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Preface 

This text is intended as a one semester introduction to algebraic topology 
at the undergraduate and beginning graduate levels. Basically, it covers 
simplicial homology theory, the fundamental group, covering spaces, the 
higher homotopy groups and introductory singular homology theory. 

The text follows a broad historical outline and uses the proofs of the 
discoverers of the important theorems when this is consistent with the 
elementary level of the course. This method of presentation is intended to 
reduce the abstract nature of algebraic topology to a level that is palatable 
for the beginning student and to provide motivation and cohesion that are 
often lacking in abstact treatments. The text emphasizes the geometric 
approach to algebraic topology and attempts to show the importance of 
topological concepts by applying them to problems of geometry and 
analysis. 

The prerequisites for this course are calculus at the sophomore level, a 
one semester introduction to the theory of groups, a one semester introduc­
tion to point-set topology and some familiarity with vector spaces. Outlines 
of the prerequisite material can be found in the appendices at the end of 
the text. It is suggested that the reader not spend time initially working on 
the appendices, but rather that he read from the beginning of the text, 
referring to the appendices as his memory needs refreshing. The text is 
designed for use by college juniors of normal intelligence and does not 
require "mathematical maturity" beyond the junior level. 

The core of the course is the first four chapters-geometric complexes, 
simplicial homology groups, simplicial mappings, and the fundamental 
group. After completing Chapter 4, the reader may take the chapters in 
any order that suits him. Those particularly interested in the homology 
sequence and singular homology may choose, for example, to skip Chapter 
5 (covering spaces) and Chapter 6 (the higher homotopy groups) tempor­
arily and proceed directly to Chapter 7. There is not so much material 
here, however, that the instructor will have to pick and choose in order to 
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Preface 

cover something in every chapter. A normal class should complete the first 
six chapters and get well into Chapter 7. 

No one semester course can cover all areas of algebraic topology, and 
many important areas have been omitted from this text or passed over with 
only brief mention. There is a fairly extensive list of references that will 
point the student to more advanced aspects of the subject. There are, in 
addition, references of historical importance for those interested in tracing 
concepts to their origins. Conventional square brackets are used in refer­
ring to the numbered items in the bibliography. 

For internal reference, theorems and examples are numbered consecu­
tively within each chapter. For example, "Theorem IV.7" refers to Theo­
rem 7 of Chapter 4. In addition, important theorems are indicated by their 
names in the mathematical literature, usually a descriptive name (e.g., 
Theorem 5.4, The Covering Homotopy Property) or the name of the 
discoverer (e.g., Theorem 7.8, The Lefschetz Fixed Point Theorem.) 

A few advanced theorems, the Freudenthal Suspension Theorem, the 
Hopf Classification Theorem, and the Hurewicz Isomorphism Theorem, 
for example, are stated in the text without proof. Although the proofs of 
these results are too advanced for this course, the statements themselves 
and some of their applications are not. Students at the beginning level of 
algebraic topology can appreciate the beauty and power of these theorems, 
and seeing them without proof may stimulate the reader to pursue them at 
a more advanced level in the literature. References to reasonably accessible 
proofs are given in each case. 

The notation used in this text is fairly standard, and a real attempt has 
been made to keep it as simple as possible. A list of commonly used 
symbols with definitions and page references follows the table of contents. 
The end of each proof is indicated by a hollow square, O. 

There are many exercises of varying degrees of difficulty. Only the most 
extraordinary student could solve them all on first reading. Most of the 
problems give standard practice in using the text material or complete 
arguments outlined in the text. A few provide real extensions of the ideas 
covered in the text and represent worthy projects for undergraduate 
research and independent study beyond the scope of a normal course. 

I make no claim of originality for the concepts, theorems, or proofs 
presented in this text. I am indebted to Wayne Patty for introducing me to 
algebraic topology and to the many authors and research mathematicians 
whose work I have read and used. 

I am deeply grateful to Stephen Puckette and Paul Halmos for their 
help and encouragement during the preparation of this text. I am also 
indebted to Mrs. Barbara Hart for her patience and careful work in typing 
the manuscript. 

FRED H. CROOM 
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Geometric Complexes and Polyhedra 1 

1.1 Introduction 
Topology is an abstraction of geometry; it deals with sets having a structure 
which permits the definition of continuity for functions and a concept of 
"closeness" of points and sets. This structure, called the" topology" on the 
set, was originally determined from the properties of open sets in Euclidean 
spaces, particularly the Euclidean plane. 

It is assumed in this text that the reader has some familiarity with basic 
topology, including such concepts as open and closed sets, compactness, 
connectedness, metrizability, continuity, and homeomorphism. All of these 
are normally studied in what is called" point-set topology"; an outline of the 
prerequisite information is contained in Appendix 2. 

Point-set topology was strongly influenced by the general theory of sets 
developed by Georg Cantor around 1880, and it received its primary impetus 
from the introduction of general metric spaces by Maurice Frechet in 1906 
and the appearance of the book Grundzuge der Mengenlehre by Felix Haus­
dorff in 1912. 

Although the historical origins of algebraic topology were somewhat 
different, algebraic topology and point-set topology share a common goal: 
to determine the nature of topological spaces by means of properties which 
are invariant under homeomorphisms. Algebraic topology describes the 
structure of a topological space by associating with it an algebraic system, 
usually a group or a sequence of groups. For a space X, the associated group 
G(X) reflects the geometric structure of X, particularly the arrangement of 
the "holes" in the space. There is a natural interplay between continuous 
maps f: X -* Y from one space to another and algebraic homomorphisms 
f*: G(X) -* G( Y) on their associated groups. 
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1 Geometric Complexes and Polyhedra 

Consider, for example, the unit circle Sl in the Euclidean plane. The circle 
has one hole, and this is reflected in the fact that its associated group is 
generated by one element. The space composed of two tangent circles (a 
figure eight) has two holes, and its associated group requires two generating 
elements. 

The group associated with any space is a topological invariant of that 
space; in other words, homeomorphic spaces have isomorphic groups. The 
groups thus give a method of comparing spaces. In our example, the circle 
and figure eight are not homeomorphic since their associated groups are not 
isomorphic. 

Ideally, one would like to say that any topological spaces sharing a 
specified list of topological properties must be homeomorphic. Theorems of 
this type are called classification theorems because they divide topological 
spaces into classes of topologically equivalent members. This is the sort of 
theorem to which topology aspires, thus far with limited success. The reader 
should be warned that an isomorphism between groups does not, in general, 
guarantee that the associated spaces are homeomorphic. 

There are several methods by which groups can be associated with topo­
logical spaces, and we shall examine two of them, homology and homotopy, 
in this course. The purpose is the same in each case: to let the algebraic 
structure of the group reflect the topological and geometric structures of the 
underlying space. Once the groups have been defined and their basic proper­
ties established, many beautiful geometric theorems can be proved by alge­
braic arguments. The power of algebraic topology is derived from its use of 
algebraic machinery to solve problems in topology and geometry. 

The systematic study of algebraic topology was initiated by the French 
mathematician Henri Poincare (1854-1912) in a series of papers 1 during the 
years 1895-1901. Algebraic topology, or analysis situs, did not develop as a 
branch of point-set topology. Poincare's original paper predated Frechet's 
introduction of general metric spaces by eleven years and Hausdorff's classic 
treatise on point-set topology, Grundzuge der Mengenlehre, by seventeen 
years. Moreover, the motivations behind the two subjects were different. 
Point-set topology developed as a general, abstract theory to deal with 
continuous functions in a wide variety of settings. Algebraic topology was 
motivated by specific geometric problems involving paths, surfaces, and 
geometry in Euclidean spaces. Unlike point-set topology, algebraic topology 
was not an outgrowth of Cantor's general theory of sets. Indeed, in an 
address to the International Mathematical Congress of 1908, Poincare 
referred to point-set theory as a "disease" from which future generations 
would recover. 

Poincare shared with David Hilbert (1862-1943) the distinction of being 
the leading mathematician of his time. As we shall see, Poincare's geometric 

1 The papers were Analysis Situs, Compliment a ['Analysis Situs, Deuxieme Compliment, 
and Cinquieme Compliment. The other papers in this sequence, the third and fourth com­
plements, deal with algebraic geometry. 
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1.2 Examples 

insight was nothing short of phenomenal. He made significant contributions 
in differential equations (his original specialty), complex variables, algebra, 
algebraic geometry, celestial mechanics, mathematical physics, astronomy, 
and topology. He wrote thirty books and over five hundred papers on new 
mathematics. The volume of Poincare's mathematical works is surpassed 
only by that of Leonard Euler's. In addition, Poincare was a leading writer 
on popular science and philosophy of mathematics. 

In the remaining sections of this chapter we shall examine some of the 
types of problems that led to the introduction of algebraic topology and 
define polyhedra, the class of spaces to which homology groups will be 
applied in Chapter 2. 

1.2 Examples 

The following are offered as examples of the types of problems that led to 
the development of algebraic topology by Poincare. They are hard problems, 
buUhe reader who has not studied them before has no cause for alarm. We 
will use them only to illustrate the mathematical climate of the 1890's and to 
motivate Poincare's fundamental ideas. 

1.2.1 The Jordan Curve Theorem and Related Problems 

The French mathematician Camille Jordan (1858-1922) was first to point out 
that the following "intuitively obvious" fact required proof, and the 
resulting theorem has been named for him. 

Jordan Curve Theorem. A simple closed curve C (i.e., a homeomorphic image 
of a circle) in the Euclidean plane separates the plane into two open connected 
sets with C as their common boundary. Exactly one of these open connected 
sets (the "inner region") is bounded. 

Jordan proposed this problem in 1892, but it was not solved by him. That 
distinction belongs to Oswald Veblen (1880--1960), one of the guiding forces 
in the development of algebraic topology, who published the first correct 
solution in 1905 [55]. 

Lest the reader be misguided by his intuition, we present the following 
related conjecture which was also of interest at the turn of the century. 

Conjecture. Suppose D is a subset of the Euclidean plane 1R2 and is the boundary 
of each component of its complement 1R2\D. If 1R2\D has a bounded com­
ponent, then D is a simple closed curve. 

This conjecture was proved false by L. E. J. Brouwer (1881-1966) at about 
the same time that Veblen gave the first correct proof of the Jordan Curve 
Theorem. The following counterexample is due to the Japanese geometer 
Yoneyama (1917) and is known as the Lakes of Wada. 

3 



1 Geometric Complexes and Polyhedra 

Ocean 

Figure 1.1 

Consider the double annulus in Figure 1.1 as an island with two lakes 
having water of distinct colors surrounded by the ocean. By constructing 
canals from the ocean and the lakes into the island, we shall define three 
connected open sets. First, canals are constructed bringing water from the 
sea and from each lake to within distance d = 1 of each dry point of the 
island. This process is repeated for d = t, t, ... , (t)", ... , with no intersec­
tion of canals. The two lakes with their canal systems and the ocean with its 
canal form three regions in the plane with the remaining" dry land" D as 
common boundary. Since D separates the plane into three connected open 
sets instead of two, the Jordan Curve Theorem shows that D is not a simple 
closed curve. 

1.2.2 Integration on Surfaces and Multiply-connected Domains 
Consider the annulus in Figure 1.2 enclosed between the two circles Hand K. 

Figure 1.2 

We are interested in evaluating curve integrals 

LPdX + qdy 

where p = p(x, y) and q = q(x, y) are continuous functions of two variables 
whose partial derivatives are continuous and satisfy the relation 

op oq 
oy = ox' 
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1.2 Examples 

Since ~urve C1 can be continuously deformed to a point in the annulus, then 

f p dx + q dy = O. 
01 

Thus C1 is considered to be negligible as far as curve integrals are concerned, 
and we say that C1 is "equivalent" to a constant path. 

Figure 1.3 

Green's Theorem insures that the integrals over curves C2 and C3 of 
Figure 1.3 are equal, so we can consider C2 and C3 to be "equivalent." 

How can we give a more precise meaning to this idea of equivalence of 
paths? There are several possible ways, and two of them form the basic ideas 
of algebraic topology. First, we might consider C2 and C3 equivalent because 
each caQ be transformed continuously into the other within the annulus. 
This is the basic idea of homotopy theory, and we would say that C2 and C3 

are homotopic paths. Curve C1 is homotopic to a trivial (or constant) path 
since it can be shrunk to a point. Note that C2 and C1 are not homotopic 
paths since C2 cannot be pulled across the "hole" that it encloses. For the 
same reason, C1 is not homotopic to C3 • 

Another approach is to say that C2 and C3 are equivalent because they 
form the boundary of a region enclosed in the annulus. This second idea is the 
basis of homology theory, and C2 and Ca would be called homologous paths. 
Curve C1 is homologous to zero since it is the entire boundary of a region 
enclosed in the annulus. Note that C1 is not homologous to either C2 or C3 • 

The ideas of homology and homotopy were introduced by Poincare in his 
original paper Analysis Situs [49] in 1895. We shall consider both topics in 
some detail as the course progresses. 

1.2.3 Classification of Surfaces and Polyhedra 
Consider the problem of explaining the difference between a sphere S2 and a 
torus T as shown in Figure 1.4. The difference, of course, is apparent: the 
sphere has one hole, and the torus has two. Moreover, the hole in the sphere 
is somehow different from those in the torus. The problem is to explain this 
difference in a mathematically rigorous way which can be applied to more 
complicated and less intuitive examples. 

5 
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Sphere S2 Torus T 

Figure 1.4 

Consider the idea of homotopy. Any simple closed curve on the sphere can 
be continuously deformed to a point on the spherical surface. Meridian and 
parallel circles on the torus do not have this property. (These facts, like the 
Jordan Curve Theorem, are "intuitively obvious" but difficult to prove.) 

From the homology viewpoint, every simple closed curve on the sphere is 
the boundary of the portion of the spherical surface that it encloses and also 
the boundary of the complementary region. However, a meridian or parallel 
circle on the torus is not the boundary of two regions of the torus since such 
a circle does not separate the torus. Thus any simple closed curve on the 
sphere is homologous to zero, but meridian and parallel circles on the torus 
are not homologous to zero. 

The following intuitive example will make more precise this still vague 
idea of homology. It is based on the modulo 2 homology theory introduced 
by Heinrich Tietze in 1908. Consider the configuration shown in Figure 1.5 
consisting of triangles <abc), <bed), <abd), and <acd), edges <ab), <ac), 
<ad), <be), <bd), <cd), <d!), <de), <e!), and <!g), and vertices <a), <b), <c), 
<d), <e), <I), and <g). The interior of the tetrahedron and the interior of 
triangle <de!) are not included. This type of space is called a "polyhedron"; 
the definition of this term will be given in the next section. 

b 

g 

a 

Figure 1.5 

A 2-chain is a formal linear combination of triangles with coefficients 
modulo 2. A I-chain is a formal linear combination of edges with coefficients 
modulo 2. The O-chains are similarly defined for vertices. To simplify the 
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notation, we omit those terms with coefficient 0 and consider only those terms 
in a chain with coefficient 1. Thus we write 

<abc) + <abd) 

to denote the 2-chain 

l·<abc) + l·<abd) + O·<acd) + O·<bcd). 

The boundary operator 0 is defined as follows for chains of length one and 
extended linearly: 

o<abc) = <ab) + <ac) + <bc), 
o<ab) = <a) + <b). 

A p-chain cp (p = 1 or 2) is a boundary means that there is a (p + 1)­
chain Cp +l with 

We think of this intuitively as indicating that the union of the members of 
cp forms the point-set boundary of the union of the members of Cp +l' For 
example, 

<ab) + <bc) + <cd) + <da) = o«abc) + <acd»), 

since terms which occur twice cancel modulo 2. For any 2-chain C2, one easily 
observes that 

OOC2 = O. 

A p-cycle (p = 1 or 2) is a p-chain Cp with oCp = O. Since 00 is the trivial 
operator, then every boundary is a cycle. Intuitively speaking, a cycle is a 
chain whose terms either close a "hole" or form the boundary of a chain of 
the next higher dimension. We investigate the" holes" in the polyhedron by 
determining the cycles which are not boundaries. 

Except for the 2-chain having all coefficients zero, 

<abc) + <bcd) + <acd) + <abd) 

is the only 2-cycle in our example, and it is nonbounding since the interior of 
the tetrahedron is not included. The reader should check to see that 

z = <dJ) + <Je) + <de) 

is a nonbounding I-cycle and that any other I-cycle is either a boundary or 
the sum of z and a boundary. Thus any I-cycle is homologous to zero or 
homologous to the fundamental I-cycle z. This indicates the presence of two 
holes in the polyhedron, one enclosed by the non bounding 2-cycle and one 
enclosed by the nonbounding I-cycle z. 

In Chapter 2 we shall make rigorous the notions of homology, chain, 
cycle, and boundary and use them to study the structure of general polyhedra. 

7 



1 Geometric Complexes and Polyhedra 

1.3 Geometric Complexes and Polyhedra 
We turn now to the problem of defining polyhedra, the subspaces of Euclidean 
n-space IRn on which homology theory will be developed. Intuitively, a 
polyhedron is a subset of IRn composed of vertices, line segments, triangles, 
tetrahedra, and so on joined together as in the example of mod 2 homology 
in the preceding section. Naturally we must allow for higher dimensions and 
considerable generality in the definition. 

For each positive integer n, we shall consider n-dimensional Euclidean 
space 

IRn = {x = (X1o X2, ••• , xn): each XI is a real number} 

as a vector space over the field IR of real numbers and use some basic ideas 
from the theory of vector spaces. The reader who has not studied vector 
spaces should consult Appendix 3 before proceeding. 

Definition. A set A = {ao, a10 ... , ak} of k + I points in IRn is geometrically 
independent means that no hyperplane of dimension k - 1 contains all the 
points. 

Thus a set {ao, a10 ... , ak} is geometrically independent means that all the 
points are distinct, no three of them lie on a line, no four of them lie in a 
plane, and, in general, no p + I of them lie in a hyperplane of dimension 
p - 1 or less. 

Example 1.1. The set {ao, a1, a2} in Figure 1.6(a) is geometrically independent 
since the only hyperplane in 1R2 containing all the points is the entire plane. 
The set {bo, b1 , b2} in Figure 1.6(b) is not geometrically independent since all 
three points lie on a line, a hyperplane of dimension 1. 

Definition. Let {ao, ... , ak} be a set of geometrically independent points in IRn. 
The k-dimensional geometric simplex or k-simplex, u\ spanned by 

(a) (b) 

Figure 1.6 
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1.3 Geometric Complexes and Polyhedra 

{ao, ... , ak} is the set of all points x in IRn for which there exist nonnegative 
real numbers Ao, ... , Ak such that 

The numbers Ao, ... , Ak are the barycentric coordinates of the point x. 
The points ao, ... , ak are the vertices of ak. The set of all points x in ak 
with all barycentric coordinates positive is called the open geometric 
k-simplex spanned by {ao, ... , ak}. 

Observe that a O-simplex is simply a singleton set, a I-simplex is a closed 
line segment, a 2-simplex is a triangle (interior and boundary), and a 3-
simplex is a tetrahedron (interior and boundary). An open O-simplex is a 
singleton set, an open I-simplex is a line segment with end points removed, 
an open 2-simplex is the interior of a triangle, and an open 3-simplex is the 
interior of a tetrahedron. 

Definition. A simplex ak is a face of a simplex an, k ::s; n, means that each 
vertex of ak is a vertex of an. The faces of an other than an itself are called 
proper faces. 

If an is the simplex with vertices ao, ... , an, we shall write 

an = <ao ... an). 

Then the faces of the 2-simplex <aOa1a2) are the 2-simplex itself, the 1-
simplexes <aOa1), <a1a2), and <aOa2), and the O-simplexes <ao), <a1), and 
<a2). 

Definition. Two simplexes am and an are properly joined provided that they 
do not intersect or the intersection am n an is a face of both am and an. 

(a) (b) (c) 

Figure 1.7 Examples of proper joining 

(a) (b) (c) 

Figure 1.8 Examples of improper joining 
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1 Geometric Complexes and Polyhedra 

Definition. A geometric complex (or simplicial complex or complex) is a finite 
family K of geometric simplexes which are properly joined and have the 
property that each face of a member of K is also a member of K. The 
dimension of K is the largest positive integer r such that K has an r-simplex. 
The union of the members of K with the Euclidean subspace topology is 
denoted by IKI and is called the geometric carrier of K or the polyhedron 
asso~iated with K. 

We shall be concerned, for the purposes of homology, with geometric 
complexes and polyhedra composed of a finite number of simplexes as 
defined above. Greater generality, at the expense of greater complexity, can 
be obtained by allowing an infinite number of simplexes. The reader interested 
in this generalization should consult the text by Hocking and Young [9]. 

There are several reasons for restricting our initial considerations to 
polyhedra. They are easily visualized and are sufficiently general to allow 
meaningful applications. Poincare realized this and gave a definition of 
complex in his second paper on algebraic topology, Complement a l' Analysis 
Situs [50], in 1899. Furthermore, polyhedra are more general than they 
appear at first glance. A theorem of P. S. Alexandroff (1928) insures that 
every compact metric space can be indefinitely approximated by polyhedra. 
This allows us to carryover some topological theorems about polyhedra to 
compacta by suitable limiting processes. After a thorough introduction to 
homology theory of polyhedra, we shall look at one of its generalizations, 
singular homology theory, which applies to all topological spaces. 

Definition. Let X be a topological space. If there is a geometric complex K 
whose geometric carrier IKI is homeomorphic to X, then X is said to be a 
triangulable space, and the complex K is called a triangulation of X. 

Definition. The closure of a k-simplex ak , CI(ak ), is the complex consisting of 
a k and all its faces. 

Definition. If K is a complex and r a positive integer, the r-skeleton of K is the 
complex consisting of all simplexes of K of dimension less than or equal 
to r. 

Example 1.2. (a) Consider a 3-simplex a3 = <aOa1a2a3). The 2-skeleton of 
the closure of a3 is the complex K whose simplexes are the proper faces of a3• 

The geometric carrier of K is the boundary of a tetrahedron and is therefore 
homeomorphic to the 2-sphere 

S2 = {(Xl> X2, X3) E 1R3: i xr = I}. 
1=1 

Thus S2 is triangulable with K as one triangulation. 
(b) The n-sphere 

10 

{ 
n+1 } 

sn = (Xl> x2, ... , Xn+1) E IRn+1: 2: xr = 1 
1=1 



1.3 Geometric Complexes and Polyhedra 

is a triangulable space for n ~ O. The n-skeleton of the closure of an (n + 1)­
simplex an+ 1 is one triangulation of sn. The reader should verify this by 
solving Exercise 12. 

(c) The Mobius strip is obtained by identifying two opposite ends of a 
rectangle after twisting it through 180 degrees. This can easily be done with 
a strip of paper. Figure 1.9 shows a triangulation of the Mobius strip. It is 
understood that the two vertices labeled ao are identified, the two vertices 
labeled a3 are identified, corresponding points of the two segments <aOa3> 
are identified, and the resulting quotient space, the geometric carrier of the 
triangulation, is considered as a subspace of 1R3. 

Figure 1.9 

(d) A torus is obtained from a cylinder by identifying corresponding points 
of the circular ends with no twisting, as shown in Figure 1.10. 

-
Figure 1.10 

Verify the fact that the following diagram, with proper identifications, 
gives a triangulation of the torus. 

Figure 1.11 
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1 Geometric Complexes and Polyhedra 

1.4 Orientation of Geometric Complexes 
Definition. An oriented n-simplex, n ;;::: 1, is obtained from an n-simplex 

an = <ao . .. an) by choosing an ordering for its vertices. The equivalence 
class of even permutations of the chosen ordering determines the positively 
oriented simplex + an while the equivalence class of odd permutations 
determines the negatively oriented simplex - an. An oriented geometric 
complex is obtained from a geometric complex by assigning an orientation 
to each of its simplexes. 

If vertices ao, ... , ap of a complex K are the vertices of a p-simplex aP, then 
the symbol + <ao ... ap ) denotes the class of even permutations of the indicated 
order ao, ... , ap and - <ao ... ap ) denotes the class of odd permutations. 
If we wanted the class of even permutations of this order to determine the 
positively oriented simplex, then we would write 

or 

Since ordering vertices requires more than one vertex, we need not worry 
about orienting O-simplexes. It will be convenient, however, to consider a 
O-simplex <ao) as positively oriented. 

Example 1.3. (a) In the I-simplex a1 = <aOa1>, let us agree that the ordering 
is given by ao < a1. Then 

If we imagine that the segment <alaj) is directed from aj toward aj, then 
<aOa1) and <a1aO) have opposite directions. 

(b) In the 2-simplex a2 = <aOa1a2), assign the order ao < a1 < a2. Then 
<aOa1a2), <a1a2aO), and <a2aOa1) all denote +a2, while <aOa2a1), <a2a1aO), 
and <a1aOa2) all denote -a2. (See Figure 1.12.) Then 

(Here + <aOa2a1) denotes the class of even permutations of ao, a2, at. and 
- <aOa1a2) denotes the class of odd permutations of ao, at. and a2.) 

ao_-----_al 

Figure 1.12 
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1.4 Orientation of Geometric Complexes 

One method of orienting a complex is to choose an ordering for all its 
vertices and to use this ordering to induce an ordering on the vertices of each 
simplex. This is not the only method, however. An orientation may be 
assigned to each simplex individually without regard to the manner in which 
the simplexes are joined. From this point on, we assume that each complex 
under consideration is assigned some orientation. 

Here is a word of comfort for those who suspect that different orientations 
will introduce great complexity into our considerations: they won't. We are 
developing a method of describing the topological structure of a polyhedron 
I K I by determining the "holes" and "twisting" which occur in the associated 
complex K. In the final analysis, the determining factor is the topological 
structure of IKI and not the particular triangulation nor the particular 
orientation. A triangulation is a convenient method of visualizing the 
polyhedron and converting it to a standard form. An orientation is simply a 
convenient vehicle for cataloguing the arrangement of the simplexes. Neither 
the particular triangulation nor the particular orientation makes any differ­
ence in the final outcome. 

Definition. Let K be an oriented geometric complex with simplexes uP + 1 and 
uP whose dimensions differ by 1. We associate with each such pair 
(uP+1, (11') an incidence number [(11)+\ (11'] defined as follows: If (11' is not a 
face of (11'+\ then [(11'+\ (11'] = O. Suppose (11' is a face of (11'+1. Label the 
vertices ao, . .. , ap of (11' so that + (11' = + (ao ... ap). Let v denote the 
vertex of (11'+1 which is not in (11'. Then +(11'+1 = ± (vao . . . ap). If 
+uP+ 1 = + (vao .. . ap), then [(11'+\ uP] = 1. If +(11)+1 = -(vao ... ap), 
then [(11'+\ (11'] = -1. 

Example 1.4. (a) If + (11 = (aOal), then [(1\ (ao)] = -1 and [(1\ (al)] = 1. 
(b) If +(12 = + (aOala2), +(11 = (aOal) and +71 = (aOa2), then [(12, (11] 

= 1 and [(12,71] = -1. 
Note that in Figure 1.12 the arrow indicating the orientation of (12 agrees 

with the orientation of (11 but disagrees with the orientation of 7 1 • 

Theorem 1.1. Let K be an oriented complex, uP an oriented p-simplex of K and 
uP- 2 a (p - 2)-face of (11'. Then 

L: [(11', (11'-1] [(11'-\ (11'-2] = 0, (11'-1 E K. 

PROOF. Label the vertices Vo, ... , Vp -2 of (11'-2 so that +(11'-2 = <va ••. Vp -2). 
Then (11' has two additional vertices a and b, and we may assume that + (11' = 

<abvo . .. Vp-2). Nonzero terms occur in the sum for only two values of 
(11'-\ namely 

We must now treat four cases determined by the orientations of (1~-1 and 
(1~-1. 

13 



1 Geometric Complexes and Polyhedra 

Case 1. Suppose that 

Then 

+oi'-l = + <avo .. . Vp -2), 

[uP, oi'-l] = -I, 
[uP, U~-l] = + 1, 

[ur-l, uP - 2 ] = + 1, 

[u~-l, uP- 2] = + 1, 

so that the sum of the indicated products is O. 
Case II. Suppose that 

Then 
[uP, U~-l] = -1, 

[uP, u~-l] = -1, 

[u~-l, uP- 2 ] = + 1, 

[u~-l, uP - 2 ] = -1, 

so that the desired conclusion holds in this case also. 
The remaining cases are left as an exercise. D 

Definition. In the oriented complex K, let {Um~l and {uf+1}~~P denote the 
p-simplexes and (p + I )-simplexes of K, where IXp and IXp + 1 denote the 
numbers of simplexes of dimensions p and p + I respectively. The matrix 

where 'YJjj(p) = [af+1, afJ, is called the pth incidence matrix of K. 

Incidence matrices were used to describe the arrangement of simplexes in 
a complex during the early days of algebraic or "combinatorial" topology. 
They are less in vogue today because group theory has given a much more 
efficient method of describing the same property. The group theoretic 
formulation seems to have been suggested by the famous algebraist Emmy 
Noether (1882-1935) about 1925. As we shall see in Chapter 2, these groups 
follow quite naturally from Poincare's original description of homology 
theory. 

EXERCISES 

1. Fill in the details of the mod 2 homology example given in the text. 

2. Prove that a set of k + 1 points in IRn is geometrically independent if and 
only if no p + 1 of the points lie in a hyperplane of dimension less than or 
equal to p - 1. 

3. Prove that a set A = {aD, a10 ... , ale} of points in IRn is geometrically indepen­
dent if and only if the set of vectors {al - aD, ... , ale - aD} is linearly 
independent. 

4. Show that the barycentric coordinates of each point in a simplex are unique. 

14 



1 Exercises 

5. A subset B of IRn is convex provided that B contains every line segment having 
two of its members as end points. 
(a) If a and b are points in IRn, show that the line segment L joining a and b 

consists of all points x of the form 

x = ta + (1 - t)b 

where t is a real number with 0 s t s 1. 
(b) Show that every simplex is a convex set. 
(c) Prove that a simplex a is the smallest convex set which contains all 

vertices of a. 

6. How many faces does an n-simplex have? Prove that your answer is correct. 

7. Verify that the r-skeleton of a geometric complex is a geometric complex. 

8. The Klein Bottle is obtained from a cylinder by identifying the two circular 
ends with the orientation of the two circles reversed. (It cannot be constructed 
in 3-dimensional space without self-intersection.) Modify the triangulation of 
the torus given in the text to produce a triangulation of the Klein Bottle. 

9. Let K denote the closure of a 3-simplex a3 = <aOala2a3> with vertices ordered 
by 

Use this given order to induce an orientation on each simplex of K, and 
determine all incidence numbers associated with K. 

10. Complete the proof of Theorem 1. 

11. In the triangulation M of the Mobius strip in Figure 1.9, let us call a I-simplex 
interior if it is a face of two 2-simplexes. For each interior simplex ah let iii 
and iii denote the two 2-simplexes of which al is a face. Show that it is not 
possible to orient M so that 

[iiI. all = - [iiI. ad 
for each interior simplex al. (This result is sometimes expressed by saying 
that Mis nonorientable or that it has no coherent orientation.) 

12. Let an + 1 = <ao ... an +1> be the (n + I)-simplex in IRn + 1 with vertices as 
follows: ao is the origin and, for i ;e: 1, al is the point with ith coordinate 1 
and all other coordinates o. Let K denote the n-skeleton of the closure of 
an +1. Show that sn is triangulable by exhibiting a homeomorphism between 
sn and IKI. (Hint: If an+l is considered as a subspace of 1Rn+1, then IKI is its 
point-set boundary.) 
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2 Simplicial Homology Groups 

Having defined polyhedron, complex, and orientation for complexes in the 
preceding chapter, we are now ready for the precise definition of the homology 
groups. Intuitively speaking, the homology groups of a complex describe the 
arrangement of the simplexes in the complex thereby telling us about the 
"holes" in the associated polyhedron. 

Whether expressly stated or not, we assume that each complex under 
consideration has been assigned an orientation. 

2.1 Chains, Cycles, Boundaries, and Homology Groups 
Definition. Let K be an oriented simplicial complex. If p is a positive integer, 

a p-dimensional chain, or p-chain, is a function Cp from the family of 
oriented p-simplexes of K to the integers such that, for each p-simplex uP, 
cp( - uP) = - cp( + uP). A O-dimensional chain or O-chain is a function from 
the O-simplexes of K to the integers. With the operation of pointwise 
addition induced by the integers, the family of p-chains forms a group 
called the p-dimensional chain group of K. This group is denoted by Cp(K). 

An elementary p-chain is a p-chain Cp for which there is a p-simplex uP 

such that CP(TP) = 0 for each p-simplex TP distinct from up. Such an 
elementary p-chain is denoted by g. uP where g = cp( + uP). With this 
notation, an arbitrary p-chain dp can be expressed as a formal finite sum 

dp = Lgj,uf 

of elementary p-chains where the index i ranges over all p-simplexes of K. 

The following facts should be observed from the definition of p-chains: 

(a) If cp = L fi· uf and dp = L gj' uf are two p-chains on K, then 

cp + dp = L (fi + gj).uf. 
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2.1 Chains, Cycles, Boundaries, and Homology Groups 

(b) The additive inverse of the chain Cp in the group Cp(K) is the chain 
-Cp = 2: -kaf. 

(c) The chain group CP(K) is isomorphic to the direct sum of the group 7L 
of integers over the family of p-simplexes of K. That is, if K has cxp 

p-simplexes, then Cp(K) is isomorphic to the direct sum of cxp copies of 7L. 
One isomorphism is given by the correspondence 

a p 

L: gl· af +-+ (g1, g2, ... , gap). 
1=1 

Algebraic systems other than the integers could be used as the coefficient 
set for the p-chains. Any commutative group, commutative ring, or field 
could be used thus making Cp(K) a commutative group, a module, or a 
vector space. With two exceptions, we shall use only the integers as the 
coefficient set for chains. Incidentally, Poincare's original definition was given 
in terms of integers. 

Definition. If g. aP is an elementary p-chain with p :2: I, the boundary of g. aP, 
denoted by o(g· aP), is defined by 

af-1 E K. 

The boundary operator 0 is extended by linearity to a homomorphism 

0: Cp(K) -? Cp-1(K). 

In other words, if Cp = 2: gj . af is an arbitrary p-chain, then we define 

o(cp) = L: o(gj· an. 

The boundary of a O-chain is defined to be zero. 

Strictly speaking, we should say that there is a boundary homomorphism 

op: CP(K) -? Cp_1(K). 

This extra subscript is cumbersome, however, and we shall usually omit it 
since the dimension involved is indicated by the chain group Cp(K). 

Theorem 2.1. If K is an oriented complex and p :2: 2, then the composition 
00: CP(K) -? Cp _ 2(K) in the diagram 

CP(K) ~ Cp- 1(K) ~ Cp_2(K) 

is the trivial homomorphism. 

PROOF. We must prove that oo(cp) = 0 for each p-chain. To do this, it is 
sufficient to show that oo(g. aP) = 0 for each elementary p-chain g. aP. 

Observe that 

oo(g·aP) = o( L: [aP, af-1]g.af-1) = L: o([aP, af-l]g·af-l) 
I1r-1eK "r-1eK 

= L: L: [aP, af-1][af-1, a}'-2]g.a~-2. 
"r-1eK ,,~-2eK 
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2 Simplicial Homology Groups 

Reversing the order of summation and collecting coefficients of each simplex 
af-2 gives 

88(g.aP) = L: ( L: [aP, af-l][af-I, ay-2]g.af-2). 
af-2EK af- 1EK 

Since Theorem 1.1 insures that 2af-1EK [aP, af-l] [af-I, af-2] is 0 for each 
af-2, it follows that 88(g.aP) = O. 0 

Definition. Let K be an oriented complex. If p is a positive integer, a p­
dimensional cycle on K, or p-cycle, is a p-chain Zp such that 8(zp) = O. The 
family of p-cycles is thus the kernel of the homomorphism 8: Cp(K)-+ 
Cp_1(K) and is a subgroup of Cp(K). This subgroup, denoted by Zp(K), 
is called the p-dimensional cycle group of K. Since we have defined the 
boundary of every O-chain to be 0, we now define O-cycle to be synonymous 
with O-chain. Thus the group Zo(K) of O-cycles is the group Co(K) of 
O-chains. 

If p ~ 0, a p-chain bp is a p-dimensional boundary on K, or p-boundary, 
if there is a (p + I)-chain Cp+l such that 8(Cp+l) = bp. The family of 
p-boundaries is the homomorphic image 8(Cp + l(K» and is a subgroup of 
Cp(K). This subgroup is called the p-dimensional boundary group of K and 
is denoted by BP(K). 

If n is the dimension of K, then there are no p-chains on K for p > n. 
In this case we say that Cp(K) is the trivial group {O}. In particular, there 
are no (n + I)-chains on K so that Cn+1(K) = {O} and therefore 
Bn(K) = {O}. 

The proof of the following theorem is left as an exercise: 

Theorem 2.2. If K is an oriented complex, then Bp(K) c Zp(K) for each 
integer p such that 0 :s; p :s; n, where n is the dimension of K. 

We think intuitively of a p-cycle as a linear combination of p-simplexes 
which makes a complete circuit. The p-cycles which enclose" holes" are the 
interesting cycles, and they are the ones which are not boundaries of (p + 1)­
chains. We restrict our attention to nonbounding cycles and weed out the 
bounding ones. A p-cycle which is the boundary of a (p + I )-chain was said 
by Poincare to be homologous to zero. The separation of cycles into these 
categories is accomplished by the following definition. 

Definition. Two p-cycles Wp and Zp on a complex K are homologous, written 
wp '" zP' provided that there is a (p + I)-chain Cp +1 such that 
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8(cP + 1 ) = wp - Zp. 

If a p-cycle tp is the boundary of a (p + I )-chain, we say that tp is homolo­
gous to zero and write tp '" O. 



2.2 Examples of Homology Groups 

This relation of homology for p-cycles is an equivalence relation and 
partitions ZP(K) into homology classes 

[zp] = {wp E Zp(K) : wp '" zp}. 

The homology class [zp] is actually the coset 

Zp + BP(K) = {zp + O(Cp+l): o(cP +1) E BP(K)}. 

Hence the homology classes are actually the members of the quotient group 
Zp(K)jBp(K). We can use the quotient group structure to add homology 
classes. 

Definition. If K is an oriented complex and p a non-negative integer, the 
p-dimensional homology group of K is the quotient group 

Hp(K) = Zp(K)jBP(K). 

2.2 Examples of Homology Groups 
The following examples are intended to clarify the preceding definitions: 

Example 2.1. Let K be the closure of a 2-simplex <aOala2) with orientation 
induced by the ordering ao < al < a2' Thus K has O-simplexes <aD), <al), 
and <a2), positively oriented I-simplexes <aOal), <ala2), and <aOa2) and 
positively oriented 2-simplex (aOaIa2)' 

A O-chain on K is a sum of the form 

Co = go·(ao) + gl·<al) + g2·(a2) 

where go, gI> and g2 are integers. Hence Co(K) = Zo(K) is isomorphic to the 
direct sum 71.. EEl 71.. EEl 71.. of three copies of the group of integers. A I-chain on 
K is a sum of the form 

Cl = ho' <aOal) + hl • <aIa2) + h2· <aOa2) 

where ho, hI> and h2 are integers, so CI(K) is isomorphic to 71.. EEl 71.. EEl 71... Also, 

O(Cl) = (- ho - h2)· (ao) + (ho - hI)' <al) + (hI + h2)· <a2)' (1) 

Hence CI is a I-cycle if and only if ho, hI' and h2 satisfy the equations 

-ho - h2 = 0, 

This system gives ho = hI = - h2 so that the I-cycles are chains of the form 

(2) 

where h is any integer. Thus Zl(K) is isomorphic to the group 71.. of integers. 
The only 2-simplex of K is <aOala2), so the only 2-chains are the elementary 

ones h· (aOaIa2) where h is an integer. Thus C2(K) ~ 71... Since 

o(h· <aOala2») = h· (aOal) + h· <a1a2) - h· (aOa2), (3) 

then o(h· <aOaIa2» = 0 only when h = O. Thus Z2(K) = {O}, so H 2(K) = {O}. 
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From Equations (2) and (3), we observe that I-cycles and I-boundaries 
have precisely the same form so that ZI(K) = B1(K), and hence H 1(K) = {O}. 

From Equation (1) we observe that a O-cycle 

go·<ao) + gl·<al) + g2·<a2) (4) 

is a O-boundary if and only if there are integers ho, hI> and h2 such that 

-ho - h2 = go, ho - hI = gl, hI + h2 = g2· 

Then go + gl = - g2 so that, for O-boundaries, two coefficients are arbitrary, 
and the third is determined by the first two. Thus Bo(K) ~ 7l. EB 7l.. Since 
Zo(K) ~ 7l. EB 7l. EB 7l., we now suspect that Ho(K) ~ 7l.. 

To complete the proof, observe that for any O-cycle expressed in Equation 
(4), 

go·<ao) + gl·<al) + g2·<a2) 
= o(gl·<aOal) + g2·<aOa2» + (go + gl + g2)·<aO). 

This means that any O-cycle is homologous to a O-cycle of the form t· <ao), 
t an integer. Hence each O-homology class has a representative t· <aD) so that 
Ho(K) is isomorphic to 7l.. 

Summarizing the above calculations, we have Ho(K) ~ 7l., H 1(K) = {O}, 
and H 2(K) = {O}. The trivial groups H 1(K) and H 2(K) indicate the absence 
of holes in the polyhedron IKI. As we shall see later, the fact that Ho(K) is 
isomorphic to 7l. indicates that IKI has one component. 

Example 2.2. Let M denote the triangulation of the Mobius strip shown in 
Figure 2.1 with orientation induced by the ordering ao < a1 < a2 < a3 < 
a4 < a6. 

Figure 2.1 

There are no 3-simplexes in M, so B2(M) = {O}. Suppose that 

w = go· <aOa3a4) + gl . <aOala4) + g2· <a1a4a5) + g3· <ala2a5) 
+ g4· <aOa2a5) + g5· <aOa2a3) 

is a 2-cycle. When o(w) is computed, the coefficient that appears with <a3a4) 
is go. In order to have o(w) = 0, it must be true that go = O. Similar reasoning 
applied to the other horizontal I-simplexes shows that each coefficient in w 
must be O. Thus Z2(M) = {O}, so H 2(M) = {O}. Using a bit of intuition, we 
suspect that the I-chains 
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z = I· <aOa1) + I· <ala2) + I· <a2a3) - I· <aOa3), 

z' = I· <aOa3) + I· <a3a4) + I· <a4a5) - I· <aOa5) 



2.2 Examples of Homology Groups 

are I-cycles. (Both of these chains make complete circuits beginning at ao.) 
Direct computation verifies that z and z' are cycles. However, z - z' traverses 
the boundary of M, so z - z' should be the boundary of some 2-chain. A 
straightforward computation shows that 

z - z' = 0(1· <aOa1a4) + 1· <a1a2a5) + I· <aOa2a3) - 1· <aOa2a5) 

- 1· <a1a4a5) - 1· <aOa3a4» 
so that z '" z'. 

A similar calculation verifies the fact that any I-cycle is homologous to a 
multiple of z. Hence H1(M) = {[gz]: g is an integer}, so H1(M) ~ 7L This 
result indicates that the polyhedron I M I has one hole bounded by I-simplexes. 

To determine Ho(M), observe that any twoeleme ntary O-chains 1· <al) 
and 1· <aJ) (i,j range from 0 to 5) are homologous. For example, 

1 . (a5) - 1· (ao) = 0(1· (aOa4) + 1· (a4a5»' 

Hence Ho(M) = {[g. (ao)]: g is an integer}, so Ho(M) ~ lL. As in the pre­
ceding example, this indicates that IMI has only one component. 

Example 2.3. The projective plane is obtained from a finite disk by identifying 
each pair of diametrically opposite points. A triangulation P of the projective 
plane, with orientations indicated by the arrows, is shown in Figure 2.2. 

