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ADEM-CARTAN OPERADS

David Chataur
Department de Mathematiques, Universite des Sciences et Technologies de Lille,
Cite Scientifique, Batiment, Villeneuve d’Ascq, France

Muriel Livernet
LAGA, Institut Galilee, Universite Paris 13, Avenue Jean-Baptiste Clement,
Villetaneuse, France

In this article, we introduce Adem-Cartan operads and prove that the cohomology
of any algebra over such an operad is an unstable level algebra over the extended
Steenrod algebra. Moreover, we prove that this cohomology is endowed with secondary
cohomology operations.
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INTRODUCTION

The Steenrod Algebra �p is one of the main computational tools of homotopy
theory. Steenrod’s operations were first introduced by Steenrod (1947) for p = 2 and
for an odd prime in 1952 (Steenrod, 1952). The relations between these cohomology
operations were determined by Adem (1952) and Cartan (1955). Cartan’s proof
relies on the computation of the singular cohomology of the Eilenberg-Mac Lane
spaces at the prime p. Adem’s proof is based on the computation of the homology
of the symmetric group �p2 acting on p2 elements at the prime p. In the 1960s,
Adams introduced secondary cohomology operations (Adams, 1960), which are an
efficient tool to deal with realizability problems of unstable modules over �2. In this
article, we extend these results to a more algebraically framework, at the prime 2.

The purpose of this article is to give an operadic description of algebras over
the Steenrod algebra. More precisely we define Adem-Cartan operads and prove
that the cohomology of an Adem-Cartan algebra is an unstable level algebra over
the extended Steenrod algebra �2 (see Corollary 3.3.2). By a level algebra, we mean
a commutative algebra (not necessarily associative) satisfying the following 4-term
relation:

�a ∗ b� ∗ �c ∗ d� = �a ∗ c� ∗ �b ∗ d��
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4338 CHATAUR AND LIVERNET

These are algebras over the operad �ev. An unstable algebra over�2 is a�2-module
satisfying the usual conditions, namely the Cartan formula and Adem relations.

An Adem-Cartan operad is an operad � containing 2-cells ei ∈ ��2�−i and
4-cells �Gm

n �0<m≤n ∈ ��4�−n, whose differential satisfies relation (2.8). For any
�-algebra the cells ei, usually the ∪i-products, are responsible for the existence
of Steenrod squares, whereas the cells Gm

n are responsible for the relations
between them (Adem and Cartan relations). We prove that there exists a cofibrant
Adem-Cartan operad �evAC , which is obtained by the process of attaching
cells from the standard bar resolution of �2, and such that �evAC → �ev is
a fibration. The cohomology of a �evAC-algebra A is a �evAC-algebra itself
(this structure is however not natural). Hence the 4-cells Gm

n+1 yield secondary
cohomology operations �m�n � Hq�A� → H4q−n−1�A�. We prove that given an Adem
relation

∑
i Sq

mi Sqni �a� = 0, there exist maps �m�n from
⋂

i Sq
ni ⊂ H∗�A� to

H∗�A�/
∑

i Im Sqmi defined at the cochain level. We prove that these two maps
coincide, that is �m�n�a� = 	�m�n�a�
, for a ∈ ⋂

i Sq
ni (see Theorem 4.1.2).

Note that we recover some classical results on topological spaces. Since
E�-operads are Adem-Cartan operads (see 2.3.5), any algebra over an E�-operad
is an unstable algebra over the extended Steenrod algebra (see Kriz and May,
1995; May, 1970). Furthermore, since the cochain complex of a topological space
C∗�X��2� is an algebra over an E�-operad (see Hinich and Schechtmann, 1987),
then it has secondary cohomology operations. Thanks to the work of Kristensen
(1963), we prove that these operations coincide with Adams operations. Moreover,
we can extend these operations in a non-natural way to secondary cohomogy
operations on the whole cohomology (see Theorems 4.2.2 and 4.2.3).

The article is presented as follows. Section 1 contains the background needed.
In Section 2, Adem-Cartan operads are defined, the existence of �evAC is proven,
and we prove that E�-operads are Adem-Cartan operads. Section 3 is devoted to the
main theorem. Section 4 is concerned with secondary cohomology operations, and
Section 5 is devoted to proofs of technical lemmas stated in the different sections.

1. RECOLLECTIONS

The ground field is �2. In this article, a vector space means a differential
�-graded vector space over �2, where the differential is of degree 1.

The symbol �n denotes the symmetric group acting on n elements. Any � ∈ �n

is written ���1� · · · ��n��.

1.1. Operads

(Getzler and Jones, 1994; Ginzburg and Kapranov, 1994; Kriz and May, 1995;
Loday, 1996). A (right) �n-module is a (right) �2	�n
-differential graded module.
A �-module � = 
��n��n>0 is a collection of �n-modules. Any �n-module M gives
rise to a �-module � by setting ��q� = 0 if q �= n and ��n� = M .

An operad is a right �-module 
��n��n>0 such that ��1� = �2, together with
composition products:

��n�⊗ ��i1�⊗ · · · ⊗ ��in� −→ ��i1 + · · · + in�

o⊗ o1 ⊗ · · · ⊗ on 
→ o�o1� � � � � on��
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These compositions are subject to associativity conditions, unitary conditions,
and equivariance conditions with respect to the action of the symmetric group.
The equivariance conditions write

o�a1 · �1� � � � � an · �n� = o�a1� � � � � an� · ��1 × · · · × �n�

�o · ���a1� � � � � an� = o�a�−1�1�� � � � � a�−1�n�� · ��i1� � � � � in��
where �1 × · · · × �n is the permutation of �ii+···+in

such that �1 operates on the first
i1 terms, �2 on the next i2 terms and so on; the permutation ��i1� � � � � in� in �ii+···+in
operates as � on the n-blocks of size ik.

For instance, for any �� �� � ∈ ��2�, one has

�� · �21����� �� = ���� �� · �3412�� (1.1)

There is another definition of operads via �i operations
�i � ��n�⊗ ��m� −→ ��n+m− 1��

where p �i q is p composed with n− 1 copies of the unit 1 ∈ ��1� and with q at the
ith position.

The forgetful functor from the category of operads to the category of
�-modules has a left adjoint : the free operad functor, denoted by � ree.

An algebra over an operad � or an �-algebra A is a vector space together with
evaluation maps

��n�⊗ A⊗n −→ A

o⊗ a1 ⊗ · · · ⊗ an 
→ o�a1� � � � � an��

These evaluation maps are subject to associativity conditions and equivariance
conditions. These equivariance conditions write

�o · ���a1� � � � � an� = o�a�−1�1�� � � � � a�−1�n���

A graded algebra over an operad � is an �-algebra whose differential is zero.

