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Preface

This is a topology book for undergraduates, and in writing it I have had two
aims in mind. Firstly, to make sure the student sees a variety of different tech-
niques and applications involving point set, geometric, and algebraic topology,
without delving too deeply into any particular area. Secondly, to develop the
reader’s geometrical insight; topology is after all a branch of geometry.

The prerequisites for reading the book are few, a sound first course in real
analysis (as usual!), together with a knowledge of elementary group theory and
linear algebra. A reasonable degree of ‘mathematical maturity’ is much more
important than any previous knowledge of topology.

The layout is as follows. There are ten chapters, the first of which is a short
essay intended as motivation. Each of the other chapters is devoted to a single
important topic, so that identification spaces, the fundamental group, the idea of
a triangulation, surfaces, simplicial homology, knots and covering spaces, all
have a chapter to themselves.

Some motivation is surely necessary. A topology book at this level which
begins with a set of axioms for a topological space, as if these were an integral
part of nature, is in my opinion doomed to failure. On the other hand, topology
should not be presented as a collection of party tricks (colouring knots and
maps, joining houses to public utilities, or watching a fly escape from a Klein
bottle). These things all have their place, but they must be shown to fit into a
unified mathematical theory, and not remain dead ends in themselves. For this
reason, knots appear at the end of the book, and not at the beginning. It is not
the knots which are so interesting, but rather the variety of techniques needed
to deal with them.

Chapter 1 begins with Euler’s theorem for polyhedra, and the theme of the
book is the search for topological invariants of spaces, together with techniques
for calculating them. Topology is complicated by the fact that something which
is, by its very nature, topologically invariant is usually hard to calculate, and
vice versa the invariance of a simple number like the Euler characteristic can
involve a great deal of work.

The balance of material was influenced by the maxim that a theory and its
payoff in terms of applications should, wherever possible, be given equal weight.
For example, since homology theory is a good deal of trouble to set up (a whole
chapter), it must be shown to be worth the effort (a whole chapter of applica-
tions). Moving away from a topic is always difficult, and the temptation to
include more and more is hard to resist. But to produce a book of reasonable
length some topics just have to go; I mention particularly in this respect the
omission of any systematic method for calculating homology groups. In
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PREFACE

formulating definitions, and choosing proofs, I have not always taken the
shortest path. Very often the version of a definition or result which is most
convenient to work with, is not at all natural at first sight, and this is above all
else a book for beginners.

Most of the material can be covered in a one-year course at third-year
(English) undergraduate level. But there is plenty of scope for shorter courses
involving a selection of topics, and much of the first half of the book can be
taught to second-year students. Problems are included at the end of just about
every section, and a short bibliography is provided with suggestions for parallel
reading and as to where to go next.

The material presented here is all basic and has for the most part appeared
elsewhere. If I have made any contribution it is one of selection and presentation.

Two topics deserve special mention. I first learned about the Alexander
polynomial from J. F. P. Hudson, and it was E. C. Zeeman who showed me
how to do surgery on surfaces. To both of them, and particularly to Christopher
Zeeman for his patience in teaching me topology, I offer my best thanks.

I would also like to thank R. S. Roberts and L. M. Woodward for many
useful conversations, Mrs J. Gibson for her speed and skill in producing the
manuscript, and Cambridge University Press for permission to reproduce the
quotation from Hardy’s ‘A Mathematician’s Apology’ which appears at the
beginning of Chapter 1. Finally, a special word of thanks to my wife Anne Marie
for her constant encouragement.

M.AA.
Durham, July 1978.
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1. Introduction

Beauty is the first test: there is no permanent place in the
world for ugly mathematics.
G. H. HarDY

1.1 Euler’s theorem

We begin by proving a beautiful theorem of Euler concerning polyhedra. As we
shall see, the statement and proof of the theorem motivate many of the ideas
of topology.

Figure 1.1 shows four polyhedra. They look very different from one another,

Figure 1.1

yet if for each one we take the number of vertices (v), subtract from this the
number of edges (e), then add on the number of faces (f), this simple calcula-
tion always gives 2. Could the formula v — e 4+ f = 2 be valid for all polyhedra?
The answer is no, but the resuit is true for a large and interesting class.

We may be tempted at first to work only with regular, or maybe convex,
polyhedra, and v — e + fis indeed equal to 2 for these. However, one of the
examples in our illustration is not convex, yet it satisfies our formula and we
would be unhappy to have to ignore it. In order to find a counterexample we
need to be a little more ingenious. If we do our calculation for the polyhedra
shown in Figs 1.2 and 1.3 we obtainv — ¢ + f = 4 and v — e + f = 0 respect-
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BASIC TOPOLOGY

ively. What has gone wrong? In the first case we seem to have cheated a little by
constructing a polyhedron whose surface consists of two distinct pieces; in

|
i Figure 1.2
T
{ ST T T T A
AT T
e i I
| 1 | |
l [} : |
T
L;_ BN el
e
7~
i Figure 1.3
e
Ve
rd
A cube with a smaller A prism with a hole straight
cube removed from its interior through the centre

technical language its surface is not connected. We suspect (quite correctly) that
we should not allow this, since each of the pieces of surface contributes 2 to
v — e + f. Unfortunately, this objection does not hold for Fig. 1.3, as the
surface of the polyhedron shown there is certainly all one piece. However, this
surface differs from those shown earlier in one very important respect. We can
find a loop on the surface which does not separate it into two distinct parts;
that is to say, if we imagine cutting round the loop with a pair of scissors then
the surface does not fall into two pieces. A specific loop with this property is
labelled with arrows in Fig. 1.3. We shall show that v — ¢ + f = 2 for poly-
hedra which do not exhibit the defects illustrated in Figs 1.2 and 1.3.

Before proceeding any further, we need to be a little more precise. In our
discussion so far we have only made use of the surfaces of the solids illustrated
(except, that is, when we have mentioned convexity). So let us agree to use the
word ‘polyhedron’ for such a surface, rather than for the solid which it bounds.
A polyhedron is therefore a finite collection of plane polygons which fit together
nicely in the following sense. If two polygons meet they do so in a common edge,
and each edge of a polygon lies in precisely one other polygon. In addition,
we ask that if we consider the polygons which contain a particular vertex, then
we can label them Q;, Q,, ...., @, in such a way that Q; has an edge in common
with Q,,, for 1 < i < k, and @, has an edge in common with Q;. In other
words, the polygons fit together to form a piece of surface around the given
vertex. (The number k£ may vary from one vertex to another.) This last condition
rules out, for example, two cubes joined together at a single vertex.

(1.1) Euler’s theorem. Let P be a polyhedron which satisfies .

(@) Any two vertices of P can be connected by a chain of edges.

(b) Any loop on P which is made up of straight line segments (not necessarily edges)
separates P into two pieces.

Thenv — e + f =2 for P.

2



INTRODUCTION

The formula v — e + f=2 has a long and complicated history. It first
appears in a letter from Euler to Goldbach dated 1750. However, Euler placed
no restrictions on his polyhedra and his reasoning can only be applied in the
convex case. It took sixty years before Lhuilier drew attention (in 1813) to the
problems raised by polyhedra such as those shown in our Figs 1.2 and 1.3.
The precise statement of theorem (1.1), and the proof outlined below, are due to
von Staudt and were published in 1847.

Outline proof. A connected set of vertices and edges of P will be called a graph:
connected simply means that any two vertices can be joined by a chain of edges
in the graph. More generally, we shall use the word graph for any finite con-
nected set of line segments in 3-space which fit together nicely as in Fig. 1.4. (If
two segments intersect they are required to do so in a common vertex.) A graph
which does not contain any loops is called a tree. Notice that for a tree, the
number of vertices minus the number of edges is equal to 1. If the tree is denoted
by T we shall write this as o(T) — e(T) = 1.

loop

(a) Tree (b) Graph—not a tree

Figure 1.4

By hypothesis (a), the set of all vertices and edges of P is a graph. It is easy to
show that in any graph one can find a subgraph which is a tree and which
contains all the vertices of the original. So choose a tree T which consists of
some of the edges and all of the vertices of P (Fig. 1.4a shows such a tree for
one of the polyhedra of Fig. 1.1).

Now form a sort of ‘dual’ to T. This dual is a graph I" defined as follows.
For each face 4 of P we give I a vertex A. Two vertices A and B of I are joined
by an edge if and only if the corresponding faces A and B of P are adjacent with
intersection an edge that is not in T. One can even represent I' on P in such
a way that it misses T (the vertex A corresponding to an interior point of A4)
though to do this we have to allow its edges to be bent. Figure 1.5 illustrates
the procedure.

It is not too hard to believe that this dual I is connected and is therefore a
graph. Intuitively, if two vertices of I cannot be connected by a chain of edges
of I, then they must be separated from one another by a loop of T. (This does

3



BASIC TOPOLOGY

NS
[oF

9

Tree T

A

D

D Associated tree T

Figure 1.5
I represented on P

need some proof and we shall work out the details in Chapter 7.) Since T does
not contain any loops we deduce that I' must be connected.

In fact I' is a tree. For if there were a loop in I' it would separate P into two
distinct pieces by hypothesis (b), and each of these pieces must contain at least
one vertex of T. Any attempt to connect two vertices of T which lie in different
pieces by a chain of edges results in a chain which meets this separating loop,
and therefore in a chain which cannot lie entirely in T. This contradicts the fact
that T is connected. Therefore I" is a tree. (The proof breaks down here for a
polyhedron such as that shown in Fig. 1.3, because the dual graph I" will
contain loops.)

Since the number of vertices of any tree exceeds the number of edges by 1
we have v(T) — e(T) = 1 and v(I") — e(I') = 1. Therefore

o(T) — [e(T) + e(I)] + o) = 2.

But by construction v(T) = v, e(T) + e(I') = e and v(I') = f. This completes the
argument.

1.2 Topological equivalence

There are several proofs of Euler’s theorem. We have chosen the one above for
two reasons. Firstly, its elegance; most other proofs use induction on the number
of faces of P. Secondly, because it contains much more information than Euler’s

4



INTRODUCTION

formula. With very little extra effort it actually tells us that P is made up of two
discs which are identified along their boundaries. To see this, simply thicken
each of Tand I a little on P (Fig. 1.6) to obtain two disjoint discs. (Thickening a
tree always gives a disc, though thickening a graph with loops will give a space
with holes in it.) Enlarge these discs little by little until their boundaries coincide.
The polyhedron P is now made up of two discs which have a common boundary.
Granted these discs may have a rather odd shape, but they can be deformed into
ordinary, round flat discs. Now remember that the sphere consists of two discs,
the north and south hemispheres, sewn along their common boundary the
equator (Fig. 1.7). In other words, the hypotheses of Euler’s theorem tell us that
P looks in some sense like a rather deformed sphere.

Tand I' thickened on P

Figure 1.6

identify

—_—

Figure 1.7

Of course, for a specific polyhedron it may be very easy to set up a decent
correspondence between its points and those of the sphere. For example, in
the case of the regular tetrahedron T we can use radial projection from the
centre of gravity T of T to project T onto a sphere with centre T. The faces of T
project to curvilinear triangles on the sphere as shown in Fig. 1.8. In fact
Legendre used exactly this procedure (in 1794) to prove Euler’s theorem for
convex polyhedra; we shall describe Legendre’s argument later.
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The polyhedron shown on the right in Fig. 1.1 is not convex and does not
lend itself to the above argument. However, if we think of it as being made of
rubber then we can easily imagine how to deform it into an ordinary round
sphere. During the deformation we stretch and bend the polyhedron at will,
but we never identify distinct points and we never tear it. The resulting corre-
spondence between the points of the given polyhedron and the points of the

Figure 1.8

Radial projection n

sphere is an example of a topological equivalence or homeomorphism. In formal
terms it is a one-one and onto continuous function with continuous inverse.

We shall go carefully into the definition of a homeomorphism in Section 1.4,
but to help make things a little more concrete at present here are four spaces
which are homeomorphic (see Fig. 1.9):

e,

Figure 1.9

holes

(© (d)



INTRODUCTION

(a) the surface of a cylimder of finite height, excluding the two circles at the ends;
(b) the one-sheeted hyperboloid given by the equation x2 + y? — 22 = 1;

(c) the open annulus in the complex plane specified by 1 < |z| < 3;

(d) the sphere with the points at the north and south poles removed.

We propose to give a specific homeomorphism (i.€., a continuous, one—one,
and onto function which has continuous inverse) from space (b) to space (c).
It is most convenient to specify the points of (b) by cylindrical polar coordinates
(r, 6, z) and to use plane polar coordinates (r, 6) for space (c). When 6 = 0 in
(b) we obtain a branch of the hyperbola x* — z> = 1, and we plan to send this
nicely onto the corresponding piece of the annulus, ie., the ray {(x,y)|1 < x < 3,
y = 0}. If we can do a similar trick for each value of 6, in a continuous manner
as 0 varies from 0 to 2z, we shall have the required homeomorphism. Define
fi(—o0, 00)—(1,3) by f(x) = x/(1 + | x|) + 2; then f is a bijection, is con-
tinuous, and has continuous inverse. Now send the point (7, 8, z) of the hyper-
bola to (f(z), 6) on the annulus.

We leave the reader to investigate the other possibilities: we note that the
relation of topological equivalence is clearly an equivalence relation, so that
proving each of spaces (a) and (d) homeomorphic to space (c) will suffice. In
topology these four are considered to be the ‘same space’. The sphere with
three points removed is different (not homeomorphic to the above). Why? Can
you describe a subset of the complex plane homeomorphic to a sphere with
three points removed?

Returning to the proof of Euler’s theorem, thickening the trees T and I’
gave a decomposition of P into two discs with a common boundary and there-
fore, by sending the points of one disc into the northern hemisphere and sending
the points of the other south, a way of defining a homeomorphism from the poly-
hedron Pto the sphere. It is possible to produce an argument in the opposite direc-
tion (we shall do so in Chapter 7) and show that if P is topologically equivalent to
the sphere then P satisfies hypotheses (a) and (b) of theorem (1.1)}, and therefore
Euler’s theorem holds for P. So if P and Q are polyhedra which are both homeo-
morphic to the sphere, and if we call v — e + f the Euler number of a poly-
hedron, then we know from the above discussion that P and Q have the same
Euler number, namely 2.

The polyhedron shown in Fig. 1.3 has an entirely different form. It is homeo-
morphic to a torus (we can even imagine how to deform it continuously to a
nice round torus such as that shown in Fig. 1.10b) and its Euler number is 0.
Drawing any other polyhedron which is topologically equivalent to a torus and
computing its Euler number will always give 0 (though this is hard to prove
and will have to wait until Chapter 9). We are now only a short step} away
from one of the most basic and central results of topology.

t Hypothesis (a) is easy to verify; (b) is harder and is a special case of the famous Jordan curve
theorem.

I A short step, that is, in mathematical intuition; in terms of careful proof we have an extremely
long walk ahead.

7
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(1.2) Theorem. Topologically equivalent polyhedra have the same Euler number.

This remarkable result was the starting point for modern topology. It is remark-
able because in calculating the Euler number of a polyhedron we make use of
the numbers of vertices, edges, and faces of the polyhedron, none of which need
be preserved by a topological equivalence. It led to the search for other proper-
ties of spaces which are left unchanged by the application of a homeomorphism.

We shall return to the Euler number later, and show that it can be defined
for a much wider class of spaces than the ordinary polyhedra considered so far.
These polyhedra are rather rigid objects with corners, edges, and flat faces, and
will be of no special interest to us. From the point of view of the topologist, the
sphere is good enough to represent all the polyhedra shown in Fig. 1.1. Our
philosophy will be roughly as follows: the Euler number 2 does not belong to a
particular class of polyhedra, it really belongs to the sphere. A polyhedron
satisfying the hypotheses of Euler’s theorem (i.e., a polyhedron which is homeo-
morphic to the sphere) merely gives a convenient way of calculating the Euler
number of the sphere. With this emphasis, theorem (1.2) now states that cal-
culating in apparently different ways always gives the same answer. We shall
continue this line of argument in Section 9.2.

We end this section with Legendre’s highly original proof of Euler’s formula
for convex polyhedra. Using radial projection as in Fig. 1.8, project the poly-
hedron onto a sphere of radius 1. The polygonal faces of the polyhedron project
to spherical polygons. Now if Q is a spherical polygon with angles o, o5,..., o
and with n edges, then the area of Q is given by

o+t ..ty —mM—2m=(; + 0o+ ...+ ) —nt+2=x

The sum of the areas of the spherical polygons is therefore 2nv — 2me + 2nf
(at each vertex the total angle is 27, so 2z takes care of all the «’s; each edge
has to be counted twice since it belongs to exactly two polygons; and each face
gives a contribution of 27). Equating this to the area of the unit sphere, 47,
gives the result.

1.3 Surfaces

Topology has to do with those properties of a space which are left unchanged
by the kind of transformation that we have called a topological equivalence or
homeomorphism. But what sort of spaces interest us and what exactly do we
mean by a ‘space’? The idea of a homeomorphism involves very strongly the
notion of continuity; what do we mean by a continuous function between two
spaces? We shall try to answer these questions in this section and the next.

We begin with a few examples of interesting spaces. Someone working in
analysis is used to considering the real line, the complex plane, or even the set
of all real-valued continuous functions defined on the closed unit interval as
(metric) spaces. Being geometers at heart, we are more interested in bounded

8



INTRODUCTION

configurations which occur naturally in euclidean space. For example, the
unit circle and the unit disc in the plane; surfaces such as the sphere, the torus,
the Mobius strip, the cylinder, and the double torus with a puncture, all of
which live in three-dimensional space and are illustrated in Fig. 1.10.

Of a more complicated nature and more difficult to visualize is a surface such
as the Klein bottle. This surface is difficult to imagine because in any attempt
to represent it in three dimensions the Klein bottle must cross itself. In our
drawing (Fig. 1.10) the surface cuts itself in a small circle. We can understand
the Klein bottle a little better by trying to make a model of it. Consider the
usual method of modelling a torus. One begins with a rectangle of paper and

(a) Sphere (b) Torus (c) Mébius strip

SED
(d) Cylinder (e) Klein bottle (f) Punctured double torus

Figure 1.10

identifies the edges as in Fig. 1.11. To build a Klein bottle, the first half of the
construction, that is as far as a cylinder, is the same, but then the ends of the
cylinder are identified in the opposite direction. In order to do this, the cylinder
has to be bent around and one end pushed through the side as in Fig. 1.12.
The Klein bottle (K) can be represented in four-dimensional space without
any self intersections. Imagine an extra dimension perpendicular to the paper,
remembering all the time that the paper represents ordinary three-dimensional
space. Near the intersection circle of K we have two pipes, one of which cuts
through the other. Lift one pipe a little clear of the other into the fourth dimen-
sion. If you find this hard, examine the following procedure which is easier to
visualize: Fig. 1.13a shows two lines in the plane which cross at right angles.
Suppose we wish to move them very slightly so that they no longer intersect.

9
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It is obvious that we cannot do this in the plane. However, adding an extra
dimension perpendicular to the plane of the paper gives us three-dimensional
space, and we can simply lift one line a very small amount near the intersection
point in this extra direction. This gives the two lines of Fig. 1.13b which no
longer meet.

Figure 1.11

Figure 1.12

(@ (®)
Figure 1.13

Our way of introducing surfaces by representing them in euclidean space is
not such a good idea as it might appear at first sight. We are interested in
surfaces ‘up to alteration by a homeomorphism’, in other words topologically

10
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equivalent surfaces will be treated as the same space. We illustrate in Fig. 1.14
three copies of the Mdbius strip M. That the first two are homeomorphic is no
surprise, one only has to take a rubber versiont of the first and stretch it into
the second. But how about Figs 1.14a and 1.14¢? These spaces are homeo-
morphic, yet no amount of stretching, bending, and twisting will deform one
into the other. To show two spaces are homeomorphic one must find a con-
tinuous bijection between them, whose inverse is also continuous. Forget about

Figure 1.14

the various pictures of M and ask yourself how you construct M. Building a
model is easy: begin with a rectangle of paper and identify a pair of opposite
edges with a half twist (Fig. 1.15). This gives the usual representation of M

A | B

Figure 1.15

shown in Fig. 1.14a. To obtain Fig. 1.14c we must add a full twist to the above
process, i.e., identify the edges of our strip after twisting one and one-half times.
But in terms of the identification of the edges A and B this changes nothing, the
same points of 4 and B are made to coincide. Therefore the spaces shown in
Figs 1.14a and 1.14c are homeomorphic. They are merely different representa-
tions of the same space in euclidean space. The representations are different in

t The idea of explaining topological equivalence by thinking of spaces as being made of rubber is
due to Mdbius and dates back to about 1860.
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the sense that although we can find a homeomorphism between them, there is
no way of extending such a homeomorphism over all the points of euclidean
space. In other words, there is no homeomorphism from euclidean space to
itself that throws Fig. 1.14a onto Fig. 1.14c.

If our intuition can be led astray by pictures as naive as Fig. 1.14, this suggests
very strongly that we need some way of considering our spaces abstractly
rather than relying on particular representatives of them in euclidean space. In
what follows we shall try to translate the notion of a surface into precise mathe-
matical language. The programme is rather long, involving firstly the definition
of an abstract (topological) space, and secondly the recognition of surfaces as
those spaces which look locally like the euclidean plane.

1.4 Abstract spaces

In trying to find a satisfactory definition of a topological spacet we shall have
two aims in mind. The definition should be general enough to allow a wide range
of different structures as spaces. We would like to consider a finite, discrete set
of points as a space, or equally a whole uncountable continuum of points such
as the real line; one of our nice geometrical surfaces should qualify under the
definition, and so too should a function space such as the set of continuous
complex-valued functions defined on the unit circle in the complex plane. We
would like to be able to perform simple constructions with our spaces, such
as taking the cartesian product of two spaces, or identifying some of the points
of a space in order to form a new one (think of the construction of the Mdbius
strip outlined earlier). On the other hand, the definition of a space should con-
tain enough information so that we can define the notion of continuity for func-
tions between spaces. It is really this second consideration which leads to the
abstract definition given below.

Let f'be a function between two euclidean spaces, say f : E” — [E". The classical
definition of continuity for f goes as follows: fis continuous at x € E™ if given
& > 0 there exists 6 > 0 such that || f(y) — f(x)|| < ¢ whenever ||y — x|| < 6.
The function f'is continuous if it satisfies this condition for each x in E™, Call a
subset of N of E™ a neighbourhood of the point p € E™ if for some real number
r > 0 the closed disc centre p radius r lies entirely inside N. It is easy to rephrase
the above definition of continuity as follows: f is continuous if given any
x € E™ and any neighbourhood N of f(x) in E", then f ~1(N) is a neighbourhood
of x in E™.

This notion of each point in a space having a collection of ‘neighbourhoods’,
the neighbourhoods leading in turn to a good definition of continuous function,
is the crucial one. Notice that in defining neighbourhoods in a euclidean space
we used very strongly the euclidean distance between points. In constructing an
abstract space we would like to retain the concept of neighbourhood but rid

1 The modern definition emerged quite late, the axioms for a topological space appearing for the
first time in 1914 in the work of Hausdorff.
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ourselves of any dependence on a distance function. (A topological equivalence
does not preserve distances.)

Inspection of the properties of neighbourhoods of points in a euclidean space
leads to the following axioms for a topological space.

(1.3) We ask for a set X and for each point x of X a nonempty collection of
subsets of X, called neighbourhoods of x. These neighbourhoods are required
to satisfy four axioms:

(@) x lies in each of its neighbourhoods. '

(b) The intersection of two neighbourhoods of x is itself a neighbourhood of x.

(c) If N is a neighbourhood of x and if U is a subset of X which contains N, then
U is a neighbourhood of x.

(d) If N is a neighbourhood of x and if N denotes the set {z e N|N is a neighbour-
hood of z}, then N is a neighbourhood of x. (The set N is called the interior
of N.)

This whole structure is called a topological space. The assignment of a collec-
tion of neighbourhoods satisfying axioms (a)—(d) to each point x € X is called a
topology on the set X. (To provide a little motivation for axiom (d) take a point
x in E™ and let B (for ball) denote the set of points distance less than or equal to
1 from x. Then B is a neighbourhood of x. The interior of B is simply those
points distance less than 1 from x (the ball minus its boundary) and is still a
neighbourhood of x.)

We can now say precisely what we mean by a continuous function and by a
homeomorphism. Let X and Y be topological spacest. A function f: X — Y is
continuous if for each point x of X and each neighbourhood N of f(x) in Y the
set f ~(N)is a neighbourhood of x in X. A function h:X — Y is called a homeo-
morphism if it is one—one, onto, continuous, and has a continuous inverse.
When such a function exists, X and Y are called homeomorphic (or topologically
equivalent) spaces.

Suddenly things have become very complicated; we need a few examples in
order to clear the air and help our intuition along.

Examples.

1. Any euclidean space with the usual definition of neighbourhood is a topo-
logical space. We shall show later that euclidean spaces of different dimensions
cannot be homeomorphic. This is a hard problem, but its solution is essential if
we are to have any confidence that our definition of homeomorphism can
survive happily alongside our idea of the dimension of a space.

2. Let X be a topological space and let Y be a subset of X. We can define a
topology on Y as follows. Given a point y € Y take the collection of its neigh-
bourhoods in the topological space X and intersect each of these neighbour-

T So each of the letters X and Y represents a lot of information, namely the complicated structure
of definition (1.3).
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hoods with Y. The resulting sets are the neighbourhoods of y in Y. The axioms
for a topology are easily checked and we say that Y has the subspace topology.
This is a very useful procedure; it allows us, for example, to consider any subset
of a euclidean space as a topological space. In particular, our examples of
surfaces become topological spaces.

3. Let C denote the unit circle in the complex plane and [0,1) those real numbers
which are greater than or equal to 0 and less than 1. Give both of these sets the
subspace topology from the plane and the real line respectively. Defining
f:[0,1)— C by f(x) = e*™~ gives an example of a continuous function. Note
that this function is one-one and onto. Its inverse is not continuous. (Why not?)
This illustrates very well the importance of the condition that the inverse
function be continuous in the definition of a homeomorphism: we would after
all be very unhappy if the circle turned out to be homeomorphic to an interval.
4. Take the situation shown in Fig. 1.8 and consider the sphere and the surface
of the tetrahedron as subspaces of E3. Check that radial projection 7 gives a
homeomorphism between these two spaces. This type of homeomorphism is
called a triangulation (of the sphere in this case) and will be the subject of a
later chapter.

5. A distance function or metric on a set gives rise to a topology on the set.
The construction of the neighbourhoods is entirely analogous to the procedure
in a euclidean space. We illustrate the situation for a space of functions. Let X
be the set of all continuous real-valued functions defined on a closed interval I
of the real line. A function in the set is necessarily bounded and the usual distance
function on X is defined by

d(fg) = sup Lf(x) — g(x) .

Given a function fe X, a subset N of X is a neighbourhood of f if for some
positive real number ¢ the collection of all functions distance less than or equal
to ¢ from f'lies inside N.

6. Two different topological spaces may have the same underlying set of points.
As an example of a rather peculiar topology on the set of real numbers, define a
subset of the reals to be a neighbourhood of a particular real number if it
contains that number and if in addition its complement is finite. This gives a
topological space very different from (not homeomorphic to) the real line.
Notice that no distance function on the set of real numbers can give rise to this
topology. (Why not?)

7. Let X be a set and for each point x € X define {x} to be a neighbourhood of x.
So by axiom (c), any subset of X which contains x is a neighbourhood of x.
Intuitively we think of this topology as making X into a discrete set of points —
we have arranged for each point x to have a neighbourhood that contains no
other points. With this topology any function with domain X is continuous.

We have now developed enough machinery to say exactly what we mean by a
surface, and free ourselves from the straightjacket of having to work inside
some euclidean space.

14
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(1.4) Definition. A surface is a topological space in which each point has a neigh-
bourhood homeomorphic to the plane, and for which any two distinct points
possess disjoint neighbourhoods. :

It is worth taking the time to examine this definition in some detail. The require-
ment that each point of the space should have a neighbourhood which is homeo-
morphic to the plane fits exactly our intuitive idea of what a surface should be.
If we stand in it at some point (imagining a giant version of the surface in
question) and look at the points very close to our feet we should be able to
imagine that we are standing on a plane. The surface of the earth is a good
example. Unless you belong to the Flat Earth Society you believe it to,be
(topologically) a sphere, yet locally it looks distinctly planar. Think more
carefully about this requirement: we ask that some neighbourhood of each
point of our space be homeomorphic to the plane. We have then to treat this
neighbourhood as a topological space in its own right. But this presents no
difficulty; the neighbourhood is after all a subset of the given space and we can
therefore supply it with the subspace topology.

The second requirement, that any two distinct points possess disjoint neigh-
bourhoods, is more technical in nature. It is motivated by our experience: all of
our examples of surfaces have this property; unfortunately it is not automatically
satisfied by spaces which locally look like the plane.

We have given the simplest possible definition. If we wish to allow a-sutface
to have an edge or boundary (as in the case of the M§bius strip); then we cannot
expect every point to have a neighbourhood homeomorphic to the plane. We
must allow in addition points which have neighbourhoods homeomorphic to

7/ homeomorphism

homeomorphism

Figure 1.16

]E2

the upper half-plane (consisting of those points of the plane whose y-coordinates
are greater than or equal to zero). All of our examples of surfaces now fit in
nicely with this definition when they are given the subspace topology from
euclidean space. Figure 1.16 illustrates the definition for a Mdbius strip.
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1.5 A classification theorem

At the beginning of Section 1.3 we claimed to be geometers at heart, yet here
we are slowly sinking into a morass of technical detail. To escape (temporarily
at least; the properties of abstract topological spaces will be examined in more
detail in the next chapter) we return to our theory of surfaces.

We shall restrict ourselves to a rather nice class of surfaces, and consider
only those which have no boundary and which are in some sense closed up on
themselves: in addition we ask that our surfaces be connected, i.e., consist of a
single piece. The sphere, the torus, and the Klein bottle are the sort of surfaces
that we have in mind; the cylinder and the M&bius strip are ruled out because
they have edges. We rule out the whole plane and surfaces such as that repre-
sented in Fig. 1.9 as not being ‘closed up’. To be precise we are dealing with
compact, connected surfaces, but the precise definitions of compactness and
connectedness will have to wait until Chapter 3.

The remarkable thing is that if we agree to work only with these so-called
‘closed’ surfaces, then we can say exactly how many there are, that is, we can
classify them. Such a classification entails making a list of surfaces so that given
an arbitrary closed surface it is homeomorphic to one on the list. In addition,
the list should not be too long; in other words no two surfaces on our list
should be homeomorphic.

We can construct examples of closed surfaces as follows. Take the ordinary
sphere, remove two disjoint discs and then add on a cylinder by identifying its
two boundary circles with the boundaries of the holes in the sphere as in Fig.
1.17. This process is called ‘adding a handle’ to the sphere. By repetition we
obtain a sphere with two, three, or any finite number of handles. You should be
able to convince yourself that a sphere with one handle is nothing more than
(is homeomorphic to) the torus. This process of adding handles gives half the
surfaces of our list.

Sphere with one handle

Figure 1.17

The others are unfortunately like the Klein bottle in the sense that they do
not admit representatives in euclidean three-dimensional space and are there-
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fore more difficult to imagine. Luckily, the construction of models for these
surfaces is an easy process to describe. Begin with the sphere, remove a single
disc, and add a Mobius strip in its place. The Mobius strip has after all a single
circle as boundary, and all that we are asking is that the points of this boundary
circle be identified with those of the boundary circle of the hole in the sphere.
One must imagine this identification taking place in some space where there
is plenty of roomt (euclidean four-dimensional space will do); as noted above, it
cannot be realized in three dimensions without having the Mdbius strip inter-
sect itself. The resulting closed surface is called the projective plane.

For each positive integer n we can form a closed surface by removing n
disjoint discs from the sphere and replacing each one by a Mobius strip. When
n = 2, we recapture the Klein bottle and Fig. 1.18 is an attempt to illustrate

(a)

(b)

(c)

Figure 1.18

1 In Chapter 4 we shall explain how to glue two topological spaces together in order to form a new
space, without relying in any way on models of the spaces in E* or E*.
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why this is so. Slicing the usual picture of the Klein bottle in two in the plane of
the paper, and removing the self intersections of the two pieces, gives the two
Mobius strips of Fig. 1.18a. Take one of these and mark in a strip neighbourhood
of its boundary (1.18b); this neighbourhood is homeomorphic to a cylinder.
Remove the cylinder (1.18c), leaving a slightly smaller M6bius strip and remem-
ber that a cylinder is homeomorphic to a sphere with two disjoint discs removed.
So the usual description of the Klein bottle agrees with our construction when
n=2.

(1.5) Classification theorem. Any closed surface is homeomorphic either to the
sphere, or to the sphere with a finite number of handles added, or to the sphere
with a finite number of discs removed and replaced by Mobius strips. No two of
these surfaces are homeomorphic.

For example, taking a sphere with one handle, removing a single disc, and
replacing it by a Mobius strip gives a surface which is homeomorphic to the
sphere with three disjoint discs removed and replaced by Mobius strips. We
will prove the classification theorem in Chapter 7.

(a) Figure 1.19 (b)

The sphere with n haridles added is called an orientable surface of genus n. We
call it orientable for the following reason. If we draw a smooth closed curve on
it, choose tangent and normal vectors at some point (i.e., choose a coordinate
system near the point—often called a local orientation), and then push these
vectors once round the curve we come back to the same system of vectors
(Fig. 1.19a). Any surface which contains a Mobius strip, and therefore all those
on the second half of our list, cannot satisfy this property and is consequently
called nonorientable. Figure 1.19b shows what happens when we push the
tangent and normal vectors once round the central circle of the Mdbius strip—
the normal vector is reversed. v

The classification of surfaces was initiated, and carried through in the
orientable case, by Mobius (1790-1868) in a paper which he submitted for
consideration for the Grand Prix de Mathématiques of the Paris Academy of
Sciences. He was 71 at the time. The jury did not consider any of the manuscripts
received as being worthy of the prize, and Mo6bius’ work finally appeared as
just another mathematical paper.
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1.6 Topological invariants

We should say at once that we have no hope of classifying all topological
spaces. However, we would like to develop ways of deciding whether or not two
concrete spaces, such as two surfaces, are homeomorphic.

Showing that two spaces are homeomorphic is a geometrical problem,
involving the construction of a specific homeomorphism between them. The
techniques used vary with the problem. We have already given an example (at
least in outline) in showing that the Klein bottle is homeomorphic to the sphere
with two disjoint discs replaced by Mobius strips.

Attempting to prove that two spaces are not homeomorphic to one another
is a problem of an entirely different nature. We cannot possibly examine each
function between the two spaces individually and check that it is not a homeo-
morphism. Instead we look for ‘topological invariants’ of spaces: an invariant
may be a geometrical property of the space, a number like the Euler number
defined for the space, or an algebraic system such as a group or a ring con-
structed from the space. The important thing is that the invariant be preserved
by a homeomorphism -hence its name. If we suspect that two spaces are not
homeomorphic, we may be able to confirm our suspicion by computing some
suitable invariant and showing that we obtain different answers. We give two
examples below.

In Chapter 3 we shall introduce the notion of connectedness: roughly
speaking, a space is connected if it is all in one piece. This idea can be made
quite precise, and it will be no surprise to us to find that the property of being
connected is preserved if we apply a homeomorphism to a space, i.e., connected-
ness is a topological invariant. The plane E? is an example of a connected space;
so is the line E'. However, if we remove the origin from E! the space falls into
two pieces (corresponding to the positive and negative real numbers) and we
have an example of a space which is not connected. Suppose now that we have a
homeomorphism h:E' — E. It will induce a homeomorphism from E* — {0}
to E? — {h(0)}. But E? with a single point removed is a connected space (it is all
in one piece) whereas E* — {0} is not connected. We conclude that E! and E? are
not homeomorphic.

As a second example, we consider a construction due to Poincaré which will
be the subject of Chapter 5. The idea is to assign a group to each topological
space in such a way that homeomorphic spaces have isomorphic groups. If we
want to distinguish between two spaces, we can try to solve the problem
algebraically by first computing their groups and then looking to see whether
or not the groups are isomorphic. If the groups are not isomorphic then the
spaces are different (not homeomorphic). Of course, we may be unlucky and
wind up with isomorphic groups, in which case we must look for a more delicate
invariant to separate the two spaces.

Consider the two spaces shown in Fig. 1.20. We would not expect them to be
homeomorphic, after all the annulus has a hole through it and the disc does not.
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This hole is represented very well by the loop « of Fig. 1.21. It is the hole which
prevents us from continuously shrinking « to a point without leaving the
annulus, whereas in a disc any loop can be continuously shrunk to a point.
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Figure 1.21

Poincaré’s construction uses loops like o to produce a group, the so-called
fundamental group of the annulus: this group will pick out the fact that the
annulus has a hole.

A loop such as a will give rise to a nontrivial element of the fundamental
group. Looking again at the annulus, the loop g is for our purposes of hole
recognition just as good as a, as it can be continuously deformed into o without
crossing the hole. This suggests that  should represent the same element of the
fundamental group as «. Working with loops which begin and end at a particular
point means that there is a natural way of multiplying loops together. One
should think of the product a. f of two loops as being the composite loop
obtained by first going round the loop o, then going round f. The loops them-
selves do not form a group under this multiplication, but if we agree to identify
loops when one can be continuously deformed into the other (without moving
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their endpoints), then we do get a group from the resulting equivalence classes
of loops.

The above discussion can be made quite precise. Mathematically, a loop in a
topological space X is nothing more than a continuous function o:C — X,
where C denotes the unit circle in the complex plane, and we say that the loop
begins and ends at the point p of X if a(1) = p. The arrows on the loops in our
illustrations indicate the direction of increasing 6, where we parametrize C as
{el?|0 < 6 < 2n}. Reversing an arrow produces a different loop and corre-
sponds to taking the inverse of the appropriate element in the fundamental
group. Perhaps the simplest possible loop is the function which sends all of C
to the point p, and it is this loop which represents the identity element of the
fundamental group.

The fundamental group of a disc is the trivial group, since any loop can be
continuously shrunk to a point—we leave the technicalities of defining a con-
tinuous deformation to Chapter 5. For the annulus we obtain the infinite
cyclic group of integers. Loops representing 0, —1, and +2 are shown in
Fig. 1.22.

Figure 1.22

It is not hard to imagine that homeomorphic spaces will have isomorphic
fundamental groups. After all, if :C— X is a loop in X, and h: X —> Y a
ho’meomorphism, then ha: C — Y defines a loop in Y; continuous deformations
also carry over via a homeomorphism. We conclude that the disc and the
annulus are not homeomorphic.

Perhaps the best way for us to complete our introduction, and at the same
time to capture the flavour of later chapters, is to list some problems (three
from geometry, one from algebra) which we shall use the fundamental group
to help solve.

Classification of surfaces. No two surfaces on the list given in theorem (1.5)
have isomorphic fundamental groups, so these surfaces are all topologically
distinct.

Jordan separation theorem. Any simple closed curve in the plane divides the
plane into two pieces.
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Brouwer fixed-point theorem. Any continuous function from a disc to itself
leaves at least one point fixed.

Nielsen—Schreier theorem. A subgroup of a free group is always free.

Problems

1. Prove that »(T) — e(T) = 1 for any tree T.

2. Even better, show that »(I') — e(I') < 1 for any graph I', with equality
precisely when T is a tree.

3. Show that inside any graph we can always find a tree which contains all
the vertices.

4. Find a tree in the polyhedron of Fig. 1.3 which contains all the vertices.
Construct the dual graph I" and show that I" contains loops.

5. Having done Problem 4, thicken both T and I in the polyhedron. T'is a tree,
so thickening it gives a disc. What do you obtain when you thicken I'?

6. Let P be a regular polyhedron in which each face has p edges and for which
q faces meet at each vertex. Using Euler’s formula prove that

+ .
p q 2 + e
7. Deduce from Problem 6 that there are only five regular polyhedra.
8. Check that v — e + f =0 for the polyhedron shown in Fig. 1.3. Find a

polyhedron which can be deformed into a pretzel (see Fig. 1.23c) and calculate
its Euler number.

9. Borrow a tennis ball and observe that its surface is marked out as the union
of two discs which meet along their boundaries.

10. Find a homeomorphism from the real line to the open interval (0,1). Show
that any two open intervals are homeomorphic.

11. Imagine all the spaces shown in Fig. 1.23 to be made of rubber. For each
pair of spaces X, Y, convince yourself that X can be continuously deformed
into Y.

-0 €3

X = Cylinder with a puncture Y = Disc with two punctures
Figure 1.23

e ——
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()

Y = Two cylinders glued together

X = Punctured torus over a square patch

©

7
/

|
\

X = Pretzel or double Y = Pretzel with its arms
torus ‘linked’

12. ‘Stereographic projection’ = from the sphere minus the north pole to the
plane is shown in Fig. 1.24. Work out a formula for = and check that = is a
homeomorphism.

n(x)

Figure 1.24

Notice that n provides us with a homeomorphism from the sphere with the
north and south poles removed to the plane minus the origin.
13. Let x and y be points on the sphere. Find a homeomorphism of the sphere

with itself which takes x to y. Work the same problem with the sphere replaced
by the plane and by the torus.

