1} v_{2}\right\rangle$ and L its 1 -skeleton. Since K and L have precisely the same 0 -simplexes and 1 -simplexes, then

$$
\begin{array}{lll}
C_{0}(K)=C_{0}(L), & C_{0}(K / L)=\{0\}, & H_{0}(K / L)=\{0\} \\
C_{1}(K)=C_{1}(L), & C_{1}(K / L)=\{0\}, & H_{1}(K / L)=\{0\} .
\end{array}
$$

Since L has no simplexes of dimension two or higher, it might appear at first that $H_{p}(K)$ and $H_{p}(K / L)$ are isomorphic for $p \geq 2$. This is true for $p \geq 3$ but
not for $p=2$. Although L has no simplexes of dimension two, it does affect $Z_{2}(K / L)$. The reason is that the boundary of a 2-chain is a 1-chain; if the 1 -chain has nonzero coefficients only for simplexes of L, then the 2-chain is a relative cycle. In this case, the elementary relative 2 -chain

$$
u=g \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle+C_{2}(L), \quad g \in \mathbb{Z},
$$

has relative boundary

$$
\partial u=g \cdot\left\langle v_{1} v_{2}\right\rangle-g \cdot\left\langle v_{0} v_{2}\right\rangle+g \cdot\left\langle v_{0} v_{1}\right\rangle+C_{1}(L)=0
$$

because all 1 -simplexes of K are in L. Thus the subcomplex L produces relative 2-cycles, and $Z_{2}(K / L) \cong \mathbb{Z}$. Since $B_{2}(K / L)=\{0\}$, then $H_{2}(K / L) \cong \mathbb{Z}$. Note in particular that $H_{2}(K)=\{0\}$, so $H_{2}(K / L)$ is not isomorphic to $H_{2}(K)$.

Our next objective is to show that there is a special sequence

$$
\cdots \xrightarrow{\partial^{\star}} H_{p}(L) \xrightarrow{i \star} H_{p}(K) \xrightarrow{j^{\star}} H_{p}(K / L) \xrightarrow{\partial^{*}} H_{p-1}(L) \xrightarrow{i \star} \cdots \xrightarrow{i \neq} H_{0}(K) \xrightarrow{j *} H_{0}(K / L)
$$

where i^{*}, j^{*}, and ∂^{*} are homomorphisms. Strictly speaking, each homomorphism should be marked by p, indicating the dimension, but this notation is cumbersome. The dimension will always be known from the subscripts on the homology groups.

Definition. Let K be a complex with subcomplex L. The inclusion map i from L into K is simplicial and induces a homomorphism $i^{*}: H_{p}(L) \rightarrow H_{p}(K)$ for each $p \geq 0$. The effect of this homomorphism is easily described: If $\left[z_{p}\right] \in H_{p}(L)$ is represented by the p-cycle z_{p} on L, then z_{p} can be considered a p-cycle on K. Then z_{p} determines a homology class $i^{*}\left(\left[z_{p}\right]\right)=\left[z_{p}\right]$ in $H_{p}(K)$.

Let $j: C_{p}(K) \rightarrow C_{p}(K / L)$ be the homomorphism defined by

$$
j\left(c_{p}\right)=c_{p}+C_{p}(L), \quad c_{p} \in C_{p}(K) .
$$

Then j induces a homomorphism $j^{*}: H_{p}(K) \rightarrow H_{p}(K / L), p \geq 0$. If $\left[z_{p}\right] \in H_{p}(K)$, then $z_{p}+C_{p}(L)$ is a relative p-cycle and determines a member $\left[z_{p}+C_{p}(L)\right]$ of $H_{p}(K / L)$. The homomorphism j^{*} takes $\left[z_{p}\right]$ to $\left[z_{p}+C_{p}(L)\right]$.

The definition of $\partial^{*}: H_{p}(K / L) \rightarrow H_{p-1}(L)$ comes next. If $\left[z_{p}+C_{p}(L)\right] \epsilon$ $H_{p}(K / L), p \geq 1$, then $z_{p}+C_{p}(L)$ is a relative p-cycle. This means that ∂z_{p} is in $C_{p-1}(L)$. Since $\partial \partial z_{p}=0$, then ∂z_{p} is a $(p-1)$-cycle on L and determines a member [∂z_{p}] of $H_{p-1}(L)$. We define

$$
\partial^{*}\left(\left[z_{p}+C_{p}(L)\right]\right)=\left[\partial z_{p}\right], \quad\left[z_{p}+C_{p}(L)\right] \in H_{p}(K / L) .
$$

The homology sequence of the pair (K, L) is the sequence of groups and homomorphisms

$$
\cdots \xrightarrow{\partial^{\star}} H_{p}(L) \xrightarrow{i \star} H_{p}(K) \xrightarrow{j \star} H_{p}(K / L) \xrightarrow{\partial^{*}} H_{p-1}(L) \xrightarrow{i \star} \cdots \xrightarrow{i \star} H_{0}(K) \xrightarrow{j *} H_{0}(K / L) .
$$

The reader is asked to verify that i^{*}, j^{*}, and ∂^{*} are well-defined homomorphisms. The homology sequence has a nice algebraic structure whose basic properties are developed in the next definition and the two theorems that follow it.

Definition. A sequence

$$
\cdots \xrightarrow{h_{p+1}} G_{p} \xrightarrow{h_{p}} G_{p-1} \xrightarrow{h_{p-1}} \cdots \xrightarrow{h_{2}} G_{1} \xrightarrow{h_{1}} G_{0}
$$

of groups G_{0}, G_{1}, \ldots and homomorphisms h_{1}, h_{2}, \ldots is exact provided that the kernel of h_{p-1} equals the image $h_{p}\left(G_{p}\right)$ for $p \geq 2$ and that h_{1} maps G_{1} onto G_{0}. (Requiring that h_{1} be onto is equivalent to requiring that G_{0} be followed by the trivial group.)

There are many theorems that compare the groups of an exact sequence. The following is the simplest.

Theorem 7.9. Suppose that an exact sequence has a section of four groups

$$
\{0\} \xrightarrow{f} A \xrightarrow{g} B \xrightarrow{h}\{0\}
$$

where $\{0\}$ denotes the trivial group. Then g is an isomorphism from A onto B.
Proof. The image $f(\{0\})=\{0\}$ contains only the identity element of A. Exactness then guarantees that g has kernel $\{0\}$, so g is one-to-one. The kernel of h is all of B, and this must be the image $g(A)$. Thus g is an isomorphism as claimed.

Theorem 7.10. Suppose that an exact sequence has a section of five groups

$$
\{0\} \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow\{0\},
$$

there is a homomorphism $h: C \rightarrow B$ such that $g h$ is the identity map on C, and B is abelian. Then $B \simeq A \oplus C$.

It is left as an exercise for the reader to show that $T: A \oplus C \rightarrow B$ defined by

$$
T(a, c)=f(a) \cdot h(c), \quad(a, c) \in A \oplus C
$$

is the required isomorphism.
Theorem 7.11. If K is a complex with subcomplex L, then the homology sequence of (K, L) is exact.

Proof. In the homology sequence

$$
\cdots \xrightarrow{\partial^{*}} H_{p}(L) \xrightarrow{i *} H_{p}(K) \xrightarrow{j *} H_{p}(K / L) \xrightarrow{\partial^{*}} H_{p-1}(L) \xrightarrow{i \star} \cdots \xrightarrow{i \star} H_{0}(K) \xrightarrow{j^{i *}} H_{0}(K / L),
$$

we must show that the last homomorphism j^{*} maps $H_{0}(K)$ onto $H_{0}(K / L)$ and that the kernel of each homomorphism is the image of the one that precedes it.

To see that j^{*} is onto, let $\left[z_{0}+C_{0}(L)\right] \in H_{0}(K / L)$. Then z_{0} is a 0 -chain on K, and

$$
j^{*}\left[z_{0}\right]=\left[z_{0}+C_{0}(L)\right]
$$

so j^{*} is onto.
The remainder of the proof breaks naturally into six parts:
(1) image $i^{*} \subset$ kernel j^{*},
(2) kernel $j^{*} \subset$ image i^{*},
(3) image $j^{*} \subset$ kernel ∂^{*},
(4) kernel $\partial^{*} \subset$ image j^{*},
(5) image $\partial^{*} \subset$ kernel i^{*},
(6) kerenel $i^{*} \subset$ image ∂^{*}.

To prove (1), let $i^{*}\left(\left[z_{p}\right]\right)$ be in the image of i^{*} where z_{p} is a p-cycle on L. Then

$$
j^{*} i^{*}\left(\left[z_{p}\right]\right)=\left[z_{p}+C_{p}(L)\right]=\left[0+C_{p}(L)\right]=0
$$

since $z_{p} \in C_{p}(L)$. Thus image $i^{*} \subset$ kernel j^{*}.
For part (2), let $\left[w_{p}\right] \in H_{p}(K)$ be an element of the kernel of $j^{*} ; j^{*}\left(\left[w_{p}\right]\right)=0$ in $H_{p}(K / L)$. We must find an element $\left[z_{p}\right]$ in $H_{p}(L)$ such that $i^{*}\left(\left[z_{p}\right]\right)=\left[w_{p}\right]$. Since

$$
j^{*}\left(\left[w_{p}\right]\right)=\left[w_{p}+C_{p}(L)\right]=0
$$

then $w_{p}+C_{p}(L)$ is the relative boundary of a relative $(p+1)$-chain $c_{p+1}+C_{p+1}(L):$

$$
\partial c_{p+1}+C_{p}(L)=w_{p}+C_{p}(L)
$$

so $w_{p}-\partial c_{p+1}$ is in $C_{p}(L)$. Since both w_{p} and ∂c_{p+1} are cycles on K, then $w_{p}-\partial c_{p+1}$ is also a cycle and determines a member [$w_{p}-\partial c_{p+1}$] of $H_{p}(L)$. Note that

$$
i^{*}\left(\left[w_{p}-\partial c_{p+1}\right]\right)=\left[w_{p}-\partial c_{p+1}\right]=\left[w_{p}\right]
$$

since w_{p} and $w_{p}-\partial c_{p+1}$ are homolgous cycles on K. Thus kernel $j^{*} \subset$ image i^{*}.

