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POISSON VERTEX ALGEBRA COHOMOLOGY AND

DIFFERENTIAL HARRISON COHOMOLOGY

BOJKO BAKALOV, ALBERTO DE SOLE, VICTOR G. KAC, AND VERONICA VIGNOLI

To Nikolai Reshetikhin on his 60-th birthday.

Abstract. We construct a canonical map from the Poisson vertex algebra
cohomology complex to the differential Harrison cohomology complex, which
restricts to an isomorphism on the top degree. This is an important step in

the computation of Poisson vertex algebra and vertex algebra cohomologies.

1. Introduction

The present paper is a next step in the development of the cohomology theory
of vertex algebras started in [BDSHK18, BDSHK19]. Recall (see e.g. [BDSHK18])
that, to any linear symmetric (super)operad P over a field F, one canonically asso-
ciates a Z-graded Lie superalgebra

W (P) =

∞⊕

k=−1

W k(P) , where W k(P) = P(k + 1)Sk+1 . (1.1)

An odd element X ∈ W 1(P), satisfying [X,X ] = 0, defines a cohomology complex
(W (P), adX), which is a differential graded Lie superalgebra.

A cohomology theory of vertex algebras is constructed by considering the operad
Pch(V ), attached to a vector superspace V with an even endomorphism ∂. In order
to describe this construction, let, for n ∈ Z≥0,

Vn = V [λ1, . . . , λn]
/
〈∂ + λ1 + · · ·+ λn〉 ,

where the indeterminates λi have even parity and 〈Φ〉 stands for the image of the
endomorphism Φ, and let

O⋆,T
n = F[zi − zj , (zi − zj)

−1]1≤i<j≤n .

The superspace Pch(V )(n) is defined as the set of all linear maps

Y : V ⊗n ⊗O⋆,T
n → Vn , v1 ⊗ · · · ⊗ vn ⊗ f 7→ Yλ1,...,λn

(v1 ⊗ · · · ⊗ vn ⊗ f) , (1.2)

satisfying the following two sesquilinearity properties (1 ≤ i ≤ n):

Yλ1,...,λn
(v1⊗· · ·⊗ (∂+λi)vi⊗· · ·⊗vn⊗f) = Yλ1,...,λn

(

v1⊗· · ·⊗vn⊗
∂f

∂zi

)

, (1.3)

and

Yλ1,...,λn
(v1⊗· · ·⊗vn⊗(zi−zj)f) =

( ∂

∂λj

−
∂

∂λi

)

Yλ1,...,λn
(v1⊗· · ·⊗vn⊗f) . (1.4)

Key words and phrases. Poisson vertex algebra, Harrison cohomology, chiral operad, classical
operad, Poisson vertex algebra cohomology, variational Poisson cohomology.
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In [BDSHK18] we also defined the action of Sn on Pch(V )(n) and the ◦i-products,
making Pch(V ) an operad.

As a result, we obtain the Lie superalgebra

Wch(V ) = W (Pch(V )) =

∞⊕

k=−1

W k
ch(V ) ,

see (1.1). We show in [BDSHK18] that odd elements X ∈ W 1
ch(ΠV ), such that

[X,X ] = 0, correspond bijectively to vertex algebra structures on the F[∂]-module
V , such that ∂ is the translation operator (where Π stands for the reversal of
parity). This leads to the vertex algebra cohomology complex (Wch(ΠV ), adX),
with coefficients in the adjoint V -module. The cohomology with coefficients in an
arbitrary V -module M in obtained by a simple reduction procedure.

Now, suppose that the F[∂]-module V has an increasing Z≥0-filtration by F[∂]-
submodules. Taking the increasing filtration of O⋆,T

n by the number of divisors, we
obtain an increasing filtration of V ⊗n ⊗O⋆,T

n . This filtration induces a decreasing
filtration of the superspace Pch(V )(n) (see [BDSHK18]). The associated graded
spaces grPch(V )(n) form a graded operad.

On the other hand, in [BDSHK18] we introduced the closely related operad
Pcl(V ), which “governs” the Poisson vertex algebra (PVA) structures on the F[∂]-
module V . Let FG(n) be the vector space (with even parity) spanned by the set
G(n) of labeled oriented graphs with n vertices. The vector superspace Pcl(V )(n)
is the space of linear maps (cf. (1.2))

Y : FG(n)⊗ V ⊗n → Vn , Γ⊗ v 7→ Y Γ(v) , (1.5)

satisfying the sesquilinearity conditions (3.28) and (3.29) in Section 3.7, which
are the “classical” analogs of (1.3) and (1.4). The corresponding Z-graded Lie
superalgebra

Wcl(ΠV ) =

∞⊕

k=−1

W k
cl(ΠV ) ,

is such that odd elements X ∈ W 1
cl(ΠV ) with [X,X ] = 0 parametrize the PVA

structures on the F[∂]-module V by

ab = (−1)p(a)X•→•(a⊗ b) , [aλb] = (−1)p(a)X• •λ,−λ−∂(a⊗ b) . (1.6)

When V is endowed with an increasing Z≥0-filtration by F[∂]-submodules, we
have a canonical linear map of graded operads

grPch(V ) → Pcl(grV ) . (1.7)

It is proved in [BDSHK18] that the map (1.7) is injective. The main result of
[BDSHK19] is that this map is an isomorphism, provided that the filtration of V
is induced by a grading by F[∂]-modules. If, in addition, this filtration of V is
such that grV inherits from the vertex algebra structure of V a PVA structure,
then, as a result, the vertex algebra cohomology is majorized by the classical PVA
cohomology:

dimHn
ch(V ) ≤ dimHn

cl(V ) . (1.8)

Unfortunately, (1.8) is not a “practical” inequality, since the direct computation
of Hcl(V,M) may be very hard. However, if the superspace V is endowed with
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the structure of a commutative associative superalgebra with an even derivation ∂,
there exists a much smaller Z-graded Lie superalgebra, constructed in [DSK13]:

WPV(ΠV ) =

∞⊕

k=−1

W k
PV(ΠV ) .

It has the property that PVA structures on the differential algebra V correspond
bijectively to odd elements X ∈ W 1

PV(ΠV ) such that [X,X ] = 0, cf. (1.6). This
produces the variational Poisson cohomology complex (WPV(ΠV ), adX). It is easy
to see that this complex is a subcomplex of the complex (Wcl(ΠV ), adX), corre-
sponding to the graphs without edges.

The present paper is the first paper towards proving that the inclusion of com-
plexes

(WPV(ΠV ), adX) →֒ (Wcl(ΠV ), adX) , (1.9)

induces an isomorphism in cohomology, under some assumptions on the differential
algebra V . In this case, we may replace Hcl by HPV in (1.8). Since there are by now
well developed tools for computing variational Poisson cohomology, see [DSK13] and
[BDSK19], this allows one to get a hold of the vertex algebra cohomology.

In the present paper, given a vector superspace V with an even endomorphism
∂, we construct a canonical map of complexes

(Wcl(ΠV ), adX)
ϕ

−→ (C∂,Har(V ), d) , (1.10)

which restricts to a bijective linear map on the top degree:

grn−1 Wn−1
cl (ΠV )

∼
−→ Cn

∂,Har(V ) ,

see Theorem 4.1 in Section 4. Here X ∈ W 1
cl(ΠV ) corresponds to the PVA structure

on V , given by (1.6). In particular, V is endowed with a structure of a commutative
associative superalgebra with an even derivation ∂, hence we may consider the
differential Harrison complex

(

C∂,Har(V ) =
⊕

n∈Z≥0

Cn
∂,Har(V ) , d

)

.