14. Make a Mobius strip out of a rectangle of paper and cut it along its central
circle. What is the result?

15. Cut a Mobius strip along the circle which lies halfway between the boundary
of the strip and the central circle. Do the same for the circle which lies one-third
of the way in from the boundary. What are the resulting spaces?

16. Now take a strip which has one full twist in it, cut along its central circle
and see what happens.
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17. Define f:[0,1)— C by f(x) = e*™*. Prove that f is one-one, onto, and
continuous. Find a point x € [0,1) and a neighbourhood N of x in [0,1) such
that f(N) is not a neighbourhood of f(x) in C. Deduce that f is not a homeo-
morphism.

18. If you had difficulty with Problem 11(b), make a model of a torus minus a
disc as follows. Begin with a square whose sides are to be identified in the usual
way to give a torus (Fig. 1.25). Note that the four shaded areas together represent
a disc in the torus. Cut these areas out of the square, then make the identifica-
tions on the remaining parts of the edges of the square.

/

Figure 1.25

19. Let X be a topological space and let Y be a subset of X. Check that the
so-called subspace topology is indeed a topology on Y.

20. Prove that the radial projection shown in Fig. 1.8 is a homeomorphism
from the surface of the tetrahedron to the sphere. (Both spaces are assumed to
have the subspace topology from [F>.)

21. Let C denote the unit circle in the complex plane and D the disc which it
bounds. Given two points x,y € D — C, find a homeomorphism from D to D
which interchanges x and y and leaves all the points of C fixed.

22. With C, D as above, define h:D — C— D — C by
h0) =0

h(r €') = rexp [i (9 + 12irr> ]

Show that 4 is a homeomorphism, but that h cannot be extended to a homeo-
morphism from D to D. Draw a picture which shows the effect of 4 on a diameter
of D.
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23. Using the intuitive notion of connectedness, argue that a circle and a circle
with a spike attached cannot be homeomorphic (Fig. 1.26.)

O O

Circle Circle with spike

Figure 1.26

24. Let X, Y be the subspaces of the plane shown in Fig, 1.27. Under the assump-
tion that any homeomorphism from the annulus to itself must send the points of
the two boundary circles among themselves,t argue that X and Y cannot be
homeomorphic.

e O

Figure 1.27

25. With X and Y as above, consider the following two subspaces of E>:
X x [01] = {(xy2) | (x:y)e X, 0<z<1},
Y x [01] = {(xy,2) | (x,y)e Y, 0<z< 1}

Convince yourself that if these spaces are made of rubber then they can be
deformed into one another, and hence that they are homeomorphic.

26. Assuming you have done Problem 14, show that identifying diametrically
opposite points on one of the boundary circles of the cylinder leads to the
Mobius strip.

% This is not easy to verify: for a proof see theorem (5.24).
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27. Make a model for a Klein bottle as shown in Fig. 1.28. Cut along the line CD,
then identify the two lines labelled AB. Inspect the result and deduce that the
Klein bottle is made up of two Mobius strips which have a common boundary

circle.

4 - B
C D
) i
4 > B
Figure 1.28
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2. Continuity

Geometry formerly was the chief borrower from arithmetic
and algebra, but it has since repaid its obligations with
abundant usury ; and if I were asked to name, in one
word, the pole star round which the mathematical
Sfirmament revolves, the central idea which pervades the
whole corpus of mathematical doctrine, I should point to
Continuity as contained in our notions of space, and say,
it is this, it is this!

J. J. SYLVESTER

2.1 Open and closed sets

The definition of a topological space given in Chapter 1 fits quite well our
intuitive idea of what a space ought to be. Unfortunately, it is not terribly
convenient to work with, and our first job is to produce an equivalent, more
manageable, set of axioms.

Let X be a topological space and call a subset O of X open if it is a neighbour-
hood of each of its points. Notice that the union of any collection of open sets is
open by axiom (c) of definition (1.3), and the intersection of any finite number
of open sets is open by axiom (b). The whole space X is an open set, as is the
empty set ZJ. Also, given a neighbourhood N of a point x, axiom (d) tells us
that the interior of N is an open set which lies inside N and which contains x.

In E? a set is open if each of its points can be surrounded by a ball which lies
entirely inside the set. For example, the half-space defined by the inequality
z > 0 is open, as is the set of points whose coordinates satisfy x? + y? + z? < 1.
On the other hand, the half-space defined by z > 0 is not open because any
ball, however small, which surrounds a point of the (x,y) plane must dip down
into the lower half-space given by z < 0. The intersection of an infinite collec-
tion of open sets need not be open, for example if we intersect the sets

1
{(x,y,z) |x* +y* + 22 < *} n=123,...
n

we obtain the origin in E3, which is not open.

We shall now try to work in the opposite direction, starting from the idea of
an open set, then building up a collection of neighbourhoods for each point.
Suppose then we have a set X together with a nonempty collection of subsets of
X, which we call open sets, such that any union of open sets is itself open, any
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finite intersection of open sets is open, and both the whole set and the empty
set are open. Given a point x of X, we shall call a subset N of x a neighbourhood
of x if we can find an open set O such that xe O < N.

We claim that this definition of neighbourhood makes X into a topological
space. Each point has at least one neighbourhood, namely the whole set X, and
axioms (a) and (c) of definition (1.3) clearly hold. If N, N, are neighbourhoods
of x we can find open sets O;, O, such that xe0; = N, and xe 0, = N,,
giving xe 0, n 0, € N; n N,. But O; n 0, is open, therefore Ny " N, is a
neighbourhood of x, and we have verified axiom (b). Finally, suppose N is a
neighbourhood of x and let N denote the set of points z such that N is a neigh-
hood of z. Choose an open set O such that xe O < N. Now O, being open, is a
neighbourhood of each of its points, so O is contained in N. Therefore, N is a
neighbourhood of x as required for axiom (d).

Suppose we go full circle. In other words, we start with a collection of so-
called open sets, construct a topological space X using them, then look at the
open sets of this space. Do the two notions of ‘open’ coincide? The answer is yes.
For if O is one of the original open sets, then it is by definition a neighbourhood
of each of its points in X, and therefore an open set of X. Conversely, if U is an
open set of X it is a neighbourhood of each of its points. So given x e U we
can find one of the original open sets, say O,, such that xe O, & U. But then
U= U {0, |xe U}, and is therefore open in the original sense because any
union of open sets is open. We leave the reader to check out the other possibility,
namely, if we begin with a topological space, introduce the notion of an open
set, then construct a family of neighbourhoods for each point using these open
sets, the neighbourhoods which result are precisely those of the original space.

The above discussion means we are justified in rephrasing our definition of a
topological space in terms of open sets.

(2.1) Definition. 4 topology on a set X is a nonempty collection of subsets of X,
called open sets, such that any union of open sets is open, any finite intersection of
open sets is open, and both X and the empty set are open. A set together with a
topology on it is called a topological space.

This is the definition we shall adopt from now on.

The open sets of the ‘usual’ topology on E" are characterized as follows. A set
U is open if given x € U we can always find a positive real number ¢ such that
the ball with centre x and radius ¢ lies entirely in U. Whenever we refer to E"
we shall have this topology in mind.

If we have a topological space X and a subset Y of X, the open sets of the
subspace or induced topology on Y are obtained simply by intersecting all of
the open sets of X with Y. In other words, a subset U of Y is open in the subspace
topology if we can find an open set O of X such that U = O n Y. Any subset of
a euclidean space picks up a topology from the surrounding space in this way.
Whenever we refer to a subspace Y of a topological space X, we shall mean that
Y is a subset of X and has the subspace topology.
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A rather extreme topology is the discrete topology on X. Here every subset of
X is an open set. This is the largest possible topology on a given set X. (If one
topology contains all the open sets of another, we say it is ‘larger’ than the other.)
If X has the discrete topology we call it a discrete space. For example, if we take
the set of points of E” which have integer coordinates, and give it the subspace
topology, the result is a discrete space.

A subset of a topological space is closed if its complement is open. Think of
subsets of the plane such as the unit circle, the unit disc (points whose co-
ordinates satisfy x> + y? < 1), the graph of the function y = €%, or the set of
points (x,y) such that x > y*. All these sets are closed. Still working in [E2,
consider the set A whose points (x,y) satisfy x > 0 and y > 0. This set A is not
closed, because the x axis lies in its complement, yet any ball with centre on the
positive part of the x axis must meet A. Notice that 4 is not open either. So
sets may be neither open nor closed. They can equally well be both open and
closed. For example, take the space X whose points are those points (x,y) of E?
such that X > 1 or x < —1, and whose topology is that induced from E2. The
subset of X consisting of those points with positive first coordinate is both open
and closed in X. (Though of course it is not open in E2.) We note that the inter-
section of any family of closed sets is closed, as is the union of any finite family
of closed sets. To prove these statements one simply applies the De Morgan
formulae.

We can characterize closed sets very nicely as follows. Let A be a subset of a
topological space X and call a point p of X a limit point (or accumulation point)
of A if every neighbourhood of p contains at least one point of A — {p}. Such a
point may or may not be in A4 as the following examples show.

Examples.

1. Take X to be the real line R (the usual name and notation for E!), and let A
consist of the points 1/n,n = 1,2,.... Then A has exactly one limit point, namely
the origin.

2. Again with X as the real line, take A = [0,1). Then each point of 4 is a limit
point of A, and in addition 1 is a limit point of A4.

3. Let X be E® and let 4 consist of those points all of whose coordinates are
rational. Then every point of E2 is a limit point of A.

4. At the other extreme, let 4 = E* be the set of points which have integer
coordinates. Then 4 does not have any limit points.

5. Take X to be the set of all real numbers with the so called finite-complement
topology. Here a set is open if its complement is finite or all of X. If we now take
A to be an infinite subset of X (say the set of all integers), then every point of X
is a limit point of A. On the other hand a finite subset of X has no limit points in
this topology.

(2.2) Theorem. A set is closed if and only if it contains all its limit points.

Proof. If A is closed, its complement X — A is open. Since an open set is a
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neighbourhood of each of its points, no point of X — A4 can be a limit point of
A. Therefore A contains all its limit points. Conversely, suppose 4 contains all
its limit points and let xe X — A. Since x is not a limit point of A we can find
a neighbourhood N of x which does not meet 4. So N is inside X — A, showing
X — A to be a neighbourhood of each of its points and consequently open.
Therefore A is closed.

The union of 4 and all its limit points is called the closure of A and is written A.

(2.3) Theorem. The closure of A is the smallest closed set containing A, in other
words the intersection of all closed sets which contain A.

Proof. We first observe that A4 is indeed a closed set. For if xe X — 4, we can
find an open neighbourhood U of x which does not contain any points of A.
Since an open set is a neighbourhood of each of its points, U cannot contain any
of the limit points of A either. Therefore we have an open set U such that
xeU < X — A. Consequently X — A is a neighbourhood of each of its points
and must be open. Now let B be a closed set which contains A. Then every limit
point of 4 is a limit point of B and therefore must lie in B since B is closed. This
gives A = B. Since A is closed, contains A, and is contained in every closed set
which contains A4, it must be the intersection of all such sets.

(2.4) Corollary. A set is closed if and only if it is equal to its closure.

A set whose closure is the whole space is said to be dense in the space. This
is the case in example 3 above. A dense set meets every nonempty open subset
of the space.

The interior of a set A, usually written A, is the union of all open sets contained
in A. One readily checks that a point x lies in the interior of 4 if and only if 4
is a neighbourhood of x. An open set is its own interior; if we work in E? and
use D to denote the unit disc consisting of points (x,y) such that x> + y* < 1,
the interior of D is D — C, where C stands for the unit circle; the circle C has
empty interior because the only open set of the plane contained in C is the
empty set. ,

One other useful notion is that of the frontier of a set. We define the frontier
of 4 to be the intersection of the closure of A4 with the closure of X — A. An
equivalent definition is to take those points of X which do not belong to the
interior of A nor to the interior of X — A. For example, in the plane, the unit
disc D, its interior D, and the unit circle C all have the same frontier, namely C.
The frontier of the set of points in E* which have rational coordinates is all of
E3, so the frontier of a set can be the whole space.

Suppose we have a topology on a set X, and a collection § of open sets such
that every open set is a union of members of . Then f is called a base for the
topology and elements of B are called basic open sets. An equivalent formulation
is to ask that given a point x € X, and a neighbourhood N of x, there is always
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an element B of f such that xe B < f. A good example is provided by the
topology of the real line, where the set of all open intervals is a base. The set of
open intervals which have rational endpoints is a smaller base. (Notice that
this second base is countable.)

It can be useful to describe a topology on a set by specifying a base for the
topology. For this reason we would like to be able to decide when a given
collection of subsets of a set X is a base for some topology on X.

(2.5) Theorem. Let f§ be a nonempty collection of subsets of a set X. If the inter-
section of any finite number of members of B is always in B, and if | ) p = X, then
f is a base for a topology on X.

Proof. Take the obvious candidate, namely the collection of all unions of
members of § as the open sets, then check the requirements for a topology.

Problems

1. Verify each of the following for arbitrary subsets A4, B of a space X :
(a)AuUB= AuB(b)AmBCAnB(c) A;

(d) (4 u B)° QAUB,(e)(AmB) = An B;(H(A) =

Show that equality need not hold in (b} and (d).

2, Find a family of closed subsets of the real line whose union is not closed.

3. Specify the interior, closure, and frontier of each of the following subsets of
the plane:

(@) {(x.y)|1 < x* + y* < 2}; (b) E? with both axes removed;

(c) E* — {(x, sin(1/x))| x > 0}.

4. Find all the limit points of the following subsets of the real line:
@) {1/m) + (I/n)|mpn =12,...}; () {(I/n)sinn|n=12...}.

5. If A is a dense subset of a space X, and if O is open in X, show that
O0cAnO.

6. If Y is a subspace of X, and Z a subspace of Y, prove that Z is a subspace
of X.

7. Suppose Y is a subspace of X. Show that a subset of Y is closed in Y if it
is the intersection of Y with a closed set in X. If 4 is a subset of Y, show that we
get the same answer whether we take the closure of 4 in Y, or intersect Y with
the closure of 4 in X.

8. LetY be a subspace of X. Given 4 < Y, write AY for the interior of 4 in Y,
and Ay for the interior of 4 in X. Prove that 4 x S Ay, and give an example to
show the two may not be equal.

9. Let Y be a subspace of X. If 4 is open (closed) in Y, and if Y is open (closed)
in X, show that A is open (closed) in X.
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10. Show that the frontier of a set always contains the frontier of its interior.
How does the frontier of A U B relate to the frontiers of A and B?

11. Let X be the set of real numbers and f the family of all subsets of the form
{x|a < x < b where a < b}. Prove that  is a base for a topology on X and
that in this topology each member of f is both open and closed. Show that this
topology does not have a countable base.

12. Show that if X has a countable base for its topology, then X contains a
countable dense subset. A space whose topology has a countable base is called
a second countable space. A space which contains a countable dense subset is
said to be separable.

2.2 Continuous functions

The notion of continuity is particularly easy to formulate in terms of open sets.
Let X and Y be topological spaces.

(2.6) Theorem. A function from X to Y is continuous if and only if the inverse
image of each open set of Y is open in X.

Proof. Recall the definition of continuity given in Chapter 1. A function
f:X — Y is continuous if for each point x of X and each neighbourhood N of
f(x)in Y the set f ~1(N) is a neighbourhood of x in X. Now if f is continuous
and if O is an open subset of Y, then O is a neighbourhood of each of its points
and therefore f ~ }(0) must be a neighbourhood of each of its points in X. We
conclude that f ~1(0) is an open set in X. The converse implication is left to
the reader. '

A continuous function is very often called a map for short.
(2.7) Theorem. The composition of two maps is a map.

Proof. Suppose f: X — Y, g: Y — Z are continuous; let O be an open set in Z
and notice that (g°f)~*(0) = f ~1g~(0). Now g~ !(0) is open in Y because g
is continuous, so f ~'g~!(0) must be open in X by the continuity of f. Therefore
g °fis continuous.

(2.8) Theorem. Suppose {:X — Y is continuous, and let A < X have the subspace
topology. Then the restriction f| A: A — Y is continuous.

Proof. Let O be an open set in Y and notice that. (f] 4)~1(0) = 4 nf~}O0).
Since f'is continuous, f ~!(0) is open in X. Therefore (f|4)~!(0) is open in the
subspace topology on A4, and the continuity of | A follows from theorem (2.6).
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The map from X to X which sends each point x to itself is called the identity
map of X and written 1. If we restrict 1, to a subspace 4 of X we obtain the
inclusionmapi:A— X.

(2'9) Theorem. The following are equivalent:

(@) :X— Y is a map.

(b) If B is a base for the topology of Y, the inverse image of every member of f§ is
open in X.

(c) f(A) < T(A) for any subset A of X.

(d) FI(B) < f~1(B) for any subset B of Y.

(e) The inverse image of each closed set in'Y is closed in X.

Proof. The most efficient way of dealing with this is to verify the five implica-
tions (a) = (b) = (c) = (d) = (e) = (a). We shall deal with two of them and
leave the other three to the reader. Consider (b) = (c). Let A be a subset of X.
Certainly every point of f{A) lies in f{A), therefore we must show that if
x €A — A, and fix) & f(A), the point f(x) is a limit point of f{A). If N is a
neighbourhood of f{x) in Y we can find a basic open set B in 8 such that f{x)
€ B C N. Assuming (b), the set f ' (B) is open in X and is therefore a
neighbourhood of x. But x is a limit point of A, which means that /=’ (B)
must contain a point of A. So B, and therefore N, contains a point of f{A)
as required. To prove (d) = (e) we note that if B is a closed subset of Y then
B = B. But if we assume (d), we have f~'(B)< f'(B)=f"YB). So f!
(B) is closed in X.

Example. Let C denote the unit circle in the complex plane, taken with the
subspace topology, and give the interval [0,1) the induced topology from the
real line. Define /: [0,1) —» C by f(x) = e*™* It is easy to see that fis continuous.
We can take the set of all open segments of the circle as a base for the topology
on C.Now if S is such a segment, and if S does not contain the complex number 1,
then £~ }(S) is just an open interval of the form (a,b) where 0 < a < b < 1. So
£~ XS) is open in [0,1). If S does happen to contain 1 (as in Fig. 2.1) then

S
L Y d
7 — 1
A
0 1
Figure 2.1

/7 X(S) has the form [0,a) U (b,1) where 0 < a < b < 1. This is open in [0,1)
because it is the intersection of the open set (— 1,a) u (b,1) of the real line with
[0,1). Part (b) of theorem (2.9) now establishes the continuity of f. Our function
is clearly one-one and onto. However, its inverse is not continuous. To see
this we need only produce an open set O of [0,1) such that (f ~!)”}0) = f(0)
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is not open in C. Take O to be the interval [0,}); this is open in [0,1), but its
image under the exponential map consists of those complex numbers z in C
for which 0 < arg z < m, and this set is not open in C.

A homeomorphism h: X — Y is a function which is continuous, one—one, and
onto, and which has continuous inverse. From theorem (2.6) we see that a set O
is open in X if and only if #(0) is open in Y. Therefore, h induces a one—one onto
correspondence between the topologies of X and Y, justifying our assertion
that X and Y should be thought of as the same topological space.

Example. Let S* denote the n-dimensional sphere whose points are those of
E" * ! which have distance 1 from the origin, taken with the subspace topology.
We claim that removing a single point from S” gives a space homeomorphic to
E". Which point we remove is irrelevant because we can rotate any point of
S" into any other; for convenience we choose to remove the point p = (0,...,0,1).
Now the set of points of E"*! which have zero as their final coordinate, when
given the induced topology, is clearly homeomorphic to E". We define a function
h:S" — {p} — B, called stereographic projection, as follows. If xeS" — {p},
then h(x) is the point of intersection of E” and the straight line determined by
x and p. (For a picture when n = 2 see Fig. 1.24.)

Clearly h is one—one and onto. If O is an open set in E*, we form a new set
U in E"* ! whose points are those which lie on the half lines which start at p
and pass through points of O, except the point p itself which we rule out. One
readily checks that U is open in E"* . But A~ 1(0) is precisely the intersection
of U with $" — {p}, and therefore h~*(0) is open in S” — {p}. This establishes
the continuity of A, and a precisely similar argument deals with A~ *. Therefore
h is a homeomorphism.

We end this section with a couple of results which will be needed in the
chapter on surfaces. By a disc we shall mean any space homeomorphic to the
closed unit disc D in E2. As usual, C stands for the unit circle. If 4 is a disc, and
if h: A— D is a homeomorphism, then 2~ !(C) is called the boundary of 4 and is
written 0A. It is intuitively obvious that this definition of boundary is inde-
pendent of the choice of the homeomorphism h. We shall verify this fact
rigorously in theorem (5.24) by showing that any homeomorphism from D to
itself must send C to C.

(2.10) Lemma. Any homeomorphism from the boundary of a disc to itself can be
extended to a homeomorphism of the whole disc.

Proof.Let A be a disc and choose a homeomorphism h : 4 — D. Given a homeo-
morphism g:04 — 0A, we can easily extend hgh™':C— C to a homeo-
morphism of all of D as follows. Send 0 to 0, and if xe D — {0} send x to the
point || x|[hgh~'(x/|| x|)). In other words extend conically. If we call this
extension f, then h~! fh extends g to a homeomorphism of all of 4 as required.
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(2.11) Lemma. Letr A and B be discs which intersect along their boundaries in an
arc. Then A L B is a disc.

Proof. Let y denote the arc A N B, and use a,f for the complementary arcs in
the boundaries of 4 and B (Fig. 2.2). We construct a homeomorphism from

Figure 2.2

A v B to D, with the aid of lemma (2.10), as follows. The y axis in the plane
divides up D in a particularly nice way, as the union of two discs D; and D,.
We label the three arcs which together make up the boundaries of D, and D,
as o, B/, v as shown in Fig. 2.2. Both « and «' are homeomorphic to the closed
unit interval [0,1], so we can find a homeomorphism from o to «'. We first
extend this over 7, to give a homeomorphism from o U y to &’ U 9" (this much
is easy); then over A to give a homeomorphism from A4 to D, which takes y to
¥, using lemma (2.10). Finally, we extend our homeomorphism over §, so that
B goes to f', using our common sense, then over B by means of lemma.(2.10)
again. The result is a homeomorphism from 4 U Bto D, v D, = D. Therefore
A U Bis adisc.

Problems

13.If f:R — R is a map (i.e., a continuous function), show that the set of points
which are left fixed by fis a closed subset of R. If g is a continuous real-valued
function on X show that the set {x | g(x) = 0} is closed.

14. Prove that the function h(x) = ¢*/(1 + ¢¥) is a homeomorphism from the
real line to the open interval (0,1).

15. Let f:E'— E' be a map and define its graph I;:E'— E? by T'(x) =
(>.f (x)). Show that I', is continuous and that its image (taken with the topology
induced from E?) is homeomorphic to E*.

16. What topology must X have if every real-valued function defined on X is
continuous?

17. Let X denote the set of all real numbers with the finite-complement topology,
and define f:[F! — X by f(x) = x. Show that f is continuous, but is not a
homeomorphism.
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18. Suppose X = A, U A, U ..., where 4, < A, , , for each n. Iff:X—>Yisa
function such that, for each n, f|4,: A, — Y is continuous with respect to the
induced topology on A,, show that f'is itself continuous.

19. The characteristic function of a subset A of a space X is the real-valued
function on X which assigns the value 1 to points of 4 and 0 to all other points.
Describe the frontier of 4 in terms of this function.

20. An open map is one which sends open sets to open sets; a closed map takes
closed sets to closed sets. Which of the following maps are open or closed?

(a) The exponential map x + €' from the real line to the circle.

(b) The folding map f:[E2 — E? given by f(x,y) = (x,| y]).

(c) The map which winds the plane three times on itself given, in terms of
complex numbers, by z - z3.

21. Show that the unit ball in E" (the set of points whose coordinates satisfy

x? + ...+ x2<1) and the unit cube (points whose coordinates satisfy

|x;] <1, 1 i< n)are homeomorphic if they are both given the subspace

topology from E".

2.3 A space-filling curve

At the end of the last century Guiseppe Peano made a surprising, and at first
sight, paradoxical, discovery. He pointed out the existence of a continuous
function defined on a closed interval of the real line which maps the interval
onto a two-dimensional region in the plane, say onto a square or triangle. Such
a function is called a Peano curve or space-filling curve. One thinks of the image
of the interval as a curve which goes through every single point of the two-
dimensional region in question.

The existence of space-filling curves shows that a great deal of care is necessary
when defining the dimension of a space. Taking the dimension of X to be the
least number of continuous parameters needed to specify each point of X is no
good. Peano’s example shows that the square has dimension 1 under this
definition. For a brief discussion of dimension we refer the reader to Chapter 9.

There are many versions of Peano’s construction. Here is a simple one
which has an equilateral triangle as image. As we might guess, our space-filling
curve will be the limit of a sequence of simpler curves which fill out more and
more of the triangle as we go along the sequence. Let A be an equilateral triangle
in the plane whose sides have length one half, and construct a sequence of con-
tinuous functions f,:[0,1] — A as follows. The first three functions are ade-
quately described by Fig. 2.3, and further members of the sequence are obtained
by iterating the procedure shown there. At any particular stage A is divided
into a number of congruent triangles, and the part of the curve inside each
triangle looks precisely like the image of f; and joins two vertices of the triangle
by a broken line which passes through its centre of gravity. To pass to the next
stage we subdivide each triangle into four smaller congruent triangles and insert
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the more complicated curve which is shown as the image of f;. As we keep sub-
dividing, the image of £, fills out more and more of A.

Given two points x and y of E2 we shall use || x — y|| to denote the
distance between them. Suppose n > m, then given te[0,1] we can find a
triangle which contains both f,,(t) and f,(¢) and whose sides have length 1/2™.
Therefore ||f,,(t) — f.(t)|| < 1/2™ for every value of ¢ in [0,1], which proves
that our sequence {f,} is uniformly convergent. Let f:[0,1] > A denote the
limit function. Since each f, is continuous, so is f.

i j £2(10,12)
\

JS1(00,1D

S (10,11

Figure 2.3

We are left to show that the image of f really is all of A. First note that, for
any n, the image of f, comes within 1/2" of every point of A. Suppose we are
given a point x of A together with a neighbourhood U of x in E2. Choose N large
enough so that the disc centre x, radius 1/2¥ ~ 1, lies inside U, and choose a
point ¢, from [0,1] such that [|x — fy(to) || < 1/2". Since || fy(6) — f(B)|| < 1/2¥
for every t in [0,1], the triangle inequality gives || x —+f(to)|| < 1/2¥ ~ 1. There-
fore f(t,) must lie inside U. This argument shows every point of A to be a limit
point of the set f([0,1]). But, as we shall see in the next chapter (theorems (3.4)
and (3.9)), the image of a continuous function from [0,1] to E? must be a closed
subset of E2, and must therefore contain all its limit points. We conclude that
the image of our function f'is all of A,
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Problems

22. Find a Peano curve which fills out the unit square in E2.

23, Find an onto, continuous function from [0,1] to S2.

24. Can a space-filling curve fill out all of the plane?

25. Can a space-filling curve fill out all of the unit cube in E*?

26. Do you think that a Peano curve can be one-one? (See theorem (3.7).)

2.4 The Tietze extension theorem

Let X be a topological space and let A be a subspace of X. Given a real-valued
continuous function defined on A, it is natural to ask whether or not we can
always extend it to all of X. In other words, can we find a real-valued continuous
function on X whose restriction to A4 is the given function? The answer is, in
general, no. For example, let X = [0,1], 4 = (0,1), and define f:(0,1) - E* by
o X

f(x) =log 1

Then fis a homeomorphism from (0,1) to the real line, but f cannot be extended
to the closed unit interval because any continuous function defined on [0,1]
must be bounded. The object of this section is to describe a particular situation
where we can always extend continuous functions.

(2.12) Definition. A metric or distance function on a set X is a real-valued function
d defined on the cartesian product X x X such that for all x,y,ze X:

(a) d(x,y) = O with equality iff x = y;

(b) d(x,y) = d(y,x);

(c) d(x,y) + d(y,2) = d(x,2).

A set together with a metric on it is called a metric space.

The idea of a metric space is very useful in analysis and the reader may well
be familiar with several examples. Any euclidean space, with the usual distance
between points, is a metric space, as is the set of all real-valued continuous
functions defined on [0,1] with the distance between two functions defined by

d(fg) = sup |f(®) — g(9)].
te[0,1]

Any subset of a metric space inherits a metric from the whole space, so a surface
in E3 is a metric space.

A metric on a set gives rise to a topology on the set as follows. Let d be a
metric on the set X. Given x € X, the set {y € X |d(x,y)} < ¢} is called the ball
of radius &, or e-ball, centred at the point x, and is denoted by B(x,e). We define
a subset O of X to be open if given x € O we can find a positive real number ¢
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such that B(x,s) is contained in O. The axioms for a topology are easily checked.

Note that different metrics on a set may give the same topology. For
example, we can make the underlying set of points of euclidean n-space into a
metric space in three different ways as follows. Write x = (x,x,,...,x,) for a
typical point of E* and define:

(@) dixy) = [(x; — y)* + ..o +x, — )1

(b) dy(xy) = lrgivénlxi — il

(C) ds(X,Y)= lxl _y1‘+ ot Ixn—yn|'

Figure 2.4 shows the ball of radius 1, centred at the origin, for each of these three
metrics when n = 2. To see that d, and d, give rise to the same topology, we
note that inside any disc we can find a square, and conversely inside a square

|

Figure 2.4

we can find a disc. So d, and d, determine the same open sets. The same remarks
hold if we replace the disc or square by the diamond shape of metric d5. Therefore
all three of these metrics give rise to the usual topology on E?. We leave the
reader to work out the general case.

Given two distinct points in a metric space, we can always find disjoint open
sets containing them. For if d(x,y) = 6 > 0, set U = {ze X |d(x,z) < §/2} and
V = {ze X |d(y,z)} < 8/2. Then both U and V are open sets (they are in fact the
interiors of B(x,0/2) and B(y,5/2) respectively), they are disjoint, and of course
x lies in U and y lies in V. The set U is usually called the open ball with centre x
and radius §/2. A topological space with the property that two distinct points
can always be surrounded by disjoint open sets is called a Hausdorff space. Not
every topological space is Hausdorff; for example, if we give the set of all real
numbers the finite-complement topology, then any two nonempty open sets
overlap.

If d is a metric on X, and if A4 is a subset of X, the distance d(x,A) of the point
x from A is defined to be the infimum of the numbers d(x,a) where a € A.

(2.13) Lemma. The real-valued function on X defined by x + d(x,A) is continuous.

Proof. Let xe X and let N be a neighbourhood of d(x,4) on the real line,
Choose ¢ > 0 small enough so that the interval (d(x,4) — e, d(x,4) + ¢) lies
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inside N. Let U denote the open ball centre x, radius ¢/2, and choose a point
a € A such that d(x,a) < d(x,4) + ¢/2. If ze U we have

d(z,A) < d(z,a) < d(z,x) + d(x,a) < d(x,A) + ¢

By reversing the roles of x and z we also have d(x,4) < d(z,A) + & Therefore
U is mapped inside (d(x,4) — ¢, d(x,A) + &), and hence inside N, by our function,
showing that the inverse image of N is a neighbourhood of x in X as required.

(2.14) Lemma. If A B are disjoint closed subsets of a metric space X there is a
continuous real-valued function on X which takes the value 1 on points of A, —1 on
points of B, and values strictly between + 1 on points of X — (A U B).

Proof. Since A and B are both closed, and are disjoint, the expression d(x,A4) +
d(x,B) can never be zero (see Problem 27). Therefore we can define a real-valued
function fon X by

) d(x,B) — d(x,A)
JX) = 4x.4) + d(x.B)

Clearly, f takes on the required values, and its continuity follows easily from
lemma (2.13).

~ (2.15) Tietze extension theorem. Any real-valued continuous function defined on a
closed subset of a metric space can be extended over the whole space.

Proof. Let X be a metric space, C a closed subset, and f:C — E' a map. To
begin with we shall assume that f'is bounded; say | f(x)| < M for all x in C.

Let A, consist of those points of C for which f(x) = M/3, and B, those for
which f(x) € —M/3. Then A, and B, are obviously disjoint, and they are both
closed subsets of X. For example, A, is the inverse image of the closed subset
[M/3, ) of E', and is therefore closed in C by the continuity of f. But C is
closed in X, and therefore A, must be closed in X. A similar argument works for
B,. By lemma (2.14) we can find a map g, : X — [—M/3,M/3] which takes the
value M/3 on A,, —M/3 on B;, and which takes values in (—M/3,M/3) on
X — (A, u B;). Notice that | f(x) — gy(x)| < 2M/3 on C.

Now consider the function f(x) — g,(x) and let 4, consist of those points of
C for which f(x) — g,(x) = 2M/9, and B, those points for which f(x) —
g.(x) € ~2M/9. We apply lemma (2.14) a second time to find a map
g,:X — [—2M/9,2M /9] which takes the value 2M/9 on A,, —2M/9 on B,,
and values in (—2M/9,2M/9) on the remaining points of X. If we compute
f(x) = g1(x) — ga(x), we see that | f(x) — g1(x) — g,(x)| < 4M/9 on C.

By repeating this process we can construct a sequence of maps g,: X —
[—2"~ *M/3", 2"~ *M/3"] which satisfy:

(@) [f(x) —gi(x) — ... — gux)| < 2"M/3" on C; and
(b) g x)|<2""*M/3"on X — C.
40



CONTINUITY

The series ) g,(x) converges uniformly on X (by the Weierstrass M-test),
n=1

so it has a well-defined sum g(x) which is continuous. Also, f and g agree on C

by (a). Therefore g extends fto all of X. We note, for use in the unbounded case

below, that | g(x)| is bounded by M because

lg(x)| < legn(X)Ié My 2713 =M
n= n=1
and | g(x)| is strictly less than M on X — C by (b).

If the given map f'is not bounded, choose a homeomorphism % from the real
line to the interval (— 1,1) and consider the composition 4 © f. This is bounded,
and by the above argument we can extend it to a continuous real-valued
function g on X, all of whose values lie strictly between —1 and 1. So the
composition h~* o g is well defined, and by construction it extends f over X.
This completes the proof.

We shall make use of the Tietze theorem in Section 5.6.

Problems
27. Show d(x,4) = 0 iff x is a point of 4.

28. If A,B are disjoint closed subsets of a metric space, find disjoint open sets
U,Vsuchthat A < Uand B< V.

29. Show one can define a distance function on an arbitrary set X by d(x,y) = 1
if x # y and d(x,x) = 0. What topology does d give to X?

30. Show that every closed subset of a metric space is the intersection of a
countable number of open sets.

31. If 4,B are subsets of a metric space, their distance apart d(A,B) is the infimum
of the numbers d(x,y) where x € 4 and y € B. Find two disjoint closed subsets of
the plane which are zero distance apart. The diameter of A is the supremum of
the numbers d(x,y) where x,y € A. Check that both of the closed sets which you
have just found have infinite diameter.

32. If A is a closed subset of a metric space X, show that any map f/:4 - E"
can be extended over X.

33. Find a map from E* — {0} to E' which cannot be extended over E'.

34. Let f:C — C be the identity map of the unit circle in the plane. Extend f'to
a map from E? — {0} to C. Would you expect to be able to extend f over all of
E2? (For a precise solution to this latter problem see Section 5.5.)

35. Given a map f:X — E" "' — {0} find a map g: X — S" which agrees with
fon the set 7 }(S").
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36. If X is a metric space and A4 closed in X, show that a map f:4— S" can
always be extended over a neighbourhood of A, in other words over a subset
of X which is a neighbourhood of each point of 4. (Think of §" as a subspace of
E"* ! and extend fto a map of X into E"* !. Now use Problem 35.)
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3. Compactness and
Connectedness

3.1 Closed bounded subsets of

Those subsets of a euclidean space E" which are both closed and boundedt will
be of special importance to us. As examples we mention the surfaces described
in Chapter 1 and the finite simplicial complexes which we shall construct in
Chapter 6 in order to triangulate spaces. We shall show that one can characterize
these subsets by a purely topological property, that is to say a property which
involves only the topological structure of F* and makes no mention of the idea
of distance. This property, when formulated for topological spaces in general,
is called ‘compactness’.

Before giving more details it is convenient to introduce some terminology.
Let X be a topological space and let # be a family of open subsets of X whose
union is all of X. Such a family will be called an open cover of X. If #' is a sub-
family of # and if U F' = X, then & is called a subcover of #. We give two
examples. Let X be the plane and for & take the collection of all open balls of
radius 1 whose centres have integer coordinates. These balls form an open
cover of the plane. Notice that if we remove any ball B from & then the resulting
family of balls fails to cover the plane, since its union does not contain the centre
of B. Therefore & has no proper subcover. For our second example we let X
be the closed unit interval [0,1] with its usual topology induced from the real
line, and take the following family of open subsets of [0,1] for & :

[0, 1/10); (1/3,1]; the sets (1/(n + 2), 1/n) where ne Z and n = 2.

This open cover is infinite; however, we obviously do not need all of these sets
in order to cover the unit interval. We can manage with only a finite number of
them, namely

[0, 1/10); (1/3,1]; and (1/(n + 2), 1/m)for2 < n < 9.

So this open cover of [0,1] contains a finite subcover. In fact, as we shall see
in the next section, any open cover of [0,1] contains a finite subcover. It is this
property which picks out the closec bounded subsets of .

t Bounded means contained in some ball which has centre the origin and finite radius.
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(3.1) Theorem. A subset X of " is closed and bounded if and only if every open
cover of X (with the induced topology) has a finite subcover.

Motivated by this result we make the following definition.

(3.2) Definition. 4 topological space X is compact if every open cover of X has a
finite subcover.

With this terminology, theorem (3.1) can be restated as follows. The closed
bounded subsets of a euclidean space are precisely those subsets which (when given
the induced topology) are compact.

The proof of theorem (3.1) will occupy us in one way or another for the next
three sections. At the same time we shall build up a useful body of results on
compact spaces. These spaces have some very nice properties; we state two of
them now, though their proofs will have to wait until later sections:

(a) A continuous real-valued function defined on a compact space is bounded
and attains its bounds.
(b) An infinite set of points in a compact space must have a limit point.

We close this section by noting that by its very definition compactness is a
topological property of a space. That is to say, if X is compact and if X is homeo-
morphic to Y, then Y will be compact.

3.2 The Heine—Borel theorem

In this section we give two proofs of the celebrated Heine—Borel theorem. We
include two proofs because both are interesting (the techniques involved are
completely different from one another), and because the theorem lies at the
heart of theorem (3.1).

(3.3) The Heine-Borel theorem. 4 closed interval of the real line is compact.

‘Creeping along’ proof of theorem (3.3). Let [a, b] be a closed interval of the

real line, with the induced topology, and let # be an open cover of [a,b]. The

idea is to ‘creep along’ the interval from a towards b and see how far we can

get without violating the condition that our path be contained in the union of a

finite number of members of &#. The theorem says that we can get all the way to b.
We define a subset X of [a,b] by

X = {xe[ab]]|[ax] is contained in the union of a finite subfamily of #}.
Then X is nonempty (a € X) and is bounded above (by b). So X has a supremum
or least upper bound, say s. We claim that se X1 and that s = b. For let O

be the member of # which contains s. Since O is open we can choose ¢ > 0 small
enough that (s — ¢,s] € O, and if s is less than b we can assume (s — &,5 + €) = O.

1 This needs proof: the supremum of a set of real numbers need not lie in the set.
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Now s is the least upper bound of X, consequently there are points of X arbi-
trarily close to s. Also, X has the property that if xe X and if a < y < x then
y € X. Therefore we may assume s — ¢/2 € X. By the definition of X, the interval
[a, s — /2] is contained in the union of some finite subfamily #” of #. Adding
O to &' we obtain a finite collection of members of # whose union certainly
contains [a,s]. Therefore se X. If s is less than b then { ] #' U O contains
[a,s + ¢/2], giving s + ¢/2e€ X and contradicting the fact that s is an upper
bound for X. Therefore s = b and all of [a,b] is contained in | ] #' U O. This
completes the proof.

‘Subdivision’ proof of theorem (3.3). Our second proof is less direct: we shall
argue by contradiction. However, it is also less ‘one-dimensional’. The same idea
can be used to show, for example, that a square in the plane is a compact space.
Suppose then that theorem (3.3) is false. Let # be an open cover of [a,b]
which does not contain a finite subcover. Set I; = [a,b]. Subdivide [a,b] into
two closed subintervals of equal length [a,4(a + b)] and [3(a + b), b]. At least
one of these must have the property that it is not contained in the union of any
finite subfamily of #.1 Select one of [a, 3(a + b)], [3(a + b), b] which has this
property and call it I,. Now repeat the process, bisecting I, and selecting one
half, called I, which is not contained in the union of any finite subfamily of #.
Continuing in this way we obtain a nested sequence of closed intervals

Lol,21,=2...
whose lengths tend to zero as we proceed along the sequence.

a0
We claim that (1) I, consists of precisely one point. In our first proof of
n=1

theorem (3.3.) we used the so-called completeness property of the real numbers
(in the form that a nonempty set of real numbers which is bounded above has a
least upper bound) and it is at this point that we use it here. To show that the
intersection of our intervals is nonempty we let x, denote the left-hand end
point of the interval I, and we consider the sequence {x,}. This sequence is
monotonic increasing and bounded above. Therefore if p denotes the supremum
of the x, we know that {x,} converges to p. It is now elementary to check that
p eI, for all n. Also, since the lengths of the I, tend to zero as n tends to infinity,

o)

it should be clear that (") I, cannot contain more than one point. (The reader
n=1
should make sure that he can supply the details for these statements.) Therefore

0.1, = .
n=1

Now p belongs to [a,b] and so lies in some open set O of &#. We choose
¢ > 0 small enough that (p — &, p + ¢) " [a,b] = O, and we choose a positive
integer n large enough that length (I,) < &. Since p eI, we see that I, is com-

t For if [a,3(a + b)] = | J #, and [Ha + b),b] = | ] #, where #, and &, are both finite sub-
families of #, then &, U &, is a finite subcover of &, contradicting our assumption.
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pletely contained in O. But I, was selected <o that it did not lie in the union of
any finite subfamily of &, and here we have I, inside a single member of %!
This contradiction completes the argument.