1.2. Lemma. Let A be a graded algebra (dA = 0) over an operad �. Assume that
o ∈ ��n� is a boundary. Then o�a1� � � � � an� = 0, for all a1� � � � � an in A.

Proof. There exists � ∈ ��n� such that d� = o. The Leibniz rule implies that

dA���a1� � � � � an�� = o�a1� � � � � an�+
∑
i

��a1� � � � � dAai� � � � � an�

and the result follows because dA = 0. �

1.3. Operadic Cellular Attachment

(Berger and Moerdijk, 2003; Hinich, 1997). The category of operads is a closed
model category. Weak equivalences are quasi-isomorphisms (i.e., isomorphisms in
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cohomology of the underlying vector spaces) and fibrations are epimorphisms.
Cofibrations can be defined by the left lifting property with respect to the acyclic
fibrations. For background material on closed model categories we refer to Dwyer
and Spalinski (1995), Hovey (1999), and Quillen (1967).

Any morphism of operads

	 −→ 


can be factorized by a cofibration (�) followed by an acyclic fibration (
∼
�). This

factorization can be realized using the inductive process of attaching cells (the
category of operads is cofibrantly generated Hinich (1997)). An operad is cofibrant
if the morphism from the initial object � ree�0� to the operad is a cofibration. In
order to produce a cofibrant replacement to an operad �, one applies the inductive
process of attaching cells to the canonical morphism � ree�0� −→ �.

Let Sn
p be the free �p-module generated by �t in degree n considered as a

�-module. Let Dn−1
p be the free �p-module generated by t in degree n− 1 and dt in

degree n, the differential sending t to dt. We have a canonical inclusion in � S
n
p −→

Dn−1
p of �-modules (sending �t to dt). Let f � Sn

p −→ � be a morphism of �-modules.
The cell Dn−1

p is attached to � along the morphism f via the following push-out:

� ree�Sn
p�

in−−−−→ � ree�Dn−1
p �

� ree�f�

� �
�

i−−−−→ �
∐

� � ree�Sn−1
p ��

The main point of this process is that f��t�, which was a cycle in �, becomes
a boundary in �

∐
� � ree�Sn−1

p �.
By iterating this process of cellular attachment, one gets a quasi-free extension:

�
i→�

∐
� � ree�V�, that is if we forget the differential on V then �

∐
� � ree�V� is the

coproduct of � by a free operad over a free graded �-module V . Note that any
cofibration is a retract of a quasi-free extension. A quasi-free operad is an operad
which is free over a free �-module if we forget the differential.

The following proposition will be fundamental for our applications.

1.3.1. Proposition. Let V be a free graded �p-module together with

dV � V −→ ��p�⊕ V

such that dV + d� is of square zero. Then if V is bounded above, the morphism
� → �

∐
� � ree�V� is a cofibration.

Proof. Let V = 
V i�i≤k be a free graded �p-module which is zero in degree more
than k. We build the cofibration

� � �
∐
�

� ree�V�
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by induction on i. We attach operadic cells indexed by a basis B of Vk to the operad
� along the map � ree �dV �

Vk
�:

� ree�
⊕

b∈B S
k+1
p �

ik+1−−−−→ � ree�
⊕

b∈B D
k
p�

� ree�dV �V k�

� �
�

i−−−−→ �
∐

� � ree�
⊕

b∈B S
n−1
p ��

Suppose that we have built a cofibration � → �
∐

� � ree�
⊕k

j=i V
j�. The

restriction of the map dV to V i−1 extends by universality of the free operad functor
to a well-defined map f � � ree�V i−1� → �

∐
� � ree�⊕k

j=iV
j� as dV + d� is of square-

zero we can make an operadic cell attachment of cells indexed by a basis B′ of
V i−1 along f :

� ree�
⊕

b′∈B′ Si
p�

ii−−−−→ � ree�
⊕

b′∈B′ Di−1
p �

f

� �
�
∐

� � ree
(⊕k

j=i V
j
) i−−−−→ �

∐
� � ree�

⊕k
j=i−1 V

j��

We then get a cofibration � → �
∐

� � ree�
⊕k

j=i−1 V
j�. �

1.4. Homotopy Invariance Principle

Let � be a cofibrant operad. The category of �-algebras is also a closed
model category where weak equivalences are quasi-isomorphisms and fibrations are
epimorphisms (Berger and Moerdijk, 2003 and Hinich, 1997).

Recall that the category of vector spaces is a closed model category, where
weak equivalences are quasi-isomorphisms, and fibrations are epimorphisms. In this
category, all objects are fibrant and cofibrant.

The following theorem is stated in Chataur (2001); its proof relies on a general
result of Berger and Moerdijk (2002) about transfer of algebraic structure in closed
model categories. Such a result was proven in caracteristic zero by Markl (2004) and
for topological spaces by Boardman and Vogt (1973).

1.4.1. Theorem. Homotopy invariance principle (Chataur, 2001). Let � be a
cofibrant operad and assume that the morphism of vector spaces

f � X −→ Y

is a weak equivalence between vector spaces. Assume that X is an �-algebra. Then Y is
also provided with an �-algebra structure. For any cofibrant replacement X̃ of X, there
exists a sequence of quasi-isomorphisms of �-algebras

X ←− X̃ −→ Y
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such that the following diagram commute in cohomology

H∗�X̃�

H∗�X�
H∗�f�−−−−→ H∗�Y��

� �

1.4.2. Corollary. Let � be a cofibrant operad. Let C be an �-algebra and let H be its
cohomology. Then H is a �-algebra and there is a sequence of quasi-isomorphisms of
�-algebras

C̃

C H∗�C�
� �

� �

where C̃ is a cofibrant replacement of C and such that H∗��� = H∗���.

Proof. Set X = C� Y = H∗�C�. Choose a decomposition of vector spaces of X =
Z ⊕Q, where Z is the kernel of the differential and let f � X → Y be the composite
of the projections onto Z and onto H . Then f is a weak equivalence of vector spaces,
since H∗�f� = Id, and we can apply the previous theorem. �

2. ADEM-CARTAN OPERADS

In this section, we define Adem-Cartan operads and prove that a cofibrant
Adem-Cartan operad exists, which is denoted by �evAC . In fact the operad �evAC

is the first step towards a resolution of the operad �ev. The latter governs level
algebras, which are commutative algebras satisfying the 4-term relation (2.1). The
idea of introducing level algebras instead of commutative algebras in order to deal
with Cartan and Adem relations is inspired by the fact that these relations are not
conditioned by the associativity of the product. In this section, we prove also that
E�-operads are Adem-Cartan operads.