Figure 2.2 

There are no 3-simplexes, so B2(P) = {O}. To compute Z2(P), observe that 
each I-simplex a1 of P is a face of exactly two 2-simplexes a~ and a~. Observe 
that when a1 is (a3a4), (a4a5), or (a5a3), both incidence numbers [a~, a1] 
and [a~, a1] are + 1. For all other choices of al, the two incidence numbers 
are negatives of each other. Let us call <a3a4), <a4a5), and <a5a3) I-simplexes 
of type I and the others I-simplexes of type II. 
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Suppose that w is a 2-cycle. In order for the coefficients of the type II 
I-simplexes in o(w) to be 0, all the coefficients in w must have a common 
value, say g. But then 

(5) 

since both incidence numbers for the type I I-simplexes are + 1. Hence w is 
a 2-cycle only when g = 0, so Z2(P) = {O} and H2(P) = {O}. 

Observe that any I-cycle is homologous to a multiple of 

z = 1· <a3a4) + 1· <a4a5) + 1· <a5a3)' 

Furthermore, Equation (5) shows that any even multiple of z is a boundary. 
Thus H1(P) ~ 7L 2 , the group of integers modulo 2. This result indicates the 
twisting that occurs around the "hole" in the polyhedron IP I. (Recall, 
however, that the homology groups overlooked the twisted nature of the 
Mobius strip.) 

In the computation of homology groups, it is sometimes convenient to 
express an elementary chain in terms of a negatively oriented simplex. In 
order to be able to do this later, let us agree that the symbol g. ( - uP) may be 
used to denote the elementary p-chain -g. up. In other words, if <ao ... ap) 
represents a positively or negatively oriented p-simplex, then g. <aD ... ap) 
denotes the elementary p-chain which assigns value g to the orientation 
determined by the class of even permutations of the given ordering and 
assigns value - g to the orientation determined by the class of odd permuta­
tions. Return to Example 2.3 for an illustration of this notation. In that 
example, <a5a3) denotes a positively oriented I-simplex. The symbols 
g. <a5a3) and - g. <a3a5) now denote the same elementary I-chain. An 
elementary 2-chain h· <aOala2) may be written in any of six ways: 

h· <aOala2) = h· <ala2aO) = h· <a2aOal) = - h· <a1aOa2) 

= -h·<aOa2al) = -h· <a2alaO)' 

2.3 The Structure of Homology Groups 
What possibilities are there for the homology groups HiK) of a complex K 
if we take our coefficient group to be the integers? The answer is provided by 
group theoretic considerations. 

Suppose that K has CXp p-simplexes. Then CiK) is isomorphic to 
7L EB· .. EB 7L (cxp summands). In other words, CiK) is a free abelian group on 
CXp generators. Since every subgroup of a free abelian group is a free abelian 
group, then Zp(K) and Bp(K) are both free abelian groups. The quotient group 

Hp(K) = Zp(K)jBiK) 

may not be free, but its possibilities are given by the decomposition theorem 
for finitely generated abelian groups (Appendix 3): 

HP(K) = G EB Tl EB··· EB Tm 
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where G is a free abelian group and each T j is a finite cyclic group. The direct 
sum Tl EEl· .. EEl Tm is called the torsion subgroup of HiK). As in the example 
with the projective plane, the torsion subgroup describes the "twisting" in 
the polyhedron IKI. Additional examples of twisting will be found in the 
exercises at the end of the chapter. 

The existence of torsion subgroups explains why the integers modulo 2 
are not generally used for the coefficient set in homology theory. The finite 
cyclic groups Tb ... , Tm which compose the torsion subgroup are quotient 
groups of 71.. If we used the group 71.2 of integers modulo 2 rather than 71., 
there would be no way to recognize torsion since 71.2 admits no proper sub­
groups. Note also that orientation is meaningless in the modulo 2 case. For 
problems in which orientation and the torsion subgroup are not important, 
the integers modulo 2 can be an effective choice for the coefficient group. In 
this regard, see the chapter on modulo 2 homology theory, including the 
Jordan Curve Theorem, in [15]. 

The next theorem shows that the homology groups of a complex are 
independent of the choice of orientation for its simplexes. 

Theorem 2.3. Let K be a geometric complex with two orientations, and let 
Kl, K2 denote the resulting oriented geometric complexes. Then the homology 
groups Hp(Kl) and HiK2) are isomorphic for each dimension p. 

PROOF. For a p-simplex aP of K, let jaP denote the positive orientation of aP 
in the complex Kb i = 1,2. Then there is a function a defined on the simplexes 
of K such that a( aP) is ± I and 

laP = a(aP)2aP. 

Define a sequence cp = {cpp} of homomorphisms 

by 

CPP (L: gj .laf) = L: a(af)gj' 2af 

where 2: gj .laf represents a p-chain on K l . 

For an elementary p-chain g.laP on Kl with p ~ 1, 

CPP_lo(g.laP) = CPp-l ( L g(1aP, laP- l ] .lap- l ) 
<1p - 1.K 

L a(aP-l)g(1aP,laP-l].2aP-l 
<1,,-l.K 

L a(aP-l)ga(aP -1)a(aP)[2aP, 2aP-l]. 2aP-l 
<1,,-l.K 

= a(aP)g L [2aP, 2aP-l]. 2aP-l = o(a(aP)g. 2aP) 
<1,,-l.K 
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Thus the relation CPP _10 = oCPp holds in the diagram 

CiK1) ~ Cp(K2) 

10 10 

Cp- 1(K1) ~ Cp- 1(K2). 

(As we shall see later, this is a very important relation.) If zp E Zp(K1), then 

ocpp(zp) = CPP_10(Zp) = CPP-1(0) = 0, 

so cpizp) E ZiK2). Hence cpP(ZP(K1)) is a subset of ZP(K2)' 
If o(cP+1) E Bp(K1)' then 

cppo(cP+1) = °CPP+1(Cp+1), 

so cppO(Cp+1) is in BiK2)' Thus CPP maps Bp(Kl) into BiK2) and induces a 
homomorphism cP; from the quotient group HiK1) = Zp(K1)/BiK1) to 
HiK2) = Zp(K2)/BiK2) defined by 

cp;([zpD = [cpizp)] 

for each homology class [zp] in Hp(Kl)' 
Reversing the roles of Kl and K2 yields a sequence if = {ifp} of homo­

morphisms: 

such that CPP and .pp are inverses of each other for each p. This implies that 
if; is the inverse of cP; and hence that 

cP;: Hp(K1) ---+ Hp(K2) 

is an isomorphism for each dimension p. o 
As remarked earlier, the structure of the zero dimensional homology group 

Ho(K) indicates whether or not the polyhedron IKI is connected. Actually the 
situation is quite simple; there is no torsion in dimension zero, and the rank 
of the free abelian group Ho(K) is the number of components of the poly­
hedron IKI. Proving this is our next goal. 

Definition. Let K be a complex. Two simplexes Sl and S2 are connected if 
either of the following conditions is satisfied: 
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(a) Sl n S2 =1= 0 ; 
(b) there is a sequence 0'10 •.. , O'p of I-simplexes of K such that Sl n 0'1 is a 

vertex of Sl> S2 n O'p is a vertex of S2, and, for 1 :$ i < p, 0'; n 0'; + 1 is a 
common vertex of 0'1 and O'i+1' 

This concept of connectedness is an equivalence relation whose equiva­
lence classes are called the combinatorial components of K. The complex K 
is said to be connected if it has only one combinatorial component. 



2.4 The Euler-Poincare Theorem 

It is left as an exercise for the reader to show that the components of IKI 
and the geometric carriers of the combinatorial components of K are identical. 

Theorem 2.4. Let K be a complex with r combinatorial components. Then 
Ho(K) is isomorphic to the direct sum of r copies of the group ll. of integers. 

PROOF. Let K' be a combinatorial component of K and (a') a O-simplex in K'. 
Given any O-simplex (b) in K', there is a sequence of I-simplexes 

(bao>, (aOa1), (a1a2), ... , (apa') 

from b to a' such that each two successive I-simplexes have a common 
vertex. If g is an integer, we define a I-chain C1 on the sequence of I-simplexes 
by assigning either g or - g to each simplex (depending on orientation) so 
that o(c1) is g·(b) - g·(a') or g·(b) + g·(a'). Hence any elementary 
O-chain g. (b) is homologous to one of the O-chains g. (a') or -g. (a'). It 
follows that any O-chain on K' is homologous to an elementary O-chain 
h· (a') where h is some integer. 

Applying this result to each combinatorial component K1, ... , Kr of K, 
there is a vertex 01 of K j such that any O-cycle on Kj is homologous to a O-chain 
of the form h j • (01) where h j is an integer. Then, given any O-cycle Co on K, 
there are integers hi> ... , hr such that 

r 

Co '" L h j • (a j ). 

j=1 

Suppose that two such O-chains 2: h j • (01) and 2: gj. (a j ) represent the same 
homology class. Then 

(6) 

for some I-chain C1. Since aj and af belong to different combinatorial com­
ponents when i ¥- j, then Equation (6) is impossible unless gj = h j for each i. 
Hence each homology class [co] in Ho(K) has a unique representative of the 
form 2: h j • (a j ). The function 

L hj • (a1)g -+ (hi> . .. , hr) 

is the required isomorphism between Ho(K) and the direct sum of r copies 
~L D 

Corollary. If a polyhedron IKI has r components and triangulation K, then 
Ho(K) is isomorphic to the direct sum of r copies of ll.. 

2.4 The Euler-Poincare Theorem 
If IKI is a rectilinear polyhedron homeomorphic to the 2-sphere S2 with V 
vertices, E edges, and F two dimensional faces, then 

V - E + F= 2. 
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This result was discovered in 1752 by Leonhard Euler (1707-1783). Poincare's 
first real application of homology theory was a generalization of Euler's 
formula to general polyhedra. That celebrated result, the Euler-Poincare 
Theorem, is proved in this section. 

Definition. Let K be an oriented complex. A family {z~, ... , z~} of p-cycles is 
linearly independent with respect to homology, or linearly independent 
mod BiK), means that there do not exist integers gb ... , gr not all zero 
such that the chain 2: gjZ~ is homologous to O. The largest integer r for 
which there exist r p-cycles linearly independent.with respect to homology 
is denoted by RiK) and called the pth Betti number of the complex K. 

In the theorem that follows, we assume that the coefficient group has been 
chosen to be the rational numbers and not the integers. (This is one of two 
instances in which this change is made.) The reader should convince himself 
that linear independence with integral coefficients is equivalent to linear 
independence with rational coefficients and that this change does not alter 
the values of the Betti numbers. 

Theorem 2.5. (The Euler-Poincare Theorem). Let K be an oriented geometric 
complex of dimension n, and for p = 0, 1, ... , n let ap denote the number of 
p-simplexes of K. Then 

n n 

L (-!)pap = L (-I)!'Rp(K) 
p=o p=o 

where RiK) denotes the pth Betti number of K. 

PROOF. Since K is the only complex under consideration, the notation will be 
simplified by omitting reference to it in the group notations. Note that Cp , 

Zp, and Bp are vector spaces over the field of rational numbers. 
Let {d~} be a maximal set of p-chains such that no proper linear combina­

tion of the d~ is a cycle, and let Dp be the linear subspace of Cp spanned by 
{d~}. Then Dp n Zp = {O} so that, as a vector space, Cp is the direct sum of 
Zp and Dp. Hence 

ap = dim Cp = dim Dp + dimZp, 
dim Zp = ap - dim Dp, 1 :$ P :$ n, 

where the abbreviation "dim" denotes vector space dimension. 
For p = 0, ... , n - I, let b~ = 8(d~+l). The set {b~} forms a basis for Bp. 

Let {z~}, i = I, ... , Rp, be a maximal set of p-cycles linearly independent 
mod Bp. These cycles span a subspace Gp of Zp, and 

O:$p:$n-l. 
Thus 

dimZp = dim Gp + dim Bp = Rp + dim Bp 

since Rp = dim Gp. Then 

I:$p:$n-l. 
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Observe that Bp is spanned by the boundaries of elementary chains 

o(1·af+l) = 2: TJtlp)·af 

where (TJlip)) = TJ(p) is the pth incidence matrix. Thus dim Bp = rank TJ(p). 
Since the number of dJ + 1 is the same as the number of b~, then 

dim Dp+l = dim Bp = rank TJ(p), O:=:;p:=:;n-l. 

Then 

Rp = ap - dim Dp - dim Bp 

= IXp - rank TJ(p - 1) - rank TJ(p), l:=:;p:=:;n-l. 

Note also that 

Ro = dim Zo - dim Bo = ao - rank TJ(O) 

Rn = dim Zn = an - dim Dn = an - rank TJ(n - 1). 

In the alternating sum 2:; = 0 ( -1)P Rp, all the terms rank TJ(p) cancel, and we 
have 

o 

Definition. If K is a complex of dimension n, the number 

n 

X(K) = 2: (-I)PRp 

p=o 

is called the Euler characteristic of K. 

Chains, cycles, boundaries, the homology relation, and Betti numbers were 
defined by Poincare in his paper Analysis Situs [49] in 1895. As mentioned 
earlier, he did not define the homology groups. The proof of the Euler­
Poincare Theorem given in the text is essentially Poincare's original one. 
Complexes (in slightly different form) and incidence numbers were defined 
in Complement a l'Analysis Situs [50] in 1899. 

The Betti numbers were named for Enrico Betti (1823-1892) and generalize 
the connectivity numbers that he used in studying curves and surfaces. 
Poincare assumed, but did not prove, that the Betti numbers are topological 
invariants. In other words, he assumed that if the geometric carriers IKI and 
ILl are homeomorphic, then Rp(K) = Rp(L) in each dimension p. The first 
rigorous proof of this fact was given by J. W. Alexander (1888-1971) in 1915. 
Topological invariance of the homology groups was proved by Oswald 
Veblen in 1922. One can thus speak of HiIKj), RiIKj), and x(IKj) since 
these homology characters are independent of the triangulation of the poly­
hedron IKI. It is important to know that the homology characters are 
topologically invariant. The proofs are lengthy, however, and are omitted. 
Anyone interested in following this topic further should consult references 
[2] and [17]. 
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It is left as an exercise to show that the pth Betti number Rp(K) of a com­
plex K is the rank of the free part of the pth homology group Hp(K). The pth 
Betti number indicates the number of "p-dimensional holes" in the 
polyhedron IKI. 

Definition. A rectilinear polyhedron in Euclidean 3-space 1R3 is a solid bounded 
by properly joined convex polygons. The bounding polygons are called 
faces, the intersections of the faces are called edges, and the intersections 
of the edges are called vertices. A simple polyhedron is a rectilinear poly­
hedron whose boundary is homeomorphic to the 2-sphere S2. A regular 
polyhedron is a rectilinear polyhedron whose faces are regular plane 
polygons and whose polyhedral angles are congruent. 

In Exercise 6 at the end of the chapter, the reader will find that the Betti 
numbers of the 2-sphere S2 are 

Ro(S2) = 1, R1(S2) = 0, R2(S2) = 1. 

Then S2 has Euler characteristic 
2 

X(S2) = L: (_1)PRp(S2) = 1 - 0 + 1 = 2. 
p=o 

Applying the Euler-Poincare Theorem to S2 produces the following 
corollary: 

Theorem 2.6 (Euler's Theorem). If S is a simple polyhedron with V vertices, 
E edges, and F faces, then V - E + F = 2. 

PROOF. Things are complicated slightly here by the fact that the faces of S 
need not be triangular. This situation is corrected as follows: Consider a face 
T of S having no vertices and nl edges. Computing vertices - edges + faces 
gives no - nl + I for the single face T. Choose a new vertex v in the interior 
of T, and join the new vertex to each of the original vertices by a line segment 
as illustrated in Figure 2.3. In the triangulation of T, one new vertex and no 

T Triangulated 

Figure 2.3 

28 



2.4 The Euler-Poincare Theorem 

new edges are added. In addition, the one face T is replaced by no new faces. 
Then 

vertices - edges + faces = (no + I) - (nl + no) + no = no - nl + I 

so that the sum V - E + F is not changed in the triangulation process. Let 
(XI> i = 0, I, 2, denote the number of i-simplexes in the triangulation of S 
obtained in this way. Then 

V - E + F = (Xo - (Xl + (X2 

by the above argument. The Euler-Poincare Theorem shows that 

(Xo - (Xl + "2 = RO(S2) - Rl(S2) + R2(S2) = 2. 
Hence 

V-E+F=2 

for any simple polyhedron. 

Theorem 2.7. There are only five regular, simple polyhedra. 

o 

PROOF. Suppose S is such a polyhedron with V vertices, E edges, and F faces. 
Let m denote the number of edges meeting at each vertex and n the number 
of edges of each face. Note that n ~ 3. Then 

so that 

Hence 

and it must be true that 

Since n ~ 3, this gives 

mV=2E=nF, 

V-E+F=2 

F(2n - mn + 2m) = 4m, 

2n - mn + 2m > O. 

2m > n(m - 2) ~ 3(m - 2) = 3m - 6, 

so m < 6. Thus m can only be 1,2,3,4, or 5. 
The relations 

F(2n - mn + 2m) = 4m, n ~ 3, m < 6 

produce the following possible values for (m, n, F): (a) (3, 3,4), (b) (3,4,6), 
(c) (4, 3, 8), (d) (3, 5, 12), and (e) (5, 3,20). 

For example, m = 4 gives 

F(8 - 2n) = 16, 

allowing the possibility F = 8, n = 3. (The reader should solve the remaining 
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cases.) The five possibilities for (m, n, F) are realized in the tetrahedron, cube, 
octahedron, dodecahedron, and icosahedron shown in Figure 2.4. 0 

Tetrahedron Cube Octahedron 

(l) ~ 
Dodecahedron Icosahedron 

Figure 2.4 

2.5 Pseudomanifolds and the Homology Groups of Sn 
Algebraic topology developed from problems in mathematical analysis and 
geometry in Euclidean spaces, particularly Poincare's work in the classifica­
tion of algebraic surfaces. The spaces of primary interest, called" manifolds", 
can be traced to the work of G. F. B. Riemann (1826-1866) on differentials 
and multivalued functions. A manifold is a generalization of an ordinary 
surface like a sphere or a torus; its primary characteristic is its "local" 
Euclidean structure. Here is the definition: 

Definition. An n-dimensional manifold, or n-manifold, is a compact, connected 
Hausdorff space each of whose points has a neighborhood homeomorphic 
to an open ball in Euclidean n-space IRn. 

It should be noted that not all texts require that manifolds be compact and 
connected. Sometimes these conditions are omitted, and other properties, 
paracompactness and second countability, for example, are added. For many 
of the applications in this text, however, compactness and connectedness are 
required, and it will simplify matters to include them in the definition. 

Definition. An n-pseudomanifold is a complex K with the following properties: 

(a) Each simplex of K is a face of some n-simplex of K. 
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(b) Each (n - 1 )-simplex is a face of exactly two n-simplexes of K. 
(c) Given a pair (]~ and (]~ of n-simplexes of K, there is a sequence of n­

simplexes beginning with (]~ and ending with (]~ such that any two 
successive terms of the sequence have a common (n - 1 )-face. 



2.5 Pseudomanifolds and the Homology Groups of S" 

Example 2.4. (a) The complex K consisting of all proper faces of a 3-simplex 
<aOa1a2a3) (Figure 2.5) is a 2-pseudomanifold and is a triangulation of the 
2-sphere S2. 

Figure 2.5 

(b) The triangulation of the projective plane in Figure 2.2 is a 2-pseudo­
manifold. 

(c) The triangulation of the torus in Figure 1.11 is a 2-pseudomanifold. 
(d) The Klein Bottle is constructed from a cylinder by identifying opposite 

ends with the orientations of the circles reversed. A triangulation of the 
Klein Bottle as a 2-pseudomanifold is shown in Figure 2.6. 

Figure 2.6 Triangulation of the Klein Bottle 

The Klein Bottle cannot be embedded in Euclidean 3-space without self­
intersection. Allowing self-intersection, it appears in the figure below. 

Figure 2.7 

. Each space of Example 2.4 is a 2-manifold. The n-sphere sn, n ;;::: 1, is an 
n-manifold. Incidentally, this indicates why the unit sphere in ~"+ 1 is called 
the "n-sphere" and not the "(n + 1 )-sphere". The integer n refers to the 
local dimension as a manifold and not to the dimension of the containing 
Euclidean space. Note that each point of a circle has a neighborhood homeo­
morphic to an open interval in ~; each point of S2 has a neighborhood 
homeomorphic to an open disk in ~2; and so on. 
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The relation between manifold (a type of topological space) and pseudo­
manifold (a type of geometric complex) is simple to state: If X is a triangulable 
n-manifold, then each triangulation K of X is an n-pseudomanifold. The 
homology groups of the pseudomanifold K reflect the connectivity, the 
"holes" and" twisting", of the associated manifold X. The computation of 
homology groups of pseudomanifolds is thus a worthwhile project. As we 
shall see in this section, these groups are often amenable to computation. 

If X is a space each of whose triangulations is a pseudomanifold, it is 
sometimes said that" X is a pseudomanifold." Since a space and a triangula­
tion of the space are different, this is an abuse of language. It is permissible 
only in situations in which the distinction between space and complex is not 
important, as in the computation of homology groups. 

We shall restrict ourselves in this section to theorems and examples related 
to the homology groups of pseudomanifolds. Those interested in the fact 
that each triangulation of a triangulable n-manifold is an n-pseudomanifold 
can find the proof in many texts, for example [2]. 

Theorem 2.S. Let K be a 2-pseudomanifold with ao vertices, al I-simplexes, and 
a2 2-simplexes. Then 

(a) 3a2 = 2al, 

(b) al = 3(ao - X(K», 
(c) ao ~ !(7 + Y=49:---:--2;;-";4-::-X(K=». 

PROOF. Since each I-simplex is a face of exactly two 2-simplexes, it follows 
that 3a2 = 2al and hence that a2 = tal' 

The Euler-Poincare Theorem guarantees that 

ao - al + a2 = x(K). 
Then 

and hence 
al = 3(ao - X(K». 

To prove (c), note that ao ~ 4 and that 

al :::; C~o = !ao(ao - 1) 

where C~o denotes the number of combinations of ao vertices taken two at a 
time. By elementary algebra, 
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6a2 = 4al 

2al = 6al - 6a2 

ao(ao - 1) ~ 6al - 6a2 
ag - ao - 6ao ~ 6al - 6a2 - 6ao = -6x(K) 

ag - tao ~ -6x(K) 
4ag - 28ao + 49 ~ 49 - 24x(K) 

(2ao - 7)2 ~ 49 - 24X(K) 
ao ~ !(7 + Y4-;-;9-----:::274X,(K='». o 
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Theorem 2.8 is useful in determining the 2-pseudomanifold triangulation 
of a polyhedron having the minimum number of simplexes in each dimension. 
Computing homology groups is at best a tedious procedure; it is simplified 
by using a minimal triangulation (a triangulation with the smallest number 
of simplexes). 

Example 2.5. Consider, for example, the 2-sphere S2. Since X(S2) = 2, then 

ao ~ !-(7 + v' 49 - 24x(K» = 4, 
al = 3(ao - X(K» ~ 3(4 - 2) = 6, 

a2 = tal ~ t·6 = 4. 

Hence any triangulation of S2 must have at least four vertices, at least six 
I-simplexes, and at least four 2-simplexes. This minimal triangulation is 
achieved by the boundary complex of a tetrahedron (proper faces of a 3-
simplex) in Figure 2.5. 

Example 2.6. Consider the projective plane P, a 2-manifold. As shown earlier, 
H 2(P) = {O} and Hl(P) ~ 71.2 , Since P is connected, Theorem 2.4 shows that 
Ho(P) ~ 71.. Then 

This gives 

R2(P) = Rl(P) = 0, Ro(P) = 1, X(P) = 1. 

ao ~ !-(7 + v' 49 - 24x(P» = 6, 
al ~ 3(6 - 1) = 15, 

a2 ~ t·I5 = 10, 

so that any triangulation of P must have at least six vertices, fifteen I-simplexes, 
and ten 2-simplexes. The triangulation of P given in Figure 2.2 is thus minimal. 

Definition. Let Kbe an n-pseudomanifold. For each (n - I)-simplex an - 1 of 
K, let a~ and a~ denote the two n-simplexes of which a n - l is a face. An 
orientation for K having the property 

[a~, a n - l ] = -[a~, a n - 1 ] 

for each (n - I)-simplex an - l of K is a coherent orientation. An n­
pseudomanifold is orientable if it can be assigned a coherent orientation. 
Otherwise it is nonorientable. 

The proof is lengthy, but it can be shown that orientability is a topological 
property of the underlying polyhedron I K I and is not dependent on the 
particular triangulation K. We shall assume this without proof. It is left as an 
exercise for the reader to show that the projective plane and Klein Bottle are 
nonorientable while the 2-sphere and torus are orientable. 

Example 2.7. Let K denote the n-skeleton of the closure of an (n + 1 )-simplex 
an + 1 in Rn +1, n ~ 1. Then K is an n-pseudomanif old and is a triangulation of 
the n-sphere sn. (Recall Exercise 12 in Chapter 1.) 
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The following notation will be helpful in determining a coherent orienta­
tion and is used only in this example. For an integer j with 0 ~ j ~ n + I, let 

aj = <ao ... aj ... an +1) 

where the symbol aj indicates that the vertex aj is deleted. The positively 
oriented simplex + aj has the given ordering when j is even and the opposite 
ordering (an odd permutation of the given ordering) when j is odd. The 
(n - I)-simplex 

is then a face of the two n-simplexes aj and aj. 
It is left as an exercise for the reader to show that this orientation for the 

n-simplexes and (n - I)-simplexes gives 

[a;, ajj] = - [aj, ajj] 

in each case. It follows that any n-chain of the form Laj£K g. aj, g an integer, 
is an n-cycle. Furthermore, if 

is an n-cycle, then 

0= 8(z) = L hjj·ajj 
all£K 

where hij is either gj - gj or gj - gj. Hence z is an n-cycle if and only if all 
the coefficients gj have a common value g. Thus Z,,(S") ;; 71.. Since B,,(S1I) = 

{O}, then HiS1I) ~ 71.. 
A complete description of the homology groups of S" is given by the 

following theorem: 

Theorem 2.9. The homology groups of the n-sphere, n ~ 1, are 

) {
7L. if p = 0 or p = n 

H(S1I ~ 
p - {O} if 0 < p < n. 

PROOF. Since S1I is connected, Theorem 2.4 implies that Ho(S1I) ~ 1.. The 
above example shows that H1I(S1I) ~ Z. The following notation will be used 
in handling the case 0 < p < n: If +aP = <ao . . . ap ) and v is a vertex for 
which the set {v, ao, ... , ap} is geometrically independent, then the symbol 
vaP denotes the positively oriented (p + I)-simplex + <vao .. . ap ). If 
C = L gj . af is a p-chain, then vc denotes the (p + 1 )-chain 

vc = 2:gj.vaf. 

Note that 

Now consider a particular vertex v in the triangulation of S1I given in the 
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preceding example. Since any p-simplex containing v can be expressed in the 
form vuP -\ then any p-cycle z can be written 

z = 2 gj.uf + 2 hi" vur-1 

where simplexes in the second sum have v as a vertex and those in the first 
sum do not. Since z is a p-cycle, then 

0= o(z) = 0(2gj,uf) + 0(2hj.vur-1) 

= 0(2gj,uf) + 2hj.ur-1 - v(o 2hj.ur-1) 
so that 

This gives 

0(2 gjvuf) = 2 gj·uf - vO(2 gj' uf) 
= 2gj,uf + v 2 hj·u¥-l = z. 

Thus every p-cycle on sn is a boundary, so Hp(sn) = {O} for 0 < p < n. 0 

The next theorem explains the meaning of orientability in terms ofhomology 
groups. 

Theorem 2.10. An n-pseudomanifold K is orientable if and only if the nth homol­
ogy group Hn(K) is not the trivial group. 

PROOF. Assume first that K is orientable and assign it a coherent orientation. 
Then if the (n - I)-simplex un - 1 is a face of u~ and u~, we have 

[u~, un - 1] = - [u~, un - 1]. 

This implies that any n-chain of the form 

c = 2 g·un 

(fn.£K 

(g a fixed integer) is an n-cycle. Thus Zn(K) #- {O}. Since Bn(K) = {O}, then 
Hn(K) #- {O}. 

To complete the proof it must be shown that K is orientable if Hn(K) #- {O}. 
Suppose that 

is a nonzero n-cycle. 
Since each pair of n-simplexes in K can be joined by a sequence of n­

simplexes (as specified in the definition of n-pseudomanifold) and each 
(n - I )-simplex is a face of exactly two n-simplexes, it follows that any two 
coefficients in z can differ only in sign. That is to say, gj = ±go if o(z) = O. 
By reorienting uf if gj = - go, we obtain an n-cycle 

2: go·uf = go( 2: l'Uf), 
O'fE"K (TrEK 
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so it follows that L l·ur is an n-cycle. But this means that each (n - 1)­
simplex must have positive incidence number with one of the n-simplexes 
of which it is a face and negative incidence number with the other. In other 
words, K is orientable. 0 

Corollary. An n-pseudomanifold Lis nonorientable if and only if H,,(L) = {O}. 

The question of whether or not every n-manifold has a triangulation was 
raised by Poincare. Here it was not required that manifolds be compact, and 
triangulations having an infinite number of simplexes were allowed. Under 
these conditions, Tibor Rado (1895-1965) proved in 1922 that every 2-
manifold has a triangulation, and Edwin Moise (1918- ) proved the corre­
sponding result for 3-manifolds in 1952. 

In 1969 R. C. Kirby (1938- ) and L. C. Siebenmann (1939- ), using a 
somewhat different definition of triangulability, showed the existence of 
manifolds in higher dimensions which are not triangulable in their sense 
of the term. This answered a related triangulation problem which had been of 
interest for many years. The results of Kirby and Siebenmann can be found 
in [44]. 

A 2-manifold is called a closed surface. The topological power of the 
homology groups is demonstrated by the following classification theorem 
for closed surfaces. 

Theorem 2.11. Two closed surfaces are homeomorphic if and only if they have 
the same Betti numbers in corresponding dimensions. 

The proof of Theorem 2.11 is omitted from this text because it would 
require a lengthy digression into the theory of closed surfaces and because, 
historically, the theorem preceded Poincare's formalization of algebraic 
topology. It was a motivating force behind Poincare's work, however, and 
served as a model of the type of theorem to which topology would aspire. 
More will be said on this point in Chapter 4. 

Theorem 2.11 was essentially known by about 1890 through the work of 
various mathematicians, notably Camille Jordan (1858-1922) and A. F. 
Mobius (1790-1860). Jordan is best known for his work in algebra and for 
proposing the Jordan Curve Theorem. Mobius invented the polyhedron that 
bears his name (the Mobius strip) and in so doing initiated the study of 
orientability. He used the term "one-sided" to mean nonorientable and 
"two-sided" to mean orientable for surfaces. The modern terms" orientable" 
and "nonorientable" were introduced by J. W. Alexander to generalize 
Mobius' concepts to higher dimensions. 

Those who wish to see a proof of Theorem 2.11 should consult the texts 
by Cairns [2] or Massey [16]. 

36 



2 Exercises 

EXERCISES 

1. Suppose that K1 and K2 are two triangulations of the same polyhedron. Are 
the chain groups Cp(K1) and Cp(K2 ) isomorphic? Explain. 

2. Suppose that complexes K1 and K2 have the same simplexes but different 
orientations. How are the chain groups Cp(K1) and Cp(K2) related? 

3. Prove Theorem 2.2. 

4. Let Zp be a p-cycle on a complex K. Explain why the homology class [zp] and 
the coset Zp + Bp(K) are identical. 

5. Let K denote the complex consisting of all proper faces of a 2-simplex 
(aOa1a2) with orientation induced by the order ao < a1 < a2. Compute all 
homology groups of K. 

6. Compute the homology groups and Betti numbers of the 2-sphere S2. 

7. Compute the homology groups of the cylinder C triangulated in the accom­
panying figure. (Assign any orientation you like.) 

8. Compute the homology groups of the torus. 

9. Compute the homology groups of the Klein Bottle. 

10. Prove that linear independence with respect to homology for integral coeffi­
cients is equivalent to linear independence with respect to homology for 
rational coefficients. Explain in particular why the Betti numbers are not 
altered by the change to rational coefficients. 

11. Derive the possibilities for (m, n, F) referred to in the proof of Theorem 2.7. 
How do you rule out the cases m = 1 and m = 2? 

12. Fill in the details in the proof of Theorem 2.3. Explain in particular the rela­
tion between [laP, 1aP - 1] and [2aP, 2aP - 1]. 

13. Prove that the geometric carriers of the combinatorial components of a 
complex K and the components of the polyhedron IKI are identical. 

14. Prove that the pth Betti number of a complex K is the rank of the free part of 
the pth homology group HP(K). 

15. Find a minimal triangulation for the torus T. (Its homology groups are 
Ho(T) ~ 71., H1(n ~ 71. EB 71., and H2(T) ~ 71..) 

16. Let K be a complex and K' its r-skeleton. Show that HP(K) and Hp(K') are 
isomorphic for 0 ::5 P < r. How are H,(K) and H,(K') related? 

17. Why must an n-pseudomanifold have dimension n? 
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18. Show explicitly that the torus is orientable and that the projective plane and 
Klein Bottle are nonorientable. 

19. Complete the proof in Example 2.7 that the n-sphere sn is orientable. 

20. In the proof of Theorem 2.9, show that 

o(1·vap ) = l'aP - v o(1.ap ). 

21. Let K denote the closure of an n-simplex. Prove that HP(K) = {O} for 
o < p :5 n. Use this to show that Hp(sn) = {O} for 0 < p < n. 

22. Show that an orient able n-pseudomanifold has exactly two coherent orienta­
tions for its n-simplexes. 

23. If K is an orientable n-pseudomanifold, prove that Hn(K) ~ Z. 

24. In the definition of n-pseudomanifold, replace (b) with (b /): Each (n - 1)­
simplex is a face of at least one and at most two n-simplexes. The resulting 
conditions (a), (b /), and (c) define the term n-pseudomanifold with boundary. 
(i) Define orientability for n-pseudomanifolds with boundary in analogy 

with the definition of orientability for n-pseudomanifolds. 
(ii) Show that the Mobius strip is a nonorientable 2-pseudomanifold with 

boundary. 

25. If K is a 2-pseudomanifold, prove that X(K) :5 2. How is this fact used in 
Theorem 2.8? 

26. Show that the projective plane P is the quotient space of the 2-sphere obtained 
by identifying each pair x, -x of diametrically opposite points. 

27. References [9] and [2] may be helpful for (b) and (c). 
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(a) Define a I-dimensional complex Kin 1R3 for which IKI is not homeo­
morphic to a subspace of 1R2. 

(b) Prove that if K is a complex of dimension n, then IKI can be rectilinearly 
imbedded in 1R2n + 1. 

(c) Prove that every triangulation of an n-manifold is an n-pseudomanifold. 



Simplicial Approximation 3 

3.1 Introduction 

We turn now to the problem of comparing polyhedra by means of their 
associated homology groups. Comparisons between two topological spaces 
are usually made on the basis of a continuous map, ideally a homeomorphism, 
from one space to another. Groups are compared by means of homomor­
phisms and isomorphisms. We shall show in this chapter that a continuous 
mapf: IKI-+ ILl induces for each non-negative integer p a homomorphism 
f1'*: H1'(K) -+ HP{L) on the associated homology groups. This will allow 
topological comparisons between the polyhedra IKI and ILion the basis of 
algebraic similarities between their associated homology groups. 

We have pointed out that if IKI and ILl are homeomorphic, then HiK) 
and H1'(L) are isomorphic in each dimension p. The reader should be warned 
that the converse is not true. Even if there is a continuous mapf: IKI-+ ILl 
for whichf1'* is an isomorphism for each dimension p, it may not follow that 
IKI and ILl are homeomorphic. Thus we do not have the best possible 
situation in which a topological comparison is reduced to a purely algebraic 
one. However, as we shall see in this and later chapters, the method of 
comparing topological spaces through their homology groups is a very 
powerful tool. 

Suppose then that there is a continuous map f: IKI-+ ILl from one 
polyhedron to another. How are the associated homomorphisms defined? 
The situation would be simple if ftook simplexes of K to simplexes of L, i.e., 
if fwere a "simplicial map." We could then induce homomorphisms from 
C1'(K) to C1'(L) and use these to define the required homomorphisms on the 
homology groups. If f does not take simplexes of K to simplexes of L, we 
replace fby a map which does as follows: Subdivide K into smaller simplexes 
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so that f" almost" maps each simplex of K into a simplex of L. We can then 
define explicitly a simplicial map which has the essential characteristics off 
and use this new map to induce homomorphisms on the homology groups. 
The process of subdividing K is called "barycentric subdivision," and the 
associated simplicial map is called a "simplicial approximation." This 
intuitive description will be made more precise as we proceed. The existence 
of simplicial approximations to any continuous map f: IKI --+ 1 LI is the cen­
tral result of this chapter. 

3.2 Simplicial Approximation 

Definition. Let K and L be complexes and {pp}~ a sequence of homomorphisms 
pp: Cp(K) --+ CiL) such that 

p~l. 

Then {pp}~ is called a chain mapping from K into L. 

In the preceding definition, the sequence {pp}~ is written as an infinite 
sequence simply to avoid mention of the dimensions of K and L. When p 
exceeds dim K and dim L, then CiK) and Cp(L) are zero groups and pp must 
be the trivial homomorphism which takes 0 to O. 

Theorem 3.1. A chain mapping {pp}~ from a complex K into a complex L 
induces homomorphisms 

in each dimension p. 

PROOF. If bp = O(Cp+l) in BiK), then 

pibp) = ppO(Cp+l) = °<PP+l(Cp+l), 

so pibp) is the boundary of the (p + I)-chain PP+l(Cp+1), Thus pp maps 
Bp(K) into Bp(L). 

We shall now show that pp maps Zp(K) into ZiL). This is true for p = 0 
since Zo(K) = Co(K) and Zo(L) = Co(L). For p ~ 1, suppose that Zp E Zp(K). 
Note that 

0pp(Zp) = PP_IO(Zp) = PP-l(O) = 0, 

so pp(zp) is a p-cycle on L. 
Since 

then the induced homomorphism P;: HP(K) --+ Hp(L) can be defined in the 
standard way: 

or, equivalently, 
D 
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Definition. A simplicial mapping from a complex K into a complex L is a 
function gJ from the vertices of K into those of L such that if aP = 
<vo . .. vI') is a simplex of K, then the vertices gJ(VI) , ° ~ i ~ p (not 
necessarily distinct) are the vertices of a simplex of L. If the vertices gJ(v,) 
are all distinct, then the p-simplex < gJ( vo) ... gJ( vp) = gJ( ap) is called the 
image of ap. If gJ(vi) = gJ(Vj) for some i # j, then gJ is said to collapse ap. 

Definition. Let gJ be a simplicial mapping from K into Land p a non-negative 
integer. If g. aP is an elementary p-chain on K, define 

( ) {o if gJ collapses aP 

gJ g·ap = 
I' g'gJ(ap) if gJ does not collapse ap. 

The function gJp is extended by linearity to a homomorphism gJp: Cp(K) -+ 
Cp(L). That is to say, if 2. gl' af is a p-chain on K, then 

gJpCL gl . af) = L gJp(gj . af). 

The sequence {gJp}ci' is called the chain mapping induced by gJ. 

Theorem 3.2. If gJ: K -+ L is a simplicial mapping, then the sequence {gJp}ci' of 
homomorphisms in the preceding definition is actually a chain mapping. 

PROOF. Since each gJp is a homomorphism, then in order to show that 
ogJp = gJp -10, it is sufficient to show that 

ogJig'ap) = gJp_10(g·ap) 

for each elementary p-chain g. aI', p ~ 1. Letg· aP be an elementary p-chain on 
K where +aP = + <vo ... vp). Suppose first that gJ does not collapse aP so 
that 

gJp(a") = <gJ(vo) ... gJ(vp». 
Let af be the (p - I)-face of a P obtained by deleting the ith vertex, and let 
gJ(ap)1 be defined in the analogous manner. Then 

I' I' 

ogJp(g.ap) = o(g'gJ(ap») = L (-I)lg'gJ(ap)i = L (-I)lg·f(J(af) 
1=0 1=0 

= gJp-l(i (-Iyg.af) = gJp_1o(g·ap). 
1=0 

Suppose that gJ collapses ap. Without loss of generality we may assume that 
gJ( vo) = f(J( V1)' Then gJp(g. a") = 0, so ogJp(g. ap) = 0, and 

gJp_10(g·ap) = gJp-1C~ (-IYg.af ) = I~ (-IYgJp_l(g·af). 

For i ~ 2, af contains Vo and VI' Since gJ(vo) = gJ(Vl), then gJ collapses af, 
i ~ 2, and we have 

I' 

gJp_lo(g'ap) = L (-I)lgJp_1(g·af) = gJp-l(g·a~) - gJp-1(g·af). 
1=0 

41 
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But ag = <VIV2 . .. vp), af = <VOV2 ... vp) and !p(vo) = !p(vI ) so that 

!Pp_l(g·ag) = !Pp-l(g·af). 

Hence !PP_Io(g·aP) = O. Thus both !PP_Io(g·aP) and o!Pig·aP) are 0 when!p 
collapses aP. Therefore o!pp = !PP_IO, so {!pp}O' is a chain mapping. D 

Question: The proof of Theorem 3.2 was given under the assumption that 
aP and its faces af have orientations induced by the ordering Vo < VI < ... < vp. 
Why is it sufficient to consider only this orientation? 

Definition. Let IKI and I LI be polyhedra with triangulations K and L respec­
tively and let !P be a simplicial mapping from the vertices of K into the 
vertices of L. Then !P is extended to a function !p: IKI-+ ILl as follows: 
If x E IKI, there is a simplex ar = <ao . . . ar) in K such that x Ear. Then 

r 

X = L Ajai 
1=0 

where the Ai are the barycentric coordinates of x. Define 
r 

<p(x) = L Ai!p(aj). 
1=0 

This extended function !p: IKI-+ ILl is called a simplicial mapping from 
IKI into ILl. 

The proof of the following theorem is left as an exercise: 

Theorem 3.3. Every simplicial mapping!p: IKI-+ ILl is continuous. 

Example 3.1. Let K denote the 2-skeleton of a 3-simplex and L the closure of 
a 2-simplex with orientations as indicated by the arrows in Figure 3.1. 

1'2 

"0 VI 

Figure 3.1 

Let !P be the simplicial map from K to L defined for vertices by 

The extension process for simplicial maps determines a simplicial mapping 
!p: IKI-+ ILl which 
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(a) maps <VOVl), <VIV2), and <V2VO) linearly onto <aOal), <ala2), and <a2aO) 
respectively; 

(b) maps <VIVa) and <V2Va) linearly onto <alaO) and <a2aO) respec-
tively; 

(c) collapses <vova) to the vertex ao; 
(d) collapses < VoVaV2) and < VOVI va); 
(e) maps each of <VOVIV2) and <VaVIV2) linearly onto <aOala2). 

For the induced homomorphisms {IPp} on the chain groups we have the 
following: 

(0) 11'0: Co(K) --+ Co(L) is defined by 

IPo(g·<vo) + gl·<Vl) + g2·<V2) + ga·<V3») 

= (go + g3)· <ao) + gl . <al) + g2· <a2). 

(1) 11'1: C1(K) --+ C1(L) is defined by 

IPI(hl . <VOVl) + h2· <VIV2) + h3· <VOV2) + h4· <VIV3) 

+ h5·<vova) + h6·<V2V3») 

= (hI - h4)· <aOal) + h2· <ala2) + (h6 - h3)· <a2aO)· 

(2) 11'2: C2(K) --+ CiL) is defined by 

IP2(kl . <VOVIV2) + k2· <VIV2V3) + k a· <VoVlVa) + k4· <VoVaV2») 

= (k1 + k2)·<aOala2)· 

Definition. If u is a geometric simplex, the open simplex o(u) associated with u 
consists of those points in u all of whose barycentric coordinates are 
positive. If v is a vertex of a complex K, then the star of v, st(v), is the family 
of all simplexes u in K of which v is a vertex. Thus st(v) is a subset of K. 
The open star of v, ost(v), is the union of all the open simplexes o(u) for 
which v is a vertex of u. Note that ost(v) is a subset of the polyhedron IKI. 