As a corollary of theorem (3.3) we can prove that a continuous real-valued
function defined on a closed interval is bounded. (We shall prove this result for a
general compact space in Section 3.3.) Suppose f:[a,b] — R is continuous.
Given x € [a,b] we can find a neighbourhood O(x) of x in [a,b] such that
lf(x) — f(x)] < 1 for all points x’ € O(x). The family of all such O(x) forms an
open cover of [a,b]. Therefore by the Heine—Borel theorem we can find a finite
subfamily, say O(x,),...,0(x;), such that O(x;) v ... v O(x;) = [a,b]. Now if x
lies in O(x;) then |f(x)| < |f(x;)| + 1. So for any point x of [a,b] we have

IfG) | < max{[f(x)],..., ()|} + 1

We mentioned earlier that the subdivision argument generalizes to higher
dimensions. Consider for example the square

S={xy0<x<1, 0<y<1}

with its usual topology induced from the plane. To show that S is compact entails
proving that any family of open subsets of S whose union is all of S contains a
finite subfamily whose union is also all of S. The idea, to assume the existence
of a family & for which this is false and to work by contradiction, is exactly as
before. In the subdivision process we subdivide S into four smaller squares by
joining the midpoints of its opposite sides. We select one of the four which is
not contained in the union of any finite subfamily of # and call it S;. Repeating
this process produces a nested sequence of squares

§=285,=28,=2...

whose diameters tend to zero as we move along the sequence. It is an interesting

exercise to prove that (1) S, is exactly one point. Having done this the
n=1
remainder of the argument follows as before. The details are left to the reader.
We shall give a different proof of the compactness of S in Section 3.4. The
idea is quite simple: we shall define the product of two topological spaces and
show that the product of compact spaces is compact. Since S is the product
space [0,1] x [0,1], it will follow that S is compact.

Problems

1. Find an open cover of E! which does not contain a finite subcover. Do the
same for [0,1) and (0,1).

2. Let S=2 S, 2§, =... be a nested sequence of squares in the plane whose

diameters tend to zero as we proceed along the sequence. Prove that the inter-
section of all these squares consists of exactly one point.
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3. Use the Heine—Borel theorem to show that an infinite subset of a closed
interval must have a limit point.

4. Rephrase the definition of compactness in terms of closed sets.

3.3 Properties of compact spaces

We noted earlier that compactness is a topological property of a space, that is
to say it is preserved by a homeomorphism. Even more, it is preserved by any
onto continuous function.

(3.4) Theorem. The continuous image of a compact space is compact.

Proof. If f: X — Y is an onto continuous function, and if X is compact, then
we must show Y compact. Let # be an open cover of Y. If O € # then f ~1(0) is
an open subset of X by the continuity of f; and so the family

4 ={f"10)|0e7}

is an open cover of X. Since X is compact, ¥ contains a finite subcover, say
X =f"Y0,)u...uf~Y0,). Now fis an onto function, therefore f(f ~1(0,)) =
O;for1 <i<kand wehave Y=0,00,u...u O, These open sets 0,,0,,
..., Oy are therefore a finite subcover of &

A subset of C of a topological space X is called a compact subset of X if C
with the induced topology from X is a compact space. Remember that a subset
U of C is open in the induced topology if and only if U = ¥V n C for some
open set ¥ of X. Therefore C is a compact subset of X if and only if every family
of open subsets of X whose union contains C has a finite subfamily whose
union also contains C.

(3.5) Theorem. A closed subset of a compact space is compact.

Proof. Let X be a compact space, C a closed subset of X, and & a family of
open subsets of X such that C < (] Z. If we add the open set X — C to & we
obtain an open cover of X. Using the compactness of X we know that this open
cover has a finite subcover. Therefore we can find 0,, 0,,..., 0, € # such that
0;,V0,u...0u0,u(X —C)=X. This gives C= 0, U0, u...u 0, and
the sets Oy, ..., O, provide the required finite subfamily of .

(3.6) Theorem. If A is a compact subset of a Hausdorff space X, and if
xeX — A, then there exist disjoint neighbourhoods of x and A. Therefore a
compact subset of a Hausdorff space is closed.

Proof.Let z be a point of 4. Since X is Hausdorff, we can find disjoint open sets
U, and V, such that xe U, and z e V,, We shall vary z in 4 and the notation is
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chosen to emphasize the dependence of U, and V, on z; remember x is a fixed
point of X — A. Varying z throughout A produces a family of open sets
{V,|ze A} whose union contains 4. But 4 is compact,so A S V,, U... UV,
for some finite collection of points z,,z,,...,z,€A. Let V=V, u...0UV,.
Since V, is disjoint from the open neighbourhood U, of x, V' is disjoint from
the intersection U = U, n...n U,,. The sets U, V are disjoint open neigh-
bourhoods of x and A.

We have seen in Chapter 2 that a one—one onto continuous function need
not have a continuous inverse, and so it need not be a homeomorphism.
However, if the function goes from a compact space to a Hausdorff space then
we can use the preceding results to check that its inverse is continuous.

(3.7) Theorem. A one—one, onto, and continuous function from a compact space
X to a Hausdorff space Y is a homeomorphism.

Proof. Let f: X — Y be the function and let C be a closed subset of X. Then
C is compact (theorem 3.5). Therefore f(C) is compact (theorem 3.4) and
consequently closed in Y (theorem 3.6). So f takes closed sets to closed sets,
which proves that f ~! is continuous.

Our next result gives us a good feeling for the type of spaces that can be
compact. It says that if we have an infinite number of points in a compact
space, then the points must crowd together somewhere; in more formal -
language they must have a limit point.

(3.8) Bolzano—Weierstrass property. An infinite subset of a compact space must
have a limit point.

Proof. Let X be a compact space and let S be a subset of X which has no limit
point. We shall show that § is finite. Given x € X we can find an open neigh-
bourhood O(x) of x such that

 (pifx¢s
0N S = {{x} ifxes,

since otherwise x would be a limit point of S. By the compactness of X the open
cover {O(x) | x € X} has a finite subcover. But each set O(x) contains at most one
point of S and therefore S must be finite.

The Bolzano—Weierstrass propery tells us, for example, that a compact subset
of a euclidean space cannot stretch off to infinity in some direction. For if it did,
we could find infinitely many points, all well spaced out from one another and
running off to infinity, with no limit point. We can of course give a precise proof
of this fact using open covers of the set in question.

(3.9) Theorem. A compact subset of a euclidean space is closed and bounded.
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Proof. Let C be a compact subset of E". Then C is a closed set by theorem 3.6.
Now the open balls, centre the origin with integer radius, fill out all of E"
Therefore if C is compact it must be contained inside the union of finitely many
of these balls, i.e, there is an integer n such that C is contained in the ball with
centre the origin and radius n. In other words C is bounded.

(3.10) Theorem. A continuous real-valued function defined on a compact space is
bounded and attains its bounds.

Proof. If f:X — R is continuous and if X is compact, then f(X) is compact.
Therefore f(X) is a closed bounded subset of R by theorem (3.9) and fis certainly
bounded. Since f(X) is closed, both the supremum and infimum of f(X) lie in
f(X). We can therefore find points x,, x, € X such that

f(x)) =sup(f(X)) and  f(x;) = inf(f(X)),
which says precisely that f attains its bounds.

We end this section with a rather technical result concerning open covers of a
compact metric space: the result will be applied several times in later chapters.

(3.11) Lebesgue’s lemma. Let X be a compact metric space and let F be an open
cover of X. Then there exists a real number 6 > 0 (called a Lebesgue number of
F) such that any subset of X of diameter less than é is contained in some member
of #.

Proof. If Lebesgue’s lemma is false we can find a sequence 4,,4,,43,... of sub-
sets of X, none of which are contained inside a member of %, and whose
diameters tend to zero as we proceed along the sequence. For each n choose a
point x, belonging to A,. Either the sequence {x,} contains only finitely many
distinct points, in which case some point repeats infinitely often; or it is infinite,
in which case it must have a limit point since X is compact. Denote the repeated
point, or limit point, by p. Let U be an element of # which contains p. Choose
& > 0 such that B(p,e) = U, and choose an integer N large enough so that:

(a) the diameter of 4y is less than ¢/2, and

(b) xy € B(p, ¢/2).

Then d(xy,p) < ¢/2 and d(x,xy) < ¢/2 for any point x of Ay. Therefore
d(x,p) < ¢ if x € Ay, showing Ay < U. This contradicts our initial choice of the
sequence {4,}.

Problems

5. Which of the following are compact? (a) the space of rational numbers;
(b) 8" with a finite number of points removed; (c) the torus with an open disc
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removed; (d) the Klein bottle; (¢) the Mobius strip with its boundary circle
removed.

6. Show that the Hausdorff condition cannot be relaxed in theorem (3.7).
7. Show that Lebesgue’s lemma fails for the plane.

8. (Lindelof’s theorem). If X has a countable base for its topology, prove that
any open cover of X contains a countable subcover.

9. Prove that two disjoint compact subsets of a Hausdorff space always possess
disjoint neighbourhoods.

10. Let A be a compact subset of a metric space X. Show that the diameter of
A is equal to d(x,y) for some pair of points x,y e 4. Given x € X, show that
d(x,4) = d(x,y) for some y € A. Given a closed subset B, disjoint from A, show
that d(4,B) > 0.

11. Find a topological space and a compact subset whose closure is not compact.

12. Do the real numbers with the finite-complement topology form a compact
space? Answer the same question for the half-open interval topology (see Problem
11 of Chapter 2).

13. Let f: X — Y be a closed map with the property that the inverse image of
each point of Y is a compact subset of X. Show that f ~*(K) is compact whenever
K is compact in Y. Can you remove the condition that f be closed?

14. If f:X — Y is a one—one map, and if f: X — f(X) is a homeomorphism
when we give f(X) the induced topology from Y, we call f an embedding of X
in Y. Show that a one—one map from a compact space to a Hausdorff space
must be an embedding.

15. A space is locally compact if each of its points has a compact neighbour-
hood. Show that the following are all locally compact: any compact space;
[E"; any discrete space; any closed subset of a locally compact space. Show that
the space of rationals is not locally compact. Check that local compactness is
preserved by a homeomorphism.

16. Suppose X is locally compact and Hausdorff. Given x € X and a neighbour-
hood U of x, find a compact neighbourhood of x which is contained in U.

17. Let X be a locally compact Hausdorff space which is not compact. Form a
new space by adding one extra point, usually denoted by co, to X and taking
the open sets of X U {oo0} to be those of X together with sets of the form
(X — K)u {0}, where K is a compact subset of X. Check the axioms for a
topology, and show that X U {oo} is a compact Hausdorff space which contains
X as a dense subset. The space X U {0} is called the one-point compactification
of X.

18. Prove that E" U {o0} is homeomorphic to S”. (Think first of the case n = 2.
Stereographic projection gives a homeomorphism between E? and S* minus
the north pole, points ‘out towards infinity’ in the plane becoming points near
to the north pole on the sphere. Think of replacing the north pole in S? as
adding a point at co to E2.)
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19. Let X and Y be locally compact Hausdorff spaces and let f: X — Y be an
onto map. Show f extends to a map from X U {0} onto Y U {0} iff f71(K) is
compact for each compact subset K of Y. Deduce that if X and Y are homeo-
worphic spaces then so are their one-point compactifications. Find two spaces
which are not homeomorphic but which have homeomorphic one-point
compactifications.

3.4 Product spaces

We now turn to the study of spaces which have a natural product structure.
Examples spring readily to mind: we can think of the plane as the product of
two copies of the real line, the torus as the product of two circles, or the cylinder
as the product of a circle with the unit interval. It is worth looking at one of
these examples in more detail. Take a specific cylinder in E3, say

{xy2)|x2 +y*=1 and 0<z<1}

and give it the induced topology. As a set it is the cartesian product S* x I, where
S! denotes the unit circle in the (x,y) plane and I the unit interval on the z axis.
We claim that the topology of the cylinder is, in a very natural sense, the product
of the topologies of the circle and the interval. To see this, we note that if U is
an open set in S*, and if V is open in I, then the product U x V is open in the
cylinder (Fig. 3.1). Also, if we are given an open set O of the cylinder, and a point

l -
Sl
Figure 3.1 U

p belonging to O, then we can easily find open sets U = S!, V < I such that
pe U x V < O. In other words, these product sets U x V form a base for the
topology of the cylinder. We summarize this by saying that the cylinder has the
‘product topology’. Motivated by the above, we can give a precise definition of
the product of two topological spaces. Once this is done we shall prove (as the
main result of this section) that the product of two compact spaces is compact.

Let X and Y be topological spaces and let # denote the family of all subsets
of X x Y of the form U x V, where U is open in X and V open in Y. Then
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(J# = X x Y and the intersection of any two members of 4 lies in 4. There-
fore % is a base for a topology on X x Y. This topology is called the product
topology and the set X x Y, when equipped with the product topology, is
called a product space. We need hardly mention that the same construction goes
through for a finite product. If X ,X,,...,X, are topological spaces, the product
topology on X; x X, x ... x X, has as base the sets U, x U, x ... x U,
where U;isopenin X;, 1 < i € n. Wenote that the natural topology of euclidean
n-space is precisely the product topology relative to the decomposition of E”
as the product of n copies of the real line. For simplicity, we shall work with the
product of two spaces, but we emphasize that all the results (and proofs!) go
through for finite products. In fact, since X; x X, x ... x X, is clearly
homeomorphic to (X; x X, x ... X X, _;) X X, results for finite products
follow by induction from those for the product of two spaces.

The functions p,;: X x Y— X and p,:X x Y— Y defined by p,(x,y) = x,
pa(x,y) = y are called projections. We can characterize the product topology in
terms of these projections as follows.

(3.12)»Theorem. If X x Y has the product topology then the projections are
continuous functions and they take open sets to open sets. The product topology
is the smallest topology on X x Y for which both projections are continuous.

Proof. Suppose U is an open subset of X, then p; ' (U) = U x Y, which is
open in the product topology: therefore p, is coritinuous. The argument for p,
is similar. To see that p,, say, takes open sets to open sets we need only look at
the effect of p; on basic open sets, since any other open set is a union of these.
But p, (U x V) = U, so a basic open set of the product topology is sent by p
to an open set in X. Again we argue in a similar fashion for p,.

Now suppose that we have some topology on X x Y and that both projec-
tions are continuous. Take open sets U < X, V < Y and-form p; ! (U)np; t (V).
This must be open in the given topology. But this set is precisely U x V. There-
fore the given topology contains all the basic open sets of the product topology,
and is therefore at least as large as the product topology.

Whenever we mention X x Y from now on, we shall assume that it has the
product topology, and that both X and Y are nonempty. We can check the con-
tinuity of a function into a product space simply by checking that we obtain
continuous functions if we compose the given function with each of the
projections.

(3.13) Theorem. A function £:Z — X x Y is continuous if and only if the two
composite functions pf:Z — X, p,f:Z — Y are both continuous.

Proof. Suppose that both p, fand p, fare continuous. To check the continuity of
f we need only show that f ~! (U x V) is open in Z for each basic open set
U x Vof X x Y.But
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STHU X V)= ()7 U) (2 /)1 (V)

the intersection of two open subsets of Z. Therefore f ~1 (U x V) is open in Z.
Conversely, if f'is continuous then p, fand p, f are continuous, by the continuity
of the projections p;,, p,.

(3.14) Theorem. The product space X x Y is a Hausdorff space if and only if
both X and Y are Hausdorff.

Proof. Suppose that X and Y are both Hausdorff spaces. Let (x,,y,) and
(x3, y2) be distinct points of X x .Y. Then either x; #+ x, or y; # y, (or both):
assume for the sake of argument that x, # x,. Since X is Hausdorff we can
find disjoint open sets U, U, in X such that x, e U, and x, e U,. To find
disjoint open neighbourhoods of (x;,y,) and (x,,y,) we simply form the products
U xY,U, xY. _

Conversely, suppose that X x Y is Hausdorff. Given distinct points
Xy, %, € X, we choose a point y e Y and find disjoint basic open sets U, x V,,
U, x V,in X x Y such that (x;,))e U; x V; and(x,,y)e U, x V,. Then U,
U, are disjoint open neighbourhoods of x; and x, in X. Therefore X is a
Hausdorff space. The argument for Y is similar.

(3.15) Theorem. X x Y is compact if and only if both X and Y are compact.

(3.16) Lemma. Let X be a topological space and let B be a base for the topology
of X. Then X is compact if and only if every open cover of X by members of B has
a finite subcover.

Proof of the lemma. Suppose that every open cover of X by members of # has
a finite subcover, and let & be an arbitrary open cover of X. Since 4 is a base
for the topology of X we know that we can express each member of & as a
union of members of #. Let #’ denote the family of those members of % which
are used in this process. By construction we have U B=F =X;50%is
an open cover of X (by members of %) and must therefore contain a finite
subcover. For each basic open set in this finite subcover, we select a single
member of # which contains it. This gives a finite subcover of & and shows
that X is compact. The converse is obvious.’

Proof of theorem (3.15).1f X x Y is compact', then both X and Y have to be
compact since the projections p;:X X Y— X,p,:X x Y—Y are onto and
continuous functions. (Remember we have assumed both X and Y are non-
empty.)

Now for the more interesting part of the result: suppose both X and Y are
compact spaces and let & be an open cover of X x Y by basic open sets of
the form U x V, where U is open in X and V open in Y. We shall show that &
must contain a finite subcover. This is enough to show X x Y compact by
the previous lemma.
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Select a point x € X and consider the subset {x} x Y of X x Y with the
induced topology. It is easy to check that

pal{x} x Y:{x} x Y>Y

is a homeomorphism. In other words {x} x Y is just a copy of Y in our product
space which lies ‘over’ the point x (see Fig. 3.2). So {x} x Y is compact and we
can find a minimal finite subfamily of # whose union contains {x} x Y. We shall
label the members of this finite subfamily

X X X X
Ul x V5, U3 x V3,.., U, x Vi

in order to emphasize their dependence on the point x. Note that the union of
these sets contains more than {x} x Y, it actually contains all of U* x Y
where U* = (| UL
i=1
So far we have only made use of the compactness of Y. Now the set U* x Y
appears in Fig. 3.2 as a strip in X x Y lying over the subset U” of X. The idea

] I x
|y
xXxY , 4{/
Y R I
e | {x} XY
X
o Figure 3.2
X U*

of the remainder of the proof is to use the fact that X is compact to show that
we can cover all of X x Y by a finite number of such strips. The family
{U*|x e X} is an open cover of X and we select from it a finite subcover, say

U, U*,..., U™
Since X is the union of these sets we have
XxY=U"xYYuoU?2xY)u..ulU*xY)

But U™ x Y is contained in (U x V{*)u ... v (Uyl x V;2). Therefore the basic
open sets
UT x Vi, UF x Vi, URt x Vi, I1<i<s
form a finite subcover of &. This completes the proof.
We are now in a position to prove theorem (3.1) and complete our charac-

terization of closed bounded subsets of a euclidean space. We recall the state-
ment of the theorem:

54



COMPACTNESS AND CONNECTEDNESS

(3.1) Theorem. A subset of E" is compact if and only if it is closed and bounded.

Proof. We have already shown, in theorem (3.9), that a compact subset of a
euclidean space is both closed and bounded. Suppose, conversely, that X is a
closed bounded subset of E*. We think of E” as the product of n copies of the
real line, and note that since X is bounded it must be contained in

[—ss] x [—s,8] x ... x [—s,5]

(the product of n copies of the closed interval [ —s,s]) for some real number s.
The Heine—Borel theorem tells us that [ —s,s] is compact and theorem (3.15)
shows the product of any finite number of copies of this interval to be compact.
Therefore X is a closed subset of a compact space, and hence compact by
theorem (3.5).

Before leaving the notion of compactness, we should mention that it is
possible to define the product of an infinite collection of topological spaces,
and to prove that any product of compact spaces is compact. This result is
usually referred to as the Tychonoff theorem; it is considerably deeper than the
finite version, theorem (3.15), being equivalent to the Axiom of Choice. For
details of the Tychonoff theorem we refer the reader to Kelley [17].

Problems

20. If X x Y has the product topology, and if 4 < X, B < Y, show that

AxB=A4xB,(AxB° =4 x B, and Fr(4 x B) = [Fr(4) x B]U[4 x

Fr(B)] where Fr () denotes frontier.

21. If A and B are compact, and if W is a neighbourhood of 4 x Bin X x Y,

find a neighbourhood U of 4 in X and a neighbourhood V of B in Y such that
UxVeW

22. Prove that the product of two second-countable spaces is second-countable,
and that the product of two separable spaces is separable.

23. Prove that [0,1) x [0,1) is homeomorphic to [0,1] x [0,1).

24, Let xo€ X and y, € Y. Prove that the functions f: X - X x ¥, g: Y- X x Y
defined by f(x) = (x,y,), 9(y) = (x,y) are embeddings (as defined in Problem
14).

25. Show that the diagonal map A:X — X x X defined by A(x) = (x,x) is
indeed a map, and check that X is Hausdorff iff A(X) is closed in X x X.

26. We know that the projections p;: X x Y— X, p,:X x Y— Y are open
maps. Are they always closed?

27. Given a countable number of spaces X, X,,..., a typical point of the
product I1X; will be written x = (xy,X,,...). The product topology on I1X, is
the smallest topology for which all of the projections p;:T1X; — X, pi(x) = x,,
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are continuous. Construct a base for this topology from the open sets of the
spaces X;,X,,....
28. If each X; is a metric space, the topology on X, being induced by a metric
d;, prove that

2 1 dxyy)
2121+ di(xy)
defines a metric on I'1X; which induces the product topology.

29. The box topology on I1X; has as base all sets of the form U; x U, x ...,
where U, is open in X, Show that the box topology contains the product
topology, and that the two are equal iff X is an indiscrete space for all but
finitely many values of i. (X is an indiscrete space if the only open sets are ¢J
and X.)

d(x.y) =

3.5 Connectedness

A space such as the real line, or the torus, seems to be connected, i.e., to be all
in one piece. It is not hard to give a precise definition of this intuitive idea of
connectedness and to see that it is a topological property of a space.

We have already said that being connected means, intuitively, being all in
one piece. So if X is a connected space, and if we write X as the union 4 U B
of two nonempty subsets, then we expect A4 and B either to intersect or at the
very least to abut against one another in X. We can express this mathematically
by asking that one of

AN B, AnB

be nonempty: in other words, either 4 and B have a point in common, or some
point of B is a limit point of 4, or some point of A4 is a limit point of B. For
example, if we decompose the closed interval [0,1] as [0,4) U [4,1] then the
point 4 lies in [0.3) N [3,1].

(3.17) Definition. A space X is connected if whenever it is decomposed as the
union A U B of two nonempty subsets then AnB + ZorAnB # .

(3.18) Theorem. The real line is a connected space.

Proof.Suppose R = A U B, where both 4 and B are nonempty and A n B = (J.
We shall show that some point of A is a limit point of B, or that some point of
B is a limit point of A. Choose points a € 4, b € B, and (without loss of generality)
suppose that a < b. Let X consist of those points of 4 which are less than b
and let s denote the supremum of X. This point s may or may not lie in A4;
however, if s does not lie in 4 then, by the very definition of supremum, s must
lie in 4. We shall consider these two possibilities separately. Suppose s lies in
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A, then s < b, and since s is an upper bound for X, all the points between s
and b lie in B. Therefore s is a limit point of B. If s does not belong to A, then
automatically s lies in B as 4 and B fill out all of R. We noted above that in
this case s is a limit point of A. Therefore we have shown that either 4 intersects
B or A intersects B.

As usual, we say that a subset of a topological space is connected if it becomes
a connected space when given the induced topology. We shall call a subset X
of the real line an interval if, whenever we have distinct points a,b € X, then all
points which are greater than a and less than b also lie in X. This is the usual
notion of interval: it includes the possibility that an interval be open, closed,
half open, or that it stretch off to infinity in some direction. Our intuition
suggests very strongly that the intervals should be the only connected subsets
of the real line. All other subsets have ‘gaps’ in them, and therefore consist of
several distinct pieces.

(3.19) Theorem. A nonempty subset of the real line is connected if and only if it is
an interval.

Proof. The proof of theorem (3.18) adapts very easily to show that any interval
is connected. If X is not an interval, then we can find points ¢,b € X and a point
p which lies outside X yet nevertheless satisfies a < p < b. Let A denote the
subset of X consisting of those points which are less than p,and let B = X — A.
Since p is not in X, every point of the closure of 4 in X is less than p, and every
point of the closure of B in X is greater than p. Therefore A n B and A n B are
both empty and we see that X is not connected.

The definition of connectedness can be formulated in more than one way.

(3.20) Theorem. The following conditions on a space X are equivalent:

(a) X is connected.

(b) The only subsets of X which are both open and closed are X and the empty set.

(c) X cannot be expressed as the union of two disjoint nonempty open sets.

(d) There is no onto continuous function from X to a discrete space which contains
more than one point.

Proof. We shall show that (a) = (b) = (c) = (d) = (a). Suppose X is connected
and let A be a subset of X which is both open and closed. If B = X — A4 then
B is also both open and closed. Since both 4 and B are closed we have 4 = 4
and B = B, giving AnB=AnB= AN B = (. But X is connected, so one
of A, B must be empty and the other one the whole space. This proves (a) = (b).
The implication (b) => (c) is obvious,

Now suppose (c) is satisfied, and let Y be a discrete space with more than one
point and let /X — Y be an onto continuous function. Break up Y as a union
UuV of two disjoint nonempty open sets. Then X = (f " 1U)u (f ~'V),
contradicting (c).
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We are left to show (d) = (a). Let X be a space which satisfies (d) and suppose
X is not connected. Decompose X as A U B where 4 and B are nonempty and
satisfy An B = An B = . We notice that both 4 and B are open sets, for
example, B is the complement of the closed set 4, and we define a function f
from X to the subspace { —1,1} of the real line by

=1 if xeA
f(x)_{ 1 if xeB.

Then f'is continuous and onto, contradicting (d) for X.

A continuous function should not be able to tear a space into pieces (i.e.,
send a connected space onto a space which is not connected): we expect quite
the reverse, namely that a continuous function should preserve connectedness.

(3.21) Theorem. The continuous image of a connected space is connected.

Proof. Let f: X — Y be an onto continuous function and suppose that X is
connected. If 4 is a subset of Y which is both open and closed, then f~1(A)
is open and closed in X, Since X is connected f ~1(A4) must be all of X or the
empty set, by condition (b) of theorem (3.20). Therefore A4 is equal to Y or empty
and we have proved Y to be connected.

(3.22) Corollary. Ifh:X— Y is a homeomorphism, then X is connected if and
only if Y is connected. In brief, connectedness is a topological property of a space.

(3.23) Theorem. Let X be a topological space and let Z be a subset of X. If Z is
connected, and if Z is dense in X, then X is connected.

Proof.Let A be a nonempty subset of X which is both open and closed. Since
Z is dense in X we know that Z must intersect every nonempty open subset of
X, and therefore A n Z is nonempty. Now A n Z is both open and closed in
Z, and since Z is connected we deduce that A n Z = Z, i.e.,, Z = A. Therefore
X =7 < A = A,giving X = A as required.

(3.24) Corollary. If Z is a connected subset of a topological space X, and if
Z <Y < Z, then Y is connected. In particular, the closure Z of Z is connected.

Proof. Notice that the closure of Z in Y is all of Y and apply theorem (3.23) to
the pair Z c Y.

We need a little more terminology. If 4 and B are subsets of a space X, and if
A N B is empty, we say that A and B are separated from one another in X.

(3.25) Theorem. Let & be a family of subsets of a space X whose union is all of X.
If each member of & is connected, and if no two members of F are separated
from one another in X, then X is connected.

58



COMPACTNESS AND CONNECTEDNESS

Proof. Let A be a subset of X which is both open and closed. We shall show that
A is either empty or equal to all of X, Each member of # is connected,soif Z e &
we know that Z n A is either empty orallof Z f Zn A = Zforall Zin &
then 4 = . The other possibility is that we can find some element Ze %
for which Z ~n A = Z, i.e., for which Z is contained in A. Suppose W is some
other element of #. If W n A4 is empty, then W and Z are separated from one
another in X. (For Wn A = (¥ gives W < X — A4 and since X — A is closed
we have W € X — A. Now combine this with Z < 4 = A.) However, we are
told that no two subsets of & are separated from one another in X. Therefore
WecAforall WeF andAd =) F = X.

(3.26) Theorem. If X and Y are connected spaces then the product space X x Y
is connected.

Proof. If x is a point of X, the subspace {x} x Y of X x Y is connected since
it is homeomorphic to Y. Similarly X x {y} is connected for any point y of Y.
Now {x} x Y and X x {y} overlap in the point (x,y), therefore Z(x,y) =
({x} x Y)u (X x {y}) is connected. (Apply theorem (3.25) to the space
Z(x,y)) Also X x Y = U Z(x,y), and any two of the Z(x,y) have nonempty

xeX
yeY

intersection. Therefore a second application of theorem (3.25) shows X x Y to
be connected. Figure 3.3 illustrates this proof.

Z(x',y")

y' '/ ——————————— XxY
|

Y

ye

\
| ™ Z(x,»)
\
Figure 3.3 ks x

This last result tells us immediately that euclidean n-space is connected,
since it is the product of a finite number of copies of the real line. Now consider
the unit sphere S" in E* * ! where n > 1. If we remove a point from §” we obtain
a space homeomorphic to E". But the closure of §” minus a point is all of "
when »n = 1. Therefore " is a connected space for n = 1, by theorem (3.23).
We also see that the torus is connected, since we can think of it as the product
space ' x S*.
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We should point out that if a product space X x Y is connected,andif X x Y
is nonempty, then the factors X and Y have to be connected. This follows from
the continuity of the projections.

If a space is not connected then it breaks up as a union of connected pieces,
any two of which are separated from one another. We call these pieces com-
ponents. More formally, a component of a topological space X is a maximal
connected subset of X.

(3.27) Theorem. Each component of a topological space is a closed set and distinct
components are separated from one another in the space.

Proof. Let C be a component of X. Then C is connected, and so C is connected
by corollary (3.24). But C is a maximal connected subset of X, therefore C = C
and we see that C is closed. If D is some other component of X, and if D is not
separated from C in X, then C U D is connected by theorem (3.25). This con-
tradicts the maximality of C (and D).

We note that every connected subset of a space is contained in a component.
Forif A ¢ X and if 4 is connected, then define C to be the union of the family
of all connected subsets of X which contain 4. This set C is connected by
theorem (3.25) and is maximal by its very construction. Therefore C is a com-
ponent which contains A.

One or two examples should help the intuition along.

Examples.

1. A connected space, such as the torus, has only one component. At the other
extreme, each point of a discrete topological space is a component of the space.
2. E! — S° has three components, namely (— oo, —1), (—1, 1), and (1, o). For
n>1 the space F"*! — S" has two components given by the conditions
x|l > 1and ||x]|| < 1.

3. Each point of the rationals Q (with the induced topology from the real line)
is a component. Note that ( is not a discrete space. A space like this, in which
every point is a component, is said to be totally disconnected.

Problems
30. Let X be the set of all points in the plane which have at least one rational
coordinate. Show that X, with the induced topology, is a connected space.

31. Give the set of real numbers the finite-complement topology. What are the
components of the resulting space? Answer the same question for the half-open
interval topology.

32. If X has only a finite number of components, show that each component is
both open and closed. Find a space none of whose components are open sets.
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33, (Intermediate value theorem). If f :[a,b] - E' is a map such that f(a) < 0
and f'(b) > 0, use the connectedness of [ a,b] to establish the existence of a point
¢ for which f(c) = 0.

34. A space X is locally connected if for each x € X, and each neighbourhood
U of x, there is a connected neighbourhood V of x which is contained in U.
Show that any euclidean space, and therefore any space which is locally euclidean
(like a surface), is locally connected. If X = {0} U {1/n|n = 1,2,...} with the
subspace topology from the real line, show that X is not locally connected.

35. Show that local connectedness is preserved by a homeomorphism, but need
not be preserved by a continuous function.

36. Show that X is locally connected iff every component of each open subset
of X is an open set.

3.6 Joining points by paths

A pathin a topological space X is a continuous function y:[0,1] — X. The points
7(0) and y(1) are called the beginning and end points of the path respectively, and
y is said to join (0) to y(1). Note that if y~! is defined by y~ () = y(1 — 1),
0 <t < 1, then y~! is a path in X which joins y(1) to y(0).

(3.28) Definition. 4 space is path-connected if any two of its points can be joined
by a path.

Ifyis a path in X, and if f: X — Y is a continuous function, then the composition

¥y S
[01] > XY

is a path in Y. From this remark it should be clear that if #: X — Y is a homeo-
morphism, and if X is path-connected, then Y is also path-connected. In other
words, the property of being path-connected is, like compactness and con-
nectedness, a topological property of a space.

A path-connected space is always connected, but the converse is not true.
We shall often require our spaces to be path-connected. This is a natural
condition to impose, for example, when working with the fundamental group
of a space, since the elements of the fundamental group are constructed using
paths in the space.

(3.29) Theorem. A path-connected space is connected.

Proof. Let X be a path-connected space and let 4 be a nonempty subset of X
which is both open and closed in X. Assume A4 is not all of X, choose points
x€A,ye X — A, and join x to y by a path y in X. Then y~!(4) is a nonempty
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proper subset of [0,1] which (by the continuity of y) is both open and closed.
This contradicts the fact that [0,1] is connected. Our assumption 4 #* X must
therefore be false, and we have A = X as required.

Note that if we have points x,y,z in a space X, and paths «,f joining x to y
and y to z respectively, then the path y defined by

)
NN
AW/
—

o(21)
v = {B(Zt ~1)
joins x to z.

(3.30) Theorem. A connected open subset of a euclidean space is path-connected.

Proof. Let X be a connected open subset of E". Given x € X, we denote by
U(x) the collection of those points of X which can be joined to x by a path in X.
Our aim will be to show that U(x) is all of X. Since U(x) is quite clearly path-
connected, this will prove the theorem. Let y € U(x) and choose a ball B with
centre y which lies entirely in X. If z € B then we can join z to x by a path in X,
for we can join z to y by a straight line in B and follow this by a path from y
to x. Therefore B is contained in U(x) and we see that U(x) is open in X. Also,
the complement of U(x) in X is the union of the family {U(y)|ye X — U(x)},
and is therefore open. So U(x) is closed in X. Since X is connected and U(x) is
nonempty (it contains at least the point x) we have U(x) = X.

We mentioned earlier the existence of spaces which are connected, yet not
path-connected: Fig. 3.4 illustrates a compact subspace of the plane with these
properties. Define

Y= {0)eB|-1<y< 1)

Z={<x,sin~§>e[E2|O<x<1}

and set X = YU Z. Now Z is a connected space because it is the image of
(0,1] under a continuous function. It is easy to check that the closure of Z in E?
is precisely X, so X is connected. To show that X is not path-connected, we
shall prove that it is impossible to join a point of Y to a point of Z by a path in
X.Let ye Y and let y:[0,1]— X be a path which begins at y. Since Y is closed
in E? it is a closed subset of X, and therefore y~(Y) is closed in [0,1]. Now
p~1(Y) is certainly nonempty (it contains 0), so if we can show it is open in
[0,1] we will have y~1(Y) = [0,1], ie., y([0,1]) = Y, as required. Suppose
tey~1(Y) and choose ¢ > 0 small enough so as to ensure that y((t — &,t + €))
is contained in the closed disc D, centre y(t) and radius 4. The intersection of
this disc with our space X consists of a closed interval on the y axis, together

LT Lo .
with segments of the curve y = sin —, each of which is homeomorphic to a
X
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closed interval. Furthermore, any two of these sets are separated from one an-
other in D n X. Therefore D n Y is a component of D n X. Since y(t)e D N Y,
and (t — ¢t + ¢)is connected, we must have all of y((t — ¢,¢ + ¢))in D n Y. This

A

Figure 3.4

proves y~*(Y) is open in [0,1] and completes our verification that X is not
path-connected.

A path component of a space X is (by analogy with the notion of component)
a maximal path-connected subset of X. Each path component is connected
and therefore lies inside a component. However, path components are not in
general separated from one another, nor are they necessarily closed. For
example, the path components of the space shown in Fig. 3.4 are precisely the
sets Y,Z. These are not separated from one another, and Z is not closed.

Problems

37. Show that the continuous image of a path-connected space is path-
connected. ]

38, Show that S” is path-connected for n > 0.

39. Prove that the product of two path-connected spaces is path-connected.

40. If A and B are path-connected subsets of a space, and if A » B is nonempty,
prove that 4 U B is path-connected.

41. Find a path-connected subset of a space whose closure is not path-connected.
42, Show that any indiscrete space is path-connected.

43. A space X is locally path-connected if for each x € X, and each neighbour-
hood U of x, there is a path-connected neighbourhood V of x which is contained
in U. Is the space shown in Fig. 3.4 locally path-connected? Convert the space
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{0} U {l/n|n=12,...} into a subspace of the plane which is path-connected

but not locally path-connected.
44, Prove that a space which is connected and locally path-connected is path-

connected.
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4. Identification Spaces

4.1 Constructing a Mobius strip

Many interesting spaces can be constructed as follows. Begin with a fairly
simple topological space X and produce a new space by identifying some of the
points of X. We have already made use of this process: in Chapter 1 we had
occasion to construct various surfaces and we showed how to obtain the
Mobius strip, the torus, and the Klein bottle by making appropriate identifica-
tions of the edges of a rectangle. We propose to examine the construction of the
Mobius strip in more detail and explain how to use the topology of the rectangle
in order to make the Mdbius strip into a topological space. The Mobius strip,
when defined in this way, will be an example of an identification space.

The construction can be generalized, and the generalization will be the
object of Section 4.2. The idea is to replace the rectangle by an arbitrary topo-
logical space X and to use the topology of X in order to make X, with certain
of its points identified, into a topological space.

To construct a Mobius strip, one takes a rectangle and identifies a pair of
opposite edges with a half twist. Our first job is to translate this process into
precise mathematical language. For the rectangle take the subspace R of E2
consisting of those points (x,y) for which0 < x < 3and 0 < y < 1. To describe
the identification of the vertical edges of R with a half twist, we partition R
into disjoint nonempty subsets in such a way that two points lie in the same
subset if and only if we wish them to be identified. If we now take these subsets
as the points of our Mobius strip, then we have made the required identifications.
The appropriate partition of R consists of:

(a) sets consisting of a pair of points of the form (0,y), (3, 1 — y), where
0<y<1;
(b) sets consisting of a single point (x,y) where 0 < x < 3,0 < y < 1.

So far we have defined a set which we shall call M, its points being the subsets
of the above partition of R. There is a natural function = from R onto M that
sends each point of R to the subset of the partition in which it lies. The identi-
fication topology on M is defined to be the largest topology for which 7 is
continuous. That is to say, a subset O is defined to be open in the identification
topology on M if and only if 7 *(0) is open in the rectangle R.

A glance at Fig. 4.1 shows the sort of open sets we obtain. We represent the
points of M in the usual way as a subset of E3, and we label with the letter L
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the image under 7 of the two vertical edges of R. If we use R,, to denote R minus
its vertical edges, then the restriction of = to R, is one—one and is a homeo-
morphism of R, with M — L. Therefore we know all about the neighbourhoods

©,5)

T
R ————

(3, 1-y)

Figure 4.1

of points of M — L: they are simply the images under n of neighbourhoods of
points of R,. If p lies on the line L then n~*(p) consists of two distinct points,
situated on the vertical edges of R, of the form (0,y), (3,1 — y). The union of two
open half-discst in R, centres (0,y), (3,1 — y) and of equal radius, maps via n
to an open neighbourhood of p in the identification topology on M. Notice
that if we take a single half-disc, its image in M is not a neighbourhood of p
and is not open, so # is not an open mapping. The points of L are in no sense
special in the Mobius strip; they have the same sort of neighbourhoods in the
identification topology as all the other points of M. In fact, it is easy to check
that the identification topology coincides with that induced from E* on our
set M.

For convenience we have illustrated M pictorially in E*. However, we
emphasize that the definition of the Mobius strip as an ‘identification space’
given in this section is entirely abstract, and in no way relies on a particular
representation of the strip as a set of points in euclidean space.