For part (3), let $j^{*}\left(\left[z_{p}\right]\right)=\left[z_{p}+C_{p}(L)\right]$ be a member of the image of j^{*} where z_{p} is a p-cycle on K. Then

$$
\partial^{*} j^{*}\left(\left[z_{p}\right]\right)=\partial^{*}\left(\left[z_{p}+C_{p}(L)\right]\right)=\left[\partial z_{p}\right]=0
$$

since $\partial z_{p}=0$. Thus image $j^{*} \subset$ kernel ∂^{*}.
Proceeding to (4), let $\left[x_{p}+C_{p}(L)\right]$ be in the kernel of ∂^{*} where $x_{p}+C_{p}(L)$ is a relative p-cycle. Then

$$
\partial^{*}\left(\left[x_{p}+C_{p}(L)\right]\right)=\left[\partial x_{p}\right]=0
$$

in $H_{p-1}(L)$. This means that

$$
\partial x_{p}=\partial y_{p}
$$

for some p-chain y_{p} on L. Then $x_{p}-y_{p}$ is a p-cycle on K and determines a member $\left[x_{p}-y_{p}\right.$] of $H_{p}(K)$. Note that

$$
j^{*}\left(\left[x_{p}-y_{p}\right]\right)=\left[x_{p}-y_{p}+C_{p}(L)\right]=\left[x_{p}+C_{p}(L)\right]
$$

since $y_{p} \in C_{p}(L)$. Thus $\left[x_{p}+C_{p}(L)\right]$ is in the image of j^{*}, so kernel $\partial^{*} \subset$ image j^{*}.

Parts (5) and (6) are left to the reader.
Example 7.6. Let K denote the closure of an n-simplex and L its $(n-1)$ skeleton, $n \geq 2$. We shall use the homology sequence to compute $H_{p}(K / L)$ thus generalizing Example 7.5 .

Since $n \geq 2, K$ and L have the same 0 -chains and the same 1 -chains, and

$$
H_{0}(K / L)=H_{1}(K / L)=\{0\} .
$$

For $p>1$, consider the homology sequence

$$
\cdots \rightarrow H_{p}(K) \rightarrow H_{p}(K / L) \rightarrow H_{p-1}(L) \rightarrow H_{p-1}(K) \rightarrow \cdots
$$

Since $H_{p-1}(K)=H_{p}(K)=\{0\}$, Theorem 7.9 shows that $H_{p}(K / L) \cong H_{p-1}(L)$, $p>1$. Since $|L|$ is homeomorphic to S^{n-1}, then

$$
H_{n}(K / L) \cong H_{n-1}\left(S^{n-1}\right) \cong \mathbb{Z}
$$

and $H_{p}(K / L)=\{0\}$ if $p \neq n$.
Example 7.7. Let X be the union of two n-spheres tangent at a point. Then X has as triangulation the n-skeleton of the closure of two $(n+1)$-simplexes joined at a common vertex. Denote this triangulation by K, and let L denote the n-skeleton of one of the two $(n+1)$-simplexes. The section

$$
H_{n+1}(K / L) \xrightarrow{\partial *} H_{n}(L) \xrightarrow{i *} H_{n}(K) \xrightarrow{j^{*}} H_{n}(K / L) \xrightarrow{\partial^{*}} H_{n-1}(L)
$$

of the homology sequence of (K, L) satisfies the hypotheses of Theorem 7.10 so that

$$
H_{n}(K) \cong H_{n}(K / L) \oplus H_{n}(L)
$$

The reader should show that

$$
H_{n}(K / L) \cong H_{n}(L) \cong \mathbb{Z}
$$

and

$$
H_{n}(X)=H_{n}(K) \cong \mathbb{Z} \oplus \mathbb{Z}
$$

The relative homology groups were defined by Lefschetz [46] in 1927, and the homology sequence was introduced by Hurewicz [43] in 1941. The six parts of the exactness argument (Theorem 7.11) had been used separately for many years before Hurewicz' formalization of the homology sequence, however.

7.4 Singular Homology Theory

There are several methods of extending homology groups to spaces other than polyhedra. Probably the most useful one is the singular homology theory, which is discussed briefly in this section. Instead of insisting that the space X be built from properly joined simplexes, one considers continuous maps from standard simplexes into X. These maps are called "singular simplexes." There
are natural definitions of chains, cycles, and boundaries paralleling those of simplicial homology. In fact, the singular and simplicial theories produce isomorphic homology groups when applied to polyhedra. The singular approach, however, applies to all topological spaces, not just polyhedra.

First we define the standard simplexes which will be the domains of our singular simplexes. For notational reasons, points of \mathbb{R}^{n+1} will be written $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ with zeroth coordinate x_{0}, first coordinate x_{1}, etc. Thus the coordinates are numbered 0 through n.

Definition. The unit n-simplex, $n \geq 0$, in \mathbb{R}^{n+1} is the set

$$
\Delta_{n}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: \sum x_{i}=1, x_{i} \geq 0,0 \leq i \leq n .\right\}
$$

The point v_{i} with i th coordinate 1 and all other coordinates 0 is called the i th vertex of Δ_{n}. The subset

$$
\Delta_{n}(i)=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \Delta_{n}: x_{i}=0\right\}
$$

is called the i th face of Δ_{n} or the face opposite the i th vertex. The map $d_{i}: \Delta_{n-1} \rightarrow \Delta_{n}$ defined by

$$
d_{i}\left(x_{0}, \ldots, x_{n-1}\right)=\left(x_{0}, \ldots, x_{i-1}, 0, x_{\imath}, \ldots, x_{n-1}\right)
$$

is the i th inclusion map.
Note that Δ_{n} is simply the simplex in \mathbb{R}^{n+1} whose vertices are the points $v_{0}=(1,0, \ldots, 0), v_{1}=(0,1,0, \ldots, 0), \ldots, v_{n}=(0, \ldots, 0,1)$. The i th inclusion map d_{i} maps Δ_{n-1} onto the i th face of Δ_{n}. For the inclusion maps in the diagram

$$
\begin{aligned}
& \Delta_{n-2} \xrightarrow{d_{j}} \Delta_{n-1} \xrightarrow{d_{i}} \Delta_{n} \\
& \Delta_{n-2} \xrightarrow{d_{i-1}} \Delta_{n-1} \xrightarrow{d_{j}} \Delta_{n}, \quad j<i,
\end{aligned}
$$

we have $d_{i} d_{j}=d_{j} d_{i-1}$. The proof of this is left as an exercise.
Definition. Let X be a space and n a non-negative integer. A singular n-simplex in X is a continuous function $s^{n}: \Delta_{n} \rightarrow X$. The set of all singular n-simplexes in X is denoted $S_{n}(X)$. For $n>0$ and $0 \leq i \leq n$, the composite map

$$
s_{i}^{n}=s^{n} d_{i}: \Delta_{n-1} \rightarrow X
$$

is a singular $(n-1)$-simplex called the i th face of s^{n}. The function from $S_{n}(X)$ to $S_{n-1}(X)$ which takes a singular n-simplex to its i th face is called the i th face operator on $S_{n}(X)$. The singular complex of X is the set

$$
S(X)=\bigcup_{n=0}^{\infty} S_{n}(X)
$$

together with its family of face operators. It is usually denoted by $S(X)$.
Theorem 7.12. Let s^{n} be a singular n-simplex in a space $X, n>1$. Then

$$
s_{i, j}^{n}=s_{j, i-1}^{n}, \quad 0 \leq j<i \leq n .
$$

Proof. In the notation of the preceding definitions,

$$
s_{i, j}^{n}=s_{i}^{n} d_{j}=s^{n} d_{i} d_{j}=s^{n} d_{j} d_{i-1}=s_{j}^{n} d_{i-1}=s_{j, i-1}^{n} .
$$

Definition. A p-dimensional singular chain, or singular p-chain, p a non-negative integer, is a function $c_{p}: S_{p}(X) \rightarrow \mathbb{Z}$ from the set of singular p-simplexes of X into the integers such that $c_{p}\left(s^{p}\right)=0$ for all but finitely many singular p-simplexes. Under the pointwise operation of addition induced by the integers, the set $C_{p}(X)$ of all singular p-chains on X forms a group. This group is the p-dimensional singular chain group of X.

As in the simplicial theory, a singular p-chain can be expressed as a formal linear combination

$$
c_{p}=\sum_{i=0}^{r} g_{i} \cdot s(i)^{p}
$$

where g_{i} represents the value of c_{p} at the singular p-simplex $s(i)^{p}$ and c_{p} has value zero for all p-simplexes not appearing in the sum. Since simplicial complexes have only finitely many simplexes, the "finitely nonzero" property of p-chains holds automatically in the simplicial theory. As in the simplicial theory, algebraic systems other than the integers can be used as the set of coefficients.

Definition. The singular boundary homomorphism

$$
\partial: C_{p}(X) \rightarrow C_{p-1}(X)
$$

is defined for an elementary singular p-chain $g \cdot s^{p}, p \geq 1$, by

$$
\partial\left(g \cdot s^{p}\right)=\sum_{i=0}^{p}(-1) g^{i} \cdot s_{i}^{p}
$$

This function is extended by linearity to a homomorphism ∂ from $C_{p}(X)$ into $C_{p-1}(X)$. The boundary of each singular 0 -chain is defined to be 0 .

Theorem 7.13. If X is a space and $p \geq 2$, then the composition $\partial \partial: C_{p}(X) \rightarrow$ $C_{p-2}(X)$ in the diagram

$$
C_{p}(X) \xrightarrow{\partial} C_{p-1}(X) \xrightarrow{\partial} C_{p-2}(X)
$$

is the trivial homomorphism.
Proof. Since each p-chain is a linear combination of elementary p-chains, it is sufficient to prove that $\partial \partial(g \cdot s)=0$ for each elementary p-chain $g \cdot s$. Note that

$$
\begin{aligned}
\partial \partial(g \cdot s) & =\partial\left(\sum_{i=0}^{p}(-1)^{i} g \cdot s_{i}\right)=\sum_{i=0}^{p}(-1)^{i} \sum_{j=0}^{p-1}(-1)^{j} g \cdot s_{i, j} \\
& =\sum_{i=0}^{p} \sum_{j=0}^{p-1}(-1)^{i+j} g \cdot s_{i, j} \\
& =\sum_{0 \leq j<i \leq p}(-1)^{i+j} g \cdot s_{i, j}+\sum_{0 \leq i \leq j \leq p-1}(-1)^{i+j} g \cdot s_{i, j} \\
& =\sum_{0 \leq j<i \leq p}(-1)^{i+j} g \cdot s_{j, i-1}+\sum_{0 \leq i \leq j \leq p-1}(-1)^{i+j} g \cdot s_{i, j} .
\end{aligned}
$$

In the left sum on the preceding line, replace $i-1$ by j and j by i and the two sums will cancel completely. Thus $\partial \partial=0$.

