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1. Introduction. A ring R is said to be alternative if (xx)y = x(xy),

(yx)x=y(xx) for all x, y of R. And R is a division ring if it has a non-

zero element and the equations ax = b, ya = b have unique solutions

x, y for a ^0; the existence of a unit is not postulated.

Let R be an alternative ring without divisors of zero.1 If a, b are

nonzero elements of R and m is a rational integer, the equation (na)b

= a(nb) shows that na = 0 if and only if nb = 0. Therefore we can as-

sign a characteristic (zero or prime) to R in the usual manner. The

centre C of R is the subring consisting of all c in R such that cx = xc,

c(xy) = (cx)y = x(cy) for all x, y oí R. If C contains a nonzero element,

define the central quotient ring R//C as the set of all formal fractions

x/c, xER, cEC, c?¿0, with the obvious definitions: (i) x/c=y/d if

and only if dx = cy; (ii) (x/c) + (y/d) = (dx+cy)/(cd); (iii) (x/c)(y/d)

= (xy)/(cd). It is readily verified that R//C is an alternative ring with

unit c/c and with centre F=C//C, the quotient field of C. Especially

in view of (i), the mapping x—*(cx)/c is an isomorphism of R into

R//C, and we imbed R in R//C by making the identifications x

= (cx)/c. These remarks allow us to state the main theorem of the

paper:

Theorem A. Let R be a not-associative, alternative ring without di-

visors of zero and of characteristic not 2. Then the centre C of R contains

a nonzero element and R may be imbedded in R//C, which is an alterna-

tive division algebra of order 8 (a so-called Cayley-Dickson algebra) over

its centre F=C//C.

Corollary 1. If, in addition, C is afield, R is a Cayley-Dickson

algebra over C.

Corollary 2. Every alternative division ring of characteristic not 2 is

either (i) a field or skew-field or (ii) a Cayley-Dickson algebra over its

centre.

Corollary 3. Every ordered alternative ring is associative.

Theorem A seems of less immediate interest than Corollaries 2,3. As

we shall point out explicitly in §5, the latter have important applica-

tions to projective planes. However, at no point does the proof of

Presented to the Society, November 25, 1950; received by the editors December 9,

1950.
1 We adopt the convention that 0 is not a divisor of zero.
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Theorem A (as compared with that of Corollary 2) raise additional

difficulties of any significance, and indeed we are spared several times

the necessity of dealing with division subrings rather than sub-

rings. The methods are new in the main and Lemma 2.2 appears to

be the only result which is entirely known. It has been our policy to

adopt in each lemma the weakest hypotheses which will allow its proof

without introducing complications unnecessary for the proof of

Theorem A. The paper is relatively self-contained; except in §5 and

Appendix I, the only essential reference is to a paper by A. A.

Albert [2].2

It is perhaps worth noting that a direct proof of Corollary 3 may be

based upon §2, Lemmas 3.1, 4.1, the definition of R//C, and the

remark that an ordered ring cannot contain a quaternion algebra.

2. Elementary properties. In any ring R (not necessarily alterna-

tive) the commutator (x, y) and the associator (x, y, z) are defined by

(2.1) (x, y) = xy - yx,        (x, y, z) = xy-z - x-yz,

lor all x, y, z of R. By direct substitution,

(2.2) (xy, z) - x(y, z) - (x, z)y = (x, y, z) - (x, z, y) + (z, x, y),

(2.3) (wx, y, z) — (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z.

Henceforth let R he alternative. The defining relations for R may

be written as (x, x, y) = 0, (y, x, x) = 0. Using the linearity of the

associator, we find 0 = (x+y, x+y, z) = (x, x, z) + (x, y, z) + (y, x, z)

+ (y, y, z) = (x, y, z) + (y, x, z) and, similarly, 0 = (x, y+z, y+z)

= (x, y, z) + (x, z, y). Therefore

(2.4) (x, y,z)=- (y, x,z)=- (x, z, y).

From (2.4) and the fact that (x, x, y)=0 follows

(2.5) (x, x, y) = (x, y, x) = (y, x, x) = 0.

We shall say that a (multi-)linear function h(xx, x2, • • -, x„) from

R to R is skew-symmetric provided it takes the value 0 whenever at

least two of the x's are equal. Thus (2.5) expresses the skew-symmetry

of the associator. Just as (2.5) implies (2.4), so any skew-symmetric

function changes sign when two of its arguments are interchanged.