2.1. The Operad of Level Algebras

A level algebra A is a vector space together with a commutative product ∗ (not
necessarily associative) satisfying the relation

�a ∗ b� ∗ �c ∗ d� = �a ∗ c� ∗ �b ∗ d�� ∀ a� b� c� d ∈ A� (2.1)

2.1.1. Definition. Let �2 be the trivial representation of �2 (generated by
the operation �) and R�ev be the sub-�4-module of � ree��2��4� generated by the
elements ���� �� · �Id + �� for all � ∈ �4. Then the operad �ev is the operad

�ev = � ree��2�/�R�ev��

Algebras over this operad are level algebras.
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2.1.2. Remark. Since a commutative and associative algebra is trivially a level
algebra, there is a morphism of operads

�ev −→ �om�

where �om denotes the operad defining commutative and associative algebras.

2.1.3. Definition. For any �2-module M, the vector space � ree�M��4� is a direct
sum of two �4-modules: the one indexed by trees of shape 1 denoted by �1

(that is the �4-module generated by all the compositions � �1 � for � ∈ M and
� ∈ � ree�M��3�) and the one indexed by trees of shape 2 denoted by �2 (that is the
�4-module generated by all the compositions ���� �� for �� �� � ∈ M).

As an example, since there is only one generator � ∈ � ree��2��2�, the
dimension of �1�� ree��2�� is 12 and the dimension of �2�� ree��2�� is 3, whereas
the dimension of �1��ev� is 12 and the dimension of �2��ev� is 1.

2.2. Operads With a �2-Projective Resolution

In this section, � is an operad such that ��2� is a �2-projective resolution of
�2. We define some elements in ��2� and ��4�, which will play a role to define
Adem-Cartan operads.

2.2.1. The Standard Bar Resolution. Let �21� be the non-trivial
permutation of �2. The standard bar resolution of �2 over �2 is given by


 −i =
{
�ei� ei · �21��� if i ≥ 0

0� if i < 0

d�ei� = ei−1 + ei−1 · �21�� with e−1 = 0�

Since �ev = � ree��2�/�R�ev�, there is a fibration of operads

p � � ree�
 �
∼
�� ree��2� � �ev�
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The map � ree�
 ��n� → � ree��2��n� is a quasi-ismorphism by Fresse
(Proposition 3.1.2 of Fresse, 2004) and the map � ree��2��n� → �ev�n� is an
isomorphism for n < 4 hence p�n� is a quasi-isomorphism for n < 4. Furthermore
p�4� is a quasi-isomorphism on pieces of shape 1 (see 2.1.3).

Since ��2� is a �2-projective resolution of �2, there exists a morphism of
operads m � � ree�
 � → � such that m�2� is an homotopy equivalence. Then the
image m�ei� ∈ ��2� is non zero. In the sequel, this image will be denoted also by ei.

2.2.2. Notation. We use May’s convention: for any integers i and j, the symbol
�i� j� denotes �i+j�!

i!j! ∈ �2, if i ≥ 0 and j ≥ 0 and �i� j� = 0 otherwise. If the 2-adic
expansion of i and j is i = ∑

ak2
k and j = ∑

bk2
k, then �i� j� = 0 ∈ �2 if and only

if there exists k such that ak = bk = 1.
For any �� �� � ∈ ��2� we denote � · �21���� �� ∈ ��4� by ���� �� · Tw, which is

equal to the ���� �� · �3412� (see (1.1)).

2.2.3. Definition. We define some elements in ��4�.

a) For m > 0� 	um
n 
x ∈ ��4�−n−x is a sum of elements of shape 2. More precisely, for

any m such that 2k ≤ m ≤ 2k+1 − 1, one defines

	um
0 
x = ex · �21�m−1�e0� e0�� and for n > 0�

	um
n 
x =

2k+1−1∑
i=0

∑
0≤2k+1�−i≤n

�n−m+ i� m− 1�

× 	�i�m�ex · �21�m−1�e2k+1�−i� en+i−2k+1��+ �i− 1�m�ex · �21�m−1

× �e2k+1�−i� en+i−2k+1� · �21��
� (2.2)

b) For p ∈ �, the elements �n�p ∈ ��4�−n are defined by

�n�p =
n−p∑
s=0

	us+1
s+p
n−s−p +

n−p−1∑
s=0

	us+1
s+p+1
n−s−p−1 · �3412�� (2.3)

2.2.4. Proposition. The 	um
n 
x’s satisfy the following properties:

	um
n 
x = 0� for 0 < n < m� (2.4)

	um
m
x = ex · �21�m−1�e0� em�+ ex · �21�m−1�em� e0 · �21��� (2.5)

d	um+1
n+1 
x = 	um+1

n 
x�Id+�2143��+ 	um
n 
x�Tw + �4321��

+ 	um+1
n+1 
x−1�Id+Tw�� (2.6)

The �n�p’s satisfy the following property:

�n�p = 0� if p < 0�

d�n�p = �n−1�p−1 · �Id+�2143��+ �n−1�p · �Id+�4321�� �
(2.7)
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2.2.5. Lemma. Let � be an operad such that ��2� is a �2-projective resolution of
�2. For every graded �-algebra A (dA = 0), and for every a ∈ A, we define Dn�a� �=
en�a� a�. The following equality holds:

	um
n 
x�a� a� a� a� = �n− 2m� 2m− 1�DxDn

2
�a��

The proofs of the propositition and the lemma are postponed to the last
section.

2.2.6. Example. By definition, we have for all n ≥ 0

	u1
n
x =

∑
k

ex�e2k� en−2k�+
∑
l

ex�e2l+1� en−2l−1 · �21��

= ex���en���

where � is the coproduct in the standard bar resolution 
 of �2 (see Berger and
Fresse, 2004; May, 1970).

	u2
n
x =


∑

0≤2�≤n

ex · �21��e2�� en−2� · �21��� if n even

∑
0≤4�−1≤n

ex · �21��e4�−1� en+1−4���12�+ �21�� if n odd�

2.3. Adem-Cartan Operads

2.3.1. Definition. An Adem-Cartan operad is an operad � such that ��2� is a
�2-projective resolution of �2, and such that there is a distinguished family
�Gm

n �0<m≤n of elements in ��4�−n subject to the following relations:

dGm
m = Gm−1

m−1 · �3214��Id+�2143��+Gm−2
m−1 · �Id+�4321��

+ �m−1�m−1−p + �m−1�p · �3214� and for n > m (2.8)

dGm
n = Gm

n−1 · �Id+�2143��+Gm−2
n−1 · �Id+�4321��

+ �n−1�n−1−p + �n−1�p · �3214��

where p is the integer part of m−1
2 .

An Adem-Cartan algebra is an algebra over an Adem-Cartan operad.

Remark. We need to prove that the definition is consistent, i.e., that d2 = 0. The
relation (2.7) implies the following computations.