Definition. If X is a space and p a positive integer, a p-dimensional singular cycle on X, or singular p-cycle, is a singular p-chain z_{p} such that $\partial\left(z_{p}\right)=0$. The set of singular p-cycles is thus the kernel of the homomorphism $\partial: C_{p}(X) \rightarrow C_{p-1}(X)$ and is a subgroup of $C_{p}(X)$. This subgroup is denoted $Z_{p}(X)$ and called the p-dimensional singular cycle group of X. Since the boundary of each singular 0 -chain is 0 , we define singular 0 -cycle to be synonymous with singular 0 -chain. Then the group $Z_{0}(X)$ of singular 0 -cycles is the group $C_{0}(X)$.

If $p \geq 0$, a singular p-chain b_{p} is a p-dimensional singular boundary, or singular p-boundary, if there is a singular $(p+1)$-chain c_{p+1} such that $\partial\left(c_{p+1}\right)=b_{p}$. The set $B_{p}(X)$ of singular p-boundaries is then the image $\partial\left(C_{p+1}(X)\right)$ and is a subgroup of $C_{p}(X)$. This subgroup is called the p-dimensional singular boundary group of X. Since $\partial \partial: C_{p}(X) \rightarrow C_{p-2}(X)$ is the trivial homomorphism, then $B_{p}(X)$ is a subgroup of $Z_{p}(X), p \geq 0$. The quotient group

$$
H_{p}(X)=Z_{p}(X) / B_{p}(X)
$$

is the p-dimensional singular homology group of X.
Many similarities in the definitions of the simplicial and singular homology groups should be obvious. Note, however, that no mention of orientation was made in the singular case. This was taken care of implicitly in the definition of the boundary operator:

$$
\partial\left(g \cdot s^{n}\right)=\sum_{i=0}^{n}(-1)^{i} g \cdot s_{i}^{n} .
$$

The definition in effect requires that the standard n-simplex Δ_{n} be assigned the orientation induced by the ordering $v_{0}<v_{1}<\cdots<v_{n}$. This orientation is then preserved in each singular n-simplex.

Definition. Let X and Y be spaces and $f: X \rightarrow Y$ a continuous map. If $s \in S_{p}(X)$, the composition $f s$ belongs to $S_{p}(Y)$. Hence f induces a homomorphism

$$
f_{p}: C_{p}(X) \rightarrow C_{p}(Y)
$$

defined by

$$
f_{p}\left(\sum_{i=0}^{r} g_{i} \cdot s(i)^{p}\right)=\sum_{i=0}^{r} g_{i} \cdot f s(i)^{p}, \quad \sum_{i=0}^{r} g_{i} \cdot s(i)^{p} \in C_{p}(X) .
$$

One easily observes that the diagram

is commutative, so f_{p} maps $Z_{p}(X)$ into $Z_{p}(Y)$ and $B_{p}(X)$ into $B_{p}(Y)$. (Compare with Theorem 3.1.) Thus f induces for each p a homomorphism

$$
f_{p}^{*}: H_{p}(X) \rightarrow H_{p}(Y)
$$

defined by

$$
f_{p}^{*}\left(z_{p}+B_{p}(X)\right)=f_{p}\left(z_{p}\right)+B_{p}(Y), \quad\left(z_{p}+B_{p}(X)\right) \in H_{p}(X) .
$$

The sequence $\left\{f_{p}^{*}\right\}$ is the sequence of homomorphisms induced by f.

The invention of singular homology theory is usually attributed to Solomon Lefschetz who introduced the singular homology groups in 1933 [45]. The basic idea can be found, however, in the classic book Analysis Situs [21] written by Oswald Veblen twelve years earlier. The important simplification obtained by using the ordered simplex Δ_{n} is due to Samuel Eilenberg.

Singular homology has two great advantages over simplicial homology: (1) The singular theory applies to all topological spaces, not just polyhedra.
(2) The induced homomorphisms are defined more easily in the singular theory. Recall that in the simplicial theory a continuous map between two polyhedra must be replaced by a simplicial approximation in order to define the induced homomorphisms. This presents problems of uniqueness which are completely avoided by the singular approach. As mentioned earlier, the singular and simplicial homology groups are isomorphic for polyhedra.

The singular homology theory presented in this section is the barest of introductions. The theory has developed extensively and contains theorems paralleling those of simplicial homology. There are, for example, exact homology sequences and relative homology groups for singular homology. Anyone interested in learning more about singular homology should consult references [10] and [20].

7.5 Axioms for Homology Theory

There are homology theories other than the original simplicial theory of Poincaré and the singular theory. For example, homology groups for compact metric spaces were defined by Leopold Vietoris [56] in 1927 and for compact Hausdorff spaces by Eduard Cech [32] in 1932. The similarities of all these theories led Samuel Eilenberg (1913-) and Norman Steenrod (1910-1971) to define the general term "homology theory."

The definition applies to various categories of pairs (X, A), where X is a space with subspace A, and continuous functions on such pairs. A homology theory consists of three functions $H,{ }^{*}$, and ∂ having the following properties:
(1) H assigns to each pair (X, A) under consideration and each integer p an abelian group $H_{p}(X, A)$. This group is the p-dimensional relative homology group of X modulo A. If $A=\varnothing$ then $H_{p}(X, \varnothing)=H_{p}(X)$ is the p dimensional homology group of X.
(2) If (X, A) and (Y, B) are pairs and $f: X \rightarrow Y$ with $f(A) \subset B$ an admissible map, then the function * determines for each integer p a homomorphism

$$
f_{p}^{*}: H_{p}(X, A) \rightarrow H_{p}(Y, B)
$$

called the homomorphism induced by f in dimension p.
(3) The function ∂ assigns to each pair (X, A) and each integer p a homomorphism

$$
\partial: H_{p}(X, A) \rightarrow H_{p-1}(A)
$$

called the boundary operator on $H_{p}(X, A)$.
The functions $H,{ }^{*}$, and ∂ are required to satisfy the following seven conditions:

The Eilenberg-Steenrod Axioms

I (The Identity Axiom). If $i:(X, A) \rightarrow(X, A)$ is the identity map, then the induced homomorphism

$$
i_{p}^{*}: H_{p}(X, A) \rightarrow H_{p}(X, A)
$$

is the identity isomorphism for each integer p.
II (The Composition Axiom). If $f:(X, A) \rightarrow(Y, B)$ and $g:(Y, B) \rightarrow(Z, C)$ are admissible maps, then

$$
(g f)_{p}^{*}=g_{p}^{*} f_{p}^{*}: H_{p}(X, A) \rightarrow H_{p}(Z, C)
$$

for each integer p.
III (The Commutativity Axiom). If $f:(X, A) \rightarrow(Y, B)$ is an admissible map and $g: A \rightarrow B$ is the restriction of f, then the diagram

is commutative for each integer p.
IV (The Exactness Axiom). If $i: A \rightarrow X$ and $j:(X, \varnothing) \rightarrow(X, A)$ are inclusion maps, then the homology sequence

$$
\cdots \rightarrow H_{p}(A) \xrightarrow{i \star} H_{p}(X) \xrightarrow{\not{ }^{\star}} H_{p}(X, A) \xrightarrow{\partial} H_{p-1}(A) \rightarrow \cdots
$$

is exact.
\mathbf{V} (The Homotopy Axiom). If the maps $f, g:(X, A) \rightarrow(Y, B)$ are homotopic, then the induced homomorphisms f_{p}^{*} and g_{p}^{*} are equal for each integer p.

VI (The Excision Axiom). If U is an open subset of X with $\bar{U} \subset A$, then the inclusion map

$$
e:(X \backslash U, A \backslash U) \rightarrow(X, A)
$$

induces an isomorphism

$$
e_{p}^{*}: H_{p}(X \backslash U, A \backslash U) \rightarrow H_{p}(X, A)
$$

for each integer p. (The map e is called the excision of U.)

VII (The Dimension Axiom). If X is a space with only one point, then

$$
H_{p}(X)=\{0\}
$$

for each nonzero value of p.
Simplicial homology theory as presented in this book applies to the category of pairs (X, A) where X and A have triangulations K and L for which L is a subcomplex of K. The singular homology theory applies to all pairs (X, A) where X is a topological space with subspace A. For a survey of homology theory from the axiomatic point of view, see the classic book Foundations of Algebraic Topology by Eilenberg and Steenrod [4].

Exercises

1. Let c be a p-chain on a complex K and v a vertex for which $v c$ is defined. Prove that

$$
\partial(v c)=c-v \partial c
$$

2. In the proof of Theorem 7.2, show that $\psi_{p}\left(\tau^{p}\right)=\eta \cdot \sigma^{p}$ where η is 0,1 , or -1 .
3. Show that chain homotopy is an equivalence relation for chain mappings.
4. Show that chain equivalence is an equivalence relation for complexes.
5. Definition. Let K be a complex and v a vertex not in K such that if $\left\langle v_{0} \ldots v_{p}\right\rangle$ is a simplex of K, then the set $\left\{v, v_{0}, \ldots, v_{p}\right\}$ is geometrically independent. The complex $v K$ consisting of all simplexes of K, the vertex v, and all simplexes of the form $\left\langle v v_{0} \ldots v_{p}\right\rangle$, where $\left\langle v_{0} \ldots v_{p}\right\rangle$ is in K, is called the cone complex of K with respect to v.
(a) If $v K$ is a cone complex, prove that

$$
H_{0}(v K) \cong \mathbb{Z}, \quad H_{p}(v K)=\{0\}, \quad p>0
$$

(b) Show that the geometric carrier of each cone complex is contractible.
6. Complete the details in the proof of Theorem 7.5.
7. Prove the following facts about S^{n} :
(a) If n is even, then every continuous map on S^{n} of positive degree has a fixed point.
(b) If n is odd, then every continuous map on S^{n} of negative degree has a fixed point.
8. Prove that every continuous map from the projective plane into itself has a fixed point.
9. Let $|K|$ be a contractible polyhedron. Prove that every continuous map on $|K|$ has a fixed point.
10. Prove or disprove: If $|K|$ is a polyhedron and f, g are homotopic maps on $|K|$, then f has a fixed point if and only if g has a fixed point.
11. Give an example of a continuous map on a polyhedron that has no fixed point. Prove from the definition that the map has Lefschetz number 0 .
12. Prove that $H_{p}(K / \varnothing) \cong H_{p}(K)$ for each complex $K, p \geq 0$.
13. Show that $B_{p}(K / L) \subset Z_{p}(K / L)$ for each subcomplex L of a complex K.
14. Let K be a complex and v a vertex of K. Determine the relative homology groups $H_{p}(K /\langle v\rangle), p \geq 0$.
15. Let K be a complex of dimension n and L a subcomplex of dimension r. Prove that