Note that the commutator is skew-symmetric. In view of (2.4), (2.2)

can be rewritten as

(2.6) (xy, z) = x(y, z) + (x, z)y + 3(x, y, z).

* Numbers in brackets refer to the bibliography at the end of the paper.
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Next we introduce the (linear) function f(w, x, y, z) by

(2.7) (wx, y, z) = (x, y, z)w + x(w, y, z) + f(w, x, y, z).

Lemma 2.1. In an alternative ring R, the function f defined by (2.7)

is skew-symmetric and satisfies the identities

(2.8) 3f(w, x, y, z) = (w, (x, y, z)) - (x, (y, z, w))

+ (y, (z, w, x)) - (z, (w, x, y)),

(2.9) f(w, x, y, z) = ((w, x), y, z) + ((y, z), w, x).

Proof. By (2.4), (2.3) can be written as (wx, y, z) — (xy, z, w)

+ (yz, w, x)=w(x, y, z) + (w, x, y)z. Substitution from (2.7) gives

(2.10) f(w, x, y, z) - f(x, y, z, w) + f(y, z, w, x) = F(w, x, y, z),

where F(w, x, y, z) denotes the right-hand side of (2.8), and hence

changes sign when w, x, y, z are permuted cyclically. Thus, from

(2.10), 0 = F(w, x, y, z) + F(x, y, z, w)=f(w, x, y, z)+f(z, w, x, y), or

(2.11) f(w, x, y,z) = - f(z, w, x, y).

Hence f changes sign when its arguments are permuted cyclically (by

(2.11)) and when the last two are interchanged (by (2.7)), and there-

fore when any two are interchanged. Since/(w, x, y, y) =0, / is skew-

symmetric. In particular, (2.10) reduces to (2.8). Subtract from (2.7)

the result of interchanging w and x, and get ((w, x), y, z)

= —(w, (x, y, z)) + (x, (y, z, w))+2f(w, x, y, z). Computed thus, the

right-hand side of (2.9) reduces to the left-hand side in view of (2.8).

This completes the proof.

From Lemma 2.1 we deduce a number of well known but useful

identities:

Lemma 2.2. For all x, y, z of an alternative ring R, we have

(2.12) (x2, y, z) = x(x, y, z) + (x, y, z)x,

(2.13) (x, xy, z) = (x, y, xz) = (x, y, z)x,

(2.14) (x, yx, z) = (x, y, zx) = x(y, y, z),

and the Moufang identities

(2.15) xy-zx = x(yz-x),

(2.16) x(yxz) = (xy-x)z,        (zx-y)x = z(x-yx).

Proof. For (2.12), set w = x in (2.7). Again, by (2.7), (xy, z, x)

= (y, z, x)x+y(x, z, x)+f(x,y, z, x) = (x, y, z)x, giving (2.13); similarly

for   (2.14).   As   for   (2.15),   xyzx = x(y-zx) + (x,   y,   zx)=x(y-zx)
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+x(y, z, x)=x(yz-x), by (2.14). The first equation of (2.16) comes

by (xy-x)z = xy-xz+(xy, x, z) =x(y-xz) + (x, y, xz) — (x, xy, z)

= x(y-xz); and the second, similarly.

If h(xi, • • • , xn) is any function from R to R and if Ai

(i=l, • • • , n) are subsets of R, we denote by h(Ai, ■ ■ ■ , An) the set

of all elements h(ai, ■ ■ ■ , a„) with a,- in Ai. A subset consisting of a

single element will usually be denoted by that element. At various

points in the paper we shall use without comment the known fact that

any two elements a, b of an alternative ring R are contained in an asso-

ciative subring of R. Proofs (in the notation just explained) of this

and other "associativity" theorems will be found in Appendix I.

The following lemma helps to motivate the proof of an essential

result:

Lemma. 2.3. In an alternative ring R, the (linear) function

g(u, v, w, x, y), defined for all u, v, w, x, y of R by

(0 1?, /(«»- w, x, y) = uf(v, w, x, y) + f(u, w, x, y)v + (u, x, y)(v, w)

+ (u, w)(v, x, y) + g(u, v, w, x, y),

is skew-symmetric in u, v, w and in x, y. Equivalently,

(2.18) f(uv, u, x, y) = uf(v, u, x, y) + (u, x, y)(v, u),

(2.19) f(uv, v, x, y) = /(«, v, x, y)v + (u, v)(v, x, y),

for all u, v, x, y of R.