Assume first that n > m+ 1, then n− 1 > m and n− 1 > m− 2

�d�2�Gm
n � = d�Gm

n−1 · �Id+�2143��+Gm−2
n−1 · �Id+�4321���

+ d��n−1�n−1−p + �n−1�p · �3214��
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= Gm
n−2 · �Id+�2143��2 +Gm−2

n−2 · �Id+�4321���Id+�2143��

+Gm−2
n−2 · �Id+�2143���Id+�4321��+Gm−4

n−2 · �Id+�4321��2

+ �n−2�n−2−p · �Id+�2143��+ �n−2�p · �3214��Id+�2143��

+ �n−2�n−2−�p−1� · �Id+�4321��+ �n−2�p−1 · �3214��Id+�4321��

+ d��n−1�n−1−p + �n−1�p · �3214���

Since �2143� and �4321� commute and are permutations of order 2, the 2 first lines
vanish. Furthermore,

d�n−1�n−1−p = �n−2�n−2−p · �Id+�2143��+ �n−2�n−1−p · �Id+�4321���

and �3214��Id+�4321�� = �Id+�2143���3214� imply.

d�n−1�p · �3214� = �n−2�p−1 · �3214��Id+�4321��+ �n−2�p · �3214��Id+�2143���

which yields �d�2�Gm
n � = 0 for n > m+ 1.

If n = m+ 1, then n− 1 = m and n− 1 > m− 2; thus terms in �u�v will vanish
as before and

�d�2�Gm
m+1� = Gm−1

m−1 · �3214��Id+�2143��2 +Gm−2
n−2 · �Id+�4321���Id+�2143��

+Gm−2
n−2 · �Id+�2143���Id+�4321��+Gm−4

n−2 · �Id+�4321��2

= 0�

If m = n, then

�d�2�Gm
m� = d�Gm−1

m−1 · �3214��Id+�2143��+Gm−2
m−1 · �Id+�4321���

+ d��m−1�m−1−p + �m−1�p · �3214��
= Gm−2

m−2 · 	�3214��Id+�2143��
2 +Gm−3
m−2 · �Id+�4321���3214��Id+�2143��

+Gm−2
m−2 · �Id+�2143���Id+�4321��+Gm−4

m−2 · �Id+�4321��2

+ �m−2�m−2−p′ · �3214��Id+�2143��+ �m−2�p′ · �3214�2�Id+�2143��

+ �m−2�m−2−�p−1� · �Id+�4321��+ �m−2�p−1 · �3214��Id+�4321��

+ d��m−1�m−1−p + �m−1�p · �3214���

where p′ is the integer part of m−2
2 .

It’s easy to check that the first two lines vanish. Furthermore, if m = 2k+ 1 is
odd, then p = k, p′ = k− 1 and the last lines write

+ �2k−1�k�Id+�4321�� · �3214�+ �2k−1�k−1�Id+�2143��

+ �2k−1�k · �Id+�4321��+ �2k−1�k−1 · �Id+�2143���3214�

+ d��2k�k + �2k�k · �3214�� = 0�



ADEM-CARTAN OPERADS 4347

and if m = 2k+ 2 is even, then p = k, p′ = k and the last lines write

+ �2k�k�Id+�4321�� · �3214�+ �2k�k�Id+�2143��

+ �2k�k+1 · �Id+�4321��+ �2k�k−1 · �Id+�2143���3214�

+ d��2k+1�k+1 + �2k+1�k · �3214�� = 0�

2.3.2. Theorem. There exists a cofibrant Adem-Cartan operad, denoted �evAC ,
satisfying the following properties:

a) �evAC�2� = 
 ;
b) there is a fibration f � �evAC → �ev such that f�n� is a quasi-isomorphism for

n < 4;
c) f induces an isomorphism H0��evAC�n�� � �ev�n�.

Proof. The proof consists in building a sequence of cofibrant operads �evACm ,
m ≥ 0, satisfying a) and b) where �evACm → �evACm+1 is a cofibration obtained by
operadic cellular attachment. More precisely, �evAC0 = � ree�
 � satisfies a) and b),
according to 2.2.1. Assume �evACm is built, satisfies a) and b), and contains a family
of elements Gk

n ∈ ��evACm �−n for 0 < k ≤ m and n ≥ k, satisfying the relation (2.8).
Let Vm+1 be the free graded �4-module generated by elements Gm+1

n of degree −n
for n ≥ m+ 1 with d � Vm+1 → �evACm �4�⊕ Vm+1 defined by the relation (2.8). Since
d2 = 0, according to Proposition 1.3.1,

�evACm → �evACm
∐
�

� ree�Vm+1� =� �evACm+1

is a cofibration, obtained by a sequence of pushouts. It is clear that �evACm+1 satisfies
a). By induction hypothesis, there exists a fibration fm � �evACm → �ev such that
fm�n� is a quasi-isomorphism for n < 4. Using the universal property of pushouts
and sending Gm+1

n to zero in �ev, we obtain that there exists a fibration fm+1 �
�evACm+1 → �ev such that fm+1�n� is a quasi-isomorphism for n < 4. Let �evAC be
the limit over m of �evACm . It is clear that �evAC satisfies a) and b) (f � �evAC →
�ev is the limit of the fm’s).

To prove that f � �evAC → �ev induces an isomorphism H0�f�, it suffices
to prove that H0�f1�4�� is an isomorphism; indeed, the relations defining �ev are
generated by a �4-module hence H0��evAC1 �n�� → �ev�n� will be an isomorphism,
for all n; if m > 1, we do not introduce cells in degree −1, hence H0�fm�n�� will be
an isomorphism for all n, hence H0�f�n�� also.

H0��evAC1 �4�� = �1�� ree�
 �0�4��/d��1�� ree�
 �1�4��

⊕�2�� ree�
 �0�4��/d	�2�� ree�
 �1�4��⊕G1
1 ·�2��4�


the first summand being isomorphic to �1��ev�4�� (see 2.2.1). To prove that
the second summand is isomorphic to �2��ev�4��, it suffices to prove that it is
1-dimensional (see 2.1.3). Let X = e0�e0� e0� ∈ � ree�
 �0�4� and X its class in the
second summand.
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i) For all � in the dihedral group D1 (� satisfies 
��1�� ��2�� ⊂ 
1� 2� ∪ 
3� 4�),
there exists u = ei�ej� ek�� i+ j + k = 1� such that du = X + X · �. Hence for all
� ∈ D1 we have X · � = X.

ii) Since dG1
1 = X + X · �3214�, for all � ∈ D1 we have X · �3214�� = X, i.e., for all

� ∈ D2 = 
��
��1�� ��2�� ⊂ 
1� 4� ∪ 
2� 3�� we have X · � = X.
iii) Finally, equality �3124� = �2134��3214� implies X · �3124�� = X for all � ∈ D1,

or for all � ∈ D3 = 
��
��1�� ��2�� ⊂ 
1� 3� ∪ 
2� 4��, X · � = X.