$$
H_{p}(K / L) \cong H_{p}(K), \quad p \geq r+2 .
$$

Is there any relation between $H_{r+1}(K / L)$ and $H_{r+1}(K)$?
16. Show that the functions i^{*}, j^{*}, and ∂^{*} in the homology sequence of a pair (K, L) are well-defined homomorphisms. Explain why i^{*} may not be one-toone even though $i: L \rightarrow K$ is the inclusion map.
17. Prove Theorem 7.10.
18. Complete the proof of Theorem 7.11.
19. Complete the details of Example 7.7.
20. Suppose that a complex K is the union of two subcomplexes K_{1} and K_{2} having a single vertex in common. Determine the homology groups of K in terms of those of K_{1} and K_{2}.
21. Show that if $j<i$, then $d_{i} d_{j}=d_{j} d_{i-1}$ for the inclusion maps in the diagram

$$
\begin{aligned}
& \Delta_{n-2} \xrightarrow{d_{j}} \Delta_{n-1} \xrightarrow{d_{i}} \Delta_{n} \\
& \Delta_{n-2} \xrightarrow{d_{i-1}} \Delta_{n-1} \xrightarrow{d_{j}} \Delta_{n} .
\end{aligned}
$$

22. Definition. A subset M of a complex K is an open subcomplex of K means that $K \backslash M$ is a subcomplex of K.

Prove the Excision Theorem for simplicial homology: Let K be a complex, L a subcomplex of K and M an open subcomplex of L. If $e:|K \backslash M| \rightarrow|K|$ is the inclusion map, then the induced homomorphism

$$
e_{p}^{*}: H_{p}\left(\frac{K \backslash M}{L \backslash M}\right) \rightarrow H_{p}\left(\frac{K}{L}\right)
$$

is an isomorphism for each integer p.
23. (a) Define the term "chain mapping" for singular homology theory.
(b) Show that a continuous map $f: X \rightarrow Y$ induces a chain mapping on the associated chain groups.
(c) Define the induced homomorphisms on the singular homology groups in terms of chain mappings.
24. (a) Define the term "deformation operator" for singular homology theory.
(b) Prove that homotopic maps $f, g: X \rightarrow Y$ induce the same homomorphism

$$
f_{p}^{*}=g_{p}^{*}: H_{p}(X) \rightarrow H_{p}(Y)
$$

in the singular homology theory.

A Note About the Appendices

The three appendices give basic definitions and theorems about set theory, point-set topology, and algebra assumed in the text. These facts are intended to refresh the reader's memory. The appendices are not complete treatments in any sense; proofs are not included. More complete expositions and proofs for the theorems listed here can be found in many standard texts. For example, see the text by Dugundji [3] or the text by Munkres [18] for set theory and point-set topology and the text by Jacobson [12] for algebra.

APPENDIX 1

Set Theory

The symbol " ϵ " indicates set membership, and " \subset " indicates set inclusion. Thus $a \in A$ means that a is a member or an element of set $A ; A \subset B$ means that set A is contained in set B or that A is a subset of B. The notation $\{x \in A: \ldots\}$ denotes the set of all members of A satisfying the statement...; for example, if A is the set of real members, then $\{x \in A: 0 \leq x \leq 4\}$ denotes the set of real numbers from 0 to 4 inclusive. Subsets of A other than A itself and the empty set \varnothing are called proper subsets.

Definition. If A and B are sets, the union $A \cup B$ and intersection $A \cap B$ are defined by

$$
\begin{aligned}
& A \cup B=\{x: x \in A \text { or } x \in B\}, \\
& A \cap B=\{x: x \in A \text { and } x \in B\} .
\end{aligned}
$$

Unions and intersections of arbitrary families of sets are similarly defined. If $A \subset X$, then the complement of A with respect to X is the set $X \backslash A$ of members of X which do not belong to A :

$$
X \backslash A=\{x \in X: x \notin A\} .
$$

Definition. The Cartesian product of two sets A and B is the set

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\} .
$$

The Cartesian product of a finite collection $\left\{A_{i}\right\}_{i=1}^{n}$, where each A_{i} is a set, is defined analogously:

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in A_{i}, 1 \leq i \leq n\right\} .
$$

The point a_{i} is called the i th coordinate of ($a_{1}, a_{2}, \ldots, a_{n}$).

Products can be defined for arbitrary families of sets; this must be postponed, however, until the concept of function from one set to another has been introduced.

Definition. A relation from set A to set B is a subset \sim of the Cartesian product $A \times B$. It is customary and simpler to write $a \sim b$ to mean $(a, b) \in \sim$. A relation \sim from A to itself is an equivalence relation means that the following three properties are satisfied:
(1) The Reflexive Property: $x \sim x$ for all $x \in A$.
(2) The Symmetric Property: If $x \sim y$ then $y \sim x$.
(3) The Transitive Property: If $x \sim y$ and $y \sim z$, then $x \sim z$.

The equivalence class of x is the set

$$
[x]=\{y \in A: x \sim y\} .
$$

If \sim is an equivalence relation on A, then each element of A belongs to exactly one equivalence class.

Definition. A function $f: A \rightarrow B$ is a relation from set A to set B such that if $a \in A$ there is only one $b \in B$ for which $a f b$. It is customary to write $f(a)=b$ and to call b the image of a under f. Set A is the domain of f, and the range of f is the set

$$
f(A)=\{b \in B: b=f(a) \text { for some } a \in A\} .
$$

Definition. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions on the indicated sets, then the composite function $g f: A \rightarrow C$ is defined by

$$
g f(a)=g(f(a)), \quad a \in A
$$

Definition. The identity function on a set A is the function $i: A \rightarrow A$ such that $i(a)=a$ for all $a \in A$.

Definition. A function $f: A \rightarrow B$ is one-to-one if no two members of A have the same image; f is onto if $f(A)=B$. A function which is both one-to-one and onto is called a one-to-one correspondence. Thus a one-to-one correspondence is a function from A to B for which each point of B is the image of exactly one point of A. In this case there is an inverse function $f^{-1}: B \rightarrow A$ defined by: $a=f^{-1}(b)$ if and only if $b=f(a)$.

If $f: A \rightarrow B$ is a one-to-one correspondence, then the composite functions $f^{-1} f$ and $f f^{-1}$ are the identity functions on A and B respectively.

Definition. If there is a one-to-one correspondence between sets A and B, then A and B are said to have the same cardinal number.

Definition. If $f: A \rightarrow B$ is a function and $C \subset A$, the restriction $\left.f\right|_{C}: C \rightarrow B$ of f to C is the function with domain C defined by

$$
\left.f\right|_{c}(x)=f(x), \quad x \in C
$$

Equivalently, f is called an extension of $\left.f\right|_{c}$.
Definition. If $\left\{A_{j}\right\}$ is a family of sets indexed by a set J (i.e., if A_{j} is a set for each j in a given set J), then the product of the sets A_{j} is the set $\prod_{j \in J} A_{j}$ composed of all functions $f: J \rightarrow \bigcup A_{j}$ such that $f(j) \in A_{j}$ for each $j \in J$.

The finite product $A_{1} \times A_{2} \times \cdots \times A_{n}$ is a special case of the preceding definition. Let J be the set of integers $1,2, \ldots, n$, and identify the sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with the function $f: J \rightarrow \bigcup_{j=1}^{n} A_{j}$ whose value at j is a_{j}. Then

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\prod_{j \in J} A_{j} .
$$

Definition. Let $f: X \times Y \rightarrow Z$ be a function from the product set $X \times Y$ into Z. If x_{0} is a point of X, then the symbol $f\left(x_{0}, \cdot\right)$ denotes the function from Y into Z defined by

$$
f\left(x_{0}, \cdot\right)(y)=f\left(x_{0}, y\right), \quad y \in Y .
$$

For y_{0} in Y, the symbol $f\left(\cdot, y_{0}\right)$ denotes the function from X to Z defined by

$$
f\left(\cdot, y_{0}\right)(x)=f\left(x, y_{0}\right), \quad x \in X
$$

APPENDIX 2

Point-set Topology

Definition. A topology for a set X is a family T of subsets of X satisfying the following three properties:
(1) The set X and the empty set \varnothing are in T.
(2) The union of any family of members of T is in T.
(3) The intersection of any finite family of members of T is in T.

The members of T are called open sets. A topological space, or simply space, is a pair (X, T) where X is a set and T is a topology for X. One often refers to a topological space X, omitting mention of the topology, when the name of the topology is not important.

A base or basis for a topology T is a subset B of T such that each member of T is a union of members of B. A subbase or subbasis for T is a subset S of T such that the family of all finite intersections of members of S is a basis for T.

If X is a space, a subset C of X is closed means that its complement $X \backslash C=\{x \in X: x \notin C\}$ is open. A neighborhood of a point x in X is an open set containing x.

A point x is a limit point of a subset A of X means that every neighborhood of x contains a point of A distinct from x. The closure of a set A is the set \bar{A}, the union of A with its set of limit points. The boundary of A is the intersection of \bar{A} with $\overline{X \backslash A}$.

Proposition. A subset A of a space X is closed if and only if A contains all its limit points. A subset O of X is open if and only if O contains a neighborhood of each of its points. The closure of each subset of X is a closed set.

Definition. A space X is a Hausdorff space or a T_{2}-space provided that for each pair x_{1}, x_{2} of distinct points of X there exist disjoint neighborhoods O_{1} and O_{2} of x_{1} and x_{2} respectively.

Definition. The subspace topology for a subset A of a space X consists of all subsets of the form $O \cap A$ where O is open in X. The set A with its subspace topology is a subspace of X.

Definition. A covering \mathscr{C} of a space X is a family of subsets of X whose union is X. A subcovering of \mathscr{C} is a covering each of whose members is a member of \mathscr{C}. A covering each of whose members is an open set is called an open covering.

Definition. A space X is compact provided that every open covering of X has a finite subcovering. A compact subset of X is a subset which is compact in its subspace topology. A space is locally compact means that for each point x there is a neighborhood U of x and a compact set A with $U \subset A$.