Example 3.2. If a is a vertex, o«a») = {a}. For a I-simplex u1 = <aOal), 
0(u1) is the open segment from ao to al (not including either ao or al). For a 
2-simplex u2 , o( u2) is the interior of the triangle spanned by the three vertices. 

In Figure 3.2, st(vo) consists of the simplexes <vo), <VOVl), <VOV2), <VOV3), 
<VOV4), and <VOVIV2). 

1'3 

1'1 

Figure 3.2 
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The open star of vo, ost(vo), is the set theoretic union of {vo}, the open 
segments from Vo to VI> Vo to V2, Vo to Va, Vo to V4, and the interior of <VOV1V2>' 

Note that ost(vo) is not the interior of st(vo) in any sense. The star of a vertex 
is a set of simplexes of K; the open star of a vertex is the union of certain 
point sets in the polyhedron IKI. 

Definition. Let I K I and I L I be polyhedra with triangulations K and L respec­
tively and f: IKI-+ ILl a continuous map. Then K is star related to L 
relative to f means that for each vertex p of K there is a vertex q of L such 
that 

f(ost(p)) c ost(q). 

Definition. Let X and Y be topological spaces and J, g continuous functions 
from X into Y. Then f is homotopic to g means that there is a continuous 
function H: X x [0, 1] -+ Y from the product space X x [0,1] into Y 
such that, for all x E X, 

H(x, 0) = f(x), H(x, 1) = g(x). 

The function H is called a homotopy between f and g. 

Note: In order to simplify notation involving homotopies, we shall use I 
to denote the closed unit interval [0, 1]. 

Example 3.3. Consider the functions f and g from the unit circle Sl into the 
plane given pictorially in Figure 3.3. Using the usual vector addition and 
scalar multiplication, a homotopy H between f and g is defined by 

H(x, t) = (1 - t)f(x) + tg(x), X E S1, tEl. 

Figure 3.3 

The homotopy H essentially shows how to continuously" deform" f(x) 
into g(x). Observe that if the horizontal axis were removed from the. range 
space, then the indicated functions would not be homotopic. 
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Definition. Let K and L be complexes andf: IKI --+ I LI a continuous function. 
A simplicial mapping g: IKI--+ ILl which is homotopic to f is called a 
simplicial approximation off 

Example 3.4. Let L be the closure of a p-simplex aP = <ao . . . ap ), and let 
K be an arbitrary complex. Then any continuous map f: IKI--+ ILl has as 
a simplicial approximation the constant map g: IKI--+ ILl which collapses 
all of K to the vertex ao. 

As illustrated in Figure 3.4, proving thatfis homotopic to g requires only 
the convexity of ILl. We define a homotopy H: IKI x [--+ ILl by 

H(x, t) = (1 - t)/(x) + tao, x E IKI, tEl. 

Then H is continuous and 

H(x,O) = I(x), H(x, 1) = ao = g(x), XE IKI. 
This example illustrates one method by which homotopies will be defined in 
later applications. 

----
IK I I L I 

Figure 3.4 

Example 3.5. Let both K and L be the I-skeleton of the closure of a 2-simplex 
a 2• Then the polyhedra IKI and ILl are both homeomorphic to the unit circle 
81, so we may consider any function from IKI to ILl as a function from Sl to 
itself. For our function f, let us choose a rotation through a given angle a. 

Then, referring 8 1 to polar coordinates, f: S 1 --+ S 1 is defined by 

f(1,8) = (1,8 + a), (1, 8) E S1, 0 :::;; 8 :::;; 217. 

A homotopy H between I and the identity map is defined by 

H«(1, 8), t) = (1,8 + ta), (1,8) E St, t E [. 

Thus H agrees with the identity map when t = 0 and agrees with I when 
t = 1. At any "time" t between 0 and 1 the "t-Ievel of the homotopy," 
H(·, t), performs a rotation of the circle through the angle tao 

We are now ready to begin the process of replacing a continuous map 
I: IKI--+ ILl by a homotopic simplicial map g. Let us first consider the case 
in which K is star related to L relative to f The following lemma will be 
needed; its proof is left as an exercise. 
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Lemma. Vertices vo, ... , Vrn in a complex K are vertices of a simplex of K if 
and only if nl"=o ost(Vi) is not empty. 

Theorem 3.4. Let K and L be polyhedra with triangulations K and L respectively 
and f: IKI-+ ILl a continuous function such that K is star related to L 
relative tof Thenfhas a simplicial approximation g: IKI-+ ILl. 

PROOF. Since K is star related to L relative to J, there exists for each vertex p 
of K a vertex g(p) of L such that 

f(ost(p» c ost(g(p». 

To see that this vertex map g is simplicial, suppose that Vo, ... , Vn are vertices 
of a simplex in K. According to the lemma, this is equivalent to saying that 
the intersection nf=o ost(VI) is not empty. Hence 

o =I f (Q ost( VI») c Q f( ost( Vi)) c Q ost(g( VI», 

so nf=o ost(g(vl» is not empty. The lemma thus insures that g(vo), ... , g(vn) 

are vertices of a simplex in L. Then g is a simplicial vertex map and has an 
extension to a simplicial map g: IKI -+ ILl. 

Let x E IKI and let a be the simplex of K of smallest dimension which 
contains x. Let a be any vertex of a. Observe thatf(x) Ef(ost(a» (why?) and 
that f(ost(a» c ost(g(a». Also, g(x) E ost(g(a)) since the barycentric coor­
dinate of g(x) with respect to g(a) is greater than or equal to the (nonzero) 
barycentric coordinate of x with respect to a. 

Let ao, ... , a/c denote the vertices of a. According to the preceding para­
graph, bothf(x) and g(x) belong to nr=o ost(g(aj». Thus g(ao), ... , g(a/c) are 
vertices of a simplex Tin L containing bothf(x) and g(x). Since each simplex 
is a convex set, then the line segmentjoiningf(x) and g(x) must lie entirely in 
ILl. The map H: IKI x 1-+ ILl defined by 

H(x, t) = (l - t)f(x) + tg(x) , x E K, tEl, 

is then a homotopy betweenf and g, and g is a simplicial approximation off 0 

Theorem 3.4 shows that if K is star related to L relative to J, then there is a 
simplicial map homotopic to f This is a big step toward our goal of replacing 
fby a simplicial approximation. But what if K is not star related to L relative 
tof? That is, what if K has some vertices bo, ... , bn such thatf(ost(bj )) is not 
contained in the open star of any vertex in L? We then retriangulate K 
systematically to produce simplexes of smaller and smaller diameters thus 
reducing the size of ost(bl) and the size off(ost(bj)) to the point that the new 
complex obtained from K is star related to L relative to f This process of 
dividing a complex into smaller simplexes is called" barycentric subdivision." 
The precise definition follows. 

Definition. Let aT = <ao . .. aT> be a simplex in /Rn • The point aT in aT all of 
whose barycentric coordinates with respect to ao, ... , aT are equal is called 
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the barycenter of aT. Note that if aO is a O-simplex, then aO is the vertex 
which determines aO. 

The collection {ak : ak is a face of aT} of all barycenters of faces of aT are 
the vertices of a complex called the first barycentric subdivision of Cl(aT). 
A subset ao, ... , ap of the vertices ak are the vertices of a simplex in the 
first barycentric subdivision provided that aj is a face of aj+ 1 for 
j = 0, .. . ,p - 1. 

If K is a geometric complex, the preceding process is applied to each 
simplex of K to produce the first barycentric subdivision K(l) of K. For 
n > I, the nth barycentric subdivision K(n) of K is the first barycentric 
subdivision of K(n-1). 

The first barycentric subdivision of K is assigned an orientation con­
sistent with that of K as follows: Let <aOal . . . ap> be a p-simplex of 
K(l) which occurs in the barycentric subdivision of a p-simplex aP of K. 
Then the vertices of aP = <vo . .. vp> may be ordered so that at is the 
barycenter of <vo . .. Vi> for i = 0, ... , p. We then consider <ao . .. aP> 
to be positively oriented if <vo ... vp> is positively oriented and negatively 
oriented if <vo ... vp> is negatively oriented. There are other simplexes of 
K(l) whose orientations are not defined by this process, and they may 
be oriented arbitrarily. An orientation for K(l) defined in this way is said 
to be concordant with the orientation of K. The same process applies in­
ductively to higher barycentric subdivisions. 

We assume in the sequel that barycentric subdivisions are concordantly 
oriented. 

Example 3.6. Consider the complex K = Cl(a1) consisting of a I-simplex 
a1 = <aOa1> and two O-simplexes ag = <ao> and a~ = <a1>. Then ag = ao, 
a~ = ab and a1 is the midpoint of al, as indicated in Figure 3.5. Hence the 
first barycentric subdivision of K has vertices ao, aI, and a1. Since the only 
faces of a1 are <ao> and <a1), then the only I-simplexes of K(l) are <aoa1> and 
<alaI>. 

Consider a1 to be oriented by ao < a1 so that <aoa1> represents the positive 
orientation. Then <aoa1> occurs in the subdivision of the positively oriented 
simplex <aOa1>, and hence <aoa1> is a positively oriented simplex in K(l). On 
the other hand, <alaI> is produced in the subdivision of the negatively 
oriented simplex <a1aO>, so <alaI> has negative orientation. 

'1 
/

a l 

a KIll 

Figure 3.5 
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3 Simplicial Approximation 

Example 3.7. For the complex Cl(a2 ) in Figure 3.6(a), the barycenters of all 
simplexes are indicated in (b) and the first barycentric subdivision is shown 
in (c). The orientation for <VOV3V4) is determined as follows: Vertex V3 is the 
barycenter of <VOV1), and V4 is the barycenter of <VOV1V2)' Thus, following the 
definition of concordant orientation, <VOV3V4) is assigned positive orientation 
since it is produced in the subdivision of the positively oriented simplex 
<VOV1V2)' Note in Figure 3.6 that some simplexes of the barycentric sub­
division are not assigned orientations by this process. 

Vo 1'\ 

(a) (b) 

Figure 3.6 

1'2 

Definition. If K is a complex, the mesh of K is the maximum of the diameters 
of the simplexes of K. 

It should be obvious that the mesh of the first barycentric subdivision K(l) 

of a complex K is less than the mesh of K. Hence it is reasonable to expect that 
the limiting value of mesh K(s) as s increases indefinitely is zero. Proving this 
requires some preliminary observations. 

Let us first recall the definition of the Euclidean norm. If x = (Xl> ... , xn) 

is a point in ~n, the norm of x is the number 

Ilxll = {~1 xt} 112. 

For x, y in ~n, the distance d(x, y) from x to y is simply Ilx - yll. Proofs of 
the following facts are left as exercises: 

(a) If x and yare points in a simplex a, then there is a vertex v of a such that 

Ilx - yll ~ Ilx - vii-
(b) The diameter of a simplex of positive dimension is the length of its longest 

1-face. Hence the mesh of a complex K of positive dimension is the length 
of its longest I-simplex. (Any complex of dimension zero must, of course, 
have mesh zero.) 

Theorem 3.5. For any complex K, limits ... 00 mesh K(s) = O. 

PROOF. Consider the first barycentric subdivision K(l) of K and let <&7-) be 
one of its I-simplexes. Then a is a face of 7'. The definition of barycenter for 
the simplex 7' insures that 

p 

f = (l/(p + 1)) L: Vi 
i=O 

where Vo, •.• , Vp are the vertices of 7'. 
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3.2 Simplicial Approximation 

By observation (a) above, there must be a vertex v of T such that 

Then 
Ilf - all:::; Ilf - vii· 

Ilf - all:::; Ilf - vii = 1I(l/(p + 1»C~ VI) - v II 

11(l/(p + 1» I~ (Vj - V)II :::; (l/(p + 1» I~ Ilvi - vii 

:::; (p/(p + 1) mesh K. 

Letting n denote the dimension of K, we have p :::; n so 

Ilf - all:::; (n/(n + 1)) mesh K. 

Since the mesh of K(l) is the maximum value of Ilf - all for all I-simplexes 
< at> in K(1), then 

mesh K(l) :::; (n/(n + 1)) mesh K. 

The inductive definition of K(8) now insures that 

mesh K(8) :::; (n/(n + 1))8 mesh K. 

Recalling that Iimit8_ oo (n/(n + 1))8 = 0, we have the desired result. 0 

We are now ready for the main result of this chapter. 

Theorem 3.6 (The Simplicial Approximation Theorem). Let IKI and ILl be 
polyhedra with triangulations K and L respectively and f: I K I --+ I L I a 
continuous function. There is a barycentric subdivision K(k) of K and a 
continuous function g: IKI--+ ILl such that 

(a) g is a simplicial map from K(k) into L, and 
(b) g is homotopic to f. 

PROOF. We shall apply Theorem 3.4 to obtain the simplicial approximation 
g once an integer k for which K(k) is star related to L relative to fis determined. 
This is done using a Lebesgue number argument. Since ILl is a compact 
metric space, the open cover {ost(v): v is a vertex of L} has a Lebesgue number 
TJ > 0. Sincefis uniformly continuous (its domain is a compact metric space), 
there is a positive number 8 such that if IIx - yll < 8 in IKI, then 
IIf(x) - f(y) II < TJ in I LI· Thus, if the barycentric subdivision K(k) has mesh 
less than 8/2, then K(k) is star related to L relative to f 

The function g: IKI--+ ILl determined by Theorem 3.4 has the required 
properties. 0 

The study of simplicial approximations to continuous functions was 
initiated by L. E. J. Brouwer in 1912. The Simplicial Approximation Theorem 
was discovered by J. W. Alexander in 1926; the proofs given above for 
Theorems 3.4 and 3.6 are essentially his original ones [27]. 
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3 Simplicial Approximation 

After a long, difficult sequence of proofs, it may be comforting to know 
that the existence of simplicial approximations is the important thing. We 
will not have to perform tedious constructions of simplicial approximations; 
any simplicial approximation of the type guaranteed by the Simplicial 
Approximation Theorem will usually do quite nicely. 

3.3 Induced Homomorphisms on the Homology Groups 

Definition. Let IKI and ILl be polyhedra with triangulations K and L respec­
tively and/: IKI-+ ILl a continuous map. By the Simplicial Approxima­
tion Theorem, there is a barycentric subdivision K(k) of K and a simplicial 
mapping g: IKI-+ ILl which is homotopic to f Theorems 3.1 and 3.2 
insure that g induces homomorphisms g:: Hp(K) -+ HiL) in each dimen­
sion p. This sequence of homomorphisms {g:} is called the sequence of 
homomorphisms induced by f 

The preceding definition raises a question about the uniqueness of the 
sequence of homomorphisms induced by f It can be shown, however, that 
the sequence {g:} is unique and, in particular, does not depend on the 
admissible choices for the degree k of the barycentric subdivision or on the 
admissible choices for the simplicial map g. The sequence is thus usually 
written {fp*} instead of {g:} since it is completely determined by f Showing 
that the sequence is unique requires some concepts that we have not yet 
developed. The proof will therefore be postponed until Section 1 of Chapter 7. 
Those who cannot wait to see the proof may read that section now. 

We shall illustrate the utility of induced homomorphisms by proving that 
two Euclidean spaces of different dimensions are not homeomorphic. This 
was first proved by L. E. J. Brouwer in 1911; it is, of course, not a surprising 
result. Any reader who feels that this is a trivial application, however, is 
invited to produce his own proof before reading further. 

The following lemma is left as an exercise: 

Lemma. If f: IKI-+ ILl and h: ILI-+ IMI are continuous maps on the 
indicated polyhedra, then (hf)!: Hp(K) -+ HiM) is the composition 

h:fp*: Hp(K) -)0 Hp(M) 
in each dimension p. 

Theorem 3.7 (Invariance of Dimension). Ifm =1= n, then 

(a) sm and sn are not homeomorphic, and 
(b) IRm and IRn are not homeomorphic. 

PROOF. (a) Suppose to the contrary that there is a homeomorphism h: sm -+ sn 
from sm onto sn with inverse h- 1 : sn -+ sm. Then h-1h and hh- 1 are the 
identity maps on sm and sn respectively. Note that the identity map i on a 
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3.3 Induced Homomorphisms on the Homology Groups 

polyhedron IKI induces the identity isomorphism i:: Hp(K) --+ Hp(K) in each 
dimension p. Then 

(hh- 1)! = h!h;l*: Hp(sn) --+ Hp(sn), 
(h-1h)! = h;l*h!: Hism) --+ Hp(sm) 

are identity isomorphisms in each dimension, so h! is an isomorphism 
between Hp(sm) and Hp(sn). Comparison of homology groups (Theorem 2.9) 
reveals that this is impossible since m 1= n. Hence sm and sn are not homeo­
morphic when m 1= n. 

(b) Recall from point-set topology that sn is the one point compactification 
of ~n. Thus if ~m and ~n are homeomorphic, it must be true that their one 
point compactifications sm and sn are homeomorphic too. This contradicts 
part (a) if m 1= n. 0 

A special case of the definition of induced homomorphisms for maps on 
spheres will be of particular importance. 

Definition. Letf: sn --+ sn, n 2: 1, be a continuous function from the n-sphere 
into itself. Let K be a triangulation of sn. Since K is an orientable n­
pseudomanifold, Theorem 2.10 and its proof show that it is possible to 
orient K so that the n-chain 

is an n-cycle whose homology class [zn] is a generator of the infinite cyclic 
group Hn(K). This homology class is called a fundamental class. If 
fn*: Hn(K) --+ Hn(K) is the homomorphism in dimension n induced by f, 
then there is an integer p such that 

fn*([znD = p[zn]. 

The integer p is called the degree of the map f and is denoted deg(f). 

The degree of a map on sn was originally defined by L. E. J. Brouwer. 
The above definition is a modern version equivalent to his original one which 
is stated here for comparison. The student should feel free to use whichever 
definition fits best in a particular situation since they are equivalent. 

Alternate Definition. Suppose thatf: sn --+ s-n is a continuous map and sn is 
triangulated by a complex K. Choose a barycentric subdivision K(k) of K 
for which there is a simplicial mapping rp: IK(k)I--+ IKI homotopic to f 
Let T be any positively oriented n-simplex in K. Let p be the number of 
positively oriented n-simplexes a in K(k) such that rp( I . a) = 1· T, and let q 
be the number of positively oriented n-simplexes /.L in K(k) such that 
rp(l . /.L) = -1· T. Then the integer p - q is independent of the choice of T 

(the same integer p - q results for each n-simplex of K) and is called the 
degree of the map f 
In Brouwer's definition it can be shown that the degree off is independent 

of the admissible choices for K, K(kl, and rp (see, for example, [9], section 6-14). 
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3 Simplicial Approximation 

Intuitively, the definition states that the degree of a map f: sn -+ sn is the 
number of times that f" wraps the domain around the range." 

Theorem 3.8. (a) Iff: sn -+ sn and g: sn -+ sn are continuous maps, then 
deg(gf) = deg(g)· deg(f). 
(b) The identity map i: sn -+ sn has degree + 1. 
(c) A homeomorphism h: sn -+ sn has degree ± 1. 

PROOF. (a) Choose a triangulation K of sn with fundamental class [znl and 
consider the induced homomorphisms 

Then 
(gf):([znD = deg(gf)· [znl, 

g:fn*([znD = g:(deg(f)· [znD = deg(g)· deg(f)· [znl. 

Since the lemma preceding Theorem 3.7 insures that (gf): = g:fn*' then 
deg(gf) = deg(g)· deg(f). 

(b) In Brouwer's definition of degree, it is obvious that for the identity map 
i, p = I and q = 0 so deg(i) = 1 - 0 = 1. 

(c) Letting h- 1 denote the inverse of h, we have 

1 = deg(i) = deg(hh-1) = deg(h) deg(h-1). 

Since deg(h) must be an integer, then deg(h) = ± 1. It also follows that hand 
h- 1 have the same degree. 0 

The following theorem was proved by Brouwer in 1912: 

Theorem 3.9 (Brouwer's Degree Theorem). If two continuous maps/, g: sn-+ 
sn are homotopic, then they have the same degree. 

PROOF. Let K be a triangulation of sn and let h: sn x 1-+ sn be a homotopy 
such that 

h(x, 0) = f(x), h(x, 1) = g(x), 

For convenience in notation we let ht denote the restriction of h to sn x {t}. 
Thus ho = fand h1 = g. 

Let € be a Lebesque number for the open cover {ost(w,): w, is a vertex of K}. 
Since h is uniformly continuous, there is a positive number 3 such that if A 
and B are subsets of sn and I respectively with diameters diam(A) < 3 and 
diam(B) < 3, then diam(h(A x B» < E. Let K(k) be a barycentric subdivision 
of K of mesh less than 3/2 so that if v is a vertex of K(k), then diam(ost(v» < 3. 
Let 

o = to < t1 < ... < tq = I 

be a partition of I for which successive points differ by less than 3. Then each 
set h(ost(v,) x [t j- 1, tjD, v, a vertex of K(k) and tf - 1 , I j successive members of 
the partition, has diameter less than € and is therefore contained in ost(W'f) 
for some vertex w,; of K. 
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3.4 The Brouwer Fixed Point Theorem and Related Results 

Thus if t;-1 ~ t ~ ti> the value of the simplicial map Pt approximating ht 
given by the Simplicial Approximation Theorem may be defined by letting 
Pt(v,) = Wif. We therefore conclude that all the maps ht for tf- 1 ~ t ~ tj 
have the same degree. Since any two successive intervals [t f -1> t;] and 
[tf' t j+ d have tj in common, it follows that the degree of ht is constant for 
o ~ t ~ 1. In particular, ho = f and h1 = g have the same degree. 0 

The preceding method of proof can be extended to show that homotopic 
maps from one polyhedron to another induce identical sequences of homo­
morphisms on the homology groups. Along with the preceding theorem, 
Brouwer proved a partial converse: If f and g are continuous maps on the 
2-sphere which have the same degree, then they are homotopic. This con­
clusion was extended to arbitrary dimension by Heinz Hopf (1894-1971) in 
1927. The combined results form the famous Hopf Classification Theorem, 
which is stated here without proof: 

Theorem 3.10 (The Hopf Classification Theorem). Two continuous maps f, 
g from sn to sn are homotopic if and only if they have the same degree. 

Hopf extended Brouwer's definition of degree to maps from polyhedra 
into spheres and, in 1933, extended his classification theorem to such maps: 
If X is a polyhedron of dimension not exceeding n, then two maps f and g from 
X into sn are homotopic if and only if they have the same degree. Proofs can 
be found in [20] and in Hopf's original paper [41]. 

3.4 The Brouwer Fixed Point Theorem and Related Results 
Definition. Iff: X -7- X is a continuous function from a space X into itself, 

then a point Xo in X is a fixed point off means that f(xo) = Xo. 

Theorems about fixed points have far reaching applications in mathe­
matics. The existence of a solution for a differential or integral equation, for 
example, is often equivalent to the existence of a fixed point of a linear 
operator on a function space. (In this connection see Picard's Theorem from 
differential equations.) In this section we shall prove the classic fixed point 
theorem of L. E. J. Brouwer and some related results about sn. 
Definition. A continuous function g: X -7- Y from a space X into a space Y 

which is homotopic to a constant map is said to be null-homotopic or 
inessential. 

Definition A space X is contractible means that the identity function i: X -7- X 
is null-homotopic. In other words, X is contractible if there is a point Xo 

in X and a homotopy H: X x I -7- X such that 

H(x,O) = x, H(x, 1) = xo, X' EX. 

The homotopy H is called a contraction of the space X. 
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3 Simplicial Approximation 

Example 3.8. The unit disk D = {x = (Xl> x 2) E 1R2 : xi + x~ ::; I} is con­
tractible. We let Xo = (0, 0) be the origin and define a contraction by 

H«XI' X2), t) = «(1 - t)XI' (1 - t)x2), (Xl> X2) E D, tEl. 

Imagining the disk as a sheet of rubber, the contraction essentially" squeezes" 
the disk to a single point . 

.... 
This intuitive idea of contractibility suggests that the circle is not con-

tractible. This is in fact true and is a consequence of the following theorem of 
L. E. J. Brouwer. 

Theorem 3.11 The n-sphere sn is not contractible for any n ;::: O. 

PROOF. The identity map on sn has degree 1 for n ;::: I, and any constant map 
has degree O. Since homotopic maps have the same degree (Theorem 3.9), 
then the identity is not null-homotopic, and sn is not contractible for n ~ 1. 

For the case n = 0, we observe that 

So = {XEIR:X2 = I} = {-I, I} 

is a discrete space and therefore not contractible. o 
Theorem 3.12 (The Brouwer No Retraction Theorem). There does not exist a 

continuous function from the (n + 1 )-ball 

Bn+l = {x = (Xl, X2, ... , x n+l ) E 1Rn+1: LX~ ::; I} 
onto sn which leaves each point of sn fixed, n ;::: O. 

PROOF. Assuming that a mapf: Bn+l ~ sn such thatf(x) = x for each x in 
sn does exist, define a homotopy 

H: sn x I~sn 
by 

H(x, t) = f«(l - t)x), X E sn, tEl. 

Here (I - t)x denotes the usual scalar product (real number multiplied by a 
vector) in IRn. Then H is a contraction on sn contradicting Theorem 3.11. 
Thus no such map f exists. 0 

Theorem 3.13 (The Brouwer Fixed Point Theorem). Iff: Bn+l ~ Bn+l is 

continuous map from the (n + I)-ball into itself and n ~ 0, then f has at 
least one fixed point. 

PROOF. Suppose on the contrary that f has no fixed point. Then for each 
x E Bn+l,f(x) and x are distinct points. For any x consider the half-line from 
f(x) through x, and let g(x) denote the intersection of this ray with sn, as 
shown in Figure 3.7. 

Then g: Bn+l ~ sn is continuous, and g(x) = x for each x E sn. This 
contradicts the preceding theorem, so we conclude that the assumption that 
f has no fixed point must be false. 0 

54 



3.4 The Brouwer Fixed Point Theorem and Related Results 

Figure 3.7 

The Brouwer Fixed Point Theorem was first proved by Brouwer in 1912. 
The proof given in the text is not his original one. 

Definition. For each integer i with 1 ~ i ~ n + 1, the map 

r,: S" --? S" 
defined by 

r'(Xl> X2, ... , X,,+1) 

= (Xl> ... , X'-h -XI> XI+1,···, X,,+l), 

(with obvious modifications when i = 1 or n + 1) is called the reflection 
of S" with respect to the X, axis. 

Definition. The map r: S" --? S" defined by 

rex) = -x, 

is called the antipodal map on S". 

XES", 

For X = (Xl> X2, ... , X,,+1) E S", r,(x) and X differ only in the ith coordi­
nate, and the ith coordinate of r,(x) is the negative of the ith coordinate of x. 
The antipodal map r takes each point x in S" to the diametrically opposite 
point r(x) = -x each of whose coordinates is the negative of the corre­
sponding coordinate of x. It should be clear that the antipodal map r is the 
composition r1r2 ... r,,+1 of the reflections of S" in the respective axes. 
The proof of the following lemma is left as an exercise. 

Lemma. (a) Each reflection r, on S" has degree -1. 
(b) The antipodal map on S" has degree ( -1)" + 1. 

Definition. A continuous unit tangent vector field, or simply vector field, on S" 
is a continuous functionf: S" --? S" such that x andf(x) are perpendicular 
for each X in S". 

55 



3 Simplicial Approximation 

In order to get an intuitive picture of a vector field, let us first review the 
concept of perpendicular vectors. Recall from sophomore Calculus that two 
vectors x = (Xh X2) and Y = (Yh Y2) in the plane are perpendicular if and 
only if their dot product (or inner product) 

x·y = XIYl + X2Y2 = o. 
Perpendicularity is extended to vectors of higher dimension by the following 
definition: Two vectors x = (Xh ... , xn) and Y = (Yh ... , Yn) in Rn are 
perpendicular if and only if their dot product (Appendix 2) 

x·y = XIYl + X2Y2 + ... + XnYn = O. 

A vector field / on sn is then interpreted as follows: / is a continuous 
function which associates with vector x of unit length in Rn+l a unit vector 
lex) in Rn+l such that x and/(x) are perpendicular. If we imagine that/ex) 
is transposed so that it begins at point x on sn, then/ex) must be tangent to 
the sphere sn. This idea is illustrated in Figure 3.8. 

Figure 3.8 

It should be clear that the following scheme describes a vector field on SI. 
For each x in S\ let/ex) denote a vector of unit length beginning at point x 
and pointing in the clockwise direction tangent to Sl. Having all vectors/ex) 
point in the counterclockwise direction also produces a vector field on SI. 
The requirement of continuity for / rules out the possibility of having/ex) in 
the clockwise direction for some values of x and in the counterclockwise 
direction for others. 

Theorem 3.14 (The Brouwer-Poincare Theorem). There is a vector field on 
sn, n ~ I, if and only if n is odd. 

PROOF. If n is odd, a vector field / on sn can be defined by 

/(x!> x 2 , ••• , Xn + 1) 
= (X2, -Xh X4, -X3,···, xn+1, -xn), 

It is clear that/is a continuous function from sn into sn. The proof that/is 
a vector field is completed by observing that, for each x in sn, 
x-f(x) = (X1X2 - XIX2) + (XaX4 - X3X4) + ... + (XnXn+l - XnXn+1) = o. 
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Suppose now that g: sn -+ sn is a vector field where n is an even integer. 
This assumption will lead to a contradiction. Define a homotopy 
h: sn x 1 -+ sn by 

h(x, t) = X COS(t7T) + g(x) sin(t7T), X E sn, tEl. 

Then 

Ilh(x, t)1I 2 = h(x, t)·h(x, t) 

IIxl1 2 COS 2(t7T) + 2x·g(x) COS(t7T) sin(t7T) + g(x) 2 sin 2(t7T) 

= 12 COS 2(t7T) + (2)(0) COS(t7T) sin(t7T) + 12 sin2(t7T) 

= I, 

so h is a homotopy on sn. But 

h(x,O) = x, h(x, I) = -x, 

so h is a homotopy between the identity map and the antipodal map on sn. 
However, the identity map has degree I and the antipodal map has degree 
( _l)n + 1 = -1 since n is even. This contradicts Brouwer's Theorem on the 
degree of homotopic maps (Theorem 3.9). Thus S" has a vector field if and 
only if n is odd. 0 

The main part of the Brouwer-Poincare Theorem (there is no vector field 
on a sphere of even dimension) was conjectured by Poincare and first proved 
by Brouwer. For n = 2, the result can be visualized as follows: Imagine a 
2-sphere with a unit vector emanating from each point; think of each vector 
as a hair. Finding a vector field for S2 is equivalent to describing a method 
for" combing the hairs" so that each one is tangent to the sphere and so that 
their directions vary continuously. In other words, there must be no parts or 
whorls in the hairs. According to the Brouwer-Poincare Theorem, such a 
hairstyle is impossible for spheres of even dimension. Because of this analogy, 
the theorem is sometimes called the "Tennis Ball Theorem." 

EXERCISES 

1. Give an example of two polyhedra IKI and ILl for which Hp(K) and Hp(L) 
are isomorphic for each value of p, but IKI and ILl are not homeomorphic. 

2. Verify in the proof of Theorem 3.1 that CPt is a homomorphism. Show in 
particular that if [zp] = [wp] in Hp(K), then [cpp(zp)] = [cpp(wp)] in Hp(L). 

3. Prove Theorem 3.3. 

4. (a) For the simplicial map cp of Example 3.1, describe the induced homo­
morphisms CPt: Hp(K) -+ Hp( L). 

(b) Prove that if L is replaced by its I-skeleton, then the map/is not simplicial. 

5. Choose triangulations for the 2-sphere S2 and torus T, and let cP: S2 -+ T be 
a simplicial map. Prove that the induced homomorphism CPt: Hp(S2) -+ H,,(T) 
is trivial for p :2: 1. Show that this result does not hold if the roles of S2 and 
T are interchanged. 
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6. Let X and Y be topological spaces and let M denote the set of all continuous 
maps f from X into Y. For brevity let us agree that f '" g means that f is 
homotopic to g. Prove that '" is an equivalence relation on M. 

7. (a) Prove that every convex subset of IRn is contractible. 
(b) Given that Y is contractible, prove that every continuous function from 

a space X into Y is null-homotopic. 

8. Prove that vertices Vo, VI. .•• , Vm of a complex K are vertices of a simplex in 
K if and only if (1;"=0 ost(v,) is not empty. 

9. Prove the following facts: 
(a) If x and yare points in a simplex u, then there is a vertex v of u such that 

Ilx - yll ~ IIx - vII· 
(b) The diameter of a simplex u'P, p ~ 1, is the maximum length of its I-faces. 
(c) The mesh of a complex K is the maximum length of its I-simplexes if K 

has positive dimension. 

10. Answer the following questions about the proof of Theorem 3.4: 
(a) If u is the simplex of smallest dimension in K containing a given point x, 

why is x in ost(a,) for each vertex a, of u? 
(b) Why is the function H continuous? 

11. Complete the details in the proof of Theorem 3.6 by proving the following: 
(a) If v is a vertex of K, then the diameter of ost(v) does not exceed twice the 

mesh of K. 
(b) If v is a vertex of K, then ost(v) is an open subset of IKI. (Recall that IKI 

has the Euclidean subspace topology.) 
(c) Prove that every polyhedron is a compact metric space. 
(d) Show that the function g in the proof of Theorem 3.6 has the required 

properties. 

12. Prove that the antipodal map on sn has degree ( _1)n + 1. 

13. (a) Prove the lemma preceding Theorem 3.7: If f: IKI-+ ILl and 
h: I L I -+ I M I are continuous maps, then (hf): = h:N in each dimension 
p. 

(b) Prove that if two polyhedra IKI and ILl are homeomorphic, then 
H'P(K) ~ Hp(L) in each dimension p. 

14. Prove the following fact about maps/, g: sn -+ sn: If deg(f) = deg(g), then 
d = fn*: Hn(sn) -+ Hn(sn). 

15. Prove that a discrete space X is contractible if and only if X has only one 
point. 

16. Is every subspace of a contractible space contractible? Explain. 

17. Show that if IKI is contractible, then H'P(K) = to} for p ~ I and Ho(K) ~ 71.. 

18. In the text the Brouwer Fixed Point Theorem was proved as a consequence 
of the Brouwer No Retraction Theorem. Reverse this process to show that 
the Fixed Point Theorem implies the No Retraction Theorem. 

19. Definition. Let X be a topological space and B a subspace of X. If there is a 
continuous map f: X -+ B which leaves each point of B fixed, then B is called 
a retract of X. The function f is a retraction of X onto B. 
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Let A and K be complexes for which A is a subset of K and I A I is a retract 
of IKI. Prove that Hp(K) has a subgroup isomorphic to Hp(A) in each 
dimension p. 

20. Prove the Brouwer No Retraction Theorem by comparing the homology 
groups of sn and Bn+1. (Hint: Assuming that there is aretraction/: Bn+1--+sn, 
let i: sn --+ Bn+1 denote the inclusion map. Then Ii: sn --+ sn is the identity 
map. Consider the homomorphism induced on Hn(sn). 

21. Let /, g be continuous maps from a space X into sn such that I(x) and g(x) 
are never antipodal points, i.e.,f(x) = - g(x) for no x. Prove that I and g are 
homotopic. 

22. Find an explicit formula for the vector field on S1 which produces tangent 
vectors with the clockwise orientation. Repeat for the counterclockwise 
orientation. 

23. Prove that every vector field on sn (n odd) is homotopic to the identity map 
and to the antipodal map. 

24. Let n be an even positive integer and I: sn --+ En + 1 a continuous map such 
that x and/(x) are perpendicular for each x E sn. Prove that there is a point 
x in sn for which/(x) = O. 

25. Consider the circle S1 with multiplication given by the complex numbers. 
Prove that the map I(x) = xn, n a positive integer, has degree n. What is the 
degree of the map g(x) = l/x? 

26. Let g: sn --+ sn be a continuous map for which the range is a proper subset 
of sn. Prove that g is null-homotopic and that deg(g) = O. 

27. (a) Let g: sn --+ sn be a continuous map for which there is a continuous 
extension G: Bn+1 --+ sn. Prove that g is null-homotopic. 

(b) Prove the converse: If g: sn --+ sn is null-homotopic, then g has a 
continuous extension G: Bn+1 --+ sn. (Hint: Bn+1 can be considered to be 
the quotient space of sn x [0, 1] obtained by identifying sn x {I} to a 
single point.) 

28. LetK,L,andMbecomplexesand/: IKI--+ ILl andg: ILI--+ IMI continuous 
functions. If K is star related to L relative to I and L is star related to M 
relative to g, prove that K is star related to M relative to gf. 

29. Show that every continuous function I: IKI--+ ILl from a polyhedron IKI 
to a polyhedron ILl can be arbitrarily approximated in terms of distance by 
a simplicial approximation. More precisely, prove the following: 

Theorem. Let I: IKI --+ ILl be a continuous map on the indicated polyhedra and 
E a positive number. There are barycentric subdivisions K(l) and Vi) and a 
continuous map g: IKI --+ ILl such that 
(a) g is a simplicial map with respect to K(O and £<i), 
(b) g is homotopic to /, and 
(c) the distance 11/(x) - g(x) II is less than E lor all x in IKI. 

30. (a) Prove that every barycentric subdivision of an n-pseudomanifold is an 
n-pseudomanifold. 

(b) If K is an orientable pseudo manifold, is each barycentric subdivision of 
K orientable? Prove that your answer is correct. 

(c) Repeat part (b) for the non orient able case. 
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4 The Fundamental Group 

4.1 Introduction 

We turn now to the investigation of the structure of a topological space by 
means of paths or curves in the space. Recall that in Chapter 1 we decided 
that two closed paths in a space are homotopic provided that each of them 
can be "continuously deformed into the other." In Figure 4.1, for example, 
paths C2 and C3 are homotopic to each other and C1 is homotopic to a 
constant path. Path C1 is not homotopic to either C2 or C3 since neither C2 

nor C3 can be pulled across the hole that they enclose. 
In this chapter we shall make precise this intuitive idea of homotopic 

paths. The basic idea is a special case of the homotopy relation for continuous 
functions which we considered in the proof of the Simplicial Approximation 
Theorem (Theorem 3.6). 

Figure 4.1 
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4.2 Homotopic Paths and the Fundamental Group 

4.2 Homotopic Paths and the Fundamental Group 
Definition. A path in a topological space X is a continuous function ex from 

the closed unit interval I = [0, I] into X. The points ex(O) and ex(l) are the 
initial point and terminal point of ex respectively. Paths ex and {3 with common 
initial point ex(O) = {3(0) and common terminal point ex(l) = {3(l) are 
equivalent provided that there is a continuous function H: I x I -+ X such 
that 

H(t, 0) = ex(t), 
H(O, s) = ex(O) = {3(0), 

H(t, 1) = {3(t), tEl, 
H(l, s) = ex(l) = {3(l), s E l. 

The function H is called a homotopy between ex and {3. For a given value 
of s, the restriction of H to I x {s} is called the s-level of the homotopy 
and is denoted H ( . , s). 

Definition. A loop in a topological space X is a path ex in X with ex(O) = ex(I). 
The common value of the initial point and terminal point is referred to as 
the base point of the loop. Two loops ex and {3 having common base point 
Xo are equivalent or homotopic modulo Xo provided that they are equivalent 
as paths. In other words, ex and {3 are homotopic modulo Xo (denoted 
ex lOW Xo fl) provided that there is a homotopy H: I x I -+ X such that 

H(·,O) = ex, H(·,I)={3, H(O, s) = H(l, s) = Xo, SEl. 

Since H(O, s) and H(I, s) always have value Xo regardless of the choice of 
sin [0, 1], it is sometimes said that the base point "stays fixed throughout 
the homotopy." 

Example 4.1. The paths ex and fl in Figure 4.2 are equivalent. A homotopy H 
demonstrating the equivalence is defined by 

H(t, s) = sfl(t) + (l - s)ex(t), (s, t) E I x l. 

The homotopy essentially "pulls ex across to {3" without disturbing the end 
points. If the space had a "hole" between the ranges of ex and fl, then the 
paths would not be equivalent. 

y 

0/(0) =.;..(3_(0;...) ___ _ 

0/(1)=13(1) 

x 

Figure 4.2 
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4 The Fundamental Group 

The following lemma from point-set topology will be used repeatedly in 
this chapter. Its proof is left as an exercise. 

The Continuity Lemma. Let X be a topological space with closed subsets A and 
B such that A U B = X. Let f: A -+ Y and g: B -+ Y be continuous maps 
to a space Y such that f(x) = g(x) for each x in An B. Then the map 
h: X -+ Y defined by 

is continuous. 

h(x) = {f(X) if x E A 
g(x) ifx E B 

Theorem 4.1. (a) Equivalence of paths is an equivalence relation on the set of 
paths in a space X. 

(b) Equivalence of loops is an equivalence relation on the set of loops in X 
with base point xc. 

PROOF. We shall prove (b) and leave to the reader the obvious modifications 
needed for a proof of (a). 

Consider the set of loops in X having base point Xo. Any such loop ex is 
equivalent to itself under the homotopy 

F(t, s) = ex(t), (t, s) E I x l. 

Thus the relation '" Xo is reflexive. 
Suppose a '" Xo (J. Then there is a homotopy H: I x I -+ X satisfying 

H(·,O) = a, H(',I)={J, H(O, s) = H(l, s) = xc, SEI. 

Then the homotopy 

ll(t, s) = H(t, 1 - s), (S, t) E I x I, 

shows that {J '" Xo ex and hence that equivalence of loops is a symmetric 
relation. 

Suppose now that for the loops ex, {J, and y we have ex '" Xo {J and (J '" Xo y. 
Then there are homotopies Hand K such that 

H(·,O) = a, 

K(·,O) = (J, 

H(',I)={J, 

K(·, I) = y, 

H(O, s) = H(l, s) = xc, 

K(O, s) = K(I, s) = xc, 

The required homotopy L between a and y is defined by 

( ) {
H(t,2S) if 0 :::; S :::; ! 

L t,s = . 
K(t,2s - 1) If!:::; S :::; 1. 

S E I, 

SEl. 

The continuity of L follows from the Continuity Lemma with A = I x [O,!] 
and B = I x [-t, 1]. Thus ex '" xo y, so '" Xo is an equivalence relation. 0 

62 



4.2 Homotopic Paths and the Fundamental Group 

Definition. If a and (3 are paths in X with a(l) = (3(O), then the path product 
a * (3 is the path defined by 

{ a(2t) if 0 ::;; t ::;; 1-
a * t = (3( ) (3(2t - 1) if 1- ::;; t ::;; 1. 

The continuity of a * (3 is an immediate consequence of the Continuity 
Lemma. 

Thinking of the variable t as time, a path a in X can be visualized by the 
motion of a point beginning at a(O) and tracing a continuous route to a(1). 
A product a * (3 is then visualized as follows: The moving point begins at 
a(O) and follows path a at twice the normal rate, arriving at a(l) when t = l 
The point then follows path (3 at twice the normal rate and arrives at (3(1) at 
time t = 1. Note that the condition a(1) = (3(O) is required for the product of 
paths in order to avoid discontinuities. 

We shall be primarily concerned with products of loops a and {3 having 
common base point Xo. In this case the product a * {3 is also a loop with base 
point Xo. The following lemma is left as an exercise: 

Lemma. Suppose that loops a, a', {3, {3' in a space X all have base point Xo and 
satisfy the relations a ,..., Xo a' and {3 ,..., Xo {3'. Then the products a * {3 and 
a' * (3' are homotopic modulo Xo. 

Definition. Consider the family of loops in X with base point Xo. Homotopy 
modulo Xo is an equivalence relation on this family and therefore partitions 
it into disjoint equivalence classes, [a] denoting the equivalence class 
determined by loop a. The class [a] is called the homotopy class of a. The 
set of such homotopy classes is denoted by 1Tl(X, xo). If [a] and [,8] belong 
to 1Tl(X, xo), then the product [a] 0 [,8] is defined as follows: 

[a] 0 [{3] = [a * (3]. 