Since �4 = D1 ∪D2 ∪D3 we get the result. �

2.3.3. Remark. For any Adem-Cartan operad �, there is a morphism of operads
m � �evAC → � such that m�2� is a quasi-isomorphism. The converse is true when
��2� is a �2-projective resolution of �2. Hence, any Adem-Cartan algebra is an
algebra over �evAC .

2.3.4. Corollary. Any graded Adem-Cartan algebra is a level algebra.

Proof. For any operad � and any �-algebra A, H∗�A� is a H∗���-algebra hence
a H0���-algebra. But A is a graded algebra over �evAC (Remark 2.3.3) and
H0��evAC� = �ev� H∗�A� = A, which yields the result. �

2.3.5. E�-operads. According to Remark 2.1.2, there is a morphism �ev −→
�om. An E�-operad E is a �∗-projective resolution of the operad �om: for every r,
E�r� is �r-projective and there exists an acyclic fibration E → �om. The structure of
closed model category on operads implies that for any cofibrant operad � → �om
there exists a morphism � → E such that the following diagram commutes:

For instance, there exists a morphism �evAC → E such that the previous diagram
commutes. Hence, any E�-operad is an Adem-Cartan operad. In particular, the
algebraic Barratt-Eccles operad �� (studied in Berger and Fresse, 2004) is an
Adem-Cartan operad.

3. ADEM-CARTAN ALGEBRAS AND THE EXTENDED STEENROD ALGEBRA

The aim of this section is to prove that the cohomology of an algebra over an
Adem-Cartan operad carries an action of the extended Steenrod algebra.

3.1. The Extended Steenrod Algebra ���2

3.1.1. Generalized Steenrod Powers. (Mandell, 2001, May, 1970). The
extended Steenrod algebra, denoted by �2, is a graded associative algebra over �2
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generated by the generalized Steenrod squares Sqi of degree i ∈ �. These generators
satisfy the Adem relation, if t < 2s

Sqt Sqs = ∑
i

(
s − i− 1
t − 2i

)
Sqs+t−i Sqi �

Note that negative Steenrod squares are allowed and that Sq0 = Id is not assumed.
If �2 denotes the classical Steenrod algebra, then

�2 �
�2

�Sq0 + Id� �

3.1.2. Definition. As in the classical case an unstable module over �2, is a graded
�2-module together with the unstability condition

Sqn�x� = 0 if �x� < n�

An unstable level algebra over �2 is a graded level algebra �A� ∗� which is an unstable
module over �2, such that{

Sq�x��x� = x ∗ x�
Sqs�x ∗ y� = ∑

Sqt�x� ∗ Sqs−t�y� (Cartan relation)�

3.1.3. Remark. The category of unstable algebras over �2 is a full subcategory of
the category of unstable level algebras over �2.

3.2. Cup-i Products

Let A be an algebra over an operad � such that ��2� is a �2-projective
resolution of �2. The evaluation map

��2�⊗ A⊗2 −→ A�

defines cup-i products a ∪i b = ei�a� b� (ei’s were defined in 2.2.1). Steenrod squares
are defined by Sqr �a� = a ∪�a�−r a = e�a�−r �a� a�. Following May (1970), define
Dn�a� = en�a� a� = Sq�a�−n�a�. In that terminology, Adem relations read∑

k

�k� v− 2k�Dw−v+2kDv−k�a� =
∑
l

�l� w − 2l�Dv−w+2lDw−l�a�� (3.1)

and Cartan relations read

Dn�x ∗ y� =
n∑

k=0

Dk�x� ∗Dn−k�y�� (3.2)

Note that in general, an �-algebra does not satisfy these two relations.
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3.3. Main Theorem

3.3.1. Theorem. Any graded Adem-Cartan algebra is an unstable level algebra over
the extended Steenrod algebra.

Proof. We have already proven in Corollary 2.3.4 that a graded Adem-Cartan
algebra A is a level algebra. Assume first that A is a module over �2 (Adem relation
(3.1)). Hence the unstability condition reads

Sqn�x� = x ∪�x�−n x = 0� if �x� − n < 0�

The next equality is also immediate:

Sq�x��x� = x ∪0 x = e0�x� x� = x ∗ x�

The Cartan relation is given by dG1
n; according to Lemma 1.2,

dG1
n+1�x� x� y� y� = 0. Using relations (2.8), (2.3), and (2.5), one has

0 = G1
n · �Id+�2143���x� x� y� y�+ �n�n�x� x� y� y�+ �n�0 · �3214��x� x� y� y�

= 2G1
n�x� x� y� y�+ 	u1

n
0�x� x� y� y�+
∑
s

	us+1
s 
n−s�y� x� x� y�

+ 	us+1
s+1
n−s−1 · �3412��y� x� x� y�

=
n∑

l=0

e0�el� en−l · �21�l��x� x� y� y�+ 	u1
0
n�y� x� x� y�

+
n−1∑
s=0

en−s−1 · �21�s�x ∗ y� y ∪s+1 x�+ en−s−1 · �21�s�x ∪s+1 y� x ∗ y��

Using the commutativity of ∗ and ∪i for all i, one gets

dG1
n+1�x� x� y� y� =

n∑
l=0

Dl�x� ∗Dn−l�y�+Dn�x ∗ y��

which gives the Cartan relation (3.2).
The proof of Adem relation (3.1) relies on Lemma 2.2.5, and on the relation

dGm
n+1�a� a� a� a� = 0. Combined with the relation (2.8), one gets �n�p�a� a� a� a� =

�n�n−p�a� a� a� a�, that is∑
s

	us
p+s�a� a� a� a�+ us+1

p+s�a� a� a� a�
n−p−s

= ∑
t

	ut
n−p+t�a� a� a� a�+ ut+1

n−p+t�a� a� a� a�
p−t

⇒ ∑
s

	�p− s� 2s − 1�+ �p− s − 2� 2s + 1�
Dn−p−sD p+s
2
�a�

= ∑
t

	�n− p− t� 2t − 1�+ �n− p− t − 2� 2t + 1�
Dp−tD n−p+t
2

�a��
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But �x� y − 2�+ �x − 2� y� = �x� y�, hence∑
s