Proof. Since / is linear, so is g. And g is zero for y = x, hence skew-

symmetric in x, y. Write G(u, v, w)=g(u, v, w, x, y) for fixed x, y.

Then (2.18) states that G(u, v, m)=0, or that G is skew-symmetric

in u, w. Similarly (2.19) states that G is skew-symmetric in v, w.

Assuming these, we have G(u, u, w) = —G(u, w, u) =0, so that G is

skew-symmetric in u, v, w. To prove (2.18), note that f'(vu, u, x, y)

= ((vu, u), x, y) + ((x, y), vu, u), by (2.9). However, ((vu, u), x, y)

= ((v, u)u, x, y)=u((v, u), x, y) + (u, x, y)(v, u)+f((v, u), u, x, y),

by (2.6), (2.7); and ((x, y), vu, u) =u((x, y), v, u), by (2.14). Adding

and using (2.9), we get/(aw, u, x, y)=uf(v, u, x, y) + (u, x, y)(v, u)

+f(vu — uv, u, x, y); this is equivalent to (2.18). To prove (2.19) we

operate similarly onf(vu, v, x, y). One can also obtain expressions for

g which exhibit the correct symmetries.

The next two lemmas deal with new and essential identities.

Lemma 2.4. For all x, y, z of an alternative ring R,

(2.20) ((x, y, z), x, y) = (x, y)(x, y, z) = - (x, y, z)(x, y),
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(2.21) ((x, y, z)2, x, y) = 0.

Proof. Writing u = (x, y, z), v = (x, y), we apply Lemma 2.2 in

two ways to p = (x2, y, zy). On the one hand, p = x(x, y, zy) + (x, y, zy)x

= x-yu+yu-x. On the other hand, p=y(x2, y, z)=y-xu+y-ux. By

subtraction, 0=xyu— y-xu+(y, u, x)=xy-u — (x, y, u)—yx-u

+ (y, x, u) + (y, u, x) = (x, y)u — (u, x, y). Therefore (u, x, y)=vu.

Similarly, (x2, y, yz)=xuy+uy-x = xu-y+uxy and hence (u, x, y)

= —uv. This proves (2.20). Thence (u2, x, y)=u(u, x, y) + (u, x, y)u

= u-vu+( — uv)u = 0, proving (2.21). Note that also (u2, x, z)

= (u2, y, z)=0.

Lemma 2.5. Let x, y, z be any elements of an alternative ring R. Then:

(0 ((*> y> ZY, x) =0; (ii) if (x, y, z) is not a divisor of zero, ((x, y, z)2, x)
= 0.

Proof. Write u = (x, y, z), v = u2, w=f(x, y, z, v). From (2.18),

f(xv, x, y, z)=xf(v, x, y, z) + (x, y, z)(v, x) = — xw+u(v, x). With a

similar use of (2.19), we have

(2.22) u(v, x) = xw + f(xv, x, y, z),     (v, x)u = wx + f(vx, x, y, z).

Using (2.17) and omitting some zero terms, we find f(xv, y, x, z)

= xf(v, y, x, z) +(x, y)(v, x, z)+g(x, v, y, x, z). However, (v, x, z) =0

by (2.21), and hence f(xv, x, y, z)+xw = g(v, x, y, x, z). Similarly,

f(vx, x, y, z)+wx=* —g(v, x, y, x, z). Comparison with (2.22) yields

(2.23) u(v, x) = — (v, x)u.

By (2.7), f(x, y, xv, z) = (xy, xv, z) — (y, xv, z)x — y(x, xv, z). Also

(x, xv, z) = (x, v, z)x = 0 by (2.13), (2.21), so that

(2.24) f(xv, x, y, z) = (xv, y, z)x — (xv, xy, z).

By (2.7), (2.21), (xv, y, z) = (v, y, z)x+v(x, y, z)+f(x, v, y, z) =vu+w.