Thus the product of two homotopy classes is the class determined by the 
path product of their representative elements. The preceding lemma 
insures that the product 0 is a well-defined operation on 1Tl(X, xo). The 
set 1Tl(X, xo) with the 0 operation is called the fundamental group of X at 
xo, the first homotopy group of X at xo, or the Poincare group of X at Xo. 

Theorem 4.2. The set 1Tl(X, xo) is a group under the 0 operation. 

PROOF. To show that 1Tl(X, xo) is a group, we must show that there is a loop c 
for which [c] is an identity element, that each homotopy class [a] has an 
inverse [ei] = [a]-I, and that the multiplication 0 is associative. Let us prove 
each of these as a separate lemma. 

Lemma A. 1Tl(X, x o) has an identity element [c] where c is the constant loop 
whose only value is Xo. 

63 



4 The Fundamental Group 

PROOF. The constant loop c is defined by 

c(t) = xo, 

If a is a loop in X based at xo, then 

c * a{t) = {:(2t _ I) 

tEl. 

ifO~t~! 

if!~t~l. 

To show that [c * a] = [a], we require a homotopy H: I x I ~ X such that 

H{·, 0) = c*a, H{·, I) = a, 
H{O, s) = H(I, s) = Xo, S E l. 

These requirements are filled by defining 

{
xo if 0 ~ t ~ (I - s )/2 

H(t, s) = (2t + s ~ 1) 
a S + 1 if (1 - s)/2 ~ t ~ l. 

After checking to see that H has the required properties, we will see how 
it was obtained. Note that 

{ xo if 0 ~ t ~ !} 
H(t, 0) = a(2t _ 1) if! ~ t ~ 1 = c * a(t), 

{ xo if 0 ~ t ~ O} 
H(t, 1) = a(t) if 0 ~ t ~ 1 = a(t), 

H(O, s) = Xo, (2 + s - 1) 
H(I, s) = a S + 1 = a(1) = XO, SEl. 

Continuity of H is assured by the Continuity Lemma since (2t + s - 1) 
divided by (s + 1) is a continuous function of (t, s) and the two parts of the 
definition of H agree when t = (1 - s)/2. 

The homotopy H was obtained from the diagram shown in Figure 4.3 by 
the analysis that follows. To define a homotopy H on the unit square which 

(0, I) 1-----"------, 

(0, s) ~-'--~-------t (I, s) 

(1/2,0) (1,0) 

Figure 4.3 
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4.2 Homotopic Paths and the Fundamental Group 

agrees with c * a on the bottom and with a on the top, let us intuitively 
assume that we will define the s-leve1 H(·, s) to have value Xo at each point 
(t, s) from t = 0 out to the diagonal line L. Then we wish H(·, s) to follow 
the route of a. Since L has equation t = (1 - s )/2 and the" time" remaining 
when t = (1 - s)/2 is 

1 _ (1 - s) = 1 + s, 
2 2 

the desired effect is accomplished by defining 

{
Xo if 0 ::; t ::; (l - s)/2 

H(t,s) = a((t - (I ; S»)'1 ! s) if(l - s)/2 ::; t::; 1. 

This expression reduces to the formula for H given previously. 
We have now proved the following: If [a] E 7Tl(X, xo), then 

[c] 0 [a] = [c * a] = [a] 

so that [c] is a left identity for 7Tl(X, xo). 
In order to see that [c] is a right identity as well, we need to show that 

[a * c] = [a]. This is accomplished by the homotopy 

H'(t, s) = {a(s ~ 1) if 0 ::; t ::; (s + 1)/2 

Xo if (s + 1)/2 ::; t ::; 1. 

The intuitive picture is left to the reader. 

Lemma B. For each homotopy class [a] in 7Tl(X, xo), the inverse of [a] with 
respect to the operation 0 and the identity element [c] is the class [a] where 
a(t) = a(l - t), tEl. 

PROOF. The path a(t) = a(1 - t) is commonly called the reverse of the path a. 
It begins at a(l) = Xo and traces the route of a backwards. We must prove 
that 

[a] 0 [a] = [a] 0 [a] = [c]. 

Note that 

[a] 0 [a] = [a * a], 

{
a(21) if 0 ::; I ::; ! 

a * a(t) = a(2 _ 21) if!::; t ::; 1. 

The path a * a follows a and then follows the reverse of a to the starting 
point Xo. We shall define a homotopy K for which the s-level K(·, s) follows 
route a out to a(s) and then retraces its steps back to Xo. This is accomplished 
by defining 

( ) {
a(2tS) if 0 ::; I ::; ! 

K t, s = . 
a(2s - 21s) If!::; t ::; 1. 
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4 The Fundamental Group 

It is easily observed that 

K(·,O) = e, K(·, I) = (u ti, 

K(O, s) = K(1, s) = Xo, S E I, 

and that K is continuous. 
Thus 

[a] 0 [ti] = [a * ti] = [e], 

so [ti] is a right inverse for [a]. Since the reverse of the reverse of a is itself a 
(i.e., &. = a), the same proof shows that 

[ti] 0 [a] = [ti] 0 [ex] = [e], 

and hence [ti] = [a]-l is a two-sided inverse for [a]. 

Lemma C. The multiplication 0 is associative. 

PROOF. Let [a], [,8], and [y] be members of 7T1(X, xo). We must prove that 

([a] 0 [,8]) 0 [y] = [a] 0 ([,8] 0 [yD 

or, equivalently, 

[(a *,8) * y] = [a * (,8 * y)]. 

A little arithmetic shows that 

and 

{
a( 4t ) if 0 ::s; t ::s; t 

(a *,8) * yet) = ,8(4t - I) if t ::s; t s t 
y{2t - I) if 1- ::s; t ::s; 1 

{
a(2t) if 0 ::s; t ::s; ! 

a * (,8 * y)(t) = ,8(4t - 2) if 1- ::s; t ::s; i 
y{4t - 3) if i ::s; t ::s; 1. 

The reader should apply the method illustrated in Lemma A to Figure 4.4, 
obtain the homotopy 

aC ~ 1) if 0 ::s; t ::s; (s + 1)4 

L(t, s) = ,8(4t - 1 - s) if (s + 1)/4 ::s; t ::s; (s + 2)/4 

( 4t - 2 - s) 
y 2 - s if (s + 2)/4 ::s; t ::s; 1 

and verify that it is a homotopy modulo Xo between (a *,8) * y and a * (,8 * y). 
This completes the proof that 0 is associative and the proof of Theorem 4.2. 

o 
The technique for obtaining the homotopies in the proof of Theorem 4.2 is 

extremely important in homotopy theory. The reader should be certain that 
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4.2 Homotopic Paths and the Fundamental Group 

(0, 1) 1------t~____1....__.:........., 

(1/4,0) (1/2,0) (1,0) 

Figure 4.4 

he understands the method by solving the relevant exercises at the end of the 
chapter. 

Definition. A space X is path connected means that each pair of points in X 
can be joined by a path. In other words, if Xo and Xl are points in X, then 
there is a path in X with initial point Xo and terminal point Xl' 

Theorem 4.3. If a space X is path connected and xo, Xl are points in X, then the 
fundamental groups 'lTl(X, xo) and 'lTl(X, Xl) are isomorphic. 

PROOF. Let p: I -+ X be a path such that 

p(O) = Xo, 

If a is a loop based at xo, then (p * a) * p is a loop based at Xl' Here p denotes 
the reverse of p: 

p(t) = p(1 - t), o ::::; t ::::; l. 

We define a function P: 'lTl(X, xo) -+ 'lTl(X, Xl) by 

P([a]) = [(p * a) * p], [a] E 'lTl(X, Xo). 

I t should be clear that the image of [a] is independent of the choice of path in 
[a] so that P is well defined. 

Several observations are necessary before showing that P is an isomor­
phism. First, Lemma B with minor modifications shows that [p * p] and 
[p * p] are the identity elements of 'lTl(X, xo) and 'lTl(X, Xl) respectively. 
Second, Lemma C can be easily modified to show that for any paths a, fJ, y 
for which (a * fJ) * y and a * (fJ * y) are defined, the indicated triple products 
are equivalent. Thus in [(p * a) * p], we may ignore the inner parentheses and 
simply write [p * a * p] since the equivalence class is the same regardless of 
the way in which the terms of the product are associated. 
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4 The Fundamental Group 

Now consider [a], [P] in 7Tl(X, xo). 

P([a]o[pD =P([a*,8]) = [p*a*,8*p] = [p*a*p*p*,8*p] 
= [p * a * p] 0 [p *,8 * p] = P([a]) 0 P([,8]). 

Thus P is a homomorphism. 
The function Q: 7TI(X, Xl) --+ 7TI(X, xo) defined by 

Q([O'D = [p * 0' * p], 

is the inverse of P. To see this, observe that for [a] E 7Tl(X, xo), 

QP([aD = Q([p* a * pD = [p * p* a * p * p] 

= [p * p] 0 [a] 0 [p * p] = [a]. 

Thus QP is the identity map on 7Tl(X, xo) and, by symmetry, we observe that 
PQ must be the identity map on 7TI(X, Xl)' Thus the indicated fundamental 
groups are isomorphic. 0 

Because of the preceding theorem, mention of a base point for the funda­
mental group of a path connected space is often omitted. We shall refer 
sometimes to "the fundamental group of X" and write 7Tl(X), when Xis path 
connected, since the same abstract group will result regardless of the choice 
of the base point. This applies primarily to the process of computing the 
fundamental group of a given space. Theorem 4.3 does not guarantee, 
however, that the isomorphism between 7TI(X, xo) and 7TI(X, Xl) is unique; 
quite often different paths lead to different isomorphisms. For this reason, 
there are many applications of the fundamental group in which the specifica­
tion of a base point is important. When comparing fundamental groups of 
two spaces X and Yon the basis of a continuous map/: X --+ Y, for example, 
it is usually necessary to specify a base point for each space. 

Definition. A path connected space X is simply connected provided that 7Tl(X) 
is the trivial group. 

Theorem 4.4. Every contractible space is simply connected. 

PROOF. Let X be a contractible space. There is a point Xo in X and a homotopy 
H: X x I --+ X such that 

H(x,O) = X, H(x, 1) = xo, XE X. 

It is easy to see that X is path connected. If X E X, the function 

ax = H(x, .): 1--+ X 

is a path from H(x,O) = X to H(x, 1) = Xo. Thus any two points X and y 
are joined by the path ax * iiy where iiy is the reverse of ay. 

Assume for a moment that H has the additional property 

H(xo,s) = xo, SEI. 
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4.3 The Covering Homotopy Property for S1 

For [a] E 7Tl(X, xo), define a homotopy h: I x 1-+ X by 

h(t,s) = H(a(t),s). 

Then 
h(t, 0) = aCt), h(t, 1) = xo, tEl 

h(O, s) = h(I, s) = Xo, S E l. 

Here we have used our additional assumption H(xo, s) = Xo to produce 
h(O, s) = h(l, s) = Xo. Thus h demonstrates that a is equivalent to c, the 
constant loop whose only value is Xo. Then [a] = [c] and 7Tl(X, xo) consists 
only of an identity element. 

But what happens if the path H(xo, .): I -+ X is not constant? We must 
then modify each level of the homotopy h to produce at each level a loop 
based at Xo. The procedure is illustrated in Figure 4.5, and the revised defini­
tion of h is left as an exercise for the reader. 0 

Figure 4.5 

4.3 The Covering Homotopy Property for Sl 
This section is devoted to determining the fundamental group of the circle. 
It will be convenient to consider the unit circle Sl as a subset of the complex 
plane; we thus consider 1R2 as the set of all complex numbers x = Xl + iX2 

where i = V-i. 
We shall refer several times to the function p: IR -+ Sl defined by 

pet) = exp(27Tit), t E IR. 

Here exp denotes the exponential function on the complex plane. In particu­
lar, if t is in the set IR of real numbers, then 

exp(27Tit) = COS(27Tt) + i sin(27Tt). 

Note that p maps each integer n in IR to 1 in Sl and wraps each interval 
[n, n + 1] exactly once around Sl in the counterclockwise direction. 
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4 The Fundamental Group 

Definition. If a: I ~ Sl is a path, then a path ii: I ~ IR such that pii = a is 
called a covering path of a or a lifting of a to the real line IR. If F: I x I ~ Sl 
is a homotopy, then a homotopy E: I x I ~ IR such that pE = F is called 
a covering homotopy or a lifting of F. 

Theorem 4.5 (The Covering Path Property). If a: I ~ Sl is a path in Sl with 
initial point 1, then there is a unique covering path ii: I ~ IR with initial 
point O. 

PROOF. Let U1 denote the open arc on Sl beginning at 1 and extending in the 
counterclockwise direction to - i, and let U2 denote the open arc from -1 
counterclockwise to i, as shown in Figure 4.6. Then U1 and U2 are open sets 
in S\ U1 u U2 = Sl and 

00 

p-1(U1) = U (n, n + -1), 
n= - 00 

00 

p-1(U2) = U (n - 1-, n + -!-). 
n= - 00 

Figure 4.6 

Note that p maps each interval (n, n + -1) homeomorphically onto U1 and 
maps each interval (n - 1-, n + t) homeomorphically onto U2• 

Here is the intuitive idea behind the proof. Subdivide the range of the 
path a into sections so that each section is contained either in U1 or in U2 • 

If a particular section is contained in Ub we choose one of the intervals 
V = (n, n + -1) and consider the restriction plv of p to this interval. Compos­
ing (p Iv) -1 with this section of the path "lifts" the section to a section of a 
path in IR. The same method applies to sections lying in U2 • To insure con­
tinuity we must be careful that the initial point of a given lifted section be 
the terminal point of the lifted section that precedes it. 

This method is applied inductively as follows. Let E be a Lebesgue number 
for the open cover {a- 1(U1), a- 1(U2)} of l. Choose a sequence 

o = to < t1 < t2 < ... < tn = 1 

of numbers in I with each successive pair differing by less than E. Then the 
image a([tl> t l + 1 ]) of any subinterval [tl> tI+ 1 ], O:s; i :s; n - 1, must be 
contained in either U1 or U2 • 

Now, a([to, td) must be contained in U2 since 

aCto) = a(O) = 1 1= U1 • 
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4.3 The Covering Homotopy Property for 8 1 

Let VI = (-t. t) and define ii on [to. t1 ] by 

ii(t) = (P!Vl)-IO'(t). 

Proceeding inductively. suppose that 0' has been defined on the interval 
[to. tk]. Then 

O'([tk • tk + 1]) c U 

where U is either U1 or U2 • Let Vk + 1 be the component of p-l(U) to which 
ii(tk ) belongs. Note that Vk + 1 is one of the intervals (n. n + i) or 
(n - t. n + t). Then P!Vk+l is a homeomorphism, and the desired extension 
of ii to [tk' tk + 1] is obtained by defining 

The continuity of ii is guaranteed by the Continuity Lemma since the lifted 
sections agree at the endpoints tk • This inductive step extends the definition of 
ii to [to. tn] = 1. 

To prove that ii is the only such covering path, suppose that 0" also satisfies 
the required properties pO" = 0' and 0"(0) = o. Then the path ii - 0" has 
initial point 0 and 

p(ii(t) - O"(t» = pii(t)/ pO"(t) = O'(t)/O'(t) = 1, tEl. 

so ii - 0" is a covering path of the constant path whose only value is 1. Since 
p maps only integers to 1, then ii - 0' must have only integral values. Thus, 
since I is connected, ii - 0" can have only one integral value. This one value 
must be the initial value, O. Therefore ii - 0" = 0, so ii = 0". The required 
lifting ii is therefore unique. 0 

Corollary (The Generalized Covering Path Property). If 0' is a path in 8 1 and 
r is a real number such that p(r) = 0'(0), then there is a unique covering path 
ii of 0' with initial point r. 

PROOF. The path 0'/0'(0) is a path in 8 1 with initial point 0'(0)/0'(0) = 1 and 
therefore has a unique covering path 7] with initial point O. The path ii: 1---+ IR 
defined by 

O'(t) = r + 7](t), tEl, 

is the required covering path of 0' with initial point r. The uniqueness of ii 
follows from that of 7]. 0 

Theorem 4.6 (The Covering Homotopy Property). If F: I x 1---+8 1 is a 
homotopy such that F(O, 0) = I, then there is a unique covering homotopy 
F: I x 1---+ IR such that F(O, 0) = O. 

PROOF. The proof is similar to that of the Covering Path Property; in fact, 
we use the same open sets Ulo U2 in 8 1 . Bya Lebesgue number argument, 
there must exist numbers 

o = to < 11 < ... < In = 1, o = So < SI < ... < Sm = 1 
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such that F maps any rectangle [tlo Iud x [Sk' Sk+l] into either U1 or U2 • 

Since 
F(O, 0) = I rt Ub 

then F([to, t1 ] x [so, sd) must be contained in U2 • Let VI = (-t.!) and 
define F on [to. t1] x [so, sd by 

F(t, s) = (plvJ- 1F(t, s). 

Now extend the definition of F over the rectangles [/10 It + 1] X [so, sd in 
succession as in the proof of the Covering Path Property, being careful that 
the definitions agree on common edges of adjacent rectangles. This defines F 
on the strip I x [so, S1]. 

Proceeding inductively, suppose that Fhas been defined on (I x [so, Sk]) U 

([to, tt] x [Sko Sk+l]). We wish to extend the domain to include [th It+l] X 
[Sk, Sk+1], as shown in Figure 4.7. Let 

A = {(x, y) E [flo It+l] X [Sk, Sk+l]: x = It or y = Sk} 

be the common boundary of the present domain of F and [th It + 1] X 
[Sk' sk+d. Now, F([/h Il+l] X [Sk' Sk+ 1]) is contained in either U1 or U2 • 

Denote this containing set by U, and let V be the component of p -1( U) 
which contains F(A). Define F on [/10 I t + 1] X [Sk' Sk+1] by 

F(t, s) = (pIV)-1F(/, s). 

1-

o I; ti + I 

Figure 4.7 

The continuity of F follows from the Continuity Lemma since the old and 
new definitions of F agree on the closed set A. This induction extends the 
domain of F to [to, tn] x [so, Sm] = I x l. 

To see that F is the only covering homotopy of F with F(O, 0) = 0, 
suppose that F' is another one. Then the homotopy F - F' has the properties 

(F - F')(O, 0) = F(O, 0) - F'(O, 0) = 0, 

p(F - F')(t, s) = pF(t, s)/pF'(t, s) = F(/, s)/F(/, s) = I, 
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for all (t, s) in I x l. Thus, as in the case of covering paths, F - F' can have 
only one integral value, namely O. Then F = F' and the covering homotopy 
is unique. 0 

Definition. Let IX be a loop in S1 with base point I. The Covering Path Property 
insures that there is exactly one covering path a of IX with initial point O. 
Since 

I = 1X(1) = pa(l) = exp(27Tia(1)), 

then a(l) must be an integer. This integer is called the degree of the loop IX. 

Theorem 4.7. Two loops IX and fJ in S1 with base point I are equivalent if and 
only if they have the same degree. 

PROOF. Let a and P denote the covering paths of IX and fJ respectively having 
initial point 0 in IR. 

Suppose first that IX and fJ have the same degree so that a(l) = Pel). Define 
a homotopy H: I x 1-+ IR by 

H(t,s) = (1- s)a(t) + sP(t), (t,s)EI xl. 

Then H demonstrates the equivalence of a and P as paths in IR. Note in 
particular that H(1, s) is the common degree of IX and fJ for each s in l. The 
homotopy 

pH:I x I-+S1 

shows the equivalence of IX and fJ as loops in S1. 
Suppose now that IX and fJ are equivalent loops in S 1 and that K: I x 1-+ S 1 

is a homotopy such that 

K(·,O) = IX, K(·, I) = fJ, 
K(O, s) = K(I, s) = I, s E l. 

By the Covering Homotopy Property, there is a covering homotopy 
K: I x 1-+ IR such that 

K(O,O) = 0, pK= K. 
Then 

pK(O, s) = K(O, s) = 1, s E I, 

so K(O, s) must be an integer for each value of s. Since I is connected, 
K(O, .) must have only the value K(O, 0) = O. A similar argument shows that 
K(1, .) is also a constant function. 

Since 

pK(',O) = K(·, 0) = IX, pK(-, 1) = K(·, 1) = fJ, 

then K(', 0) = a and K(-, 1) = P are the unique covering paths of IX and fJ 
respectively with initial point O. Thus 

degree IX = a(l) = K(l, 0) = K(l, I) = P(l) = degree fJ, 
so IX and fJ must have the same degree. o 
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Corollary. The fundamental group 171(81) is isomorphic to the group 71. of 
integers under addition. 

PROOF. Consider 171(81, 1), and define a function 

deg: 171(81, 1) -+ 71. 
by 

deg[a] = degree a. 

The preceding theorem insures that deg is well-defined and one-to-one. 
To see that deg maps 171(81, 1) onto 71., let n be an integer. The loop" in 

8 1 defined by 
y(t) = exp(217int) 

is covered by the path 
t -+ nt, tEl, 

and therefore has degree n. Thus deg[,,] = n. 
Suppose now that [a] and [p] are in 171(81, 1). We must show that 

deg([a] 0 [p]) = deg[a] + deg[,8]. 

If a and P are the unique covering paths of a and p which begin at 0, then the 
pathf: 1-+ III defined by 

{ a(2t) if 0 ::; 1 ::; t 
f(l) = a{l) + P(2t - 1) if t ::; 1 ::; 1 

is the covering path of a * p with initial point O. Thus degree(a * P) = 
f(l) = a(l) + /1(1) = degree a + degree f3. Then 

deg([a] 0 [,8]) = degree(a * P) = degree a + degree p 
= deg[a] + deg[,8]. 0 

The most important topic of this section has been the Covering Homotopy 
Property. We shall see it again in a more general form in Chapter 5, and those 
who take additional courses in algebraic topology will find that it is one of 
the most useful concepts in homotopy theory. 

4.4 Examples of Fundamental Groups 
We now know that the fundamental group of a circle is the group of integers 
and that the fundamental group of any contractible space is trivial. The 
observant reader has probably surmised that the fundamental group is 
difficult to compute, even for simple spaces. 

Homeomorphic spaces have isomorphic fundamental groups. The proof 
of this fact is left as an exercise. In this section we shall present less stringent 
conditions which insure that two spaces have isomorphic fundamental groups. 
This will allow us to determine the fundamental groups of several spaces 
similar to 8 1 • In the latter part of the section we shall prove a theorem which 
shows that the fundamental group of the n-sphere 8" is trivial for n > 1. 
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Definition. Let X be a space and A a subspace of X. Then A is a deformation 
retract of X means that there is a homotopy H: X x I ~ X such that 

H(x,O) = x, H(x, 1) E A, x E X, 
H(a, t) = a, a E A, tEl. 

The homotopy H is called a deformation retraction. 

Theorem 4.8. If A is a deformation retract of a space X and Xo is a point of A, 
then 7TI(X, xo) is isomorphic to 7TI(A, xo). 

PROOF. Let H: X x I ~ X be a deformation retraction of X onto A. Then 
if a is a loop in X with base point xo, H (a( .), 1) is a loop in A with base point 
Xo. We therefore define h: 7TI(X, xo) ~ 7TI(A, xo) by 

h([a]) = [H(a(.), 1)]. 

For [a], [,8] in 7TI(X, xo), 

h([a] 0 [,8]) = h([a *,8D = [H(a * ,8(,),1)] = [H(a(.), 1) * H(,8(·), 1)] 

= h([aD 0 h([,8D, 

so h is a homomorphism. 
The fact that H(a(.), 1) is equivalent to H(a(.), 0) = a as loops in X 

insures that h is one-to-one. If [y] is in 7TI(A, xo), then y determines a homotopy 
class (still called [yD in 7TI(X, xo). Since H leaves each point of A fixed, then 

h([yD = H(y(·), 1) = [y], 

so h maps 7TI(X, xo) onto 7TI(A, xo). This completes the proof that h is an 
isomorphism. D 

Example 4.2. Consider the punctured plane 1R2\{p} consisting of all points in 
1R2 except a particular point p. Let A be a circle with center p as shown in 
Figure 4.8. 

x 
r(x) 

Figure 4.8 

For x E 1R2\{p}, the half line from p through x intersects the circle A at a 
point rex). This function r is clearly a retraction of 1R2\{p} onto A. Define a 
homotopy H: (1R2\{p}) x I ~ 1R2\{p} by 

H(x, t) = tr(x) + (1 - t)x, x E 1R2\{p}, tEl. 
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It is easy to see that H is a deformation retraction, so A is a deformation 
retract of ~2\{p}. Thus 

Example 4.3. Consider an annulus X in the plane. Both the inner and outer 
circles of X are deformation retracts, so 7TI(X) is the group of integers. 

Example 4.4. Each of the following spaces is contractible, so each has 
fundamental group {O}: 

(a) a single point, 
(b) an interval on the real line, 
(c) the real line, 
(d) Euclidean n-space ~n, 
(e) any convex set in ~n. 

Theorem 4.9. Let X and Y be spaces with points Xo in X and Yo in Y. Then 

7TI(X x Y, (xo, Yo)) ~ 7TI(X, xo) E8 7TI(Y, Yo). 

PROOF. Let PI and P2 denote the projections of the product space X x Y 
on X and Y respectively: 

heX, y) = x, P2(X, y) = y, (x, y) E X X Y. 

Any loop a in X x Y based at (xo, Yo) determines loops 

in X and Y based at Xo and Yo respectively. Conversely, any pair of loops al 

and a2 in X and Y based at Xo and Yo respectively determines a loop a = 
(al> (2) in X x Y based at (xo, Yo). The function 

h: 7TI(X x Y, (xo, Yo)) --+ 7TI(X, xo) E8 7TI( Y, Yo) 

defined by 

hera]) = ([ad, [a2]), 

is the required isomorphism. 

Example 4.5. The torus Tis homeomorphic to the product Sl x Sl. Hence 

7TI(T) ~ 7TI(SI) E8 7TI(SI) ~ 7L. E8 7L.. 

o 

Example 4.6. An n-dimensional torus Tn is the product of n unit circles. 
Hence 7Tl(Tn) is isomorphic to the direct sum of n copies of the group of 
integers. 

Example 4.7. A closed cylinder C is the product of a circle Sl and a closed 
interval [a, b). Thus 

7TI(C) ~ 7TI(St) E8 7TI([a, b)) ~ 7L. E8 {O} ~ 7L.. 
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Theorem 4.10. Let X be a space for which there is an open cover {Vi} of X 
such that 

(a) n y; # 0, 
(b) each Vi is simply connected, and 
(c) for i # j, Vj n V, is path connected. Then X is simply connected. 

PROOF. Since each of the open sets Vi is path connected and their intersection 
is not empty, it follows easily that X is path connected. Let Xo be a point in 
n Y;. We must show that 7T1(X, xo) is the trivial group. 

Let [a] be a member of 7T1(X, xo). Then a: [~ X is a continuous map, so 
the set of all inverse images {a -1( Vi)} is an open cover of the unit interval l. 
Since [ is compact, this open cover has a Lebesgue number E. Then there is a 
partition 

o = to < t1 < 12 < ... < tn = I 

of [such that if 0 ::; j ::; n - 1, then a([t" t'+1]) is a subset of some Vj. (We 
need only require that successive terms of the partition differ by less than E.) 

Let us alter the notation of the open cover {Vi}, if necessary, so that 

O::;j::;n-l. 
Letting 

als) = a«l - s)t, + Stj+1), S E [, 

we have a sequence {a,}j;J of paths in X such that all) is a subset of the 
simply connected set V" and 

[a] = [ao * a1 * a2 * ... * an-1]. 

This process is illustrated for n = 4 in Figure 4.9. 

0/2 

Figure 4.9 

Since V'-1 n V, is path connected, there is a path p, from Xo to a(t,), 
::; j ::; n - 1, lying entirely in Vi -1 n Vi. (Note that a(t,) is the terminal 

point of a'_1 and the initial point of a,.) Since the product fiJ * Pi of Pi and 
its reverse is equivalent to the constant loop at xo, then 

[a] = [ao * Pl * Pl * al * P2 * P2 * a2 * ... * Pn-l * Pn-l * an-l] 

= [ao * Pl] 0 [Pl * al * P2] 0···0 [Pn-2 * an-2 * Pn-d 0 [Pn-l * an-l]. 
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The term in this product determined by aj is the homotopy class of a loop 
lying in the simply connected set Vj' Hence each term of the product represents 
the identity class, so [a] must be the identity class as well. Thus 'lTl(X) = {O}, 
and X is simply connected. 0 

Example 4.8. It is left as an exercise for the reader to show that Sn, n > 1, 
has an open cover with two members satisfying the requirements of Theorem 
4.10. It then follows that 'lTl(sn) = {O} for n > 1. 

4.5 The Relation between H1(K) and 1T1(IKI) 
The fundamental group is defined for every topological space, and we have 
defined homology groups for polyhedra. If IKI is a polyhedron with triangula­
tion K, how are the groups Hl(K) and 'lTl(IKi) related? For our examples 
thus far (interval, circle, torus, cylinder, annulus, and n-sphere), 'lTl<lKi) and 
Hl(K) are isomorphic. This is not true in general. The precise answer is given 
by Theorem 4.11 which is stated here with only an outline of the proof. 
Complete proofs can be found in [2], Section 8-3 and in [6], Section 12. 

Theorem 4.11. If K is a connected complex, then Hl(K) is isomorphic to the 
quotient group 'lTl(lKI)/F where F is the commutator subgroup of 'lTl(IKi). 
Thus whenever 'lTl(IKI) is abelian, 'lTl(lKI) and Hl(K) are isomorphic. 

OUTLINE OF PROOF. Choose a vertex v of K as the base point for the funda­
mental group. For each oriented I-simplex ai of K, let (XI denote a linear 
homeomorphism from [0, 1] onto aj; the al are called elementary edge paths. 
An edge loop is a product of elementary edge paths with v as initial point and 
terminal point. Note that an edge loop (Xl * (X2 * ... * (Xn corresponds in a 
natural way to a I-cycle I'al + I'a2 + ... + I·an • 

Although we shall not go into the lengthy details, it is true that (a) if an 
edge loop is equivalent to the constant loop at v, then the corresponding 1-
cycle is a boundary; (b) if two edge loops are equivalent, then their corre­
sponding I-cycles are homologous; and (c) each loop in IKI with base point 
v is equivalent to an edge loop. 

A homomorphism. 

may now be defined as follows: For [aJ E 'lTl(lKI, v), let a = al * a2 * ... * an 
be an edge loop equivalent to a. Define the valuef([a]) to be the homology 
class determined by the I-cycle which corresponds to a. Then f is a homo­
morphism from 'lTl(lKI, v) onto HI(K) whose kernel is the commutator 
subgroup F. It follows from the First Homomorphism Theorem (Appendix 3) 
that the quotient group 'lTI(IKI, v)/F is isomorphic to Hl(K). 0 

The fundamental group was defined by Poincare in Analysis Situs, the 
same paper in which he introduced homology theory, and the relation 
between homology and homotopy given in Theorem 4.11 was known to him. 
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Poincare did not prove the relation, but he stated in Analysis Situs that 
"fundamental equivalence" of paths in the homotopy sense corresponded 
precisely to homological equivalence of I-chains except for commutativity. 
Since the commutator subgroup F of a group G is the smallest subgroup for 
which GIF is abelian, it is sometimes said that H1(K) is "'lTl(IKi) made 
abelian." 

Both the homology and homotopy relations investigate the structure of a 
topological space by examining the connectivity or "holes in the space." 
Note that homotopy is more easily defined and conceptually simpler. It does 
not require elaborate explanations of chains, boundaries, cycles, or quotient 
groups. Homotopy applies immediately to general topological spaces and 
does not require the special polyhedral structure that we used for homology. 
Thus homotopy has some real advantages over homology. 

Taking the other point of view, homology is in some ways preferable to 
homotopy. The fundamental group is difficult to determine rigorously, even 
for simple spaces. Recall, for example, our computation of 'lTl(Sl) and the 
proof of Theorem 4.4 showing that each contractible space is simply con­
nected. We found in Chapter 2 that homology groups are effectively calculable, 
for pseudomanifolds at least, because of the simplicial structure of the 
underlying complexes. Note also that the fundamental group overlooks the 
existence of higher dimensional holes in S", n > 1. To describe higher 
dimensional connectivity by the homotopy concept, we need a generalization 
of the fundamental group to higher dimensions. That is to say, we need 
homotopy analogues of the higher dimensional homology groups. After 
giving some applications of the fundamental group in Chapter 5, we shall 
study the higher homotopy groups in Chapter 6. 

In defining the homology and homotopy relations, Poincare hoped to give 
an algebraic system of topological invariants that could be used to classify 
topological spaces, especially manifolds. Ideally, one would hope for a 
sequence of groups which are reasonably amenable to computation and have 
the property that two spaces are homeomorphic if and only if their corre­
sponding groups are isomorphic. As pointed out earlier (Theorem 2.11), the 
homology characters, and thus the homology groups, provide such a classifi­
cation for 2-manifolds. Poincare's hope that the homology groups would 
provide a similar classification for 3-manifolds was not fulfilled. Poincare 
himself showed in 1904 that two 3-manifolds may have isomorphic homology 
groups and not be homeomorphic. More specifically, he found a 3-manifold 
whose homology groups are isomorphic to those of the 3-sphere S3 but which 
is not simply connected, and therefore not homeomorphic to S3. 

Poincare was greatly preoccupied with the classification problem. He 
hoped that the fundamental group would overcome the deficiencies of 
homology theory in the classification of 3-manifolds. It does not, however, 
for J. W. Alexander showed in 1919, seven years after Poincare's death, that 
there exist nonhomeomorphic 3-manifolds having isomorphic homology 
groups and isomorphic fundamental groups [26]. Alexander's examples 
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involved fundamental groups of order five and left unanswered the famous 
Poincare Conjecture: 

The Poincare Conjecture. Every simply connected 3-manifold is homeomorphic 
to the 3-sphere. 

The classification problem, even for 3-manifolds, and the Poincare Con­
jecture remain unsolved. Nonetheless, the fundamental group has been a 
powerful tool and a great stimulus for research in algebraic topology. It seems 
to lie at the very base of many difficult mathematical problems. We shall see 
some of its power as we study an important class of spaces, the covering 
spaces, in Chapter 5. 

EXERCISES 

1. Prove the Continuity Lemma. 

2. Show that multiplication in 7Tl(X, xo) is well defined. In other words, show 
that if a '" Xo a' and fJ '" xo f1', then 

ex * fJ ,...., Xo ex' * fJ'. 
3. Complete the details in the proofs of Lemmas A and C. 

4. Given a space X and loops a, fJ, y, and S with base point Xo in X, exhibit a 
homotopy which shows that 

(a * fJ) * (y * S) '" Xo a * «fJ * y) * S). 

5. Let a and fJ be paths in a space X both having initial point Xo and terminal 
point Xl. Prove that a is equivalent to fJ if and only if the product a * P of a 
and the reverse of fJ is equivalent to the constant loop at Xo. 

6. Let p be a loop in X with base point Xo. Prove that the induced homomorphism 
given by the proof of Theorem 4.3, 

P: 7Tl(X, xo) ~ 7Tl(X, xo), 

is the identity isomorphism if and only if the homotopy class [p] belongs to 
the center of 7Tl(X, xo). 

7. Let p and p' be paths in a space X both having initial point Xo and terminal 
point Xl. Give a necessary and sufficient condition that the homomorphisms 
induced by p and p' in the proof of Theorem 4.3 be identical. Prove that your 
condition is correct. 

8. Complete the proof of Theorem 4.4. 

9. Give an example of a simply connected space which is not contractible. 

10. Give an example of a contractible space X and a point Xo in X for which there 
is no contraction of X to Xo which leaves Xo fixed throughout the contracting 
homotopy. 

11. In analogy with the Generalized Covering Path Property, state and prove a 
"Generalized Covering Homotopy Property" for S 1. 
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12. Prove that a path connected space is simply connected if and only if every 
pair of paths in X having common initial point and common terminal point 
are equivalent. 

13 •. Letf: X ~ Ybe a continuous function. Prove that the functionf.: 7Tl(X, xo) 
~ 7T1( Y.f(xo» defined by 

f.([a]) = (fa], [a] E 7Tl(X, xo), 

is a homomorphism. Show in particular that f. is well-defined. 

14. Prove that homeomorphic spaces have isomorphic fundamental groups. 

15. In the proof of Theorem 4.5, explain why the covering path Ii has initial 
point O. 

16. Explain why the loop y,,: I ~ S1 defined by 

y,,(t) = exp(27Tint), tel, 

has degree n for each integral value of n. 

17. Determine the fundamental group of the Mobius strip. 

18. Prove that every deformation retract of a space X is a rectract of X. Show 
by example that the converse is false. 

19. Let X be a space consisting of two 2-spheres joined at a point. Prove that 
7T1(X) = {O}. 

20. Let X be a space consisting of two circles joined at a point. Prove that 7T1(X) 
is a free group on two generators and hence that there are nonabelian 
fundamental groups. 

21. Show that the function h in the proof of Theorem 4.9 is an isomorphism. 

22. Show that the n-sphere Sn, n > 1, satisfies the hypotheses of Theorem 4.10 
and that 7Tl(S") = {O}. 

23. Prove that each of the following spaces is contractible: 
(a) the real line, 
(b) a convex set in IR", 
(c) the upper hemisphere H of S": H = {(Xl, ... , X,,+1) E S": X,,+1 ~ O}, 
(d) S"\{p} where p is a particular point in S". 

24. Let P be a point in S1. Prove that S1 x {p} is a retract but not a deformation 
retract of S1 x S1. 

25. Prove that the fundamental group of punctured n-space 1R"\{p} is trivial for 
n> 2. 

26. Let G be a topological group with identity element e. If a, f3 are loops in G 
with base point e, we can define a new product . by 

a·f3(t) = a(t)f3(t) 

where juxtaposition of a(t) and f3(t) indicates their group product in G. 
(a) Prove that the operation . on loops based at e induces a group operation 

on 7T1(G, e). 
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(b) Show that the operation induced by . is exactly the same as the usual 
product 0 on 7Tl(G, e). (Hint: Prove that (ex * c)·(c * f3) = ex * f3 where c 
is the constant loop at e.) 

(c) Prove that 7Tl(G, e) is abelian. (Hint: Compare (ex * c)·(c * f3) and 
(c * exHf3 * c). 

27. If K is a complex with combinatorial components Klo • •• , K" how is H1(K) 
related to the groups 7Tl(IK11), ... , 7Tl(IK,I)? 

28. Give an intuitive explanation of each of the following statements: 
(a) The degree of a loop ex in Sl is the number of times that ex wraps the 

interval I around the circle. 
(b) The circle has one "hole" so its fundamental group is the group 7l. of 

integers. 
(c) The fundamental groups of a torus and a figure eight (two circles joined 

at a point) are not isomorphic. 

29. (a) Show that a loop in a space X may be considered a continuous map from 
Sl into X. (Hint: Consider the quotient space of I obtained by identifying 
o and 1 to a single point.) 

(b) Let ex be a loop in Sl. Explain the relation between the degree of ex in the 
homotopy sense and its degree in the homology sense. 

30. Let X be a space consisting of two spheres sm and sn, where m, n ~ 2, 
tangent at a point. Prove that 7Tl(X) = to}. 
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Covering Spaces 5 

This chapter is designed to show the power of the fundamental group. We 
shall consider a class of mappings p: E -+ B, called "covering projections," 
from a "covering space" E to a "base space" B to which we can extend the 
Covering Homotopy Property discussed in Chapter 4. Precise definitions are 
given in the next section. 

The fundamental group is instrumental in determining and classifying 
the topological spaces that can be covering spaces of a given base space B. 
For a large class of spaces, the possible covering spaces of B are determined 
by the subgroups of 7Tl(B). In addition, the theory of covering spaces will 
allow us to determine the fundamental groups of several rather complicated 
spaces. 

5.1 The Definition and Some Examples 
Recall from Chapter 4 that a space X is path connected provided that each 
pair of points in X can be joined by a path in X. A space that satisfies this 
property locally is called "locally path connected." 

Definition. A topological space X is locally path connected means that X has 
a basis of path connected open sets. In other words, if x E X and 0 is an 
open set containing x, then there exists an open set U containing x and 
contained in 0 such that U is path connected. 

Definition. A maximal path connected subset of a space X is called a path 
component. Thus A is a path component of X means that A is path con­
nected and is not a proper subset of any path connected subset of X. The 
path components of a subset B of X are the path components of B in its 
subspace topology. 
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5 Covering Spaces 

It is assumed throughout this chapter that all spaces considered are path 
connected and locally path connected unless stated otherwise. 

Definition. Let E and B be spaces and p: E ~ B a continuous map. Then the 
pair (E, p) is a covering space of B means that for each point x in B there 
is a path connected open set U c B such that x E U and p maps each path 
component of p -1( U) homeomorphically onto U. Such an open set U is 
called an admissible neighborhood or an elementary neighborhood. The 
space B is the base space and p is a covering projection. 

In cases where the covering projection is clearly understood, one sometimes 
refers to E as the covering space. We shall, however, try to avoid ambiguity 
by referring to the covering space properly as (E, p). 

Example 5.1. Consider the map p: ~ ~ S1 from the real line to the unit circle 
defined in Chapter 4: 

p{t) = e2n1t = COS(217t) + i sin{217t), t E R 

Then p is a covering projection. Any proper open interval or arc on S1 can 
serve as an elementary neighborhood. For the particular point 1 in S1, let 
U denote the right hand open interval on S1 from - ito i. Then 

ex> 

p-1(U) = U (n - t, n + !), 
n= - 00 

and the path components of p-1(U) are the real intervals (n - t, n + t). 
Note that p maps each of these homeomorphically onto U, as illustrated in 
Figure 5.1. 

( I ) 

-1 -1/4 0 1/4 

1 
1 

~ I P $il -- --+-- ,---
-I 

1 

Figure 5.1 

Example 5.2. For any positive integer n, let qn: S 1 ~ S 1 be the map defined by 

Z E S1, 

where zn is the nth power of the complex number z. Then (S1, qn) is a covering 
space of S1. Representing the circle in polar coordinates, the action of q" is 
described as follows: q" takes any point (l, e) to (l, ne). Let U be an open 
interval on S1 subtended by an angle e, 0 ~ e ~ 217, and containing a point x. 
Then p-1(U) consists of n open intervals each determining an angle e/n and 
each containing one nth root of x. These n intervals are the path components 
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of p-1(U), and each is mapped by p homeomorphically onto U. Thus any 
proper open interval in Sl is an admissible neighborhood. 

A repetition of Example 5.2 for negative values of n is left as an exercise. 

Example 5.3. If X is a space (which, according to our assumption, must be 
path connected and locally path connected), then the identity map i: X ~ X 
is a covering projection, so (X, i) is a covering space of X. 

Example 5.4. Let P denote the projective plane, and let p: S2 ~ P be the 
natural map which identifies each pair of antipodal or diametrically opposite 
points, as in Exercise 26 of Chapter 2. To show the existence of admissible 
neighborhoods, let w be a point in P which is the image of two antipodal 
points x and - x. Let 0 be a path connected open set in S2 containing x such 
that 0 does not contain any pair of antipodal points. (A small disc centered at 
x will do nicely.) Thenp(O) is an open set containing w, andp-1p(O) has path 
components 0 and the set of points antipodal to points in O. Note that p maps 
each of these path components homeomorphically onto p(O), so p(O) is an 
admissible neighborhood. Thus (S2, p) is a covering space of P. 

Example 5.5. Consider the map r: 1R2 ~ Sl X Sl from the plane to the torus 
defined by 

r(t1' t2) = (e2111t1, e211lt2), (t1' t2) E 1R2. 

Then (1R2, r) is a covering space of Sl x Sl. This example is essentially a 
generalization of the covering projection p: IR ~ Sl of Example 1. For any 
point (Zb Z2) in Sl x Sl, let U denote a small open rectangle formed by the 
product of two proper open intervals in Sl containing Zl and Z2 respectively. 
Then U is an admissible neighborhood whose inverse image consists of a 
countably infinite family of open rectangles in the plane. 