Here Cn
∂,Har(V ) is the subspace of HomF[∂](V

⊗n, V ) satisfying Harrison’s conditions

(2.11) in Section 2.3. It was shown in [Har62, GS87] that the subspace C∂,Har(V )
of

⊕

n∈Z≥0
HomF[∂](V

⊗n, V ) is invariant with respect to the Hochschild differential

d (which commutes with ∂). Finally, the map ϕ in (1.10) maps Y ∈ Wn−1
cl (ΠV ) to

Y Λn , where Λn is the labeled oriented graph

Λn =
1 2

...
n

In our next paper [BDSHKV19] we will show that if the differential superalgebra
V is such that Hn

∂,Har(V, d) = 0 for n > 1, then the inclusion (1.10) is a quasi-

isomorphism, hence in this case the inequality (1.8) turns into the inequality

dimHn
ch(V ) ≤ dimHn

PV(V ) . (1.11)

We refer to the Ph.D. thesis [Vig19] for examples and more details.
Throughout the paper, the base field F has characteristic 0, and, unless otherwise

specified, all vector spaces, their tensor products and Hom’s are over F.
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2. Differential Harrison cohomology complex

In this section, we recall the definition of the Harrison cohomology complex and
we introduce the differential Harrison cohomology complex.

2.1. Hochschild cohomology complex. First, we review the Hochschild coho-
mology complex, of which Harrison’s is a subcomplex, see [Hoc45] and [Har62]. We
use the original Harrison’s definition. For other definitions see [GS87, Lod13].

Let A be an associative algebra over the base field F, and M be an A-bimodule.
We will write A⊗n for the n-fold tensor product A ⊗ · · · ⊗ A. The Hochschild
cohomology complex is defined as follows. The space of n-cochains is

Hom(A⊗n,M) , (2.1)

and the differential d : Hom(A⊗n,M) → Hom(A⊗n+1,M) is defined by

(df)(a1⊗ · · · ⊗ an+1) = a1f(a2 ⊗ · · · ⊗ an+1)

+

n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1 . (2.2)

Then d2 = 0, and we get the Hochschild cohomology complex

0 −→ M
d

−→ Hom(A,M)
d

−→ Hom(A⊗2,M)
d

−→ · · · . (2.3)

If A is an associative algebra with a derivation ∂ : A → A, and M is a differential
bimodule over A (i.e., the action of ∂ is compatible with the bimodule structure), we
may consider the differential Hochschild cohomology complex by taking the subspace
of n-cochains

HomF[∂](A
⊗n,M) . (2.4)

It is clear by the definition (2.2) that the differential d maps HomF[∂](A
⊗n,M) to

HomF[∂](A
⊗n+1,M). Hence, we have a cohomology subcomplex.

Remark 2.1. It is straightforward, using the Koszul–Quillen rule, to extend the def-
inition of the Hochschild complex to the case when A is an associative superalgebra,
as well as all other definitions and results of the paper. We restricted here to the
purely even case for the simplicity of the exposition.

2.2. Monotone permutations. Consider the symmetric group Sn. Using Harri-
son’s notation in [Har62] (see also [GS87]), we have the following definition:

Definition 2.2. A permutation π ∈ Sn is called monotone if, for each i = 1, . . . , n,
one of the following two conditions holds:

(a) π(j) < π(i) for all j < i;
(b) π(j) > π(i) for all j < i.
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(Not necessarily the same condition (a) or (b) holds for every i.) When (b) holds,
we call i a drop of π. Also, π(1) = k is called the start of π (and we say that π
starts at k).

We denote by Mn ⊂ Sn the set of monotone permutations, and by Mk
n ⊂ Mn

the set of monotone permutations starting at k.
Here is a simple description of all monotone permutations starting at k. Let us

identify the permutation π ∈ Sn with the n-tuple [π(1), . . . , π(n)]. To construct all
π ∈ Mk

n, we let π(1) = k. Then, for every choice of k − 1 positions in {2, . . . , n}
we get a monotone permutation π as follows. In the selected positions we put the
numbers 1 to k−1 in decreasing order from left to right; in the remaining positions
we write the numbers k+1 to n in increasing order from left to right. (The selected
positions are the drops of π.)

According to the above description, we have a bijective correspondence

Mk
n

∼
−→

{
D ⊂ {2, . . . , n}

∣
∣ |D| = k − 1

}
, (2.5)

associating the monotone permutation π ∈ Mk
n to the set D(π) of drops of π, which

are

π−1(k − 1) < π−1(k − 2) < · · · < π−1(1) ∈ {2, . . . , n} .

Example 2.3. The only monotone permutation starting at 1 is the identity, while
the only monotone permutation starting at n is

σn = [n n− 1 · · · 2 1] . (2.6)

Example 2.4. Let n = 5 and k = 3. The monotone permutations starting at 3
are

[3 2 1 4 5] , [3 2 4 1 5] , [3 2 4 5 1] ,

[3 4 2 1 5] , [3 4 2 5 1] , [3 4 5 2 1] ,

where we underlined the positions of the drops.

Given a monotone permutation π, we denote by dr(π) the sum of all the drops
with respect to π. According to the previous description, we can easily see that

(−1)dr(π) = (−1)k−1 sign(π) , (2.7)

if k is the start of π.
Note that the description (2.5) of Mk

n in terms of positions of drops allows us
to count the number of elements in Mk

n, for fixed n and k. We have:

|Mk
n| =

(
n− 1

k − 1

)

. (2.8)

Remark 2.5. Let us denote by Mk,k−1
n ⊂ Mk

n the subset of all monotone permu-
tations π starting at k with π(2) = k − 1, and by Mk,k+1

n ⊂ Mk
n the subset of all

monotone permutations π starting at k with π(2) = k + 1. Then we have

Mk
n = Mk,k−1

n ⊔Mk,k+1
n .

Lemma 2.6. There are natural identifications

Mk,k−1
n ≃ Mk−1

n−1 (resp. Mk,k+1
n ≃ Mk

n−1) ,
5



mapping π ∈ Mk,k−1
n to π̄ ∈ Mk−1

n−1 (resp. π ∈ Mk,k+1
n to π̄ ∈ Mk

n−1), given by
π̄(1) := k − 1 (resp. k), and, for i = 2, . . . , n− 1,

π̄(i) :=

{

π(i+ 1) , if π(i+ 1) < k

π(i+ 1)− 1 , if π(i+ 1) > k
. (2.9)

Moreover,
(−1)dr(π̄) = (−1)dr(π)+k (resp. (−1)dr(π)+k−1) .

Proof. Straightforward; see [Vig19] for details. �

Remark 2.7. Observe that, given a monotone permutation π, either π(n) = 1 or
π(n) = n. Denote by 1Mk

n ⊂ Mk
n the set of all the monotone permutations π

starting at k with π(n) = 1, and by nMk
n ⊂ Mk

n the set of all the monotone
permutations π starting at k with π(n) = n. As in Remark 2.5, we have

Mk
n = 1Mk

n ⊔ nMk
n .

Lemma 2.8. There are natural identifications
1Mk

n ≃ Mk−1
n−1 (resp. nMk

n ≃ Mk
n−1) ,

mapping π ∈ 1Mk
n to π̃ ∈ Mk−1

n−1 (resp. π ∈ nMk
n to π̃ ∈ Mk

n−1), given by
π̃(i) := π(i)− 1 (resp. π̃(i) := π(i)), for i = 1, . . . , n− 1. Moreover,

(−1)dr(π̃) = (−1)dr(π)+n (resp. (−1)dr(π)) .