4.2 The identification topology

Let X be a topological space and let 2 be a family of disjoint nonempty subsets
of X such that | ] # = X. Such a family is usually called a partition of X. We
form a new space Y, called an identification space, as follows. The points of Y
are the members of 2 and, if 7: X — Y sends each point of X to the subset of 2
containing it, the topology of Y is the largest for which = is continuous. There-
fore a subset O of Y is open if and only if 7~ *(0) is open in X. This topology is
called the identification topology on Y. We think of Y as the space obtained
from X by identifying each of the subsets of # to a single point.

Our construction of the Mbius strip in Section 4.1 was a special case of this
procedure. We shall give several other concrete examples below, but first we

T Quarter-discs if p is an endpoint of L.
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prove one or two general results on identification spaces. We begin with a
theorem that is useful when checking the continuity of a function which has an
identification space as domain.

(4.1) Theorem. Let Y be an identification space defined as above and let Z be an
arbitrary topological space. A function £:Y — Z is continuous if and only if the
composition fr : X — Z is continuous.

Proof. Let U be an open subset of Z. Then f~(U) is open in Y if and only if
= Y(f " }(U)) is open in X, i.e., if and only if (fx)~*(U) is open in X.

Let f:X — Y be an onto map and suppose that the topology on Y is the
largest for which f is continuous. Then we call f an identification map, the
reason for our terminology being as follows. Any function f: X — Y gives rise
to a partition of X whose members are the subsets {f ~!(y)}, where ye Y. Let
Y, denote the identification space associated with this partition, and 7: X — Y,
the usual map.

(4.2) Theorem. If f is an identification map, then:

(a) the spaces Y and Y, are homeomorphic;

(b) a function g:Y — Z is continuous if and only if the composition gf:X — Z is
continuous.

Proof. The proof of (b) is exactly that of theorem (4.1) because Y has the largest
topology for which f is continuous. The points of Y, are the sets {f ~'(»)},
where ye Y. Define h:Y, — Y by h({f “!(y)}) = y. Then h is a bijection and
satisfies hn = f,h~1f = n. By theorem (4.1), h is continuous, and A~ ! is con-
tinuous by (b). Therefore h is a homeomorphism.

(4.3) Theorem. Let £: X — Y be an onto map. If f maps open sets of X to open sets
of Y, or closed sets to closed sets, then f is an identification map.

Proof. Suppose f maps open sets to open sets. Let U be a subset of Y for which
f~Y(U) is open in X. Since fis onto, we have f(f ~}(U)) = U, and therefore U
must be open in the given topology on Y. So this topology is the largest for
which f'is continuous, and f'is an identification map. The proof for closed maps
is similar.

(4.4) Corollary. Let f - X —Y be an onto map. If X is compact and Y is Hausdorff,
then f is an identification map.

Proof. A closed subset of the compact space X is compact and its image under
the continuous function f is therefore a compact subset of Y. But a compact
subset of a Hausdorff space is closed. Therefore f'takes closed sets to closed sets,
and we can apply theorem (4.3).
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We shall use theorem (4.2) and corollary (4.4) in order to compare different
descriptions of the same topological space. We begin with two methods of
constructing a torus.

The torus. Take X to be the unit square [0,1] x [0,1] in E?, with the subspace
topology, and partition X into the following subsets:

(a) the set {(0,0),(1,0),(0,1),(1,1)} of four corner points;

(b) sets consisting of pairs of points (x,0), (x,1), where 0 < x < 1;

(c) sets consisting of pairs of points (0,y), (1,y), where 0 < y < 1;

(d) sets consisting of a single point (x,y), where 0 < x < land 0 < y < 1.

The resulting identification space is the torus. An equally common description
is to say that the torus is the product S* x §* of two circles. As usual, S* denotes
the unit circle in the plane. Thinking of the points of S* as complex numbers, we
can define a map f:[0,1] x [0,1] > §* x §* by f(x,y) = (€*™*, e*"™). The
partition of [0,1] x [0,1] which consists of the inverse images under f of
points of S! x S! is exactly that given earlier. By corollary (4.4), f is an identi-
fication map and therefore our two descriptions of the torus are homeomorphic.

The cone construction. We aim to define the cone on an arbitrary topological
space X. Begin with X x I and let CX be the identification space associated
with the partition which consists of:

(a) the subset X x {1};
(b) sets consisting of a single point (x,t), where xe X and 0 < t < 1.

CX is called the cone on X. Intuitively we have pinched (identified) the top of
X x I to a single point, this point becoming the apex of our cone.

If X happens to be a compact subspace of some euclidean space E" there is an
even more natural procedure. Include F" in E* * ! as the set of points with final
coordinate zero, and let v denote the point (0,0,....,0,1) of E** 1, Define the
geometric cone on X to consist of those points of E * ! which can be written in the
form tv + (1 — £)x where x € X and 0 < ¢ < 1. So the geometric cone is made
up of all straight-line segments that join v to some point of X.

(4.5) Lemma. The geometric cone on X is homeomorphic to CX.

Proof. Define a function ffrom X x I to the geometric cone on X by f(x.,t) =
tv + (1 — t)x. Then f is continuous, onto, and f(x,t) = f(x',t') if and only if
either x = x'and t = ¢, or t = t' = 1. Therefore the partition of X x I induced
by f is precisely that associated with the identification space CX. Since X is
compact, X x I is also compact, and the geometric cone is of course Hausdorff
since it lies in E* * 1. Therefore fis an identification map by corollary (4.4) and
the result follows from part (a) of theorem (4.2).

The identification space B"/S" ~ 1. Let B" denote the unit ball in n-dimensional
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euclidean space, and let S"~ ! denote its boundary. Consider the partition of
B" which has as members:

(a) the set 8"~ 1;
(b) the individual points of B" — §* ~ 1.

The associated identificatign space is usually written B"/S" ~ *. In general, if we
replace B" by an arbitrary space X and S~ ! by a subspace 4, then X/A4 means
X with the subspace A identified to a point. Note that in this notation, CX
becomes X x I/X x {1}.

We claim that B"/S"~! is homeomorphic to S". This is not very surprising.
Take for example n = 1, then we are saying that identifying the endpoints of
[ —1,1] gives a space homeomorphic to a circle. To give a formal proof we need
only construct a map f:B"— S" which is onto, one—one on B* — $" !, and
which identifies all of S ~ ! to a single point. Our map will be an identification
map by corollary (4.4), and so theorem (4.2) provides the required homeo-
morphism. We can produce f as follows. We know that E” is homeomorphic
to B* — S" ! and to $" — {p} for any point pe S". Choose specific homeo-
morphisms hy:B" — §" ™! — B, h,:E" > S" — {p} and define

h,hi(x) for xeB"—§""?
f(x)={ p for xeS" 1!

The continuity of fis easy to check.

The glueing lemma.Let X, Y be subsets of a topological space and give each of
X, Y,and X U Y the induced topology. If f: X — Z and g : Y — Z are functions
which agree on the intersection of X and Y, we can define

fugXuY->Z

by fug(x) = f(x) for xe X, and fu g(y) = g(y) for ye Y. We say that fug
is formed by ‘glueing together’ the functions fand g. The following result allows
us, under certain conditions, to deduce the continuity of fu g from the con-
tinuity of fand g.

(4.6) Glueing lemma. If X and Y are closed in X vY, and if both f and g are
continuous, then f U g is continuous.

Proof. Let C be a closed subset of Z, Then f~1(C) is closed in X (by the con-
tinuity of f), and therefore closed in X u Y (since X is closed in X u Y).
Similarly, g~ *(C) is closed in X U Y. But (fu g)" }(C) = f " Y{(C) u g~ *(C), and
therefore (f U g)~(C) is closed in X v Y. This proves fu g is continuous.

The glueing lemma remains true if we ask that X and Y are both open in
X U Y. We have stated the result for the closed case because it is this case that

is most useful in practice. The lemma is of course false if we place no restrictions
on X and Y.
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As we shall see, the glueing lemma can be explained in terms of identification
maps and interpreted as a special case of theorem (4.3). In order to do this, we
introduce the disjoint union X + Y of the spaces X, Y, and the function
J:X + Y- X u Y which when restricted to either X or Y is just the inclusion
in X U Y. This function is important for our purposes because:

(a) it is continuous;
(b) the composition (fu.g)j:X + Y —Z is continuous if and only if both fand
g are continuous.

By combining (b) and part (b) of theorem (4.2), we have the following result:

(4.7) Theorem. If j is an identification map, and if both £:X —Z and
g:Y — Z are continuous, then f U g:X U Y — Z is continuous.

The glueing lemma is a special case of this result, since if both X and Y are
closed in X U Y, then j sends closed sets to closed sets and is an identification
map by theorem (4.3).

If j is an identification map, then we can think of X U Y as an identification
space formed from the disjoint union X + Y by identifying certain points of
X with points of Y. In this case, we often say that X U Y has the identification
topology. The open (closed) sets of X U Y are those sets A for which A n X and
A n 'Y are open (closed) in X and Y respectively.

Theorem (4.7) generalizes to the case of an arbitrary union. Let X, o« € 4, be
a family of subsets of a topological space and give each X, and the union ( ] X,
the induced topology. Let Z be a space and suppose we are given maps
f,:X,— Z, one for each a in A4, such that if o,f € A4,

Ll X, 0 Xp=fl X, X

Define a function F: () X, — Z by glueing together the f, ie., F(x) = f(x) if
xe X, Let @ X, denote the disjoint union of the spaces X, and let
j:® X,— )X, be the function which when restricted to each X, is the
inclusion in () X, ‘

(4.8) Theorem. Ifj is an identification map, and if each f, is continuous, then F is
continuous.

Proof. Observe that Fj:®X,— Z is continuous if and only if each f, is con-
tinuous, and apply part (b) of theorem (4.2).

As before, we say that | ) X, has the identification topology when j is an
identification map. If the X, are finite in number, and if each X, is closed in
\J X, then | ) X, automatically has the identification topology. If the X, are
infinite in number, one must be careful. Figure 4.2 represents an infinite collection
of closed intervals in the plane. The subspace topology on their union quite
clearly gives a space homeomorphic to the circle, whereas the identification
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topology gives a space homeomorphic to the nonnegative part of the real line
(send the interval labelled n to [n — 1, n]).

2

..6 5 4
Figure 4.2

Projective spaces. We give three descriptions of real n-dimensional projective
space P". As usual, theorem (4.2) and corollary (4.4) can be used to show that
all three lead to the same space.

(a) Take the unit sphere $” in E"* ! and partition it into subsets which contain
exactly two points, the points being antipodal (at opposite ends of a
diameter). P" is the resulting identification space. We could abbreviate our
description by saying that P" is formed from S" by identifying antipodal
points.

(b) Begin with E** ' — {0} and identify two points if and only if they lie on the
same straight line through the origin. (Note that antipodal points of S"
have this property.)

(c) Begin with the unit ball B" and identify antipodal points of its boundary
sphere.

Attaching maps. As a final example of an identification space we formalize
the notion of attaching one space to another by means of a continuous function.

Let X, Y be spaces, let A be a subspace of Y, and let f: 4 — X be a continuous
function. Our aim is to attach Y to X using f and to form a new space which
we shall denote by X U, Y. We begin with the disjoint union X + Y and
define a partition so that two points lie in the same subset if and only if they are
identified under f. Precisely, the subsets of the partition are:

(a) pairs of points {a,f(a)} where ae 4;

(b) individual points of Y — A4;

(c) individual points of X — image(f).

The identification space associated with this partition is X U, Y. The map fis

called the attaching map.
In many applications, Y will be a ball and A its boundary sphere. Consider
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the description of the projective plane (real projective space of dimension 2)
given in Chapter 1. The idea was to attach a disc to a Mobius strip by glueing
together their boundary circles. We can now make this precise. Let M denote
the Mobius strip and D the disc. Choose a homeomorphism 4 from the boundary
circle of D to that of M and form the identification space M U, D. The result
is P? and is (as we shall see in Chapter 7) independent of the choice of h. We
leave the reader to reconcile this description with those listed in ‘Projective
spaces’ above.

One final comment: if Y is an identification space formed from X, then Y is
the image of X under a continuous function and therefore inherits properties
such as compactness, connectedness, and path-connectedness from X. However,
X may be Hausdorff and yet Y not satisfy the Hausdorff axiom. As an example,
take X to be the real line with its usual topology, and partition X so that real
numbers r and s lie in the same element of the partition if and only if » — s is
rational. We invite the reader to check that the corresponding identification
space is an indiscrete space.

Problems

1. Check that the three descriptions (a), (b), (c) of P" listed in ‘Projective spaces’
above do all lead to the same space.

2. Which space do we obtain if we take a Mdbius strip and identify its boundary
circle to a point?

3. Let f:X — Y be an identification map, let A be a subspace of X, and give
f(A) the induced topology from Y. Show that the restriction f|A:4 — f(A4)
need not be an identification map.

4. With the terminology of Problem 3, show that if A4 is open in X and if f takes
open sets to open sets, or if A4 is closed in X and f takes closed sets to closed
sets, then f| A: 4 — f(A) is an identification map.

5. Let X denote the union of the circles [x — (1/n)]* + y* = (1/n)*>,n = 1,2,3,...,
with the subspace topology from the plane, and let Y denote the identification
space obtained from the real line by identifying all the integers to a single point.
Show that X and Y are not homeomorphic. (X is called the Hawaiian earring.)
6. Give an example of an identification map which is neither open nor closed.
7. Describe each of the following spaces: (a) the cylinder with each of its
boundary circles identified to a point; (b) the torus with the subset consisting
of a meridianal and a longitudinal circle identified to a point; (c) S*> with the
equator identified to a point; (d) E*> with each of the circles centre the origin
and of integer radius identified to a point.

8. Let X be a compact Hausdorff space. Show that the cone on X is homeo-
morphic to the one-point compactification of X x [0,1). If 4 is closed in X,
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show that X/A is homeomorphic to the one-point compactification of X — A.

9. Let f:X — X' be a continuous function and suppose we have partitions
2,2 of X and X' respectively, such that if two points of X lie in the same
member of £, their images under f lie in the same member of Z2'. If Y, Y’ are
the identification spaces given by these partitions, show that f induces a map
f:Y— Y, and that if f is an identification map then so is f.

10. Let S? be the unit sphere in E® and define f:S% — E* by f(x,y,2) = (x* — 2,
xy, xz, yz). Show that f induces an embedding of the projective plane in E*
(embeddings were defined in Problem 14 of Chapter 3).

11. Show that the function f:[0,2r] x [0,n] — E° defined by f(x,y) = (cos x,
cos 2y, sin 2y, sin x cos y, sin x sin y) induces an embedding of the Klein bottle
in E3,

12. With the notation of Problem 11, show that if (2 + cos x)cos2y =
(2 + cos x')cos 2y’ and (2 + cos x)sin 2y = (2 + cos x')sin 2y, then cosx =
cosx’, cos2y =cos2y, and sin2y ==sin2y. Deduce that the function
g:[0,27] x [0,n] — E* given by g(x,y) = ((2 + cos x)cos 2y, (2 + cos x)sin 2y,
sin x cos y, sin x siny) induces an embedding of the Klein bottle in F*.

4.3 Topological groups

We leave the notion of an identification space briefly in order to consider spaces
which have, in addition to their topology, the structure of a group. A good
example is the circle, thought of as the set of complex numbers of unit modulus.
Its topology is that induced from the plane and the group structure is simply
multiplication of complex numbers. Note that the two functions

St x St St

(€, &) »el®+ 9 (group multiplication)
Sl — Sl

elf e (inversion in the group)

are continuous, so the topology and the algebraic structure fit together nicely.

(4.9) Definition. 4 topological group G is both a Hausdorff topological space
and a group, the two structures being compatible in the sense that the group
multiplication m:G x G— G, and the function i:G— G which sends each
group element to its inverse, are continuous.

Most of this section will be taken up by examples, including examples of
matrix groups. In Section 4.4 we return to identification spaces. We shall define
there the action of a topological group on a space, show how an action leads
to an identification space, and consider a variety of identification spaces which
arise in this way.
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Examples of topological groups

1. The real line, the group structure being addition of real numbers.
2. The circle, as described above.

3. Any abstract group with the discrete topology.

4, The torus considered as the product of two circles. We take the product
topology and the product group structure. (The product of two topological
groups is a topological group; see Problem 13.)

5. The three-sphere considered as the unit sphere in the space of quaternions H.
(H is topologically E* and has the algebraic structure of the quaternions.)

6. Euclidean n-space. We choose the notation R” to emphasize that we have a
topological group (usual addition as group structure) and not simply the topo-
logical space [E".

7. The group of invertible n x »n matrices with real entries. The group structure
is matrix multiplication. For the topology we identify each n x n matrix
A = (a;;) with the corresponding point

(al 131255815 A215 -+ A2 3315 - ':ann)

of E" and take the subspace topology. This topological group is called the
general linear group, and we denote it by GL(n).T A detailed verification that
GL(n) is a topological group will be given in theorem (4.12).

8. The orthogonal group O(n) consisting of n x n orthogonal matrices with real
entries. O(n) has both its topology and its group structure induced from GL(n).
It is a subgroup (as a topological group) of GL(n). The subgroup of O(n) con-
sisting of those matrices which have determinant +1 is called the special
orthogonal group and written SO(n).

The terms ‘isomorphism’ and ‘subgroup’ for topological groups require a
few words of explanation. In each case we need to take into consideration both
the topological and the algebraic structures. So an isomorphism between two
topological groups is a homeomorphism which is also a group isomorphism.
In the same spirit, a subset of a topological group is called a subgroup if it is
algebraically a subgroup and in addition has the subspace topology. There-
fore the integers Z with the discrete topology form a subgroup of the real line R.
If we form the factor group R/Z and give it the identification topology (the
corresponding partition of R is that given by the cosets of Z) then we have a
topological group isomorphic to the circle. For the map f:R — S! defined by
f(x) = e?™* takes open sets to open sets and is an identification map, by
theorem (4.3). Two points of R are identified by f'if and only if they differ by an

+ Or GL(1,R) to emphasize that the matrices have real entries. GL(n,C) then denotes the corre-
sponding group of invertible matrices with complex entries.
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integer, and therefore f induces a homeomorphism of R/Zt with S!, by theorem
(4.2). It is elementary to check that this homeomorphism is a group isomorphism.
For a second example involving the ideas of subgroup and isomorphism, we
turn to our matrix groups. Associating each (n — 1) x (n — 1) orthogonal
matrix A with the n x n orthogonal matrix

6 %)

shows that O(n — 1) is isomorphic to a subgroup of O(n)

Let G be a topological group and x an element of G. The function L,:G — G
defined by L,(g) = xg is called left translation by the element x. It is clearly
one-one and onto, and it is continuous because it is the composition

G>GxGha
g ~(xg) b xg.

The inverse of L, is L. and therefore L, is a homeomorphism. Similarly the
right translation R, :G — G given by R,(g) = gx is also a homeomorphism.

These translations show that a topological group has a certain ‘homogeneity’
as a topological space. For if x and y are any two points of a topological group
G there is a homeomorphism of G that maps x to y, namely the translation
L,,-:. Therefore G exhibits the same topological structure locally near each
point.

(4.10) Theorem. Let G be a topological group and let K denote the connected
component of G which contains the identity element. Then K is a closed normal
subgroup of G.

Remark. If G = O(n) then K = SO(n). We shall prove this later.

Proof. Components are always closed. For any x € K the set Kx~! = R_-(K)
is connected (since R, - is a homeomorphism) and contains e = xx~ L. Since
K is the maximal connected subset of G containing e, we must have Kx~! < K.
Therefore KK~! = K, and K is a subgroup of G. Normality follows in a
similar manner. For any ge G the set gKg~! = R,-:L,(K) is connected and
contains e. Therefore gKg~! = K.

(4.11) Theorem. In a connected topological group any neighbourhood of the
identity element is a set of generators for the whole group.

T We have an unfortunate clash of notation. R/Z is used for the identification space whose points
are the cosets of Z in R, and for R with the single subspace Z pinched to a point. The first of
these is the circle, the second is an infinite bouquet of circles (i.e., an infinite collection of circles
all joined together at one point). It should always be clear from the context which of the possi-
bilities we are considering.
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Proof. Let G be a connected topological group and let ¥ be a neighbourhood
of e in G. Let H = (V) be the subgroup of G generated by the elements of V.
If he H then the whole neighbourhood AV = L(V) of h lies in H, so H is
open. We claim that the complement of H is also open. For if ge G — H,
consider the set gV. If gV n H is nonempty, say xegV nH, then x = gv for
some ve V. This gives g = xv~ !, which implies the contradiction g € H since
both x and v~ ' lie in H. Therefore the neighbourhood L(V) = gV of g lies in
G — H, and we see that G — H is an open set. Now G is connected and so
cannot be partitioned into two disjoint nonempty open sets. Since H is
nonempty we must have G — H = (J,i.e, G = H.

(4.12) Theorem. The matrix group GL(n) is a topological group.

Proof. Let M denote the set of all n x n matrices which have real entries, and
let A = (a;;) represent a typical element of M. We can identify M with euclidean
space of dimension n? by associating 4 = (a;;) with the point (a;y,a;5,...,
A1l1s-- 502031, - - -,dy,). The identification gives us a topology on M and we
claim that, with respect to this topology, matrix multiplication m:M x M -— M
is continuous. To see this, we need only examine the well-known formula for
the entries of a product matrix: if 4 = (a;;) and B = (b;;) then the ijth entry in
n

the product m(4,B)is Y, aub,; Now M has the topology of the product space
k=1
E! x E' x ... x E! (n? copies), and for each i, j satisfying 1 < i,j < n we have
a projection 7;;:M — E' which sends a given matrix 4 to its ijth entry. By
theorem (3.13), m is continuous if and only if all of the composite functions
M x M—— M- E!
are continuous. But n;;m(4,B) = Z abyj, a polynomial in the entries of 4 and
k=1

B. Therefore 7;;m is continuous.

The elements of GL(n) are the invertible matrices in M. If we give GL(n) the
subspace topology from M then, by the above, matrix multiplication GL(n) x
GL(n) — GL(n) is continuous. It remains to prove that the inverse function
i:GL(n)— GL(n) is also continuous. We use the same technique: i:GL(n) —
GL(n) < E! x ... x Elis continuous if and only if all of the composite functions

GL(n)—— GL(n)->E!  1<jk<n

are continuous. Now the composition of n; with i sends a matrix 4 to the
Jjkth element of 471, i.e., to (1/det A4) (kjth cofactor of A). It should be clear that
the determinant of 4 and the cofactors of A are polynomials in the entries of
A. Since det A does not vanish on GL(n), our composition mi is continuous.
This completes the proof that GL(n) is a topological group.

We note in passing that GL(n) is the inverse image of the nonzero real numbers
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under the determinant function det:M — R. So GL(n) is not compact (it is an
open subset of M), and is not connected (the matrices with positive and negative
determinants partition GL(n) into two disjoint nonempty open sets). How
many components has GL(n)?

(4.13) Theorem. O(n) and SO(n) are compact.

Proof. O(n) consists of those matrices in GL(n) which have their transpose as
inverse. It is algebraically a subgroup of GL(n) and we give it the subspace
topology. In order to show O(n) compact we show that it corresponds to a
closed bounded subset of E"* under our identification of M with E".

Let AeO(n). Since AA' = I we have Z a0 = Oy for 1 < ik < n. For
j=1
each choice of i,k we define a map f;:M — E' by fi(4) = Z a;ia;. Then
i=1
O(n) is the intersection of all sets of the form

= 1(0) 1<ik< i+k
fii_l(l) I1<ign

Therefore O(n) is closed in M since it is the intersection of a finite number of
closed sets.
For the boundedness of O(n) we have only to look at the conditions

Y a;a;; = 1. These imply that the entries of any orthogonal matrix A satisfy
i=1
| a;;| < 1. This completes the proof that O(n) is compact.
Finally, SO(n) is compact because it is closed in O(n).

We note that SO(2) @ S, and SO(3) =~ P3, where =~ means isomorphism
of topological groups. Sending the rotation matrix

cos ) —sinf
(sin 0 cos 0 >

to the point €' of S* gives the first of these. For the second, we think of $? as
the quaternions of norm 1, and note that conjugation in H by a nonzero quater-
nion always induces a rotation of the three-dimensional subspace of pure
quaternions. This defines a function H — {0} — SO(3) which is in fact (check
these statements!) a homomorphism, onto, and continuous. Its kernel is

— {0}. Restricting this function to S* gives a continuous epimorphism from
§° to SO(3) with kernel {1, —1}. Now the set of cosets §3/{1,—1}, with the
identification topology, is of course P2, and therefore we have a continuous

group isomorphism P3 — SO(3). Since P? is compact and SO(3) is Hausdorff,
this map is a homeomorphism.
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Problems

13. Show that the product of two topological groups is a topological group.
14. Let G be a topological group. If H is a subgroup of G, show that its closure
H is also a subgroup, and that if H is normal then so is H.

15. Let G be a compact Hausdorff space which has the structure of a group.
Show that G is a topological group if the multiplication functionm:G x G— G
is continuous.

16. Prove that O(n) is homeomorphic to SO(n) x Z,. Are these two isomorphic
as topological groups?

17. Let 4,B be compact subsets of a topological group. Show that the product
set AB = {ab|ae A, be B} is compact.

18. If U is a neighbourhood of e in a topological group, show there is a neigh-
bourhood V of e for which VV~! < U.

19. Let H be a discrete subgroup of a topological group G (i.e., H is a subgroup,
and is a discrete space when given the subspace topology). Find a neighbourhood
N of e in G such that the translates AN = L (N), he H, are all disjoint.

20. If C is a compact subset of a topological group G, and if H is a discrete
subgroup of G, show that H n C is finite.

21. Prove that every nontrivial discrete subgroup of R is infinite cyclic.

22. Prove that every nontrivial discrete subgroup of the circle is finite and
cyclic.

23. Let 4,Be O(2) and suppose det A = +1, det B = —1. Show that B> = I
and BAB™' = A~ !, Deduce that every discrete subgroup of O(2) is either
cyclic or dihedral.

24. If T is an automorphism of the topological group R (i.e., T is a homeomor-
phism which is also a group isomorphism) show that T(r) = rT(1) for any
rational number r. Deduce that T(x) = xT(1) for any real number x, and hence
that the automorphism group of R is isomorphic to R x Z,.

25. Show that the automorphism group of the circle is isomorphic to Z,.

4.4 Orbit spaces

The infinite cyclic group Z can be thought of as a group of homeomorphisms
of the real line in a very natural way. Each integer n € Z determines a translation
x b x + n of the line.

If we consider the matrix group O(n), then each matrix gives rise to a linear
transformation of euclidean n-space. Since the elements of O(n) are invertible,
and since orthogonal transformations preserve the euclidean metric (and there-
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fore send unit vectors to unit vectors), each orthogonal matrix gives us a homeo-
morphism from the unit sphere $" ~ ! to itself. This operation of the orthogonal
group on the sphere is compatible with the topologies of O(n) and $” ~ ! in the
sense that the function

Om) x "t gt
(4,x) > Ax

is continuous. We say that O(n) ‘acts’ on the space S"~ ! as a group of homeo-
morphisms.

If we give Z its natural topology (the discrete topology induced from R), then
both of these examples fit into a general setting.

(4.14) Definition. A fopological group G is said to act as a group of homeo-
morphisms on a space X if each group element induces a homeomorphism of the
space in such a way that:

(@) hg(x) = hig(x))t for all gh e G, for all xe X
(b) e(x) = x for all x e X, where ¢ is the identity element of G;
(c) the function G x X — X defined by (g,x) b g(X) is continuous.

If x is a point of the space X, then for each g € G the corresponding homeo-
morphism either fixes x or maps it to some new point g(x). The subset of X
consisting of all such images g(x), as g varies through G, is called the orbit of
x and written O(x). If two orbits intersect then they must coincide: the relation
defined by x ~ yif and only if x = g(y) for some g € G is an equivalence relation
on X whose equivalence classes are precisely the orbits of the given action. So
the orbits define a partition of X. The corresponding identification space is
called the orbit space and is written X/G. In constructing X/G we ‘divide’ by
G in the sense that we identify two points of X if and only if they differ by one of
the homeomorphisms x + g(x).

In our first example, the orbit of a real number x consists of all points x + n
where n e Z. Therefore in forming R/Z we identify two points of R if and only
if they differ by an integer and, as explained in the preceding section, we obtain
the circle as orbit space.

The orthogonal action on $" ! is an example of a transitive action, that is,
an action for which the orbit of any point is the whole space (in this case all of
§"~1). The proof is quite easy. Let eje,,...,e, be the standard orthonormal
basis for E" and, given x € S” ~ !, construct a second orthonormal basis with x
as first member. If A is the matrix of this new basis with respect to e,,e,,....e,,
then A is orthogonal and A(e,) = x. Therefore we have shown that the orbit of
e, is all of "~ !. Whenever we have a transitive action, i.., only one distinct
orbit, then of course the orbit space is a single point.

+ We use the same letter for a group element and the homeomorphism induced by it.
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More examples

1. Taking the product of our first example with itself in the natural way gives
an action of Z x Z on the plane. An ordered pair of integers (mn)eZ x Z
sends the point (x,y) € E? to (x + m, y + n). The orbit space is the product of
two circles, in other words the torus. It may help to think of this action geo-
metrically. Divide the plane into squares of unit side by drawing in all horizontal
and vertical lines through the points with integer coordinates. The homeo-
morphisms of our group action preserve this pattern of squares, and any single
square contains points from each orbit and therefore maps onto the torus under
the identification map

B2 EYZxZ=T
Each square has its sides identified by 7 in the usual way in order to form T.

2. We describe an action of Z, on the n-sphere which has the projective space
P" as orbit space. Z, has only two elements.t We know from the definition of a
group action that the identity element must give rise to the identity homeo-
morphism, and we ask that the generator (i.e., the non-identity element) give
the antipodal map which takes each point of S§" to its antipode. (Note that
if we do this homeomorphism twice then we arrive at the identity homeo-
morphism of $*.) The orbits of the action are pairs of antipodal points and the
orbit space corresponds to one of our descriptions of P* given in Section 4.2.

)

(a)

0
\
]
]
) N
=¥

(b)

)

(©
Figure 4.3

T We take the discréte topology when the group is finite.
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3. A given group may act in many different ways on the same space. Here are
three different actions of Z, on the torus. Take the torus T in E* formed by
rotating the circle (x — 3)? + z2 = 1 about the z axis. Let g denote the generator
of Z, and define:

(@) g(x,y,2) = (x, —y, —z), rotation of T through = about the x axis;
(b) g(x,y,z) = (—x, —y, z), rotation of T through = about the z axis;
(¢) g(x,y,2) = (—x, —y, —z), reflexion of T in the origin.

Each of these homeomorphisms determines an action of Z, on T. The orbit
spaces are the sphere, torus, and Klein bottle respectively, and Fig. 4.3 shows
why. In each case g interchanges the cylinders C; and C,. So in order to form
the orbit space we can ignore C, and simply make the appropriate identifications
on the boundary circles of C;.

4. If G is a topological group and H a subgroup of G, then H acts on G by left
translation. The homeomorphism induced by an element h of H is L,, ie,
hg) = L,(g) = hg, and the associated function H x G — G is continuous, since
multiplication in G is continuous. Two elements g,¢’ lie in the same orbit if and
only if g’ € Hg. Therefore the orbits are the right cosets of H in G.

We also have a ‘right action’ of H on G given by the map

Hx G- G
(hg) » R;-(g)

where the inversion of 4 is needed to make property (a) of definition (4.14) valid.
The orbits are now the left cosets of H in G.
We denote both orbit spaces by G/H ; they are of course homeomorphic.

5. We return to the action of O(n) on §"~!. Note that if 4eO(n), and if
A(e,) = e, then A4 has the form

10

0 B

where B is orthogonal. Conversely any matrix of this form fixes e;. Therefore
the subgroupt of O(n) consisting of those elements which leave e, fixed is
isomorphic to O(rn — 1).

We can define a function f:0(n) — §" ! by f(A4) = A(e,). This function is
continuous because it is the composition

On)—O(m) x " 1 — g1
A (A, e)~ Aley)

and it is onto because the given action is transitive. Now O(#n) is compact and
S" "1 Hausdorff, which makes f an identification map by corollary (4.4). If

+ Often called the isotropy subgroup or stabilizer of e;. Points in the same orbit always have
conjugate stabilizers.
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xe 8"~ ! one easily checks that f~(x) is precisely the left coset 4 O(n — 1),

where A € O(n) satisfies A(e;) = x. Therefore the partition of O(n) induced by
fcoincides with the left-coset decomposition of O(n) corresponding to the sub-
group O(n — 1). Applying theorem (4.2) shows that O(n)/O(n — 1) is homeo-
morphic to S"~ . A similar argument gives SO(n)/SO(n — 1) = "~ 1,

We deduce, by induction, that SO(n) is connected. The induction starts since
SO(1) is a single point. For the inductive step we use SO(n + 1)/SO(n) =~ §"
(remembering that the n-sphere is connected for n = 1) and the following
theorem.

(4.15) Theorem. Let G act on X and suppose that both G and X/G are connected,
then X is connected.

Proof. Suppose X is the union of two disjoint nonempty open subsets U and V.
Since the identification map n:X — X/G always takes open sets to open sets
(Problem 29), and since X/G is connected, n(U) and n(V) cannot be disjoint.
Now if n(x) e n(U) n n(V), then both U n O(x) and ¥V n O(x) are nonempty.
These two sets decompose the orbit O(x) as a disjoint union of two nonempty
open sets. But O(x) is the image of G under the continuous function f:G — X
defined by f(g) = g(x). O(x) is therefore connected, and we have established the
required contradiction.

6. Let p and g be relatively prime integers (not necessarily primes). Consider the
3-sphere as the unit sphere in complex space of dimension 2, that is

§* = {(z0,21) € C*| 2020 + 2,7, = 1}.
Let g denote the generator of the cyclic group Z, and define an action of Z, on
S3 by
9(20,21) = (€*™/Pz¢, €274/Pz,).

Of course, having specified the effect of g, the homeomorphisms induced by
g%g°,... are completely determined by property (a) of definition (4.14) for a
group action. If we repeat g a total of p times, we arrive at the identity homeo-
morphism. The quotient space S* /Z ,is called a Lens space and written L(p,q). We
shall see later that L(p,q) is locally euclidean of dimension 3, and has fundamental
group isomorphic to Z,. (For an alternative description of L(p,q), see Problem
33)) '

7. So far, most of our orbits have been rather simple, namely discrete sets of
points or the whole space. To show things can be much more complicated, we
describe an action of the real line on the torus where each orbit is a dense
proper subset of the torus. Identify the torus with S* x S! and define the
homeomorphism induced by the real number r to be

(e2nix, elniy) > (ezm(x + r), e2‘z:i(y + rJZ))

If 7:E2— S' x S' denotes the identification map (x.,y) + (e*™%, e*™), the
orbits of this action are simply the images under 7 of the straight lines in the
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plane with gradient /2. The important fact for our purposes is that J2 is
irrational. Notice that 7 is one—one when restricted to a line of gradient /2,
since 7 can only identify (x + 7, y + r/2), (x + 5,y + 5/2) if both r — 5 and
rJ2 — s\/ 2 are integers, which is clearly impossible.

We shall examine the orbit of the point 7(0,0) € T. It is simply the image under
7t of the straight line through the origin ( or through any other point with integer
coordinates) in E2 with gradient \/ 2. Call this line L. We can represent our orbit
on the unit square in the plane (Fig. 4.4), remembering that the torus is formed
from this square by identifying its edges in the usual way. If we travel away from
the origin along L in the first quadrant, we stay inside the unit square as far as
the point (1 /\/ 2, 1). This point represents the same point on the torus as (1/,/2, 0)
and we continue along our orbit with gradient /2 from (1/,/2,0) to (1, /2 — 1).
Now we jump (in the square, though not in the torus!) to (0, \/ 2 — 1) and
continue with gradient /2, etc.

/L

(5.1 a1

(02-1) //, (1,2 - 1)

(©0,0), (L 0)

Figure 4.4

Our orbit winds round and round the torus. It almost fills out the whole
torus, but not quite. We leave the reader to check for himself that the orbit is a
proper dense subset of T.

This action. of R on T is called an ‘irrational flow” on the torus, the orbits
being called flow lines’.

8. We end this section by mentioning a rather interesting class of groups of
isometries of the plane. The groups we shall consider have the property that
they preserve some repeating pattern of convex polygons which fills out the
whole plane (i.e., the elements of the group are all symmetries of the pattern).
We illustrate three examples in Fig 4.5 by giving in each case a set of generators
for the group. We shall denote the magnitude and direction of a translation by
an arrow —. A half-arrow —— will represent a glide reflection, that is a
reflection in the line of the arrow followed by a translation of magnitude and
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~ direction indicated by the arrow. Rotation through 180° about the midpoint

of a line segment will be denoted by \Q\and called a half-turn.

7 ¥ . 7 S V.
/ A Ay
/
!
/

(a) Generators—two translations (b) Generators —three half-turns
Orbit space—the torus Orbit space — the sphere

Y \ Figure 4.5
N W

(c) Generators —-two parallel glide reflections
Orbit space—the Klein bottle

The shaded area in each picture is a so-called fundamental region for the group,
that is to say its images under all the group elements fill out the entire plane,
and if two such intersect they do so only in their boundaries. So no two points
in the interior of a fundamental region are identified by a group element. Of
course, a fundamental region can be chosen in many different ways and its
shape is by no means unique.

These three groups are members of a family which can be described as
follows. We consider the group of all isometries of the plane and we assume
known the fact that an isometry can be written as an ordered pair (6,v) where
0 e O(2) and v e E2 So 0 is either a rotation about the origin or a reflection in
some line through the origin, and v has the effect of a translation. The isometry
acts on E2 by

0.v) (x) = 0(x) + v
and group multiplication is given by
(0.v) (9,w) = (66, O(W) + V)

We give this group of isometries the topology of the product space O(2) x E?
and call the resulting topological group the euclidean group E(2). (Note that
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although E(2) has the product topology from the spaces O(2) and E?, the group
structure is not the product structure. Algebraically we have in fact the semidirect
product of O(2) and E2))

If G is a discrete subgroup of E(2), that is to say the topology induced from
E(2) makes G into a discrete space, and if the orbit space E?/G is compact, then
G is called a plane-crystallographic group.

Our three examples rather clearly fit this description, and the orbit spaces
are the torus, sphere, and Klein bottle respectively. (In each case take a funda-
mental region and work out what identifications have to be made to its sides
in order to form E2/G.)

If G is a plane-crystallographic group, and if p is a point of the plane which is
not left fixed by any non-identity element of G, then

{xeE*|llx — pll <llx — g(p) |l for all g € G}

is a convex polygon which is a fundamental region for G, and G is a subgroup
of finite index in the full group of symmetries of the resulting tessellation of the
plane. The compactness of E*/G ensures that this fundamental region is bounded.

Plane-crystallographic groups can be classified and they fall into precisely
17 distinct isomorphism classes.t Higher-dimensional crystallographic groups
are defined in the same sort of way, and the number of isomorphism classes
for a particular dimension is always finite.]

Problems

26. Give an action of Z on E' x [0,1] which has the Mdbius strip as orbit space.
27. Find an action of Z, on the torus with orbit space the cylinder.

28. Describe the orbits of the natural action of SO(n) on E" as a group of linear
transformations, and identify the orbit space.

29. If n:X — X/G is the natural identification map, and if O is open in X,
show that 7~ *(n(0)) is the union of the sets g(0) where g € G. Deduce that 7 takes
open sets to open sets. Does 7 always take closed sets to closed sets?

30. Show that X may be Hausdorff yet X/G non-Hausdorff. If X is a compact
topological group and G a closed subgroup acting on X by left translation, show
that X/G is Hausdorff.

31. The stabilizer of a point x € X consists of those elements g in G for which
g(x) = x. Show that the stabilizer of any point is a closed subgroup of G when X
is Hausdorff, and that points in the same orbit have conjugate stabilizers for any X.

32. If G is compact, X Hausdorff, and if G acts transitively on X, show that X
is homeomorphic to the orbit space G/(stabilizer of x) for any x € X.

t H. S. M. Coxeter, Introductior to Geometry, Wiley, 1961,
R. L. E. Schwarzenberger, ‘The 17 Plane Symmetry Groups’, Mathematical Gazette, 1974.
I One of Hilbert’s problems, solved by Bieberbach (1911).
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33. Let p, q be integers which have highest common factor 1. Let P be a regular
polygonal region in the plane with centre of gravity at the origin and vertices
Ao,a1, .. .,q, - 1, and let X be the solid double pyramid formed from P by joining
each of its points by straight lines to the points b, = (0,0,1) and b, = (0,0,—1)
of E* (see Fig. 4.6). Identify the triangles with vertices a;,a; . 1, bo, and a; , ,

Figure 4.6

;4 4+ 1, by foreachi = 0,1,..., p — 1, in such a way that g, is identified to a; +
;11 t0 @;4 441, and by to b, (The subscripts i + 1, i + g, i+ g + 1 are of
course read mod p.) Prove that the resulting space is homeomorphic to the
Lens space L(p,q).

34. Show that L(2,1) is homeomorphic to P3. If p divides q — ¢/, prove that
L(p,q) is homeomorphic to L(p,q").
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5. The Fundamental Group

On a dit souvent que la géométrie est I'art de bien
raisonner sur les figures mal faites.
H. POINCARE

5.1 Homotopic maps

We gave a brief description of how to set about defining the fundamental group
of a space at the end of Chapter 1. We recall that the idea is to manufacture a
group out of the set of loops in the space which begin and end at some specified
point (usually referred to as the base point).