Example 5.6. Let Q denote-an infinite spiral, and let q: Q ~ Sl denote the 
projection described pictorially in Figure 5.2. Each point on the spiral is 
projected to the point on the circle directly beneath it. 

-----, 
_/ 

C_~s' 
Figure 5.2 
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It is easy to see that (Q, q) is a covering space of S1. In this example it is 
important that the spiral be infinite; a finite spiral projected in the same 
manner is not a covering space. By examining Figure 5.3, one can see that the 
points p(xo) and P(Xl) lying under the ends of the spiral do not have admissible 
neighborhoods. 

~-----""'Xo 

ps;:-___ -5 
Figure 5.3 

Example 5.7. The following is not an example of a covering space. Let R be a 
rectangle which is mapped by the projection onto the first coordinate to an 
interval A, as shown in Figure 5.4. If U is an open interval in A, then p -1( U) 
is a strip in R consisting of all points above U. This strip cannot be mapped 
homeomorphically onto U, so this situation does not allow admissible 
neighborhoods. 

: I 
I I 
I 

,,- I (U) 
I 

R I I • (a, b) 
I I 
I I 

: : 

! 
,,(a, b) = a 

A -----~------+---.~--u 
Figure 5.4 

5.2 Basic Properties of Covering Spaces 
In this section we shall prove some basic properties of covering spaces from 
the definition. The most important of these is the Covering Homotopy 
Property. 

The following characterization of local path connectedness is left as an 
exercise: 

Lemma. A space X is locally path connected if and only if each path component 
of each open subset of X is open. 
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Theorem 5.1. Every covering projection is an open mapping. 

PROOF. Let p: E ~ B be a covering projection. We must show that for each 
open set V in E, p( V) is open in B. Let x E p( V), let x be a point of V such that 
p(x) = x, and let U be an admissible neighborhood for x. Let W be the path 
component of p-I(U) which contains x. Since E is locally path connected, 
the preceding lemma implies that W is open in E. Since p maps W homeo­
morphically onto U, then p maps the open set W n V to an open subset 
p( W n V) in B. Thus x E p( W n V) and p( W n V) is an open set contained 
in p(V). Since x was an arbitrary point of p( V), it follows that p( V) is a union 
of open sets and is, therefore, an open set. Thus p is an open mapping. 0 

Theorem 5.2. Let (E, p) be a covering space of B and X a space. Iff and g are 
continuous maps from X into E for which pf = pg, then the set of points at 
whichf and g agree is an open and closed subset of X. (We do not assume in 
this theorem that X is path connected or locally path connected.) 

PROOF. Let A = {x E X:f(x) = g(x)} be the set of points at which f and g 
agree. To see that A is open, let x be a member of A and U an admissible 
neighborhood of pf(x). The path component V of rl(U) to which f(x) 
belongs is an open set in E, and hence f-l( V) and g - l( V) are open in X. 
Sincef(x) E Vandf(x) = g(x), then x belongs tof-I(V) n g-I(V). We shall 
show that f-I(V) n g-l(V) is a subset of A and conclude that A is open 
since it contains a neighborhood of each of its points. 

Let t Ef-I(V) n rl(V). Thenf(t) and get) are in V and are mapped by 
p to the common point pf(t) = pg(t). Since p maps V homeomorphically 
onto U, it must be true thatf(t) = get). Then tEA, and it follows that A is 
an open set. 

Suppose that A is not closed, and let y be a limit point of A not in A. Then 
f(y) ¥- g(y). The point pf(y) = pg(y) has an elementary neighborhood W, 
and f(y) and g(y) must belong to distinct path components Vo and VI of 
p-I(W). (Why?) Since y belongs to the open set f-I(VO) n g-I(VI ), then 
f-I(Vo) n g-I(VI) must contain a point tEA. But this is a contradiction 
since the pointf(t) = get) would have to belong to the disjoint sets Vo and 
VI' Thus A contains all its limit points and is a closed set. 0 

Corollary. Let (E, p) be a covering space of B, and let f, g be continuous maps 
from a connected space X into E such that pf = pg. If f and g agree at a 
point of X, then f = g. 

PROOF. In a connected space X, the only sets that are both open and closed 
are X and the empty set 0. Thus A = X or A = 0, so f and g must be pre­
cisely equal or must disagree at every point. Note that the corollary requires 
only that X be connected, not path connected or locally path connected. 0 

Here is a situation that arises often in mathematics, particularly in topology. 
Suppose that spaces E and B are to be compared using a continuous map 
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p: E --+ B and that there is given another mapf: C --+ B from a space C into 
B. Then a map I: C --+ E for which the diagram below is commutative, that is 
for which pI = f, is called a lifting or covering off 

E 
- ." I 5/' ~p 

c'-r B 

In this section we shall be interested in lifting two kinds of maps: paths and 
homotopies between paths. Theorem 5.2 and its corollary will be useful in 
showing the uniqueness of liftings. 

Definition. Let (E, p) be a covering space of B, and let a: 1--+ B be a path. 
A path a: 1--+ E such that pa = a is called a lifting or covering path of a. 
If F: I x 1--+ B is a homotopy, then a homotopy F: I x 1--+ E for which 
pF = F is called a lifting or covering homotopy of F. 

We are now ready to extend the Covering Path Property and Covering 
Homotopy Property that were proved earlier for the circle to covering spaces. 
The proofs of these important properties are merely generalizations of the 
proofs used in Chapter 4. 

Theorem 5.3 (The Covering Path Property). Let (E, p) be a covering space of 
B and a: 1--+ B a path in B beginning at a point bo.If eo is a point in E with 
p(eo) = bo, then there is a unique covering path of a beginning at eo. 

PROOF. Here is the basic idea of the proof: Subdivide the range of the path a 

into sections so that each section lies in an admissible neighborhood. If U is 
one of these admissible neighborhoods, then p maps each path component 
of p-1(U) homeomorphically onto U. We can then choose a path component 
V of p-1(U) and consider the restriction ply of p to V, a homeomorphism 
from V onto U. Composing with (ply)-l "lifts" one section of a to E. 

This method is applied inductively. Let {Ui} be an open cover of B by 
admissible neighborhoods, and let E be a Lebesgue number for the corre­
sponding open cover {a- 1(Uj )} of I. Choose a sequence 

o = to < t1 < ... < tn = 1 

of numbers in I with each successive pair differing by less than E. Then each 
subinterval [t;, ti + 1], 0 :$; i :$; n - 1, is mapped by a into an admissible 
neighborhood U;+1. 

First consider a([to, t1 ]), which is contained in U1• Let VI denote the path 
component of p-1(U1) to which the desired initial point eo belongs. Then, for 
t E [to, t1 ], define 

a(t) = (pIYl) -la(t). 

Proceeding inductively, suppose that a has been defined on the interval 
[to, tk ]. Then 
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so we let Vk+ 1 be the path component of p-l(Uk+1) to which a(tk) belongs. 
Since plVk+l is a homeomorphism, the desired extension of a to [tk, tk+11 is 
obtained by defining 

aCt) = (pIVk+l)-la(t), t E [tk' tk+11. 

The continuity of a follows from the Continuity Lemma since the lifted 
sections match properly at the end points. 

The uniqueness of the covering path a can be proved from the uniqueness 
of each lifted section. However, it is simpler to apply the Corollary to 
Theorem 5.2. If a' is another covering path of a with a'(O) = eo, then a and 
a ' agree at 0 and hence must be identical. 0 

Theorem 5.4 (The Covering Homotopy Property). Let (E, p) be a covering 
space of Band F: I x 1----+ B a homotopy such that F(O, 0) = boo If eo is a 
point of E with p(eo) = bo, then there is a unique covering homotopy 
F: I x 1----+ E such that F(O, 0) = eo. 

Having seen this property proved for a special case in Chapter 4, and 
having seen the proof of the Covering Path Property for covering spaces, the 
reader should be able to prove Theorem 5.4 for himself. A proof can be 
modeled after the proof of Theorem 5.3 by subdividing I x I into rectangles 
in the way that I was subdivided into intervals. 

The Covering Homotopy Property has many important applications. One 
of the most important is the following criterion for determining when two 
paths in a covering space are equivalent. 

Theorem 5.5 (The Monodromy Theorem). Let (E, p) be a covering space of B, 
and suppose that a and P are paths in E with common initial point eo. Then 
a and /1 are equivalent if and only if pa and p/1 are equivalent paths in B. In 
particular, if pa and PP are equivalent, then a and P must have common 
terminal point. 

PROOF. If a and /1 are equivalent by a homotopy G then the homotopy pG 
demonstrates the equivalence of pa and pp. 

For a proof of the other half of the theorem, let bo and b1 denote the 
common initial point and common terminal point respectively of pa and p/1. 
Let H: I x 1----+ B be a homotopy demonstrating the equivalence of pa and 
pp: 

H(·,O) = pa, H(·, 1) = pp, 

H(O, t) = bo, H(l, t) = bl> tEl. 

By the Covering Homotopy Property, there is a covering homotopy fi of 
H with fiCo, 0) = eo. Both a and the initial level fi(·, 0) are covering paths 
of pa, and they have common value eo at O. Thus fi(·, 0) = a by the Corol­
lary to Theorem 5.2. Similarly, we conclude that fl(·, 1) = p. 

It remains to be seen that fiCO, .) and fl(l, .) are constant paths. But 
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fiCo, .) is a lifting of the constant path H(O, .) with fiCo, 0) = eo. Since the 
unique lifting of a constant path is obviously a constant path, then fiCo, .) 
must be the constant path whose only value is eo. The same argument shows 
that fi(l, .) must be the constant path whose only value is 

a(l) = fi(l, 0) = fi(l, 1) = Pel). 

Thus fi is a homotopy that demonstrates the equivalence of a and p. 0 

Theorem 5.6. If (E, p) is a covering space of B, then all the sets p -l(b), b E B, 
have the same cardinal number. 

PROOF. Let bo and b1 be points in B. We must define a one-to-one correspon­
dence between p -l(bo) and p -1(b1). This is accomplished as follows: Let ex be 
a path in B from bo to b1. For x Ep-l(bo), let ax denote the unique covering 
path of ex beginning at x. Then the terminal point ax(l) is a point in p -1(b1). 

This associates with each x in p -lebo) a point 

f(x) = ail) 

in p -1(b1). By considering the reverse path from b1 to bo, one can define in the 
same manner a function 

g: rl(b1) -+ p-1(bo). 

The functionsfand g are easily shown to be inverses of each other, so p-l(bo) 
and p-1(bl ) must have the same cardinal number. 0 

Definition. If (E, p) is a covering space of B, the common cardinal number of 
the sets p-l(b), bE B, is called the number of sheets of the covering. A 
covering of n sheets is called an n-fold covering. 

Consider, for example, the covering projection p: S2 -+ P of Example 5.4. 
Since p identifies pairs of antipodal points, the number of sheets of this 
covering is two. Thus (S2, p) is referred to as the "double covering" of the 
projective plane. 

The covering projection p: IR -+ S 1 of Example 5.1 maps each integer and 
only the integers to I E Sl. Thus the number of sheets of this covering is 
countably infinite. 

We close this section with a result relating the fundamental groups of E 
and B where (E,p) is a covering space of B. Choose base points eo in E and 
bo = p(eo) in B. Then if ex is a loop in E based at eo, the composition pex is a 
loop in B with base point boo Thus p induces a function 

p*: Tr1(E, eo) -+ Tr1(B, bo) 

defined by 

This function p* is a group homomorphism and is called the homomorphism 
induced by p. 
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Theorem 5.7. If(E, p) is a covering space of B, then the induced homomorphism 
p*: 7Tl(E, eo) -+ 7Tl(B, bo) is one-to-one. 

The proof, an easy application of the Monodromy Theorem (Theorem 
5.5), is left as an exercise. 

5.3 Classification of Covering Spaces 
The fundamental group of the base space B provides a criterion for determin­
ing when two covering spaces of B are equivalent. Each covering space 
determines a collection of subgroups, a conjugacy class of subgroups, of 
7Tl(B). We shall see that two covering spaces are homeomorphic if and only 
if they determine the same collection of subgroups. 

Here is the terminology used in comparing covering spaces: 

Definition. Let (Eb PI) and (E2' P2) be covering spaces of the same space B. 
A homomorphism from (El' PI) to (E2' P2) is a continuous map h: El -+ E2 
for which P2h = Pl. In other words, this diagram must be commutative 
for h to be a homomorphism. 

A homomorphism h: El -+ E2 of covering spaces which is also a homeo­
morphism is called an isomorphism. If there is an isomorphism from one 
covering space to another, the two covering spaces are called isomorphic. 

It is left as an exercise for the reader to prove that a homomorphism of 
covering spaces is actually a covering projection; i.e., if h: E1 -+ E2 is a 
homomorphism, then (Eb h) is a covering space of E2 • 

Theorem 5.8. Let (E, p) be a covering space of B. If bo E B, then the groups 
P*7Tl(E, e), as e varies over p-l(bo),Jorm a conjugacy class of subgroups of 
7Tl(B, bo)· 

PROOF. Recall that subgroups Hand K of a group G are conjugate subgroups 
if and only if 

for some x E G. The theorem then makes two assertions: (a) for any eo, el in 
p-l(bo), the subgroups P*7Tl(E, eo) and P*7Tl(E, el) are conjugate, and (b) any 
subgroup of 7Tl(B, bo) conjugate to P*7Tl(E, eo) must equal P*7Tl(E, e) for some 
e in p-l(bo). 

To prove (a), consider two points eo and el in p-l(bo). Let p: 1-+ E be a 
path from eo to el. According to Theorem 4.3, the function P: 7Tl(E, eo)-+ 
7Tl(E, el) defined by 

P([a]) = [p*a*p], [a]E7Tl(E,eo), 
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is an isomorphism. In particular, 

'"l(E, el} = P'"l(E, eo}, 
so 

p.,"l(E, el} = p.P'"l(E, eo}. 

It follows from the definition of P, however, that 

p.P'"l(E, eo} = [Pp]-l 0 '"l(E, eo} 0 [Pp], 

so p.'"1(E, eo} and p.,"1(E, e1} are conjugate subgroups of '"1(B, bo}. Note that 
we are using the fact that [pp] is an element of '"l(B, bo}. 

To prove (b), suppose that H is a subgroup conjugate to p.'"l(E, eo} by 
some element [8] in '"1(B, bo): 

H = [8]-10 p.'"1(E, eo) 0 [8]. 

Let S be the unique covering path of 8 beginning at eo. Then S has a terminal 
point e ep-1(bo), and the argument for part (a) shows that 

p.,"1(E, e) = [pS]-1 0 p.'"1(E, eo) 0 CpS] = [8]-10 p*'"l(E, eo) 0 [8] = H. 

Thus 
p*'"l(E, e) = H, 

and the set {P.'"l(E, e): e e P -l(bo)} is precisely a conjugacy class of subgroups 
of '"1(B, bo). 0 

Definition. The conjugacy class of subgroups {P*7T1(E, e): e E p-l(bo)} de­
scribed in the preceding theorem is called the conjugacy class determined 
by the covering space (E,p). 

The main result of this section comes next. Two covering spaces of a 
space B are isomorphic if and only if they determine the same conjugacy 
class of the fundamental group of B. We must specify a base point bo in B to 
make the representation 7T1(B) = 7T1(B, bo) concrete. However, according to 
Theorem 4.3, the choice of base point does not affect the structure of the 
fundamental group. 

Theorem 5.9. Let B be a space with base point boo Covering spaces (Eb Pl) and 
(E2' P2) of B are isomorphic if and only if they determine the same conjugacy 
class of subgroups of '"l(B, bo). 

PROOF. The "only if" part of the proof is left as an exercise. For the "if" 
part, assume that the conjugacy classes of the two covering spaces are 
identical. Then there must be points e1 E Pll(bo) and e2 E Pii 1(bo) such that 

Pl*7Tl(El , el) = P2.7Tl(E2, e2}· 

The covering space isomorphism h: E1 ~ E2 is defined by the following 
scheme: For x eEl' let a be a path in E1 from el to x. Then Pla is a path in 
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B from bo to PI(X). This path has a unique covering path~ in Ea beginning 
at ea and ending at some point y in Ea. We then define hex) = y. This definition 
is illustrated in Figure 5.5. 

..- _PIa /. r- _____ ~=h(x) 

Figure S.S 

Can this h possibly be well-defined in view of the myriad choices for the 
path a? Does it have any chance of being continuous? The answer to both 
questions is "yes"; the function h is, in fact, a homeomorphism. 

To show that h is well-defined, let fJ be another path in EI from el to x. 
Since a and fJ both begin at el and terminate at x, the product path a * P 
is a loop in EI based at el' Thus 

pl*([a * P]) = [PIa * PIP] E Pa1TI(Eh el)' 

But PI*1TI(E1, el ) and P2*1TI(E2, e2) are equal, so there is a member [1'] E 

1TI(E2, e2) such that 
[PIa * PIP] = [Par]· 

Thus the loops PI IX * PlP and P2r are equivalent loops in B. Using the Covering 
Homotopy Property (Theorem 5.4) to lift a homotopy betweenplIX * PlP and 
Par to Ea, we obtain a loop 1" in E2 based at e2 for which 

Par' = Pla * PlP, 

Divide 1" into the product of two paths a' and p' as follows: 

a'(t) = r'(t/2), fJ'(t) = 1"«2 - t)/2), tEl. 

It is a simple matter to observe that 

Since a' and fJ' have initial point e2, they are the unique covering paths of 
PIa and PlfJ with respect to the covering (E2' P2); i.e., 

Then 

~(1) = a'(1) = r'H), 

so the same value hex) = r'H) results regardless of the choice of the path 
from el to x. This concludes the proof that h is well-defined. 
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In showing that h is continuous we shall use the fact that the admissible 
neighborhoods form a basis for the topology of B. The proof of this is left as 
an exercise. 

Let 0 be an open set in E2 and x a member of h -1(0). It must be shown 
that there is an open set V in El for which x E V and h(V) c O. Since the 
definition of h requires that P2h = PI and since P2 is an open mapping 
(Theorem 5.1), then PI (x) belongs to the open set pi 0) in B. Since the admis­
sible neighborhoods form a basis for B, there is an admissible neighborhood 
U such that 

Let W be the path component of P21(U) to which hex) belongs. Then hex) 
belongs to the open set 0' = 0 n W, and the restriction 

/= P210': O'-+P2(O') 

is a homeomorphism. Since P2( 0') is open in B, then p:;lp2( 0') is open in E1. 
Let V be a path connected open set in El which contains x and is contained 
in Pl 1p2( 0'). 

To see that h(V) c 0, let t E V. Let a be a path in El from el to x and fi a 
path in V from x to t. Then 

hex) = ~(l), 

But since / = P210' is a homeomorphism, the covering path of PIa * Plfi is 
~ * /-lp1fi. Thus 

h(t) = /-lp1fi(l) = /-lp1(t). 

This point is in 0' because Pl(t) E P2(O') and/is a homeomorphism between 
0' and P2(0'). Since 0' c 0, it follows that h(t) E 0 and hence that 
h(V) cO. 

The proof thus far has shown that there is a covering space homomorphism 
h from El to E2. By looking at constant paths, it is easy to see that heel) = e2' 
The reader may be tiring at this point, especially in view of the fact that the 
existence of a continuous inverse for h must be shown. However, the proof 
thus far has essentially done that. Reversing the roles of El and E2, there 
must exist a continuous map g: E2 -+ El such that 

Consider the composite map gh from El to E1 : 

Plgh = P2h = Pl ih 

where il is the identity map on E1 . Since gh and i l agree at el> the Corollary 
to Theorem 5.2 implies that gh is the identity map on E1. By symmetry, hg 
must be the identity map on E2 , and h is an isomorphism between (El> PI) 
and (E2' P2)' 0 

Notation: It is often necessary to make the statement ''fis a function from 
space X to space Y which maps a particular point Xo in X to the point Yo in 
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Y." We shall shorten this cumbersome expression by referring to f as a 
function from the "pair" (X, xo) to the pair ( Y, Yo) and writing 
f: (X, xo) ~ (Y, Yo). 

Minor modifications in the proof of Theorem 5.9 establish the following 
result. Details of the proof are left as an exercise. 

Theorem 5.10. Let E, B, and X be spaces with base points eo, bo, and Xo respec­
tively, and suppose that (E, p) is a covering space of B with p(eo) = boo If 
f: (X, xo) ~ (B, bo) is a continuous map for which 

f*71'1(X, xo) c p*71'1(E, eo), 

then there is a continuous map /: (X, xo) ~ (E, eo) for which p/ = f 

In proving Theorem 5.10, keep in mind our agreement that all spaces 
considered in this chapter are path connected and locally path connected. 
Actually, Theorem 5.10 remains valid if the requirement on X is reduced to 
connectedness. 

Let us return to our original examples of covering spaces to find the 
conjugacy class determined by each one. Note that the fundamental group of 
each base space in these examples is abelian, so each conjugacy class has 
only one member. 

Example 5.S. For the covering (IR, p) over 81, the fundamental group of IR is 
trivial so 

Pa71'1(1R) = {O}, 

and the conjugacy class consists of only the trivial subgroup of 71'1(81). 

Example 5.9. The map qfl: 8 1 ~ 8 1 defined by 

Z E 81, 

wraps 8 1 around itself n times. Thus if [aJ E 71'1(81), the loop qna has degree 

deg(qna) = n deg a. 

Representing 71'1(81) as the group of integers, it follows that qn*71'1(81, 1) is 
the subgroup of 7L consisting of all multiples of the integer n. 

Example 5.10. If i: X ~ X is the identity map, then 

i*71'1(X) = 71'1(X), 

so the conjugacy class in this case contains only the fundamental group of X. 

Example 5.11. Consider the double covering (82, p) over the projective plane P. 
The 2-sphere is simply connected, so the conjugacy class contains only the 
trivial subgroup. 
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Example S.11. The plane is simply connected, so the conjugacy class of 
(Ra, r) over the torus also contains only the trivial subgroup. 

Example S.13. The infinite spiral Q is contractible and thus has trivial funda­
mental group. Then (Q, q) determines the conjugacy class of 'lTl(Sl) consisting 
of only the trivial subgroup. This is the conjugacy class determined in 
Example 5.8, so Theorem 5.9 shows that (Q, q) and (R,p) are isomorphic 
Covering spaces of Sl. 

The only subgroups of 'lTl(Sl) = l are the groups Wn of all multiples of 
the non-negative integer n. Since l is abelian, each singleton set {Wn} is a 
conjugacy class. The subgroup Wo = {O} corresponds to the covering space 
(R,p) of Example 5.8, and Wn corresponds to the covering (Sl, qn) of 
Example 5.9, n = 1,2, .... By the classification of covering spaces given in 
Theorems 5.8 and 5.9, any covering space of Sl must be isomorphic either 
to (R,p) or to one of the coverings (Sl, qn). The next section and the exercises 
at the end of the chapter provide additional examples of base spaces for 
which all possible covering spaces can be listed. 

5.4 Universal Covering Spaces 

If B is a topological space, there is always a covering space corresponding to 
the conjugacy class of the entire fundamental group, namely (B, i) where i is 
the identity map on B. This covering space is of little interest for obvious 
reasons. At the other extreme, the covering space corresponding to the 
conjugacy class of the trivial subgroup {O} of 'lTl(B) is the most interesting. 
This covering space, if it exists for a particular base space, is called the 
"universal covering space." This section will examine the relation between 
a base space B and its universal covering space. 

Definition. Let B be a space. A covering space (U, q) of B for which U is 
simply connected is called the universal covering space of B. 

The appropriateness of the appellation "the universal covering space" 
is explained by the next theorem. 

Theorem S.11. (a) Any two universal covering spaces of a base space Bare 
isomorphic. 

(b) If(U, q) is the universal covering space of Band (E,p) is a covering 
space of B, then there is a continuous map r: U --+ E such that (U, r) is a 
covering space of E. 

PROOF. Statement (a) follows immediately from Theorem 5.9 since any 
universal covering space determines the conjugacy class of the trivial 
subgroup. 
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For part (b), consider the diagram 

E 

/~//~ Ip 
U~B 

q 

and choose base points uo, eo, and bo in U, E, and B respectively for which 

q(uo) = p(eo) = boo 

Since 'lTl(U) is trivial, then 

q.'lTl(U, uo) C p.'lTl(E, eo), 

and Theorem 5.10 guarantees the existence of a continuous map ij: (U, qo) -+ 
(E, eo) for which pij = q. This means that r = ij is a covering space homo­
morphism, and therefore a covering projection, for U over E. 0 

Definition. Let (E, p) be a covering space of B. An isomorphism from (E, p) 
to itself is called an automorphism. Under the operation of composition, the 
set of automorphisms of (E, p) forms a group. This group is called the 
group of automorphisms of (E, p) and is denoted by A(E, p). 

Proofs of the following remarks are left as exercises: 

(a) Iff and g are automorphisms of (E, p) and f(x) = g(x) for some x, then 
f=g· 

(b) The only member of A(E, p) that has a fixed point is the identity map. 

Theorem 5.12. If(U, q) is the universal covering space of B, then A(U, q) is iso­
morphic to 'lTl(B). The order of 'lTl(B) is the number of sheets of the universal 
covering space. 

PROOF. Choose a base point bo in B and a point Uo in U for which q(uo) = boo 
We shall first define a function T: A(U, q) -+ 'lTl(B). 

ForfE A(U, q),J(uo) is a point in U. Let Y be a path in Ufrom Uo tof(uo). 
Since qf = q, thenf(uo) E q-l(bo), and hence qy is a loop in B with base point 
boo We thus define T by 

T(f) = [qy], fE A(U, q). 

Since U is simply connected, the choice of path Y from Uo to f(uo) does not 
affect the homotopy class [qy]. Thus T is well-defined. 

To see that Tis a homomorphism, letfl,J2 E A(U, q) and let Yl> Y2 denote 
paths in U from Uo to fl(UO) and f2(UO) respectively. Then 

T(f;.) = [qyl], T(f2) = [qY2]' 

The product path Yl * flY2 is a path from Uo to fd2(UO)' Thus 

T(fd2) = [q(Yl * flY2)] = [qyl * qflY2] = [qyl * qY2] 
= [qyl] 0 [qy2] = T(f;.) 0 T(J;), 

so T is a homomorphism. 
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5 Covering Spaces 

To see that T is one-to-one, suppose that T(f1) = T(J;). Thus the loops 
qY1 and qY2 determined by 11 and/2 are equivalent. The Monodromy Theorem 
(Theorem 5.5) then implies that 11(UO) = 12(UO). Thus 11 = 12, since distinct 
automorphisms must disagree at every point. 

It remains to be shown that T maps A(U, q) onto 1T1(B, bo). Let 
[a] E 1T1(B, bo), and let a denote the unique covering path of a beginning at 
uo. Since U is simply connected, we can apply Theorem 5.10 to the diagram 

(U, a(1» 
}/" lq 

(U, z!a) --7 (B, bo) 
q 

to obtain a continuous lifting h of q such that h(uo) = a(1). Since commuta­
tivity of the diagram requires qh = q, then h is a homomorphism. Reversing 
the roles of a(1) and Uo determines a homomorphism k on (U, q) such that 
k(a(l» = uo. But then hk and kh are the identity map on U since they are 
homomorphisms which agree with the identity at some point. Thus k = h -1, 

h is an automorphism, and 

T(h) = [qa] = [a]. 

This completes the proof that A(U, q) and 1T1(B) are isomorphic. 
The proof that the order of 1T1(B) is the number of sheets of the universal 

covering space can be gleaned from what has already been done. The fact 
that T is one-to-one establishes a one-to-one correspondence between q-1(bo) 
and a subset of 1Tl(B, bo). In proving that T is onto, we showed that every 
homotopy class [a] in 1Tl(B, bo) corresponds to a point a(1) in q-l(bo). Thus 
the cardinal number of q-l(bo), which is the number of sheets of (U, q), must 
equal the order of 1T1(B). 0 

The real line is simply connected, so the covering space (~, p) of Example 
5.8 is the universal covering space of the unit circle. Since the plane is simply 
connected, then the covering space (~2, r) of Example 5.12 is the universal 
covering space of the torus. 

Example 5.14. Consider the double covering (S2, p) of the projective plane P 
defined in Example 5.4. Since 1Tl(S2) = {O}, then (S2, p) is the universal 
covering space of P. Moreover, Theorem 5.12 allows us to determine 1T1(P) 
by determining A(S2, p). Since p identifies pairs of antipodal points, then 
(S2, p) has two automorphisms, the identity map and the antipodal map. 
Thus A(S2, p) is the cyclic group of order two, and 1Tl(P) is the same group. 
Thus 1T1(P) is essentially the group of integers modulo 2. 

This example generalizes to higher dimensions as follows: 

Definition. Let P" denote the quotient space of the n-sphere S" obtained by 
identifying each pair of antipodal points x and - x. Then P" is called 
projective n-space. 
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The quotient map p: sn -+ pn is a covering projection. By repeating the 
reasoning of Example 5.14, the reader can show that the fundamental group 
of each projective space pn, n ~ 2, is isomorphic to the group of integers 
modulo 2. A moment's reflection will show that P 1 is homeomorphic to S 1 and 
hence that 'lTl{Pl) is not the group of integers mod 2. 

The classification of covering spaces given in Theorem 5.9 shows that two 
covering spaces of a space B are isomorphic if and only if they determine the 
same conjugacy class of subgroups of 'lTl(B). This leaves open the question of 
the existence of covering spaces. Given a conjugacy class in 'lTl(B), is there a 
covering space that determines this class? In particular, does every space 
have a universal covering space? The answer is negative for both questions. 
Two of the exercises for this chapter give examples of spaces that have no 
universal covering space. Necessary and sufficient conditions for the existence 
of a universal covering space are known, but presenting them would take us 
rather far afield. Readers interested in pursuing this topic should consult 
references [16] and [20]. 

5.5 Applications 
This section gives two illustrations of the interplay between covering spaces 
and fundamental groups. The first elucidates the structure of a particular 
fundamental group, and the second proves part of the famous Borsuk-Ulam 
Theorem. 

Example 5.15. Thus far, all our examples of fundamental groups have been 
abelian. We shall use covering spaces to provide an example of a nonabelian 
one. 

Let the base space B consist of two tangent circles, 
B = {(z, w) E S1 X S1: z = 1 or w = I}, 

and let 
E = {(x, y) E 1R2: x or y is an integer}. 

Then the map p: E -+ B defined by 

p(x, y) = (e2"IX, e2,,11I), (x, y) E 1R2, 

is a covering projection. Referring to Figure 5.6, p maps each horizontal 
segment of a square of E once around the left hand circle and each vertical 
segment of a square of E once around the right hand circle of B. 

(0, 1) (1, 1) 

(0,0) (1,0) 

E 

p ..---

Figure 5.6 

B 
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Let y denote the loop in E based at (0, 0) indicated by the arrows, and let 
[a] and [,8] denote generators of the fundamental groups of the left and right 
circles of B respectively. Then [y] is not the identity of 171(E), so 

is not the identity in 171(B) since p* is one-to-one (Theorem 5.7). But if 171(B) 
were abelian, the commutator [a] 0 [,8] 0 [a]-l 0 [,8]-1 would be the identity 
element of 171(B). Thus 171(B) is not abelian. Those readers familiar with 
free groups may want to prove that 171(B) is the free group generated by [a] 
and [,8]. 

The following theorem was conjectured by S. Ulam and proved by 
K. Borsuk in 1933: 

Theorem 5.13 (The Borsuk-Ulam Theorem). There is no continuous map 
f: sn -+ sn-1 for whichf( -x) = -f(x) for all x E sn, n ~ 1. 

The theorem states that there is no continuous map from sn to a sphere 
of lower dimension which maps antipodal points to antipodal points. Such a 
map would be said to "preserve antipodal points" and would be called 
"antipode preserving." Since So is a discrete space of two points and there­
fore not connected, the result is clear for the case n = 1. We shall use a 
covering space argument for the case n = 2. A proof for the entire theorem 
can be found in [20]. 

Proceeding with the case n = 2 by contradiction, suppose thatf: S2 -+ Sl 
is a continuous map for whichf( -x) = -f(x) for all x E S2. Consider the 
diagram 

where (S2, p) and (S\ q) denote the double coverings of the projective spaces 
p2 and pl. Even though p-1 is not single valued, the fact thatfpreserves 
antipodal points guarantees that 

h = qfp-1:p2-+p1 

is well-defined and continuous. Note also that the diagram is commutative. 
Since 171(P2) is cyclic of order 2 and 171(P1) ~ 171(Sl) is infinite and cyclic, the 
induced homomorphism 

h*: 171(P2) -+ 171(P1) 

must be trivial. Let Yo be a point of S2, and let bo = qf(yo) be the base point 
of pl. If a is a path in S2 from Yo to -Yo, then qfa is a loop in pl. This loop 
is not equivalent to the constant loop c at bo for the following reason: If 
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qfa "'bo c, the Monodromy Theorem (Theorem 5.5) guarantees that fa is 
equivalent to the constant loop based at f(yo). Since f preserves antipodal 
points, then 

so fa is not a loop, and hence cannot possibly be equivalent to a loop. Thus 

[qfa] ::p [c]. 
Then 

h*([pa]) = [hpa] = [qfp-1pa] = [qfa] 

is not the identity of 7T1(B, bo), and h* is not the trivial homomorphism. This 
is a contradiction showing that our original assumption that such a map as 
f exists must be false. 

Corollary 1. Let g: S2 --+ 1R2 be a continuous map such that g( -x) = -g(x) 
for all x in S2. Then g(x) = o for some x in S2. 

PROOF. Suppose on the contrary that g(x) is never o. Then the mapf: S2 --+ S1 
defined by 

f(x) = g(x)/II g(x)ll, 

contradicts the Borsuk-Ulam Theorem for the case n = 2. o 
Corollary 2. Let h: S2 --+ 1R2 be a continuous map. Then there is at least one 

pair x, - x of antipodal points for which hex) = h( - x). 

PROOF. Assume to the contrary that hex) = h( -x) for no x in S2. Then the 
function g: S2 --+ 1R2 defined by 

g(x) = hex) - h( -x), 

contradicts Corollary 1. o 
The last corollary has an interesting physical interpretation. Imagine the 

surface of the earth to be a 2-dimensional sphere, and suppose that the 
functions a(x) and t(x) which measure the atmospheric pressure and tempera­
ture at x are continuous. Then the map h: S2 --+ 1R2 defined by 

hex) = (a(x), t(x», x E S2, 

is continuous. Corollary 2 guarantees that there is at least one pair of antipodal 
points on the surface of the earth having identical atmospheric pressures and 
identical temperatures! 

The theory of covering spaces developed during the late nineteenth and 
early twentieth centuries from the theory of Riemann surfaces. Covering 
spaces were studied, in fact, before the introduction of the fundamental group. 
Poincare introduced universal covering spaces in 1883 to prove a theorem 
about analytic functions [53]. He considered the universal covering space 
(U, q) of a space B to be the "strongest" covering space of B in the following 
sense: A curve y in U is closed if and only if for every covering space (£, p) 
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of B and every curve y' in E for which py' = qy, y' is a closed curve. Exercises 
at the end of the chapter show that this condition is satisfied if U is simply 
connected and that (U, q) is indeed the "strongest" covering space of Bin 
the sense of Theorem 5.11. 

Covering spaces provided the first example of the power of the funda­
mental group in classifying topological spaces. We have seen in Theorem 5.9 
that the fundamental group accomplishes for covering spaces the type of 
classification that the homology groups provide for closed surfaces (Theorem 
2.11). In addition, the theory of covering spaces was the precursor of the 
general fiber spaces of Witold Hurewicz and J. P. Serre which are crucial in 
any advanced course in algebraic topology. 

We shall not return in this book to the important and difficult problem of 
determining fundamental groups. Those interested in this problem should 
proceed to Van Kampen's Theorem which shows that, under the proper 
conditions, 1Tl(X) can be determined from the fundamental groups of certain 
subspaces of X. This theorem and related results can be found in [16] and [19]. 

EXERCISES 

1. (a) Give an example of a space that is path connected but not locally path 
connected. 

(b) Give an example of a space that is locally path connected but not path 
connected. 

2. Prove that a space X is locally path connected if and only if each path 
component of each open subset of X is open. 

3. Is each component of a space contained in a path component, or is it the 
other away around? Prove your answer, and give an example to show that 
components and path components may not be identical. 

4. Show that the projection of a "hairpin" onto an interval, as indicated in 
Figure 5.7, is not a covering projection. 

y 
• ) E • 

lp 

x 

• • B 
p(y) p(x) 

Figure 5.7 

5. Definition. A function/: X -+ Yis a local homeomorphism provided that each 
point x in X has an open neighborhood U such that / maps U homeomor­
phically onto /( U). 

(a) Prove that every covering projection is a local homeomorphism. 
(b) Give an example to show that a local homeomorphism may fail to be a 

covering projection. 

6. Let (E, p) be a covering space of B. Show that the family of admissible 
neighborhoods is a basis for the topology of B. 
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7. Repeat Example 5.2 in the case n is a negative integer. 

8. Prove the Covering Homotopy Property (Theorem 5.4). 

9. Prove the following generalizations of the Covering Homotopy Property: 

(a) Theorem. Let (E, p) be a covering space of B, X a simply connected space, 
f: X ~ E a continuous map, and H: X x I ~ B a homotopy such that 
H(·,O) = PI. Then there is a covering homotopy fi: X x I ~ E of H 
such that fi(·, 0) = I. 

(b) Prove the preceding theorem under the assumption that X is a compact 
Hausdorff space that is not necessarily simply connected. 

10. Complete the details in the proof of Theorem 5.6. 

11. Prove Theorem 5.7. 

12. Prove that a homomorphism of covering spaces is a covering projection. 

13. Show that isomorphism of covering spaces is an equivalence relation. 

14. Complete the proof of Theorem 5.9. 

15. Prove Theorem 5.10. 

16. Determine all covering spaces of the torus and exhibit a representative 
covering space from each isomorphism class. 

17. If B is a simply connected space and (E, p) is a covering space of B, prove that 
p is a homeomorphism from E onto B. 

18. Show that the map p: E ~ B of Example 5.15 is a covering projection. 

19. (a) Prove that the set A(E, p) of all automorphisms of a covering space (E, p) 
is a group. 

(b) Prove that membersf.g of A(E,p) must be identical or must agree at no 
point of E. 

(c) Prove that the identity map is the only member of A(E, p) that has a 
fixed point. 

20. Prove that if B is simply connected, then (B, i) is the universal covering space 
of B. (Here i denotes the identity map.) 

21. Prove that the fundamental group 71'l(pn) of projective n-space pn is iso­
morphic to the group of integers modulo 2 for n ~ 2. What about n = I? 

22. Prove that any continuous map f: pn ~ 8 1, n ~ 2, from projective n-space 
to the unit circle is null-homotopic. 

23. If (E, p) is a covering space of Band (F, q) is a covering space of C, prove that 
(E x F, p x q) is a covering space of B x C, where p x q denotes the 
natural product map. 

24. Use Theorem 5.12 to prove that 71'1(81) ~ 7l. and 71'1(81 x 8 1) ~ 7l. EEl 7l.. 

25. Let G and G be path connected and locally path connected topological groups 
and p: G'~ G a group homomorphism for which (G, p) is a covering space 
of G. Prove that the kernel of p is isomorphic to A(G, pl. 
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26. Prove that an infinite product of circles has no universal covering space. 

27. Let X be the subset of the plane consisting of the circumferences of circles 
having radius lin and center at (lIn, 0) for n = 1,2, .... Show that Xhas no 
universal covering space. 

28. Let (E, p) be a covering space of B, and let eo, bo be points of E and B respec­
tively with p(eo) = boo 
(a) Show that there is a one-to-one correspondence betweenp-1(bo) and the 

set of left cosets TTl (B, bo)1 P*TT1 (E, eo). 
(b) Definition. The covering space (E, p) is called regular if P*TT1(E, eo) is a 

normal subgroup of TT1(B, bo). 
Show that regularity is not dependent on the choice of base point eo in 

p-1(bo). (Hint: Use conjugacy classes.) 
(c) Prove that the automorphism group A(E, p) is isomorphic to the quotient 

group TTl(B, bo)1 p*TT1(E, eo) if (E, p) is regular. Deduce Theorem 5.12 as 
a corollary. 

29. Let us say that a covering space (U, q) of B satisfies Property P if it is the 
"strongest" covering space of B in the sense of Poincare: A curve y in U is 
closed if and only if for every covering space (E, p) of B and every curve y' 
in E for which py' = qy, y' is a closed curve. 
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Prove: 
(a) If U is simply connected, then (U, q) satisfies Property P. 
(b) Any two covering spaces of B which satisfy Property P are isomorphic. 
(c) If (U, q) satisfies Property P and (E, p) is any covering space of B, then 

there is a homomorphism r: U ~ E for which (U, r) is a covering space 
of E. 



The Higher Homotopy Groups 6 

6.1 Introduction 
The fundamental group of a connected polyhedron provides more informa­
tion than does its first homology group. This is evident from Theorem 4. I 1 
since the first homology group is completely determined by the fundamental 
group. For this reason, the need for higher dimensional analogues of the 
fundamental group was recognized early in the development of algebraic 
topology. Definitions of these" higher homotopy groups" were given in the 
years 1932-1935 by Eduard Cech (1893-1960) and Witold Hurewicz (1904-
1956). It was Hurewicz who gave the most satisfactory definition and proved 
the fundamental properties. 

Let us consider in an intuitive way the possible methods of defining the 
second homotopy group ?T2(X, xo) of a space X at a point Xo in X. Recall that 
'7T1(X, xo) is the set of homotopy classes of loops in X based at Xo. Our first 
problem is to define what one might call a "2-dimensionalloop." 

A "I-dimensional loop" is a continuous map a: I --+ X for which the 
boundary points 0 and I have image Xo. We might then define a 2-dimensional 
loop to be a continuous map f3: I x 1--+ Xfrom the unit square into X which 
maps the boundary of the square to Xo. 

From a slightly different point of view, we can consider a loop a in X as a 
continuous map from S1 to X which takes 1 to Xo. This follows from the 
observation that the quotient space of the unit interval I obtained by identify­
ing 0 and 1 to a single point is simply S1. Thus another possible definition of 
2-dimensionalloop is a continuous map from the 2-sphere S2 into X. Note 
that both of these definitions of 2-dimensional loop generalize to higher 
dimensions by considering higher dimensional cubes and spheres. 

There is a third possibility. Perhaps a 2-dimensional loop should be a 
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"loop of loops." That is to say, perhaps a 2-dimensionalloop should be a 
function j3 having domain I with each value j3(t) a loop in X, and having the 
additional property j3(O) = j3(I). This idea is the point of genius in Hurewicz' 
approach. Carrying it out will involve defining a topology for the set Q(X, xo) 
of loops in X with base point Xo. Once this topology is determined, one can 
define '7T2(X, xo) to be the fundamental group of Q(X, xo). 

It is remarkable that all three approaches lead to the same group '7T2(X, xo). 
The next section presents the definitions based on these three ideas and shows 
that the same group is determined in each case. 

6.2 Equivalent Definitions of 7Tn(X, Xo) 

We shall take the three definitions in the order in which they have been 
discussed. If n is a positive integer, the symbol In denotes the unit n-cube 

In = {t = (tlo t2 , ••• , tn) E IRn: 0 :::;; tt:::;; 1 for each i} 

and oIn, called the boundary of In, denotes its point set boundary 

oIn = {t = (t1' t2 , ••• , tn) E In: some tt is 0 or I}. 

Note that the boundary symbol 0 must not be confused with the boundary 
operator of homology theory. 

Definition A. Let Xbe a space and Xo a point of X. For a given positive integer 
n, consider the set Fn(X, xo) of all continuous maps ex from the unit n-cube 
In into X for which ex(oIn) = Xo. Define an equivalence rdation "'xo on 
Fn(X, xo) as follows: For ex and j3 in Fn(X, xo), ex is equivalent modulo Xo to 
j3, written ex '" Xo j3, if there is a homotopy H: In X I --+ X such that 

H(tlo ... , tn, 0) = ex(t1' ... , tn), 

H(tlo ... , tn, I) = j3(t1o ... , tn), 
and 

H(tlo ... , tn, s) = xo, 

In shorter form the requirements on the homotopy Hare 

H(-,O) = ex, H(',I)=j3, 

H(or x I) = Xo. 