Proof. Straightforward; see [Vig19] for details. �

2.3. Differential Harrison cohomology complex. Let us now recall Harrison’s
original definition of his cohomology complex [Har62]. Let A be a commutative
associative algebra, and M be a symmetric A-bimodule, i.e., such that am = ma,
for all a ∈ A and m ∈ M . For every 1 < k ≤ n define the following endomorphism
on the space Hom(A⊗n,M):

(LkF )(a1 ⊗ · · · ⊗ an) :=
∑

π∈Mk
n

(−1)dr(π)F (aπ(1) ⊗ · · · ⊗ aπ(n)) . (2.10)

A Harrison n-cochain is defined as a Hochschild n-cochain F ∈ Hom(A⊗n,M) fixed
by all operators Lk:

LkF = F , for every 2 ≤ k ≤ n . (2.11)

We will denote by
Cn

Har(A,M) ⊂ Hom(A⊗n,M) (2.12)

the space of Harrison n-cochains.
Furthermore, if A is a differential algebra with a derivation ∂ : A → A, and

M is a symmetric differential bimodule, we may consider the space of differential
Harrison n-cochains

Cn
∂,Har(A,M) ⊂ HomF[∂](A

⊗n,M) , (2.13)

again defined by Harrison’s conditions (2.11).

Proposition 2.9. (a) The Harrison complex (CHar(A,M), d) is a subcomplex of
the Hochschild complex.

(b) If A is a differential algebra, with a derivation ∂ : A → A, the differential Har-
rison complex (C∂,Har(A,M), d) is a subcomplex of the differential Hochschild
complex.
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Proof. The proof of (a) is in [Har62, GS87]. Part (b) is straightforward. �

Remark 2.10. Clearly, H0
∂,Har(A,M) = M and H1

∂,Har(A,M) = DerF[∂](A,M).

It follows from [GS87] that Hn
∂,Har(A,M) is a direct summand of the differential

Hochschild cohomology HHn
∂ (A,M), for n ≥ 2.

3. The classical operad and PVA cohomology

In this section, we recall some basic notions that will be used throughout the
paper, and review the construction of the PVA cohomology complex as described
in [BDSHK18].

3.1. Symmetric group actions. There is a natural left action of Sn on an arbi-
trary n-tuple of objects (λ1, . . . , λn):

σ(λ1, . . . , λn) = (λσ−1(1), . . . , λσ−1(n)) , σ ∈ Sn . (3.1)

Also, given V = V0̄⊕V1̄ a vector superspace with parity p, we have a linear left action
of the symmetric group Sn on the tensor product V ⊗n (σ ∈ Sn, v1, . . . , vn ∈ V ):

σ(v1 ⊗ · · · ⊗ vn) := ǫv(σ) vσ−1(1) ⊗ · · · ⊗ vσ−1(n) , (3.2)

where, following the Koszul–Quillen rule,

ǫv(σ) :=
∏

i<j :σ(i)>σ(j)

(−1)p(vi)p(vj) . (3.3)

In particular, if V is purely even ǫv(σ) = 1, while if V is purely odd ǫv(σ) = sign(σ).
The corresponding right action of Sn on the the space Hom(V ⊗n, V ) is given by
(f ∈ Hom(V ⊗n, V ), σ ∈ Sn):

fσ(v1 ⊗ · · · ⊗ vn) = f(σ(v1 ⊗ · · · ⊗ vn)) . (3.4)

3.2. Composition of permutations and shuffles. Let n ≥ 1 and m1 , . . . ,mn ≥
0. We introduce the following notation:

M0 = 0 and Mi =
i∑

j=1

mj , i = 1, . . . , n . (3.5)

Given σ ∈ Sn and τ1 ∈ Sm1 , . . . , τn ∈ Smn
, we describe the composition

σ(τ1, . . . , τn) ∈ SMn

by saying how it acts on the tensor power V ⊗Mn of a vector space V :

(σ(τ1, . . . , τn))(v1⊗· · ·⊗vMn
) = σ(τ1(v1⊗· · ·⊗vM1)⊗· · ·⊗τn(vMn−1+1⊗· · ·⊗vMn

)) .
(3.6)

Definition 3.1. A permutation σ ∈ Sm+n is called an (m,n)-shuffle if

σ(1) < · · · < σ(m) , σ(m+ 1) < · · · < σ(m+ n) .

The subset of (m,n)-shuffles is denoted by Sm,n ⊂ Sm+n.

Observe that, by definition, S0,n = Sn,0 = {1} for every n ≥ 0. If either m or n
is negative, we set Sm,n = ∅ by convention.
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3.3. n-graphs. For an oriented graph Γ, we denoted by V (Γ) the set of vertices
of Γ, and by E(Γ) the set of edges. We call Γ an n-graph if V (Γ) = {1, . . . , n}.
Denote by G(n) the set of all n-graphs without tadpoles, and by G0(n) the set of
all acyclic n-graphs.

An n-graph L will be called an n-line, or simply a line, if its set of edges is of
the form {i1 → i2, i2 → i3, . . . , in−1 → in}, where {i1, . . . , in} is a permutation of
{1, . . . , n}.

We have a natural left action of Sn on the set G(n): for the n-graph Γ and the
permutation σ, the new n-graph σ(Γ) is defined to be the same graph as Γ but with
the vertex which was labeled as i relabeled as σ(i), for every i = 1, . . . , n. So, if
the n-graph Γ has an oriented edge i → j, then the n-graph σ(Γ) has the oriented
edge σ(i) → σ(j). Note that Sn permutes the set of n-lines.

Let us recall the cocomposition of n-graphs, as described in [BDSHK18]. Given
an n-tuple (m1, . . . ,mn) of positive integers, let Mi be as in (3.5). If Γ ∈ G(Mn),
define ∆m1,...,mn

i (Γ) ∈ G(mi), i = 1, . . . , n, to be the subgraph of Γ associated
to the set of vertices {Mi−1 + 1, . . . ,Mi}, relabeled as {1, . . . ,mi}. Define also
∆m1,...,mn

0 (Γ) to be the graph obtained from Γ by collapsing the vertices and the
edges of each ∆m1,...,mn

i (Γ) into a single vertex, relabeled as i. Then the cocompo-
sition map is the map

∆m1,...,mn : G(Mn) → G(n)× G(m1)× · · · × G(mn) , (3.7)

Γ 7→ (∆m1,...,mn

0 (Γ), ∆m1,...,mn

1 (Γ), . . . ,∆m1,...,mn
n (Γ)) .

Example 3.2. Let n = 3, (m1,m2,m3) = (3, 1, 4), and Γ ∈ G(8) be the following
graph

Γ =
1 2 3 4 5 6 7 8

(3.8)

The cocomposition ∆3,1,4(Γ) =
(
∆3,1,4

0 (Γ), ∆3,1,4
1 (Γ),∆3,1,4

2 (Γ),∆3,1,4
3 (Γ)

)
is given

by the following graphs. ∆3,1,4
1 (Γ) is the subgraph of Γ generated by the first three

vertices:

∆3,1,4
1 (Γ) =

1 2 3
∈ G(3) ;

∆3,1,4
2 (Γ) is the subgraph of Γ associated to the fourth vertex:

∆3,1,4
2 (Γ) =

1
∈ G(1) ;

∆3,1,4
3 (Γ) is the subgraph of Γ associated to the last four vertices:

∆3,1,4
3 (Γ) =

1 2 3 4
∈ G(4) ;

8



and, finally, ∆3,1,4
0 (Γ) is:

∆3,1,4
0 (Γ) =

1 2 3
∈ G(3) .