Proposition. (a) In a Hausdorff space, compact sets are closed.
(b) A closed subset of a compact space is compact.
(c) If X is a locally compact Hausdorff space and $x \in X$, then for each neighborhood V of x there is a neighborhood O of x such that $\bar{O} \subset V$ and \bar{O} is compact.

Definition. A space X is connected means that X is not the union of two disjoint, nonempty open sets. A connected subset of X is a subset which is connected in its subspace topology. A component is a connected subset which is not a proper subset of any connected subset of X.

Definition. A metric or distance function for a set X is a function d from the Cartesian product $X \times X$ to the non-negative real numbers such that, for all x, y, z in X,
(1) $d(x, y)=d(y, x)$,
(2) $d(x, y)=0$ if and only if $x=y$,
(3) $d(x, y)+d(y, z) \geq d(x, z)$.

For $x \in X$ and $r>0$ the set

$$
S(x, r)=\{y \in X: d(x, y)<r\}
$$

is called the spherical neighborhood with center x and radius r. The set of all such spherical neighborhoods is a basis for a topology for X, the metric topology determined by d. A set with the topology determined by a metric is called a metric space. The diameter of a subset A of a metric space is the least upper bound of the distances between points of A :

$$
\operatorname{diam} A=\operatorname{lub}\{d(x, y): x, y \in A\}
$$

A set with finite diameter is called bounded.

Definition. A function $f: X \rightarrow Y$ from a space X to a space Y is continuous provided that for each open set U in Y the inverse image

$$
f^{-1}(U)=\{x \in X: f(x) \in U\}
$$

is open in X. A one-to-one correspondence $f: X \rightarrow Y$ for which both f and the inverse function f^{-1} are continuous is called a homeomorphism; in this case X and Y are said to be homeomorphic. A function $g: X \rightarrow Y$ is open provided that $g(O)$ is open in Y for each open subset O of X. Closed function is defined analogously.

Proposition. The composition of continuous functions is continuous.
Proposition. The properties of being compact or connected are preserved by continuous functions.

Proposition. Let $f: X \rightarrow Y$ be a function on the indicated spaces. The following statements are equivalent:
(a) f is continuous.
(b) For each closed subset C of $Y, f^{-1}(C)$ is closed in X.
(c) There is a basis B for Y such that $f^{-1}(U)$ is open for each $U \in B$.
(d) There is a subbasis S for Y such that $f^{-1}(U)$ is open for each $U \in S$.

Proposition. If X and Y are metric spaces with metrics d and d^{\prime} respectively and $f: X \rightarrow Y$ is a function, then f is continuous if and only if for each $x_{0} \in X$ and $\epsilon>0$, there is a number $\delta>0$ such that if $d\left(x_{0}, x\right)<\delta$, then $d\left(f\left(x_{0}\right), f(x)\right)$ $<\epsilon$.

Definition. Let X and Y be metric spaces with metrics d, d^{\prime} respectively. A function $f: X \rightarrow Y$ is uniformly continuous means that for each $\epsilon>0$, there is a number $\delta>0$ such that if x and x^{\prime} are points of X with $d\left(x, x^{\prime}\right)<\delta$, then $d\left(f(x), f\left(x^{\prime}\right)\right)<\epsilon$.

Proposition. If X and Y are metric spaces, X is compact, and $f: X \rightarrow Y$ is continuous, then f is uniformly continuous.

Proposition. If \mathscr{U} is an open covering of a compact metric space X, then there is a positive number η such that each subset of X of diameter less than η is contained in a member of \mathscr{U}. (The number η is called a Lebesgue number for the open covering \mathscr{U}.)

Definition. Let X and Y be spaces. The product space $X \times Y$ is the Cartesian product of X and Y with the product topology which has as a basis the family of all sets of the form $U_{1} \times U_{2}$ where U_{1} is open in X and U_{2} is open in Y.

If $\left\{X_{\alpha}\right\}$ is a family of spaces indexed by a set A, then the product space $\prod_{\alpha \in A} X_{\alpha}$ is the product of the sets X_{α} with the product topology which has as a subbasis all sets of the form $p_{\beta}^{-1}\left(U_{\beta}\right), \beta \in A$. Here $p_{\beta}: \prod_{\alpha \in A} X_{\alpha} \rightarrow X_{\beta}$ is the projection on X_{β} defined by

$$
p_{\beta}(f)=f(\beta), \quad f \in \prod_{\alpha \in A} X
$$

and U_{β} represents an arbitrary open set in X_{β}.
Proposition. (a) A product of compact spaces is compact.
(b) A product of connected spaces is connected.
(c) If $x_{0} \in X$ and $y_{0} \in Y$, then the subspaces $X \times\left\{y_{0}\right\}$ and $\left\{x_{0}\right\} \times Y$ of $X \times Y$ are homeomorphic to X and Y respectively.

Definition. Let X be a space and S an equivalence relation on X. Then S partitions X into a family X / S of equivalence classes. The quotient topology for X / S is defined by the following condition: A set U of equivalence classes in X / S is open if and only if the union of the members of U is open in X. The quotient space of X modulo S is the set X / S with the quotient topology.

As an important special case we have the quotient space X / A where A is a subset of X. This is the quotient space of X determined by the relation: $x S y$ if and only if $x=y$ or x and y are both in A. The points of X / A are the points of $X \backslash A$ and an additional single point A.

If $f: X \rightarrow Y$ is a function from a space X onto a set Y, then the quotient topology for Y consists of all sets $U \subset Y$ for which $f^{-1}(U)$ is open in X. The function f determines an equivalence relation R on X defined by $x_{1} R x_{2}$ if and only if $f\left(x_{1}\right)=f\left(x_{2}\right)$. The quotient space X / R is homeomorphic to the space Y with the quotient topology determined by f.

Proposition. Let $f: X \rightarrow Y$ be a continuous function from space X onto space Y. Iff is either open or closed, then Y has the quotient topology determined by f.

Definition. Euclidean n-dimensional space \mathbb{R}^{n}, n a positive integer, is the set

$$
\mathbb{R}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{i} \text { is a real number, } 1 \leq i \leq n\right\}
$$

with the topology determined by the Euclidean metric:

$$
d(x, y)=\left\{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right\}^{1 / 2}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are members of \mathbb{R}^{n}. The members of \mathbb{R}^{n} are referred to as points or vectors. The norm or length $\|x\|$ of a vector x in \mathbb{R}^{n} is the distance from x to the origin $0=(0, \ldots, 0)$:

$$
\|x\|=\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1 / 2}
$$

Note that \mathbb{R}^{1} is simply the real number line: $\mathbb{R}^{1}=\mathbb{R}$.
For x, y in \mathbb{R}^{n}, the inner product or dot product of x and y is the number

$$
x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

The vectors x and y are perpendicular or orthogonal if $x \cdot y=0$. This definition extends the common concept of perpendicularity in two and three dimensions to higher dimensions.

The unit n-sphere S^{n} is the set of all points in \mathbb{R}^{n+1} of unit length:

$$
S^{n}=\left\{x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}:\|x\|=1\right\}, \quad n \geq 0
$$

Note that S^{n} is a subspace of \mathbb{R}^{n+1}, not of \mathbb{R}^{n}. We may consider \mathbb{R}^{n} as the subspace of \mathbb{R}^{n+1} consisting of all points having final coordinate 0 .

Proposition. (a) Euclidean n-space is homeomorphic to the product of n copies of the space of real numbers.
(b) A subspace of \mathbb{R}^{n} is compact if and only if it is closed and bounded.

Definition. The unit n-ball B^{n} is the set of all points in \mathbb{R}^{n} of length not exceeding 1:

$$
B^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\|x\| \leq 1\right\}, \quad n \geq 1
$$

Note that the boundary of B^{n} is the unit $(n-1)$-sphere S^{n-1}.
The unit n-cube I^{n} is the set

$$
I^{n}=\left\{t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: 0 \leq t_{i} \leq 1 \text { for each } i\right\} .
$$

Thus $I^{1}=I$ is the closed unit interval $[0,1], I^{2}$ is a square, and I^{3} is a 3-dimensional cube. The boundary of I^{n}, denoted ∂I^{n}, is the set of all points of I^{n} having some coordinate equal to 0 or 1 .

Proposition. (a) The quotient space of B^{n} obtained by identifying its boundary S^{n-1} to a single point is homeomorphic to S^{n}.
(b) The quotient space of I^{n} obtained by identifying its boundary ∂I^{n} to a single point is homeomorphic to S^{n}.

Definition. Let X be a Hausdorff space which is not compact and ∞ a point not in X. The one-point compactification X^{*} of X is the set

$$
X^{*}=X \cup\{\infty\}
$$

with the topology determined by the basis composed of all open sets in X together with all subsets U of X^{*} for which $X^{*} \backslash U$ is a closed, compact subset of X.

Proposition. The one-point compactification X^{*} of a Hausdorff space X is a compact space; X^{*} is Hausdorff if and only if X is locally compact.

Proposition. The one-point compactification of Euclidean n-space \mathbb{R}^{n} is homeomorphic to S^{n}.

APPENDIX 3

Algebra

Definition. A binary operation on a set A is a function $f: A \times A \rightarrow A$. For $a, b \in A, f(a, b)$ is often expressed $a b$ or $a \cdot b$ (multiplicative notation) or $a+b$ (additive notation).

Definition. A group is a set G together with a binary operation on G satisfying the following three properties:
(1) $a(b c)=(a b) c$ for all $a, b, c \in G$.
(2) There is an element e, the identity element of G, such that $a e=e a=a$ for all a in G.
(3) For each a in G, there is an element a^{-1}, the inverse of a, such that $a a^{-1}=a^{-1} a=e$.

In the additive group notation, the identity element is denoted by 0 and the inverse of a by $-a$. A group whose only element is the identity is the trivial group $\{0\}$.

A subset A of a group G is a subgroup of G provided that A is a group under the operation of G. If A is a subgroup and $g \in G$, then

$$
g A=\{g a: a \in A\}
$$

is called the left coset of A by g. In the additive notation, we would write $g+A$ instead of $g A$. Right cosets are defined similarly.

Proposition. Left cosets $g A$ and $h A$ of a subgroup A are either disjoint or identical.

Definition. A group G is commutative or abelian means that $a b=b a$ for all $a, b \in G$.

Definition. A homomorphism $f: G \rightarrow H$ from a group G into a group H is a function such that

$$
f(a b)=f(a) f(b), \quad a, b \in G
$$

The set

$$
\operatorname{Ker} f=\{a \in G: f(a)=\text { identity of } H\}
$$

is the kernel of f. An isomorphism is a homomorphism which is also a one-to-one correspondence between G and H; in this case the groups are called isomorphic, and we write $G \cong H$.