Under this equivalence relation on Fn(X, xo), the equivalence class deter­
mined by ex is denoted [ex] and called the homotopy class of ex modulo Xo or 
simply the homotopy class of ex. 

Define an operation * on FiX, xo) as follows: For ex, j3 in Fn(X, xo), 

) _ {ex(2tlo t2 ,.··, tn) if 0 :::;; t1 :::;; ! 
ex * j3(tlo ... , tn - . 

j3(2t1 - I, t2 , ••• , tn) If 1- :::;; t1 :::;; 1. 

Note that the * operation is completely determined by the first coordinate 
of the variable point (tlo ... , tn) and that the continuity of ex * j3 follows 
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from the Continuity Lemma. The * operation induces an operation 0 on 
the set of homotopy classes of Fn(X, xo): 

[a] 0 [,8] = [a * ,8], 

With this operation, the set of equivalence classes of Fn(X, xo) is a group. 
This group is called the nth homotopy group of X at Xo and is denoted by 
7Tn(X, xo). 

As in the case of the fundamental group, the definition requires that some 
details be verified: 

(1) The relation "'xo is an equivalence relation on FnCX, xo). 
(2) The operation * determines the operation 0 completely. In other words, 

if a '" xo a' and ,8 '" Xo ,8', then a * ,8 '" Xo a' * ,8'. 
(3) With the 0 operation, 7Tn(X, xo) is actually a group. Its identity is the class 

[c] determined by the constant map c(r) = Xo. The inverse [a]-l of [a] 
is the class [a] where a, called the reverse of a, is defined by 

Since the definition of 7Tn(X, xo) is completely analogous to that of 7Tl(X, xo) 
except for the extra coordinates, the proofs of these details are left as exercises. 

The quotient space of In obtained by identifying or to a point is homeo­
morphic to the n-sphere sn. Let us assume that the point of identification is 
the point 1 = (1, 0, ... , 0) of sn having first coordinate unity and all other 
coordinates zero. Then 7Tn(X, xo) can be defined in terms of maps from 
(sn, 1) to (X, xo) as follows: 

Definition B. For a given positive integer n, consider the set GnCX, xo) of all 
continuous maps a from sn to X such that a(I) = Xo. Define an equiva­
lence relation on Gn(X, xo) in the following way: For a,,8 in Gn(X, xo), a 
is equivalent modulo Xo to ,8, written a '" xo,8, if there is a homotopy 
H: sn x I -+ X such that 

H(·,O) = a, H(·, 1) =,8, 

H(I,s) = xo, SEI. 

The equivalence class [a] determined by a is called the homotopy class of a. 

The set of homotopy classes is denoted by 7Tn(X, xo). 

In view of the discussion preceding Definition B, it should be clear that 
there is a natural one-to-one correspondence between Fn(X, xo) and GnCX, xo) 
under which a map a in Gn(X, xo) corresponds to the map a' = aq where q 
is the map from In to sn which identifies or to the point 1. Also, two mem­
bers a and,8 in Gn(X, xo) are equivalent modulo Xo if and only if their counter­
parts a' and ,8' are equivalent in Fn(X, xo). Thus Definitions A and B give 
equivalent definitions of the set 7TnCX, xo). The elements [a] are usually more 
easily visualized in terms of Definition B. 
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The 0 operation for Definition B is defined in terms of the identification of 
In to sn. Let ex, f3 E Gn(X, xo). The identification map q takes the sets 

A = {(11, ... , In) E r: 11 ~ -t}, 
B = {(11, ... , In) E In: 11 ~ t} 

to hemispheres A' and B' respectively of sn whose intersection 

A' n B' = q(A n B) 

if homeomorphic to sn-l. Imagine that A' n B' is identified to the base point 
1 by an identification map r. The resulting space consists of two n-spheres 
tangent at their common base point as in Figure 6.1. The product ex * f3 is 
now defined by 

ex * f3(x) = {exr(x) if x E A' 
f3r(x) if x E B'. 

The group operation 0 is defined by 

Observe that the operation for Definition B has been designed expressly to 
show that Definitions A and B describe isomorphic groups. 

x 

.-J--

Figure 6.1 

The third description of the nth homotopy group requires a topology for 
the set of loops in X based at Xo. 

Definition. Let F be a collection of continuous functions from a space Y into 
a space Z. If K is a compact subset of Y and U an open subset of Z, let 

W(K, U) = {ex E F: ex(K) C U}. 

The family of all such sets W(K, U), as K ranges over the compact sets in 
Yand U ranges over the open sets in Z, is a subbase for a topology for F. 
This topology is called the compact-open topology for F. 

Since we shall apply the compact-open topology only to the set of loops 
in a space X, we repeat the definition for this case. 
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Definition. Let X be a space and Xo a point of X. Consider the set Q(X, xo) 
of all loops in X with base point Xo. If K is a compact subset of I and U 
is open in X, let 

W(K, U) = {a E Q(X, xo): a(K) c U}. 

The family of all such sets W(K, U), where K is compact in I and U is 
open in X, is a subbase for a topology for Q(x, xo). This topology is the 
compact-open topology for Q(X, xo). Note that basic open sets in the 
compact-open topology have the form 

where K1 , .•• , Kr are compact sets in I and Ub ... , Ur are open in X. A 
loop a belongs to this basic open set if and only if a(Ki) c Ui for each 
i = 1,2, ... , r. 

Theorem 6.1. If X is a metric space, the compact-open topology for Q(X, x o) is 
the same as its topology of uniform convergence. 

PROOF. Let d denote the metric on X. Recall that the topology of uniform 
convergence on Q(X, xo) is determined by the metric p defined as follows: If 
a and f3 are in Q(X, xo), then pea, (3) is the supremum (or least upper bound) 
of the distances from aCt) to f3(t) for t in I: 

pea, (3) = sup{d(a(t), f3(t)): tEl}. 

Then the topology of uniform convergence has as a basis the set of all 
spherical neighborhoods 

sea, r) = {f3 E Q(X, xo): dCa, (3) < r} 

where a E Q(X, xo) and r is a positive number. 
Let T and T' denote respectively the compact-open topology and the 

topology of uniform convergence for Q(X, xo). To see that T c T', let 
W(K, U) be a subbasic open set in T, where K is compact in I and U is open 
in X. Let a E W(K, U). Since the compact set a(K) is contained in U, there is 
a positive number E such that any point of X at a distance less than E from 
a(K) is also in U. Consider the basic open set Sea, E) in T'. If f3 E Sea, E), then 
for each t in K, d(a(t), f3(t)) < E. Thus f3(t) must be in U since its distance 
from a point of a(K) is less than E. Hence f3(K) c U, so f3 E W(K, U). We 
now have 

a E Sea, E) c W(K, U), 

so W(K, U) must be open in T'. Then T c T' since T' contains a subbase 
for T. 

To see that T' c T, let S(y, r) with center y and radius r > 0 be a basic 
open set in T'. To prove that S(y, r) is in T, it is sufficient to find a member of 
Twhich contains y and is contained in S(y, r). (Why?) Let {Uj} be a cover of 
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X by open sets having diameters less than r, and let "I be a Lebesgue number 
for the open cover {y-1(UI)} of 1. Let 

o = to < t1 < ... < tn = 1 

be a subdivision of I with successive points differing by less than "I' Then for 
i = 1, 2, ... , n, y maps each of the compact sets K t = [tt -1> tt] into one of 
the open sets of the cover {Uj}. Choose such an open set, say Uj, for each i 
so that 

i = 1,2, ... , n. 

Then 
n yEn W(Ki> Uj), 

1=1 

and this set is open in T. If fJ E nf= 1 W(Ki> Uj), then p(y, fJ) cannot exceed 
the maximum of the diameters of U1>"" Un. Thus p(y, fJ) < r, so fJ E S(y, r). 
Then S(y, r) is open in T, and T contains T' since it contains a basis for T'. 
Since it has been shown that T c T' and T' c T, then T = T'. 0 

Definition C. Let X be a space with Xo E X, and consider the set Q(X, xo) of 
loops in X based at Xo with the compact-open topology. If n ~ 2, the nth 
homotopy group of X at Xo is the (n - 1)th homotopy group of Q(X, xo) at 
c, where c is the constant loop at Xo. Thus 

7T2(X, xo) = 7Tl(Q(X, xo), c), ... 

7Tn(X, xo) = 7Tn_1(Q(X, xo), c). 

Definition C for the higher homotopy groups was given by Witold 
Hurewicz in 1935. His definition was originally applied only to metric spaces, 
and Q(X, xo) was assigned the topology of uniform convergence. The compact­
open topology, which permitted the extension of Hurewicz' definition to 
arbitrary spaces, was introduced by R. H. Fox (1913-1973) in 1944. The 
inductive definition expresses each homotopy group ultimately as a funda­
mental group of a space of loops. This will be helpful in our applications later. 
This definition has one obvious disadvantage, however. It does not lend 
itself easily to intuitive considerations. How, for example, can one imagine 
7T3(X, xo) as the fundamental group of the iterated loop space of X? 

Each of the three definitions of the higher homotopy groups has advan­
tages and shortcomings. To understand homotopy theory, one must know all 
three and must be able to apply the one that fits best in a given situation. 

The three definitions A, B, and C of the higher homotopy groups are all 
equivalent. We have discussed the equivalence of A and B and now turn to 
a comparison of A with C. This discussion will be for the case n = 2 since 
the extension to higher values of n requires little more than writing additional 
coordinates. 

Suppose then that IX is a member ofF2(X, xo); i.e., IX is a continuous map 
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from the unit square ]2 to X which takes 0]2 to Xo. Then a determines a 
member a of !l(!l(X, xo), c) defined by 

Each value a(11) is a continuous function from [ into X because a is con­
tinuous. Note that 

a(t1)(O) = a(t1)(1) = Xo 

since (t1' 0) and (tlo 1) are in 0[2. Thus a(t1) E !leX, xo), and obviously 
a(O) = a(l) is the constant loop c whose only value is Xo. But is a continuous 
as a function from I into !leX, xo)? To see that it is, let W(K, U) be a sub­
basic open set in !leX, xo). As usual, K is compact in [and U is open in X. 
Let t1 E a-1(W(K, U)). Then 

a(t1)(K) = a({t1} x K) c U. 

Since K is compact, there is an open set 0 in I such that t1 E 0 and 

a(O x K) c U. 

Thus 
t1 E 0 c a-1(W(K, U)), 

so a- 1(W(K, U)) is an open set and a is continuous. Thus each member of 
F2(X, xo) determines in a natural way a member of !l(!l(X, xo), c). 

Suppose that we reverse the process and begin with a member a of 
!l(!l(X, xo), c). Then a determines a function a:]2 --+ X defined by 

a(tl> t2) = a(t1)(t2), (II> t2) E]2. 

It is an easy exercise to see that a E F2(X, xo). We have thus established a 
one-to-one correspondence between FiX, xo) and !l(!l(X, xo), c). 

Suppose that H: [2 x [--+ X is a homotopy demonstrating the equivalence 
of a and fl as prescribed in Definition A. Then the homotopy 

H: [ x [--+ !l(X, xo) 
defined by 

demonstrates the equivalence of the loops a and p. Reversing the argument 
shows that a equivalent to P implies a equivalent to fl. Thus there is a one-to­
one correspondence between homotopy classes [a] of Definition A and 
homotopy classes [a] of Definition C. Since the * operation in Definition A 
is completely determined in the first coordinate, it follows that for any 
a, fl E FiX, xo), [a * fl] corresponds to [a * p] and hence that the two defini­
tions of 1T2(X, xo) lead to isomorphic groups. 

6.3 Basic Properties and Examples 
Many theorems about the fundamental group generalize to the higher 
homotopy groups. The following three results can be proved by methods very 
similar to those used to prove their analogues in Chapter 4. 
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Theorem 6.2. If the space X is path connected and Xo and Xl are points of X, 
then 7Tn(X, xo) is isomorphic to 7Tn(X, Xl) for each n ~ 1. 

As in the case of the fundamental group, we shall sometimes omit reference 
to the base point and refer to the "nth homotopy group of X," 7TiX), when 
X is path connected and we are concerned only with the algebraic structure 
of the group. 

Theorem 6.3. If X is contractible by a homotopy that leaves Xo fixed, then 
7Tn(X, xo) = {O} for each n ~ 1. 

Theorem 6.4. Let X and Y be spaces with points Xo in X and Yo in Y. Then 

n ~ 1. 

Example 6.1. The following spaces are contractible, so each has nth homotopy 
group {O} for each value of n: 

(a) the real line, 
(b) Euclidean space of any dimension, 
(c) an interval, 
(d) a convex figure in Euclidean space. 

We saw in Chapter 4 that the fundamental group is usually difficult to 
determine. This is doubly true of the higher homotopy groups. The homotopy 
groups 7Tisn) of the n-sphere, for example, have never been completely 
determined. (The hard part is the case k > n.) Finding the homotopy groups 
of sn is one of the major unsolved problems of algebraic topology. The 
groups 7Tk(sn) for k :$; n are computed in the following examples. 

Example 6.2. For k < n, the kth homotopy group 7Tk(sn) is the trivial group. 
To see this, let [a] be a member of 7Tk(sn), and consider a as a continuous map 
from (Sk, 1) to (sn, 1). Represent Sk and sn as the boundary complexes of 
simplexes of dimensions k + 1 and n + 1 respectively. By the Simplicial 
Approximation Theorem (Theorem 3.6), a has a simplicial approximation 
a': Sk -+ sn for which [a] = [a']. But since a simplicial map cannot map a 
simplex onto a simplex of higher dimension, then a' is not onto. Let p be a 
point in sn which is not in the range of a'. Then sn\{p} is contractible since 
it is homeomorphic to IRn, and hence a', a map whose range is contained in a 
contractible space, is null-homotopic. Thus 

[a] = [a'] = [c], 

so 7Tk(sn) is the trivial group whose only member is the class [c] determined 
by the constant map. 

Example 6.3. For n ~ 1, the nth homotopy group 7Tn(sn) is isomorphic to the 
group 7L of integers. (The case n = 1 was considered in some detail in 
Chapter 4.) 
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Consider 7Tn(sn), n ~ 2, as the set of homotopy classes of maps 
a: (sn, 1) -+ (Sn, 1) as in Definition B. Define p: 7Tisn) -+ 7L by 

p([aD = degree of a, [a) E 7Tn(sn). 

Brouwer's Degree Theorem (Theorem 3.9) insures that p is well-defined, and 
the Hopf Classification Theorem (Theorem 3.10), which was stated without 
proof in Chapter 3, shows that it is one-to-one. The identity map 
i: (Sn, I) -+ (sn, 1) has degree 1, and the description of the * operation in 
Definition B shows that the map 

i k = i * i * ... * i (k terms) 

has degree k. Thus [i) is a generator of 7Tn(sn), and 

P([i]k) = k, p([i)-k) = -k 

for any positive integer k. It follows easily that p is an isomorphism. 

Example 5.15 shows that the fundamental group of a space may fail to be 
abelian. The higher homotopy groups are all abelian, as we shall see shortly. 
This property is the result of the * operation in Q(X, xo). The next theorem 
illustrates the method of proof and serves as an introduction to the more 
complicated proof of the commutativity of 7TiX, xo) for n ~ 2. 

Theorem 6.5. Let G be a topological group with identity element e. Then 7Tl(G, e) 
is abelian. 

PROOF. The operation on G induces an operation· on the set Q(G, e) ofloops 
in G based at e defined by 

a·fJ(t) = a(t)fJ(t), a, fJ E Q(G, e), tEl, 

where the juxtaposition of aCt) and fJ(t) indicates their product in G. This 
operation induces an operation 0 on 7Tl(G, e): 

[a) 0 [fJ) = [a·fJ), [a), [fJ) E 7Tl(G, e). 

Let c denote the constant loop at e, and let [a) and [fJ) be members of 7Tl(G, e). 
Observe that 

{ a(2t)e = a(2t) if 0 :s; t :s; 1-
(a * c)·(c * fJ)(t) = efJ(2t _ I) = fJ(2t - 1) if 1- :s; t :s; 1, 

(c * a). (fJ * c)(t) = {efJ(2t) = fJ(2t) if 0 :s; t :s; 1-
a(2t - l)e = a(2t - 1) if 1- :s; t :s; 1. 

This gives 

Then 
[a) 0 [fJ) = [a * fJ] = [(a * c)·(c * fJ)) = [a * c] 0 [c * fJ) 

= [c * a) 0 [fJ * c) = [(c * a)·(fJ * c») = [fJ * a) = [fJ) 0 [a), 

so 7Tl(G, e) is abelian. 
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Here is an additional curious fact. The operations 0 and D are precisely 
equal: 

[a] 0 [,8] = [a *,8] = [(a * c)·(c * ,8)] = [a * c] D [c *,8] = [a] D [,8]. 0 

Not all of the group properties were used in the proof of Theorem 6.5. 
The existence of a multiplication with identity element e is sufficient, and 
even that assumption can be weakened. The following definition describes 
the property that makes the proof work. 

Definition. An H-space or Hop! space is a topological space Y with a con­
tinuous multiplication (indicated by juxtaposition) and a point Yo in Y for 
which the map defined by multiplying on the left by Yo and the map defined 
by multiplying on the right by Yo are both homotopic to the identity map 
on Y by homotopies that leave Yo fixed. In other words, there exist 
homotopies Land R from Y x I into Y such that 

L(y, 0) = YoY, 
R(y, 0) = yYo, 

L(y, 1) = y, 

R(y, 1) = y, 
L(yo, t) = Yo, 
R(yo, t) = Yo 

for all y in Yand t in I. The point Yo is called the homotopy unit of Y. 

Note that any topological group is an H-space. H-spaces were first 
considered by Heinz Hopf, and they are named in his honor. 

Example 6.4. If X is a space and Xo a point of X, then the loop space O(X, xo) 
with the compact-open topology is an H-space. The multiplication is the * 
operation, and the homotopy unit is the constant map c. The required 
homotopies Land R are defined for a in O(X, xo) and s in I by 

{
xo if 0 ::::; t ::::; (1 - s )/2 

L(a,s)(t) = aCt:: ~ I) if(l - s)/2::::; t::::; 1, 

)() {a(~I) if 0 ::::; t::::; (s + 1)/2 
R(a, s t = s + 

Xo if (s + 1)/2 ::::; t ::::; 1. 

The reader is left the exercise of proving that the multiplication * and the 
homotopies Land R are continuous with respect to the compact-open 
topology. 

Theorem 6.6. If Y is an H-space with homotopy unit Yo, then 1Tl( Y, Yo) is 
abelian. 

PROOF. The operation on Y induces an operation . on O( Y, Yo) as in the 
proof of Theorem 6.5: 

a· ,8(t) = a(t),8(t), 
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This operation likewise induces an operation 0 on 171 (Y, Yo): 

[a] 0 [,8] = [a . .8], 

Letting c denote the constant loop at Yo, 

{ a(2t)Yo 
(a * c)·(c * .8)(t) = 

Yo.8(2t - 1) 

ifO::;;t::;;! 

if t ::;; t ::;; 1, 

(c * a). (.8 * c)(t) = {Yo.8(2t) if 0 ::;; t ::;; t 
a(2t - 1)yo if t ::;; t ::;; 1. 

Since multiplication on the left by Yo and multiplication on the right by Yo are 
both homotopic to the identity map on Y, then 

Thus 

[(a * c)·(c * .8)] = [a * .8], 

[(c * a)· (,8 * c)] = [,8 * a]. 

[a] 0 [,8] = [a *.8] = [(a * c)·(c * .8)] = [(c * a).(.8 * c)] 

= [.8 * a] = [.8] 0 [a]. 

It follows as in the proof of Theorem 6.5 that the operations 0 and 0 are equal. 

o 
Theorem 6.7. The higher homotopy groups l7n(X, xo), n ~ 2, of any space X 

are abelian. 

PROOF. The second homotopy group 

172(X, xo) = 171(n(X, xo), c) 

is abelian since n(X, xo) is an H-space with the constant loop c as homotopy 
unit. Proceeding inductively, suppose that the (n - l)th homotopy group 
'lTn-1(Y, Yo) is abelian for every space Y. Then 

'lTn(X, xo) = l7n_1(n(X, xo), c) 

must be abelian, and the proof is complete. o 
Definition. Let f: (X, xo) --+ (Y, Yo) be a continuous map on the indicated 

pairs. If [a] E l7n(X, xo), n ~ I, then the composition fa: In --+ Y is a 
continuous map which takes OJn to Yo, so fa represents an element [fa] in 
'IT n( Y, Yo). Thus f induces a function 

f*: 'lTn(X, xo) --+ l7n( Y, Yo) 
defined by 

The functionf* is called the homomorphism induced by fin dimension n. 

To be very precise we should refer to f;, indicating the dimension n, but 
this notation is cumbersome, and we shall avoid it. The dimension in question 
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will always be known from the subscripts on the homotopy groups involved. 
The reader is left the exercise of showing that f. is actually a well-defined 
homomorphism. 

Theorem 6.S. (a) If f: (X, xo) -?- (Y, Yo) and g: (Y, Yo) -?- (Z, zo) are con­
tinuous maps on the indicated pairs, then the induced homomorphism (gf). 
is the composite map 

in each dimension n. 
(b) If h: (X, xo) -?- ( Y, Yo) is a homeomorphism, then the homomorphism 

h. induced by h is an isomorphism for each value of n. 

PROOF. (a) If [a] E 'IT,,(X, xo), then 

(jg).([a]) = [gfa] = g.([Ja]) = g.f.([a]), 
so 

(gf). = g.f •. 

(b) Suppose that h- 1 : (Y, Yo) -?- (X, xo) is the inverse of h. Then for [aJ in 
'IT,,(X, xo), 

so (h- 1).h. is the identity map on 'IT,,(X, xo). By symmetry it follows that 
h.(h -1)* is the identity map on 'IT ,,( Y, Yo), so h. is an isomorphism. D 

It was proved in Chapter 5 that a covering projection p: E -?- B induces a 
monomorphism (i.e., a one-to-one homomorphism) p.: 'lT1(E) -?- 'lT1(B). The 
next theorem, discovered by Hurewicz, shows that the induced homo­
morphism for the higher homotopy groups is even better. 

Theorem 6.9. Let (E, p) be a covering space of B, and let eo in E and bo in B be 
points such that p(eo) = boo Then the induced homomorphism 

P.: 'IT,,(E, eo) -?- 'IT,,(B, bo) 

is an isomorphism for n ~ 2. 

PROOF. To see that p. is onto, consider an element [aJ in 'IT,,(B, bo). Think of 
a as a continuous map from (S", 1) to (B, bo). (The symbol I is used here as 
the base point of S" to avoid confusion with the number 1 which will also 
play an important role in this proof.) Since n ~ 2, the fundamental group 
'lT1(S", I) is trivial, and hence 

a.'lT1(S", 1) = {O} C p.'lTl(E, eo) 

where a. is the homomorphism induced by a on the fundamental group. 
Thus Theorem 5.10 shows that a has a continuous lifting 

Ii: (S", I) -?- (E, eo) 
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such that pa = a. Then a determines a member [a] in l7n(E, eo) for which 

p.([aD = [Pal = [a], 

so p. maps l7n(E, eo) onto l7n(B, bo). 
To see that p. is one-to-one, suppose that LB] belongs to its kernel; i.e., 

p'(LBD = [p,8] = [c] 

where c is the constant map c(sn) = boo As maps from (sn, I) to (B, bo), p,8 
and c are equivalent, so there is a homotopy H: sn x I ~ B satisfying 

H(t,O) = p,8(t), H(t, 1) = bo, 

H(1, s) = bo, s El. 

The fundamental group 171(sn x I, (T, 0) is trivial since n ~ 2, so Theorem 
5.10 applies again to show the existence of a lifting 

O:sn x I~E 
such that 

pO= H, 0(1,0) = eo. 

The lifted homotopy 0 is a homotopy between ,8 and the constant map 
d(sn) = eo. To see this, observe first that 

pO(.,O) = p,8, 0(1, 0) = ,8(I). 

The Corollary to Theorem 5.2 insures that 0(·,0) = ,8 since sn is connected. 
The same argument shows that Oc 1) = d. It remains to be seen that 
0(1, s) = eo for each s in l. The path 

0(1, .): I~E 

has initial point eo and covers the constant path c = H(I, .). Since the unique 
covering path of c which begins at eo is the constant path at eo, then 

O(T,s) = eo, SEl. 

Thus 0: sn x I ~ E is a homotopy such that 

0(·,0) =,8, 0(·,1) = d, 

0(1, s) = eo, s E I, 

so LB] = [d] is the identity element of 17 n(E, eo). Thus the kernel of p* contains 
only the identity element of l7n(E, eo), so p* is one-to-one. 0 

Example 6.5. Consider the universal covering space (IR, p) of the unit circle 
Sl. By Theorem 6.9, 

p*: l7n(lR) ~ l7n(Sl) 

is an isomorphism for n ~ 2. But all the homotopy groups of the contractible 
space IR are trivial, so 

n ~ 2. 
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Example 6.6. Consider the double covering (sn, p) over projective n-space pn. 
Theorem 6.9 insures that 

'1Tk(pn) ~ '1Tk(sn), 

Recalling Example 6.3, we have 

'1Tn(pn) ~ 7L, 

6.4 Homotopy Equivalence 

k ~ 2, n ~ 2. 

n ~ 2. 

This section examines an equivalence relation for topological spaces which 
was introduced by Hurewicz in 1936. The relation is weaker than homeo­
morphism but strong enough to insure that equivalent spaces have isomorphic 
homotopy groups in corresponding dimensions. 

Definition. Let X and Y be topological spaces. Then X and Yare homotopy 
equivalent or have the same homotopy type provided that there exist con­
tinuous mapsf: X -+ Y and g: Y -+ X for which the composite maps gf 
andfg are homotopic to the identity maps on X and Y respectively. The 
map f is called a homotopy equivalence, and g is a homotopy inverse for f 

It should be clear that homeomorphic spaces are homotopy equivalent. 

Theorem 6.10. The relation" X is homotopy equivalent to Y" is an equivalence 
relation for topological spaces. 

PROOF. The relation is reflexive since the identity map on any space X is a 
homotopy equivalence. The symmetric property is implicit in the definition; 
note that bothf and g are homotopy equivalences and that each is a homotopy 
inverse for the other. 

To see that the relation is transitive, let f: X -+ Yand h: Y -+ Z be homo­
topy equivalences with homotopy inverses g: Y -+ X and k: Z -+ Y respec­
tively. We must show that X and Z are homotopy equivalent. The most likely 
candidate for a homotopy equivalence between X and Z is hfwith gk as the 
leading contender for homotopy inverse. Let L: Y x 1-+ Y be a homotopy 
such that L(·, 0) = kh and L(·, I) is the identity map on Y. Then the map 
M: X x 1-+ X defined by 

M(x, t) = gL(f(x), t), 

is a homotopy such that 

(x, t) E X x I, 

M(·,O) = gL(f(·), 0) = (gk)(hf), 

M ( ., 1) = gL(f(·), 1) = gf, 

so (gk)(hf) is homotopic to gfand hence homotopic to the identity map on X. 
A completely analogous argument shows that (hf)(gk) is homotopic to the 
identity on Z, so X and Z are homotopy equivalent. 0 
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6.4 Homotopy Equivalence 

Example 6.7. A circle and an annulus are homotopy equivalent. To see this, 
consider the unit circle S 1 and the annulus A = {y E ~2: 1 ::;; I y I ::;; 2} shown 
in Figure 6.2. 

I 
I 

_ffi_l_-g(~ 
I I 

x = gf(x) I 
I Sl 

I 

. ", . 

f 

g 

Figure 6.2 

A homotopy equivalencef: Sl ~ A and homotopy inverse g: A ~ Sl are 
defined by 

f(x) = x, 

g(y) = y/lyl, 

Then gfis the identity map on S\ and 

fg(y) = y/lyl, yEA. 

The required homotopy between fg and the identity on A is given by 

H(y, t) = ty + (1 - t)Y/IYI. 

Theorem 6.11. A space X is contractible if and only ifit has the homotopy type 
of a one point space. 

PROOF. Suppose X is contractible with homotopy H: X x I ~ X and point 
Xo in X such that 

H(x, 0) = x, H(x, 1) = xo, X EX. 

Then X is homotopy equivalent to the singleton space {xo} by homotopy 
equivalence f: X ~ {xo} and homotopy inverse g: {xo} ~ X defined by 

f(x) = Xo, g(xo) = Xo, X E X. 

Suppose now that f: X ~ {a} is a homotopy equivalence between X and 
the one point space {a} with homotopy inverse g: {a} ~ X. Then there is a 
homotopy K between gf and the identity map on X: 

K(x, 0) = x, K(x, 1) = gf(x) = g(a), x E X. 

The homotopy K is thus a contraction, and X is contractible. D 

Example 6.7 is a special case of the next result. 

Theorem 6.12.lf X is a space and D a deformation retract of X, then D and X 
are homotopy equivalent. 
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PROOF. There is a homotopy H: X x I -l> X such that 

H(x,O) = x, H(x, 1) E D, x EX, 

H(a, t) = a, a E D, tEl. 

Letf: D -l> X denote the inclusion mapf(a) = a, and define g: X -l> D by 

g(x) = H(x, 1), XEX. 

Then gfis the identity map on D, and H is a homotopy betweenfg and the 
identity on X; thusfis a homotopy equivalence with homotopy inverse g. D 

Definition. Let X and Y be spaces with points Xo in X and Yo in Y. Then the 
pairs (X, xo) and ( Y, Yo) are homotopy equivalent or have the same homotopy 
type means that there exist continuous maps f: (X, xo) -l> (Y, Yo) and 
g: (Y, Yo) -l> (X, xo) for which the composite maps gfandfg are homotopic 
to the identity maps on X and Y respectively by homotopies that leave the 
base points fixed. In other words, it is required that there exist homotopies 
H: X x I -l> X and K: Y x I -l> Y such that 

H(x,O) = gf(x), 

K(y,O) = fg(y), 

H(x, I} = x, 

K(y, I} = y, 

H(xo, t} = xo, 

K(yo, t} = Yo, 

xEX,tEI, 

yE Y, tEl. 

The map f is called a homotopy equivalence with homotopy inverse g. 

The proof of the next theorem is similar to the proof of Theorem 6.10 and 
is left as an exercise. 

Theorem 6.13. Homotopy equivalence between pairs is an equivalence relation. 

Theorem 6.14. If the map f: (X, xo) -l> (Y, Yo) is a homotopy equivalence be­
tween the indicated pairs, then the induced homomorphism 

f*: 7T n( X, xo} -l> 7T n( Y, Yo} 

is an isomorphism for each positive integer n. 

PROOF. Let g: (Y, Yo) -l> (X, xo) be a homotopy inverse for f and H a homo­
topy between gf and the identity map on X which leaves Xo fixed. Let 
[a] E 7Tn(X, xo}, and consider a as a function from In to X such that a(oIn} = 
Xo. Define a homotopy K: In X I -l> X by 

K(t, s} = H(a(t}, s), t E In, s E I. 

Then 

K(.,O} = gfa, K(., I} = a, 

K(oIn x I} = H({xo} x I} = Xo 

so that 

[gfa] = [a]. 
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6.5 Homotopy Groups of Spheres 

This means that 

g.I.[a] = [a], 

so g. is a left inverse fori •. Since lis a homotopy inverse for g, we conclude 
by symmetry that g. is also a right inverse fori., sol. is an isomorphism. D 

Actually, Theorem 6.14 can be strengthened to show that a homotopy 
equivalence I: X ~ Y with f(xo) = Yo induces an isomorphism between 
1T,,(X, xo) and 1T,,( Y, Yo) for each n. The proof is more complicated because 
the homotopies may not leave the base points fixed. The reader might like to 
try proving this stronger result. 

6.5 Homotopy Groups of Spheres 
As mentioned earlier, the homotopy groups 1TiS") are not completely known. 
Previous examples have shown that 

1Tk(S") = {O}, 
1TiSl) = {O}, 

1T,,(S") ~ l. 

k < n, 
k> 1, 

It may seem natural to conjecture that 1Tk(S") is trivial for k > n since the 
corresponding result holds for the homology groups. This would simply 
mean that every continuous map I: Sk ~ S" where k > n is homotopic to a 
constant map. This is in fact not true. The first example of such an essential, 
or non-null-homotopic, map was given by H. Hopf in 1931. The spheres 
involved were of dimensions three and two, and Hopf's example showed that 
1Ta(S2) is not trivial. Actually, 1Ta(S2) is isomorphic to the group of integers. 
Many other results are known about 1Tk(S"), but no one has yet succeeded in 
determining ?TiS") in all possible cases. In this section we shall examine 
Hopf's examples and the results ofH. Freudenthal (1905- ) on which much 
of the knowledge of the higher homotopy groups of spheres is based. 

Example 6.8. The Hopf map p: Sa ~ S2. 
Let iC denote the field of complex numbers. Consider Sa, the unit sphere 

in Euclidean 4-space, as a set of ordered pairs of complex numbers, each pair 
having length 1: 

Sa = {(Zl> Z2) E iC x iC: IZll2 + IZ212 = I}. 

Define an equivalence relation == on Sa by 

(Zl> Z2) == (z~, z;) 
if and only if there is a complex number A of length I such that 

(Zl> Z2) = (Az~, Az;). 

For (Zl> Z2) in Sa, let <Zl> Z2) denote the equivalence class determined by 
(Zl> Z2), let 
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be the set of equivalence classes, and let p: S3 ~ T be the projection map 

Assign Tthe quotient topology determined by p; a set 0 is open in Tprovided 
that p-1(O) is open in S3. For <Zlo Z2) in T, the inverse image p-1«Zlo Z2»), 
called the fiber over <Zlo Z2), is a circle in S3. 

We shall show that T is homeomorphic to S2, use the homeomorphism to 
replace Tby S2, and obtain the Hopfmap p: S3 ~ S2. Strictly speaking, the 
Hopf map is the map hp: S3 ~ S2 where h: T ~ S2 is the homeomorphism 
whose existence we must now show. 

Let 
D = {ZEC: Izi ~ I} 

denote the unit disc in C. The 2-sphere is the quotient space of D obtained by 
identifying the boundary of D to a point. To see that T satisfies the same 
description, consider the map j: D ~ T defined by 

j(Z) = <vI - Iz12, z), ZED. 

Thenjis a closed, continuous map. For <Zlo Z2) in T, 

j-1«Zlo Z2») = {z ED: <Zlo Z2) = <VI - Iz12, z)} 

= {z ED: VI - IzI2 = '\Zlo Z = '\Z2 for some ,\ E SI}. 

If Zl i= 0, the equations 

vI - IzI2 = AZb 

imply 

Thusj-1«Zlo Z2») is a single point if Zl i= O. If Zl = 0, then 

j-1«Zl, Z2») = j-1«0, Z2») 
= {z ED: v'''''-I---''-lz":''::12 = 0, Z = ,\ for some ,\ E Sl} = S\ 

so j-1«0, Z2») is the boundary of D. Hence, usingj as quotient map, T is the 
quotient space of D obtained by identifying the boundary Sl to a point. 
Then T is homeomorphic to S2, so we replace T by S2 and have the Hopf 
map p: S3 ~ S2. 

Showing that p is not homotopic to a constant map requires more back­
ground than we have had, but here is a sketch of the basic idea. Suppose to 
the contrary that H: S3 x I ~ S2 is a homotopy between p and a constant 
map. Although the Hopf map is not a covering projection, it is close enough 
to permit a covering homotopy Ii: S3 x I ~ S2 as shown in this diagram. 
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The map n is a homotopy between the identity map on Sa and a constant 
map. But this implies that S3 is contractible, an obvious contradiction. Thus 
p is not homotopic to a constant map, so 7Ta(S2) =f:. {O}. 

Example 6.9. The Hopf maps S7 ~ S4 and S15 ~ S8. 
Think for a minute about the construction of the Hopf map p: Sa ~ S2. 

The construction was made possible by representing Sa as ordered pairs of 
complex numbers. Using the division ring Q of quaternions, we represent S7, 
the unit sphere in Euclidean 8-space, as ordered pairs of members of Q: 

The quotient space T in this case is the quotient space of the unit disc 

D = {ZEQ: IlzlI ~ I} 

obtained by identifying the boundary of D to a single point. Since D has real 
dimension four, this quotient space is homeomorphic to S4. The Hopf map 
p: S7 ~ S4 with fiber S3 is then defined as in Example 6.8. This map shows 
that 7T7(S4) =f:. {O}. 

In E16, one can perform a similar construction by representing the unit 
sphere SlS as ordered pairs of Cayley numbers. This produces the Hopf map 
p: S1S ~ S8 with fiber S7 and shows that 7Tl5(S8) =f:. {O}. 

There is for each pair k, n of positive integers a natural homomorphism 

E: 7Tk(sn) ~ 7Tk+l(Sn+l) 

called the suspension homomorphism. To define this ingenious function, 
consider 7Tk(sn) as homotopy classes of maps from (Sk, 1) to (sn, 1) where we 
denote the base point of each sphere by 1. Consider sn as the subspace of 
sn + 1 consisting of all points of sn + 1 having last coordinate O. In this identifi­
cation, sn is usually called the "equator" of sn+l. Continuing this geo­
graphical metaphor, call the points (0, ... , 0, 1) and (0, ... , 0, -1) of sn + 1 

the" north pole" and" south pole" respectively. 
Suppose now that [a] E 7Tisn). Then a is a continuous map from Sk to sn. 

Extend a to a continuous map IX: Sk+l ~ sn+l as follows: IXlsk is just a, and 
it maps the equator of Sk+l to the equator of sn+l. We require that IX map 
the north pole of Sk+l to the north pole of sn+l and the south pole of Sk+l 
to the south pole of sn+l. The function is then extended radially as shown in 
Figure 6.3. The arc from the north pole to a point x in SIc is mapped linearly 
onto the arc from the north pole of sn+l to a(x). This defines IX on the 
"northern hemisphere," and the "southern hemisphere" is treated the same 
way. The extended map IX is called the suspension of a. 

The suspension homomorphism E, called the" Einhiingung" by Freudenthal, 
is defined by 

E([a]) = [IX], 
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6 The Higher Homotopy Groups 

Figure 6.3 

The reader is left the exercise of showing that E is a homomorphism. Freu­
denthal defined the suspension homomorphism and proved the following 
theorem in 1937. Proofs can be found in [11] and in Freudenthal's original 
paper [37]. 

Theorem 6.15 (The Freudenthal Suspension Theorem). The suspension homo­
morphism 

E: 7Tisn) --+ 7Tk+l(sn+l) 

is an isomorphism for k < 2n - 1 and is onto for k ::;; 2n - 1. 

Although we shall not prove the Freudenthal Suspension Theorem, we 
illustrate its utility with two corollaries. These results have already been 
derived in Examples 6.2 and 6.3. 

Corollary. The homotopy groups 7Tk(sn) are trivial for k < n. 

PROOF. For any positive integer r < k, we have k + r + 1 < 2n, and hence 

k - r < 2(n - r) - 1. 
Then 

7Tk(sn) ~ 7Tk_l(sn-l) ~ ... ~ 7Tl(sn-k+l). 

Since n - k + 1 > 1 for k < n, then 7Tl(sn-k+l) and its isomorphic image 
7Tk(sn) are both trivial groups. D 

Corollary. The homotopy groups 7Tn(sn), n ~ 1, are all isomorphic to the group 
71.. of integers. 

PROOF. We rely on our previous arguments to show that 

7Tl(Sl) ~ 7T2(S2) ~ 71... 

If n ~ 2, then n < 2n - 1 and the Freudenthal Suspension Theorem shows 
that 

D 

6.6 The Relation Between HnCK) and 7TiIK!) 
The last theorem of this chapter extends Theorem 4.11 to show a relationship 
between the homology groups and the homotopy groups of polyhedra. Proofs 
can be found in [20] and [5] 
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6.6 The Relation Between Hn(K) and 1Tn(IKj) 

Theorem 6.16 (The Hurewicz Isomorphism Theorem). Let K be a connected 
complex and n ~ 2 a positive integer. If the first n - 1 homotopy groups of 
IKI are trivial, then Hn(K) and 1Tn(IKi) are isomorphic. 

For an application of the Hurewicz Isomorphism Theorem, let us again 
consider 1Tn(sn). 

Example 6.10. Consider the n-sphere sn for n ~ 2. Since 1Tlsn) = {OJ 
for k < n, the Hurewicz Isomorphism Theorem implies that 

The pioneering work on the higher homotopy groups was done by Witold 
Hurewicz in a sequence of four papers, his famous" Four Notes," published 
in 1935-1936 [4iJ. These papers contain definitions of the higher homotopy 
groups, the relation between 1Tn(E) and 1Tn(B) for covering spaces (Theorem 
6.9), the homotopy equivalence relation, the proof that homotopy equivalent 
spaces have isomorphic homotopy groups (Theorem 6.14), and the Hurewicz 
Isomorphism Theorem (Theorem 6.16). 

The homotopy groups do not provide for general topological spaces the 
type of classification given for 2-manifolds by Theorem 2.11 and for covering 
spaces by Theorem 5.9. The reader is asked in one of the exercises for this 
chapter to find an example of spaces X and Y which have isomorphic homo­
topy groups in each dimension but which are not homotopy equivalent (and 
therefore not homeomorphic). The induced homomorphism 

has been successful in classifying the homotopy type of spaces known as 
"CW-complexes." These spaces can be used to approximate arbitrary 
topological ~paces. The reader interested in pursuing CW-complexes should 
consult [20] or the work of their inventor, J. H. C. Whitehead (1904-1960) 
[57]. 

Although the homotopy groups have not been completely successful in 
showing when spaces are homeomorphic, they are extremely useful in showing 
when spaces are not homeomorphic. This is, in fact, the way in which alge­
braic topology has been most successful. To show that X and Yare not 
homeomorphic, compute the homotopy groups 1Tn(X) and 1Tn(Y)' If 1Tn(X) 
is not isomorphic to 1Tn( Y) for some n, then X and Yare not homeomorphic. 
The same method can be used with the homology groups. 

Recall from Chapter 4 that the Poincare Conjecture asserts that every 
simply connected 3-manifold is homeomorphic to Sa. Our work on homotopy 
groups shows that the corresponding conjecture in dimension four is false. 
The 4-manifold S2 x S2 is simply connected, but it is not homeomorphic to 
S4 since 
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6 The Higher Homotopy Groups 

Hurewicz' introduction of homotopy type led to the following extension 
of the Poincare Conjecture: 

Generalized Poincare Conjecture. Every n-manifold which is homotopy equiva­
lent to sn is homeomorphic to sn. 
This conjecture was proved to be true for n > 4 by S. Smale (1930- ) in 

1960 [54]. It is still unresolved in the cases n = 3 and n = 4. 

EXERCISES 

1. Complete the details in Definition A of the higher homotopy groups: 
(a) The relation "" Xo is an equivalence relation. 
(b) If a "" xo a' and f3 "" xo f3', then a * f3 "" Xo a' * f3'. 
(c) l7n(X, xo) is a group under the operation 0. 

2. Complete the details in the discussion of the equivalence of Definitions A 
and C of the higher homotopy groups. 

3. (a) Prove Theorem 6.2. 
(b) Prove Theorem 6.3. 
(c) Prove Theorem 6.4. 

4. Let I: X ~ sn be a continuous map such that/(X) is a proper subset of sn. 
Prove that I is null-homotopic. 

5. Use homotopy groups to prove the Brouwer No Retraction Theorem 
(Theorem 3.12). 

6. Show that the sets W(K, U) in the definition of the compact-open topology 
form a subbase. 

7. (a) Show that the space O(X, xo) with its compact-open topology is an H­
space for any space X. 

(b) Show that the homotopy classes [a] of 171(X, xo) are precisely the path 
components of O(X, xo). 