From the construction of ∆m1,...,mn

i (Γ), it is easy to see that there is a natural
bijective correspondence

∆: E(Γ)
∼
−→ E

(
∆m1...mn

0 (Γ)
)
⊔ E

(
∆m1...mn

1 (Γ)
)
⊔ · · · ⊔ E

(
∆m1...mn

n (Γ)
)
. (3.9)

Definition 3.3. Let k ∈ {1, . . . ,Mn} and j ∈ {1, . . . , n}. We say that j is externally
connected to k (via the graph Γ and its cocomposition ∆m1...mn(Γ)) if there is an
unoriented path (without repeating edges) of ∆m1...mn

0 (Γ) joining j to i, where
i ∈ {1, . . . , n} is such that k ∈ {Mi−1 + 1, . . . ,Mi}, and the edge out of i is the
image, via the map ∆ in (3.9), of an edge which has its head or tail in k. Given a
set of variables x1, . . . , xn, we denote

X(k) =
∑

j externally
connected to k

xj . (3.10)

Example 3.4. For the graph (3.8), we have

X(1) = 0, X(2) = x1 + x2 + x3, X(3) = 0, X(4) = x1 + x3, X(5) = x1 + x2 + x3,

X(6) = x1 + x2 + x3, X(7) = 0, X(8) = 0.

3.4. Lie conformal algebras and Poisson vertex algebras.

Definition 3.5. A Lie conformal (super)algebra is a vector (super)space V , en-
dowed with an even endomorphism ∂ ∈ End(V ) and a bilinear (over F) λ-bracket
[· λ ·] : V × V → V [λ] satisfying sesquilinearity (a, b ∈ V ):

[∂aλb] = −λ[aλb] , [aλ∂b] = (λ + ∂)[aλb] , (3.11)

skewsymmetry (a, b ∈ V ):

[aλb] = −(−1)p(a)p(b)[b−λ−∂a] , (3.12)

and the Jacobi identity (a, b, c ∈ V ):

[aλ[bµc]]− (−1)p(a)p(b)[bµ[aλ, b]] = [[aλb]λ+µc] . (3.13)

Definition 3.6. A Poisson vertex (super)algebra (PVA) is a commutative asso-
ciative (super)algebra V endowed with an even derivation ∂ and a Lie conformal
(super)algebra λ-bracket [·λ·] that satisfies the left Leibniz rule

[aλbc] = [aλb]c+ (−1)p(a)p(b)b[aλc] . (3.14)

3.5. Operads. Recall that a (linear, unital, symmetric) superoperad P is a collec-
tion of vector superspaces P(n), n ≥ 0, with parity p, endowed, for every f ∈ P(n)
and m1, . . . ,mn ≥ 0, with a composition parity preserving linear map,

P(n)⊗ P(m1)⊗ · · · ⊗ P(mn) → P(Mn) ,

f ⊗ g1 ⊗ · · · ⊗ gn 7→ f(g1 ⊗ · · · ⊗ gn) ,
(3.15)
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where Mn is as in (3.5), satisfying the following associativity axiom:

f
(
(g1⊗· · ·⊗gn)(h1⊗· · ·⊗hMn

)
)
=

(
f(g1⊗· · ·⊗gn)

)
(h1⊗· · ·⊗hMn

) ∈ P
( Mn∑

j=1

ℓj

)

,

(3.16)
for every f ∈ P(n), gi ∈ P(mi) for i = 1, . . . , n, and hj ∈ P(ℓj) for j = 1, . . . ,Mn.
In the left-hand side of (3.16) the linear map

g1⊗ · · · ⊗gn :

Mn⊗

j=1

P(ℓj) →
n⊗

i=1

P
( Mi∑

j=Mi−1+1

ℓj

)

is the tensor product of composition maps applied to

h1⊗· · ·⊗hMn
= (h1⊗· · ·⊗hM1)⊗(hM1+1⊗· · ·⊗hM2)⊗· · ·⊗(hMn−1+1⊗· · ·⊗hMn

).

We assume that P is endowed with a unit element 1 ∈ P(1) satisfying the
following unity axioms:

f(1⊗ · · · ⊗ 1) = 1(f) = f , for every f ∈ P(n) . (3.17)

Furthermore, we assume that, for each n ≥ 1, P(n) has a right action of the
symmetric group Sn, denoted fσ, for f ∈ P(n) and σ ∈ Sn, satisfying the fol-
lowing equivariance axiom (f ∈ P(n), g1 ∈ P(m1), . . . , gn ∈ P(mn), σ ∈ Sn,
τ1 ∈ Sm1 , . . . , τn ∈ Smn

):

fσ(gτ11 ⊗ · · · ⊗ gτnn ) =
(
f(σ(g1 ⊗ · · · ⊗ gn))

)σ(τ1,...,τn)
, (3.18)

where the left action of σ ∈ Sn on the tensor product of vector superspaces was
defined in (3.2), and the composition σ(τ1, . . . , τn) is described in (3.6).

For simplicity, from now on, we will use the term operad in place of superoperad.
Given an operad P , one defines, for each i = 1, . . . , n, the ◦i-product ◦i : P(n) ⊗
P(m) → P(n+m− 1) by insertion in position i, i.e.

f ◦i g = f(

i−1
︷ ︸︸ ︷

1⊗ · · · ⊗ 1⊗

i

g ⊗

n−i
︷ ︸︸ ︷

1⊗ · · · ⊗ 1) . (3.19)

Example 3.7. The simplest example of an operad is P = Hom. Given a vector
superspace V , Hom = Hom(V ) is defined as the collection of

Hom(n) := Hom(V ⊗n, V ) , n ≥ 0 ,

endowed with the composition maps (f ∈ Hom(n), gi ∈ Hom(mi) for i = 1, . . . , n,
vj ∈ V for j = 1, . . . ,Mn)

(f(g1 ⊗ · · · ⊗ gn))(v1 ⊗ · · · ⊗ vMn
) := f((g1 ⊗ · · · ⊗ gn)(v1 ⊗ · · · ⊗ vMn

)) ,

where Mn is as in (3.5). Hom is a unital operad with unity 1 = 1V ∈ End(V ), and
the right action of Sn on Hom(n) is given by (3.4).

3.6. The Z-graded Lie superalgebra associated to an operad. Recall that,
given an operad P , one can construct the associated Z-graded Lie superalgebra
W (P). It is defined, as a Z-graded vector superspace

W (P) =
∑

n≥−1

Wn(P) =
∑

n≥−1

P(n+ 1)Sn+1 , (3.20)
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with the following Lie bracket. For f ∈ Wn(P) and g ∈ Wm(P), their �-product
is defined by

f�g =
∑

σ∈Sm+1,n

(f ◦1 g)
σ−1

∈ Wm+n(P) (3.21)

and the Lie bracket on W (P) is given by

[f, g] = f�g − (−1)p(f)p(g)g�f . (3.22)

See e.g. [BDSHK18, Sec. 3] for details.

3.7. The classical operad Pcl [BDSHK18]. Let V = V0̄ ⊕ V1̄ be a vector super-
space with parity p, endowed with an even endomorphism ∂ ∈ EndV . For n ≥ 0,
define Pcl(n) as the vector superspace of all maps

f : G(n)× V ⊗n −→ V [λ1, . . . , λn]
/
〈∂ + λ1 + · · ·+ λn〉 , (3.23)

which are linear in the second factor, mapping the n-graph Γ ∈ G(n) (by definition
p(Γ) = 0̄) and the monomial v1 ⊗ · · · ⊗ vn ∈ V ⊗n to the polynomial

fΓ
λ1,...,λn

(v1 ⊗ · · · ⊗ vn) , (3.24)

satisfying the cycle relations and the sesquilinearity conditions described as follows.
The cycle relations say that

if Γ /∈ G0(n) , then fΓ = 0 , (3.25)

and

if C ⊂ E(Γ) is an oriented cycle of Γ , then
∑

e∈C

fΓ\e = 0 , (3.26)

where Γ\e is the graph obtained from Γ by removing the edge e. Observe that for
oriented cycles of length 2, the cycle relation (3.26) means that changing orientation
of a single edge of the n-graph Γ ∈ G(n) amounts to a change of sign of fΓ.