By a loop in a space X we shall understand a map «:/ — X such that
o(0) = (1), and we shall say that the loop is based at the point «(0). If « and f
are two loops based at the same point of X, we define the product «.f to be the
loop given by the formula

, o(2s) 0<s<3
x.pls) = {ﬂ(Zs 1) les<l

Notice that a.f is continuous, maps [0,5] onto the image of « in X, and maps
[4,1] onto the image of B.

Unfortunately, this multiplication does not give a group structure on the set
of loops based at a particular point; it is a simple matter to check that it is not
even associative. To resolve this problem and obtain a group we agree to
identify two loops if one can be continuously deformed into the other, keeping
the base point fixed throughout the deformation. The object of this section is to
say exactly what we mean by a continuous deformation.

We shall work in a rather more general setting: if f,g: X — Y are maps, we
shall consider what it means to deform f continuously into g. Such a con-
tinuous deformation will be called a homotopy. Intuitively, we would like a
family {f;} of maps from X to Y, one for each point ¢ of [0,1], with f, = f,
f1 = g, and the property that f, changes in a continuous fashion as t varies
between O and 1. To capture this notion of continuous change we make use of
the product space X x I, observing that a map F:X x I — Y gives rise to a
family {f;} if we set fi(x) = F(x,t).

1 A slight change from the terminology used in Chapter 1, where a loop was a map from a circle
to X.
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(5.1) Definition. Ler f,g:X — Y be maps. Then f is homotopic to g if there exists
a map F:X x I->Y such that F(x,0) = f(x) and F(x,1) = g(x) for all points
xeX.

The map F is called a homotopy from f to g and we shall write f % g. If; in
addition, f and g agree on some subset 4 of X, we may wish to deform fto g
without altering the values of f on A. In this case we ask for a homotopy F
from f'to g with the additional property that

F(azt) = f(a) forallae A, foralltel.

When such a homotopy exists we say that f is homotopic to g relative to A and
write f & g rel A.

If we have two loops o,8:1 — X based at the same point p of X, then asking
that o can be continuously deformed into § without moving the base point p is
exactly the same as asking that o be homotopic to f relative to the subset
{0,1} of I. A homotopy from « to f rel {0,1} is by definition a map F from the
square I x I to X which sends the bottom of the square via «, the top via f,
and the two vertical sides to the base point p. This last condition means that
the restriction of F to any horizontal line I x {t} in the square is a loop based
at p: sliding the line from the bottom of the square to the top gives a continuous
family of loops starting at o and finishing at §. Figure 5.1 illustrates this situation
for two loops on a torus. Of course the picture is very much simplified: in reality
the loops o and § may cross themselves (and one another) and the image of the
square I x I in the torus may be extremely complicated.

via

top

via a

Figure 5.1

Examples of homotopies

1. Let C be a convex subset of a euclidean space and let f,g: X — C be maps,
where X is an arbitrary topological space. For each point x of X, the straight
line joining f(x) to g(x) lies in C, and we can define a homotopy from f'to g
simply by sliding f'along these straight lines. To be precise, define F: X x I — C
by F(x,t) = (1 — t)f(x) + tg(x). Notice that if f and g happen to agree on a
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subset 4 of X then this homotopy is a homotopy relative to 4. The homotopy
F is called a straight-line homotopy.

2, Let f,g: X — §" be maps which if evaluated on the same point of X never
give a pair of antipodal points of S (i.e., f(x) and g(x) are never at opposite
ends of a diameter). If we take S” to be the unit sphere in E"* 1, and think of
f,g as maps into E" * !, then we have a straight-line homotopy from fto g. Since
f(x) and g(x) are not antipodal, the straight line joining them does not pass
through the origin. Therefore we can define F: X x I — §" by

_ (L= 07 + tg()
I (1 = 0)f(x) + tgx)ll
This map is a homotopy from f'to g.

F(x,t)

3. Let S denote the unit circle in the complex plane, and consider the loops
a,f in S (both based at the point 1) defined by

exp 4ris
ofs) = {exp 47i(2s — 1)
exp 8mi(l — s)

Nubi O
NN A
v w» own
NN N
— B e

B(s) = exp 2mis 0<s< 1.

Geometrically, o winds each of the segments [0,3], [3.2], [3, 1] once round the
circle, the first two being wound in an anticlockwise direction, and the third
clockwise. The loop f# simply winds the whole interval [0,1] once round the
circle anticlockwise (Fig. 5.2).

\ . * 1
‘ } —~ —
0 oo
F | ——ﬂ—> 1
0 1
Figure 5.2

We can define a homotopy F from o to f relative to {0,1} as follows, the
continuity of our map being ensured by the glueing lemma (4.6):

4mis t+1

<s< -

P Oss<—
F(s,0) = {exp4miQ2s — 1 — 1) t;1<s<t1‘3

exp 87i(l — s) 12—3<s<1.
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This homotopy is illustrated in Fig, 5.3. We show the effect of F on the square
I x I, and the halfway stage s » F(s,3) of the homotopy.

(5.2) Lemma. The relation of ‘homotopy’ is an equivalence relation on the set of
all maps fromX to Y.

Proof. All maps f, g, h are from X to Y. For any f we have f 5 f where F(x,t) =
f(x), so the relation is reflexive. If f % ¢ then g % f where G(x,t) = F(x,1 — 1),
giving symmetry. Finally, if f & g and g % h, then f % h where H is defined by

F(x,2t)

< 1

0<t<3
Hx,t) = {G(x,Zt -1 i<greg],
so the relation is transitive.
wound once round | — wound clockwise
circle (anticlockwise) \\ back to 1
¢ wound anticlockwise as
I far as exp 2zi (1 - 1)
L 3
2 4
e
s
F(s, 1)
f —— —_— 1 halfway stage
3 7
0 ERA
Figure 5.3

(5.3) Lemma. The relation of ‘homotopy relative to a subset A of X is an equiva-
lence relation on the set of all maps from X to Y which agree with some given
map on A.

Proof. If all the maps involved agree on A4, then the homotopies defined above
are homotopies relative to 4.

(5.4) Lemma. Homotopy behaves well with respect to composition of maps.

Proof. We note that if we have maps
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and if f & g rel 4, then hf % hg rel A as maps from X to Z.
Also given maps

X

v
!
N

with g & hrel B for some subset B of Y, then gf 5 hfrel f !B via the homotopy
F(x,t) = G(f(x),1).

Problems

1. Let C denote the unit circle in the plane. Suppose f :C — C is a map which is
not homotopic to the identity. Prove that f(x) = —x for some point x of C.

2. With C as above, show that the map which takes each point of C to the point
diametrically opposite is homotopic to the identity. (We shall see later that
the antipodal map of S" is homotopic to the identity if and only if # is odd.)

3. Let D be the disc bounded by C, parametrize D using polar coordinates, and
let h:D— D be the homeomorphism defined by h(0) = 0, h(r,0) = (r, § + 27r).
Find a homotopy F from h to the identity map such that the functions
F|D x {t}:D x {t} > D,0 < t < 1, are all homeomorphisms.

4. With the terminology of Problem 3, show that h is homotopic to the identity
map relative to C.

5. Let f: X — S" be a map which is not onto. Prove that fis null homotopic, that
is to say f'is homotopic to a map which takes all of X to a single point of S”.

6. As usual, CY denotes the cone on Y. Show that any two maps f,g: X — CY
are homotopic.

7. Show that a map from X to Y is nuil homotopic if and only if it extends to a
map from the cone on X to Y.

8. Let 4 denote the annulus {(r,0) |1 < r < 2,0 < 8 < 27} in the plane, and
let h be the homeomorphism of A defined by h(r,0) = (r, 0 + 2n(r — 1)). Show
that & is homotopic to the identity map. Convince yourself that it is impossible

to find a homotopy from & to the identity which is relative to the two boundary
circles of A. (For a precise solution to this, see Problem 23.)
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5.2 Construction of the fundamental group

Let X be a topological space, choose a base point p € X, and consider the set of
all loops in X based at p. As we have seen in Section 5.1 the relation of homotopy
relative to {0,1} is an equivalence relation on this set. We shall refer to the
equivalence classes as homotopy classes, and denote the homotopy class of a
loop o by (o). :

Multiplication of loops induces a multiplication of homotopy classes via

oy By = Ko By
Of course we must check that this multiplication is well defined. If o’ & o rel
{0,1} and ' % B rel {0,1}, then o/.f' % . rel {0,1}, where
F(2s,1) 0<s<3
H(s\t) = {G(2s “ 1,1 i<s<1

(As usual, we refer to the glueing lemma to see that H is continuous.) Therefore

a'p LB = <ado (B>

(5.5) Theorem. The set of homotopy classes of loops in X based at p forms a
group under the multiplication {o).{f) = {a.f>.

Proof. We first check that multiplication is associative, i.e., {a.p)>.{y)> =
{ay.{B.y) for any three loops a, B,y based at p. To do this we must show that
(2. B).y is homotopic to a.(f.y) relative to {0,1}. One easily checks that (a.f).y
is equal to the composition («.(8.y)) ° f, where fis the map from I to I defined by

2s 0<s<z

f(s) = s+4  i<s<3
1

T st

Since I is convex and f(0) = 0, f(1) = 1, there is a straight-line homotopy from
fto the identity map 1, relative to {0,1}. By lemma (5.4) we have

@.f)y = (@.(B.) o f
~ (e.(B.y)) ° 1, rel {0,1}
= a.(B.7)
As usual, a diagram is much more effective than the formulae (Fig. 5.4).

The identity element is the homotopy class of the constant loop e at p defined
by e(s) = p for 0 < s < 1. We can use a similar argument to the above to check
that <e>.<a) = (o) and {a).{e)> = {a) for any loop « based at p. Consider
the first of these. We need a homotopy relative to {0,1} from e.« to a. Now
e.o is the composition « © f, where f : I — I is defined by
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0 0<s<3
=151 5353

So _
e =o°f~oa°1;rel {0,1}
=a

We leave the verification of {(a>.{e)> = {(a) to the reader.

Finally, we define the inverse of the homotopy class {a) to be {a~ !> where
o i(s) = a(l —5),0<s< 1 (Soa?!is just « ‘in the opposite direction’.) The
inverse is well defined, since if o 5 f rel {0,1} then ™" & 7' where G(s,t) =
F(1 — s,1). To show (a).{a" !> = <e) we note that «.a”! = a°f where
f:I— I 1is defined by

Js) = {gs— 2s

Since f(0) = f(1) = 0, we know that f ~ grel {0,1}, where g(s) = 0,0 < s < 1.
Therefore

ol =oaof~aogrel {0,1}
=e

To show (o~ *>.{a) = {e) is no more difficult. This completes the proof of
the theorem.

(. 2).7
0 % %/\
| \ N i
AN
S ; \\ \\ I X
! NN |
\i <« X ¥
0 3 2 1

alB.y)
Figure 54

We have given a fairly painless proof of theorem (5.5) by leaning heavily on
the fact that any two maps from the unit interval to itself which agree on 0 and 1
are homotopic relative to {0,1}. One can of course sit down and construct the
necessary homotopies in a barehanded fashion (as in example 3 of Section 5.1)
and we recommend the reader to do this for himself.

The group constructed in theorem (5.5) is called the fundamental group of X
based at p, and written 7,(X,p). Since any loop based at p must lie entirely
inside the path component of X which contains p, we restrict ourselves to path-
connected spaces. With this restriction, the fundamental group is independent
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(up to isomorphism) of the choice of base point, allowing us to refer to the
fundamental group of a path connected space and use the notation 7,(X).}

(5.6) Theorem. If X is path-connected then m,(X,p) and ©(X,q) are isomorphic
for any two points p,q € X.

Before giving the proof, we observe that two paths y, ¢ in a space which satisfy
y(1) = o(0) give rise to a new path y.o via our product formula

_ [y 0<s<%
7o) =505 — 1) lss<1

The following facts can be verified exactly as for loops.

(@) Ify ~ y' rel {0,1} and 6 ~ ¢’ rel {0,1} then y.0 ~ y'.¢" rel {0,1}.

(b) For any three paths v, g, J satisfying y(1) = ¢(0) and a(1) = 6(0), we have
(7.0).0 =~ 7.(5.9) rel {0,1).

(c) If y~1 is the path defined by y7(s) = (1 — s), then y.y~! is homotopic
rel {0,1} to the constant path at y(0); similarly y 1.y is homotopic to the
constant path at y(1).

Proof of theorem (5.6).Choose a path y which begins at p and ends at g (such a
path exists because X is path-connected). If o is a loop based at p, then
(y~ ..y is based at g and we define

7T1(X,p) L’ nl(qu)
(o 7y

Using (a), (b), and (c) above, it is elementary to check that y, is well defined, is a
homomorphism, and has an inverse, namely (y~'),. Therefore y, is an iso-
morphism.

So far we have assigned a group to each path-connected topological space.
We can do even better. To each continuous function between two spaces we
can assign a homomorphism between their respective groups. The construction
is very natural and geometric. Let /: X — Y be continuous, let p be the chosen
base point in X, and choose g = f(p) as base point in Y. For any loop « based
at p in X, the composite function foa is a loop based at g in Y; moreover,
lemma (5.4) shows us that composing two homotopic loops with f gives loops
which are homotopic in Y. Therefore we can define a function

f* :nl(Xap) - nI(Yaq)
by f(Kad) = {f °a). Since f ° (a. f) = (f ° @).(f ° B), we see that f, is a homo-
morphism: we say that f, is induced by f.
+ 7, because it is the first of a sequence of groups 7,(X), 7(X), ..., the so-called homotopy groups
of X. :
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Our construction immediately gives:

(5.7) Theorem. (g °f), = g, °f, whenever we have spaces and maps
X1osY 47

We ought to be more careful: our statement of theorem (5.7) is really a convenient
abbreviation. To be completely precise, we should make explicit mention of
base points, i.e., choose base points pe X, q = f(p)e Y, r = g(q) € Z, and say
that (g °f),:7,(X,p) — 7,(Z,r) is the composition

(X)) o 7y (Vi) = my(Z,)

In the special case where we have a homeomorphism h: X — Y, we may
apply theorem (5.7) to X —2» Y -+ X, and to Y 2 X -t ¥, obtaining

h—l* ° h* = (IX)* :nl(Xap)_) nl(Xap)
hyoh™ty = (1p)y 1 (Vh(p) — 7y (Vh(p)

But an identity function quite clearly induces the identity homomorphism,
and therefore h,:7,(X,p)— n,(Y,h(p)) is an isomorphism. So homeomorphic
(path-connected) spaces have isomorphic fundamental groups.

We now have one way of attempting to distinguish between two path-
connected topological spaces. We can try to compute their fundamental groups
and then check whether or not these groups are isomorphic. If they are not
isomorphic, the spaces are not homeomorphic. If the groups are isomorphic
then we gain no information and we are left to look for a finer, more sophisticated
invariant to distinguish between the spaces in question.

Problems

9. Let o, f, y be loops in a space X, all based at the point p. Write out formulae
for («.f).y and a.(8.y), and work out a specific homotopy between these two
loops. Make sure that your homotopy is a homotopy rel{0,1}.

10. Let y, o be two paths in the space X which begin at the point p and end at q.
As in the proof of theorem (5.6), these paths induce isomorphisms y,, g, of
n,(X,p) with 7,(X,q). Show that o, is the composition of y, and the inner auto-
morphism of 7,(X,g) induced by the element {(a~! y).

11. Let X be a path-connected space. When is it true that for any two points
p,g € X all paths from p to g induce the same isomorphism between #,(X,p)
and mn,(X,g9)?

12. Show that any indiscrete space has trivial fundamental group.

13. Let G be a path-connected topological group. Given two loops o, § based
at e in G, define a map F:[0,1] x [0,1]— G by F(s,t) = a(s).B(t), where the
dot denotes multiplication in G. Draw a diagram to show the effect of this map
on the square, and prove that the fundamental group of G is abelian.
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14. Let E3 denote those points of E* which have nonnegative final coordinate.
Show that the space E3 — {(x,5,2) |y = 0,0 < z < 1} has trivial fundamental
group.

5.3 Calculations

This section contains our first calculations. We shall deal with the circle and
one or two other simple spaces: more general calculations will have to wait
until Chapter 6.

Space Fundamental group
Convex subset of E* Trivial
Circle Z
Snz=2 Trivial
Pin>2 Z,
Torus Z x Z
Klein bottle {a,b|a* = b*}
Lens space L(p, q) Z,

Convex subset of E. In this case, we can shrink any loop to the constant loop
at the base point by means of a straight-line homotopy. So the fundamental
group of a convex subset of a euclidean space is the trivial group. A path-
connected space whose fundamental group is trivial is said to be simply
connected.

The circle. Identify the circle with the unit circle in the complex plane, and
let m:R— S* denote the exponential mapping x - e*™*. All integers are
identified to the point 1 € S* by the exponential map, and we choose this point
as our base point.

Given an integer ne Z, let y, denote the path y,(s) = ns, 0 < s < 1, joining 0
to n in R. Then 7, projects under = to a loop based at 1 in S*. Also, 7 © 9, winds
round the circle n times, in an anticlockwise direction for n positive, or clockwise
if n is negative.

(5.8) Theorem. The function ¢:Z — n,(S*, 1) defined by ¢p(n) = <m°y,> is an
isomorphism.

In order to prove theorem (5.8) we shall need the help of some lemmas. First
note that if y is any other path joining O to n in R, then y and 7, are homotopic
relative to {0,1} and therefore project to homotopic loops in S.
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(5.9) Lemma. ¢ is a homomorphism.

Proof. Given integers m, n, let ¢ be the path in R defined by a(s) = v,(s) + m.
Thenneo = mey, and y,.0 joins 0 to m + n. Therefore

¢(m + n) = <7t ° Vm + n> = <7'L' ° (’ym'a)>
=Ly (@ a)) = {(moym) (o))
= ¢(m).¢(n)

Our next job is to show that ¢ is onto. In order to do this we begin with an
element of 7,(S*,1), represent the element by a loop « based at 1, and try to ‘lift’
this loop to a path y in R which begins at 0. In other words, we try to find a
path y in R which satisfies # ° y = « and ¥(0) = 0. Suppose we can do this, then
the endpoint y(1) of y projects to «(1) = 1 in S, and therefore must be an integer
n. By construction ¢(n) = {a). This integer is called the degree of «, it measures
the number of times o winds round the circle.

To carry out this lifting process we need to examine our identification map
n:R— $' in more detail. Let U be the open set in S formed by deleting the
point — 1, and consider the inverse image of U in R. This is precisely the union
of all open intervals of the form (n — 4,n + %),neZ. We note that these
intervals are pairwise disjoint and that the restriction of n to any one of them
is a homeomorphism of the interval with U. Similarly, if V = S* — {1}, the
inverse image of V breaks up as a disjoint union of open sets in such a way that
the restriction of n to any one of the open sets is a homeomorphism. Now
U v Vis all of §*. Therefore if we have a loop in §! we can try to break it up
into segments so that each segment lies in either U or V, then lift these segments
one by one back into R using the special properties of U and V noted above.

(5.10) Path-lifting lemma. If ¢ is a path in S* which begins at the point 1, there
is a unique path & in R which begins at 0 and satisfies w° & = o.

Proof. The open sets ¢~ *(U), o~ X(V) give an open cover of [0,1], so by
Lebesgue’s lemma (3.11) we know that we can find points 0 =
to <t; <...<t, =1 such that each [t,¢;, ] lies in ¢~ }(U) or c~ (V). We
first define & on the subinterval [0,t,]. Since o begins at the point 1 we must
have o([0,t;]) = U. Remember that n|(—4%,3) is a homeomorphism from
(—3, %) to U, and let f denote its inverse. Now set 6(s) = fa(s) for 0 < s < ¢,.
Suppose, inductively, that we have defined 6 on [0, ¢, ] and wish to extend our
definition over [, t; 4 1] f o([tis t, + 1]) € U, and if 6(t)e (n — 3, n + ), we
let g denote the inverse of 7 | (n — 4, n + 3) and set 6(s) = ga(s), t, < s < t 4 ;-
If 6([t, tx 4 1 ]) S V, then 6(t;) € (n, n + 1) for some n. The restriction of n to
(n,n + 1) is a homeomorphism, with inverse, say h, and we can define
6(s) = ho(s), t, < s <t . This completes our inductive definition of the
lifted path 6. Notice that having defined & on [0, #,], there is only one way to
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extend it over [¢,, ; 4 {]; therefore G is unique.

Of course, we could have stated lemma (5.10) in a more general form. If ¢
is a path in S* which begins at the point p, we can find a unique path & in R
which satisfies 7 ° 6 = ¢ and which begins at any preassigned point of =~ 1(p).
Such a path ¢ is called a lift of o.

In order to show that ¢ is one—one we shall need to lift homotopies from the
circle back into the real line. This can be done using the following result:

(5.11) Homotopy-lifting lemma. If F:1 x I — Sf is a map such that F(0zt) =
F(1,t) = 1 for 0 < t < 1, there is a unique map F:1 x 1— R which satisfies

15015=F;and
FOt) =0,0<t<1

Proof. We shall give only an outline, since the idea is precisely the same as for
lemma (5.10). Subdivide I x I into squares by means of horizontal and vertical
lines so that each square maps into U, or into V, under F. This requires an
application of Lebesgue’s lemma. We build up our definition of F over these
squares one at a time, beginning with the bottom row, working from left to right;
then dealing with the second row in the same direction; etc. There is one point
to be made: notice that when we want to extend the definition of F over a
particular square, the part of the square on which Fis already defined consists
of either the left-hand edge, or the left-hand edge and the bottom. In both
cases, this set is connected. This means that its image under F lies entirely
inside one of the components of n~}(U) or =z~ }(V) (according as F sends the
square in question inside U or V), and we use the fact that the restriction of
to this component is a homeomorphism in order to complete the definition of
F over our square.

Proof of theorem (5.8). By lemmas (5.9) and (5.10), we know that
¢:Z— m(S*, 1) is a homomorphism and is onto. To see that ¢ is one—one,
we argue as follows. Let ne Z and suppose ¢(n) is the identity element of
7,(S*,1). This means that if we join O to n by a path y, then & © y is a null-homo-
topic loop, i.e., is homotopic to the constant loop at the base point. Choose a
specific homotopy F from the constant loop at 1 e §* to 7 ° 9, and apply lemma
(5.11) to find F:I x I - R which projects onto F and satisfies F(0,t) = 0
O0<t< 1.

Let P denote the union of the left- and right-hand edges and bottom of
I x I:then F maps all of P to 1. Since n° F =F, and since P is connected,
we know that F must map all of P to some integer. But F sends the left-hand
edge of I x 1100, so F(P) = R

The path in R defined by F (s, 1) is a lift of = © y which begins at 0, and must
therefore be y by the uniqueness part of lemma (5.10). Since F(1,1) = 0, we
conclude that y(1) = n = 0. Therefore the kernel of ¢ consists of the integer 0
alone and we have proved that ¢ is an isomorphism.
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The n-sphere. To show that S” has trivial fundamental group, for n > 2, we use
the following result:

(5.12) Theorem. Let X be a space which can be written as the union of two simply
connected open sets U, V in such a way that U NV is path-connected. Then X is
simply connected.

Proof. We show that any loop in X is homotopic to a product of loops each
of which is contained in either U or V. This is enough to prove the theorem since
U and V are both simply connected.

Choose a base point pe U n V, and let «: 1 — X be a loop based at p. Using
Lebesgue’s lemma (3.11), we can find points 0 =ty <t; <, <...<t, =1
in I such that a([ ¢ - {, t,]) is always contained in U or V. Write «, for the path
seal(ty — ti— s + 1, - 1),0 < s < 1. Joinptoeachpoint (), 1 < k< n— 1.
by a path y, which lies in U if «(t,) e U, and which lies in V if a(t,)e V. If
ot )e U V we need to find y, in U n V; this poses no problem since we have
assumed U n V to be path-connected. Our loop « is homotopic to the product

(.71 1)-(?1'“2-')’2_ 1)-(?2-“3-3’5 1)-- ceo(Pn = 100t)

each member of which is a loop contained in U or V. Figure 5.5 illustrates the
argument for the 2-sphere written as the union of two open discs.

Figure 5.5

To apply this result to S”, take distinct points x,y and set U = §" — {x},
V = 8" — {y}. Both U and V are homeomorphic to E", and therefore simply
connected, and U n V is path-connected provided n = 2.

Orbit spaces. The circle is the orbit space (Section 4.4) of the action of the
integers on the real line by addition, and our computation of 7,(S?) is a special
case of the following result, which also allows us to compute the fundamental
groups of the torus, the Klein bottle, and the Lens space L{p,q).
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(5.13) Theorem. If G acts as a group of homeomorphisms on a simply connected
space X, and if each point x € X has a neighbourhood U which satisfies
U ng(U) = & for all ge G — {e},} then n(X/G) is isomorphic to G.

Sketch proof. The idea is exactly as before. Fix a point x, € X and, given g € G,
join x, to g(x,) by a path y. If n: X — X /G denotes the projection, 7 © y is a loop
based at n(x,) in X/G. Define

¢:G — 7,(X/G, n(xo))

by ¢(g) = {m°y). Since X is simply connected, we can change y to any other
path joining x, to g(x,) without affecting ¢.

It is not hard to check that ¢ is a homomorphism.f In order to prove ¢
one—one and onto we need analogues of our homotopy-lifting and path-lifting
lemmas, (5.10) and (5.11). (For example, to show ¢ onto, start with an element
(o) e m1(X/G, n(x,)) and try to find a path y in X which begins at x, and
satisfies 7 © y = o The endpoint y(1) lies in the orbit of x,, so there is an element
g € G such that g(x,) = y(1). By construction ¢(g) = <{a).)

Thinking back to our work on the circle, we see that these two lemmas hold
for any map n: X — Y with the following property.} For each y e Y we require
an open neighbourhood ¥, and a decomposition of 7~ (V) as a family {U,}
of pairwise disjoint open sets, in such a way that the restriction of z to each U,
is a homeomorphism from U, to V. Such a map = is called a covering map, and
X is called a covering space§ of Y.

Now given y e X/G, we choose a point x € n~(y) and a neighbourhood U of
x in X such that U n g(U) is empty for all elements of G other than the identity.
We set V = n(U), remembering that 7: X — X/G takes open sets to open sets,
and take {g(U)|g € G} for the family {U,}. This shows that 7 is a covering map
and completes our sketch proof of theorem (5.13).

Several of the examples of group actions in Section 4.4 satisfy the hypotheses
of theorem (5.13):

Example 1. Z x Z on E? with orbit space the torus T, giving n,(T) = Z x Z.
Example 2. Z, on S" with orbit space P”, giving n;(P") = Z, forn = 2.
Example 6. Z, on S> with orbit space the Lens space L(p,q), giving 7,(L(p,q)) = Z,,

Consider example 1. Given a point of the plane, take the open disc of radius %
about this point as U. Then any translation in Z x Z (other than the identity)
moves this disc off itself. We leave examples 2 and 6 to the reader.

Fundamental groups are not always abelian. Let G be the group with
generators t, u, subject to the relation u~! tu = ¢~ !, and consider the action of
G on the plane determined by

+ If this condition is satisfied then G has the discrete topology.
1 Details are left to the reader, though we give some help in Problems 17-20.
§ For a detailed treatment of covering spaces see Chapter 10.
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Hx,y) = (x + 1,)
uxy)=(—x+ 1,y +1)

Then ¢t is a translation parallel to the x axis, and u a glide reflection along the
line x = 4. The hypotheses of theorem (5.13) are easily checked, and the orbit
space is the unit square with its sides identified as shown in Fig. 5.6, i.e., the
Klein bottle K. Therefore the fundamental group of the Klein bottle is the
group G. In terms of the parallel glide reflections a = tu, b = u, we recapture
example 8c of Section 4.4 and we have n,(K) = {ab|a* = b?}.

LYy

Figure 5.6

Product spaces. The final result of this section provides another tool for
calculating fundamental groups:

(5.14) Theorem. If X and Y are path-connected spaces 7,(X x Y) is isomorphic
to m((X) x m(Y).

Proof. Choose base points x, € X, yo€ Y, and (x,, yo)€ X x Y. All loops will
be based at these points though, for simplicity, we shall omit them from the
notation. The projections p;, p, induce homomorphisms p;, :7,(X x Y)—
Ty (X), Pay:my(X x Y)— 7,(Y), and provide us with a ready-made homo-
morphism

(X x Y)—5 my(X) x 7,(Y)
Capr—— (Kpy o o), {p° o))

If o« is a loop in X x Y, and if pyea 5 e, py°u
where H{s,t) = (F(s,1),G(s,t)). Therefore i is one—one.,

To show that i is onto, we begin with loops in X, y in Y, and form the loop
afs) = (B(s), y(s)) in X x Y. By construction, p;ca=pf and p,°ca =y.
Therefore Y({a)) = ({BD, {yD) as required.

% yo? then « % 7 €0, yo)
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This result gives a second proof that the torus has fundamental group
Z x Z and shows, for example, that =,(S™ x S") is the trivial group when
mn = 2.

Problems

15. Use theorem (5.13) to show that the Mobius strip and the cylinder both have
fundamental group Z.

16. Think of S" as the unit sphere in E"* *. Given a loop « in S", find a loop f
in E"* ! which is based at the same point as «, is made up of a finite number of
straight line segments, and satisfies || a(s) — f(s)|| < 1 for 0 < s < 1. Deduce
from this that $" is simply connected when n > 2. Where does your argument
break down in the case n = 1?

17. Read through the sketch proof of theorem (5.13). If ¢4, g, € G, join x, to
g1(xo) by a path y,, and x, to g,(x,) by y,. Observe that y,.(g, °y,) joins x, to
g192(xo) and deduce from this that ¢ is a homomorphism.

18. Let 7: X — Y be a covering map. So each point y € Y has a neighbourhood
V for which 7~ (V) breaks up as a union of disjoint open sets, each of which
maps homeomorphically onto ¥ under 7. Call such a neighbourhood ‘canonical’.
If o« is a path in Y, show how to find points 0 =, <t; < ... <t, = 1 such
that a([¢;t; + 1]) lies in a canonical neighbourhood for 0 < i < m — 1. Hence
lift & piece by piece to a (unique) path in X which begins at any preassigned
point of 7~ *(c(0)).

19. Let 7: X — Y be a covering map, pe Y, gen '(p),and F:I x I — Y a map
such that F(0,) = F(1,5) = p for 0 < t < 1. Use the argument of lemma (5.11)
to fmdamapF I x I — X which satisfies n © F = F, and FOt) =4q0<t< 1.
Check that F is unique.

20. Redo Problem 19 as follows. For each ¢ in [0, 1] we have a path F(s) = F(s,t)
in Y which begins at p. Let F, be its unique lift to a path in X which begins at
g, and set F (s,t) = F(s). Check that F is continuous and lifts F.

21. Describe the homomorphism f, :7,(S*, 1) = 7,(S", f(1)) induced by each of
the following maps:
(a) The antipodal map (') = ¢®*™,0< 0 < 2n
(b) f(e'®) = &' 0 < 0 < 2n, where ne Z.

) elf 0<f<n

iy S x
(C)f(e ) = ei(Zﬂ—B)’n < 0 < 2n
22. In Section 4.4 we described three different actions of Z, on the torus, and
found the orbit spaces to be the sphere, the torus, and the Klein bottle. For each
of these actions, describe the homomorphism from the fundamental group of
the torus to that of the orbit space induced by the natural identification map.

23. Provide a precise solution to the second part of Problem 8 as follows. Let
«, 3 be the paths in A defined by a(s) = (s + 1,0) and B(s) = ha(s), 0 < s < 1.
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Show that if h is homotopic to the identity relative to the two boundary circles
of A, then the loop a~ '8 is homotopic rel{0,1} to the constant loop at the point
(1,0). Now check that this loop represents a nontrivial element of the funda-
mental group of A.

5.4 Homotopy type

The fundamental group is in fact left invariant by a much larger class of maps
than the class of homeomorphisms. Like the other algebraic invariants which
we shall construct later (homology groups and the Euler characteristic), it is an
invariant of the so-called homotopy type’ of a space.

(5.15) Definition. Two spaces X and Y have the same homotopy type, or are
homotopy equivalent, if there exist maps

such that gof >~ 1y and f° g >~ 1;.

The map g is called a homotopy inverse for f, and a map which has a homotopy
inverse will be called a homotopy equivalence. We shall write X ~ Y when
X and Y have the same homotopy type.

(5.16) Lemma. The relation X ~ Y is an equivalence relation on topological
spaces.

Proof. The reflexive and symmetry properties are obvious. The relation is
transitive because if we have maps

f u
X/—\AY Y/\Z
'\/ '\_/
g v

which are homotopy equivalences, then by lemma (5.4)

geveucof~gelyef=gofx~ly
and
uofogovzuclyov—_—uovzlz

Therefore the maps
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show that X and Z have the same homotopy type.

Examples.
1. Homeomorphic spaces have the same homotopy type.

2. Any convex subset of a euclidean space is homotopy equivalent to a point.

3. " — {0} has the homotopy type of $"~ . Define g:E" — {0} — S"~ ! by
g(x) = x/|| x|, and let f:S8""*— E* — {0} be inclusion. Then geof = 15 .
and 1p .~ f°g via G(x, t) = (1 — )x + t(x/|]| x||). The case n = 2 is illus-
trated by Fig. 5.7; the arrows indicate how points move during the homotopy G.

.
A
-

Figure 5.7

I

\

> “’/7i\\‘

4. Let A be a subspace of X. A homotopy G:X x I — X which is relative to A
and for which

G(x,0) = x

G(x,l)eA} forall xe X

will be called a deformation retraction of X onto A. If there is a deformation
retraction of X onto A, then of course X and 4 have the same homotopy type
(take f: 4 — X to be inclusion and g: X — A4 to be x — G(x,1)). Fig. 5.8 shows
deformation retractions of a disc with two holes onto the one-point union of
two circles (figure of eight); onto two circles joined by a line segment; and
onto a space which looks like the letter 8. We conclude that all these spaces are
homotopy equivalent. (Their fundamental group is the free group Z*Z on
two generators, as we shall see in Chapter 6.)
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Suppose that f,g: X — Y are homotopic maps. As a first step towards showing
that spaces of the same homotopy type have isomorphic fundamental groups,
we propose to examine the relation between the homomorphisms f,, g, of
fundamental groups induced by f and g. As we shall see they differ by an
isomorphism.

~

—— _-—

s e
i -—
b i

Figure 5.8

(5.17) Theorem. If f % g:X— Y then g, :n,(X,p)— n,(Y,8(p)) is equal to the
composition

1(X.p) — 7y (Y (p) == m,(Y.9(p)),
where vy is the path joining f(p) to g(p) in Y defined by y(s) = F(p,s).

Proof. Let o be a loop in X based at p. By definition, g,({«)) = {g°«) and
Ve fil{0>) = (y7h(f° @).y). We must therefore show that the loops g°o
and (y~'.(f ° ).y are homotopic relative to {0,1}.

Consider the map G:I x I— Y defined by G(s,r) = F(a(s),?). This maps the
sides of the square I x I as shown in Fig, 5.9a. Using G we construct a homo-
topy H:I x I — Y between our two loops, whose effect on the square is illus-
trated in Fig. 5.9b, and whose precise definition is as follows:

(91 — as) 0<s< it
4
45+ 1 — 1 1—¢
Hist) = G<53t+1 ’t> 4 \Sslgt
y(2s — 1) —1;t<s<1

105



BASIC TOPOLOGY

As usual, we appeal to the glueing lemma (4.6) to see that both G and H are
continuous.

god gou
74 G A7 Y G y
\
\
\
v\ 7
\\ ///7
7 TIY TS
fo o
(a) (b)
Figure 5.9

(5.18) Theorem. If two path-connected spaces are of the same homotopy type,
they have isomorphic fundamental groups.

Proof. We shall have to keep a careful eye on base points during this proof. We
are given spaces and maps

¢ Ny
~__

g

such that 1y & g°fand 1y % f °g. Choose a base point pe X which lies in
the image of g, say p = g(g). We shall show that f, :n,(X,p)— n,(Y,f(p)) is
an isomorphism.
Let y be the path joining p to gf (p) in X defined by y(s) = F(p,s). Theorem 5.17
gives
@ ° s = 74 :7:(X,p) — 7,(X.9f (P)

which means that (g © f),, is an isomorphism. But (g °f),, is the composition

7(X,p) — my(Vf (p) —2 my(X.af (P)

and therefore f,, is one—one.
To show f,, is onto, we proceed in a similar fashion. Let o be the path joining
q to f(p) in Y defined by a(s) = G(g,s). By theorem (5.17)

(fo g)* =0y :nl(Y’q)—-) nl(Yaf(p))
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and so (f° g), is an isomorphism. But (f° g), is the composition
my(Y,q) 2 1y(X.,p) "= m(Y, £ (p))
and we see that f,, is onto. Therefore f, is an isomorphism.

Using the above, we can squeeze a little more information out of our calcula-
tions. The Mobius strip, the cylinder, the punctured plane E* — {0}, and the
solid torus, all have the homotopy type of a circle, and consequently have Z
as fundamental group. E” — {0} deformation-retracts onto S"~ ', and is there-
fore a simply connected space when n > 3.

A space X is called contractible if the identity map 14 is homotopic to the
constant map at some point of X,

(5.19) Theorem. (a) A space is contractible if and only if it has the homotopy type

of a point.

(b) A contractible space is simply connected.

(c) Any two maps into a contractible space are homotopic.

(d) If X is contractible, then 1y is homotopic to the constant map at x for any
xeX.

Proof. (2) Given p € X, write c, for the constant map at p and i for the inclusion
of {p} in X.If 1 is homotopic to ¢,» the maps

p

XO{p}

show X has the homotopy type of a point. Conversely, given maps
¥
S
g

such that g °f ~ 1y, we see that 1y is homotopic to the constant map at the

point p = g(a).

(b) If 1y % ¢, the path y(s) = F(x,s) joins x to p. So X is path-connected.t Now

apply theorem (5.18).

(¢) If 1y ~ c,, then given maps f,g:Z — X we have
f=1xof~c,of=cog>lxog=9g

(d) Suppose 1y ~ ¢, and apply (c) to the maps c,, ¢,: X — X.

T If X and Y have the same homotopy type then X is path-connected if and only if Y is path-
connected.
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Any convex subset of a euclidean space is contractible, and we can easily
imagine how to deform the identity map (along straight lines) to the constant
map at any point. However, this example should not lead to too much optimism.
In ‘homotoping’ the identity map 1y to a constant map c,, we may be forced to
move the point p during the homotopy, i.e., there may not be a homotopy
relative to {p} from 1y to c,. For an example, take the ‘comb space’ shown in
Fig. 5.10 as X, and take p to be the point (0,3). There is no homotopy from 1
to ¢, which keeps p fixed. (Why not?) But we can shrink each tooth of the comb
vertically until we arrive at the interval [0,1] on the x axis, then shrink this
interval to the point O:

VA

p y
The comb has a
‘tooth’ joining
(0, 0) to (0, 3),
and (=, 0) to
(. 7) for
n=123,...

of i i 4 1 X

Figure 5.10

this shows 1, homotopic to c,. Moving 0 up the y axis to p completes a homotopy
from 1y to c,,.

Figure 5.11

A contractible space may not look very contractible. If we identify the sides
of a triangle in the manner indicated in Fig. 5.11 we obtain a space called the
‘dunce hat’. The dunce hat is contractible (Problems 27, 28), though there
appears no obvious way of setting about contracting it.
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Problems

24. If X ~ Yand X' =~ Y, show that X x X' ~ Y x Y'. Show also that CX
is contractible for any space X.

25. Show that the punctured torus deformation-retracts onto the one-point
union of two circles.

26. Consider the following examples of a circle C embedded in a surface S:
(a) S = Mobius strip, C = boundary circle;
(b) S = torus, C = diagonal circle
= {(x))eS! x §'|x = y};
(c) S = cylinder, C = one of boundary circles.
In each case, choose a base point in C, describe generators for the fundamental
groups of C and S, and write down in terms of these generators the homo-
morphism of fundamental groups induced by the inclusion of C in S.

27. Prove that if f,g: S* — X are homotopic maps, then the spaces formed from
X by attaching a disc using f and using g are homotopy equivalent; in other
words, X U, D ~ X u, D.

28. Use Problem 27, and the third example of a homotopy given in Section 5.1,
to show that the ‘dunce hat’ has the homotopy type of a disc, and is therefore
contractible.

29. Show that the ‘house with two rooms’ pictured in Fig. 5.12 is contractible.

Entrance to Room 1”

Entrance to Room 2
-~

-

Figure 5.12

30. Give detailed proofs to show that the cylinder and Mgbius strip both have
the homotopy type of the circle.

31. Let X be the comb space shown in Fig. 5.10. Prove that the identity map of
X is not homotopic rel{p} to the constant map at p.