Definition. A subgroup A of a group G is normal means that $g^{-1} a g \in A$ for all $g \in G, a \in A$.

Proposition. The kernel of a homomorphism $f: G \rightarrow H$ is a normal subgroup of G. The homomorphism is one-to-one if and only if the kernel off contains only the identity of G.

Proposition. If A is a normal subgroup of G, then each left coset $g A$ equals the corresponding right coset Ag. The family G/A of all left cosets of A is a group under the operation

$$
g A \cdot h A=g h A
$$

(The group G / A is called the quotient group of G modulo A.)
Proposition (The First Homomorphism Theorem). Let $f: G \rightarrow H$ be a homomorphism from group G onto group H with kernel K. Then H is isomorphic to the quotient group G / K.

Definition. A commutator in a group G is an element of the form $a b a^{-1} b^{-1}$. The commutator subgroup of G is the smallest subgroup containing all commutators of G. Equivalently, the commutator subgroup consists of all finite products of commutators of G.

Proposition. (a) The commutator subgroup F of a group G is normal.
(b) The commutator subgroup is the smallest subgroup of G for which G / F is abelian.

Definition. If g is a member of a group G, the set of all powers $g, g^{-1}, g g=g^{2}$, $g^{-1} g^{-1}=g^{-2}, \ldots$ forms a subgroup

$$
[g]=\left\{g^{n}: n \text { is an integer }\right\}
$$

called the subgroup generated by g. If G has an element g for which $[g]=G$, then G is a cyclic group with generator g.

The most common cyclic group is the group \mathbb{Z} of integers. Both 1 and -1 are generators.

Definition. A set of generators for a group G is a subset S of G such that each member of G is a product of powers of members of S. A group which has a finite set of generators is called finitely generated.

Definition. The direct sum $G \oplus H$ of groups G and H is the set $G \times H$ with operation \oplus defined by

$$
\left(g_{1}, h_{1}\right) \oplus\left(g_{2}, h_{2}\right)=\left(g_{1}+g_{2}, h_{1}+h_{2}\right)
$$

for all $g_{1}, g_{2} \in G, h_{1}, h_{2} \in H$. (Here we are using additive notation.)
Definition. A group which is isomorphic to a finite direct sum of copies of the group \mathbb{Z} of integers is called a free abelian group. Thus a free abelian group on n generators is isomorphic to the direct sum $\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (n summands). The integer n is called the rank of the group.

Proposition. Every subgroup of a free abelian group is a free abelian group.
Proposition (The Decomposition Theorem for Finitely Generated Abelian Groups). Each finitely generated abelian group is a direct sum of a free abelian group G and a finite subgroup. The finite subgroup (called the torsion subgroup) is composed of the identity element alone or is a direct sum of cyclic groups of prime power orders. The rank of G and the orders of the cyclic subgroups (with their multiplicities) are uniquely determined.

Definition. A permutation on a finite set V is a one-to-one function from V onto itself. The set of all permutations on a set of n distinct objects forms a group, the symmetric group on n objects, under the operation of composition. A transposition on V is a permutation which interchanges precisely two members of V and acts as the identity map for the other members.

Proposition. Every permutation is a product of transpositions.
If a permutation is the product of an even number of transpositions, then it is called an even permutation. Although it is not obvious, it is true that if a given permutation can be represented as a product of an even number of transpositions, then every representation of it as a product of transpositions requires an even number. A permutation which is not even is called an odd permutation.

Example. To illustrate the way even and odd permutations are used in the text, consider a set $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ of three elements with a definite order v_{1}, v_{2}, v_{3}. The arrangement v_{1}, v_{3}, v_{2} represents an odd permutation of the given order since it was produced by transposing one pair of elements. Likewise, the ordering v_{2}, v_{1}, v_{3} represents an odd permutation. On the other hand, v_{2}, v_{3}, v_{1} represents an even permutation since it is produced from the original order by two transpositions: beginning with v_{1}, v_{2}, v_{3} transpose v_{1} and v_{2} to produce v_{2}, v_{1}, v_{3}; now transpose v_{1} and v_{3} to produce v_{2}, v_{3}, v_{1}.

Definition. A topological group is a group G with a topology under which the operation of G is a continuous map from $G \times G$ to G and the function $g \rightarrow g^{-1}$ is a homeomorphism from G onto G.

Definition. A ring is a triple $(R,+, \cdot)$, where R is a set with operations + and - (indicated by juxtaposition), such that
(1) $(R,+)$ is an abelian group,
(2) $(a b) c=a(b c)$,
(3) $a(b+c)=a b+a c$,
(4) $(b+c) a=b a+c a, \quad a, b, c \in R$.

The operation + is called addition, and \cdot is called multiplication. The additive identity element is denoted by 0 . If there is an identity element 1 for multiplication, then R is a ring with unity. A ring is commutative if $a b=b a$ for all $a, b \in R$.

Definition. A field is a commutative ring with unity in which the nonzero elements form a group under multiplication.

The most common fields are the real numbers, the rational numbers, and the complex numbers.

Definition. A vector space over a field F is a set V with two operations, an addition + under which V forms an abelian group, and scalar multiplication which associates with each $v \in V$ and $a \in F$ a member $a v$ in V. The following conditions must be satisfied for all $a, b \in F$ and all $u, v \in V$:
(1) $(a b) v=a(b v)$,
(2) $a(u+v)=a u+a v,(a+b) v=a v+b v$,
(3) $1 \cdot v=v$.

The members of a vector space V are called vectors.
Definition. A set $\left\{v_{1}, \ldots, v_{k}\right\}$ of members of a vector space V is linearly dependent if there exist elements a_{1}, \ldots, a_{k} of the field F such that

$$
a_{1} v_{1}+\cdots+a_{k} v_{k}=0
$$

and not all the a_{i} are 0 . A set of vectors is linearly independent if it is not linearly dependent. A set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is said to span V if each element $v \in V$ can be represented as a linear combination

$$
v=b_{1} v_{1}+\cdots+b_{k} v_{k}
$$

for some b_{1}, \ldots, b_{k} in F. A base or basis for V is a linearly independent set which spans V. If V has a finite basis, then V is called finite dimensional.

Proposition. Any two bases for a finite dimensional vector space V have the same number of elements. (This number is the dimension of V.)

The most common vector spaces are the Euclidean spaces \mathbb{R}^{n} over the field of real numbers. Vector addition and scalar multiplication are defined by

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right) & =\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
a\left(x_{1}, \ldots, x_{n}\right) & =\left(a x_{1}, \ldots, a x_{n}\right) .
\end{aligned}
$$

It is sometimes said that these operations are defined "componentwise" by addition and multiplication of real numbers. The vector space dimension of \mathbb{R}^{n} is n.

Definition. A subspace A of a vector space V is a subset of V which is a vector space under the addition and scalar multiplication of V. A hyperplane is a translation of a subspace: H is a hyperplane provided that there is a subspace A and a vector $v \in V$ such that

$$
H=\{v+a: a \in A\}
$$

Definition. The sum $A+B$ of subspaces A and B of a vector space V is the subspace

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

If each element v in $A+B$ has a unique representation $v=a+b$ for $a \in A$ and $b \in B$, then $A+B$ is written $A \oplus B$ and called a direct sum.

Proposition. (a) The sum $A+B$ is a direct sum if and only if $A \cap B=\{0\}$.
(b) If $A \cap B=\{0\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{j}\right\}$ are bases for A and B respectively, then $\left\{v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{j}\right\}$ is a basis for $A \oplus B$. In particular, the dimension of $A \oplus B$ is the sum of the dimensions of A and B.

Definition. If V and W are vector spaces over a common field F, a function $f: V \rightarrow W$ satisfying

$$
\begin{aligned}
f(u+v) & =f(u)+f(v), \\
f(a u) & =a f(u), \quad a \in F, u, v \in V,
\end{aligned}
$$

is called a homomorphism or a linear transformation. A one-to-one linear transformation from V onto W is an isomorphism.

Definition. If m and n are positive integers, an $m \times n$ matrix over a field F is a rectangular array

$$
A=\left(a_{i j}\right)=\left[\begin{array}{ccc}
a_{11} a_{12} & \cdots & a_{1 n} \\
a_{21} a_{22} & \cdots & a_{2 n} \\
\vdots & & \vdots \\
a_{m 1} a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

of $m n$ members of F. The element $a_{i j}$ in row i and column j is called the (i, j)th component of A. If $B=\left(b_{i j}\right)$ is another $m \times n$ matrix, then the matrix $\operatorname{sum} A+B$ is defined by

$$
A+B=\left(a_{i j}+b_{i j}\right)
$$

Appendix 3

The matrix product $A C$ is defined for any matrix $C=\left(c_{k j}\right)$ of n rows by

$$
A C=\left(d_{i j}\right)
$$

where $d_{i j}=\sum_{k=1}^{n} a_{i k} c_{k j}$. The elements $e_{11}, e_{22}, \ldots, e_{n n}$ of an $n \times n$ matrix $E=\left(e_{i j}\right)$ are called its diagonal elements. The trace of E is the sum of its diagonal elements:

$$
\operatorname{trace} E=\sum_{i=1}^{n} e_{i i}
$$

Proposition. Let V be a finite dimensional vector space over F with basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Then there is a one-to-one correspondence between the set of linear transformations $f: V \rightarrow V$ and the set of $n \times n$ matrices over F. The matrix corresponding to f is the matrix $A_{f}=\left(a_{i j}\right)$ where

$$
f\left(v_{i}\right)=\sum_{j=1}^{n} a_{i j} v_{j} .
$$

The composition of two linear maps corresponds to the product of their associated matrices.

Proposition. Let $f: V \rightarrow V$ be a linear transformation. If matrices B and C represent f relative to different bases, then B and C have the same trace.

Definition. Let F be a field, and let V_{n} denote the vector space of all n-tuples of members of F with operations defined by

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right) & =\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right), \\
a\left(x_{1}, \ldots, x_{n}\right) & =\left(a x_{1}, \ldots, a x_{n}\right) .
\end{aligned}
$$

If $A=\left(a_{i j}\right)$ is an $m \times n$ matrix over F, then each row

$$
a_{i 1} a_{i 2} \cdots a_{i n}
$$

of A can be considered a member

$$
\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)
$$

of V_{n}. In this context, the rows of A are called row vectors. The rank of A, $\operatorname{rank}(A)$, is the dimension of the subspace of V_{n} spanned by the row vectors of A.