�p− s� 2s + 1�Dn−p−sD p+s
2
�a� = ∑

t

�n− p− t� 2t + 1�Dp−tD n−p+t
2

�a��

Since the first term is zero, as soon as p− s is odd, we can set s = p− 2l, and also
t = n− p− 2k. As a consequence,∑

l

�2l� 2p− 4l+ 1�Dn−2p+2lDp−l�a� =
∑
k

�2k� 2n− 2p− 4k+ 1�D2p−n+2kDn−p−k�a��

Using the 2-adic expansion, one gets

�2l� 2p− 4l+ 1� = �l� p− 2l�� (3.3)

by setting w �= p and v �= n− p, one obtains∑
l

�l� w − 2l�Dv−w+2lDw−l�a� =
∑
k

�k� v− 2k�Dw−v+2kDv−k�a��

which is the Adem relation (3.1). �

3.3.2. Corollary. Let � be an Adem-Cartan operad. The cohomology of any �-algebra
is an unstable level algebra over �2.

Proof. By Remark 2.3.3, there is a morphism of operads �evAC → �, then it
suffices to prove the theorem for � = �evAC . Let A be a �evAC-algebra, then H∗�A�
is a level algebra. In order to prove the Adem-Cartan relations, we compute the
boundaries of G1

n�a� a� b� b� and Gm
n �a� a� a� a� for cocycles a and b that represents

classes 	a
 and 	b
 in the cohomology. These boundaries give the Adem-Cartan
relations between eo�a� b�, ei�a� a�, ej�b� b�, which represent 	a
∗	b
, Di�	a
� and
Dj�	b
� respectively. �

In particular for algebras over an E�-operad, we recover the results of Kriz
and May (1995) and May (1970).

3.3.3. Example. Given a � ree�
 �-algebra, a natural question is to know whether
it is possible to extend this structure into a structure of Adem-Cartan algebra.
The following example shows that it cannot be done by imposing the triviality
of all Gm

n ’s.
Let us consider the torus �2 = S1 × S1. The algebraic model of the normalized

singular cochains of �2 that we use is

A�2 = C∗�S1�⊗ C∗�S1��

The vector space A�2
is generated by 1 �= 1⊗ 1 in degree zero, � �= a⊗ 1 and

� �= 1⊗ b in degree 1, and �� = a⊗ b in degree 2. The differential is trivial on A�2 .
The � ree�
 �-structure on C∗�S1� is given by e0�1� 1� = 1, e1�a� a� = a where a

is the generator in degree 1 and all the others are zero (see Berger and Fresse, 2004).
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Hence the � ree�
 �-structure on A�2 is given by the coproduct � on � ree�
 �. Since
the differential is zero, one has d�G1

3��� �� �� ��� = 0. But dG1
3 = G1

2�Id+�2143��+
�2�2 + �2�0 · �3214�. Then, using the definition of the �n�p’s and the commutativity of
the ei’s, one has

d�G1
3��� �� �� ��� = G1

2��� �� �� ��+G1
2��� �� �� ��

+ e0�e1� e1 · �21����� �� �� ��+ e2�e0� e0���� �� �� ��

= G1
2��� �� �� ��+G1

2��� �� �� ��

+ e1��� ��
2 + e2���� ����

But

e1��� �� = ��e1��a⊗ 1� 1⊗ b�

= �e0 ⊗ e1 + e1 ⊗ e0 · �21����a� 1�⊗ �1� b��

= e0�a� 1�⊗ e1�1� b�+ e1�a� 1�⊗ e0�b� 1� = 0

and

e2���� ��� = �e0 ⊗ e2 + e1 ⊗ e1 · �21�+ e2 ⊗ e0���a� a�⊗ �b� b��

= a⊗ b = ��

thus

G1
2��� �� �� ��+G1

2��� �� �� �� = ���

which proves that the action of G1
2 is nonzero.

4. OPERADIC SECONDARY COHOMOLOGY OPERATIONS

In this section, we prove that there exist secondary cohomology operations on
the cohomology of an Adem-Cartan algebra A, and that these operations coincide
with the Adams secondary operations in case A = C∗�X��2� is the singular cochain
complex of a space X.

4.1. Secondary Cohomology Operations on Adem-Cartan Algebras

Let � be an Adem-Cartan operad and A be an �-algebra. Then A is a
�evAC-algebra, hence H∗�A� is endowed with a (non-natural) structure of �evAC-
algebra (see Corollary 1.4.2). Hence, for any �m� p�, there are morphisms

�m�p � Hn�A� → H4n−p−1�A�

given by �m�p�x� = Gm
p+1�x� x� x� x�.
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Besides from Corollary 3.3.2, the cohomology H∗�A� is an unstable level
algebra over �2. Let x ∈ Hn�A� and

RAd�x� =
∑
i

SqmiSqni �x� = 0

be an Adem relation with x ∈ ∩i Ker�Sqni �. Let c ∈ An� dc = 0 representing x. Then
there exists �m� p� such that �dGm

p+1��c� c� c� c� = RAd�c�: p = 3n−mi − ni and m is
a function of n and mi + ni. Since Sqni �x� = 0, there exists bi ∈ An+ni−1 such that
dbi = en−ni

�c� c�. The element

b = ∑
i

en−mi+ni
�1� en−ni

��bi� c� c�+ en−mi+ni−1�bi� bi�

satisfies d�Gm
p+1�c� c� c� c�+ b� = 0.

4.1.1. Proposition. The class of Gm
p+1�c� c� c� c�+ b in Hmi+ni+n−1�A�/

∑
i Im�Sqmi�

does not depend on the choices of the b′is and c.

Proof. First, it does not depend on the choices of the bi’s. Let b
′
i ∈ An+ni−1 such

that db′i = dbi = en−ni
�c� c�, and

b′ = ∑
i

en−mi+ni
�1� en−ni

��b′i� c� c�+ en−mi+ni−1�b
′
i� b

′
i��

Then d�b + b′� = 0 and the following relation implies the result:

b + b′ = ∑
i

Sqmi�bi + b′i�+ den−mi+ni
�bi + b′i� bi��

Secondly, it does not depend on the choice of a representant c of x. Using the
homotopy invariance principle as in 1.4.2, there is a zig-zag of acyclic fibrations of
Adem-Cartan algebras

Ã

A H∗�A�
� �

gf

with H∗�f� = H∗�g�. Let c and c′ be two cocycles that represent x, and let u� u′ ∈
Ã such that du = 0� f�u� = c� g�u� = x and the same for u′� c′. Since Sqni �x� = 0,
there exists vi� v

′
i such that dvi = Sqni �u� and dv′i = Sqni �u′�. Let v� v′ defined as b.