32. (Fundamental theorem of algebra) Show that any polynomial with complex
coefficients, which is not constant, has a root in C as follows. We can clearly
take the leading coefficient tobe 1,solet p(z) = 2" + a, _ 12" "1 + ... + a,z + a,.
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Under the assumption that p(z) is never zero, define a map f;:S' — S* by
£.(z) = p(tz)/| p(tz) | for each nonnegative real number t. Prove that any two of
these maps are homotopic, note that f, is a constant map, and produce a
contradiction by showing that for ¢ large enough, f, is homotopic to the func-
tion g(z) = 2"

5.5 The Brouwer fixed-point theorem

Our first application of the machinery created so far is to a celebrated result of
L. E. J. Brouwer concerning fixed points of continuous functions. Brouwer’s
theorem states that a continuous function from a ball (of any dimension) to itself
must leave at least one point fixed. For reasons which will emerge shortly, we
cannot deal with the result in this degree of generality here. We shall give proofs
assuming the dimension of the ball to be no more than two, leaving the general
case to Chapter 8§, theorem (8.14).

Proof for dimension 1. We can replace any ball of dimension 1, up to homeo-
morphism, by the unit interval I = [0,1]. We must show that if f:]— I is
continuous, there is a point xel such that f(x)=x. If not, then
I={xel|f(x)<x}u{xell|lf(x)> x}. Now f(1) <1 and f(0) > 0, so that
these sets are nonempty, and using the continuity of f'it is easy to check they
are both open. Since I is connected, we have a contradiction.

A slightly different version of this argument, and one which lends itself better
to higher dimensions, is the following. Again assume the result false, and define
g:1— {0,1} by g(x) = 0if f(x) > x and g(x) = 1 if f(x) < x. The continuity of
g follows from that of f, and g is onto since g(0) = 0 and g(1) = 1. We have once
more contradicted the fact that I is a connected space.

Proof for dimension 2. We take the unit disc D in the plane as our standard
two-dimensional ball and assume we have a map f :D — D which has no fixed
points. Mimicking the above, for each point x draw a line segment from f(x)
to x (the direction is important) and extend it until it hits the unit circle C
(Fig. 5.13). Sending x to the intersection of this line segment with C defines a
function g:D — C. The continuity of f ensures that g is continuous, and by
construction g(x) = x for all points of C.

We feel very strongly that a function g:D — C, which is the identity on C,
will have to tear D and therefore cannot possibly be continuous. In dimension
1 we obtained our contradiction by comparing the connectedness of I with the
fact that {0,1} is not connected. Both D and C are connected spaces, so we
cannot use the same argument here. However, D is simply connected, whereas
C has fundamental group Z, and the contradiction now comes by arguing
that the induced homomorphism g, :7; (D) — 7; (C) must be onto.
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g(x)

\

Figure 5.13

Take the point p = (1,0) as base point for both C and D, and denote the
inclusion of C in D by i:C— D. The spaces and maps C—— D —%> C give
rise to groups and homomorphisms

74(C,p) —* 1 y(D,p) = 7,(C.p)

Now g ¢ i(x) = x for all x in C, therefore g, ° i, is the identity homomorphism
and g, must be onto. But n,(D,p) is the trivial group and =,(C,p) = Z, so we
have our contradiction and Brouwer’s theorem must be true in dimension 2.

The above argument shows the interplay between algebra and topology at
its best. The initial geometrical problem is difficult, yet once translated into
algebra the solution uses only the simplest of ideas. Note the importance of
theorem (5.7) in allowing us to identify the homomorphisms g, ° i, and (g ° i),.
For balls of dimension greater than 2 we can proceed in the same way, but
we cannot use the fundamental group for the proof because the boundary of
the n-ball (S"~!) is simply connected for n > 2. We use homology groups
instead; see Chapter 8.

If A is a subspace of X and if g: X — A is a map for whichg| 4 = 1,, theng
is called a retraction of X onto A. With this terminology, the proof given above
amounts to showing that there is no retraction of a disc onto its boundary
circle. The important property of a retraction is that it induces an onto home-
morphism of fundamental groups. (The proof is as above with D and C replaced
by X and A respectively, and p replaced by a point of A4.)

Problems
We shall say that the space X has the fixed-point property if every continuous
function from X to itself has a fixed point.

33. Which of the following spaces have the fixed-point property?
(a) The 2-sphere; (b) the torus; (c) the interior of the unit disc; (d) the one-point
union of two circles.
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34. Suppose X and Y are of the same homotopy type and X has the fixed-point
property. Does Y also have it? If X retracts onto the subspace A, and 4 has the
fixed-point property, need X also have it?

35. Show that if X has the fixed-point property, and if X retracts onto the sub-
space A, then A also has the fixed-point property. Deduce the fixed-point
property for the ‘house with two rooms’ of Problem 29.

36. Let f be a fixed-point-free map from a compact metric space to itself. Prove
there is a positive number ¢ such that d(x, f(x)) > ¢ for every point of the space.

37. Does the unit ball B" in E" with the point (1,0,...,0) removed have the fixed-
point property?

38. Show that the one-point union of X and Y has the fixed-point property if
and only if both X and Y have it.

39. How does changing ‘continuous function’ to ‘homeomorphism’ in the
definition of the fixed-point property affect Problems 33 and 37?7

5.6 Separatioh of the plane

We say that a subset 4 of a space X separates X if X — A has more than one
component. In this section we shall prove two separation theorems for the
plane:

(5.20) Theorem. If J is a subspace of E* which is homeomorphic to the circle, then
J separates 2.

(5.21) Theorem. If A is a subspace of E*> which is homeomorphic to the closed
interval [0,1], then A does not separate E>.

A subspace J < E* homeomorphic to the circle is normally called a Jordan
curve, or a simple closed curve. A subspace 4 = E*> homeomorphic to [0,1] is
called an arc. If J = E? is a Jordan curve, then E2 — J has (as one would expect)
exactly two components, one bounded, the other unbounded, and J is the
frontier of each. This is the famous Jordan curve theorem, a detailed discussion
of which can be found in Munkres [10] and Wall [12]. We shall content our-
selves here with the weaker statement of theorem (5.20), though we do give
better results for polygonal curves in the problems.

Proof of theorem (5.20). We identify E? with the plane in E* determined by the
equation z = 0, and we use S? to denote the unit sphere in E>. Let & be a homeo-
morphism from E? to $% — {(0,0,1)}, choose a point pe h(J), and choose a
homeomorphism k:E* —— S* — {p}.

Set L = k™ '(h(J) — {p});then Lisaclosed subset of E* which is homeomorphic
to the real line. We imagine L as a line in the plane which runs off to infinity at
both of its ends (Fig. 5.14). It is easy to check that E* — J,S* — h(J), and
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E? — L all have the same number of components. We shall prove theorem
(5.20) by showingt that E*> — L is not connected.

We assume F2 — L connected and aim for a contradiction. L is closed in E?
and therefore E2 — L is path-connected by theorem (3.30). Let H ., H _ denote
the open half-spaces of 3 defined by z > 0, z < 0, and set

U=H, u{xy2|kxyeE*—-L —1<z<0}
V=H_u{xpz|xyet*—~L 0<z<1}

Then Uu V =E3 — L, and U NV is homeomorphic to (E* — L) x (—1,1)
which is a path-connected space. Also, both U and V are simply connected
because any loop can be pushed vertically until it lies in either H, or H_, and
then shrunk to a point. Theorem (5.12) now tells us that E* — L is simply
connected. To reach a contradiction, and hence to complete the proof of
theorem (5.20), we use the following lemma.

0,0, 1)
2
S e ()
@ . =7 £
5?2 ‘\k
E2
—’_\L/L‘-\—
Figure 5.14

(5.22) Lemma. There is a homeomorphism h:E* — E3 such that h(L) is the z axis.

If we can prove this lemma, then we have our contradiction as follows. By the
lemma, E* — L is homeomorphic to E* — (z axis), which is in turn homotopy
equivalent to E? — {0}. But the latter has infinite cyclic fundamental group.
Therefore n,(E* — L) = Z, contradicting the calculation made above.

Proof of (5.22). Choose a homeomorphism f:L—F! and consider the set of
points L; < E* defined by
Ll = {(xaysf(xvy)) l (X,}’) € L}

This is a closed line in E3 which lies vertically ‘over’ L and which intersects each
horizontal plane in exactly one point. The idea is first to move L to L, by
moving its points vertically, then to push L, horizontally across to the z axis
(Fig. 5.15).

1 Using an argument due to Doyle [24].
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/ E
L

Figure 5.15

We must do this by means of a homeomorphism of all of E*. Extend
f:L— E' to a continuous function g:E?— E' using the Tietze extension
theorem (2.15), and define h,:E*— E* by h,(x,y.2) = (x,,z + g(x,y)). Then
h, is a homeomorphism and h,(L) = L;. Now set

hZ(xsy’Z) = (X —f_l(z)x? y _f_l(z)y’ Z)

where (f~!(z),, f~'(z),) are the coordinates of f ~'(z) in E2. So h, is also a
homeomorphism, and h,(L,) is the - axis. Finally, define h = h, ° h;. Then
h is a homeomorphism and h(L) is the z axis as required. This completes the
proof of theorem (5.20).

Proof of theorem (5.21). Suppose E? — A has more than one component. Since
A is compact, and therefore bounded, E? — 4 has a unique unbounded com-
ponent. Let K denote a bounded component of E> — A. Choose a disc D with
centre the origin and large enough so that 4 U K lies in its interior. Let pe K
and let 7:D — {p} — S* be the obvious retraction along straight lines joining p
to the points of the boundary circle S* of D. Set f=r|D — K:D — K- S

Now consider h = r|A4:4— S'. Since A4 is homeomorphic to [0,1] we can
use lemma (5.10) to lift h to a map h:A — R which satisfies m° & = h, where
7:R — S' is the exponential map. By the Tietze extension theorem, / extends
toamapj:AUK—> R Setg=n°g:4Au K S,

We plan to glue fand g together to give a map fu g:D — S!. Now fand g
certainly agree on A; the only question is whether f'U g is continuous. The
components of an open subset of a euclidean space are always open sets, so K
is open. Therefore D — K is closed in D. Also, the closure of K cannot meet any
other component of E> — 4, so K = 4 u K. Since 4 is clearly closed in D we
see that 4 U K is closed in D. By the glueing lemma, f U g:D— S! is con-
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tinuous. But fu g(x) = f(x) = x for all points x of S, in other words, fu g
is a retraction. We have seen in Section 5.5 that there is no retraction of a disc
onto its boundary, and we have the required contradiction.

Problems

40. Let 4 be a compact subset of E”. Show that E" — A has exactly one un-
bounded component.

41. Let J be a polygonal Jordan curve in the plane. Choose a point p in the
unbounded component of E* — J which does not lie on any of the lines produced
by extending each of the segments of J in both directions. Given a point x of
E? — J, say that x is inside (outside) J if the straight line joining p to x cuts
across J an odd (even) number of times. Show that the complement of J has
exactly two components, namely the set of inside points and the set of outside
points.

42. Let J be a polygonal Jordan curve in the plane, and let X denote the closure
of the bounded component of J. Show that X can be broken up into a number
of convex regions by extending the edges of J, then divide each of these regions
into triangles. Now use induction on the number of triangles to show that X
is homeomorphic to a disc.

43. Having done Problem 42, show there is a homeomorphism of the plane
which takes J to the unit circle. (This is the Schonflies theorem for polygonal
Jordan curves. It is true for a general Jordan curve, but much harder to prove.)
44, If J is a Jordan curve in the plane, use theorem (5.21) to show that the
frontier of any component of E? — J is J.

45. Give an example of a subspace of the plane which has the homotopy type
of a circle, which separates the plane into two components, but which is not
the frontier of both of these components.

46. Give examples of simple closed curves on the torus, and on the projective
plane, which separate, and which fail to separate.

47. Let X be a subspace of the plane which is homeomorphic to a disc. Generalize
the argument of theorem (5.21) to show that X cannot separate the plane.

48. Suppose X is both connected and locally path-connected. Show that a map
f:X — S*lifts to a map f: X — R (in other words f followed by the exponential
map is precisely /) if and only if the induced homomorphism f,, :7,(X) — =,(S')
is the zero homomorphism.

5.7 The boundary of a surface

A surface is a Hausdorff space S in which each point has a neighbourhood
homeomorphic either to E2, or to the closed half space E2 (Fig. 1.16). The
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interior of S consists of the points of S which have a neighbourhood homeo-
morphic to E2. Those points x € S for which there is a neighbourhood U, and
a homeomorphism f:E% — U such that f(0) = x, form the boundary of S.

These definitions satisfy our intuition as to what ‘interior’ and ‘boundary’
should mean for a surface. We must, however, check that a point cannot lie
both in the interior and on the boundary.

(5.23) Theorem. The interior and boundary of a surface are disjoint.
Proof. We shall assume the result false and obtain a contradiction. Suppose
x lies both on the boundary and in the interior of S. This means we can find
neighbourhoods U, V of x in S, and homeomorphisms

[EBE-U

g:E2= vV

such that f(0) =¢g(0) = x. Choose a half-disc D, < E%, centre the origin and
small enough so that f(D;) < V.Set¢ =g~ 'f:D, — E%

. ?f_h
NP

¢(Dy)

2
E+

Figure 5.16

Because f'and g are homeomorphisms, ¢(D;) must be a neighbourhood of 0
in E2. Choose a disc D, < E? with centre the origin and of small enough radius
so that D, = ¢(D,). Write 8D, for the boundary circle of D, and let r:E* —
{0} — 8D, denote radial projection. Formally, if the radius of D, is R and if
yeE? — {0}, then r(y) = R(y/|| y |). The restriction of r to ¢(D,) — {0} is a
retraction of ¢(D;) — {0} onto dD,, and should therefore induce a homo-
morphism of 7,(¢(D,) — {0}) onto 7,(8D,). But ¢(D,) — {0} is homeomorphic
(via ¢) to D, — {0}, and the latter is easily seen to be contractible. Therefore
n,(¢p(D,) — {0}) is the trivial group, whereas 7,(0D,) is an infinite cyclic group.
This gives us our contradiction.

(5.24) Theorem. Let h:S; — S, be a homeomorphism between two surfaces.
Then h takes the interior of S, to the interior of S,, and the boundary of S, to
the boundary of S,.
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Proof. 1f x lies in the interior of S;, we can find a neighbourhood U of x in S,
together with a homeomorphism f:E?— U. Since h is a homeomorphism,
h(U) is a neighbourhood of h(x) in §,, and hf:[E* — h(U) is a homeomorphism.
Therefore h(x) lies in the interior of S, and we have proved that h sends the
interior of §; to that of S,. The same argument can be applied to £™ %, so h
maps the interior of S, onto the interior of S,. Since the interior and boundary
of a surface are disjoint, the boundary of S; must go onto the boundary of S,
under h, completing the proof.

(5.25) Corollary. Homeomorphic surfaces have homeomorphic boundaries.

(5.26) Corollary. The cylinder and the Mobius strip are not homeomorphic to
one another.

Problems

49. Use an argument similar to that of theorem (5.23) to prove that E? and E3
are not homeomorphic.

50. Use the material of this section to show that the spaces X, Y illustrated in
Problem 24 of Chapter 1 are not homeomorphic.
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6. Triangulations

6.1 Triangulating spaces

The collection of all topological spaces is much too vast for us to work with.
We have seen in previous chapters how to develop an abstract theory of topo-
logical spaces and continuous functions and to prove many important results.
However, working in such a general setting we quickly run into two kinds of
difficulty. On the one hand, in trying to prove a concrete geometrical result
such as the classification theorem for surfaces, the purely topological structure
of the surface (that it be locally euclidean) does not give us much leverage from
which to start. On the other hand, although we can define algebraic invariants,
such as the fundamental group, for topological spaces in general, they are not a
great deal of use to us unless we can calculate them for a reasonably large
collection of spaces. Both of these problems may be dealt with effectively by
working with spaces that can be broken up into pieces which we can recognize,
and which fit together nicely, the so called triangulable spaces.

Fig. 6.1 shows the sort of construction we have in mind. A homeomorphism
from the surface of a tetrahedron to the sphere gives a decomposition of the
sphere into four triangles, the triangles being joined along their edges. As a

—_—
homeomorphism

Figure 6.1 v

second example, suppose we chop up a strip into triangles and then identify
its ends with a half twist (Fig. 6.2). We obtain a space homeomorphic to a
Mobius strip and we say that we have ‘triangulated’ the Mobius strip.

Both the sphere and the Mbius strip are surfaces. They are two-dimensional
and so we can make models of them using triangles. For spaces of higher
dimension we need higher-dimensional building blocks for our construction.

Let vy,04,. .., be points of euclidean n-space E". The hyperplane spanned by
these points consists of all linear combinations Ayvq + 4,0, + ... + A0, where
each 4; is a real number and the sum of the 4, is 1. The points are in general
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position if any subset of them spans a strictly smaller hvperplane. It is an easy
matter to check that if we regard E” as a vector space, then this is equivalent to
asking that the vectors v; — vq, v, — Vg,...,V, — V, be linearly independent.

A simplicial complex homeomorphic
to the Mobius strip

Figure 6.2

Given k + 1 points vg, vy,..., v, in general position, we call the smallest
convex set containing them a simplex of dimension k (or a k-simplex). The
points v, vy, . ..,0; are called the vertices of the simplex. We recall that a point x
lies in the smallest convex set containing v, vy, ..., v if and only if it can be
written as a linear combination

x=).0U0 + 211)1 + ...+ Akvk

where the A; are all nonnegative real numbers and Ay + 4, + ... + 4, = L.
Looking at the first few dimensions we obtain:

0-simplex = point ey,
1-simplex = closed line segment F—a
Vo Vi
V2
2-simplex = triangle A
Vo V1
V3
3-simplex = tetrahedron (solid)
\“0 V-z

¥y

Simplexes have ‘faces’ in a natural way. If 4 and B are simplexes and if the
vertices of B form a subset of the vertices of A, then we say that B is a face of
A and write B < A. The idea of simplexes fitting together ‘in a nice way’ can be
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made precise by asking that if two simplexes intersect, then they do so in a
common face (Fig. 6.3). We shall call a space triangulable if it is homeomorphic
to the union of a finite collection of simplexes which fit together nicely in some
euclidean space. We now look into this idea in a little more detail.

(6.1) Definition. A finite collection of simplexes in some euclidean space E"
is called a simplicial complex if whenever a simplex lies in the collection then so
does each of its faces, and whenever two simplexes of the collection intersect they
do so in a common face.

Simplexes which fit together The sort of intersections
nicely that are not allowed

Figure 6.3

We shall use letters such as K, L for simplicial complexes, reserving X and Y
to denote topological spaces. Now the union of the simplexes which make up
a particular complext is a subset of a euclidean space, and can therefore be
made into a topological space by giving it the subspace topology. A complex K,
when regarded in this way as a topological space, is called a polyhedron and
written | K |.

(6.2) Definition. A4 triangulation of a topological space X consists of a simplicial
complex K and a homeomorphism h:| K | — X,

Going back to our first example, X is the sphere, K the collection of simplexes
which make up the surface of the tetrahedron, and, if the tetrahedron lies inside
the sphere as in Fig. 1.8, h can be taken to be radial projection.

Asking that a space be triangulable is of course asking a great deal. A sim-
plicial complex K is built up of a finite number of simplexes which live in a
euclidean space, and consequently its polyhedron | K | will have many pleasant
properties: for example, it will be compact and a metric space. Therefore if a
space is to be triangulable it must possess these properties. None the less,
many important spaces admit a triangulation; in Chapter 7 we shall make
essential use of the fact that all closed surfaces are triangulable.

t We often omit the word simplicial.
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Triangulations are not unique.t The definition of a triangulation leaves us a
great deal of choice, namely the choice of the simplicial complex K and of the
triangulating homeomorphism h. A triangulation should be regarded as a tool
which helps us to prove a particular result or do some calculation. It is its
existence that is important: which triangulation we use is often of no great
relevance. '

A model for a triangulation of the torus is shown in Fig. 6.4. Making the
identifications indicated via arrows on the edges of the rectangle, one can
build a simplicial complex in E* whose polyhedron is homeomorphic to the
torus.

Figure 6.4

By definition, a simplicial complex always consists of simplexes which
lie in some euclidean space E". If we wish to emphasize the role played by the
euclidean space, we say that K is a complex in E". (We emphasize that K is a
collection of simplexes and not a set of points.) Regard E" as the subspace of
"+ 1! consisting of those points which have final coordinate zero. We can
construct a complex CK in E"* 1, which is called the cone on K, as follows. Let
v denote the point (0,0,...,0,1) in E** ., If A4 is a k-simplex in E* with vertices
g, Uy, ..., Uy then the points vy, vy,..., 0, v are in general position and there-
fore determine a (k + 1)-simplex in E"* !, This (k + 1)-simplex is called the
join of A to v. Our cone CK consists of the simplexes of K, the join of each of
these simplexes to v, and the O-simplex v itself. One can easily check that the
simplexes of this collection do fit together nicely and form a simplicial complex.
CK is often called the join of K to v. As a set of points in E"* !, its polyhedron
consists of all straight-line segments joining v to some point of | K | (Fig. 6.5).
In Chapter 4 we defined the cone CX on an arbitrary topological space X. The
two ideas coincide in the sense that | CK | and C|K | are homeomorphic
topological spaces (see lemma 4.5).

This cone construction gives us an easy way of triangulating the projective
plane P. Recall that P is formed by taking a Mobius strip and a disc and sewing
their boundaries together. Now we have already triangulated the Mobius
strip M by means of the simplicial complex K in F* shown in Fig. 6.2. Let L

1 The only space with a unique triangulation consists of a single point.
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consist of those simplexes of K which triangulate the boundary of M, i.e., the
nineteen 1-simplexes and nineteen vertices which in our picture form the edge
of K. Then K U CL is a complex in E* whose polyhedron is homeomorphic to
the projective plane, for | K | is homeomorphic to M and | CL| is, up to homeo-
morphism, just a cone with base a circle, i.e., a disc. L as defined above is an

v

CK

EH

Figure 6.5

example of a subcomplex of a simplicial complex, i.e., it is a subcollection of the
simplexes of a complex K which itself forms a complex.

In defining the cone on a complex K, we had to make a choice of point to
represent the apex of the cone. We chose a point outside E” to ensure that
adding this new point to the set of vertices of a simplex of K produced a set of
points in general position. But why choose v; why not choose some other point
of E**! — E? A different choice would give a different set of simplexes in
E"* !, but the simplexes would intersect one another in the same sort of way
as the simplexes of CK. This leads us naturally to the idea of two simplicial
complexes being isomorphic. Let K and L be complexes, not necessarily in the
same euclidean space. They are isomorphic if there is a bijection ¢ from the
set of vertices of K to the set of vertices of L such that v, v,,...,v, form the
vertices of a simplex of K if and only if ¢v,, ¢v,, ..., dv, form the vertices of a
simplex of L. The notion of isomorphism has nothing to do with the particular
euclidean spaces in which the complexes lie, or the way in which their polyhedra
are embedded in these euclidean spaces. It is simply a statement that K and L
have the same number of simplexes of each dimension and that these simplexes
exhibit the same pattern of intersections. The most important thing about
isomorphic complexes is that they have homeomorphic polyhedra. Try to prove
this. (The function ¢ is defined only on the vertices of K; try to extend it ‘linearly’
over each simplex of K to construct a homeomorphism from | K| to | L|. We
shall give the details of this construction in Section 6.3.) Now ifs,we E"*! — E?,
then the join of K to v and the join of K to w are isomorphic complexes (use the
identity function on the vertices of K and send v to w). So our choice of apex in
E"* ! — " does not really matter.

We close this section by noting, for future reference, one or two facts con-
cerning simplicial complexes. Let A be a simplex in E” with vertices vg, vy,.. ., 0.
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We define the interior of A to consist of those points x of 4 which can be written
k
in the form x = Aqvy + A;v; + ... + A, where . 4; = 1 and the A; are all

0
positive. Note that this notion coincides with the topological definition of
interior when k = n, but not otherwise.

(6.3) Lemma. Let K be a simplicial complex in E".

(a) | K| is a closed bounded subset of E", and so | K | is a compact space.

(b) Each point of | K| lies in the interior of exactly one simplex of K.

(c) If we take the simplexes of K separately and give their union the identification
topology, then we obtain exactly | K |.

(d) If| K | is a connected space, then it is path-connected.

Proof. Each simplex of K is closed and bounded. Since K is finite, the result (a)
follows. For (b), suppose 4 and B are simplexes of K whose interiors overlap.
Since K is a complex, A and B are required to meet in a common face. But the
only face of a simplex which contains interior points is the whole simplex itself.
Therefore A = B. In (c) we note that simplexes of K are closed subsets of | K |
since they are closed in E". So if C is a subset of | K |, and if C n 4 is closed in
A for each simplex 4 of K, then C n A must be closed in | K |. Therefore the
finite union C = U {Cn A|AeK} is closed in | K |. So the closed subsets of
| K | are precisely those which intersect each simplex of K in a closed set, in other
words | K | has the identification topology. Finally, for part (d), suppose | K | is
connected. Given x e| K |, let L denote the subcomplex of K consisting of all
those simplexes of K that do not contain x, and let ¢ denote the distance from
xto| L| Thenif § < &the set B(x,0) n | K | is path-connected, because any point
in this set can be joined to x by a straight line in some simplex of K. This means
that | K| is a locally path-connected space, and we can mimic the proof of
theorem (3.30) to show that it is path-connected.

Problems

1. Construct triangulations for the cylinder, the Klein bottle, and the double
torus.

2. Finish off the proof of lemma (6.3).

3. If | K| is a connected space, show that any two vertices of K can be con-
nected by a path whose image is a collection of vertices and edges of K.

4. Check that | CK | and C| K | are homeomorphic spaces.

5. If X and Y are triangulable spaces, show that X x Y is triangulable.

6. If K and L are complexes in E”, show that | K | n | L | is a polyhedron.

7. Show that S" and P" are both triangulable.

8. Show that the ‘dunce hat’ (Fig. 5.11) is triangulable, but that the ‘comb space’
(Fig. 5.10) is not.
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6.2 Barycentric subdivision

Let K be a simplicial complex in E”. In this section we describe a construction
which allows us to chop up the simplexes of K and produce a new complex K1,
which has the same polyhedron as K, but which has simplexes of smaller diameter.

The process is called ‘barycentric subdivision’. If A is a simplex of K with
vertices vg,Uy,...,U, then each point x kof A has a unique expression of the form

x = Aol + A0y + ... + v, where Y A, = 1 and all the 4; are nonnegative.

4]
These numbers 4; are called the barycentric coordinates of the point x, and the
barycentre (or centre of gravity) of A4 is the point

- 1
A=k+1(vo+vl+...+vk).

In order to form K! we begin by adding extra vertices to K at the barycentres
of its simplexes. Then, working in order of increasing dimension, we chop up
each simplex of K as a cone with apex the extra vertex at its barycentre. Figure
6.6 illustrates the process.

To define K! precisely, we need to describe its simplexes. The vertices of K*
are the barycentres of the simplexes of K. (This includes the original vertlces of
K since a O-simplex is its own barycentre.)

B
A
C p ¢
K

Figure 6.6

A collection Ag, A,...,A, of such barycentres form the vertices of a k-simplex
of K if and only if
Agoy < Aary < oo < Aggy

for some permutation ¢ of the integers 0,1,2,...,k. For example, in our illustra-
tion the barycentres A, B, C determine a 2-simplex of K*, and looking at K we
see C < B < A. Note that if 4,4, < 4,4y <... < 4, &y then for each i the
barycentre Aqm lies off the hyperplane spanned by A,(O), A - 1y Conse-
quently, the points Aa(o), A,(k) are in general position.

The dimension of a simplicial complex K is the maximum of the dimensions
of its simplexes, and its mesh u(K) is the maximum of the diameters of its
simplexes.
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(6.4) Lemma. The collection of simplexes described above forms a simplicial
complex. It is denoted by K* and is called the first barycentric subdivision of K.
K has the following properties:

(a) each simplex of K! is contained in a simplex of K;

(b) [K'|=|K];

(c) if the dimension of K is n, then u(K') < !

n+1

Proof. If 6 is a simplex of K, we can label its vertices Ao, ,...,4;, where the
A; belong to K and 4, < 4; < ... < 4. So all the vertices of ¢ lie in A,, and
therefore o is contained in A,. This proves property (a). Note that any face of
o lies in K1, so in checking that K! is a simplicial complex we need only verify
that its simplexes fit together nicely.

We shall prove that K' is a complex and satisfies | K! | = | K | by induction
on the number of simplexes of K. The induction begins trivially when K consists
of a single vertex. Suppose the result is true for all complexes which have less
than m simplexes, and let K be a complex which is made up of m simplexes.
Choose a simplex A of maximum dimension in K, and form a new complex
L by removing A from K. Then L has m — 1 simplexes and its polyhedron
consists of | K| with the interior of the simplex 4 deleted. By the inductive
hypothesis, I* is a simplicial complex and | I! | = | L |. We need to look at the
simplexes of K! that do not lie in L!. Let ¢ be such a simplex (¢ not equal to A)
and label its vertices as Ay,A4,...,4; _ 1, A where Ay < 4; < ... < A,_; < A.
The vertices Ag,A;,...,A; _, determine a face t of ¢ which lies in L', and
7 = o n | [} |. Therefore if o meets a simplex of I, it must do so in a face of z,
and consequently in one of its own faces. Let ¢’ be a second simplex of K* — I}
(again, not the vertex A) and define ' as above. Then if t and 7’ intersect, they
do so in a common face (since I} is a complex). In this case the vertices of
7 7 together with 4 determine a common face of o and ¢’ which is exactly
oo If T and 7 do not intersect, then ¢ and ¢’ intersect in the vertex A.
Therefore K! is a simplicial complex.

Each simplex of K! being contained in a simplex of K, we know that
| K!| < | K|; so we now prove the reverse inclusion. Let x| K | and let A be
the unique simplex of K which contains x in its interior. If x = 4, then certainly
xe|K'|. If not, join A to x by a straight line and prolong the line until it meets
a face of A. Call the intersection point y. Then ye|L| = |I! |, and so y e for
some simplex © of L', The vertices of = together with 4 determine a simplex of
K! which contains x. Therefore x €| K!| and we have proved |K!| = | K|,
which is property (b). »

It remains to verify property (c). First observe that the diameter of a simplex
is the length of its longest edge. Let o be an edge of K! with vertices A and B,
say, where B < A. Then ¢ is contained in A4, and if the dimension of 4 is k we
have

(K.

length o < k_-lf——f (diameter 4) < '—1—% (diameter 4) < ;l% WK)
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n
1
Therefore w(K*) < Y wWK).

Define the m-th barycentric subdivision K™ of K inductively by K™ = (K™~ 1)1,
Figure 6.7 shows K? when K consists of a 2-simplex plus all its faces. Property
(c) of Lemma (6.4) tells us that, by taking m large enough, we can make the
diameters of the simplexes of K™ as small as we like.

Figure 6.7

Problems

9. Make sure you can visualize the first barycentric subdivision of a 3-simplex.

10. Let & be an open cover of | K |. Show the existence of a barycentric sub-
division K" with the property that given a vertex v of K", there is an open set
U in # which contains all the simplexes of K* that have v as a vertex.

11. Let L be a subcomplex of K, and let N be the following collection of sim-
plexes of K?: a simplex B lies in N if we can find a simplex C in I? such that
the vertices of B and C together determine a simplex of K?. Show that N is a
subcomplex of K2, and that | N | is a neighbourhood of | L |in | K |.

12. Use the construction of Problem 11 to prove that if X is a triangulable
space, and Y a subspace of X which is triangulated by a subcomplex of some
triangulation of X, then the space obtained from X by shrinking Y to a point
is triangulable.

6.3 Simplicial approximation

Let X and Y be topological spaces with triangulations h:| K | — X, k:|L|— Y.
Then any map f:X — Y automatically induces a map k™ fh:|K|— |L|.
There is a particular kind of map between polyhedra which is easy to work
with, namely the so-called simplicial map which takes simplexes to simplexes,
and which is linear on each simplex. In many problems, for example in calculating

127



BASIC TOPOLOGY

the fundamental group of a triangulable space, it is important to be able to
approximate a given map by a simplicial map. The approximation we choose
will be close enough to the given map so that the two are homotopic; i.e., the
approximation can be continuously deformed into the original map.

(6.5) Definition. Let K and L be simplicial complexes. A function s:]K|— |L|
is called simplicial if it takes simplexes of K linearly onto simplexes of L.

Writing this out in detail: if A is a simplex of K, we require s(A4) to be a simplex

of L; the condition of linearity means that if A has vertices vg,v;,...,U, and if

x € A is the point x = Ayvy + 4,01 + ... + A4y, Where the 4; are nonnegative
k

and ) 4; = 1, then s(x) when expressed in terms of the vertices of s(4) is

s(x) 2 40S(Vg) + Ay8(v;) + ... + A4s(vy). Note that s(4) may have lower dimen-
sion than A (we do not require s to be one—one), in which case s(vg),...,5(vy)
will not all be distinct.

It should be clear that a simplicial function is continuous. This follows from
the fact that a linear function between two simplexes is continuous, and applica-
tion of the glueing lemma (4.6).

Because of its linearity on each simplex of K, a simplicial map s is completely
determined once we know its effect on the vertices of K. In fact, if a function s
from the vertices of K to the vertices of L has the property that if vertices
VgsV1,---,V determine a simplex of K then s(vg),...,s(v,) determine a simplex of
L, then s can be extended linearly across each simplex of K to give a simplicial
map | K |— | L|. In particular, an isomorphism from K to L extends in this
way to a simplicial homeomorphism from the polyhedron of K to the poly-
hedron of L.

Now let f:|K|— | L| be a map between polyhedra. Given a point x €| K |,
the point f(x) lies in the interior of a unique simplex of L. Call this simplex the
carrier of f(x).

(6.6) Definition. A simplicial map s:| K |— |L| is a simplicial approximation of
f:] K |— | L|if s(x) lies in the carrier of {(x) for each x e | K |.

Note that if s simplicially approximates f, then s and f are homotopic. This
follows immediately from the definition. For suppose L lies in E”, and let
F:|K| x I - [" denote the straight-line homotopy defined by F(x) =
(1 — )s(x) + tf(x). Given x e | K |, we know that some simplex of L contains
s(x) and f(x) and, since a simplex is convex, all points (1 — £)s(x) + £f(x),
0 < t < 1, must also lie in this simplex. Therefore the image of F liesin | L |, and
F is a homotopy from s to f.

Simplicial approximations do not always exist (see Example (6.8) below).
However, we can guarantee their existence if we are prepared to replace K by
a suitable barycentric subdivision K™,

(6.7) Simplicial approximation theorem. Le: {:|K|— |L| be a map between
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polyhedra. If m is chosen large enough there is a simplicial approximation
s:|K™"|—|L|tof:]K"|—|L]|.

(6.8) Example. Let | K| =|L| = [0,1], with K having vertices at the points
0,3 1and L at 0, 4 1 (Fig. 6.8). Suppose the given map f:|K|— | L] is

le 1

wl

F(x) = x?

[T
&

Figure 6.8

f(x) = x*. Thenf:| K | — | L | does not admit a simplicial approximation. For if
s:| K|— | L| simplicially approximates f, then s must agree with f on the
inverse image of each vertex of L, so s(0) = 0 and s(1) = 1. But s is simplicial,
which forces s(3) = . Therefore s takes the segment [0, 3] linearly onto [0, ]
and [3, 1] linearly onto [%, 1]. We now have a contradiction, since the carrier of
f(3)is [0,%] and this does not contain s(}). Similar reasoning shows there is no
simplicial approximation to f:| K'|— | L|. However, simplicial approxima-
tions to f:| K*|— | L| do exist, and one such is shown in Fig. 6.9. We leave

1
}linearly to [%, 1]
to %
2 . 2
K }lmearly to [0, 5]
1
3
to 0
0
Figure 6.9

the reader to find a second, thereby showing that simplicial approximations
are not unique.
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The proof of theorem (6.7) requires a lemma. Let K be a complex and let v be a
vertex of K. The open star of v in K is the union of the interiors of those simplexes
of K which have v as a vertex. It is an open subset of | K | and we denote it by
star (v,K) (Fig. 6.10).

'
star (v, K)
Figure 6.10

(6.9) Lemma. Vertices v,vy,...,v, of a simplicial complex K span (i.e., are the
vertices of ) a simplex of K if and only if the intersection of their open stars is
nonempty.

Proof. If vy,v,,...,0, are the vertices of the simplex A of K then the whole of
the interior of A lies in star(v,K) for 0 < i < k. Conversely, suppose that

x € () star (v;,K) and let 4 be the carrier of x. By the definition of an open star,

0
each v; must be a vertex of 4, and therefore vy,v,,...,0; Span some face of A.

Proof of theorem (6.7). We first deal with a special case of the theorem where
it is not necessary to chop up the simplexes of K. Suppose that for each vertex
u of K we can find a vertex v of L satisfying the inclusion

f(star (u,K)) < star (v,L) ™)

Define a function s from the vertices of K to those of L by choosing such a v
for each u and setting s(u) = v. Then lemma (6.9) and the inclusion (*) give
immediately that if ug,u,,...,u, span a simplex of K, their images s(u),s(uy),
..,S(u) span a simplex of L. We can therefore extend s linearly over each
simplex of K to give a simplicial map s:| K |— | L|. This map s simplicially
approximates f. For let x be a point of | K| and let ug,u,,...,u;, be the vertices

of its carr1er Then x e ﬂ star (u;,K) and therefore by the inclusion (*) we have

f(x)e ﬂ star (s(u;),L). Thls means that the carrier of f(x) in L has the simplex

spanned by s(uo),s(uy), .. .,5(u,) as a face, and consequently it must contain the
point s(x).

To deal with the theorem in general, we need only show that we can arrange
for inclusion (*) to be satisfied at the expense of replacing K by a suitable bary-
centric subdivision K™ Now the open stars of the vertices of L form an open
cover of | L|. Since f:| K|— | L| is continuous, the inverse images under f of
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these open sets give an open cover of | K |. Let d be a Lebesgue number of this
open cover (| K [ is a compact metric space so we can apply Lebesgue’s lemma
(3.11)) and choose m large enough so that w(K™) < §/2. Given a vertex u of
K™, the diameter of its open star in K™ is less than J, so star (u,K™) < f~!
(star (v,L)) for some vertex v of L, as required. This completes the proof.

The simplicial approximation theorem will be used in the next section in
calculating fundamental groups, and again in Chapter 8 to check the topo-
logical invariance of the so-called homology groups of a space.

Problems

13. Use the simplicial approximation theorem to show that the n-sphere is
simply connected for n > 2.

14. If k < m,n, show that any map from S* to S™ is null homotopic, and that
the same is true of any map from S* to $™ x S™.

15. Show that a simplicial map from | K | to | L | induces a simplicial map from
| K™ | to | L"| for any m.

16. If s:| K| — | L | simplicially approximates f:| K" |— | L |, and ¢:| L" |—
| M | simplicially approximates g: |L"|— | M|, ists:| K" *"|— | M| always a
simplicial approximation for gf:| K" *" | —>| M |?

17. If | K|— | K| is a simplicial map, prove that the set of fixed points of f
is the polyhedron of a subcompléx of K, though not necessarily of a subcomplex
of K.

18. Use the simplicial approximation theorem to show that the set of homotopy
classes of maps from one polyhedron to another is always countable.

19. Read the elegant proof of the Brouwer fixed-point theorem due to M. W,
Hirsch given in Maunder [18].

6.4 The edge group of a complex

We calculated the fundamental groups of one or two spaces in Chapter 5, but
our calculations, though efficient for the examples given there, were rather
ad hoc. If we agree to work with triangulable spaces, we can be much more
systematic. We shall show how to read off generators and relationst for the
fundamental group from a triangulation of the space.

Let X be a path-connected triangulable space, take a specific triangulation
h:] K|— X, and replace X by | K | (we are at liberty to do this since the funda-
mental group is a topological invariant). Now the advantage of a polyhedron

+ The material on generators and relations, free groups and free products necessary for this section
is collected together in the Appendix at the end of the book.
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| K| is that the elements of its fundamental group can be represented by loops
which are made up of edges of K. Using such ‘edge loops’ we shall construct a
group, called the edge group of the complex K, which can be computed and
which is isomorphic to the fundamental group of | K |.

An edge path in a complex K is a sequence v, vy ... . v of vertices in which
each consecutive pair v; v; , ; spans a simplex of K. For technical reasons, we
allow the possibility v; = v, ; ; if we apply a simplicial map to an edge path we
want the result to be an edge path, even though two adjacent vertices may have
been identified in the process. If v, = v, = v, we have an edge loop based at v.
In order to define the edge group of K, we need a simplicial version of the notion
of homotopy. We consider two edge paths to be equivalent if we can obtain
one from the other by a finite number of operations of the following type. If
three vertices uvw span a simplex of K they may be replaced, in any edge
path in which they occur consecutively, by the pair uw; under the same assump-
tion the pair uw may be replaced by uvw. (Geometrically this allows us to replace
two sides of a triangle by the third side, and vice versa, or to remove and intro-
duce edges which make the path double back on itself; see Fig. 6.11.) In addition
we allow ourselves to change a repeated vertex uu to u and vice versa.

u /./5\\/

equivalent

equivalent

Figure 6.11

We shall denote the equivalence class of the edge path vyv,...v, by
{vo v; ... vg}. One easily checks that the set of equivalence classes of edge loops
based at a particular vertex v forms a group under the multiplication

{vogcovp (v} {owyoowy_ v} = {ovy v - g oWy w0}

The identity element is the equivalence class {v}, and the inverse of
{vvy ... v, _4 v} is the class {vv, _ 4 ... v,v}. This is the edge group of K based at
v; it will be written E(K,v).
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(6.10) Theorem. E(K,v) is isomorphic to n,(| K |, v).