By (2.7), (2.13), (xv, xy, z) = (v, xy, z)x+v(x, xy, z)+f(x, v, xy, z)

= (xy, z, v)x+v-ux—f(xy, x, z, v). Since (v, u, x) = (w2, u, x) =0, (2.24)

yields

(2.25) f(xv, x, y, z) = [w - (xy, z, v)]x + f(xy, x, z, v).

The term in brackets is zero; indeed (xy, z, v)=y(x, z, v) + (y, z, v)x

+f(x, y, z, v)=w, by (2.7), (2.21). Also, by (2.18), (2.21),/(xy, x, z, v)
= xf(y, x, z, v) + (x, z, v)(y, x)=—xw. Therefore (2.25) gives

f(xv, x, y, z) = -xw. Hence, by (2.22), (2.23),

(2.26) u(v, x) =0]= (v, x)u.
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If w = 0, items (i), (ii) are trivial, so assume w^O. If u is not a divisor

of zero, (2.26) yields (ii). In any case, since v = u2, (m4, x) = (v2, x)

— v(v, x) + (v, x)v = 0 by (2.6), (2.26). This completes the proof.

3. The centre. The nucleus N of an alternative ring R is the set of

all n in R such that (n, R, R) =0. In this terminology, the centre C

of R is the set of all c in R such that (c, R) = (c, R, R) =0. In particu-

lar, CQN. A subset S of R is said to generate R if no proper subring

of R contains 5.

Lemma 3.1. Let R be an alternative ring with centre C, and let S be a

generating subset of R. Then the element p of R is in C if and only if

(p, S) =0 = (p, S, S). And, incidentally, C is a subring of R.

Proof. In one direction the proof is obvious. Therefore let p

satisfy (p, S) = (p, S, S) =0. Let X he the set of all x in R such that

(p, S, x)=0. Clearly X is closed under subtraction. Also, by (2.7),

(2.9), (x'x, p, s) =x(x', p, s) + (x, p, s)x'+f(x', x, p, s) =/(x', x, p, s)

= ((x',x),p,s) + ((p,s), x',x) = ((x', x),p, s) = (x'x,p,s)-(xx',p,s).

Hence (XX, p, S)=0, X is a subring of R. Since (p, S, S)=0, X

contains 5, X = R, (p, S, R)=0. Next let F be the set of all y in R

such that (p, y, R)=0. Then 0 = (yx, y', p)=x(y, y', p) + (x, y', p)y

+f(y, x, y', p) = -f(y, y', x, p) and hence (yy', x, p) =y'(y, x, p)

+ (y', x, p)y+f(y, y', x, p)=0. As before, we deduce that Y = R,

(p, R, R)=0. Finally, let Z be the set of all z in R such that (p, z)

= 0. By (2.6), (zz', p) =z(z', p) + (z, p)z'+3(z, z', p)=0. Thus, again,

Z = R, (p, R)—0. Hence p is in C. In the same manner, we verify

that C is a subring.

Lemma 3.2. Let R be an alternative ring with nucleus N. Let a, b be

elements of R such that (a, b, R)=0. Then: (i) (a, b)EN; (ii) if (a, b)
is neither zero nor a divisor of zero, a, bEN; (iii) if nEN is neither

zero nor a divisor of zero, nxEN implies xEN.

Proof. By (2.7), (2.9), for x, y in R, 0 = (xy, a, b)=y(x, a, b)

+ (y, a, b)x+f(x, y, a, b) = ((x, y), a, b) + ((a, b), x, y) = ((a, b), x, y).

Hence ((a, b), R, R)=0, proving (i). In particular, (N, R)CN. For

nEN, x, y, zER, (nx, y, z)=x(n, y, z) + (x, y, z)n+f(n, x, y, z)

= (x, y, z)n+((n, x), y, z) + ((y, z), n, x) = (x, y, z)n. Hence (nx, R, R)

= (x, R, R)n, and (iii) is clear. By Lemma 2.2, (a, b, R)=0 implies

(a, ba, R)=0. Therefore, by (i), N contains (a, ba) = (a, b)a. If (a, b)

7^0 is not a divisor of zero, we see from (i) and (iii) that a is in N.

Similarly for b. This completes the proof.

Theorem 3.1. Let R be an alternative ring without divisors of zero,

with nucleus N, centre C. Then either N=Ror N=C.
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Corollary. If also (R, R, R) ¿¿0, then (a, b, R) =0 implies (a, b) =0.