The sesquilinearity conditions are as follows. Let Γ = Γ1⊔· · ·⊔Γs be the decom-
position of Γ as a disjoint union of its connected components, and let I1, . . . , Is ⊂
{1, . . . , n} be the sets of vertices associated to these connected components. For a

graph Γ̃ and its set of vertices Ĩ ⊂ {1, . . . , n}, we write

λΓ̃ =
∑

i∈Ĩ

λi , ∂Γ̃ =
∑

i∈Ĩ

∂i , (3.27)

where ∂i denotes the action of ∂ on the i-th factor in the tensor product V ⊗n.
Then, for every α = 1, . . . , s,

∂

∂λi

fΓ
λ1,...,λn

(v1 ⊗ · · · ⊗ vn) is the same for all i ∈ Iα (3.28)

and

fΓ
λ1,...,λn

(∂Γα
(v1 ⊗ · · · ⊗ vn)) = −λΓα

fΓ
λ1,...,λn

(v1 ⊗ · · · ⊗ vn) . (3.29)

Observe that the second sesquilinearity condition (3.29) implies

fΓ
λ1,...,λn

(∂v) = −
n∑

i=1

λi f
Γ
λ1,...,λn

(v) = ∂
(
fΓ
λ1,...,λn

(v)
)
, v ∈ V ⊗n . (3.30)
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Remark 3.8. When the graph Γ is connected, the first sesquilinearity condition
(3.28) implies that fΓ

λ1,...,λn
(v1 ⊗ · · · ⊗ vn) is a polynomial of λ1 + · · ·+ λn. Hence,

it is an element of

V [λ1 + · · ·+ λn]
/
〈∂ + λ1 + · · ·+ λn〉 ≃ V .

In this case, we will omit the subscripts of fΓ.

The classical operad Pcl(V ) is defined as the collection of the vector superspaces
Pcl(n), n ≥ 0, endowed, for every f ∈ Pcl(n) and m1, . . . ,mn ≥ 0, with the
composition parity preserving linear map

Pcl(n)⊗ Pcl(m1)⊗ · · · ⊗ Pcl(mn) → Pcl(Mn) ,

f ⊗ g1 ⊗ · · · ⊗ gn 7→ f(g1, . . . , gn) ,

described as follows. Let Mi be as in (3.5), and

Λi =

Mi∑

j=Mi−1+1

λj , i = 1, . . . , n . (3.31)

If Γ ∈ G(Mn), then

(f(g1, . . . , gn))
Γ : V ⊗Mn → V [λ1, . . . , λMn

]
/
〈∂ + λ1 + · · ·+ λMn

〉

is defined by the formula:

(f(g1, . . . , gn))
Γ
λ1,...,λMn

(v1 ⊗ · · · ⊗ vMn
)

= f
∆

m1...mn
0 (Γ)

Λ1,...,Λn

(((∣
∣
∣
x1=Λ1+∂

(g1)
∆

m1...mn
1 (Γ)

λ1+X(1),...,λM1+X(M1)

)

⊗ · · ·

· · · ⊗
(∣
∣
∣
xn=Λn+∂

(gn)
∆m1...mn

n (Γ)

λMn−1+1+X(Mn−1+1),...,λMn+X(Mn)

))

(v1 ⊗ · · · ⊗ vMn
)

)

(3.32)
where ∆m1,...,mn(Γ) is the cocomposition of Γ described in Section 3.3, X(1), . . .
. . . , X(Mn) are the variables as in (3.10), and the notation is as follows. For given
graphs Γ1 ∈ G(m1), . . . ,Γn ∈ G(mn), we have:

(

(g1)
Γ1

λ1,...,λM1
⊗ · · · ⊗ (gn)

Γn

λMn−1+1,...,λMn

)

(v1 ⊗ · · · ⊗ vMn
)

:= (−1)
∑

i<j p(gj)(p(vMi−1+1)+···+p(vMi
)) (g1)

Γ1

λ1,...,λM1
(v1 ⊗ · · · ⊗ vM1)⊗ · · ·

· · · ⊗ (gn)
Γn

λMn−1+1,...,λMn
(vMn−1+1 ⊗ · · · ⊗ vMn

),

(3.33)

and for polynomials P (λ) =
∑

m pmλm and Q(µ) =
∑

n qnµ
n with coefficients in

V , we write
(∣
∣
x=∂

P (λ+ y)
)
⊗
(∣
∣
y=∂

Q(µ+ x)
)
=

∑

m,n

((µ+ ∂)npm)⊗ ((λ + ∂)mqn) . (3.34)

For each n ≥ 1, Pcl(n) has a natural right action of the symmetric group Sn,
which is given by (f ∈ Pcl(n), Γ ∈ G(n), v1, . . . , vn ∈ V ):

(fσ)Γλ1,...,λn
(v1 ⊗ · · · ⊗ vn) = f

σ(Γ)
σ(λ1,...,λn)

(σ(v1 ⊗ · · · ⊗ vn)) , (3.35)

where σ(λ1, . . . , λn) is defined by (3.1), σ(v1 ⊗ · · · ⊗ vn) is defined by (3.2), and
σ(Γ) is defined in Section 3.3.
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On the space Pcl(n) we can also define a grading:

Pcl(n) =
⊕

r≥0

grr Pcl(n) , (3.36)

where grr Pcl(n) is the subspace of all maps in Pcl(n) vanishing on graphs with a
number of edges not equal to r. Then Pcl is a graded operad, i.e., the compositions
and the actions of the symmetric groups are compatible with the grading.

3.8. PVA cohomology [BDSHK18]. Given a vector superspace V with parity
p, and an even endomorphism ∂ ∈ End(V ), let ΠV be the same vector space
with reversed parity p̄ = 1 − p, and consider the corresponding classical operad
Pcl(ΠV ) from Section 3.7. The associated Z-graded Lie superalgebra is Wcl(ΠV ) :=
W (Pcl(ΠV )), with Lie bracket defined by (3.22).

Theorem 3.9 ([BDSHK18, Theorem 10.7]). We have a bijective correspondence
between the odd elements X ∈ W 1

cl(ΠV ), such that X�X = 0, and the Poisson ver-
tex superalgebra structures on V , defined as follows. The commutative associative
product and the λ-bracket of the Poisson vertex superalgebra V corresponding to X
are given by

ab = (−1)p(a)X•−→•(a⊗ b) , [aλb] = (−1)p(a)X• •λ,−λ−∂(a⊗ b) . (3.37)

Thanks to the Jacobi identity for the Lie superalgebraWcl(ΠV ), if X ∈ W 1
cl(ΠV )1̄

satisfies X�X = 0, then (adX)2 = 0. In view of Theorem 3.9, this means that we
have a cohomology complex

(Wcl(ΠV ), adX) ,

called the PVA cohomology complex, where X ∈ W 1(ΠV )1̄ is given by (3.37).

4. Relation between PVA and differential Harrison cohomology

complexes

4.1. Main theorem. Let V be a Poisson vertex algebra. By Theorem 3.9, we have
an odd element X ∈ Wcl(ΠV ) such that [X,X ] = 0, which is associated to the PVA
structure of V by (3.37). Thus, there is the PVA cohomology complex

(Wcl(ΠV ), adX) . (4.1)

A classical n-cochain is an element Y ∈ Wn−1
cl (ΠV ), namely a map

Y : G(n)× (ΠV )⊗n −→ (ΠV )[λ1, . . . , λn]
/
〈∂ + λ1 + · · ·+ λn〉 , (4.2)

satisfying relations (3.25), (3.26), (3.28), (3.29), and the following symmetry prop-
erty (by definition (3.20)):

Y σ = Y , ∀σ ∈ Sn . (4.3)

Recall the grading of the superoperad Pcl(ΠV ) from (3.36): grr Wn−1
cl (ΠV ) is

the set of maps Y as in (4.2) such that

Y Γ = 0 unless |E(Γ)| = r .