Let us prove that

	Gm
p+1�c� c� c� c�+ f�v�
 = 	Gm

p+1�c
′� c′� c′� c′�+ f�v′�


in Hn+mi+ni−1�A�/
∑

i Im�Sqmi�� This is equivalent to prove that g�v�+ g�v′� is in the
sum of all Im�Sqmi�. But

v = ∑
i

en−mi+ni
�vi� dvi�+ Sqmi�vi�
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and g�dvi� = 0 imply that g�v� = ∑
i Sq

mi�g�vi�� ∈
∑

Im�Sqmi�, which proves
the result. �

As a consequence, we have defined a map

�m�p �
⋂
i

Ker�Sqni � ⊂ Hn�A� −→ Hn+mi+ni−1�A�

/∑
i

Im�Sqmi�

x 
→ 	Gm
p+1�c� c� c� c�+ b
�

4.1.2. Proposition. Let � �
⋂

i Ker�Sqni � → Hn�A� be the canonical inclusion and � �
Hn+mi+ni−1�A� → Hn+mi+ni−1�A�/

∑
i Im�Sqmi� be the canonical projection. Then

��m�p� = �m�p�

Proof. Using the proof of the previous proposition, it only remains to
show that 	Gm

p+1�c� c� c� c�+ b
 = Gm
p+1�x� x� x� x� in Hmi+ni+n−1�A�/

∑
i Im�Sqmi� for

x ∈ ⋂
i Ker�Sqni �. This is equivalent to prove that g�v� is in

∑
i Im�Sqmi� for v with

f�v� = b, which has been already proven. �

4.2. Adams’ Secondary Operations

Let C∗�X��2� denotes the singular cochains complex of a topological space
X and H∗�X��2� its cohomology. We recall from Hinich and Schechtmann (1987)
that C∗�X��2� is an algebra over a E�-operad, hence an Adem-Cartan algebra.

Adams (1960) defined (in an axiomatic way) stable secondary cohomology
operations. His approach is topological, and uses the theory of so-called “universal
examples”. These operations correspond to Adem relations

RAd = ∑
i

Sqmi Sqni �

and are denoted by �. Let us recall Adams’ axioms:

Axiom 1. For any u∈Hn�X��2�, ��u� is defined if and only if Sqni �u�= 0 for all ni.

Axiom 2. If ��u� is defined then

��u� ∈ Hmi+ni+n−1�X��2�

/∑
i

Im�Sqmi��

Axiom 3. The operation � is natural.

Axiom 4. Let �X�A� be a pair of topological spaces, we have the long exact
sequence

· · ·Hn−1�A��2�
�∗→ Hn�X�A��2�

j∗→ Hn�X��2�
i∗→ Hn�A��2�

�∗→ · · · �
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Let v ∈ Hn�X�A��2� be a class such that � is defined on j∗�v� ∈ Hn�X��2�. Let
wi ∈ H∗�A��2� such that �∗�wi� = Sqni �v�. Then, we have

i∗��j∗�v�� = ∑
i

Sqmi�wi� ∈ H∗�A��2�

/
i∗
(∑

i

Im�Sqmi�
)
�

Axiom 5. The operation � commutes with suspension.

Later on, Kristensen proved that these operations can be defined at the
cochain level, using the existence of a coboundary which creates the stable secondary
cohomology operation defined by Adams (Kristensen, 1963, Chapter 6). More
precisely, for an Adem relation RAd and a class x ∈ ⋂

i Sq
ni , Kristensen defines

cochain operations � such that the differential of ��c� (c is a representant of x) gives
a cocycle representing an Adem relation RAd�x�. If one chooses bi such that dbi =
Sqni �c�, then one gets a cocycle, and a cohomology class

Qur�c� = 	��c�+∑
i

�en−mi+ni
�1� en−ni

��bi� c� c�+ en−mi+ni−1�bi� bi��
�

Then,

4.2.1. Theorem (Kristensen, 1963, Theorem 6.1). Any operation x 
→ Qur�c� satisfies
axiom 1–5 of Adams.

4.2.2. Corollary. The maps �m�p coincide with the stable secondary cohomology
operations of Adams.

Proof. The proof relies on Theorem 4.2.1 with ��c� = Gm
p+1�c� c� c� c�. �

4.2.3. Theorem. The stable secondary cohomology operations � of Adams extend
to maps �m�p � Hn�X��2� → Hn+mi+ni−1�X��2�. More precisely, if we denote by
� �

⋂
i Ker�Sqni � → Hn�X��2� and � � Hn+mi+ni−1�X��2� → Hmi+ni+n−1�X��2�/∑

i Im�Sqmi�, then

� = ��m�p ��

Proof. It is the translation of Theorem 4.1.2 for A = C∗�X��2�. �

5. PROOF OF TECHNICAL LEMMAS

In this section, Proposition 2.2.4 and Lemma 2.2.5 are proven.

5.1. Lemma. For any i� j ≤ 2p − 1, one has

�i� j� = 0� if i+ j ≥ 2p� and

�i� j� = �2p − i− j − 1� j��
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Proof. Let
∑p−1

l=0 al2
l and

∑p−1
l=0 bl2

l be the 2-adic expansion of i and j respectively.
Recall that �i� j� = 1 if and only if the 2-adic expansion of i+ j is

∑
�al + bl�2

l. If
i+ j ≥ 2p this is not the case, thus �i� j� = 0.

If �i� j� = 1 then the 2-adic expansion of 2p − 1− i− j is
∑p−1

l=0 �1− al − bl�2
l,

thus the 2-adic expansion of �2p − 1− i− j�+ j has for coefficients �1− al − bl�+
�bl�. Consequently �2p − 1− i− j� j� = 1. The converse is true by symmetry.

Note that the first assertion is a consequence of the second one, because if
�i+ j� ≥ 2p then �2p − 1− i− j� < 0, and ��� �� = 0 if � < 0 or � < 0. �

5.2. Proof of Lemma 2.2.5

Using the commutativity of ∪x, one has

	um
n 
x�a� a� a� a� =

2k+1−1∑
i=0

∑
0≤2k+1�−i≤n

�n−m+ i� m− 1��i�m�D2k+1�−i�a� ∪x Dn+i−2k+1��a�

+ �n−m+ i� m− 1��i− 1�m�D2k+1�−i�a� ∪x Dn+i−2k+1��a�

= ∑
i��

�n−m+ i� m− 1��i�m− 1�D2k+1�−i�a� ∪x Dn+i−2k+1��a��

Let 0 ≤ j ≤ 2k+1 − 1 such that n+ i ≡ −j 	2k+1
, then there exists �′ such that
n+ i− 2k+1� = 2k+1�′ − j, and Lemma 5.1 implies

�n−m+ i� m− 1� = �2k+1��+ �′�−m− j�m− 1�

= �j�m− 1� (5.1)