Proof. We construct a function ¢:E(K,v)— 7,(] K |,v) by simply interpreting
each edge loop in K asaloop in | K |. Formally, given an edge loop vvy ..., — 10,
divide the unit interval I into k equal segments and let o: ] — | K | be the linear
extension of

o(0) = afl) = v, ofi/k) = v I<ig<k-1

Then « is a loop in | K | based at v. Since equivalent edge paths plainly give
homotopic loops, we may define

d({vvy ... v v)) = (D

It should be clear that ¢ is a homomorphism.

To show that ¢ is onto, we begin with a loop «:1 — | K| based at v, regard
I as the polyhedron of a complex L which consists of the 1-simplex [0,1] and
its two vertices, and apply the simplicial approximation theorem to produce a
simplicial map s:| £"| — | K| which is homotopic to a. The vertices of I'" are
the points i/2™, 0 < i < 2™, and s picks out the edge loop vv; ... vym 4 v Of K,
where v; = s(i/2™), 1 < i < 2™ — 1. By construction,

d({vvy ... am_ v)) = {5y = (o)

To complete our proof we must show that ¢ is one—one. Suppose vv; ...
v, — 1 v is an edge loop which, when interpreted as a loop in | K | gives a null-
homotopic loop a. We must prove that vv, ... v, _ ; v is equivalent to the edge
loop consisting of the single vertex v. Since a is null homotopic, we have a
homotopy F:I x I — | K| which satisfies

F(s,0) = ofs), 0<s<1

and which sends the other three sides of the square to v. We think of I x I
as the polyhedron of the complex L shown in Fig. 6.12, where a,b,c,d denote

b c

. s ad - v

a aj as dp-1

Figure 6.12
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the four corners of the unit square and g; stands for the point (i/k, 0), and we
note that F(a;)) = v, | i<k — 1

The two edge paths aa, a,...a,_, d and abed are clearly equivalent in L.
If we take a barycentric subdivision I of L, we obtain two edge paths in L*
which have 2™ — 1 vertices inserted between each pair of vertices of the original
paths. We shall denote these new paths by the symbols E,, E,, so as to avoid
introducing notation for all the extra vertices. One can check by induction on
m (Problem 21) that E, and E, are equivalent in L.

The simplicial approximation theorem gives us a barycentric subdivision
I and a simplicial approximation S:|I"|— |K|to F:|"|— | K| Now if
two edge paths differ by a single operation of the type introduced in defining
our notion of equivalence, and if we apply a simplicial map to the two paths,
then their images will also differ by a single such operation. In other words,
a simplicial map preserves the relation of equivalence between edge paths.
Therefore the images under S of E; and E, are equivalent in K. But S applied
to E, just gives the vertex v repeated a total of 3.2™ + 1 times, which is equi-
valent to the edge loop v. Since F(a;) = v, 1 < i < k — 1, and since S simplicially
approximates F, the image under S of each new vertex in E; introduced between
a; and a; . { is either v; or v; , ;. Therefore applying S to E; gives an edge loop
equivalent to v v, v,...v, _ ; v. This completes the argument.

We now turn to the problem of reading off generators and relations for
E(K,v). Let L be a subcomplex of K which contains all the vertices of K and
for which | L| is path-connected and simply connected. Such a subcomplex
always exists: we can in fact build one using the edges of K as follows. A one-
dimensional subcomplex of K whose polyhedron is both path-connected and
simply connected is called a tree.

(6.11) Lemma. 4 maximal tree contains all the vertices of K.

Proof. Let T be a maximal tree in K; maximal means of course that if T is
a tree and contains T then T' = T. If T does not contain all the vertices of
K, then some vertex v must lic in K — T. Choose a vertex u of T and, remem-
bering that | K | is path-connected, join u and v by a path in | K |. By the sim-
plicial approximation theorem, we may replace this path by an edge path
uv, v,...0,v. Let v; be the last vertex of this edge path which lies in T, and
form a new subcomplex T’ by adding the vertex v; , ; and the edge spanned by
v;v; 4 ; to T. The space | T'| is just | T'| with a ‘spike’ attached, and it clearly
deformation retracts onto | T|. Therefore T’ is a tree, contradicting the
maximality of T.

Suppose then that we have chosen our subcomplex L. Since | L | is simply
connected, edge loops in L will not contribute to E(K,v), and therefore we can
effectively ignore the simplexes of L in our calculations. List the vertices of K
as v = g, Uy, Uy, ..., Uy, and write G(K,L) for the group which is determined by
generators g,;, one for each ordered pair of vertices v;, v; that span a simplex of
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K, subject to the relations g;; = 1 if v;, v; span a simplex of L, and g;; g5 = gu
if v;, v}, v, span a simplex of K.

(6.12) Theorem. G(K,L) is isomorphic to E(K,v).

The above description of G(K,L) is designed to facilitate the proof of theorem
(6.12). However, we can do a little better and rid ourselves of some unwanted
generators. Notice that setting i = j gives g; = 1, and setting i = k shows
g;: = gi;*. Therefore we need only introduce a generator g;; for each pair of
vertices v;, v; which span an edge of K — L and for which i < j. The first type
of relation is now redundant, and the only ones of the second type which

matter are the relations g;;9; = gy whenever v, v;, vt span a 2-simplex of
K—-Landi<j<k

Proof of theorem (6.12). We shall construct homomorphisms

— 9,
G(K,.L),  E(K,)

[}

which are inverse to one another. Join v to each vertex v; of K by an edge path
E;in L, taking E, = v, and define ¢ on the generators of G(K,L) by

¢’(gij) = {Ei D; Uy Ej_l}

If v;, v; span a simplex of L, then E; v; v; E; ! is an edge loop which lies entirely
in L, and therefore represents the identity element of E(K,v) since | L | is simply
connected. Also, if v;, v;, v, span a simplex of K, we have

¢(gij)¢(gjk) = {Ei U; V; Ej_l}{Ej V; Uy Ek_l}
= {E;v;v;E; ' E;v; v, E; '}
= {E;v;v;0; E;'}
= {E;v; 0 E¢ '}
= ¢(ga)

So the relations in G(K,L) are preserved and ¢ defines a homomorphism from
G(K,L) to E(K,v).

It is not hard to check that the function

0({v e vy Uy ... v, v}) = Gok G Gim - - - Gno

defines a homomorphism from E(K,v) to G(K,L). Now
9¢(gij) = 0({E; v; Uj Ej_l}) = Gip

t If two of these vertices, say v;, vj, span a simplex of L, we interpret gi;as 1.
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since the pairs of vertices in E; and E; ' span simplexes of L. So 6¢ is the identity.
Further, for any edge loop v v, v;...v, v we have

{vvev... 0,0} = {Eqvuvg Eg *H{E v v, E '} ... {E,v,0 Eg'}.

But ¢06 is the identity on each of the terms in this product, and therefore ¢6
is the identity homomorphism.

Examples
1. Take X to be the one-point union of n circles (often called a ‘bouquet of
circles’), and triangulate each circle using the boundary of a triangle, labelling
the vertices as illustrated in Fig. 6.13 for the case n == 3. Let L consist of the
two edges from each triangle which contain the common vertex v, plus all the
vertices. Then E(K,v) = G(K,L)is generated by n elements g5, g4+ - J2n— 1, 2m
and there are no relations. So n,(X) is the free group on n generators. For the
case of a single circle we obtain the free group Z on a single generator, agreeing
with our earlier calculations.

Note that if X is path-connected and can be triangulated by means of a
one-dimensional complex, then =,(X) is a free group since there are no 2-
simplexes to enforce relations between the generators.

V) V3
Vi Va4 h
_—
K N\
X
Figure 6.13
Ve Vs

2. The fundamental group of any (path-connected) triangulable space is finitely
presented, that is to say it is determined by a finite number of generators and a
finite number of relations. (This follows because a complex is made up of a
finite number of simplexes.)

3. The definition of E(K,v) involves only the vertices, edges, and triangles of K.
Therefore if K(2) denotes the subcomplex of K consisting of those simplexes
which have dimension at most 2, we have n,(| K|) = =,(| K(2)|). This sub-
complex K(2) is called the 2-skeleton of K. Using this observation we can give a
second, rather neat, proof that S" is simply connected when n > 2. Triangulate
S* by the boundary of an (n + 1)-simplex, and note that when n > 2 the 2-
skeleton of the (n + 1)-simplex and that of its boundary coincide. The result
now follows since a simplex is contractible.

4. Triangulate the Klein bottle by means of the complex represented in Fig. 6.14,
and let L be the shaded subcomplex. The 1-simplexes of K — L provide us
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Figure 6.14

with eleven generators, and the 2-simplexes with ten relations between them.
Set t = go; and u = gy, The triangle spanned by the vertices vy, vy, vs gives

Jo191s = Jos

in other words t = g45, since the vertices v,, v5 span an edge of L. Working
down the triangles in the left-hand column of Fig. 6.14, we obtain

I =gos = Jas = 937 = a7
g24l = ga7

1gas =u.
Combine the last two relations to give g,; = ut. We now work along the
remaining triangles in the bottom row, obtaining

ut = g7 = 9gis
tut=g08

ul =gos

So we are finally led to the single relation ¢ u t = u. Therefore the fundamental
group of the Klein bottle is given by two generators ¢, u subject to the single
relation tut = u. (It is worth comparing this with the calculation given in
Chapter 5.)

This last example shows that, even for a very simple space, we may have so
many generators and relations as to make practical calculation unpleasant.
Luckily, we can use theorem (6.12) to produce a short cut. To this end, let J, K
be simplicial complexes in the same euclidean space which intersect in a common
subcomplex, and suppose that |J|, | K|, |J n K| are all path-connected
spaces. Imagine we know the fundamental groups of these three spaces and
want to calculate 7,(| J v K |).

Think first of the simplest possible case, namely when J and K intersect in a
single vertex. Then any edge loop in J U K based at this vertex is clearly a
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product of loops, each of which lies in either J or K, and we expect to obtain
the free product n,(| J |) * #,(] K |) for the fundamental group of |J U K|. In
the general case, the same sort of reasoning holds, except that the free product
n:(| J|) * =, () K |) effectively counts the homotopy classes of those loops which
lie in | J n K| twice (once in each of =,(| J |), #1(| K |)), and therefore we must
correct this by adding some extra relations.

Let j,k denote the inclusion maps |JnK|<c|J|, |JnK|<|K]|, and
take a vertex v of J n K as base point.

(6.13) Van Kampen’s theorem.t The fundamental group of | J L K | based at v is
obtained from the free product w,(|J|,v)* n,(|K|,v) by adding the relations
ix(@ =k, (2) for allf ze m,(| ] n K|, V).

Proof. Take a maximal tree T, in J n K and extend it to give maximal trees T,
T, in J and K respectively. Then T, U T, isa maximal tree in J U K. By theorems
(6.10) and (6.12), m,(| J U K|) is generated by elements g;; corresponding to
edges of J U K — Ty U T,, with relations g;; g = gu given by the triangles of
J U K. But this is precisely the group which results from taking a generator a;;
for each edge of J — T, a generator b;; for each edge of K — T,, with relations
of the form a;;a; = ay, b;jby = by corresponding to the triangles of J, K,
and adding the extra relations a;; = b;; whenever a;; and b;; correspond to the
same edge of J n K. It remains only to note that the edges of J n K — T,
when regarded as edges of J, give a set of generators for j(m,(|J n K|));
similarly the same edges, when thought of as in K, generate k(n,(] J n K |)).

Examples

1. We return to the triangulation of the Klein bottle given in Fig. 6.14, and let J
be the complex which results from deleting the 2-simplex spanned by the vertices
vg» U1, V5. Then | J| is the Klein bottle with an open disc punched out. For K
we take the 2-simplex just mentioned together with all its faces. So | K| is a
disc and | J n K | a circle.

Now the square with the interior of a triangle removed in this way deforma-
tion retracts onto its boundary. But in | J | the edges of the square are identified
so as to give two circles joined together at the point v, and the deformation
retraction is compatible with these identifications since it leaves the boundary
of the square fixed throughout. Therefore we have a deformation retraction of
| J | onto the one-point union of two circles, and we see that m,(] J |, v,) is the
free group Z * Z with generators t, u represented by the sides of the square.

Choose a generator z for the infinite cyclic group n.(|J N K |, v) as in Fig.
6.15. Then k,(z) is the identity element, since | K| is simply connected, and
Jj«(2) is plainly identified by our deformation retraction with the word ¢ u~ tu
in n,(|J|,ve). Van Kampen’s theorem now tells us that n,(|J v K|, v,) is

+ Proved independently by H. Seifert and E. R. van Kampen.
1 We need only add such relations for a set of generators of (| J N K |, v).
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Figure 6.15

obtained from the group (Z * Z) * {e} by adding the extra relationtu™! tu = e.
In other words, the Klein bottle has fundamental group

{tultu ' tu=-¢e} ={tu|tut =u}

2. We often apply van Kampen’s theorem without actually specifying triangula-
tions for the spaces involved.t The triangulations were important as tools,
enabling us to prove theorem (6.13), but the actual statement of the theorem is a
statement about polyhedra (and therefore about triangulable spaces), and does
not depend on them.

Suppose we think of the projective plane P as obtained by glueing together
the boundary circles of a M6bius band and a disc. We know that the Mobius
band has infinite cyclic fundamental group, and its boundary circle clearly
represents twice a generator (Fig. 6.16). So van Kampen’s theorem tells us that

s kx (2)

Figure 6.16 ksG] = %

1 We must, however, be sure that our spaces can be triangulated. Although there are more general
versions of van Kampen’s theorem (see for example Massey [9]), the result is false for arbitrary
topological spaces.

139



BASIC TOPOLOGY

71(P) is obtained from the free product Z * {e} by adding the relation a* = e.
In other words, n,(P) = Z,.

Problems

20. Use van Kampen’s theorem to calculate the fundamental group of the
double torus by dividing the surface into two halves, each of which is a punc-
tured torus. Do the calculation again, this time splitting the surface into a disc
and the closure of the complement of the disc.

21. Show that the edge paths E,, E, introduced in the proof of theorem (6.10)
are equivalent.

22. Prove that the ‘dunce hat’ (Fig. 5.11) is simply connected using van Kampen’s
theorem.

23. Let X be a path-connected triangulable space. How does attaching a disc
to X affect the fundamental group of X?

24. Let G be a finitely presented group. Construct a compact triangulable space
which has fundamental group G.

6.5 Triangulating orbit spaces

Let K be a simplicial complex whose simplexes lie in E*. Then K is completely
described once we know two things: the whereabouts of its vertices in E* and
which subsets of these vertices span simplexes. Let V denote the set of vertices
of K, and S the collection of those subsets of V' which span simplexes of K.

The pair {V,S} is called the vertex scheme of K. The set Vs finite and S has
the following properties:

(a) Each element of ¥ belongs to S. (A vertex is a O-simplex.)

(b) If X belongs to S then any nonempty subset of X belongs to S. (Any face of
a simplex of K is itself in K.)

(c) The sets in S are nonempty and have at most m + 1 elements for some non-
negative integer m. (Take m to be the dimension of K.)

It is sometimes useful to be able to construct a simplicial complex by first
specifying a finite nonempty set V, together with a collection S of subsets of V
satisfying (a)—(c), and then ‘realizing’ the pair {V,S} as the vertex scheme of a
specific complex in some euclidean space. Realization means finding a simplicial
complex K, and a bijection from V to the set of vertices of K, so that members
of S correspond exactly to those sets of vertices which span simplexes. It should
be clear that any two realizations of a given pair {V,S} will be isomorphic
complexes.
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(6.14) Realization theorem. Let V be a finite nonempty set and S a collection of
subsets of V which satisfies properties (a)—(c) listed above. Then {V,S} can be
realized as the vertex scheme of a simplicial complex.

Proof. Suppose V has k elements, and let A be a (k — 1)-simplex in F* ~ !, Then
any one—one onto correspondence between the elements of ¥ and the vertices
of A realizes {V,S} as the vertex scheme of a subcomplex of A. (In fact, no
matter how large k is, we can always realize {V,S} in E*™* *; see Problem 25.)

This method of constructing complexes will be used below to triangulate
the orbit spaces of certain group actions, and again in Chapter 9 to define the
dimension of a compact Hausdorff space.

It may happen that the space on which a group acts can be triangulated so
that each group element induces a simplicial homeomorphism of the triangula-
tion. In such a case, we shall say that the group action is simplicial. Fig. 6.17
gives a suitable triangulation for the antipodal action on §2; take a regular octa-
hedron inscribed inside the sphere and use radial projection n from the origin

_ﬁ

Figure 6.17

as the triangulating homeomorphism. The action is simplicial because the anti-
podal map ¢:S* — S? induces a simplicial map 7~ ! ¢ n from the surface of
the octahedron to itself. The three actions of Z, on the torus described in
Section 4.4, and the action of Z, on S* which gives the Lens space L(p,q) as
orbit space, are other examples of simplicial actions. When we have a simplicial
action, we shall show that the orbit space can be triangulated. Even better, we
shall arrange things so that the natural projection is a simplicial map.

Suppose then we have a simplicial action of G on X, that is to say we assume the
existence of a triangulation h:|K|— X such that h™'gh:|K|—|K| is a
simplicial homeomorphism for every element g of G. These homeomorphisms
define an action of G on | K |, and to begin with we ignore X and work with this
induced action on | K |.

We aim to triangulate the orbit space |K|/G. Using the projection
p:I K|— | K|/G, we define a pair {V,S} as follows: the elements of ¥ are the
orbits (projections) of the vertices of K, and a subset u,,...,u; of V lies in S iff
there exist vertices vy,...,0, of K which span a simplex of K and satisfy
p(v;) = u; for 0 < i < k. The hypotheses of the realization theorem are easily
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checked; realizing {V,S} in some euclidean space produces a complex which we
shall denote by K/G. Now p sends vertices of K to vertices of K/G, and if
o, - - -0 Span a simplex of K, then p(v,),....p(v,) span a simplex of K/G. So p
determines a simplicial map s:| K |— | K/G|. Also, for any xe| K|, g€ G we
have sg(x) = s(x), so that s induces a function y:| K |/G — | K/G |. The situation
is best represented by means of a diagram

| K|
p N

|K|/G v |K/G|
Clearly  is onto and, by theorem (4.1), is continuous iff s is continuous. But s
is a simplicial map and therefore continuous. If  is one—one, it must be a
homeomorphism by theorem (3.7), giving us a triangulation

¥~ K/G|— | K|/G.

In general, ¥ fails to be one—one. For example, in Fig. 6.17 the space |[K |/G
is homeomorphic to the projective plane, whereas | K/G | is a disc. However,
if we replace K by its second barycentric subdivision K, then the corresponding
map ¥ :| K |/G— | K?/G | is one—one (Problems 28, 29).

Now let h:|K|/G— X/G denote the homeomorphism of orbit spaces
induced by h, then

hy~':|K?*/G|— X/G
is a triangulation of the orbit space X/G. In addition, we have a commutative

diagram
h

|K?|—— X

SJ Jn
|K?*/G|—— X/G
Ryt

where n is the natural identification map. (To say the diagram commutes
means simply that nh(x) = Ay~ 's(x) for all x e | K?|.) The map s is simplicial,
and it preserves the dimension of the simplexes of K2, since two vertices of a
simplex of K? cannot be mapped into one another by an element of G.

Problems

25. Suppose {V,S} satisfies the hypotheses of the realization theorem, and label
the elements of V as vy,...v. If x; denotes the point (i,i%,....i%" * 1) of E*" "1,
show that any 2m + 2 of the points x,...,X, are in general position, and deduce
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that the correspondence v; <> x; can be used to realize {V,S} in E>"*+ 1,

26. By Problem 25 the vertex scheme of any one-dimensional complex can be
realized in E>. Find a one-dimensional complex whose vertex scheme cannot
be realized in E2.

27. Consider the antipodal action on S$? and the triangulation shown in Fig.
6.17. Show that the map y:| K |/G — | K'/G | is a homeomorphism, and draw
the resulting triangulation of the projective plane.

28. Show that the map y:| K |/G— | K/G | is a homeomorphism iff the action

of G on | K | satisfies:

(@) The vertices of a 1-simplex of K never lie in the same orbit.

(b) If the sets of vertices v,...,U,a and vy, ...,0,b span simplexes of K, and if
a, b lie in the same orbit, then there exists g € G such that g(v,) = v; for
0 <i< kandg(a) = b.

29. Check that conditions (a) and (b) of Problem 28 are always satisfied if we

replace K by its second barycentric subdivision.

6.6 Infinite complexes

So far, our simplicial complexes have contained only a finite number of sim-
plexes. In order to deal with problems concerning noncompact spaces, we
would like to relax this a little and allow certain infinite collections of simplexes
to be complexes.

We shall insist that a complex be made up of simplexes which fit together
nicely in some finite-dimensional euclidean space, and that the union of these
simplexes form a closed subset of the euclidean space. Now if K is such a
collection of simplexes in E”, then we can make a topological space | K | out
of their union by giving it the induced topology. An equally natural procedure
is to take the simplexes of K separately, each with its topology induced from
[, and give their union the identification topology. We have seen in lemma (6.3) -
that these two procedures lead to the same topological space when K is finite.
However, if we allow K to be infinite, then we may well obtain different answers.
Indeed, a specific one-dimensional example where this happens is shown in
Fig. 4.2. )

Here is a tentative definition of an infinite complex, not the most general
possible, but quite sufficient for our needs.

(6.15) Definition. An infinite simplicial complex is an infinite collection of
simplexes in some euclidean space E" satisfying:

(a) if a simplex lies in the collection, then so does each of its faces;

(b) the simplexes in the collection fit together nicely;

(c) the union of all the simplexes is a closed subset of E";

(d) the induced and identification topologies agree on the union of the simplexes.
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As a simple example of an infinite complex, take the strip {(x,y)|0 <y < 1}
in E2? divided up into triangles as shown in Fig. 6.18.

YA

=V

Figure 6.18

(6.16) Theorem. Let K denote an infinite simplicial complex in E", and let

| K| denote its polyhedron.

(a) K has finite dimension.

(b) The number of simplexes in K is countable.

(c) K is locally finite (that is to say, each vertex of K lies in only a finite number
of simplexes). _

(d) Each point of E" has a neighbourhood which intersects at most a finite number
of simplexes of K.

Proof.

(a) Since K lies in [F", it cannot contain any simplexes of dimension greater
than n, so the dimension of K is at most n.

(b) We prove that K contains only countably many simplexes by counting the
set of barycentres of its simplexcs. The topology on | K | agrees with the identi-
fication topology, so this set of barycentres has no limit points in E". There
are therefore only finitely many barycentres inside any ball, centre the origin,
of finite radius. Taking the union of the balls with integer radius shows the
total number of barycentres to be countable.

(c) Suppose K is not locally finite and select a vertex v which is a vertex of
infinitely many simplexes A;,4,,... of K. For each i, let x; be a point which
lies in the interior of A; and whose distance from v is no more than 1. The set
{x;} must have an accumulation point, say p, in E" and since | K| has the
identification topology, p cannot lie in | K |. But this contradicts the fact that
| K | is supposed to be closed in E".

(d) If x ¢ | K | then E" — | K | is a neighbourhood of x (| K | being closed) which
does not meet | K |. If xe| K|, select a vertex v of K for which x € star (v,K).
Since star (v,K) is open in | K | we have star (v,K) = O n | K| for some open
subset O of E”, and O meets only a finite number of simplexes of K, by part (c).

We can define the notions of triangulation and simplicial map exactly as
before. A space may now be noncompact and yet triangulable, though by
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part (c) of theorem (6.16) it must be locally compact, in the sense that each of
its points must have a compact neighbourhood. As we shall see, quite a few of
the results of this chapter go through in this more general setting.

Note that our proof of the simplicial approximation theorem (6.7) made
heavy use of the finiteness of the domain complex K (we needed | K| to be
compact), but the range L could have been infinite. Therefore we can show
that the edge group of an infinite complex is isomorphic to the fundamental
group of its polyhedron, and write down generators and relations for the group,
exactly as in the finite case. However, the edge group need no longer be finitely
presented.

Vg

NNNN
O OO0

Figure 6.19

For example, if X consists of the real line with a circle attached at each integer,
triangulated as in Fig. 6.19, its fundamental group is the free group on a count-
able number of generators. (We obtain a maximal tree containing all the
vertices of K by taking the line together with two sides from each triangle. The
remaining sides give the generators for n,(X), and there are no relations since
K has no simplexes of dimension 2.) By shrinking the line to a point, we see that
X has the homotopy type of a countable number of circles joined together at a
single point. ,

If {V,S} is the vertex scheme of an infinite complex, then V is a countable set,
and in addition to properties (a)—(c) of Section 6.5 we have the property:

(d) Each element of ¥ belongs to only a finite number of members of S. (K is
locally finite.)

The realization theorem (6.14) remains true. Of course, the proof given earlier
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for the finite case cannot work, since K may now have an infinite number of
vertices, but the method of Problem 25 goes through without difficulty.

We ask the reader to verify that we can allow infinite complexes in our work
on triangulations of orbit spaces. This means we have many more examples of
simplicial actions. The action of the integers on the real line by addition is
simplicial; one has only to triangulate the real line as a one-dimensional com-
plex by introducing a vertex at each integer. The action of a crystallographic
group on the plane is simplicial: chop up a fundamental region into triangles
and use the group action to tell you how to subdivide its translates. If the
group is generated by a translation and a glide reflection acting at right angles,
the fundamental region can be taken to be a rectangle and the resulting
triangulation of the plane is illustrated in Fig. 6.20.
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Let F be the free group on two generators x,y, set ¥V = F, and agree that S
consists of the elements of F together with pairs of elements g, h from F which
have the property that h™1g is one of x, x™*, y, y~'. Let T denote the one-
dimensional complex obtained by realizing {V,S}. Then T is connected because
we can get from any element of F to any other by a sequence of operations,
each of which amounts to multiplying on the right by one of x,x~*,y,y~ %
Also, T must be simply connected, because any loop in T would lead to a non-
trivial relation in F, and F is free. So T is a tree.

The complex T can in fact be realized in the plane, and we indicate how to do
this in Fig. 6.21. Of course we have not been able to draw all of T'! We shall
call T the universal television aerial.

The action of F on itself by left multiplication (g sends & to gh) clearly induces
a simplicial action of F on | T|, and the orbit space | T|/F is the one-point
union of two circles. Incidentally, this gives a second proof that the funda-
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mental group of the one-point union of two circles is Z * Z, since the action of
F on T satisfies the hypotheses of theorem (5.13). Now let H be a subgroup of
F. Then H acts on T, and by our work in Section 6.5 we can triangulate the
orbit space | T|/H as a one-dimensional simplicial complex. The fundamental
group of this orbit space is precisely H, by theorem (5.13), and we deduce that

yx

Figure 6.21

H is a free group since the fundamental group of a one-dimensional complex
is always free. We have therefore proved the following result:

(6.17) Theorem. Any subgroup of the free group on two generators is free.

This is a special case of the Nielsen—Schreier theorem, which states that any
subgroup of a free group is free. For more information see Problem 34.

We end this chapter with a generalization of theorem (5.13). Let G act sim-
plicially on the path-connected triangulable space X, and let F be the normal
subgroup of G generated by those elements which leave fixed at least one point
of the space X.

(6.18) Theorem. If X is simply connected, the fundamental group of the orbit
space X/G is isomorphic to the factor group G/F.

The proof is broken up into small steps in Problems 37-40. As an example,
consider the crystallographic group generated by three half-turns illustrated
in Fig. 4.5. For this action G and F coincide, since each of the three generators
has a fixed point. Therefore the orbit space (the 2-sphere) is simply connected.
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Problems

30. Find the triangulations of the sphere, torus, and Klein bottle which we
obtain from the crystallographic groups shown in Fig. 4.5.

31. Check that the construction illustrated in Fig. 6.21 really can be carried out
to produce a realization of T in E2.

32. Show that the following collection of simplexes in E? is not a simplicial
complex. For each positive integer n, we have a vertical 1-simplex joining
(1/n,0) to (1/n,1) and a sloping 1-simplex with vertices (1/n,0) and (1/n + 1,1).
In addition, we have a 1-simplex on the y axis joining (0,0) to (1,1). Do we
obtain a simplicial complex if we remove the 1-simplex which lies on the y axis?
33. Can either the comb space (Fig. 5.10), or the space illustrated in Fig. 3.4, be
triangulated by an infinite simplicial complex?

34. Show that the free group on a countable number of generators is a sub-
group of Z * Z, and deduce that any subgroup of this group must be free.

35. Call a homeomorphism h:X — X pointwise periodic if for each point x of X
there is a positive integer n, such that h™ (x) = x. Call h periodic if h" = 14
for some positive integer n. Show that if X is the polyhedron of a finite complex,
and if h is simplicial, then pointwise periodic implies periodic. Find a connected
infinite complex K and a simplicial homeomorphism of | K | which is pointwise
periodic but not periodic.

36. Does a pointwise periodic homeomorphism of a compact space have to be
periodic? Be careful! (We comment that any pointwise periodic homeo-
morphism of a euclidean space is periodic, though this is hard to prove.)

37. Let G be a group of homeomorphisms of the space X. If N is a normal sub-
group of G, show that G/N acts in a natural way on X/N and that X/G is homeo-
morphic to X/N / G/N.If F is the smallest normal subgroup of G which contains
all the elements that have fixed points, show that G/F acts freely on X/F in
the sense that only the identity element has any fixed points.

38. Suppose in addition to the conditions of Problem 37, X is a simply con-
nected polyhedron, G acts simplicially, and X/G is triangulated so that the
projection p: X — X/G is simplicial. Choose a vertex v of X as base point and
define ¢:G — n,(X/G,p(v)) as follows. Given g € G, join v to g(v) by an edge
path E in X ; then ¢(g) is the homotopy class of the edge loop p(E). Show that
¢ is a homomorphism, and that each element of F goes to the identity under ¢.
Show also that ¢ is onto.

39, With the assumptions of Problem 38, show that X/F is simply connected,
and that the action of G/F on X/F satisfies the hypotheses of theorem (5.13).

40. Now deduce theorem (6.18).
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7.1 Classification

Results which allow one to classify completely a collection of objects are among
the most important and aesthetically pleasing in mathematics. The fact that
they are also rather rare adds even more to their appeal. As specific examples,
we mention the classification of finitely generated abelian groups up to iso-
morphism in terms of their rank and torsion coefficients; that of quadratic
forms in terms of the rank and signature of a form; and that of regular solids
up to similarity by the number of edges of each face and the number of faces
meeting at each vertex. It should be clear that we have no hope of classifying
topological spaces up to homeomorphism, or even up to homotopy equivalence.
We can, however, give a complete classification of closed surfaces.

A surface is closed if it is compact, connected, and has no boundary; in other
words it is a compact, connected, Hausdorff space in which each point has a
neighbourhood homeomorphic to the plane. When we say that we can classify
such spaces, we mean that we can draw up a list (albeit infinite) of standard
closed surfaces, all of which are topologically distinct, so that if we are presented
with an arbitrary closed surface then it is homeomorphic to one on our list.

We recall (from Chapter 1) the statement of the classification theorem for
closed surfaces:

(7.1) Classification theorem. Any closed surface is homeomorphic either to the
sphere, or to the sphere with a finite number of handles added, or to the sphere
with a finite number of discs removed and replaced by Mdbius strips. No two of
these surfaces are homeomorphic.

Adding a handle to the sphere means removing the interiors of a pair of
disjoint discs, then attaching a cylinder by glueing its boundary circles to the
edges of the two holes in the sphere, as illustrated in Fig. 7.1. When we add
further handles, we do so on different parts of the sphere. Precisely where we
add the handles (or M&bius strips) does not matter; we shall prove this carefully
in Section 7.5. Notice how the handles are attached. If we mark arrows on the
boundary circles of the cylinder, and on the edges of the holes in the sphere, to
show how the identifications are to be made, and if the arrows on the cylinder go
in the same direction, then those on the sphere will have opposite directions.

It is natural to ask what happens if, when we glue on a particular handle,
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we reverse one of the arrows so that the two circles on the sphere are also given
the same sense. Take a disc in the sphere which contains, in its interior, the two
circles along which the cylinder is to be attached. Then the two possibilities are

Figure 7.1

illustrated in Fig. 7.2. Now Fig. 7.2a is homeomorphic to the punctured torus,
and Fig. 7.2b to the punctured Klein bottle. Therefore adding a handle corre-
sponds to removing a single open disc from the sphere and from the torus, and
glueing the two resulting boundary circles together. At first sight, we appear to
have a choice as to how we do this. For having marked an arrow on our circle
in the sphere, we can direct the boundary circle of the torus in two different
ways. However, there is a homeomorphism from the punctured torus to itself
which reverses the direction given to the boundary circle (Fig. 7.3a), and so
the two possibilities give homeomorphic answers.t

b
@ Figure 7.2 ®)

+ The reader with a flair for precision will notice that we appeal to the following elementary
proposition several times in this section. Given spaces X, 4 < Y, B < Z together with maps
fiA— X, g:B— X, and a homeomorphism h:Z— Y such that k(B) = 4 and fh = g, then
X U, Y and X U, Z are homeomorphic.
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S =

(a) Reflect in the plane of the paper (b) Rotate through = about axis 4B

Figure 7.3

If the cylinder is attached the other way, as in Fig. 7.2b, then we must take
a copy of the punctured Klein bottle and sew its boundary circle to the edge of a
circular hole in the sphere. As above, the direction in which we glue the two
circles is irrelevant. Now we know that the Klein bottle is the union of two
M@bbius strips along their boundary circles, or equivalently (Fig. 1.18) a cylinder
- with a Mdbius strip glued to each of its boundary circles. So the punctured
Klein bottle can be thought of as a disc with two holes punched in and a M&bius
strip sewn into each hole. We have therefore shown that glueing a cylinder to
the sphere ‘in the wrong way’ corresponds to removing two disjoint open discs
from the sphere and sewing a Mobius strip into each of the resulting holes.
Since the M6bius strip admits a homeomorphism which reverses the direction
of its boundary circle (Fig. 7.3b), there is no ambiguity as to how we sew in
these strips.

To complete our intuitive picture of how the sphere is modified when we add
handles or sew in Mobius strips, we consider the possibility of doing a mixture
of these operations. Suppose we have already replaced a disc by a Mdbius
strip, and we decide to add a handle. Then it does not matter how we do it;
the operations shown in Figs 7.2a and 7.2b amount, in this situation, to the
same thing. For call the Mdobius strip M and the disc to which our cylinder
is to be attached D. Run an arc from a point of the boundary circle of M to a
point of the edge of D, and thicken it slightly to produce a band B, as in Fig. 7.4.
ThenM U B v D is a Mobius strip and we are left to prove that the two spaces
shown in Fig. 7.5 are homeomorphic. This is easily seen by cutting along the
lines marked xy, when both become rectangles with a tube attached in precisely
the same manner.

B

Figure 74
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Figure 7.5

We summarize our discussion in the following result:

(7.2) Theorem. Modifying the sphere by adding m handles and replacing n (> 0)
disjoint discs by Mobius strips produces the same surface as replacing 2m + n
disjoint discs by Mébius strips.

Problems

1. The construction of a ‘cross cap’ is illustrated in Fig. 7.6. Show that punching
a disc out of the sphere and adding a cross cap in its place gives a representation
of the projective plane as a surface in E> with self intersections.

sy

2. Let X consist of S? plus one extra point p. The neighbourhoods of the points
of S are the usual ones, and those of p are sets of the form [U — {(0,0,1)}] u {p}
where U is a neighbourhood of (0,0,1) in S2. Show that X is not Hausdorff, but
is locally homeomorphic to the plane. Does it seem reasonable to call X a
surface?

3. The connected sum of two surfaces is defined as follows. Remove a disc from
each surface and connect up the two resulting boundary circles by a cylinder.
Assuming this is a well-defined operation (i.e., it does not matter where we
remove the discs, or how we sew on the cylinder), show that the connected sum
of a torus with itself is a sphere with two handles, and the connected sum of a
projective plane with itself is a Klein bottle.

4. What is the connected sum of a torus and a projective plane?
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7.2 Triangulation and orientation

In order to make any headway at all we need to assume that our surfaces can
be triangulated. That every compact surface admits a triangulation is a classical
result of Rado proved in 1925. We shall not give a proof here; we prefer to
outline the idea but omit the details which are complicated and rather tedious.

Think of the problem of triangulating a closed surface S. Since S is compact
and locally homeomorphic to the plane, we can find a finite number of closed
discs in S whose union is all of S. To avoid annular regions between the discs,
we agree to throw away any disc which lies entirely inside some other. Suppose
(and this is the difficult step) we can arrange that the boundaries of these discs
meet one another nicely, in the sense that if two meet then they do so in a finite
number of points and arcs. A priori this need not be the case: think for example
of the way a curve like x sin (1/x) meets the x axis near the origin. The union of
the boundaries of our discs breaks up naturally as a set of arcs, and we introduce
a vertex on the surface at each point where three or more arcs meet and at the
midpoint of each arc (Fig. 7.7a). This produces most of the vertices and edges

(2)

Figure 7.7 (b)

of our triangulation. To fill in the triangles, we note that S is nicely subdivided
into patches which are homeomorphic to discs. All we have to do now is to
triangulate each patch as a cone with apex some interior point, as in Fig. 7.7b.
All this sounds temptingly easy, but we emphasize that finding a suitable
covering by discs needs deep results, including a sharp version of the Jordan
curve theorem.

t A short proof can be found in Doyle and Moran [25].
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From now on we shall assume that all our surfaces can be triangulated. Let
S be a closed surface and let h:| K|— S be a triangulation of S. As we might
expect, K has some very nice properties. It has dimension 2; it is connected in
the sense that any two of its vertices can be joined by an edge path; each of its
edges is a face of exactly two triangles; and each vertex lies in at least three
triangles which fit together to form a cone with apex the given vertex and base a
polygonal simple closed curve (as in Fig. 7.8). A triangulation constructed by

Figure 7.8

the method outlined above will automatically have these properties, but they
can be verified directly for any triangulation of a closed surface (see Problem 7).
A complex with these four properties will be called a combinatorial surface.

o O

<Y

OO

Figure 7.9

We now turn to the idea of orientation. Fig. 7.9 shows what happens if we
translate a small circle, to which we have given a sense of rotation, once round
the central circle of a Mébius strip. The effect on the circle is to reverse its sense.
For this reason, surfaces which contain a Mobius strip are said to be non-
orientable. A surface like the torus which does not contain a Mobius strip, and
for which the operation of translating a small, oriented circle round a simple
closed curve always preserves the sense of the circle, is called orientable.

We can approach this idea in a different way by making use of the fact that
our surfaces are triangulable. There are two ways to orient, or give a sense of
rotation to, a triangle. The two possibilities are shown in Fig. 7.10 and can be
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specified either by drawing arrows on the triangle or, if we want to be completely
precise, by appropriately ordering the vertices of the triangle. Of course, if we
choose the ordering v,, v,, v, to specify a particular orientation, then we must

Vi Vi

Figure 7.10

o O

V2 Vo V2

Yo

agree that the cyclic variations v,, vy, v, and vy, v,, v, represent the same
orientation.

This idea works for a simplex of any dimension. Let A be a general simplex
and consider two orderings of its vertices to be equivalent if they differ by an
even permutation. There are precisely two equivalence classes (unless 4 consists
of a single vertex), each of which is called an orientation of A. Of course, a vertex
can only be oriented in one way. Suppose now that we have chosen an orienta-
tion for A by ordering its vertices in some way, say as vg, Uy,..., U, and let B be
the face of A determined by deleting v,. Then the vertices of B are automatically
ordered. If i is even, the orientation of B specified by this ordering is called the
orientation induced from A. If i is odd, we take the other orientation of B as
that induced from A. The simplest case is the sense of direction given to each
edge of a triangle by a choice of orientation of the triangle. It is easy to see that
this definition depends only on the orientation of A4, and not on the particular
ordering of the v, chosen to represent this orientation.

We say that a combinatorial surface K is orientable if it is possible to orient
all the triangles of K in a compatible manner. That is to say, in such a way that
two adjacent triangles always induce opposite orientations on their common
edge. Fig. 7.11 illustrates this definition. We leave the reader to experiment

Compatible Figure 7.11 Incompatible

with triangulations of the torus and Klein bottle: for the torus there is never any
difficulty in orienting the triangles compatibly; in the case of the Klein bottle
one always gets stuck.
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If h:] K| — S is a triangulation of an orientable surface S, then the complex
K must be orientable. For choose a 2-simplex in K and orient it; induce com-
patible orientations to its neighbours and continue round the complex. We
never get stuck. For if we did, we could find a sequence of distinct 2-simplexes
A,,A,,. . ., A, such that:

(a) A; has an edge in common with 4;, ;, 1 <i <k —1;

(b) A, has an edge in common with Ay ;

(c) the orientations of 4;, 4;, ; are compatible for 1 < i < k — 1, but those of
A, A, are not.

Figure 7.12

Join the barycentre of A4; to the midpoints of the edges 4;_; N 4; and
A; N A; 4, by straight lines, where A4, _ ; is interpreted as 4, when i = 1, and
A; 41 as A; when i = k. This gives a simple closed polygonal path in | K|
which we thicken slightly to obtain a strip (Fig. 7.12). Since the orientations of
the triangles are compatible, with the exception of those of A, and A,, the
strip is a Mobius strip in | K |. This contradicts the assumption that S is an
orientable surface.