Note that if Γ ∈ G(n) has |E(Γ)| ≥ n, then necessarily Γ contains a cycle. Hence,
by the cycle relation (3.25), Y Γ = 0. Therefore the top degree in grWn−1

cl (ΠV ) is
n− 1, i.e.

grr Wn−1
cl (ΠV ) = 0 if r ≥ n . (4.4)
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Note that, if Γ ∈ G0(n), then |E(Γ)| = n − 1 if and only if Γ is connected. By
Remark 3.8, the top degree subspace grn−1 Wn−1

cl (ΠV ) consists of all collections of
maps

Y Γ : (ΠV )⊗n −→ (ΠV ) , for Γ ∈ G0(n), |E(Γ)| = n− 1 , (4.5)

satisfying (3.25), (3.26), (4.3), and Y Γ(∂(v1 ⊗ · · · ⊗ vn)) = ∂Y Γ(v1 ⊗ · · · ⊗ vn). If Γ
is not connected, then Y Γ = 0.

In addition, as explained in Section 2.3, there is another cohomology complex
associated to V , viewed as a differential algebra, namely the differential Harrison
complex

(C∂,Har(V ), d) , (4.6)

where Cn
∂,Har(V ) ⊂ HomF[∂](V

⊗n, V ) is defined by Harrison’s conditions (2.11) and

d is the Hochschild differential (2.2).
The main result of this paper is the following:

Theorem 4.1. Let V be a Poisson vertex algebra. One has a surjective morphism
of cochain complexes

(Wcl(ΠV ), adX) → (C∂,Har(V ), d) , (4.7)

mapping Y ∈ Wn−1
cl (ΠV ) to Y Λn , where Λn is the standard n-line

Λn =
1 2

...
n (4.8)

Moreover, the morphism (4.7) restricts to a bijective linear map on the top degree:

grn−1 Wn−1
cl (ΠV )

∼
−→ Cn

∂,Har(V ) . (4.9)

We will prove Theorem 4.1 in Section 4.6. For that, we will need some prelimi-
nary results.

4.2. Lines. We say that a graph Γ ∈ G(n) is a non-connected line if it has the
following form:

Γ =
i11 i12

· · ·
i1k1

i21 i22

· · ·
i2k2

· · ·
is1 is2

· · ·
isks

= L1 ⊔ L2 ⊔ · · · ⊔ Ls ,

(4.10)
where 1 ≤ k1 ≤ · · · ≤ ks are such that k1 + · · ·+ ks = n, and the set of indices {iab}
is a permutation of {1, . . . , n} such that

il1 = min{il1, . . . , i
l
kl
} ∀ l = 1, . . . , s . (4.11)

If kl = kl+1, we also assume that il1 < il+1
1 . In particular, the connected lines are

all of the form

σ(Λn) , σ ∈ Sn such that σ(1) = 1 , (4.12)

where Λn is the n-line (4.8). Let L(n) be the set of n-graphs that are non-connected
lines. Let also FG(n) be the vector space with basis the set of graphs G(n).

Definition 4.2. The cycle relations in FG(n) are the following elements:

(i) all Γ ∈ G(n) \ G0(n) (i.e., graphs containing a cycle);
(ii) all linear combinations

∑

e∈C Γ \ e, where Γ ∈ G(n) and C ⊂ E(Γ) is an
oriented cycle.
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Denote by R(n) ⊂ FG(n) the subspace spanned by the cycle relations (i) and
(ii).

Note that reversing an arrow in a graph Γ ∈ G(n) gives us, modulo cycle relations,
the element −Γ ∈ FG(n).

Example 4.3. For n = 3, a cycle relation of type (ii) is:

2 3

1

+ 2 3

1

+ 2 3

1

(4.13)

Remark 4.4. The cycle relations (3.25) and (3.26) on Y ∈ Pcl can be restated by
saying that Y Γ = 0 for all Γ ∈ R(n).

Theorem 4.5 ([BDSHK19, Theorem 4.7]). The set L(n) is a basis for the quotient
space FG(n)/R(n).

By Theorem 4.5 and (4.12), we can write every connected graph Γ ∈ G(n),
uniquely, modulo cycle relation, as follows:

Γ ≡
∑

σ∈Sn

σ(1)=1

cΓσ σΛn , (4.14)

where cΓσ ∈ F and the action of the symmetric group on graphs is defined in Section
3.3. Here and further, by ≡ we mean equivalence modulo cycle relations, i.e.,
equality in the quotient space FG(n)/R(n).

4.3. Connected lines.

Lemma 4.6. For every n, the following identity on n-lines holds:

1 2
...

n
+

2 1 3
...

n
+ · · · + 2 3

...
n−1 1 n +

2 3
...

n 1
≡ 0 .

(4.15)

Proof. Let us consider the first two terms in the left-hand side of (4.15). Reversing
the edges 2 → 1 and 1 → 3 in the second graph, and using (4.13), we have:

2

1

3 ... n
+

2

1

3 4 ... n
≡ −

2

1

3 ... n
≡

2

1

3 4 ... n (4.16)

Adding (4.16) to the third term appearing in the left-hand side of (4.15), and
applying again (4.13), we obtain:

2 3

1

4 ... n
+

2 3

1

4 ... n
≡ −

2 3

1

4 ... n
≡

2 3

1

4 ... n

(4.17)
We proceed in the same way, up to

2 3 ... (n−1) n

1

+ 2 3 ... (n−1) n

1

+ 2 3 ... (n−1) n

1

≡ 0 .
(4.18)

This completes the proof of the lemma. �
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Remark 4.7. Observe that equation (4.15) can be viewed as a “local” identity:
Lemma 4.6 holds even if we attach the same graph Γ at any vertex of every graph
appearing in the identity.

Lemma 4.8. Let Λn be as in (4.8). For every k ∈ {2, . . . , n}, the following identity
holds:

Λn + (−1)k
∑

π∈Mk
n

πΛn ≡ 0 , (4.19)

where the sum is over all monotone permutations π starting at k and the action of
Sn on graphs is described in Section 3.3.

Proof. If k = 2, then (4.19) is equivalent to (4.15). Suppose that k > 2. Recall the
description (2.5) of the monotone permutations π ∈ Mk

n in terms of the set D(π) of
drops. Given the set of drops D = {d1, . . . , dk−1} such that 2 ≤ dk−1 < · · · < d1 ≤
n, the corresponding monotone permutation πD ∈ Mk

n is uniquely determined by
π−1(i) = di, ∀i = 1 . . . , k − 1. Hence:

πD(Λn) = k (k+1) ... (k−1)

[dk−1]

... 2

[d2]

... 1

[d1]

... n

where the underlined positions correspond to drops, while all other positions have
vertices in increasing order from k + 1 to n.

We then have:

∑

π∈Mk
n

πΛn =
∑

2≤dk−1<···<d1≤n

k (k+1) ... (k−1)

[dk−1]

... 2

[d2]

... 1

[d1]

... n .

By Lemma 4.6, the sum over d1 ∈ {d2 + 1, . . . , n} gives

n∑

d1=d2+1

k (k+1) ... (k−1)

[dk−1]

... 2

[d2]

... 1

[d1]

... n

= − k (k+1) ... (k−1)

[dk−1]

... 2

[d2]

1

... n .

Similarly, using again Lemma 4.6 (cf. Remark 4.7), the sum over d2 ∈ {d3+1, . . . , n}
is

−
n∑

d2=d3+1

k (k+1) ... (k−1)

[dk−1]

... 3

[d3]

...

1

2

[d2]

... n

= (−1)2 k (k+1) ... (k−1)

[dk−1]

... 3

[d3]

2

1

... n .
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Repeating the same argument k times, we conclude that

∑

π∈Mk
n

πΛn = (−1)k−2
n∑

dk−1=2

k (k+1) ... (k−1)

[dk−1]

(k−2)

..