�n−m+ j�m− 1� = �i�m− 1��

As a consequence, if i �= j or i = j and � �= �′, the 2 following terms in
	um

n 
x�a� a� a� a�

�n−m+ i� m− 1��i�m− 1�D2k+1�−i�a� ∪x D2k+1�′−j�a�

+ �n−m+ j�m− 1��j�m− 1�D2k+1�′−j�a� ∪x D2k+1�−i�a�

vanish. Hence, if there exists �i� �� such that 2k+1�− i = n− �2k+1 − i�, then

	um
n 
x�a� a� a� a� = �n−m+ i� m− 1�2DxDn

2
�a��

Relation (3.3) implies �n−m+ i� m− 1� = �2n− 2m+ 2i� 2m− 1� = �n− 2m�
2m− 1�� Furthermore, if �n− 2m� 2m− 1� = 1, then n is even, and we can pick
0 ≤ i ≤ 2k+1 − 1 such that ∃�, n

2 = 2k=1�− i. �

5.3. Proof of Proposition 2.2.4

We have to prove relations (2.4), (2.5), (2.6), and (2.7). Relation (2.7) is
straightforward using relation (2.6) and definition (2.3).
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Proof of relations �2�4� and �2�5�. Assume n ≤ m. The condition 0 ≤ 2k+1�− i ≤
n ≤ m ≤ 2k+1 − 1 implies � equals 0 or 1. If � = 0, then i = 0. If � = 1, then i+m ≥
2k+1 and �i�m� = 0 by Lemma 5.1. So 	um

n 
x writes

	um
n 
x = �n−m�m− 1�ex · �21�m−1�e0� en�

+
2k+1−1∑
i=0

�n−m+ i� m− 1��i− 1�m�ex · �21�m−1�e2k+1−i� en+i−2k+1 · �21���

If n < m, then �n−m�m− 1� = 0 and i− 1+m ≥ 2k+1 implies �i− 1�m� = 0,
which proves relation (2.4).

If n = m, �i− 1�m� = 0 for all i �= 2k+1 −m and �2k+1 −m�m− 1��2k+1 −
1−m�m� = �0�m− 1��0�m� by virtue of Lemma 5.1. This proves relation (2.5).

Proof of relation �2�6�. For the convenience of the reader, let

B��i
x�	m
�n = ex · �21�m−1�e2k+1�−i� en+i−2k+1���

where 	m
 means m mod 2, then

	um
n 
x =

∑
i��

�n−m+ i�	�i�m�B��i
x�	m
�n + �i− 1�m�B��i

x�	m
�n · �1243�
�

Remarks.

a) Let P = 
Id� �2134�� �2143�� �1243�� ∈ �4. Then the set � = 
B��i
x�	m
�n · ��

B
�′�j
x′�	m+1
�n′ · ��∀x� n� x′� n′� i� i′� �� �′�∀�� � ∈ P� is a free system in � ree�
 ��4�.

b) For any � ∈ P, B��i
x�	m
�n · �Tw = B��i

x�	m
�n · Tw� = B��i
x�	m+1
�n · �.

There are two cases to consider: if 2k ≤ m ≤ 2k+1 − 2 (then m+ 1 ≤ 2k+1 − 1)
or if m = 2k+1 − 1. Since computations are long but not difficult, we’ll present only
the first case:

d	um+1
n+1 
x+1 =

∑
i��

�n−m+ i� m��i�m+ 1�︸ ︷︷ ︸
ai

	B��i+1
x+1�	m+1
�n · �Id+�2134��

+B��i
x+1�	m+1
�n · �Id+�1243��+ B��i

x�	m+1
�n+1 · �Id+Tw�


+ �n−m+ i� m��i− 1�m+ 1�︸ ︷︷ ︸
bi

	B��i+1
x+1�	m+1
�n · ��1243�+ �2143��

+B��i
x+1�	m+1
�n · �Id+�1243��+ B��i

x�	m+1
�n+1 · �Id+Tw��1243�
�

	um+1
n 
x+1�Id+��2143�� = ∑

i��

�n−m+ i− 1�m��i�m+ 1�︸ ︷︷ ︸
ci

B��i
x+1�	m+1
�n�Id+�2143��

+ �n−m+ i− 1�m��i− 1�m+ 1�︸ ︷︷ ︸
di

B��i
x+1�	m+1
�n��1243�

+ �2134���



4358 CHATAUR AND LIVERNET

	um
n 
x+1�Tw + �4321�� = ∑

i��

�n−m+ i� m− 1��i�m�︸ ︷︷ ︸
ei

B��i
x+1�	m
�n�Tw + �4321��

+ �n−m+ i� m− 1��i− 1�m�︸ ︷︷ ︸
fi

B��i
x+1�	m
�n�1243�

×�Tw + �4321���

Note that

B��i
x+1�	m
�n+1 · �4321� = ex+1 · �21�m�en+i−2k+1�� e2k+1�−i� · �3412��4321��

Hence by using relation (5.1), we get∑
i��

�n−m+ i� m− 1��i�m�B��i
x+1�	m
�n · �4321�

= ∑
j��′

�n−m+ j − 1�m��j�m− 1�︸ ︷︷ ︸
mj

B
�′�j
x+1�	m+1
�n�2143�

and ∑
i��

�n−m+ i� m− 1��i− 1�m�B��i
x+1�	m
�n�1243��4321�

= ∑
j��′

�n−m+ j�m��j�m− 1�︸ ︷︷ ︸
lj

B
�′�j
x+1�	m+1
�n�1243��

	um+1
n+1 
x�1+ Tw� = ∑

i��

�n−m+ i� m��i�m+ 1�︸ ︷︷ ︸
gi

B��i
x�	m+1
�n+1�Id+Tw�

+ �n−m+ i� m��i− 1�m+ 1�︸ ︷︷ ︸
hi

B��i
x�	m+1
�n+1

×�1243��Id+Tw��

Thus, to prove relation (2.6), it suffices to prove that the sum of all the coefficients
of elements of � vanishes. For instance, the coefficient of B��i

x+1�	m+1
�n · Id is ai−1 +
ai + bi + ci + ei, that is

�n−m+ i− 1�m��i− 1�m+ 1�+ �n−m+ i� m��i�m+ 1�

+ �n−m+ i� m��i− 1�m+ 1�+ �n−m+ i− 1�m��i�m+ 1�

+ �n−m+ i� m− 1��i�m�

= �n−m+ i� m− 1��i− 1�m+ 1�+ �n−m+ i� m− 1��i�m+ 1�

+ �n−m+ i� m− 1��i�m� = 0�
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The coefficient of B��i
x+1�	m+1
�n · �2143� is bi−1 + ci +mi, that is

�n−m+ i− 1�m��i− 2�m+ 1�+ �n−m+ i− 1�m��i�m+ 1�

+ �n−m+ i− 1�m��i�m− 1� = 0�

All the other computations follow the same pattern. �
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