Proof. Assume N^R. Then there exists at least one x of R which

is not in N. If n^O is in N, nx is not in N, by Lemma 3.2 (iii). For

any n'EN, (»', x) and (n', nx) are not divisors of zero. Therefore,

by Lemma 3.2 (ii), (n', x)=0=(n', nx). Hence, by (2.6), 0 = (wx, «')

= n(x, n') + (n, n')x + 3(n, x, n') = (n, n')x. Now x^O, since 0 is in N.

Hence (n, n')=0, (n, N) = Q. Thus (n, R)=0 for n^O. Since (0, R)

= 0, (N, R)=0. Hence NQCEN, or N=C. As for the corollary, if

(R, R, i?)^0, then N^R, so N=C. Suppose that (a, b)^0. Then,

by Lemma 3.2 (ii), a, b are in iV= C, so that (a, b) =0, a contradiction.

The significance of the following lemma will become apparent later:

Lemma 3.3. Let R be an alternative ring in which (x, y) =0 if and

only if (x, y, R)=0. Let R contain elements a, b such that (a, b) is

neither zero nor a divisor of zero. Then a necessary and sufficient condi-

tion that the element k of R belong to the centre C of R is that (k, a)

= (k,b)=0.

Proof. Let K be the set of all k in R such that (k, a) = (k, b) = 0-

Let S be the set of all s in J? such that (K, s) = 0. Clearly CEK and

a, bES. Also, since (x, y) =0 implies (x, y, R) =0,

(3.1) (K,S,R) = 0.

By (3.1), for all x, y in R, 0 = (xy, k, s)=y(x, k, s) + (y, k, s)x

+f(x, y, k, s) =/(x, y, k, s), or

(3.2) f(K,S,R, R) = 0.

By (3.2), (2.8), (3.1), 0 = 3f(k, s, s', x) = (k, (s, s', x))-(s, (s', x, k)

+ (s', (x, k, s))-(x, (k, s, s')) = (k, (s, s', x)). Hence (K, (S, S, R))=0,

(3.3) (S,S,R)ES.

Again, by (2.6), (3.1), (5/, k)=s(s', k) + (s, k)s' + 3(s, s', k)=0, or

(3.4) SSES.

Next, (sx, y, k) = (x, y, k)s+x(s, y, k) + f(s, x, y, k). Hence, by (3.1),

(3.2), and similarly,

(3.5) (sx, y, k) = (x, y, k)s,

(3.6) (xs, y, k) = s(x, y, k).

Using (3.3), (3.1), (3.5), (3.6), we get 0 = ((s, x, s'), y, k) = (sxs', y, k)

-(s-xs', y, k)=s'[(x, y, k)s]-[s'(x, y, k)]s=-(s', (x, y, k), s), or

(3.7) ((K,R,R),S,S)=0.
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In the same manner, using also (3.4), (3.7), we get 0 = ((s, s', x), y, k)

= (ss'-x, y, k) — (s-s'x, y, k) = (x, y, k)-ss'—[(x, y, k)s']s

= (x, y, k)(s, s'), or (K, R, R)(S, S)=0. However, the nonzero ele-

ment (a, b) of (S, S) is not a divisor of zero. Therefore (K, R, R) = 0

Since (x, y, R) =0 implies (x, y) =0, we also have (K, R) =0. Hence

CEKEC, K = C. This completes the proof of Lemma 3.3.

4. Proof of the main theorem. We begin with a lemma.

Lemma 4.1. Let R be an alternative ring without divisors of zero and of

characteristic not 2, generated by three elements x, y, z such that (x, y, z)

¿¿0. Let C be the centre of R. Then: (i) px2 — qx+r = 0 for p, q, r in C,

p^0; (ii) (x, y)^0.

Proof, (i) Write « = (x, y, z), v = (x2, y, z)=xu+ux, w=(x, xy, z)

= ux. Then u2x2 — (uv)x+w2 = u2x2 — (uxu+u2x)x+(ux)2, or

(4.1) u2x2 - (uv)x+ w2 = 0.