.

1

... n

= (−1)k−1 k

(k−1)

..

.

1

(k+1) ... n

= (−1)k−1Λn ,

proving the lemma. �

4.4. Relation between the symmetry property and Harrison’s conditions.

Recall that every Y ∈ Wn−1
cl (ΠV ) satisfies the symmetry property (4.3).

Lemma 4.9. If Y ∈ Wn−1
cl (ΠV ), then Y Λn satisfies Harrison’s relations (2.11),

hence it lies in the differential Harrison cohomology complex:

Y Λn ∈ Cn
∂,Har(V ) .

Conversely, given F ∈ Cn
∂,Har(V ), there exists a unique Y ∈ grn−1 Wn−1

cl (ΠV ), such
that

Y Λn = F .

Consequently, the linear map

grn−1 Wn−1
cl (ΠV )

∼
−→ Cn

∂,Har(V ) , Y 7→ Y Λn

is bijective.

Proof. First, we prove that, if Y ∈ Wn−1
cl (ΠV ) satisfies the symmetry relations

(4.3), then f = Y Λn satisfies Harrison’s conditions (2.11). By Lemma 4.8 (cf.
Remark 4.4), we get

Y Λn = (−1)k−1
∑

π∈Mk
n

Y π(Λn) .

Evaluating both sides of this identity on v1⊗ · · ·⊗ vn ∈ V ⊗n, the left side is simply
Y Λn(v1 ⊗ · · · ⊗ vn) = f(v1 ⊗ · · · ⊗ vn). On the right-hand side, we have

(−1)k−1
∑

π∈Mk
n

Y π(Λn)(v1 ⊗ · · · ⊗ vn) = (−1)k−1
∑

π∈Mk
n

(Y π−1

)π(Λn)(v1 ⊗ · · · ⊗ vn)

= (−1)k−1
∑

π∈Mk
n

sign(π)Y Λn(vπ(1) ⊗ · · · ⊗ vπ(n))

= Lkf(v1 ⊗ · · · ⊗ vn) ,

by the definition (2.10) of Lk. Hence, f satisfies Harrison’s conditions (2.11) as
claimed.

We next turn to the second claim of the lemma. Let F ∈ Cn
∂,Har(V ), i.e.,

F : V ⊗n → V is an F[∂]-module homomorphism satisfying Harrison’s conditions
17



(2.11). Then the corresponding Y ∈ grn−1 Wn−1
cl (ΠV ), such that Y Λn = F , is

defined as follows. For Γ ∈ R(n), or if Γ ∈ L(n) is not connected, we set

Y Γ = 0 . (4.20)

For Γ ∈ L(n) connected, there exists a unique τ ∈ Sn such that τ(1) = 1 and
Γ = τ(Λn). We then set

Y Γ(v1 ⊗ · · · ⊗ vn) = sign(τ)F (vτ(1) ⊗ · · · ⊗ vτ(n)) . (4.21)

In particular, for Γ = Λn, we have τ = 1 and Y Λn = F .
Since, by Theorem 4.5, L(n) is a basis for the vector space FG(n)/R(n), equations

(4.20) and (4.21) determine a unique well-defined element Y ∈ grn−1 Pcl(ΠV )(n).
Indeed, Y satisfies the cycle relations (3.25) and (3.26), by (4.20), Theorem 4.5 and
Remark 4.4. The first sesquilinearity condition (3.28) is obvious, and the second
condition (3.29) follows from (3.30).

To prove that Y ∈ grn−1 Wn−1
cl (ΠV ), it remains to show that Y satisfies the

symmetry conditions (4.3). Obviously, the action of the symmetric group Sn pre-
serves R(n) and the set of non-connected lines. Hence, when we evaluate (4.3) on
Γ ∈ R(n) or on a non-connected n-line Γ ∈ L(n), we get 0 = 0.

We are left to prove that (4.3) holds when evaluated on a connected line Γ ∈ L(n),
which, as remarked above, can be obtained as Γ = τ(Λn), for a unique τ ∈ Sn such
that τ(1) = 1. The right-hand side of (4.3), when evaluated on such a Γ is given
by (4.21). The left-hand side is, by (3.35),

(Y σ)Γ(v1 ⊗ · · · ⊗ vn) = Y στ(Λn)(σ(v1 ⊗ · · · ⊗ vn))

= sign(σ)Y στ(Λn)(vσ(1) ⊗ · · · ⊗ vσn
) . (4.22)

By Lemma 4.8, we have, modulo R(n),

στ(Λn) ≡ (−1)τ
−1σ−1(1)−1

∑

π∈M
τ−1σ−1(1)
n

στπ(Λn) .

Hence, by Remark 4.4, the right-hand side of (4.22) becomes

sign(σ)(−1)τ
−1σ−1(1)−1

∑

π∈M
τ−1σ−1(1)
n

Y στπ(Λn)(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)) . (4.23)

Note that, if π ∈ M
τ−1σ−1(1)
n , then στπ(1) = 1. Hence, we can apply formula (4.21)

to get

Y στπ(Λn)(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)) = sign(στπ)F (vτπ(1) ⊗ · · · ⊗ vτπ(n)) . (4.24)

Combining (4.22)–(4.24), we get, by (2.7) and the definition (2.10) of Lk,

(Y σ)Γ(v1 ⊗ · · · ⊗ vn)

= sign(τ)(−1)τ
−1σ−1(1)−1

∑

π∈M
τ−1σ−1(1)
n

sign(π)F (vτπ(1) ⊗ · · · ⊗ vτπ(n))

= sign(τ)(Lτ−1σ−1(1)F )(vτ(1) ⊗ · · · ⊗ vτ (n)) ,

which equals (4.21) by Harrison’s conditions (2.11).
Hence, Y is a well-defined element of grn−1 Wn−1

cl (ΠV ), such that Y Λn = F ,
as required. The uniqueness of such a Y is obvious since, by Theorem 4.5, Y ∈
grn−1 Wn−1

cl (ΠV ) is uniquely determined by its value on Λn. �
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4.5. Relation between adX and the Hochschild differential.

Lemma 4.10. For Y ∈ Wn−1
cl (ΠV ) and X ∈ W 1

cl(ΠV ) defined in (3.37), we have

[X,Y ]Λn+1(v1 ⊗ · · · ⊗ vn+1) = (−1)n+1d(Y Λn)(v1 ⊗ · · · ⊗ vn+1) ,

where Λn is as in (4.8) and d is the Hochschild differential (2.2).

Proof. Recall that, by definition (3.22), the adjoint action of X on Y is given by:

[X,Y ] = X�Y − (−1)n−1Y�X

=
∑

σ∈Sn,1

(X ◦1 Y )σ
−1

+ (−1)n
∑

τ∈S2,n−1

(Y ◦1 X)τ
−1

, (4.25)

since p̄(X) = 1 and p̄(Y ) = n− 1. The elements of Sn,1 are

σk =

(
1 2 · · · k − 1 k k + 1 · · · n n+ 1
1 2 · · · k − 1 k + 1 k + 2 · · · n+ 1 k

)

= (k k + 1 · · · n+ 1) ,

(4.26)

for 1 ≤ k ≤ n+ 1. The elements of S2,n−1 are

τi,j =

(
1 2 3 · · · i+ 1 i+ 2 · · · j j + 1 · · · n+ 1
i j 1 · · · i− 1 i+ 1 · · · j − 1 j + 1 · · · n+ 1

)

, (4.27)

for 1 ≤ i < j − 1 ≤ n, and

τi,i+1 =

(
1 2 3 · · · i+ 1 i+ 2 · · · n+ 1
i i + 1 1 · · · i− 1 i+ 2 · · · n+ 1

)

, (4.28)

for 1 ≤ i ≤ n.
Using (4.26), we evaluate

(
(X ◦1 Y )σ

−1
k

)Λn+1
(v1 ⊗ · · · ⊗ vn+1)

= (−1)n+1−k(X ◦1 Y )σ
−1
k

(Λn+1)(v1 ⊗ · · · ⊗ vk−1 ⊗ vk+1 ⊗ · · · ⊗ vn+1 ⊗ vk) .