Bibliography

Books

1. Ahlfors, L. V. and Sario, L. Riemann Surfaces, Princeton University Press, Princeton, N.J., 1960.
2. Cairns, S. S. Introductory Topology, Ronald Press Company, New York, 1961.
3. Dugundji, J. Topology, Allyn and Bacon, Inc., Boston, 1966.
4. Eilenberg, S. and Steenrod, N. Foundations of Algebraic Topology, Princeton University Press, Princeton, N.J., 1952.
5. Gray, B. Homotopy Theory, Academic Press, New York, 1975.
6. Greenberg, M. J. Lectures on Algebraic Topology, W. A. Benjamin, Inc., New York, 1967.
7. Hausdorff, F. Grundzüge der Mengenlehre (Second Edition), Walter de Gruyter, Leipzig, 1914.
8. Hilton, P. J. An Introduction to Homotopy Theory, Cambridge University Press, Cambridge, 1953.
9. Hocking, J. G. and Young, G. S. Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1961.
10. Hu, S. T. Homology Theory, Holden-Day, Inc., San Francisco, 1966.
11. Hu, S. T. Homotopy Theory, Academic Press, Inc., New York, 1959.
12. Jacobson, N. Basic Algebra, I, W. H. Freeman and Co., San Francisco, 1974.
13. Lefschetz, S. Algebraic Topology, American Mathematical Society Colloquium Publications, Volume XXVII, 1942.
14. Lefschetz, S. Introduction to Topology, Princeton University Press, Princeton, N.J., 1949.
15. Lefschetz, S. Topology (Second Edition), Chelsea Publishing Company, New York, 1956.
16. Massey, W. S. Algebraic Topology: An Introduction, Harcourt, Brace and World, Inc., New York, 1967, Springer-Verlag, 1977.
17. Maunder, C. R. F. Algebraic Topology, Van Nostrand Reinhold Co., London, 1970.
18. Munkres, J. R. Topology: A First Course, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.
19. Seifert, H. and Threlfall, W. Lehrbuch der Topologie, Chelsea Publishing Co., New York, 1945.
20. Spanier, E. H. Algebraic Topology, McGraw-Hill Book Co., New York, 1966.
21. Veblen, O. Analysis Situs (Second Edition), American Mathematical Society Colloquium Publications, Volume V, part II, 1931.
22. Wall, C. T. C. A Geometric Introduction to Topology, Addison-Wesley Publishing Co., Reading, Mass., 1972.
23. Weyl, H. The Concept of a Riemann Surface (Third Edition), Addison-Wesley Publishing Co., Reading, Mass., 1964.
24. Whitehead, G. W. Homotopy Theory, M.I.T. Press, Cambridge, Mass., 1966.

Papers

25. Alexander, J. W. "A proof of the invariance of certain constants of analysis situs," Trans. Am. Math. Soc. 16, 148-154 (1915).
26. Alexander, J. W. "Note on two three-dimensional manifolds with the same group," Trans. Am. Math. Soc. 20, 339-342 (1919).
27. Alexander, J. W. "Combinatorial analysis situs," Trans. Am. Math. Soc. 28, 301-329 (1926).
28. Borsuk, K. "Drei Sätze über die n-dimensionale euklidische Sphäre," Fundamenta Math. 20, 177-190 (1933).
29. Brouwer, L. E. J. "On continuous vector distributions on surfaces," Proc. Akad. von Wetenschappen, Amsterdam, 11, 850-858 (1909); 12, 716-734 (1910); 13, 171-186 (1910).
30. Brouwer, L. E. J. "Zur analysis situs," Math. Annalen 68, 422-434 (1910).
31. Brouwer, L. E. J. "Beweis der Invarianz der Dimensionenzahl," Math. Annalen 70, 161-165 (1911).
32. Čech, E. "Théorie générale de l'homologie dans un espace quelconque," Fundamenta Math. 19, 149-183 (1932).
33. Čech, E. "Höherdimensionale Homotopiegruppen," Proc. Int. Congr. Math. 3, 203 (Zürich, 1932).
34. Eilenberg, S. "Singular homology theory," Ann. of Math. 45, 407-447 (1944).
35. Eilenberg, S. and Steenrod, N. "Axiomatic approach to homology theory," Proc. Nat. Acad. Sci. U.S.A. 31, 117-120 (1945).
36. Fox, R. H. "On topologies for function spaces," Bull. Am. Math. Soc. 51, 429-432 (1945).
37. Freudenthal, H. "Über die Klassen von Sphärenabbildungen," Compositio Math. 5, 299-314 (1937).
38. Hopf, H. "Über die Abbildungen des 3-Sphäre auf die Kugelfläche," Math. Annalen 104, 63i-655 (1931).
39. Hopf, H. "Über die Abbildungen von Sphären auf Sphären niedrigerer Dimension," Fundamenta Math. 25, 427-440 (1935).
40. Hopf, H. "A new proof of the Lefschetz formula on invariant points," Proc. Nat. Acad. Sci. U.S.A. 14, 149-153 (1928).
41. Hopf, H. "Die Klassen der Abbildungen der n-dimensionalen Polyder auf die n-dimensionale Sphäre," Comment. Math. Helvetici 5, 39-54 (1933).
42. Hurewicz, W. "Beiträge zur Topologie der Deformationen." I, "Höherdimensionale Homotopiegruppen," Proc. Acad. von Wetenschappen, Amsterdam 38, 112-119 (1935); II, "Homotopie- und Homologiegruppen," 38, 521-528 (1935); III, "Klassen und Homologiegruppen von Abbildungen," 39, 117-126 (1936); IV, "Asphärische Räume," 39, 215-224 (1936).
43. Hurewicz, W. "On duality theorems," Bull. Am. Math. Soc. 47, 562-563 (1941).
44. Kirby, R. and Siebenmann, L. "On the triangulation of manifolds and the Hauptvermutung," Bull. Am. Math. Soc. 75, 742-749 (1969).
45. Lefschetz, S. "On singular chains and cycles," Bull. Am. Math. Soc. 39, 124-129 (1933).
46. Lefschetz, S. "The residual set of a complex on a manifold and related questions," Proc. Nat. Acad. Sci. U.S.A. 13, 614-622 (1927).
47. Lefschetz, S. "Intersections and transformations of complexes and manifolds," Trans. Am. Math. Soc. 28, 1-49 (1926).
48. Lefschetz, S. "Manifolds with a boundary and their transformations," Trans. Am. Math. Soc. 29, 429-462 (1927).
49. Poincaré, H. "Analysis situs," Jour. École Polytech. (2)1, 1-121 (1895).
50. Poincaré, H. "Complément à l’analysis situs," Rend. Circ. Mat., Palermo 13, 285-343 (1899).
51. Poincaré, H. "Deuxième complément à l'analysis situs," Proc. London Math. Soc. 32, 277-308 (1900).
52. Poincaré, H. "Cinquième complément à l'analysis situs," Rend. Circ. Mat., Palermo 18, 45-110 (1904).
53. Poincaré, H. "Sur un théorème de la théorie générale des fonctions," Bull. Soc. Math. France 11, 112-125 (1883).
(The above papers by Poincaré can also be found in Euvres de Henri Poincaré, Gauthier-Villars, Paris, 1950.)
54. Smale, S. "Generalized Poincarés Conjecture in dimensions greater than 4," Ann. Math. 74, 391-406 (1961).
55. Veblen, O. "Theory of plane curves in non-metrical analysis situs," Trans. Am. Math. Soc. 6, 83-98 (1905).
56. Vietoris, L. "Über den höheren Zusammenhang kompakten Räume und eine Klasse von zusammenhangstreuen Abbildungen," Math. Annalen 97, 454-472 (1927).
57. Whitehead, J. H. C. "Combinatorial homotopy, I," Bull. Am. Math. Soc. 55, 213-245 (1949).
58. Yoneyama, K. "Theory of continuous sets of points," Tohoku Math. Jour. 11, 43-158 (1917).

Abelian groups 163
Admissible neighborhood 84
Alexander, J. W. 27, 36, 49, 79
Alexandroff, P. S. 10
Antipodal map 55
Antipodal points 85
Automorphism of a covering space 97
Axioms for homology theory 149-151

Ball 162
Barycenter of a simplex 46, 47
Barycentric coordinates 9
Barycentric subdivision 46, 47
Base (or basis)
for a topology 158
for a vector space 166
Base point
of a loop 61
of a space 68
Betti, Enrico 27
Betti numbers 26
Binary operation 163
Borsuk, K. 100
Borsuk-Ulam theorem 100
Boundary group 18
Boundary homomorphism 17
Boundary of a chain 17
Boundary of a set 158
Boundary of the unit n-cube 106
Bounded set 159
Brouwer degree theorem 52
Brouwer fixed point theorem 54, 139

Brouwer, L. E. J. 3, 49-55, 57
Brouwer no retraction theorem 54
Brouwer-Poincaré theorem 56

Cantor, Georg 1
Cardinal number 156
Cartesian product 155
Čech, Eduard 105, 128, 149
Chain 16
Chain derivation 129
Chain equivalence 132
Chain groups 16
Chain homotopy 132
Chain mapping 40, 41
Closed cylinder 76
Closed function 160
Closed set 158
Closed surface 36
Closure
of a set 158
of a simplex 10
Coherent orientation 33
Combinatorial component 24
Commutative group 163
Commutative ring 166
Commutator subgroup 164
Compact-open topology 108, 109
Compact space 159
Compact subset 159
Complement of a set 155
Complex 10
Component 159

Composite function 156
Concordant orientation 47
Cone complex 151
Conjugacy class of a covering space 92
Connected complex 24
Connected space 159
Connected subset 159
Continuity lemma 62
Continuous function 160
Continuous unit tangent vector field 55
Contractible space 53
Contraction 53
Coordinates of a point 155
Cosets
left and right 163
Covering homotopy 70, 88
Covering homotopy property 71, 89
Covering of a space 159
Covering path 70,88
Covering path property 70,88
Covering projection 84
Covering space 84
Cube 162
Cycle 18
Cycle group 18
Cyclic group 164

Deformation operator 132
Deformation retract 75
Deformation retraction 75
Degree
of a loop 73
of a map 51
Diameter 159
Dimension
of a complex 10
of a vector space 166
Direct sum
of groups 165
of vector spaces 167
Distance function 159
Domain of a function 156
Dot product 56, 162
Edge loop 78
Eilenberg, Samuel 149, 151
Eilenberg-Steenrod axioms 149-151
Einhängung 123
Elementary chain 16
Elementary edge path 78
Elementary neighborhood 84