We prove (i) by showing that u2, uv, w2 are in C. If 5 = xUyUz,

then 5 generates R, and we may apply Lemma 3.1. By Lemmas 2.4,

2.5, (u2, S) = (u2, S, 5)=0; hence u2EC. Since, by Lemma 2.2,

v = (x2, y, z) = (x, xy+yx, z) = (x, y, xz+zx), a like argument shows

that v2 lies in the centres of the subrings generated by x2, y, z, by

x, xy+yx, z and by x, y, xz+zx respectively. In particular, (v2, S)

= (v2, S, S)=0, so v2EC. Similarly, since u+v = (x+x2, y, z)

= (x, y+xy+yx, z) = (x, y, z+xz+zx), (u+v)2EC. Since u2EC, uv

= u(xu+ux)=uxu+u2x = vu; hence (u+v)2 = u2+v2 + 2uv. Thus 2uv

EC, 2(uv, R)=0 = 2(uv, R, R). Since R has characteristic not 2,

uvEC. Again, since w=(x, xy, z) = (x, y, xz), (w2, S) = (w2, x, y)

= (w2, x, z) =0. Also, by (4.1), since u2 and uv=vu are in C, (w2, y, z)

= (uv-x, y, z) — (u2x2, y, z)=uv-(x, y, z)—u2(x2, y, z)=uvu — u2v = 0.

Therefore (w2, S, S) =0, w2EC, and the proof of (i) is complete. By a

slightly more difficult proof, it may be shown that (i) also holds for

characteristic 2.

(ii) Since the triples y, z, x and x+y, y, z also generate R, it is

now clear that we have px2 — qx+r = 0, py2 — q'y+r' = 0, p(x+y)2

-q"(x+y)+r" = 0 lor p, q, r, q', r', q", r" in C, p^Q. Subtracting

the first two equations from the third, we get p(xy+yx)—sx — ty

+c = 0 for s, t, c in C. Assume that (x, y)=0. Then yx = xy, sx — c

= 2pxy—ty, and 0-(sx — c, z, x) = (2pxy—ty, z, x) = 2p(y, z, x)x

-t(y, z, x)=u(2px-t). Since uj¿0, 2px = t. But then 0 = (i, y, z)

= (2px, y, z)=2pu, a contradiction. Therefore (x, y)^0. Not only

the proof but also (ii) fails for characteristic 2; every Cayley-Dick-
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son division algebra of characteristic 2 can be generated by three

pairwise commutative elements.

Theorem 4.1. Let R be an alternative ring without divisors of zero

and of characteristic not 2, which is not associative. Then, if C is the

centre of R, every element x of R satisfies a quadratic equation px2 — qx

+r = 0 with p, q, r in C, p9*0.

Proof. By the corollary to Theorem 3.1, (x, y, R)=0 implies

(x, y)=0. By Lemma 4.1, (x, y, R)s¿0 implies (x, y)^Q. Hence the

hypotheses of Lemma 3.3 are verified. If x is not in C, (x, R, R) ?^0,

by Theorem 3.1. Therefore (x, y, z)9£0 for some y, z, and, by Lemma

4.1, px2 — qx+r = 0 for p, q, r in the set K of all k such that (k, x)

= (&i y) = 0, pT^O- Since also (x, y^O, we see from Lemma 3.3 that

p, q, r are in C. If x is in C, take q = 2px, r = px2 for any nonzero p of C.

In particular, C contains a nonzero element, and we may imbed

R in the central quotient ring R//C (see §1). This yields the following

corollary :

Corollary. Under the hypotheses of Theorem 4.1, R//C is a not-

associative alternative ring with unit, without divisors of zero, of character-

istic not 2, and with the field F= C//C as centre. Moreover, every element

x of R//C satisfies a quadratic equation x2—ax+ß = 0 with a, ß in F.

In a recent paper [2] A. A. Albert proved a theorem which may

be stated as follows:

Theorem 4.2. Let R be an alternative ring with unit, containing in its

centre a field F of characteristic not 2 such that, if x is in R but not in

F, x generates a quadratic field F(x) over F. Then R is an algebra of

order 1, 2, 4 or 8 over F, order 8 corresponding to the case that R is not

associative.

The hypotheses of Theorem 4.2 apply to the ring R//C of the

above corollary. Hence R//C is an algebra of order 8 over F. More-

over R//C has no divisors of zero and hence is a division algebra.