8. Show that the function 1*: l7n(X, xo) ~ l7nC Y, Yo) induced by a continuous 
map I: (X, xo) ~ (Y, Yo) is a homomorphism. 

9. Prove that the operation 0 in Theorems 6.5 and 6.6 is well-defined. 

10. If I: X ~ Y is a homotopy equivalence, prove that any two homotopy 
inverses of f are homotopic. 

11. Definition. If I: X ~ Y is a continuous map, a continuous map g: Y ~ X 
is a lelt homotopy inverse for I provided that gl is homotopic to the identity 
map on X. Right homotopy inverse is defined analogously. 

Prove that if I: X ~ Y has left homotopy inverse g and right homotopy 
inverse h, then I is a homotopy equivalence. 

12. Definition. Continuous maps I and g from (X, xo) to (Y, Yo) are homotopic 
modulo base points provided that there is a homotopy H: X x I ~ Y such 
that 
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H(·,O) =!. H(·,l)=g, H({xo} x J) = Yo. 

Prove that maps which are homotopic modulo base points induce identical 
homomorphisms from l7n(X, xo) to l7n( Y, Yo). 



6 Exercises 

13. Prove that the map 1 of Example 6.8 is closed and continuous. 

14. If X is homotopy equivalent to X' and Y is homotopy equivalent to Y', prove 
that X x Y is homotopy equivalent to X' x Y'. 

15. Show that if the pairs (X, xo) and (Y, Yo) are homotopy equivalent, then the 
loop spaces il(X, xo) and il( Y, Yo) are homotopy equivalent. 

16. Let (E, p) and (F, q) be covering spaces of base space B, and let h: E ~ F be 
a covering space homomorphism such that h(eo) = 10, where eo and 10 are 
the base points of E and Frespectively. Show that the induced homomorphism 

h.: 7Tn(E, eo) ~ 7Tn(F,/o) 

is an isomorphism for n ;;:: 2. What can be said about h. if n = 1? 

17. Show that the Freudenthal map 

E: 7Tk(sn) ~7Tk+l(sn+l) 
is a homomorphism. 

18. Definition. Let I: X ~ Y be a continuous map. The quotient space of the 
disjoint union (X x I) U Y obtained by identifying (x, 1) with I(x), x E X, 
is called the mapping cylinder of f 

Show that the mapping cylinder of I: X ~ Y is homotopy equivalent to Y. 

19. Show that the unit sphere sn-l and punctured n-space IRn\{p} have the same 
homotopy type. 

20. Here are some homotopy groups of spheres. Use them to determine other 
homotopy groups of spheres. (The symbol Zp denotes the group of integers 
modulo p). 
(a) 7TdS7 ) = {O}. 
(b) 7T14(S8) ~ Z. 
(c) 7T16(S9) ~ Z240. 
(d) 7T18(SlO) ~ Z2 EB Z2. 

21. Prove that homotopy equivalence for pairs is an equivalence relation. 

22. Give an example of spaces X and Y having isomorphic homotopy groups in 
each dimension which do not have the same homotopy type. 
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7 Further Developments in Homology 

The preceding chapters have introduced homology groups for polyhedra and 
homotopy groups for arbitrary spaces. The homotopy groups are more 
general since they apply to more spaces. The process of extending homology 
to spaces more general than polyhedra began in the years 1921-1933 and has 
continued to the present day. The pioneers in this work were Oswald Veblen, 
Solomon Lefschetz, Leopold Vietoris, and Eduard tech. In this chapter we 
shall examine some additional theory and applications of simplicial homology 
groups, notably the famous fixed point theorem and relative homology groups 
discovered by Lefschetz, and the singular homology groups, also due to 
Lefschetz, which extend homology theory to arbitrary spaces. 

7.1 Chain Derivation 
Chain mappings were introduced in Chapter 3 for the purpose of defining 
induced homomorphisms on the homology groups. We turn now to a particu­
lar chain mapping, the "chain derivation" q> = {q>p: Cp(K) -+ Cp(K(l))}, from 
the chain groups of a complex K to those of its first barycentric subdivision 
K(l). This will allow us to see that HP(K) ;;:; Hp(K(l»), a problem that was 
glossed over in Chapter 3, and to establish the machinery necessary for a 
proof of Lefschetz' celebrated fixed point theorem. 

Notation: If aP = <vo ... vp ) is a p-simplex and v a vertex for which 
{v, vo, ... , vp} is geometrically independent, then the symbol vat> denotes the 
(p + 1 )-simplex 

vaP = <vvo . .. vp ). 

If c = 2: gt' af is a p-chain, then vc denotes the (p + 1 )-chain 

vc = L: gj·vaf 
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This notation was used in Theorem 2.9. 
The proof of the following lemma is left as an exercise: 

Lemma. Let c be a p-chain on a complex K and v a vertex for which the (p + 1)­
chain vc is defined. Then 

o(vc) = c - voc. 

Definition. Let K be a complex. A chain mapping 

rp = {rpp: Cp(K) --+- Cp(K(l)} 

is defined inductively as follows: Each O-simplex aO of K is a O-simplex of 
the barycentric subdivision K(l), so we may consider Co(K) as a subgroup 
of Co(K(l». Define rpo: Co(K) --+- CO(K(l» to be the inclusion map: 

rpo(c) = c, C E Co(K). 

For an elementary p-chain 1· aP on K, define 

rpp{l·aP) = aPrpp_ 10(1'aP), 

where aP denotes the barycenter of aP, and extend rpp by linearity to a 
homomorphism rpp: Cp(K) --+- Cp(K(l»: 

rppC~: g, . af) = L CfJp(g, . af), L g, . af E Cp(K). 

The sequence rp = {rpp} of homomorphisms defined in this way is the first 
chain derivation on K. For n > 1, the nth chain derivation on K is the com­
position of rp(n-l), the (n - l)th chain derivation on K, with the first chain 
derivation of the (n - l)th barycentric subdivision K(n-l). Thus the nth 
chain derivation on K is a chain mapping rp(n) = {rp~n): Cp(K) --+- Cp(K(n»}. 

Example 7.1. Let us examine the first chain derivation of the complex 
K = Cl(a2), the closure of a 2-simplex a2 = + <VOVIV2), shown with the 
barycentric subdivision K(l) in Figure 7.1. 

V2 

Figure 7.1 

In the figure, the additional vertices Va, V4, V5, and Vs denote the barycenters 
of <VOVl), <VOV2), <VIV2), and <VOVIV2) respectively. Then rpo: Co(K)--+­
Co(K(l» is the inclusion map, and 

CfJI(1' <VOVI» = VaCfJoo(1· <VOVI» = va(1· <VI> - 1· <Vo» 
= l,<vavl) - l,<vavo); 
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9'1(1' <VOV2» = V49'08(1· <VOV2» = V4(1' <V2) - 1· <VO» 
= 1,<v4v2) - 1,<v4vo); 

9'1(1'<V1V2» = V59'08(1'<V1V2» = V5(1'<V2) - 1,<vl» 

= 1· <V5V2) - 1· <V5Vl); 

9'2(1'<VOV1V2» = vS9'18(1'<VOV1V2» = VS9'1(1'<V1V2) - 1,<vov2) + 1'<VOV1» 

= 1· <VSV5V2) - 1· <VSV5Vl) - 1· <VSV4V2) + 1· <VSV4VO) 

+ 1· <VsVaVl) - 1· <vsvavo). 

Theorem 7.1. Each chain derivation is a chain mapping. 

PROOF. Since the composition of chain mappings is a chain mapping, it is 
sufficient to show that the first chain derivation is a chain mapping. Let 
9' = {9'P: Cp(K) -+ Cp(K(l»} be a chain derivation in the notation of the 
definition. It must be shown that the diagram 

Cp(K) ~ Cp(K(1» 

at ta 
Cp_l(K) ~ Cp_l(K(1» 

is commutative for p ~ 1. Thus it is sufficient to show that 

89'p( 1 . aP) = 9'P -18(1 . aP) 

for each elementary p-chain I·aP• For p = 1, 

89'1(1·al) = 8(al9'08(1.al» = 9'08(1·al) - a189'08(1·al) 

= 9'08(I·al) - a188(I·al) = 9'08(I·al). 

These equalities follow, in order, from the definition of 9'1> the lemma 8(vc) = 
c - v8c, the fact that 9'0 is the inclusion map, and 08 = O. Thus 09'1 = 9'08, 
so the desired conclusion holds for p = I. Proceeding inductively, let 1 . aP be 
an elementary p-chain on K. Then 

89'p(1. aP) = 8( aP9'p _18(1 . aP» = 9'P-18(1' aP) - aP89'p -18(1. aP) 

= 9'P_18(I.aP) - aP9'p_288(I·aP) = 9'p-18(1·aP). 

The next to last equality uses the inductive assumption 89'P-l = 9'p-28. Thus 
89'p = 9'P-18 for elementary p-chains and hence for allp-chains. 0 

Theorem 7.2. Let K be a complex with first chain derivation 9' = {9'p}. There is 
a chain mapping 

zP = {zPP: CiK(l) -+ CiK)} 

such that zPP9'P is the identity map on Cp(K) for each p ~ O. 

PROOF. Such a chain mapping zP is called a left inverse for 9'. Letfbe any sim­
plicial map from K(l) to K having this property: If a is a vertex of K(1), then 
f(a) is a vertex of the simplex a of which a is the barycenter. Let zP = {zPp} be 
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the chain mapping induced by f Observe that if 71' is a p-simplex of K(1), then 

"'1'(1 . 71') = '1J' uP, 

where '1J is 0, 1 or -1 and uP is the p-simplex of K which produces 71' in its 
barycentric subdivision. 

Clearly "'oCPo is the identity map on Co(K). Suppose that "'p-ICPp-l: 
Cp_I(K) -+ Cp_I(K) is the identity, and consider "'pcpp: Cp(K) -+ CP(K). If 
I· uP is an elementary p-chain on K, then 

"'pcPp(1·up) = "'p(&pCPp_IO(1'uP) = m'uP 

for some integer m. But 

o(m·uP) = o"'pcPp(1·up) = "'p_Iocpp(l·up) = "'p-ICPp-I0(1'Up) = o(1'up), 

so 
mo(1 . uP) = o(m· uP) = 0(1· uP), 

and hence m = 1. Thus 

"'pcpp(l· uP) = 1· uP, 

so "'pCPp is the identity map on Cp(K). D 

Example 7.2. The preceding theorem is not as complicated as it may appear. 
Consider the chain derivation cP = {cpp}~ of Example 7.1. We may define the 
simplicial map f from K(l) to K, the closure of the 2-simplex <VOVIV2), in 
any manner consistent with havingf(vj) a vertex of the simplex of which Vj is 
the barycenter. Thus we must have 

f(vo) = va' f(VI) = Vb f(V2) = V2' 

One possible definition for f on the remaining vertices is 

f(V3) = f(V4) = va' f(vs) = Vb f(va) = V2' 

Let", = {"'p}~ be the chain mapping induced by j, as in the proof of Theorem 
7.2. Then 

"'o(1'<Vo») = "'0(1'<V3» = "'0(1'<V4» = 1·<vo); 
"'0(1' <VI») = "'0(1' <V5») = 1· <VI); 

"'0(1' <V2») = "'0(1' <Va» = 1· <V2)' 
"'1{l'<VOV4») = 0; "'l(l,<vova») = 1'<VOV2); etc. 

"'2(1 . < V3VI va») = 1· < VOVI V2); "'2(1' < VoV4Va») = 0; etc. 

Consider, for example, 

"'ICPI(1'<VOVI») = "'1(1'<V3VI) - 1,<v3vo») = I'<VOVI) - 0 = I'<VOVI)' 

Let us compute "'2CP2(1· <VOVIV2»), where CP2(1' <VOVIV2») is expressed as in 
Example 7.1 : 

CP2{l' <VOVIV2» = 1· <VaV5V2) - 1· <VSVSVl) - 1· <VaV4V2) 
+ 1,<vav4vo) + 1,<vav3vl) - 1,<vav3vo), 
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Since f collapses all 2-simplexes except <VsVaVl), then 

,p2CP2(1· <VOVIV2» = ,p2(1· <VsVaVl» = 1· <V2VOV1) = 1· <VOVIV2). 

Definition. A pair cP = {cpp}O' and f.L = {f.Lp}O' of chain mappings from a com­
plex K to a complex L are chain homotopic means that there is a sequence 
!!} = {Dp}~\ of homomorphisms Dp: Cp(K) ~ Cp+1(L) such that 

oDp + Dp_1o = CPP - f.LP' D-l = O. 

The sequence!!} is called a deformation operator or a chain homotopy. 

The chain homotopy relation was designed explicitly to produce the next 
theorem. 

Theorem 7.3. If cP and f.L are chain homotopic chain mappings from complex K 
to complex L, then the induced homomorphisms CP: and f.L: from Hp(K) to 
Hp(L) are equal, p ~ O. 

PROOF. Since cP and f.L are chain homotopic, there is a deformation operator 
!!} = {Dp}~l as specified in the definition. For [zp] E Hp(K), 

cp:([zp]) - f.L:([zp]) = [cpp(zp) - f.Lp(zp)] = [oDp(zp) + Dp_1(ozp)] = O. 

The final equality follows because oZp = 0 for any cycle and oDp(zp) is a 
boundary. Thus cP; = f.L; for each value of p. 0 

Definition. Complexes K and L are chain equivalent means that there are chain 
mappings cp from K to Land ,p from L to K such that the composite chain 
mappings ,pcp = {,ppcpp} and cp,p = {cpp,pp} are chain homotopic to the 
identity chain mappings on K and L respectively. 

It is left to the reader to show that chain homotopy is an equivalence 
relation for chain mappings and that chain equivalence is an equivalence 
relation for complexes. 

Theorem 7.4. Chain equivalent complexes K and L have isomorphic homology 
groups in corresponding dimensions. 

PROOF. If cp and ,p are the chain mappings required by the definition of chain 
equivalence, then Theorem 7.3 insures that 

,p:cp:: Hp(K) ~ Hp(K), 

cp:,p:: Hp(L) ~ Hp(L) 

are the identity maps, so cp; is an isomorphism for each value of p. 0 

One objective of this section is to prove that the homology groups of a 
complex K are isomorphic to those of its barycentric subdivision K(l). In view 
of Theorem 7.4, it is sufficient to show that K and K(l) are chain equivalent. 
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For this we need chain mappings ffJ from K to K(1) and ifJ from K(1) to K for 
which ifJffJ and ~ are chain homotopic to the appropriate identity chain maps. 
We have ffJ, the first chain derivation of K; we also have ifJ, the left inverse 
provided by Theorem 7.2. We know that ifJffJ is the identity chain map on K, 
and we must show that ffJifJ is chain homotopic to the identity chain map on 
K(1). This is a rather large assignment; it is accomplished by the next proof. 

Theorem 7.5. A complex K and its first barycentric subdivision are chain 
equivalent. 

PROOF. In view of the preceding discussion, it is sufficient to show that ~ is 
chain homotopic to the identity map on K(1). This requires a deformation 
operator p) = {Dp: Cp(K(1) ~ Cp+l(K(l»} such that D-l = 0 and, for each 
elementary p-chain 1· -rP on K(1), 

I· -rP - ffJpifJp{1· -rP) = oDp(l· -rP) - Dp_1o(l· -rP). 

We must have D-l = O. To define Do, let w be a vertex of K(1). Then 

ifJo{1'<w» = I·<v) 

where v is a vertex of some simplex a of K of which w is the barycenter. Then 

ffJoifJo{1' <w» = ffJo{1· <v» = I· <v). 

Thus 

I·<w) - ffJoifJo{1·<w» = I·<w) - I·<v) = o{1·<vw», 

so we define 
Do{1· <w» = I· <vw). 

The function Do is defined by this procedure for every elementary O-chain 
I· <w) and extended by linearity to a homomorphism Do: Co(K(l) ~ 
C1(K(1». Proceeding inductively, suppose that Do, ... , Dp- 1 have all been 
defined, and let I· -rP be an elementary p-chain on K(l). Then, for every 
(p - I)-chain c, 

so 

Consider 

Then 

OZ = 0{1. -rP) - offJpifJil· -rP) - oDp_1o(I·-rP) 

= o{1. -rP) - ffJp-lifJp-l0{l' -rP) 

- (o(I·-rP) - ffJp-lifJp-10(I'-rP) - Dp_2 oo{1'-rP» = o. 
This means that z is a cycle on K(l). An argument analogous to that used in 

133 



7 Further Developments in Homology 

the proof of Theorem 2.9 shows that z is the boundary of a (p + I)-chain 
Cp +1 on K(l). We then define 

Dp(l· 'TP) = Cp+1 

and extend by linearity. This completes the definition of the deformation 
operator!!) and shows that K and K(l) are chain equivalent. 0 

Theorem 7.6. The homology groups Hp(K) and Hp(K(n» are isomorphic for all 
integers p ;;:: 0, n ;;:: 1, and each complex K. 

PROOF. The inductive definition of K(n) and Theorem 7.5 show that K and 
K(n) are chain equivalent for n ;;:: 1. Theorem 7.4 then shows that HiK) ~ 
Hp(K(n», p ;;:: o. 0 

Deformation operators were invented by Solomon Lefschetz (1884-1972). 
The proof of Theorem 7.5 given above is due to Lefschetz [13, 15]. 

Let IKI and ILl be polyhedra with triangulations K and L respectively and 
f: IKI ~ ILl a continuous map. We now have the machinery necessary to 
prove that the induced homomorphisms fp*: Hp(K) ~ HiL) are uniquely 
determined by f Recall that this problem was postponed in Chapter 3. 
According to the Simplicial Approximation Theorem (Theorem 3.6), there is 
a barycentric subdivision K(k) of K and a simplicial mapping g from K(k) to L 
such that, as functions from IKI to ILI,Jandg are homotopic. There is some 
freedom in the choices of g and the degree k of the barycentric subdivision. 
From the proof of Theorem 3.6, k must be large enough so that K(k) is star 
related to L relative to f The simplicial map g is given by the proof of Theorem 
3.4; for a vertex u of K(k), g(u) may be any vertex of L satisfying 

f(ost(u» c ost(g(u». 

To show that the sequence of homomorphisms is independent of the 
admissible choices for g, it is sufficient to prove that any admissible change in 
the value of g at one vertex does not alter the induced homomorphisms 
g:: HiK(k» ~ Hp(L). Any simplicial map satisfying the requirements of 
Theorem 3.4 can be obtained from any other one by a finite sequence of such 
changes at single vertices. Suppose then that g and h are two simplicial 
mappings from K(k) into L which have identical values at each vertex of 
K(k) except for one vertex v and that, for this vertex, ost(g(v» and 
ost(h(v» both contain f(ost(v». We shall show that the chain mappings 
{gp: CP(K(k» ~ CP(L)} and {hp: CP(K(k» ~ Cp(L)} are chain homotopic and 
conclude from Theorem 7.3 that the induced homomorphisms g: and h: from 
Hp(K(k» to Hp(L) are identical for each value of p. 

For our deformation operator!!) = {Dp: Cp(K(k» ~ Cp+1(L)}~1> we must 
have D -1 = O. For any vertex u of K(k) with u "# v, define Do(1· <u» = 0, 
and define 

Do(1· <v» = 1· <h(v)g(v». 

Now extend Do by linearity to a homomorphism from Co(K(k» to C1(L). 
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Note that 

oDo(l·<v») + D_10(l·<v») = o(l-<h(v)g(v)) = l-<g(v) - l-<h(v) 

= go(l-<v») - ho(1·<v»)-

If u is a vertex of K(k) different from v, then 

go(1-<u») = ho(1'<u»), 

so the desired relation 

holds for p = 0_ 

Do(1-<u») = 0, 

For the general case, let I-uP be an elementary p-chain in Cp(K(k»)_ If v is 
not a vertex of uP, then we define Dp(1-up) = 0 in Cp+1(L)_ Ifv is a vertex of 
uP, then uP = vup- 1 for some (p - I)-simplex uP-I, and we define 

Dp(1·up) = l-h(v)g(v)T 

where T is the (p - I)-simplex in L which is the image of up- 1 under both g 
and h. As usual, Dp is extended linearly to a homomorphism from Cp(K(k») to 
Cp+1(L). Then for the case in which v is a vertex of uP, 

oDp(1-up) + Dp_1°(1'up) 

Thus 

= o(l·h(V)g(V)T) + Dp_10(l·vUp- 1) 

= l-g(v)T - h(v)o(l·g(V)T) + Dp_1(l-up- 1 - vo(l_q1'-l)) 

= l-g(v)T - h(V)[l-T - g(V)8(l-T)] - Dp_1(vo(l-up- 1)) 

= l·g(v)T - l-h(v)T + h(v)g(V)O(1-T) - h(v)g(V)O(1'T) 
= gp(1·vup- 1) - hil-vup- 1) = gil-uP) - hil·up)_ 

p ~ 0, 

and the chain mappings induced by g and h must be chain homotopic. 
Theorem 7_3 now guarantees that g: = h:, so we conclude that the induced 
homomorphism fp* is independent of the allowable choices of the simplicial 
mapg. 

Question: Where did we use the assumption that ost(g(v)) and ost(h(v)) 
both containf(ost(v))? 

The homomorphismfp*: Hp(K) ~ Hp(L) is actually the composition g:p.! 
from the diagram 

~* g* 
HiK) ~ HiK(k») ~ HiL) 

where p.: is the isomorphism induced by chain derivation_ For a barycentric 
subdivision K(T) of higher degree, let t/J:: Hp(K) ~ Hp(K(T») be the isomor­
phism induced by chain derivation and f:: HiK(T») ~ Hp(L) the homo­
morphism induced by an admissible simplicial map_ It is left as an exercise 
for the reader to show that g:fL: = j:t/J: and hence thatfp* is also independent 
of the allowable choices for the degree of the barycentric subdivision K(k)_ 
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7.2 The Lefschetz Fixed Point Theorem 

This section is devoted to the most famous of all the theorems about fixed 
points of continuous maps. Lefschetz introduced in 1926 a number ).,(f) 
associated with each continuous map f: IKI ~ IKI from a polyhedron into 
itself. If the Lefschetz number ).,(j) is not zero, then f has at least one fixed 
point. (The Lefschetz number does not specify the number of fixed points.) 
Brouwer's Fixed Point Theorem (Theorem 3.13) can be proved as a simple 
corollary. 

In this section we assume that rational numbers rather than integers are 
used as the coefficient group for chains. Thus the pth chain group CiK) of a 
complex K is considered a vector space over the field of rational numbers. 

Definition. Let K be a complex with {an its set of p-simplexes, and let cp = {cpp} 
be a chain mapping on K. For a p-simplex af of K, 

cpp(l . an = L afr af 
"ffK 

for some rational numbers aft, one for each p-simplex af of K. Then af is a 
fixed simplex of cp provided that at, the coefficient of af in the expansion of 
cpil . af), is not zero. The number ( -1 )pat is called the weight of the fixed 
simplex af. Let 

AI' = (aft) 

be the matrix whose entry in row i and columnj is afJ. Since the trace of a 
square matrix is the sum of its diagonal elements, then 

trace AI' = L at, 
and the number 

).,(cp) = L (-l)P trace(Ap) 
I' 

is the sum of the weights of all the fixed simplexes of cpo The number ).,(cp) 
is called the Lefschetz number of cpo (Note that if ).,(cp) ¥: 0, then cp must 
have at least one fixed simplex in some dimension p.) 

The matrix AI' = (aft) is the matrix of CPp as a linear transformation from 
the vector space Cp(K) into itself relative to the basis of elementary p-chains 
{I· af}. Since the trace of the matrix of a linear transformation is not affected 
by a change of basis, the Lefschetz number ).,(cp) is the same regardless of the 
choice of basis for Cp(K). 

Example 7.3. Let CPp: Cp(K) ~ CiK) be the identity map on Cp(K) for some 
complex K, p ;::: O. Then 

at = 1, aft = ° for i ¥: j, 

and each simplex is a fixed simplex. Thus 

).,(cp) = L(-I)PtraceAp = L(-l)pap = x(K) 
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where Up is the number of simplexes of dimension p and x(K) is the Euler 
characteristic of K. Thus the Lefschetz number is a generalization of the 
Euler characteristic. 

Theorem 7.7. Let rp = {rpp} be a chain mapping on a complex K. The LeJschetz 
number A(rp) is completely determined by the induced homomorphisms 
rp:: Hp(K) -+ Hp(K) on the homology groups. 

PROOF. The proof is similar to the proof of the Euler-Poincare Theorem 
(Theorem 2.5), and we use the same notation. Then {z~} u {b~} is a basis for 
the cycle vector space Zp, {b~} is a basis for the boundary space Bp , {d~} is a 
basis for D p , b~ = od~+l' and n is the dimension of K, as in the proof of 
Theorem 2.5. Note that {b~} u {z~} u {d~} is a basis for Cpo For any b~, 

rpp(b~) = 2: afJb~, 0 ::;; p ::;; n - 1, 
! 

for some rational coefficients af! since the linear transformation rpp takes Bp 
into Bp. For any z~, 0 ::;; p ::;; n, rpp(z~) must be a cycle, so there are coefficients 
a~f, efl such that 

rpp(Z~) = 2: a;fb~ + 2: etz~. 
! I 

For any d~, 1 ::;; p ::;; n, there are coefficients a7f, e;r, gfJ such that 

rpp(d~) = L aj!b~ + L e;rz~ + 2: glJdt· 
I I I 

Then 
11 

..\(rp) = 2: ( -1)P(trace Ap + trace Ep + trace Gp ) 

1=0 

where 
Ap = (alf), Gp = (glf), 

and An = Go is the zero matrix. Now 

orpp+1(d~+1) = rppO(d~+1) = rpp(b~) = L alfb~. 
Also, 

" (dl ) - "(" IrP+1bl +" 'p+1 I +" P+1dl ) urpp+1 p+1 - U L..all p+1 L..ell Zp+1 L..gl1 p+1 

- "gP+1o(dl ) - "gP+1bl - L.. II p + 1 - L.. II p' 

Then 

o ::;; p ::;; n - 1, 

and the sum 
11 

..\(rp) = 2: (-I)P(trace Ap + trace Ep + trace Gp) 

1=0 

telescopes to give 
11 

A(rp) = L (-I)P trace Ep. 
1=0 
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This means that the Lefschetz number '\(cp) is completely determined by the 
action of the maps cpp on the generating cycles z~ of HiK). The coefficients 
eli are determined by the induced homomorphisms cp:: HiK) -+ Hp(K) 
because the homology classes [z~] generate HiK): 

cp:([z~D = L ef,[zn , 
Thus the induced homomorphisms completely determine the coefficients efJ 
which completely determine '\(cp), so the theorem follows. 0 

Thus far we have defined the Lefschetz number for chain mappings. This 
definition must be extended to continuous mappings. 

Definition. Let K be a complex and I: IKI-+ IKI a continuous function. Let 
K(S) be a barycentric subdivision of K and g a simplicial map from K(s) to 
Kwhich is a simplicial approximation of/(Theorem 3.6). Then g induces 
a chain mapping {gp: Cp(K(S» -+ CP(K)}. Let /L = {jLp: CP(K) -+ CP(K(S»} 
be the sth chain derivation on K. The Lelschetz number '\(f) of I is the 
Lefschetz number of the composite chain mapping {gp/Lp: CP(K) -+ Cp(K)}. 

It appears that the Lefschetz number is influenced by the possible choices 
for g and s. The number is independent of these choices, however, since it is 
completely determined by the induced homomorphisms 

Ip* = g:/L:: Hp(K) -+ HP(K) 

and Ip* is independent of the allowable choices for g and s. 

Theorem 7.8 (The Lefschetz Fixed Point Theorem). Let K be a complex and 
I: IKI-+ IKI a continuous map. lithe Lelschetz number '\(f) is not 0, then 
I has a fixed point. 

PROOF. Suppose to the contrary that/has no fixed point. Since IKI is compact, 
there is a number € > 0 such that if x E IKI, then the distance 11/(x) - xii ~ €. 

By replacing K with a suitable barycentric subdivision if necessary, we may 
assume that mesh K < €/3. According to the proof of the Simplicial Approxi­
mation Theorem (Theorem 3.6), there is a positive integer s and a simplicial 
map gfrom K(s) to Khomotopic to/such that, for each x in IKI,/(x) andg(x) 
lie in a common simplex of K. Then 11/(x) - g(x) II < €/3 for all x E IKI. 

Suppose that some simplex a of K contains a point x such that g(x) is also 
in a. Then 

11/(x) - xii ~ 11/(x) - g(x) II + Ilg(x) - xii < 2E/3, 

which contradicts the fact that 11/(x) - xii ~ E. Thus a and g(a) are disjoint 
for all a in K. Consider the sth chain derivation /L = {jLp: Cp(K) -+ Cp(K(S»} 
and the chain mapping {gp: Cp(K(S) -+ CP(K)} induced by g. If aP is a p­
simplex of K, then /Lil· aP) is a chain on K(s) all of whose simplexes with 
nonzero coefficient are contained in aP• Since aP and g(aP) are disjoint, then 
gp/Lp(l . aP) is a p-chain on K none of whose simplexes with nonzero coefficient 
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intersects u. Thus gpJLp has no fixed simplex, and the Lefschetz number of the 
chain mapping {gpJLp} is zero. But this is the Lefschetz number of J, contra­
dicting the hypothesis >..(J) '# O. 0 

Corollary (The Brouwer Fixed Point Theorem). If un is an n-simplex, n a 
positive integer, and f: un --+ un a continuous map, then f has a fixed point. 

PROOF. Let K = CI(un). Then Ho(K) ~ 71., Hp(K) = {O} for p > O. Let v be a 
vertex of un so that the homology class [1. <v)] may be considered a generator 
of Ho(K) (Theorem 2.4). Then 

fo*([1· <v) D = [1. <v)], 

and the coefficient matrix Eo of Theorem 7.7 has trace 1. (Why?) Each matrix 
Ep for p > 0 has only zero entries, and hence 

>..(J) = L (-I)P trace Ep = 1. 

Thus >..(f) '# 0, so f must have a fixed point. o 

Corollary. Every continuous map from sn to sn, n ~ 1, whose degree is not 1 
or -1 has a fixed point. 

PROOF. Recall from Theorem 2.9 that Ho(sn) ~ Hn(sn) ~ 71. and Hisn) = 

{O} otherwise. If [1. <v)] and [zn] are generators of Ho(sn) and Hn(sn) respec­
tively, then 

fo*([I· <v) D = [1· <v)], 

fn*([znD = d[zn] 

where d is the degree off Then 

>..(f) = 1 + (-l)nd, 

so >..(J) '# 0 if d is not 1 or -1. o 
Corollary. Iff: sn --+ sn is the antipodal map, then the degree offis (_l)n+1. 

PROOF. Sincefhas no fixed point, then >..(f) = O. Hence 

0= 1 + (-l)nd 

where d is the degree off This gives d = (-I)n + 1. o 
The Lefschetz Fixed Point Theorem was discovered by Lefschetz in 1926 

[47,48]. A simpler proof, the one used in this book, was published by H. Hopf 
in 1928 [40]. 

7.3 Relative Homology Groups 
Suppose that K is a complex and L is a complex contained in K. It often 
happens that one knows the homology groups of either K of L and needs to 
know the homology groups of the other. The groups HiK) and HiL) can 

139 



7 Further Developments in Homology 

be compared using the "relative homology groups" Hp(KjL) to which this 
section is devoted. The intuitive idea is to "remove" all chains on L by 
considering quotient groups. The groups HP(K), HP(L), and Hp(KjL) form 
a sequence of groups and homomorphisms called the" homology sequence." 
Using this sequence, one can often compute anyone of the groups Hp(K), 
Hp(L), or Hp(KjL) provided that enough information is known about the 
others. 

Definition. A subcomplex of a complex K is a complex L with the property 
that each simplex of L is a simplex of K. 

Note that not every subset of a complex is a subcomplex; the subset must 
be a complex in its own right. The p-skeleton of a complex is one type of 
subcomplex. Note also that the empty set 0 is a subcomplex of each complex 
K; the relative homology groups Hp(Kj L) will reduce to HP(K) when L = 0. 

Definition. Let K be a complex with subcomplex L. By assigning value 0 to 
each simplex of the complement K\L, each chain on L can be considered a 
chain on K, and we can consider CP(L) as a subgroup of Cp(K), p ~ O. The 
relative p-dimensional chain group of K modulo L, or relative p-chain group 
(with integer coefficients), is the quotient group 

Cp(KjL) = Cp(K)jCp(L). 

Thus each member of Cp(KjL) is a coset cp + Cp(L) where cp E Cp(K). 
For p ;::: 1, the relative boundary operator 

is defined by 

o(cp + CP(L» = oCp + Cp_1(L), 

where oCp denotes the usual boundary of the p-chain Cpo It is easily observed 
that the relative boundary operator is a homomorphism. 

The group of relative p-dimensional cycles on K modulo L, denoted by 
ZP(K j L), is the kernel of the relative boundary operator 

a: Cp(KjL) ~ Cp_1(KjL), p ~ 1. 

We define Zo(KjL) to be the chain group Co(KjL). 
For p ~ 0, the group of relative p-dimensional boundaries on K modulo L, 

denoted by Bp(KjL), is the image o(Cp+ 1(KjL» of Cp+ 1(KjL) under the 
relative boundary homomorphism. 

The relative p-dimensional simplicial homology group of K modulo L is 
the quotient group 

p ~ O. 

In order for the homology group HP(KjL) to make sense, every relative 
p-boundary must be a relative p-cycle. In other words, we must have Bp(KjL) 
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c: Zl,(KjL) for the quotient group to be defined. The verification of this fact 
is left as an easy exercise 

The members of HiK/L) are denoted [zp + Cp(L)] where Zp + Cp(L) is a 
relative p-cycle. It is required that oZp be a (p - I)-chain on L, not that Zp 
be an actual cycle. However, if Zp is a cycle, then Zp + CiL) is certainly a 
relative cycle. 

Example 7.4. Let K be the I-skeleton of a 2-simplex <VOVIV2> and L the sub­
complex determined by the vertex Vo. Let us determine Ho(K/ L) and Hl(KjL). 
For the case p = 0, 

CoCK) = Zo(K) ~ 71. EB 71. EB 71., 

CoCL) = ZoCL) ~ 71., CoCK/L) = Zo(K/L) ~ 71. EB 71.. 

The members of Zo(KjL) are chains of the form 

where 

Co(L) = {g. <vo>: g is an integer}. 
But 

so 

O(gl . <VOVl> + g2· <VOV2> + Cl(L» = gl . <VI> + g2· <V2> + Co(L). 

Thus every relative O-cycle is a relative O-boundary. This means that 

Ho(KjL) = {O}. 

Now suppose p = 1. Let 

w = hI· (VOVI> + h2· <VIV2> + ha· (VOV2> + Cl(L) 

be a relative I-chain. (Since CI(L) = {O}, I-chains and relative I-chains are 
essentially the same.) Then 

ow = (hI - h2)·(VI> + (h2 + ha)·<V2> + Co(L). 

ThenwisarelativeI-cycleifandonlyifhl = h2 = -ha.HenceZI(K/L)~ 71.. 
Since K has no 2-simplexes, then BI(K/L) = {O} and Hl(K/L) ~ 71.. Since 
there are no simplexes of dimension 2 or higher, then HiK / L) = {O}, p 2: 2. 

Example 7.5. Let K denote the closure of a 2-simplex a2 = <VOVIV2> and L its 
I-skeleton. Since K and L have precisely the same O-simplexes and I-simplexes, 
then 

CoCK) = Co(L), 
C1(K) = C1(L), 

Co(KjL) = {O}, 

C1(K/L) = {O}, 

Ho(K/L) = {O}, 

Hl(K/L) = {O}. 

Since L has no simplexes of dimension two or higher, it might appear at first 
that Hp(K) and HiK/L) are isomorphic for p 2: 2. This is true for p 2: 3 but 
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not for p = 2. Although L has no simplexes of dimension two, it does affect 
Z2(K j L). The reason is that the boundary of a 2-chain is a I-chain; if the 
I-chain has nonzero coefficients only for simplexes of L, then the 2-chain is a 
relative cycle. In this case, the elementary relative 2-chain 

u = g. <VOVIV2) + C2(L), g E 7L, 

has relative boundary 

because all I-simplexes of K are in L. Thus the sUbcomplex L produces 
relative2-cycles,andZ2(KjL) ~ 7L.SinceB2(KjL) = {0},thenH2(KjL) ~ 7L. 
Note in particular that H2(K) = {O}, so H2(Kj L) is not isomorphic to H2(K). 

Our next objective is to show that there is a special sequence 

where i *, j*, and 0* are homomorphisms. Strictly speaking, each homo­
morphism should be marked by p, indicating the dimension, but this notation 
is cumbersome. The dimension will always be known from the subscripts on 
the homology groups. 

Definition. Let K be a complex with subcomplex L. The inclusion map i from 
L into K is simplicial and induces a homomorphism i*: Hp(L) --+ HP(K) 
for each p ~ O. The effect of this homomorphism is easily described: If 
[zp] E HP(L) is represented by the p-cycle Zp on L, then Zp can be considered 
a p-cycle on K. Then Zp determines a homology class i*([zp]) = [zp] in 
Hp(K). 

Letj: Cp(K) --+ CiKjL) be the homomorphism defined by 

Then j induces a homomorphism j*: HiK) --+ HiKjL), p ~ O. If 
[zp] E HiK), then Zp + CiL) is a relative p-cycle and determines a member 
[zp + CiL)] of Hp(Kj L). The homomorphismj* takes [zp] to [zp + CiL)]. 

The definition of 0*: HiKj L) --+ Hp_1(L) comes next. If [zp + CiL)] E 

HiKjL),p ~ 1, then Zp + CiL) is a relativep-cycle. This means that oZp 
is in Cp_1(L). Since oozp = 0, then oZp is a (p - I)-cycle on L and deter­
mines a member [ozp] of Hp_1(L). We define 

The homology sequence of the pair (K, L) is the sequence of groups and 
homomorphisms 
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The reader is asked to verify that i*, j*, and 8* are well-defined homo­
morphisms. The homology sequence has a nice algebraic structure whose 
basic properties are developed in the next definition and the two theorems 
that follow it. 

Definition. A sequence 

of groups Go, G1 , .•. and homomorphisms hl' h2 , • •• is exact provided 
that the kernel of hp- 1 equals the image hp(Gp) for p ~ 2 and that hl maps 
G1 onto Go. (Requiring that hl be onto is equivalent to requiring that Go 
be followed by the trivial group.) 

There are many theorems that compare the groups of an exact sequence. 
The following is the simplest. 

Theorem 7.9. Suppose that an exact sequence has a section of four groups 

{OJ ~ A ~ B !!+ {OJ 

where {OJ denotes the trivial group. Then g is an isomorphism from A onto B. 

PROOF. The image f({O}) = {OJ contains only the identity element of A. 
Exactness then guarantees that g has kernel {OJ, so g is one-to-one. The kernel 
of h is all of B, and this must be the image g(A). Thus g is an isomorphism as 
claimed. 0 

Theorem 7.10. Suppose that an exact sequence has a section of five groups 

f 9 
{OJ --+ A --+ B --+ C --+ {OJ, 

there is a homomorphism h: C --+ B such that gh is the identity map on C, 
and B is abelian. Then B ~ A EB C. 

It is left as an exercise for the reader to show that T: A EB C --+ B defined by 

T(a, c) = f(a)·h(c), (a, c) E A EB c, 
is the required isomorphism. 

Theorem 7.11. If K is a complex with sUbcomplex L, then the homology sequence 
of(K, L) is exact. 

PROOF. In the homology sequence 

0* t* i* 0* t* t* i* 
... --+ HP(L) --+ HP(K) --+ Hp(KjL) ~ Hp_1(L) --+ ... --+ Ho(K) --+ Ho(KjL), 

we must show that the last homomorphismj* maps Ho(K) onto Ho(Kj L) and 
that the kernel of each homomorphism is the image of the one that precedes it. 

143 



7 Further Developments in Homology 

To see thatj* is onto, let [zo + Co(L)] E Ho(K/L). Then Zo is a O-chain on K, 
and 

j*[zo] = [zo + Co(L)], 
so j* is onto. 

The remainder of the proof breaks naturally into six parts: 

(1) image i* C kernelj*, 
(2) kernelj* C image i*, 
(3) imagej* C kernel 0*, 
(4) kernel 0* C imagej*, 
(5) image 0* C kernel i*, 
(6) kerenel i* C image 0*. 

To prove (I), let i*([zr']) be in the image of i* where Zp is a p-cycle on L. 
Then 

j*i*([zpD = [zp + Cp(L)] = [0 + Cp(L)] = 0 

since zp E CP{L). Thus image i* C kernelj*. 
For part (2), let [wp] E Hp(K) be an element of the kernel ofj* ;j*([wpD = 0 

in HP{K/L). We must find an element [zp] in HP{L) such that i*([zp]) = [wp]. 
Since 

j*([Wp]) = [wp + Cp(L)] = 0, 

then wp + Cp(L) is the relative boundary of a relative (p + I)-chain 
Cp +l + Cp + 1(L): 

so Wp - oCp+1 is in CiL). Since both wp and OCp+l are cycles on K, then 
wp - oCp+1 is also a cycle and determines a member [wp - OCP+1] of Hp(L). 
Note that 

i*([wp - oCp+ID = [wp - oCp+d = [wp] 

since wp and Wp - OCp+l are homolgous cycles on K. Thus kernelj* C 

image i*. 
For part (3), letj*([zp]) = [zp + Cp(L)] be a member of the image of j* 

where Zp is a p-cycle on K. Then 

o*j*([zp]) = 8*([zp + CP{L)]) = [8zp] = 0 

since 8zp = O. Thus imagej* C kernel 8*. 
Proceeding to (4), let [xp + CiL)] be in the kernel of 8* where xp + Cp(L) 

is a relative p-cycle. Then 

8*([xp + CiL)]) = [8xp] = 0 

in Hp _ 1(L). This means that 
OXp = oYP 

for some p-chain YP on L. Then Xp - yp is a p-cycle on K and determines a 
member [xp - Yp] of Hp(K). Note that 

j*([xp - Yp]) = [xp - YP + CiL)] = [xp + CP{L)] 
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since yp E Cp(L). Thus [Xl' + Cp(L)] is in the image of j*, so kernel 8* c 
imagej*. 

Parts (5) and (6) are left to the reader. D 

Example 7.6. Let K denote the closure of an n-simplex and L its (n - 1)­
skeleton, n ~ 2. We shall use the homology sequence to compute Hp(K/L) 
thus generalizing Example 7.5. 

Since n ~ 2, K and L have the same O-chains and the same I-chains, and 

Ho(K/L) = Hl(K/L) = {O}. 

For p > 1, consider the homology sequence 

... --+ Hp(K) --+ Hp(K/L) --+ Hp_1(L) --+ Hp_1(K) --+ ... 

Since Hp_1(K) = Hp(K) = {O},Theorem7.9showsthatHp(K/L)~ Hp_1(L), 
p > 1. Since ILl is homeomorphic to sn-\ then 

Hn(K/L) ~ Hn_1(sn-l) ~ 7L, 

and Hp(K/L) = {O} if p =1= n. 

Example 7.7. Let Xbe the union of two n-spheres tangent at a point. Then X 
has as triangulation the n-skeleton of the closure of two (n + 1 )-simplexes 
joined at a common vertex. Denote this triangulation by K, and let L denote 
the n-skeleton of one of the two (n + 1 )-simplexes. The section 

0* j* '* i!* 
Hn+l(K/L) --+ Hn(L) --+ HnCK) --+ Hn(K/L) --+ Hn-1(L) 

of the homology sequence of(K, L) satisfies the hypotheses of Theorem 7.10 
so that 

Hn(K) ~ Hn(K/L) EB Hn(L). 

The reader should show that 

HfI(K/L) ~ Hn(L) ~ 7L 
and 

The relative homology groups were defined by Lefschetz [46] in 1927, and 
the homology sequence was introduced by Hurewicz [43] in 1941. The six 
parts of the exactness argument (Theorem 7.11) had been used separately for 
many years before Hurewicz' formalization of the homology sequence, 
however. 