Equivalence class 156
Equivalence modulo $x_{0} 61,106,107$
Equivalence relation 156
Equivalent loops 61
Equivalent paths 61
Euclidean metric 161
Euclidean space 161
Euler characteristic 27
Euler, Leonhard 26
Euler-Poincaré theorem 26
Euler's theorem 25, 28
Exact sequence 143
Excision theorem 152
Extension of a function 157

Face 9
Face operator 146
Field 166
Finitely generated group 165
First homomorphism theorem 164
First homotopy group 63. See also
Fundamental group
Fixed point 53
Fixed point theorems
Brouwer 54, 139
Lefschetz 138
Fixed simplex 136
Fox, R. H. 110
Frechet, Maurice 1
Free abelian group 165
Freudenthal, H. 121
Freudenthal suspension theorem 124
Function 156
Fundamental class 51
Fundamental group 63
non-abelian 99, 100
of circle 74
of n-sphere 78
of product spaces 76
of projective spaces 98,99
of torus 76
relation with first homology group 78

Generalized Poincaré conjecture 126
Generator of a group 164
Geometrically independent points 8
Geometric carrier 10
Geometric complex 10
Geometric simplex 8
Group 163
Group of automorphisms of a covering space 97

Hausdorff, Felix 1
Hausdorff space 158
Higher homotopy groups 106, 107, 110
of circle 117
of n-sphere 112, 121-124
of projective spaces 118
relations with homology groups 124, 125
Hilbert, David 2
Homeomorphism 160
Homologous cycles 18
Homologous to zero 18
Homology class 19
Homology groups 19
of Möbius strip 20, 21
of n-sphere 34
of projective plane 21
of torus 37
relations with homotopy groups 78, 124, 125
Homology sequence 142
Homology theories
relative 139-145
simplical 16-59
singular 145-151
Homomorphisms
of covering spaces 91
of groups 164
of vector spaces 167
on chain groups 41
on fundamental groups 81,90
on higher homotopy groups 115
on homology groups $50,148,149$
Homotopic functions 44
Homotopy 44, 61
Homotopy class 63,106
Homotopy equivalence 118
for pairs 120
Homotopy groups 61-66, 106-110. See also Fundamental group, higher homotopy groups
Homotopy inverses 118
for pairs 120
left and right 126
Homotopy modulo base points 126
Homotopy modulo x_{0} 61, 106, 107
Homotopy theory 60-127
Homotopy type 118
for pairs 120
Homotopy unit 114
Hopf classification theorem 53
Hopf, Heinz 53, 114, 121, 139
Hopf maps 121-123

Hopf space 114
H-space 114
Hurewicz isomorphism theorem 125
Hurewicz, Witold 102, 105, 110, 116, $118,125,126,145$
Hyperplane 167

Identity function 156
Image of a function 156
Incidence matrix 14
Incidence number 13
Inessential function 53
Initial point 61
Inner product 56, 162
Intersection 155
Invariance of dimension theorem 50
Inverse function 156
Isomorphisms
of covering spaces 91
of groups 164
of vector spaces 167

Joining 9
Jordan, Camille 3, 36
Jordan curve theorem 3

Kernel 164
Kirby, R. C. 36
Klein bottle 15, 31, 37

Lakes of Wada 3, 4
Lebesgue number 160
Lefschetz fixed point theorem 138
Lefschetz number
of a chain map 136
of a continuous map 138
Lefschetz, Solomon 128, 134, 136, 139, 145, 149
Levels of a homotopy 61
Lifting
of a homotopy 70,88
of a path 70,88
Limit point 158
Linearly independent cycles 26
Linearly independent vectors 166
Linear transformation 167
Local homeomorphism 102
Locally compact space 159
Locally path connected space 83
Loop 61

Loop space 109

Manifold 30
Mapping cylinder 127
Mapping of pairs 94, 95
Matrix 167
Mesh of a complex 48
Metric 159
Metric space 159
Metric topology 159
Möbius, A. F. 36
Möbius strip 11, 20, 21, 36
Moise, Edwin 36
Monodromy theorem 89
n-dimensional torus 76
Neighborhood 158
n-fold covering 90
Noether, Emmy 14
Norm 48, 161
Normal subgroup 164
Null-homotopic function 53
Number of sheets of a covering 90

One-point compactification 162
One-to-one correspondence 156
One-to-one function 156
Onto function 156
Open covering 159
Open function 160
Open set 158
Open simplex 9, 43
Open star of a vertex 43
Open subcomplex 152
Orientable pseudomanifold 33
Oriented complex 12
Oriented simplex 12
Orthogonal vectors 162

Pair 94, 95
Path 61
Path component 83
Path connected space 67
Path product 63
Permutations even and odd 165
Perpendicular vectors 162
Poincaré conjecture $80,125,126$
Poincaré group 63. See also Fundamental group

Poincaré, Henri 2, 3, 10, 18, 26, 27, 36, 57, 78-80, 101
Polyhedron 10
Product of sets 157
Product space 160
Product topology 160
Projection maps 161
Projective plane $21,38,85,95,98$
Projective spaces 98, 99, 118
Proper face 9
Proper joining 9
Proper subset 155
Pseudomanifold 30
Pseudomanifold with boundary 38
Punctured n-space 81
Punctured plane 75

Quotient group 164
Quotient space 161
Quotient topology 161

Rado, Tibor 36
Rank
of a group 165
of a matrix 168
Rectilinear polyhedron 28
Reflections of the n-sphere 55
Regular covering space 104
Relation 156
Relative homology groups 140
Restriction of a function 157
Retract 58
Retraction 58
Reverse of a path 65
Riemann, G. F. B. 30
Ring 166
Ring with unity 166
Row vector 168

Same homotopy type 118
for pairs 120
Serre, J. P. 102
Sheets of a covering 90
Siebenmann, L. C. 36
Simple polyhedron 28
Simplex 8
Simplicial approximation 45
Simplicial approximation theorem 49
Simplicial complex 10
Simplicial mappings 41, 42
Simply connected space 68
Singular complex 146
Singular homology groups 148
Singular simplex 146
Skeleton of a complex 10
Smale, S 126
Sphere 162
Spherical neighborhood 159
Star of a vertex 43
Star related complexes 44
Steenrod, Norman 149, 151Subbase (or subbasis) for a topology158
Subcomplex 140
Subcovering 159
Subgroup 163
Subset 155
Subspace
of a topological space 159
of a vector space 167
Subspace topology 159
Suspension 123
Suspension homomorphism 123
Symmetric group 165
Terminal point 61
Topological group 166
Topological space 158
Topology for a set 158
Topology of uniform convergence 109
Torsion subgroup 23
Torus 11
n-dimensional 76
Trace of a matrix 168
Transposition 165
Triangulable space 10
Triangulation 10
Trivial group 163
T_{2}-space 158

Ulam, S. 100
Uniformly continuous function 160
Union 155
Unit n-ball 162
Unit n-cube 162
Unit n-simplex 146
Unit n-sphere 162
Universal covering space 96

Veblen, Oswald 3, 27, 128, 149
Vector fields on spheres 55
Vector space 166
Vertex 9
Vietoris, Leopold 128, 149

Weight of a fixed simplex 136
Whitehead, J. H. C. 125

Yoneyama, K. 3

Algebraic Topology: An Introduction
by W. S. Massey
(Graduate Texts in Mathematics, Vol. 56)
1977. xxi, 261p. 61 illus. cloth

Here is a lucid examination of algebraic topology, designed to introduce advanced undergraduate or beginning graduate students to the subject as painlessly as possible. Algebraic Topology: An Introduction is the first textbook to offer a straight-forward treatment of "standard" topics such as 2 -dimensional manifolds, the fundamental group, and covering spaces. The author's exposition of these topics is stripped of unnecessary definitions and terminology and complemented by a wealth of examples and exercises.

Algebraic Topology: An Introduction evolved from lectures given at Yale University to graduate and undergraduate students over a period of several years. The author has incorporated the questions, criticisms and suggestions of his students in developing the text. The prerequisites for its study are minimal: some group theory, such as that normally contained in an undergraduate algebra course on the junior-senior level, and a one-semester undergraduate course in general topology.

Lectures on Algebraic Topology

by A. Dold
(Grundlehren der mathematischen Wissenschaften, Vol. 200)
1972. xi, 377p. 10 illus. cloth

Lectures on Algebraic Topology presents a comprehensive examination of singular homology and cohomology, with special emphasis on products and manifolds. The book also contains chapters on chain complexes and homological algebra, applications of homology to the geometry of euclidean space, and CW-spaces.

Developed from a one-year course on algebraic topology, Lectures on Algebraic Topology will serve admirably as a text for the same. Its appendix contains the presentation of Kan- and Čech-extensions of functors as a vital tool in algebraic topology. In addition, the book features a set of exercises designed to provide practice in the concepts advanced in the main text, as well as to point out further results and developments.

From the reviews:

"This is a thoroughly modern book on algebraic topology, well suited to serve as a text for university courses, and highly to be recommended to any serious student of modern algebraic topology."

Other Undergraduate Texts in Mathematics

Apostol: Introduction to Analytic Number Theory. 1976. xii, 338 pages.

Chung: Elementary Probability Theory with Stochastic Processes.
1975. x, 325 pages. 36 illus.

Fleming: Functions of Several Variables. Second edition.
1977. xi, 411 pages. 96 illus.

Halmos: Finite-Dimensional Vector Spaces. Second edition.
1974. viii, 200 pages.

Halmos: Naive Set Theory.
1974. vii, 104 pages.

Kemeny/Snell: Finite Markov Chains.
1976. ix, 210 pages.

LeCuyer: Introduction to College Mathematics
Using A Programming Language.
1978. Approximately 450 pages. 150 illus.

Protter/Morrey: A First Course in Real Analysis.
1977. xii, 507 pages. 135 illus.

Sigler: Algebra.
1976. xii, 419 pages. 32 illus.

Singer/Thorpe: Lecture Notes on Elementary Topology and Geometry. 1976. viii, 232 pages. 109 illus.

Smith: Linear Algebra.
1978. ix, 278 pages. 14 illus.

[^0]: ${ }^{1}$ The papers were Analysis Situs, Complément à l'Analysis Situs, Deuxième Complément, and Cinquième Complément. The other papers in this sequence, the third and fourth complements, deal with algebraic geometry.