This proves Theorem A (see §1). Corollaries 1, 2 are immediate. As

for Corollary 3, let the alternative ring R be ordered. Since a>0,

0>O imply a+b>0, ab>0, R has characteristic 0 and no divisors

of zero. Assume that R is not associative; then, by Theorem A,

R//C is a Cayley-Dickson algebra. On the one hand, R//C can be

ordered by defining x/c>0 provided cx>0. On the other hand, R//C

contains an (unorderable) quaternion algebra and hence cannot be

ordered. In view of this contradiction, R must be associative.

5. Geometrical applications. Let irbe a projective plane subject
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(tentatively) only to the axioms of incidence. If A, B, C are three

distinct, collinear points, the following is one of several definitions of

a "harmonic conjugate" D of C with respect to A, B : Let A', B', C, D'

be a quadrangle (of points no three of which are collinear and none of

which lies on the line AB) such that each of the triples AB'C, BC'A',

CA'B', AA'D', BB'D' consists of collinear points, and let CD' meet

AB in D. By the Theorem of the Complete Quadrilateral we mean the

following pair of geometric axioms : (i) D is independent of the choice of

A', B', C, D'; (ii) Dt*C. Part (i) is a consequence of Desargues'

Theorem and (ii) asserts that no complete quadrangle has collinear

diagonal points. We may now state:

Theorem B. If a projective plane ir satisfies the Theorem of the

Complete Quadrilateral, then (and only then) some coordinate ring R of

ir is an alternative division ring of characteristic not 2. In addition,

every coordinate ring of ir is isomorphic to R ; otherwise put, the collinea-

tion group of ir is transitive on quadrilaterals. And finally, either it is

Desarguesian or R is a Cayley-Dickson algebra over its centre.

Theorem C. Every linearly ordered projective plane which satisfies

the Theorem of the Complete Quadrilateral is Desarguesian.

In a series of seven papers [5, 6, 7, 8, 9, 10, 11 ] Ruth Moufang

considers the influence of various axioms on projective planes. In [5]

she mentions (i), (ii). In [6, 8, 9] she uses either (i) or an equivalent

(special Desargues' Theorem) Da, together with Hubert's (affine)

axioms of order; the latter imply (ii). In [7] she asserts (i) or Z>9

but tacitly uses (ii) to ensure that A is the harmonic conjugate of B

with respect to C, D. In [10, 11 ], (i) and (ii) enter only implicitly.

When order is used, her work leads to an ordered alternative divi-

sion ring; by Theorem A, Corollary 3, the ring is associative, giving

Theorem C. With order omitted she obtains the first sentence of

Theorem B (ignoring characteristic 2, which must be excluded be-

cause of (ii)).

In [4], Marshall Hall gives another geometric characterization

of alternative division rings in terms of his Theorem L (a special

Desargues' Theorem). Characteristic 2 plays no special rôle. Hall

also gives a necessary and sufficient condition (unproved but easily

demonstrated) that all alternative division rings defining the same

plane should be isomorphic. For Cayley-Dickson algebras this con-

dition had previously been verified by R. D. Schafer [l2]. Hence, in

view of Theorem A, Corollary 2, we have the last two sentences of

Theorem B. This completes the discussion of Theorems B, C.
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Appendix I. Associativity theorems

A subset A of an alternative ring R is called associative if (A, A, A)

= 0; for example, let A consist of two elements a, b. And A is called

maximal associative provided (x, A, A ) = 0 if and only if x is in A.

Using the well-ordering axiom or Zorn's Lemma, one can easily

verify that every associative subset is contained in at least one

maximal associative subset.

Theorem 1.1. Let R be an alternative ring in which 3f(w, x, y, z)

= 0 implies f(w, x, y, z) =0. Then every maximal associative subset A

of R is a subring of R.

Proof. If w, x, y, z are in A, (2.8) and the hypothesis on R yield

f(w, x, y, z)=0. Then (2.7) gives (wx, y, z)=0. Hence AAEA. By

the linearity of the associa tor, A is closed under subtraction, and the

proof is complete.

An (unpublished) example of an alternative ring R for which the

conclusion of Theorem 1.1 fails has been constructed by M. F.

Smiley [14]. Therefore the following theorems have some point. But

it should be observed that Theorem 1.1 is the definitive associativity

theorem for the wide class of rings satisfying its hypothesis.