(4.29)

For k = 1, by the symmetric group’s action described in Section 3.3, we have

σ−11 (Λn+1) =
σ
−1
1 (1) σ

−1
1 (2)

. . .
σ
−1
1 (n+1)

=
1

. ..
n n+1

.

When we apply the cocomposition map ∆n,1 to this graph, we get

∆n,1
0 (σ−11 (Λn+1)) =

1 2

and

∆n,1
1 (σ−11 (Λn+1)) =

1 2

. . .
n

= Λn .
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Hence, by the definition (3.32) of the composition map, (4.29) becomes

(
(X◦1Y )σ

−1
1

)Λn+1
(v1 ⊗ · · · ⊗ vn+1)

= (−1)n(X ◦1 Y )σ
−1
1 (Λn+1)(v2 ⊗ · · · ⊗ vn+1 ⊗ v1)

= (−1)nX•←−•(Y Λn(v2 ⊗ · · · ⊗ vn+1)⊗ v1)

= (−1)n+1Y Λn(v2 ⊗ · · · ⊗ vn+1) v1 .

(4.30)

Similarly, for k = n + 1, we have σn+1 = 1, and applying the cocomposition map
∆n,1 to σ−1n+1(Λn+1) = Λn+1, we get:

∆n,1
0 (σ−1n+1(Λn+1)) =

1 2

and

∆n,1
1 (σ−1n+1(Λn+1)) =

1 2

. . .
n

= Λn .

Then (4.29) becomes

(
(X◦1Y )σ

−1
n+1

)Λn+1
(v1 ⊗ · · · ⊗ vn+1)

= X•→−•(Y Λn(v1 ⊗ · · · ⊗ vn)⊗ vn+1)

= Y Λn(v1 ⊗ · · · ⊗ vn) vn+1 .

(4.31)

Furthermore, for 2 ≤ k ≤ n, we have

σ−1k (Λn+1) =
σ
−1
k

(1) σ
−1
k

(2)

. . .
σ
−1
k

(n+1)

=
1

. ..
k−1 k

. . .
n n+1

.

Hence, applying the cocomposition map ∆n,1 we get

∆n,1
0 (σ−1k (Λn+1)) =

1 2

which has a cycle. Therefore,

(
(X ◦1 Y )σ

−1
k

)Λn+1
= X (· · · ) = 0 . (4.32)
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Next, we compute
(
(Y ◦1 X)τ

−1
i,j

)Λn+1
(v1 ⊗ · · · ⊗ vn+1) where τi,j is defined in

(4.27). By the symmetric group’s action described in Section 3.3 we have

τ−1i,j (Λn+1) =
τ
−1
i,j

(1) τ
−1
i,j

(2)

. . .
τ
−1
i,j

(n+1)

=
1 2 3

. . .
i+1 i+2

. . .
j j+1

. . .
n+1

.

Hence, applying the cocomposition ∆2,1,...,1 we get

∆2,1,...,1
0 (τ−1i,j (Λn+1)) =

1 2

. . .
i i+1

. . .
j−1 j

. . .
n

,

which has a cycle. Therefore,

(
(Y ◦1 X)τ

−1
i,j

)Λn+1
= Y ∆2,1,...,1

0 (τ−1
i,j

(Λn+1))(· · · ) = 0 . (4.33)

Finally, we evaluate
(
(Y ◦1 X)τ

−1
i,i+1

)Λn+1
(v1 ⊗ · · · ⊗ vn+1) with τi,i+1 defined in

(4.28). In this case, we have

τ−1i,i+1(Λn+1) =
τ
−1
i,i+1

(1)τ−1
i,i+1

(2)

. . .
τ
−1
i,i+1

(n+1)

=
1 2 3

. . .
i+1 i+2

. . .
n+1

.
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Hence, applying the cocomposition ∆2,1,...,1 we get

∆2,1,...,1
0 (τ−1i,i+1(Λn+1)) =

1 2

. . .
i i+1

. . .
n

and

∆2,1,...,1
1 (τ−1i,i+1(Λn+1)) =

1 2

.

Therefore, by definition (3.32) of the composition map, we obtain
(
(Y ◦1 X)τ

−1
i,j

)Λn+1
(v1 ⊗ · · · ⊗ vn) =

= (Y ◦1 X)τ
−1
i,j

(Λn+1)(vi ⊗ vi+1 ⊗ v1 ⊗ · · · ⊗ vi−1 ⊗ vi+2 ⊗ · · · ⊗ vn+1)

= Y ∆2,1,...,1
0 (τ−1

i,i+1(Λn+1))
(
X•→−•(vi ⊗ vi+1)⊗ v1 ⊗ · · · ⊗ vi−1 ⊗ vi+2 ⊗ · · · ⊗ vn+1

)

= Y ∆2,1,...,1
0 (τ−1

i,i+1(Λn+1))(vivi+1 ⊗ v1 ⊗ · · · ⊗ vi−1 ⊗ vi+2 ⊗ · · · ⊗ vn+1) . (4.34)

Note that

∆2,1,...,1
0 (τ−1i,i+1(Λn+1)) = σ(Λn) ,

where σ = (1 2 · · · i) ∈ Sn is the i-cycle. Hence, by the symmetry property (4.3),

we can replace Y by Y σ−1

in the right-hand side of (4.34) to get

(−1)i+1Y Λn(v1 ⊗ · · · ⊗ vi−1 ⊗ vivi+1 ⊗ vi+2 ⊗ · · · ⊗ vn+1) . (4.35)

Combining equations (4.25) and (4.30)–(4.35), we conclude that

[X,Y ]Λn+1(v1 ⊗ · · · ⊗ vn)

= (−1)n+1v1 Y
Λn(v2 ⊗ · · · ⊗ vn+1) + Y Λn(v1 ⊗ · · · ⊗ vn) vn+1

+ (−1)n
n∑

i=1

(−1)i+1Y Λn(v1 ⊗ · · · ⊗ vi−1 ⊗ vivi+1 ⊗ vi+2 ⊗ · · · ⊗ vn+1)

= (−1)n+1d(Y Λn)(v1 ⊗ · · · ⊗ vn) ,

completing the proof. �

Corollary 4.11. Let X be defined in (3.37) and Y ∈ Wn−1
cl (ΠV ) be such that

[X,Y ] = 0. Then Y Λn is a cocyle in the Hochschild cohomology.

Proof. Obvious, by Lemma 4.10. �

4.6. Proof of Theorem 4.1. By Lemma 4.9, given Y ∈ Wn−1
cl (ΠV ), Y Λn is a

cochain in the differential Harrison complex. Conversely, for any F ∈ Cn
∂,Har(V ),

there is a unique Y ∈ grn−1 Wn−1
cl (ΠV ) such that F = Y Λn . Hence, the following

diagram is well defined:

Y ∋ Wn−1
cl (ΠV )

adX
−−−→ Wn

cl(ΠV )
↓ ↓ ↓

Y Λn ∋ Cn
∂,Har(V )

d
−−→ Cn+1

∂,Har(V )

, (4.36)
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where the vertical maps are surjective and restrict to bijective maps on top degree:
grn−1 Wn−1

cl (ΠV )
∼
−→ Cn

∂,Har(V ). Lemma 4.10 says that, up to a sign, the diagram

(4.36) is commutative. This completes the proof of the theorem.
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