7.4 Singular Homology Theory 
There are several methods of extending homology groups to spaces other than 
polyhedra. Probably the most useful one is the singular homology theory, 
which is discussed briefly in this section. Instead of insisting that the space X 
be built from properly joined simplexes, one considers continuous maps from 
standard simplexes into X. These maps are called "singular simplexes." There 
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are natural definitions of chains, cycles, and boundaries paralleling those of 
simplicial homology. In fact, the singular and simplicial theories produce 
isomorphic homology groups when applied to polyhedra. The singular 
approach, however, applies to all topological spaces, not just polyhedra. 

First we define the standard simplexes which will be the domains of our 
singular simplexes. For notational reasons, points of 1R7I+1 will be written 
(xo, Xl> .•• , x7I) with zeroth coordinate xo, first coordinate Xl> etc. Thus the 
coordinates are numbered ° through n. 

Definition.The unit n-simplex, n ~ 0, in 1R7I+1 is the set 

Ll71 = {(xo, Xl>"" xn) E IRn+1: LXi = 1, Xi ~ 0, ° ~ i ~ n.} 

The point Vi with ith coordinate 1 and all other coordinates ° is called the 
ith vertex of Lln. The subset 

Lln(i) = {(xo, Xl> ••. , xn) E Lln: Xi = o} 

is called the ith face of Lln or the face opposite the ith vertex. The map 
di : Lln -1 -+ Lln defined by 

is the ith inclusion map. 

Note that Lln is simply the simplex in IRn+1 whose vertices are the points 
Vo = (l, 0, ... ,0), V1 = (0, 1,0, ... ,0), ... , Vn = (0, ... ,0, 1). The ith inclu­
sion map dt maps Lln - 1 onto the ith face of Ll7l • For the inclusion maps in 
the diagram 

elJ ell 
Lln _ 2 ----+ Lln - 1 ----+ Lln 

eI'-1 elJ 
Lln- 2 ----+ Lln- 1 -- Lln' j < i, 

we have didj = dA -1' The proof of this is left as an exercise. 

Definition. Let Xbe a space and n a non-negative integer. A singular n-simplex 
in X is a continuous function s": Lln -+ X. The set of all singular n-simplexes 
in X is denoted Sn(X). For n > ° and ° ~ i ~ n, the composite map 

sf = s7ldi : Ll7l - 1 -+ X 

is a singular (n - I)-simplex called the ithface of sn. The function from 
S7I(X) to S7I-1(X) which takes a singular n-simplex to its ith face is called 
the ith face operator on S..{ X). The singular complex of X is the set 

<Xl 

S(X) = U S7I(X) 
.. =0 

together with its family of face operators. It is usually denoted by S(X). 

Theorem 7.12. Let sn be a singular n-simplex in a space X, n > 1. Then 

S~j = Sj',i-1, o ~ j < i ~ n. 

PROOF. In the notation of the preceding definitions, 

S~j = sfdj = sndidj = s7ldA_1 = sjdi - 1 = Sj',i-1' o 
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Definition. A p-dimensional singular chain, or singular p-chain, p a non-negative 
integer, is a function cp: Sp(X) -+ 7L from the set of singular p-simplexes of 
X into the integers such that cp(sP) = 0 for all but finitely many singular 
p-simplexes. Under the pointwise operation of addition induced by the 
integers, the set Cp(X) of all singular p-chains on X forms a group. This 
group is the p-dimensional singular chain group of X. 

As in the simplicial theory, a singular p-chain can be expressed as a formal 
linear combination , 

cp = L: gi' s(i)P 
1=0 

where gi represents the value of cp at the singular p-simplex s(W and Cp has 
value zero for all p-simplexes not appearing in the sum. Since simplicial 
complexes have only finitely many simplexes, the" finitely nonzero" property 
of p-chains holds automatically in the simplicial theory. As in the simplicial 
theory, algebraic systems other than the integers can be used as the set of 
coefficients. 

Definition. The singular boundary homomorphism 

0: Cp(X) -+ Cp_I(X) 

is defined for an elementary singular p-chain g'sP, p ~ I, by 
p 

o(g·sP) = L: (-])gi,sf 
1=0 

This function is extended by linearity to a homomorphism 0 from Cp(X) 
into Cp_I(X). The boundary of each singular O-chain is defined to be O. 

Theorem 7.13. If X is a space and p ~ 2, then the composition 00: CiX)-+ 
Cp_2(X) in the diagram 

I) iJ 
Cp(X) -+ Cp_I(X) -+ Cp_iX) 

is the trivial homomorphism. 

PROOF. Since each p-chain is a linear combination of elementary p-chains, it is 
sufficient to prove that oo(g·s) = 0 for each elementary p-chain g·s. Note 
that 

( 
p ) p p-I 

oo(g·s) = 0 i~ (-I)lg·s, = i~ (-1)1 j~ (-I)ig,si,i 

p p-I 

= L: L: (-I)f+ig 'Si ,l 
1=01=0 

L: (-I)f+ig'Si,i + L: (-I)f+ig ' SI ,l 
oSi<iSp OSiSisp-1 

L: (_l)f+ig 'Si,i_l + L: (-l)l+fg·si,i· 
OSi<iSP OSiSisp-1 

In the left sum on the preceding line, replace i-I by j and j by i and the two 
sums will cancel completely. Thus 00 = O. 0 
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Definition. If X is a space and p a positive integer, a p-dimensional singular 
cycle on X, or singular p-cycle, is a singular p-chain zp such that o(zp) = O. 
The set of singular p-cycles is thus the kernel of the homomorphism 
0: Cp(X) -"" Cp_I(X) and is a subgroup of CP(X). This subgroup is 
denoted ZP(X) and called the p-dimensional singular cycle group of X. 
Since the boundary of each singular O-chain is 0, we define singular O-cycle 
to be synonymous with singular O-chain. Then the group Zo(X) of singular 
O-cycles is the group Co(X). 

If p ~ 0, a singular p-chain bp is a p-dimensional singular boundary, or 
singular p-boundary, if there is a singular (p + I)-chain Cp+1 such that 
O(Cp+l) = bp. The set Bp(X) of singular p-boundaries is then the image 
o(Cp+I(X» and is a subgroup of Cp(X). This subgroup is called the 
p-dimensional singular boundary group of X. Since 00: Cp(X) -"" Cp_2(X) 
is the trivial homomorphism, then Bp(X) is a subgroup of ZP(X), p ~ O. 
The quotient group 

Hp(X) = Zp(X)jBP(X) 

is the p-dimensional singular homology group of X. 

Many similarities in the definitions of the simplicial and singular homology 
groups should be obvious. Note, however, that no mention of orientation 
was made in the singular case. This was taken care of implicitly in the defini­
tion of the boundary operator: 

" o(g·s") = 2: (-I)lg·sf. 
I~O 

The definition in effect requires that the standard n-simplex A" be assigned the 
orientation induced by the ordering Vo < VI < ... < V". This orientation is 
then preserved in each singular n-simplex. 

Definition. Let X and Y be spaces and f: X -"" Y a continuous map. If 
s E Sp( X), the composition fs belongs to Sp( Y). Hence f induces a homo­
morphism 

defined by 

fp(~ gj' S(i)p) = j~ gj Is(i)P, 
r 

2: gj's(i)P E Cp(X). 
j~O 

One easily observes that the diagram 

Cp(X) ~ CiY) 

a1 fp-l 1a 
Cp_I(X) ~ Cp-I(Y) 

is commutative, so fp maps ZiX) into Zp( Y) and BiX) into BP( Y). (Com­
pare with Theorem 3.1.) Thusfinduces for eachp a homomorphism 

fp*: Hp(X) -"" Hp( Y) 
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defined by 

Jp*(zp + BiX)) = Jp(zp) + Bp( Y), 

The sequence {fp*} is the sequence oj homomorphisms induced by f 

The invention of singular homology theory is usually attributed to Solomon 
Lefschetz who introduced the singular homology groups in 1933 [45]. The 
basic idea can be found, however, in the classic book Analysis Situs [21] 
written by Oswald Veblen twelve years earlier. The important simplification 
obtained by using the ordered simplex Lln is due to Samuel Eilenberg. 

Singular homology has two great advantages over simplicial homology: 
(1) The singular theory applies to all topological spaces, not just polyhedra. 
(2) The induced homomorphisms are defined more easily in the singular 
theory. Recall that in the simplicial theory a continuous map between two 
polyhedra must be replaced by a simplicial approximation in order to define 
the induced homomorphisms. This presents problems of uniqueness which 
are completely avoided by the singular approach. As mentioned earlier, the 
singular and simplicial homology groups are isomorphic for polyhedra. 

The singular homology theory presented in this section is the barest of 
introductions. The theory has developed extensively and contains theorems 
paralleling those of simplicial homology. There are, for example, exact 
homology sequences and relative homology groups for singular homology. 
Anyone interested in learning more about singular homology should consult 
references [10] and [20]. 

7.5 Axioms for Homology Theory 

There are homology theories other than the original simplicial theory of 
Poincare and the singular theory. For example, homology groups for compact 
metric spaces were defined by Leopold Vietoris [56] in 1927 and for compact 
Hausdorff spaces by Eduard Cech [32] in 1932. The similarities of all these 
theories led Samuel Eilenberg (1913- ) and Norman Steenrod (1910-1971) 
to define the general term "homology theory." 

The definition applies to various categories of pairs (X, A), where X is a 
space with subspace A, and continuous functions on such pairs. A homology 
theory consists of three functions H, *, and 8 having the following properties: 

(1) H assigns to each pair (X, A) under consideration and each integer pan 
abelian group Hp(X, A). This group is the p-dimensional relative homology 
group oj X modulo A. If A = 0 then Hp(X, 0) = Hp(X) is the p­
dimensional homology group of X. 

(2) If(X,A)and(Y,B)arepairsandJ: X--* YwithJ(A) C Ban admissible 
map, then the function * determines for each integer p a homomorphism 

Jp*: HiX, A) --* Hp(Y, B) 

called the homomorphism induced by J in dimension p. 
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(3) The function 0 assigns to each pair (X, A) and each integer p a homo­
morphism 

0: Hp(X, A) -+ H p_1(A) 

called the boundary operator on Hp(X, A). 

The functions H, *, and 0 are required to satisfy the following seven 
conditions: 

The Eilenberg-Steenrod Axioms 

I (The Identity Axiom). If i: (X, A) -+ (X, A) is the identity map, then the 
induced homomorphism 

i:: Hp(X, A) -+ H,,(X, A) 

is the identity isomorphism for each integer p. 

II (The Composition Axiom). Iff: (X, A) -+ (Y, B) and g: (Y, B) -+ (Z, C) 
are admissible maps, then 

(gf)! = g:fp*: Hp(X, A) -+ Hp(Z, C) 

for each integer p. 

III (The Commutativity Axiom). Iff: (X, A) -+ (Y, B) is an admissible map 
and g: A -+ B is the restriction off, then the diagram 

': Hp(X, A) ~ Hi Y, B) 

~l g: 1 ~ 
H p _ 1(A) ~ H p _ 1(B) 

is commutative for each integer p. 

IV (The Exactness Axiom). Ifi: A -+ X andj: (X, 0) -+ (X, A) are inclusion 
maps, then the homology sequence 

~ ~ ~ 
.. ·-+H1'(A) -+ H1'(X) -+ H1'(X, A) -+ H1' _1(A) -+ ... 

is exact. 

V (The Homotopy Axiom). If the maps f, g: (X, A) -+ (Y, B) are homotopic, 
then the induced homomorphisms f1'* and g: are equal for each integer p. 

VI (The Excision Axiom). If U is an open subset of X with DCA, then the 
inclusion map 

e: (X\U, A\U) -+ (X, A) 

induces an isomorphism 

e;: H,,(X\U, A\U) -+ H,,(X, A) 

for each integer p. (The map e is called the excision of U.) 
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vn (The Dimension Axiom). If X is a space with only one point, then 

H,,(X) = {O} 
for each nonzero value of p. 

Simplicial homology theory as presented in this book applies to the 
category of pairs (X, A) where X and A have triangulations KandL for which 
L is a subcomplex of K. The singular homology theory applies to all pairs 
(X, A) where X is a topological space with subspace A. For a survey of 
homology theory from the axiomatic point of view, see the classic book 
Foundations of Algebraic Topology by Eilenberg and Steenrod [4]. 

EXERCISES 

1. Let c be a p-chain on a complex K and v a vertex for which vc is defined. 
Prove that 

o(vc) = c - v oc. 

2. In the proof of Theorem 7.2, show that I/sp( -r") = 'YJ' (1'1' where 'YJ is 0, 1, or -1. 

3. Show that chain homotopy is an equivalence relation for chain mappings. 

4. Show that chain equivalence is an equivalence relation for complexes. 

5. Definition. Let K be a complex and v a vertex not in K such that if <vo ... vp ) 

is a simplex of K, then the set {v, vo, ... , vp } is geometrically independent. 
The complex vK consisting of all simplexes of K, the vertex v, and all simplexes 
of the form <vvo ... vp ), where <vo . .. vp ) is in K, is called the cone complex 
of K with respect to v. 
(a) If vK is a cone complex, prove that 

Ho(vK) ~ lL, Hp(vK) = {O}, P > O. 

(b) Show that the geometric carrier of each cone complex is contractible. 

6. Complete the details in the proof of Theorem 7.5. 

7. Prove the following facts about $": 
(a) If n is even, then every continuous map on S" of positive degree has a 

fixed point. 
(b) If n is odd, then every continuous map on S" of negative degree has a 

fixed point. 

8. Prove that every continuous map from the projective plane into itself has a 
fixed point. 

9. Let IKI be a contractible polyhedron. Prove that every continuous map on 
I K I has a fixed point. 

10. Prove or disprove: If IKI is a polyhedron and /, g are homotopic maps on 
IKI, thenfhas a fixed point if and only if g has a fixed point. 

11. Give an example of a continuous map on a polyhedron that has no fixed 
point. Prove from the definition that the map has Lefschetz number O. 
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12. Prove that Hr,{K/0) ~ HP(K) for each complex K, p ~ O. 

13. Show that Br,(K/L) C ZP(K/L) for each subcomplex L of a complex K. 

14. Let K be a complex and v a vertex of K. Determine the relative homology 
groups Hp(K/<v»), p ~ O. 

15. Let K be a complex of dimension nand L a subcomplex of dimension r. 
Prove that 

p ~ r + 2. 

Is there any relation between H r +1(K/L) and Hr+1(K)? 

16. Show that the functions i*, j*, and 0* in the homology sequence of a pair 
(K, L) are weB-defined homomorphisms. Explain why i* may not be one-to­
one even though i: L -+ K is the inclusion map. 

17. Prove Theorem 7.10. 

18. Complete the proof of Theorem 7.11. 

19. Complete the details of Example 7.7. 

20. Suppose that a complex K is the union of two subcomplexes Kl and K2 having 
a single vertex in common. Determine the homology groups of K in terms of 
those of Kl and K2. 

21. Show that if j < i, then did, = dA-l for the inclusion maps in the diagram 
at al 

~n-2~~n-l----+~n 
al-l al 

~n-2 ----+ ~n-l~ ~n' 

22. Definition. A subset M of a complex K is an open subcomplex of K means that 
K\M is a subcomplex of K. 

Prove the Excision Theorem for simplicial homology: Let K be a complex, 
L a subcomplex of K and M an open subcomplex of L. If e: I K\M I -+ I K I is the 
inclusion map, then the induced homomorphism 

e;: Hp(~(Z) -+ Hp(1) 
is an isomorphism for each integer p. 

23. (a) Define the term "chain mapping" for singular homology theory. 
(b) Show that a continuous map f: X -+ Y induces a chain mapping on the 

associated chain groups. 
(c) Define the induced homomorphisms on the singular homology groups in 

terms of chain mappings. 

24. (a) Define the term "deformation operator" for singular homology theory. 
(b) Prove that homotopic maps/, g: X -+ Yinduce the same homomorphism 

fp* = g:: HP(X) -+ Hr,{ Y) 

in the singular homology theory. 
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A Note About the Appendices 

The three appendices give basic definitions and theorems about set theory, 
point-set topology, and algebra assumed in the text. These facts are intended 
to refresh the reader's memory. The appendices are not complete treatments 
in any sense; proofs are not included. More complete expositions and proofs 
for the theorems listed here can be found in many standard texts. For example, 
see the text by Dugundji [3] or the text by Munkres [18] for set theory and 
point-set topology and the text by Jacobson [12] for algebra. 
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APPENDIX 1 

Set Theory 

The symbol "E" indicates set membership, and" c " indicates set inclusion. 
Thus a E A means that a is a member or an element of set A; A c B means 
that set A is contained in set B or that A is a subset of B. The notation 
{x E A : ... } denotes the set of all members of A satisfying the statement ... ; 
for example, if A is the set of real members, then {x E A: 0 ~ x ~ 4} denotes 
the set of real numbers from 0 to 4 inclusive. Subsets of A other than A itself 
and the empty set 0 are called proper subsets. 

Definition. If A and B are sets, the union A U B and intersection A n Bare 
defined by 

A u B = {x: x E A or x E B}, 

A n B = {x: x E A and x E B}. 

Unions and intersections of arbitrary families of sets are similarly defined. 
If A c X, then the complement of A with respect to X is the set X\A of 
members of X which do not belong to A: 

X\A = {x E X: x i A}. 

Definition. The Cartesian product of two sets A and B is the set 

A x B = {(a, b): a E A and bE B}. 

The Cartesian product of a finite collection {Aj}f= 1> where each Aj is a set, 
is defined analogously: 

Al X A2 X ••• X An = {(al>a2, ... ,an):ajEAj, 1 ~ i ~ n}. 

The point aj is called the ith coordinate of (aI, a2, ... , an). 
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Products can be defined for arbitrary families of sets; this must be post­
poned, however, until the concept of function from one set to another has 
been introduced. 

Definition. A relation from set A to set B is a subset '" of the Cartesian 
product A x B. It is customary and simpler to write a '" b to mean 
(a, b) E "'. A relation '" from A to itself is an equivalence relation means 
that the following three properties are satisfied: 

(l) The Reflexive Property: x '" x for all x E A. 
(2) The Symmetric Property: If x '" y then y '" x. 
(3) The Transitive Property: If x '" y and y '" z, then x '" z. 

The equivalence class of x is the set 

[xl = {YEA:x '" y}. 

If '" is an equivalence relation on A, then each element of A belongs to 
exactly one equivalence class. 

Definition. Afunctionf: A ~ B is a relation from set A to set B such that if 
a E A there is only one b E B for which afb. It is customary to write 
f(a) = b and to call b the image of a under! Set A is the domain off, and 
the range off is the set 

f(A) = {b E B: b = f(a) for some a E A}. 

Definition. Iff: A ~ Band g: B ~ C are functions on the indicated sets, then 
the composite function gf: A ~ C is defined by 

gf(a) = g(f(a», aEA. 

Definition. The identity function on a set A is the function i: A ~ A such that 
i(a) = a for all a E A. 

Definition. A functionf: A ~ B is one-to-one if no two members of A have 
the same image;fis onto iff(A) = B. A function which is both one-to-one 
and onto is called a one-to-one correspondence. Thus a one-to-one corre­
spondence is a function from A to B for which each point of B is the 
image of exactly one point of A. In this case there is an inverse function 
f- 1: B ~ A defined by: a = f-1(b) if and only if b = f(a). 

Iff: A ~ B is a one-to-one correspondence, then the composite functions 
f-Yandff-1 are the identity functions on A and B respectively. 

Definition. Ifthere is a one-to-one correspondence between sets A and B, then 
A and B are said to have the same cardinal number. 
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Definition. Iff: A -+ B is a function and C c A, the restriction fie: C -+ B of 
f to C is the function with domain C defined by 

fle(x) = f(x), x E C. 

Equivalently,J is called an extension of fie. 

Definition. If {Ai} is a family of sets indexed by a set J (i.e., if Ai is a set for 
eachj in a given set J), then the product of the sets Ai is the set Di£l Aj 
composed of all functionsf: J -+ U Aj such thatf(j) E Aj for eachj EJ. 

The finite product Al x A2 X .•• x An is a special case of the preceding 
definition. Let J be the set of integers I, 2, ... , n, and identify the sequence 
(010 02, ••• , an) with the functionf: J -+ Uj= I Aj whose value at j is OJ. Then 

Al x A2 X ••• x An = n Aj • 

j£l 

Definition. Let f: X x Y -+ Z be a function from the product set X x Y into 
Z. If Xo is a point of X, then the symbolf(xo, .) denotes the function from 
Y into Z defined by 

f(xo, . )(y) = f(xo, y), yE Y. 

For Yo in Y, the symbolf(·, Yo) denotes the function from Xto Z defined by 

f( . ,Yo)(x) = f(x, Yo), XE X. 

157 



APPENDIX 2 

Point-set Topology 

Definition. A topology for a set X is a family T of subsets of X satisfying the 
following three properties: 

(1) The set X and the empty set 0 are in T. 
(2) The union of any family of members of T is in T. 
(3) The intersection of any finite family of members of T is in T. 

The members of T are called open sets. A topological space, or simply 
space, is a pair (X, T) where X is a set and T is a topology for X. One often 
refers to a topological space X, omitting mention of the topology, when 
the name of the topology is not important. 

A base or basis for a topology Tis a subset B of Tsuch that each member 
of T is a union of members of B. A subbase or subbasis for T is a subset S 
of T such that the family of all finite intersections of members of S is a 
basis for T. 

If X is a space, a subset C of X is closed means that its complement 
X\C = {x E X: x ¢ C} is open. A neighborhood of a point x in X is an open 
set containing x. 

A point x is a limit point of a subset A of X means that every neighbor­
hood of x contains a point of A distinct from x. The closure of a set A is 
the set A, the union of A with its set of limit points. The boundary of A is 
the intersection of A with X\A. 

Proposition. A subset A of a space X is closed if and only if A contains all its 
limit points. A subset 0 of X is open if and only if 0 contains a neighborhood 
of each of its points. The closure of each subset of X is a closed set. 

Definition. A space X is a Hausdorff space or a T2-space provided that for each 
pair Xl> X2 of distinct points of X there exist disjoint neighborhoods 0 1 

and O2 of Xl and X2 respectively. 
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Definition. The subspace topology for a subset A of a space X consists of all 
subsets of the form 0 n A where 0 is open in X. The set A with its subspace 
topology is a subspace of X. 

Definition. A covering 'C of a space X is a family of subsets of X whose union 
is X. A subcovering of'C is a covering each of whose members is a member 
of 'C. A covering each of whose members is an open set is called an open 
covering. 

Definition. A space X is compact provided that every open covering of X has a 
finite subcovering. A compact subset of X is a subset which is compact in 
its subspace topology. A space is locally compact means that for each 
point x there is a neighborhood U of x and a compact set A with U C A. 

Proposition. (a) In a Hausdorff space, compact sets are closed. 
(b) A closed subset of a compact space is compact. 
(c) If X is a locally compact Hausdorff space and x E X, then for each 

neighborhood V of x there is a neighborhood 0 of x such that {j c V and (j 
is compact. 

Definition. A space X is connected means that X is not the union of two dis­
joint, nonempty open sets. A connected subset of X is a subset which is 
connected in its subspace topology. A component is a connected subset 
which is not a proper subset of any connected subset of X. 

Definition. A metric or distance function for a set X is a function d from the 
Cartesian product X x X to the non-negative real numbers such that, for 
all x, y, z in X, 

(1) d(x, y) = d(y, x), 
(2) d(x, y) = 0 if and only if x = y, 
(3) d(x, y) + d(y, z) ;::: d(x, z). 

For x E X and r > 0 the set 

S(x,r) = {YEX:d(x,y) < r} 

is called the spherical neighborhood with center x and radius r. The set of all 
such spherical neighborhoods is a basis for a topology for X, the metric 
topology determined by d. A set with the topology determined by a metric 
is called a metric space. The diameter of a subset A of a metric space is the 
least upper bound of the distances between points of A: 

diam A = lub{d(x, y): x, YEA}. 

A set with finite diameter is called bounded. 
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Definition. A function J: X -+ Y from a space X to a space Y is continuous 
provided that for each open set U in Y the inverse image 

J- 1(U) = {x E X:J(x) E U} 

is open in X. A one-to-one correspondence J: X -+ Y for which both J 
and the inverse functionJ-1 are continuous is called a homeomorphism; in 
this case X and Yare said to be homeomorphic. A function g: X -+ Y is 
open provided that g( 0) is open in Y for each open subset 0 of X. Closed 
Junction is defined analogously. 

Proposition. The composition oj continuous Junctions is continuous. 

Proposition. The properties oj being compact or connected are preserved by 
continuous Junctions. 

Proposition. LetJ: X -+ Y be aJunction on the indicated spaces. TheJollowing 
statements are equivalent: 

(a) J is continuous. 
(b) For each closed subset C oj Y, J-1( C) is closed in X. 
(c) There is a basis B Jor Y such that J-1( U) is open Jor each U E B. 
(d) There is a subbasis S Jor Y such that J-1( U) is open Jor each U E S. 

Proposition. If X and Yare metric spaces with metrics d and d' respectively and 
J: X -+ Y is a Junction, then f is continuous if and only if Jor each Xo E X and 
€ > 0, there is a number S > 0 such that if d(xo, x) < S, then d(f(xo),J(x)) 
< €. 

Definition. Let X and Y be metric spaces with metrics d, d' respectively. A 
function J: X -+ Y is uniformly continuous means that for each € > 0, 
there is a number S > 0 such that if x and x' are points of X with 
d(x, x') < S, then d(f(x),J(x')) < €. 

Proposition. If X and Yare metric spaces, X is compact, and J: X -+ Y is 
continuous, then J is uniformly continuous. 

Proposition. If ~ is an open covering oj a compact metric space X, then there 
is a positive number 7J such that each subset oj X oj diameter less than 7J is 
contained in a member oJo/i. (The number 7J is called a Lebesgue numberJor 
the open covering 0/,/.) 

Definition. Let X and Y be spaces. The product space X x Y is the Cartesian 
product of X and Y with the product topology which has as a basis the 
family of all sets of the form U1 x U2 where U1 is open in X and U2 is 
open in Y. 
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If {Xa} is a family of spaces indexed by a set A, then the product space 
Da£A Xa is the product of the sets Xa with the product topology which has 
as a subbasis all sets ofthe form pi l(Up), f3 E A. Here pp: Da£A Xa --+ Xp is 
the projection on Xp defined by 

pp(f) = f(f3), 

and Up represents an arbitrary open set in Xp. 

Proposition. (a) A product of compact spaces is compact. 
(b) A product of connected spaces is connected. 
(c) If Xo E X and Yo E Y, then the subs paces X x {yo} and {xo} x Yof 

X x Yare homeomorphic to X and Y respectively. 

Definition. Let X be a space and S an equivalence relation on X. Then S 
partitions X into a family X / S of equivalence classes. The quotient topology 
for X / S is defined by the following condition: A set U of equivalence 
classes in X / S is open if and only if the union of the members of U is open 
in X. The quotient space of X modulo S is the set X / S with the quotient 
topology. 

As an important special case we have the quotient space X/A where A 
is a subset of X. This is the quotient space of X determined by the relation: 
xSy if and only if x = y or x and yare both in A. The points of X/A are 
the points of X\A and an additional single point A. 

Iff: X --+ Y is a function from a space X onto a set Y, then the quotient 
topology for Y consists of all sets U c Y for whichf-1(U) is open in X. 
The function f determines an equivalence relation R on X defined by 
X1Rx2 if and only if f(X1) = f(X2)' The quotient space X / R is homeo­
morphic to the space Y with the quotient topology determined by f. 

Proposition. Letf: X --+ Y be a continuousfunctionfrom space X onto space Y. 
Iff is either open or closed, then Y has the quotient topology determined by f 

Definition. Euclidean n-dimensional space ~", n a positive integer, is the set 

~"= {x = (X1o ... ,X,,):XI is areal number, 1::; i::; n} 

with the topology determined by the Euclidean metric: 

d(x, y) = {~ (XI _ YI)2} 1/2 

where x = (Xl, ... , X,,) and y = (Y1o ... , y,,) are members of ~". The 
members of~" are referred to as points or vectors. The norm or length Ilxll 
of a vector X in ~" is the distance from x to the origin 0 = (0, ... , 0): 

{ " }1/2 
Ilxll = ~x: . 
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Note that Rl is simply the real number line: Rl = IR. 
For x, y in Rft, the inner product or dot product of x and y is the number 

x·y = X1YI + X2Y2 + ... + Xftyft· 

The vectors x and yare perpendicular or orthogonal if x·y = O. This 
definition extends the common concept of perpendicUlarity in two and 
three dimensions to higher dimensions. 

The unit n-sphere Sft is the set of all points in Rn+ 1 of unit length: 

Sft = {x = (xlo ••• , Xn+l) E Rft+l: Ilxll = I}, n ~ O. 

Note that Sft is a subspace of Rft+l, not of Rft. We may consider Rft as the 
subspace of Rn+ 1 consisting of all points having final coordinate O. 

Proposition. (a) Euclidean n-space is homeomorphic to the product of n copies 
of the space of real numbers. 

(b) A subspace of Rft is compact if and only if it is closed and bounded. 

Definition. The unit n-ball Bft is the set of all points in Rft of length not 
exceeding I: 

Bft = {x = (Xlo"" x ft ) E Rft: Ilxll :::;; I}, n ~ 1. 

Note that the boundary of Bft is the unit (n - I)-sphere Sft-l. 
The unit n-cube 1ft is the set 

1ft = {t = (tlo •• • , tft) E Rft: 0 :::;; tl :::;; 1 for each i}. 

Thus J1 = I is the closed unit interval [0, 1], 12 is a square, and 13 is a 
3-dimensional cube. The boundary of I", denoted 01", is the set of all 
points of l" having some coordinate equal to 0 or 1. 

Proposition. (a) The quotient space of Bft obtained by identifying its boundary 
S"-1 to a single point is homeomorphic to Sft. 

(b) The quotient space of 1ft obtained by identifying its boundary 01" to a 
single point is homeomorphic to S". 

Definition. Let X be a Hausdorff space which is not compact and 00 a point 
not in X. The one-point compactijication X* of X is the set 

X* = Xu {oo} 

with the topology determined by the basis composed of all open sets in X 
together with all subsets U of X* for which X*\ U is a closed, compact 
subset of X. 

Proposition. The one-point compactijication X* of a Hausdorff space X is a 
compact space,' X* is Hausdorff if and only if X is locally compact. 

Proposition. The one-point compactijication of Euclidean n-space Rft is homeo­
morphic to S". 
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Algebra 

Definition. A binary operation on a set A is a function f: A x A -+ A. For 
a, b E A, f(a, b) is often expressed ab or a·b (multiplicative notation) or 
a + b (additive notation). 

Definition. A group is a set G together with a binary operation on G satisfying 
the following three properties: 

(1) a(bc) = (ab)c fOf all a, b, c E G. 
(2) There is an element e, the identity element of G, such that ae = ea = a 

for all a in G. 
(3) For each a in G, there is an element a-1, the inverse of a, such that 

aa- 1 = a- 1a = e. 

In the additive group notation, the identity element is denoted by 0 and 
the inverse of a by -a. A group whose only element is the identity is the 
trivial group {O}. 

A subset A of a group G is a subgroup of G provided that A is a group 
under the operation of G. If A is a subgroup and g E G, then 

gA = {ga: a E A} 

is called the left coset of A by g. In the additive notation, we would write 
g + A instead of gAo Right cosets are defined similarly. 

Proposition. Left cosets gA and hA of a subgroup A are either disjoint or 
identical. 

Definition. A group G is commutative or abelian means that ab = ba for all 
a,bEG. 
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Definition. A homomorphism I: G -+ H from a group G into a group H is a 
function such that 

I(ab) = f(a)/(b), a,beG. 
The set 

Kerf = {a e G:/(a) = identity of H} 

is the kernel of f. An isomorphism is a homomorphism which is also a 
one-ta-one correspondence between G and H; in this case the groups are 
called isomorphic, and we write G ~ H. 

Definition. A subgroup A of a group G is normal means that g-lag e A for all 
geG, aeA. 

Proposition. The kernel of a homomorphism I: G -+ H is a normal subgroup 
of G. The homomorphism is one-to-one if and only if the kernel off contains 
only the identity 01 G. 

Proposition. If A is a normal subgroup ofG, then each left coset gA equals the 
corresponding right coset Ag. Thefamily GJA of all left cosets of A is a group 
under the operation 

gA·hA = ghA. 

(The group GJA is called the quotient group of G modulo A.) 

Proposition (The First Homomorphism Theorem). Let I: G -+ H be a homo­
morphism Irom group G onto group H with kernel K. Then H is isomorphic 
to the quotient group GJK. 

Definition. A commutator in a group G is an element of the form aba-1b- 1. 
The commutator subgroup of G is the smallest subgroup containing all 
commutators of G. Equivalently, the commutator subgroup consists of all 
finite products of commutators of G. 

Proposition. (a) The commutator subgroup F 01 a group G is normal. 
(b) The commutator subgroup is the smallest subgroup of G for which GJ F 

is abelian. 

Definition. Ifgis a member ofa group G, the set of all powersg, g-l, gg = g2, 
g-lg-l = g-2, ... forms a subgroup 

[g] = {g": n is an integer} 

called the subgroup generated by g. If G has an element g for which [g] = G, 
then G is a cyclic group with generator g. 

The most common cyclic group is the group l of integers. Both 1 and -1 
are generators. 
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Definition. A set of generators for a group G is a subset S of G such that each 
member of G is a product of powers of members of S. A group which has 
a finite set of generators is called finitely generated. 

Definition. The direct sum G EB H of groups G and H is the set G x H with 
operation EB defined by 

(gI> h 1) EB (g2, h2) = (gl + g2, hl + h2) 

for all gI> g2 E G, hI> h2 E H. (Here we are using additive notation.) 

Definition. A group which is isomorphic to a finite direct sum of copies of the 
group 7L of integers is called a free abelian group. Thus a free abelian group 
on n generators is isomorphic to the direct sum 7L EB 7L EB· .. EB 7L (n 
summands). The integer n is called the rank of the group. 

Proposition. Every subgroup of a free abelian group is a free abelian group. 

Proposition (The Decomposition Theorem for Finitely Generated Abelian 
Groups). Each finitely generated abelian group is a direct sum of a free 
abelian group G and a finite subgroup. The finite subgroup (called the torsion 
subgroup) is composed of the identity element alone or is a direct sum of 
cyclic groups of prime power orders. The rank of G and the orders of the 
cyclic subgroups (with their mUltiplicities) are uniquely determined. 

Definition. A permutation on a finite set V is a one-to-one function from V 
onto itself. The set of all permutations on a set of n distinct objects forms a 
group, the symmetric group on n objects, under the operation of composi­
tion. A transposition on V is a permutation which interchanges precisely 
two members of V and acts as the identity map for the other members. 

Proposition. Every permutation is a product of transpositions. 

If a permutation is the product of an even number of transpositions, then 
it is called an even permutation. Although it is not obvious, it is true that if a 
given permutation can be represented as a product of an even number of 
transpositions, then every representation of it as a product of transpositions 
requires an even number. A permutation which is not even is called an odd 
permutation. 

Example. To illustrate the way even and odd permutations are used in the 
text, consider a set V = {Vb V2, V3} of three elements with a definite order 
Vb V2, V3. The arrangement Vl, V3, V2 represents an odd permutation of the 
given order since it was produced by transposing one pair of elements. 
Likewise, the ordering V2, Vi> V3 represents an odd permutation. On the other 
hand, V2, V3, Vl represents an even permutation since it is produced from the 
original order by two transpositions: beginning with V1 , V2, V3 transpose Vl 

and V2 to produce V2, VI> V3; now transpose Vl and V3 to produce V2, V3, V1. 
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Definition. A topological group is a group G with a topology under which the 
operation of G is a continuous map from G x G to G and the function 
g -+ g-l is a homeomorphism from G onto G. 

Definition. A ring is a tr;ple (R, +, .), where R is a set with operations + and 
. (indicated by juxtaposition), such that 

(1) (R, +) is an abelian group, 
(2) (ab)c = a(bc), 
(3) a(b + c) = ab + ac, 
(4) (b + c)a = ba + ca, a, b, c E R. 

The operation + is called addition, and . is called multiplication. The 
additive identity element is denoted by o. If there is an identity element I 
for multiplication, then R is a ring with unity. A ring is commutative if 
ab = ba for all a, b E R. 

Definition. A field is a commutative ring with unity in which the nonzero 
elements form a group under multiplication. . 

The most common fields are the real numbers, the rational numbers, and 
the complex numbers. 

Definition. A vector space over a field F is a set V with two operations, an 
addition + under which V forms an abelian group, and scalar multiplica­
tion which associates with each v E V and a E F a member av in V. The 
following conditions must be satisfied for all a, b E F and all u, v E V: 

(1) (ab)v = a(bv), 
(2) a(u + v) = au + av, (a + b)v = av + bv, 
(3) l·v = v. 

The members of a vector space V are called vectors. 

Definition. A set {Vb .. . , Vk} of members of a vector space V is linearly 
dependent if there exist elements aI, ... , ak of the field F such that 

al VI + ... + akVk = 0 

and not all the aj are O. A set of vectors is linearly independent if it is not 
linearly dependent. A set of vectors {Vb . .. , Vk} is said to span V if each 
element V E V can be represented as a linear combination 

V = b1Vl + ... + bkVk 

for some bl> ... , bk in F. A base or basis for V is a linearly independent set 
which spans V. If V has a finite basis, then V is called finite dimensional. 

Proposition. Any two basesfor afinite dimensional vector space V have the same 
number of elements. (This number is the dimension of V.) 
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The most common vector spaces are the Euclidean spaces IRn over the field 
of real numbers. Vector addition and scalar multiplication are defined by 

(Xh ... , xn) + (Yh ... , Yn) = (Xl + Yh ... , Xn + Yn), 

a(xh ... , xn) = (axI' ... , aXn). 

It is sometimes said that these operations are defined "componentwise" by 
addition and multiplication of real numbers. The vector space dimension of 
IRn is n. 

Definition. A subspace A of a vector space V is a subset of V which is a 
vector space under the addition and scalar multiplication of V. A hyper­
plane is a translation of a subspace: H is a hyperplane provided that there 
is a subspace A and a vector v E V such that 

H = {v + a: a E A}. 

Definition. The sum A + B of subs paces A and B of a vector space V is the 
subspace 

A + B = {a + b: a E A, b E B}. 

If each element v in A + B has a unique representation v = a + b for 
a E A and b E B, then A + B is written A EB B and called a direct sum. 

Proposition. (a) The sum A + B is a direct sum if and only if A r. B = {O}. 
(b) If A r. B = {O} and {Vh"" Vk} and {Wh .•• , Wi} are bases for A and 

B respectively, then {VI' ... , Vk, WI, ..• , W j} is a basis for A EB B. In particu­
lar, the dimension of A EB B is the sum of the dimensions of A and B. 

Definition. If V and Ware vector spaces over a common field F, a function 
f: V --+ W satisfying 

f(u + v) = f(u) + f(v), 

f(au) = af(u), a E F, u, V E V, 

is called a homomorphism or a linear transformation. A one-to-one linear 
transformation from V onto W is an isomorphism. 

Definition. If m and n are positive integers, an m x n matrix over a field F is 
a rectangular array 

[

al1al2 

A _ ( ) _ a2Ia 22 
- ali - . 

amIam2 ••• 

of mn members of F. The element alj in row i and column j is called the 
(i, j)th component of A. If B = (b jj) is another m x n matrix, then the 
matrix sum A + B is defined by 

A + B = (au + bjj). 
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The matrix product AC is defined for any matrix C = (Cki) of n rows by 

AC = (dli) 

where dli = L~= 1 alkCkj. The elements ell, e22, ... , enn of an n x n matrix 
E = (etJ) are called its diagonal elements. The trace of E is the sum of its 
diagonal elements: 

n 

trace E = 2: ell· 
1=1 

Proposition. Let V be a finite dimensional vector space over F with basis 
{Vb . .. , vn}. Then there is a one-to-one correspondence between the set of 
linear transformations f: V ~ V and the set of n x n matrices over F. The 
matrix corresponding to f is the matrix At = (ali) where 

n 

f(vI) = 2: ajjvj. 
J=l 

The composition of two linear maps corresponds to the product of their 
associated matrices. 

Proposition. Let f: V ~ V be a linear transformation. If matrices Band C 
represent f relative to different bases, then Band C have the same trace. 

Definition. Let F be a field, and let Vn denote the vector space of all n-tuples 
of members of F with operations defined by 

(Xl, ... , Xn) + (Yl, ... , Yn) = (Xl + Yl, ... , Xn + Yn), 

a(Xb ... , Xn) = (aXb ... , aXn). 

If A = (au) is an m x n matrix over F, then each row 

of A can be considered a member 

of Vn. In this context, the rows of A are called row vectors. The rank of A, 
rank(A), is the dimension of the subspace of Vn spanned by the row 
vectors of A. 
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Algebraic Topology: An Introduction 
by W. S. Massey 
(Graduate Texts in Mathematics, Vol. 56) 
1977. xxi, 261p. 61 illus. cloth 

Here is a lucid examination of algebraic topology, designed to introduce advanced 
undergraduate or beginning graduate students to the subject as painlessly as 
possible. Algebraic Topology: An Introduction is the first textbook to offer a 
straight-forward treatment of "standard" topics such as 2-dimensional manifolds, 
the fundamental group, and covering spaces. The author's exposition of these 
topics is stripped of unnecessary definitions and terminology and complemented by 
a wealth of examples and exercises. 

Algebraic Topology: An Introduction evolved from lectures given at Yale University 
to graduate and undergraduate students over a period of several years. The aathor 
has incorporated the questions, criticisms and suggestions of his students in 
developing the text. The prerequisites for its study are minimal: some group theory, 
such as that normally contained in an undergraduate algebra course on the 
junior-senior level, and a one-semester undergraduate course in general topology. 

Lectures on Algebraic Topology 
by A. Dold 
(Grundlehren der mathematischen Wissenschaften, Vol. 2(0) 
1972. xi, 377p. 10 illus. cloth 

Lectures on Algebraic Topology presents a comprehensive examination of singular 
homology and cohomology, with special emphasis on products and manifolds. The 
book also contains chapters on chain complexes and homological algebra, applica­
tions of homology to the geometry of euclidean space, and CW -spaces. 

Developed from a one-year course on algebraic topology, Lectures on Algebraic 
Topology will serve admirably as a text for the same. Its appendix contains the 
presentation of Kan- and tech-extensions of functors as a vital tool in algebraic 
topology. In addition, the book features a set of exercises designed to provide 
practice in the concepts advanced in the main text, as well as to point out further 
results and developments. 

From the reviews: 

"This is a thoroughly modem book on algebraic topology, well suited to serve as a 
text for university courses, and highly to be recommended to any serious student of 
modem algebraic topology." 

Publicatjones Mathematicae 



Other Undergraduate Texts in Mathematics 

Apostol: Introduction to Analytic Number Theory. 
1976. xii, 338 pages. 

Chung: Elementary Probability Theory with Stochastic Processes. 
1975. x, 325 pages. 36 illus. 

Fleming: Functions of Several Variables. Second edition. 
1977. xi, 411 pages. 96 illus. 

Halmos: Finite-Dimensional Vector Spaces. Second edition. 
1974. viii, 200 pages. 

Halmos: Naive Set Theory. 
1974. vii, 104 pages. 

Kemeny/Snell: Finite Markov Chains. 
1976. ix, 210 pages. 

LeCuyer: Introduction to College Mathematics 
Using A Programming Language. 
1978. Approximately 450 pages. 150 illus. 

Protter/Morrey: A First Course in Real Analysis. 
1977. xii, 507 pages. 135 illus. 

Sigler: Algebra. 
1976. xii, 419 pages. 32 illus. 

Singer /Thorpe: Lecture Notes on Elementary Topology and Geometry. 
1976. viii, 232 pages. 109 illus. 

Smith: Linear Algebra. 
1978. ix, 278 pages. 14 illus. 
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