Theorem 1.2. Let A, B, C be subsets of an alternative ring R such that

(A, A, R) = (B, B, R) = (C, C, R) = (A, B, C)=0. Then the subset
D = A'*UB\JC is contained in an associative subring of R.

Corollary. Any two elements a, b of R (or any three elements a, b, c

such that (a, b, c) =0) are contained in an associative subring of R.

Remark. Max Zorn [lS] proves the case C = B (generalized

Theorem of Artin). Moufang [ll] proves the case A =a, B=b, C = c

simultaneously for alternative division rings and Moufang loops.

Smiley [13] modifies Moufang's proof to apply to general alternative

rings. All of these proofs use mathematical inductions, which are

particularly complex in the case of the latter two authors.

Proof. Let a, a', a" denote elements of A, and similarly for the

other subsets occurring in the proof. Since 0 = (rr', a, a') =r'(r, a, a')

+ (r', a, a')r+f(r, r', a, a') =f(a, a', r, r') (and similarly),

(1) i(A, A, R, R) = f(B, B, R, R) = f(C, C, R, R) = 0.

Let K be the set of all k in R such that (D, D, k) =f(A, B, C, k)=0.
In view of (1) and the hypotheses, DEK- In addition,
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(2) (D, D,K) = 0= f(D, D, D, K).

By (2), (dd', d", k)=d'(d, d", k) + (d', d", k)d+f(d, d', d", ¿)=0, or
(DD, D, K)=0. This, (2), and (1), for x in DVJDD, give (ak, a', x)

= k(a, a', x) + (k, a', x)a+f(a, k, a', x)=0 or (D, A, AK)

= (DD, A,AK)=0. Therefore 0 = (be, a, a'k) = c(b, a, a'k) + (c, a, a'k)b

+f(b, c, a, a'k) =f(a, b, c, a'k). Thus, and by symmetry, f(A, B, C, DK)

= 0. Again, by (2), since DCK, (dk, d', d")=k(d, d', d") + (k, d', d")d
+f(d, k, d', d")=0, or (D, D, DK)=0. Therefore DKCK.

If M is the set of all m in K such that (D, m, K)=0 and mKEK,

we have proved that DEM.

Finally, let 5 be the set of all 5 in M such that (s, M, K) = 0.

Clearly DES. Moreover S is associative and (along with K, M)

closed under subtraction. Since SEMEK and MKEK, 0 = (mk, s, s')

= k(m, s, s') + (k, s, s')m+f(m, k, s, s') =f(m, k, s, s'), so that (ss', m, k)

= s'(s, m, k) + (s', m, k)s+f(s, s', m, k) =0. Therefore (SS, M, K) =0.

Since SEMEK and MKEK, SSEK. Also (S, S, K)=0, so that
SS-K = S-SKEK. And (SS, M, K)=0 implies (SS, D, K)=0, so
that SSEM. Therefore SSES, and the proof is complete. As for the

corollary, set A= a, B = C = b or A= a, B=b, C = c according to the

case.

It is clear on the basis of Zorn's Lemma that every associative sub-

ring of an alternative ring is contained in at least one maximal asso-

ciative subring.

Theorem 1.3. Let A be an associative subring of the alternative ring R,

and let B be a subset of R such that (A, A, B) = (B, B, R) =0. Then the

subset D =AVJB is contained in an associative subring of R.

Corollary. Every maximal associative subring of R is a maximal

associative subset.

Proof. The proof is so similar to that of Theorem 1.2 that we

may omit some details. Let K he the set of all k in R such that

(D, D, k)=0. Since (B, B, R)=0,f(B, B, R, R)=0. Since AAEA
ED, 0 = (AA, D, K)=f(A, A, D, K). Therefore f(D, D, D, K)=0.
Moreover DEK and hence (DK, D, D)=0. Thus DEM, where M is

the set of all min K such that (D, m, K) =0 and mKEK. If 5 is the

set of all 5 in M such that (s, M, K) = 0, we see as before that S is

an associative subring containing D. As for the corollary, let A be a

maximal associative subring of R and let B = b where (A, A, b)=0.

By Theorem 1.3, AEA^JbES where S is an associative subring.

Hence A =A\Jb, b is in A.

■
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