We shall return to the question of orienting surfaces in the next chapter and
show that if S is a closed surface which can be triangulated by an orientable
combinatorial surface, then any other triangulation of S must also be orientable.

We have used the idea of thickening a polygonal curve in a combinatorial
surface. Since this type of process will be needed quite frequently, we end this
section with a couple of lemmas designed to make it quite precise. Let K be a
combinatorial surface, and let L be a one-dimensional subcomplex of K. To
thicken L we first barycentrically subdivide K twice, and then form the sub-
complex consisting of those simplexes of K? which meet L, together with all
their faces (Fig. 7.13). Finally we take the polyhedron of this subcomplex. We
obtain in this way a closed neighbourhood of | L | in | K| which, it is not too
hard to prove, has the same homotopy type as | L |.

(7.3) Lemma. Thickening a tree always gives a disc.

Proof. Proceed by induction on the number of vertices in the tree T. If T consists
of a single vertex v, then thickening T gives precisely the union of those sim-
plexes of K? which have-v as a vertex: this is called the closed star of v in K?
and written Sfar (v,K2). It should be clear that K? is a combinatorial surface,
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and that sfar (v,K?) is a disc. If T has n vertices, choose an ‘end’ vertex v, that
is, one which belongs to only onet edge E of T. Remove this edge to produce a
tree T; with one less vertex. Thickening T) gives a disc D by assumption, and in
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Figure 7.13

order to thicken T, all we have to do is to add to this disc the two closed stars
A = star (E,K?), B = sfar (v,K?). Now 4 and B are both discs; moreover, A
and D meet along their boundaries in an arc, as do 4 and B. Two applications
of lemma (2.11) show that D U A U B is a disc.

(7.4) Lemma. Thickening a simple closed polygonal curve gives either a cylinder
or a Mobius strip.

Proof. Remove an edge E from the curve to give a tree in K. Thickening this
tree gives a disc D, by lemma (7.3). To thicken the original curve, we need to
take the union of D with the closed star of the barycentre £ in K. Now sfar
(E,K?) and D meet along their boundaries in two disjoint arcs. If we glue
star (E, K?) to D along one of these arcs we obtain a disc, by lemma (2.11). It
remains only to identify two disjoint arcs in the boundary of this new disc.
Define a homeomorphism from the disc to a rectangle so that the arcs go to a
pair of opposite sides. (The homeomorphism is defined on the two arcs first,
then extended over the rest of the boundary, and finally extended over the whole
disc by means of lemma (2.10).) We now have to identify a pair of opposite
sides of a rectangle: there are only two ways of doing this, and they give the
cylinder and the Mobius strip.

1 Such a vertex exists, since if each vertex lies in two edges it is easy to find a loop in T. But Tis
a tree and therefore cannot contain a loop.
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Problems

5. Suppose we want to triangulate a surface which has a boundary. How does
the definition of a combinatorial surface need to be adjusted?

6. Let K be a combinatorial surface. Show that the triangles of K can be labelled
Ti,...,T, in such a way that T; always has an edge in common with at least one
of Tj,...,T; _ ;. Now build a model for the surface | K| in the form of a regular
polygon in the plane, which has an even number of sides, and whose sides have
to be identified in pairs in some way.

7.If h:] K|— S is a triangulation of a closed surface, show that K must be a
combinatorial surface. This requires a little patience. First use a connectivity
argument locally to show that K cannot have dimension 1. Then prove K
cannot contain a simplex of dimension greater than 2, and that every edge of
K lies in precisely two triangles, using methods like those of theorem (5.23).
Finally, check that the triangles of K which contain a particular vertex fit
together as in Fig. 7.8.

8. Let G be a finite group which acts as a group of homeomorphisms of a closed
surface S in such a way that the only element with any fixed points is the identity.
Show that the orbit space S/G is a closed surface. Show that S may be orientable,
yet S/G nonorientable. If S/G is orientable, does S have to be so? A group action
for which only the identity element has any fixed points is said to be fixed-point
free, and the group in question is said to act freely.

9. Let K be an orientable combinatorial surface, orient all its triangles in a
compatible manner, and let h:| K|— | K| be a simplicial homeomorphism.
Suppose there is a triangle A, oriented by the ordering u, v, w of its vertices,
whose image h(A4) occurs with the orientation h(u), h(v), h(w) induced by h.
Prove that the same must hold for any other triangle of K, and call & orientation-
preserving. Give an example of an orientable combinatorial surface and a
simplicial homeomorphism which is not orientation-preserving.

10. Let K be an orientable combinatorial surface. If G acts simplicially on | K |,
if the action is fixed-point free, and if each element of G is orientation-preserving,
show that the complex K?/G is an orientable combinatorial surface.

7.3 Euler characteristics

Let S be a closed surface. We know from our remarks on triangulation that we
may replace S, up to homeomorphism, by the polyhedron of a combinatorial
surface K. For the remainder of this section we shall work with the space | K |.

If L is a finite simplicial complex of dimension n, we define its Euler charac-
teristic to be

w0 = Y (1o

i=0
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where o; is the number of i-simplexes in L. So if L happens to be a combinatorial
surface, y(L) is the number of vertices minus the number of edges plus the
number of triangles, and the Euler characteristic of a grapht is the number of
vertices minus the number of edges. As mentioned in Chapter 1, y(L) is a
topological invariant of the space | L |. The proof of this fact will be given in
Chapter 9; we do not need it here.

(7.5) Lemma. x(I') < 1 for any graph T', and equality occurs if and only if I is
a tree.

Proof. If T is a tree, it is easy to show y(I') = 1 by induction on the number of
vertices. If T is not a tree, then it must contain a loop. Removing an edge from
the loop leaves I' connected and increases the Euler characteristic, since the
number of edges decreases by 1 while the number of vertices remains constant.
By repetition of this process we eventually convert I' into a tree. Therefore
2D < 1.

Suppose now that K is a combinatorial surface, and that T is a maximal
tree in K. We know from lemma (6.11) that T contains all the vertices of K.
Construct a graph T, called the dual to T, by realizing the following vertex
scheme: the vertices of I are the barycentres of triangles of K, and two such
barycentres span a 1-simplex of I' if and only if the corresponding triangles
meet in an edge of K which does not lie in 7. (We refer the reader back to
Fig. 1.5)

If we take the first barycentric subdivision I'!, then we can think of it as the
subcomplex of K! consisting of all those simplexes which do not meet T. We
make use of this representation of I'* to show that I' is connected. Thicken T
and do the same for I (in other words, form the union of those simplexes of K?2
which meet I'). Call the resulting spaces N(T) and N(I') respectively. We know
from lemma (7.3) that N(T) is a disc, and it is not hard to check the following:

@ N uNI) =|K|;
(b) N(T) and N(I') intersect in precisely the boundary circle of N(T');
(c) I is a connected complex if and only if N(I') is a connected space.

Now any two points x, y of N(I') can be joined by a path in | K |. Let p, g be
the first and last points where this path intersects the boundary of N(T). Follow
the given path from x to p, go round the boundary circle of N(T) from p to g,
then take the given path again from ¢ to y. This joins x to y by a path in N(I').
Therefore T is a graph, by (c) above.

Note that I" need not be a tree. Fig. 7.14 shows a triangulation of the torus,
and a choice of tree T, for which I" has the homotopy type of a bouquet of
two circles.

T A connected one-dimensional complex.
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Figure 7.14
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(7.6) Lemma. x(K) < 2 for any combinatorial surface K.

Proof. Choose a maximal tree T in K and construct its dual graph I as above.
Observe that ¥(K) = x(T) + x(I'), since all the vertices of K lie in T, I" has an
edge for every edge of K not in T, and the number of vertices in I' is precisely
the number of triangles in K. Therefore y(K) < 2 by lemma (7.5).

(7.7) Theorem. The following are equivalent for any combinatorial surface K:

(a) Every simple closed polygonal curve in | K | which is made up of edges of K*
separates | K |;

(b) x(K) = 2;

(c) | K| is homeomorphic to the sphere.

Proof. Suppose (a) is satisfied. Choose a maximal tree T in K and let I be its
dual. We claim that T is also a tree giving y(K) = x(T) + %(I') = 2. For if not,
T" must contain a loop, and by assertion this loop separates | K |. But each
component of the complement of this loop must contain a vertex of T, con-
tradicting the fact that T is connected and disjoint from I'. Therefore I' is indeed
a tree.

If ¥(K) = 2, then (") must be 1 and so I is a tree. Therefore | K| is the
union of two discs N(T) and N(I') along their boundary circles, giving the
sphere.

Finally, the proof of theorem (5.20) tells us that any simple closed curve on
the sphere separates the sphere. This completes the chain of implications
(@)= (b) = (0) = (a).

We shall need two further results concerning the Euler characteristic; we

relegate their proofs to the exercises which follow.

(7.8) Lemma. Let K, L be simplicial complexes which intersect in a common
subcomplex, then y(K u L) = 3(K) + (L) — y(K n L).

(7.9) Lemma. The Euler characteristic is left unchanged by barycentric sub-
division.
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Problems

11. Prove lemma (7.8).
12. Prove lemma (7.9) by induction on the number of simplexes in the complex.

13. Deduce from Problem 12 that the Euler characteristic of a graph I' is a
topological invariant of | " |.

14. Let K be a finite complex. If G acts simplicially on | K |, and if the action is
fixed-point free, show that

AK) = | G|. ((K*/G)
where | G | denotes the number of elements in G.

15. Let K be a combinatorial surface. Make a model for | K | in the plane, as
in Problem 6, and let J denote the boundary curve of the resulting regular
polygon. Identifying the edges of J in pairs according to the prescription for
building | K |, gives a graph T in K. Show that y(K) = x(I') + 1, then deduce
lemma (7.6) from lemma (7.5).

16. Continuing from Problem 15, if I" has an edge, one end of which is not
joined to any of the other edges, show there must be two edges in J which have a
vertex in common and which are ‘folded together’ about this common vertex
when we form I' from J. Hence give a second proof that y(K) = 2 implies
|K| =~ S2

7.4 Surgery

We now begin our attack on the classification theorem by showing how to
modify a given combinatorial surface in such a way as to increase its Euler
characteristic. The modification involves cutting out part of the surface and
replacing it by something else, and is quite aptly called ‘surgery’. We have just
seen that a combinatorial surface has Euler characteristic less than or equal to 2,
and that equality occurs precisely when the underlying space is homeomorphic
to the sphere. Consequently, we shall be able to convert every surface into the
sphere by a finite number of our so-called surgeries.

Fig. 7.15 illustrates the type of modification we have in mind for the double

)l

Figure 7.15
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torus. We begin with a simple closed curve which does not separate the surface
into two pieces, and thicken it to obtain a cylinder. Doing surgery along the
curve involves removing the interior of this cylinder and filling in each of the
two resulting holes with a disc. The result is a surface homeomorphic to the
torus. A further surgery will give us the sphere. Of course, if we begin with a
nonorientable surface, then thickening the curve may well give a Mobius strip.
In this case, we remove the interior of the strip to give a compact surface with
boundary a single circle, then close up the surface again by capping off this
circle with a disc.

We have drawn our picture without reference to any particular triangulation
for the sake of clarity, and because this is how we visualize a surgery. However,
we emphasize that we do need to work throughout with combinatorial surfaces
in order to have the Euler characteristic available as a tool.

Let K be a combinatorial surface in [, and let L be a simple closed polygonal
curve which is a subcomplex of K and which does not separate | K |. Form the
second barycentric subdivision K? and thicken L, calling the resulting complex
N. By lemma (7.4), we know that | N | is either a cylinder or a Mobius strip. Let
M be the subcomplex of K? which is complementary to N, that is to say M
consists of those simplexes of K? which do not meet L, together with all their
faces. One possibility is that thickening L gives a cylinder: then | M | is a com-
pact surface with boundary consisting of two circles, and we label the sub-
complexes which triangulate these circles by L, L,. We now form the new
combinatorial surface

K,=MUCL, uCL,

where the apexes of the cones CL;, CL, are points of E**! — E* which lie
on opposite sides of E*. The other possibility is that thickening L gives a MObius
strip. In this case, | M | has a single circle as boundary; we call the subcomplex
triangulating this circle L, and define K, to be M U CL;. In both cases we
say that K, is obtained from K by doing surgery along L.

(7.10) Lemma. 3(N) = 0

Proof. Examine carefully the proof of lemma (7.4). N is built up of the closed
stars, Stfar (v,K?) where v € I'. Now the closed star of a vertex in a combinatorial
surface clearly has Euler characteristic 1. If two of these closed stars meet, they
do so in precisely three vertices and two edges (see Fig. 7.13), so the Euler
characteristic of their unionis 1 + 1 — (3 — 2) = 1. So build up N by walking
round L and adding in each closed star as we meet it. The Euler characteristic
of the resulting subcomplex is always 1 until the last step, when we add a star
which intersects the union of all the others in 6 vertices and 4 edges. Therefore
¥(N)=1+1— (6 — 4) = 0. Notice that this proof goes through indepen-
dently of whether | N | is a cylinder or a Mbius strip.

(7.11) Theorem. x(K,) > x(K)
162



SURFACES

Proof. If thickening L gives a cylinder,

wKy) = x(M) + 7(CLy) + 1(CL;) — (L) — x(Ly)

= (M) +2
If thickening L gives a Mobius strip,
2Ky = xM) + x(CLy) — »(L,)
= M) +1

Also, combining previous lemmas,

AK) = 1(K?) = x(M) + x(N) — x(M 0 N) = y(M)
This completes the argument.

If K is a combinatorial surface, and if | K | is homeomorphic to the sphere,
then we shall call K a combinatorial sphere.

(7.12) Corollary. Any combinatorial surface can be charnged into a combinatorial
sphere by a finite number of surgeries.

Proof. If x(K) = 2, then K is a combinatorial sphere and we have nothing to do.
If ¥(K) < 2, there is a simple closed polygonal curve in K' which does not
separate | K |, by theorem (7.7). So replace K by K* and do surgery along such a
curve. The result is a new combinatorial surface whose Euler characteristic is
larger than that of K. Continuing in this way, we eventually produce a com-
binatorial surface with Euler characteristic 2.

We shall need a slight refinement of the above argument. Each time we do a
surgery, we create either one or two discs on the surface, and we would like to
ensure that the curves along which we do our subsequent surgeries avoid these
discs. If we are unlucky and find ourselves with a curve, along which we wish
to do surgery, and which runs through a disc, then we simply shrink the disc
into the interior of one of its triangles, and hence off the curve. Of course we
must be careful when shrinking our disc, not to move any of the other discs onto
the curve. The following lemma allows us to realize this shrinking process.

(7.13) Lemma. Let K be a combinatorial surface, D a disc which is a subcomplex
of K, and A a triangle of D. There is a homeomorphism h:| K |— | K| which
satisfies h(D) = $tar (A, K2) and which is the identity on all simplexes of K that
do not meet D.

The idea of the proof is very simple. Thicken the boundary of D to produce a
slightly larger disc D,, then shrink D onto star (4, K?) inside D,, keeping all
of | K| — D, fixed. Further details can be found in Problems 19-21. If L is a
polygonal curve in K which intersects D and along which we need to do surgery,
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then before carrying out the surgery we replace D by §far (4, K?) and replace
K by K2
We can now prove one half of the classification theorem:

(7.14) Theorem. Every closed surface is homeomorphic to one of the standard ones.

Proof. Given a closed surface S, triangulate it and do surgery on the resulting
combinatorial surface until it becomes a combinatorial sphere. The triangulation
is no longer needed and we can forget it. After the surgeries, we are left with a
sphere which has a number of disjoint discs marked on it. To recapture S, all
we have to do is reverse each of the surgeries; this involves either removing a
pair of discs and attaching a cylinder in their place, or replacing a single disc
by a Mobius strip.

If our original surface S is orientable, it does not contain any Mobius strips,
therefore reversing a surgery must always amount to removing a pair of discs
and adding a handle in their place. So we obtain a sphere with handles. If S is
nonorientable, then both types of operation can occur. But we know from
Section 7.1 that, in this case, removing two discs and sewing on a cylinder is
always equivalent to replacing each of the discs by a Mobius strip. Therefore
we obtain a sphere with a finite number of M&bius strips sewn in.

Problems

17. The straight lines shown in Fig. 7.16 represent three simple closed curves
in the Klein bottle. Thicken each curve, decide whether the result is a cylinder
or a Mobius strip, and describe the effect of doing surgery along the curve.

\

<

Figure 7.16

18. Show that the surface illustrated in Fig. 7.17 is homeomorphic to one of
the standard ones using the procedure of theorem (7.14).
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Figure 7.17

19. Let X o Y> Z be three concentric discs in the plane. Find a homeo-
morphism from X to itself which is the identity on the boundary circle of X
and which throws Y onto Z.

20. Suppose we have two discs in the plane, both of which are bounded by
polygonal curves, and one of which lies in the interior of the other. Prove that
the region between them is homeomorphic to an annulus. (The best hint we
can give is Fig. 7.18, plus a reminder that any polygonal simple closed curve
in the plane bounds a disc.)

Figure 7.18

21. With the notation of lemma (7.13) and Problem 19, find a homeomorphism
h:D; — X such that (D) = Y and h(sfar (4,K?)) = Z. Now prove lemma (7.13).

7.5 Surface symbols

Write H(p) for the sphere with p handles added, and M(q) for the sphere with g
Mobius strips sewn in. Two questions remain unanswered.

Question 1. Are the surfaces H(p) and M(q) well defined? In other words, if we

take a sphere and add some handles (or M&bius strips), and if we take a second
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copy of the sphere and add the same number of handles (or Mdbius strips) but
to different parts of the sphere, are the resulting surfaces homeomorphic?

Question 2. Are the standard surfaces S%, H(1), M(1), HQ2), M(2), H(3),...
topologically distinct?

We shall deal with these two questions by constructing models for our standard
surfaces. Consider the orientable case first. Suppose we are given a sphere with
two handles attached. For each of the handles we choose a pair of simple closed
curves which wind round it once, as shown in Fig. 7.19. The curves are all based

Figure 7.19
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at the same point and are otherwise disjoint. Suppose we now cut the surface
along the curves labelled a, b in the directions indicated by the arrows. Then we
can open the surface out to become a rectangle with a handle attached in its
interior. A further pair of cuts, along the curves ¢ and d, produces a model in the
form of an eight-sided polygon with its sides labelled appropriately (Fig. 7.20).

Figure 7.20

Now the original surface is completely defined by the way in which we identify
the edges of this polygon in pairs, and this information is efficiently stored in the
so-called surface symbol obtained by reading round the polygon clockwise and
listing the labels on its edges as they occur, adding a superscript — 1 to each edge
whose arrow points anticlockwise. So the surface symbol of the sphere with
two handles attached is aba™*b~*cdc™1d 1.

By increasing the number of cuts, we can clearly produce a model for the
sphere with p handles attached in the form of a 4p-sided polygon whose edges
are to be identified in pairs according to the symbol a;b,a; *b7 la,b,a; 1h;?
...agbya, by ', Since two surfaces which have the same surface symbol are
quite clearly homeomorphic, we have disposed of Question 1 for orientable
surfaces.

In the nonorientable case, we cut each Mdbius strip along a curve which cuts
across it once, as in Fig. 7.21. We leave the reader to check that if we have
q Mobius strips, then we obtain a 2g-sided polygon with surface symbol
a,0,0,4d,...a,a, Again, we have answered Question 1 in the affirmative.

To show that the surfaces $2, H(1), M(1), H(2), ... are all topologically
distinct, we shall calculate their fundamental groups. To illustrate the method,
which uses van Kampen’s theorem (6.13), we again choose to work with H(2).
Removing an open disc from H(2) produces a space which deformation retracts
onto the one-point union of four circles; the fundamental group of this space
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a

Figure 7.21

is Z * Z  Z * Z with generators a, b, ¢, d represented by our original four loops.
Now if we use C to denote the boundary circle of this space, then the loop
aba~'b~Ycdc™'d ™! is quite clearly homotopic to a generator of 7,(C). So van
Kampen’s theorem gives

n (H,) = {abcdlaba b 'edc™'d™! = e}

The same sort of argument shows
p

ny (H(p)) = {ay,by,..a,b, | [] abiai byt = e}

i=1

and
q

7y (M(q)) = {alﬂaZV"aaql H af = e}

i=1
We also know, of course, that $2 is simply connected.

If we now abelianize each of these groups, in other words,v form the quotient
of each group by its commutator subgroup, then =,(H(p)) becomes the free
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abelian group Z x Z x ... x Z on 2p generators, and n,(M(q)) the abelian
group generated by g elements x;,X,...,x, subject to (x;x,...x,)> = e. Changing
to the new set of generators x;X,...X,, X5,X3,...,X,, We see that this latter group
isZ, x Z x ... x Z, there being g — 1 infinite cyclic factors. Since no two of
the abelianized groups are isomorphic, we conclude that no two of our standard
surfaces are homeomorphic. This completes our classification of closed surfaces.

H(p) is called the standard orientable surface of genus p, and M(q) the
standard nonorientable surface of genus g. A closed surface is completely
determined once we know its genus and whether or not it is orientable.

At this point we recommend the reader to work through the alternative
(historically much earlier) proof of the classification theorem for closed surfaces
given in Massey [9].

Much current work in topology centres on the study of manifolds, the higher-
dimensional analogues of surfaces. A manifold of dimension n (n-manifold for
short) is a second-countable Hausdorff space, each point of which has a neigh-
bourhood homeomorphic to E". The spaces E”, S", P" are all n-manifolds;
$* x S!is a closed 4-manifold (‘closed’ meaning it is compact and connected);
any open subset of an n-manifold is itself an n-manifold, so GL(r) is a manifold
of dimension n?; SO(n) is a closed manifold of dimension in(n — 1); finally, the
Lens spaces L(p,q) are all examples of closed 3-manifolds. Despite a great deal
of progress, many basic questions remain unanswered. The most important is
the famous Poincaré conjecture. When posed as a question, it asks if every
closed, simply connected manifold of dimension 3 is homeomorphic to S3.

Problems

22. Are the surfaces shown in Fig. 7.22 homeomorphic?

Figure 7.22

23. What happens if we remove the interiors of two disjoint discs from a closed
surface, then glue the two resulting boundary circles together?

24. Use the classification theorem to show that the operation of connected sum
(Problem 3) is well defined.
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25. Assuming every compact surface can be triangulated, show that the boundary
of a compact surface, if nonempty, consists of a finite number of disjoint circles.

26. Show that any compact connected surface is homeomorphic to a closed
surface from which the interiors of a finite number of disjoint discs have been
removed.

27. What is the fundamental group of the space obtained by punching & holes
in the sphere?

28. Write H(p,r) for H(p) with the interiors of r disjoint discs removed, and
M(q,s) for M(q) with s discs similarly removed. Show that H(p,r) can be obtained
from a (4p + 3r)-sided polygonal region in the plane by glueing up its edges
according to the surface symbol

bal

-1p—1 -1 -1 -1
aybyat byt ..aba, byt xyixy X x,

(Figure 7.23 is supplied as a hint.)

Y2

a4 Y1 44

X2

x1

by

Figure 7.23

29. Find a surface symbol for M(g,s), as defined in Problem 28.

30. Calculate the fundamental groups of H(p,r) and M(qg,s).

31. Show that H(p,r) = H(p',r') implies p = p’ and r = #'; that M(q,s) = M(q',s')
implies g = ¢’ and s = §'; and that there are no values of p,q,r,s for which
H(p,r) = M(q.s).

32. Define the genus of a compact connected surface to be the genus of the
closed surface obtained on capping off each boundary circle with a disc. Show

that a compact connected surface is completely determined by whether or not
it is orientable, together with its genus and its number of boundary circles.
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33. Identify the surfaces shown in Fig. 7.24. Can you suggest a general result
from these two pictures?

Figure 7.24
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8. Simplicial Homology

8.1 Cycles and boundaries

If we wish to distinguish between the sphere and the torus, we have already
seen one way of doing so using the fundamental group. Any loop in the sphere
can be continuously shrunk to a point, in other words the sphere is simply
connected, whereas this is not the case for the torus. The fundamental group is
a very valuable tool, but it has a significant defect. Remember that the funda-
mental group of a polyhedron depends only on the 2-skeleton of the underlying
complex, making it ideal for studying questions which are essentially two-
dimensional (say distinguishing between two surfaces), but leaving it impotent
in the face of a problem such as showing that S and S* are not homeomorphic.

In an attempt to overcome this difficulty, we shall associate to each finite
simplicial complex K a collection of groups H,(K),q = 0,1,2,..., called the
simplicial homology groups of K. These groups will be defined using the sim-
plicial structure of K, but they will turn out to depend only on the homotopy
type of the polyhedron | K|, allowing us to define the homology groups of
any compact triangulable space. Each H(K) is a finitely generated abelian
group, and is to be thought of as in some sense measuring (g + 1)-dimensional
holes in the space | K |. For example, the group H,(S*) will be shown to be non-
trivial, verifying our feeling (when we look at S* in E°) that S* has a five-
dimensional hole.

The construction of the homology groups of a complex is quite complicated,
and for this reason we attempt to provide a little motivation in what follows.
We can distinguish between the sphere and the torus in a rather different manner
from that suggested above. Every simple closed curve drawn on the sphere
separates it, and therefore forms the boundary of a region on the sphere. This
is not so for the torus: Fig. 8.1 shows three simple closed curves on the torus

Figure 8.1
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only one of which, the curve B, bounds a piece of the surface. In order to recognize
the fact that the torus has holes in it, we would like some way of working with
simple closed curves that ignores those which bound part of the surface.

It is important to realize that a curve may bound part of a surface and yet not
be null homotopic. For example, the boundary circle of the punctured torus
bounds the whole surface, but we know that it represents a nontrivial element
in the fundamental group.

For reasons which will become apparent later, we choose to work with
oriented polygonal curves in some fixed triangulation K of the torus, denoting
orientation as usual by arrows on the edges of the curves. If an edge has vertices
v, w, then the symbol (v,w) will denote this edge oriented in the direction from
v to w. In a similar manner, if u, v, w are the vertices of a triangle of K, then
(u,v,w) denotes this triangle oriented by the ordering u, v, w of its vertices; so
(u,0,w) = (v,w,u) = (w,u,v). We denote a change of orientation by a minus sign,
thus (w,v) = —(v,w) and (v,u,w) = — (u,v,w). The boundary of the oriented edge
(v,w) is defined to be

oow)=w —v
and the boundary of the oriented triangle (u,v,w) is
A(u,v,w) = (v;w) + (Wu) + (u,0)

Note that the boundary of (u,0,w) is the sum of its edges, each taken with the
orientation induced by the given orientation of the whole triangle.

Figure 8.2

If we now think of an oriented curve such as 4 in Fig. 8.2 as the sum of its
oriented edges

A = () + (vw) + Wx) + (x,p) + (u)
and define its boundary linearly by
04 = 0(uv) + o(v,w) + o(w,x) + 0(x,y) + O(y,u)

then of course all the terms cancel out and we have a formal way of recognizing
that a curve like 4 is closed and consequently has no boundary. Now consider
the oriented curve B. It is also closed and, in addition, it encloses three of the
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triangles of K. If we orient these triangles as indicated, write their union as
(e;a,b) + (e,b,c) + (e,c,d)
and compute the boﬁndary of this, we obtain
d(e,a,b) + O(eb,c) + d(e,c,d)
= (a,b) + (b,e) + (e;a) + (b,c) + (c,e) + (e,b) + (c,d) + (d,e) + (e)
= (a,b) + (b,e) + (e,a) + (b,c) + (c,e) — (be) + (¢, d) + (d,e) — (c,e)
= (a,b) + (b,c) + (c,d) + (d,e) + (e,a)
=B

making precise the fact that B bounds a piece of the torus.

We now consider arbitrary linear combinations A,(uq,01) + ... + A(ts0s)
of oriented edges of K, with integer coefficients,t which have no boundary in
the sense that 4; d(uy,04) + ... + A4 0(uy,v,) vanishes. Such an expression will be
called a one-dimensional cycle of K. We have lost some geometric content in
doing this (after all, “five times a simplex’ does not mean very much!), but we
do have the advantage that our l-cycles form an abelian group under the
addition

TAdupv) + Zpduv;) = Z4; + p)uy0)

We denote this group by Z(K).

An oriented, simple closed polygonal curve in K, when thought of as the sum
of its oriented edges, is a particularly simple sort of 1-cycle and may be referred
to as an elementary 1-cycle. It is an easy exercise (which we recommend to the
reader) to verify that Z,(K) is generated by these elementary cycles.

Thinking back to the curve B above, we say that a one-dimensional cycle is a
bounding cycle if we can find a linear combination of oriented triangles whose
boundary is the given cycle. The bounding cycles rather obviously form a
subgroup B,(K) of Z,(K), and we wish to ignore these. Consequently, we form
the quotient group

H,(K) = Z,(K)/B(K)

which we call the first homology group of K.

1 Keeping in mind that A(u,v) always means the same as (— 4) (v,u).
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Two cycles whose difference is a bounding cycle represent the same element
of H,(K) and are said to be homologous. For example, the two cycles z,, z,
shown in Fig. 8.3 are homologous, since z; — z, is the boundary of the tube
(with its triangles oriented as shown) between them.

As we shall see later, H,(K) turns out to be isomorphic to Z @ Z, and we
can represent the generators by elementary cycles z,, z,, where z, winds once
round the torus longitudinally, and z, winds once round meridianally. So any
other one-dimensional cycle is homologous to a linear combination of these
two. For example, in the triangulation shown in Fig. 8.4, the ‘diagonal’ cycle z
is homologous to z; + z, since z; + z, — z bounds half of the torus.

SYSIS7Se
SIVae

Figure 84

In order to motivate the definition of the first homology group, we have
worked with a specific triangulation of the torus. However, it is clear that our
construction makes sense for any simplicial complex K. Even better, it general-
izes easily to provide a homology group H (K) for each nonnegative integer g,
as we shall see in what follows.

8.2 Homology groups

Let K be a finite simplicial complex. We know there are precisely two different
ways of orienting each simplex of K, with the exception that a vertex can be
oriented in only one way. A simplex together with a specific choice of orientation
will be called an oriented simplex and usually be denoted by the symbol ¢ or 7.

We define C,(K) to be the free abelian group generated by the oriented
g-simplexes of K, subject to the relations ¢ + 7 = 0 whenever ¢ and 7 are just
the same simplex with opposite orientations. An element of this group is called
a g-dimensional chain, and C(K) itself will be referred to as the gth chain group
of K. Note that C,(K) is free abelian with rank equal to the number of g-simplexes
in K.
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A g-chain can be thought of as a linear combination 4,6, + ... + A0, of
oriented g-simplexes of K with integer coefficients, provided we remember that
/(—o0) and (— A)o always mean the same thing, where —o¢ as usual stands for
o with its orientation reversed.

We shall often want to define homomorphisms on these chain groups, and
in doing so our approach will always be the same: specify the value of the homo-
morphism on each generator of C,(K), that is to say on an arbitrary oriented
g-simplex o of K; check that the relations ¢ + (—o) = 0 are preserved; then
extend linearly to the other elements.

A good example is the boundary homomorphism. The boundary of an oriented
g-simplex is defined to be the (¢ — 1)-chain determined by the sum of its
(g — 1)-dimensional faces, each taken with the orientation induced from that
on the whole simplex. '

We need a little more notation in order to produce a formula from which
we can compute boundaries. If a g-simplex has vertices vy, ...,0,, the symbol
(vo, .. .,v,) means this simplex oriented by the given ordering.

Therefore

(Vgs- - -0g) = 8ign 0 (Vg0 - -sVo(g))

for any permutation 8 of 0,...,q, where sign 6 = +1(—1) if 8 is an even (odd)
permutation. According to the above description the boundary of the oriented
g-simplex (vg,...,v,) is

q

Avgs--0) = D, (=1 (0o, s Do sUg)s
i=0
where (vg,...,0;,...,0,) is shorthand for the oriented (¢ — 1)-simplex obtained by
deleting the vertex v, One easily checks that changing the orientation of o
changes the induced orientation on each of its faces, so do + d(—o) 1s zero.
Therefore ¢ determines a homomorphism

0:C(K)— C, - 1(K)

In the special case when g = 0, we define the boundary of a single vertex to be
zero and set C_(K) = 0.

Thinking back to our work in Section 8.1, it is natural for us to call the
kernel of ¢:C(K)— C,_ (K) the group of g-cycles of K, and denote it by
Z (K).

8.1 Lemma. The composition C, , (K)S Cq(K)i> C,_ 1(K) is the zero homo-
morphism.

Proof. We need only check that 6> = d ° 9 gives zero when applied to any
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oriented (g + 1)-simplex of K. Now
g+ 1

(W04 1) =0 Y. (=1) (Vose-esDipe-esg + 1)

i=0

q+1 . qg+1 .
= Z (—l)l Z ("1)‘1—1(Uo,...,ﬁi,...,ﬁj,...,vq+1)
i=0 j=i+1
qgt+1 i—1

+ Y (1Y (= 1Y @re BB sy 4 1)
i=0 j=0

All the terms in this expression cancel in pairs, since each oriented (g — 1)-
simplex (vg,...,0;...,05...,0,+ 1) appears twice, the first time with sign
(—=1)'*J~ ! and the second time with the opposite sign (— 1) * 7.

If we write B,(K) for the image of 0:C, , (K)— C,(K), the above lemma
shows us that B,(K) is a subgroup of Z (K). We call B (K) the group of bounding
g-cycles.

The gth homology group of K is now defined to be

H/(K) = Z(K)/B,(K)

The element of H,(K) determined by a g-cycle z will be called the homology
class of z and written [z]. Two g-cycles whose difference is a bounding g-cycle
have the same homology class and will be called homologous cycles.

A homology group H (K) is by its very definition a finitely generated abelian
group. Therefore it can be written in the form F @ T, where F is a finitely
generated free abelian group (in other words, the direct sum of a finite number
of copies of Z), and T is a finite abelian group. The elements of T are precisely
those elements of the homology group which have finite order, and they are
called torsion elements. The rank of F, that is, the number of summands when
we express F as a sum of cyclic groups, is called the gth Betti numbert of K and
denoted by .

Problems

1. Check that changing the orientation of a simplex changes the induced
orientation on each of its faces.

2. Show the elementary 1-cycles, mentioned in Section 8.1, generate Z,(K) for
any complex K.

3. Take the triangulation of the Mobius strip shown in Fig. 6.2, orient one of
the triangles, then go round the strip orienting each triangle in a manner com-
patible with the one preceding it. (Of course, when you get back to where you
started the orientations do not match up.) What is the boundary of the two-
dimensional chain formed by taking the sum of these oriented triangles?

T After the Italian mathematician Enrico Betti (1823-92).
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4. Let K be the complex shown in Fig. 6.4, assuming the identifications are
made so that | K | is a torus. Orient the triangles of K in such a way that if two
have an edge in common, their orientations are not compatible. Now take
the sum of all the oriented triangles and compute its boundary.

5. As for Problem 4, but this time orient all the triangles compatibly, with the
exception of one of them which is given the ‘wrong’ orientation.

6. Triangulate the ‘dunce hat’ (Fig. 5.11) in some way and decide whether or not
there are any 2-cycles.

7. Show that any cycle of K is a bounding cycle of the cone on K.

8. Triangulate S” so that the antipodal map is simplicial and induces a triangula-
tion of P*. If n is odd, find an n-cycle in this triangulation of P”. What difficulties
arise when n is even?

9. Triangulate the Mobius strip in a simple way so that its centre circle is a
subcomplex. Orient the boundary circle of the strip, and the centre circle,
calling the resulting elementary 1-cycles z;, z respectively. Show that z, is
homologous to either 2z or —2z.

10. Suppose | K | is homeomorphic to the torus with the interiors of three dis-
joint discs removed. Orient each boundary circle of | K | and let z,,z,,z5 be the
resulting elementary 1-cycles of K. Show that [z3] = A[z,] + u[z,] where
A= 11, p = +1. Do we have the same result if we replace the torus by the
Klein bottle?

8.3 Examples

In this section we shall calculate one or two homology groups. The methods
used will be rather primitive, and purposely so because any systematic calcula-
tion of these groups would take us too far afield. Our aim is to reach the stage
where we can present some significant applications of homology theory as
quickly as possible, and with a minimum of fuss. For a more sophisticated
approach, see Maunder [18].

Example 1. Let K be the complex shown in Fig. 8.5.

V4

Vi Vs V3

Figure 8.5
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The vertices vy, v,, v3, v, generate Zy(K) = Cy(K), and C,(K) can be thought
of as the free abelian group generated by the oriented 1-simplexes (v,,v,),
V1,04), (V3503), (V3,04), (V3,04). SO Bo(K) = 0C{(K) is generated by v, — vy,
Uy — Uy, U3 — Uy, Uy — Uy, U4 — U3, and we see that vy, v,, v3, v, all determine
the same homology class. Therefore Hy(K) = Z,(K)/Bo(K) is an infinite cyclic
group generated by [v, ].

The group Z,(K) is generated by the elementary 1-cycles, and by inspection
there are six such, namely

z1 = (U1,02) + (V2,04) + (V4501)
zy = (V3503) + (V3,04) + (Vas02)
23 = (v1,03) + (V2,03) + (V3,04) + (V40y)

plus —z;, —z,,and —z,. Since z; = z; + z,, we see that Z,(K) = Z @ Z with
generators z,, z,. Our complex K has only one two-dimensional simplex, so
C,(K) is an infinite cyclic group generated by (v,,vs,v,). This means that
B,(K) = 0C,(K) is generated by 0d(v,,v3,0,) = z,. So the first homology
group H(K) is isomorphic to Z and generated by [z, ].

Finally, there are no 2-cycles, and no simplexes of dimension greater than 2,
therefore H (K) = 0 for g > 2.

Example 2. If two vertices v, w of a complex K lie in the same component of
| K|, then they are homologous. For we can join v to w by an edge path
v Uy v, ... 0 W, in which no two consecutive vertices are equal, and then check
that w — v is the boundary of the 1-chain (v,v,) + (v1,0,) + ... + (v,Ww). We
leave the reader to convince himself that vertices which lie in different com-
ponents of | K | are not homologous, and that an integer multiple of a single
vertex can never be a boundary, thus proving the following result:

(8.2) Theorem. H,(K) is a free abelian group whose rank is the number of com-
ponents of | K |.

Example 3. Let K be a triangulation of the torus. If we orient all the 2-simplexes
of K compatibly, take their sum, and compute the boundary of this sum, then
each edge of the triangulation occurs exactly twice in the result, once with each of
its two possible orientations. So we have a two-dimensional cycle. It is ele-
mentary to check that any other 2-cycle has to be an integer multiple of this one.
(For suppose the oriented triangle (a,b,c) occurs in a 2-cycle with coefficient 4,
then A(b,c) automatically appears in its boundary. Now the edge spanned by
b and c lies in precisely one other triangle of K whose third vertex we denote by
d. The only way we can rid ourselves of the above term A(b,c) is to orient this
adjacent triangle as (d,c,b), in other words, compatibly with (a,b,c), and include
it in our cycle with the same coefficient 1. Going round the complex in this
way, we see we must orient all the simplexes compatibly, and give them all the
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same coefficient.) Since there are no 3-simplexes in a triangulation of the torus,
there are no bounding cycles, and therefore H,(K) is isomorphic to Z.

If we now change to a triangulation of the punctured torus, there are no
2-cycles, since even if we include all the triangles oriented compatibly as above,
when we compute the boundary we are left with those edges which form the
boundary of the hole in the torus. So the second homology group is zero.

The second homology group of a triangulation of the Klein bottle is also
zero. Again, there are no 2-cycles, but this time for a different reason. The
Klein bottle being nonorientable, there is no way to orient compatibly all the
2-simplexes of a triangulation.

Notice how the second homology group very nicely distinguishes between
the torus, which is orientable, and the Klein bottle, which is not.

Example 4. Suppose we have a complex K which is a cone, in other words K is
isomorphic to a complex of the form CL where the dimension of L is one less
than that of K. Let v be the unique vertex of K which does not lie in L, usually
called the apex of K.

A cone is always connected, so Hy(K) =~ Z, by theorem (8.2). Now assume
q>0 and define a homomorphism d:Cy(K)— C,.(K) as follows. If
o = (vg,...,v,) is an oriented g-simplex of K which happens to lie in L, define
d(a) = (v,v,...,0,); otherwise set d(o) = 0. Clearly d(s) depends only on the
orientation of ¢ (and not on the particular ordering of its vertices chosen to
represent this orientation), and d(o) + d(—0) = 0 in C,, ,(K). So d gives a
homomorphism from C,(K) to C, , ;(K). Now check that

0d(o) = ¢ — dd(o)
for any oriented g-simplex o. (For example, if ¢ lies in L then

dd(0) = 0(v,vg,...,v,)

= (Uo,. . .,Uq) +

i

(=D L (00, 0. . 50,)
)

M s

= o — do(o)

The other case is left to the reader.) So if z is a g-cycle of K, we have 8d(z) =

z — dd(z) = z. This shows every g-cycle to be a bounding cycle, and therefore
H(K) = 0forgq > 0.

Example 5. Let A"* ! denote an (n + 1)-simplex, n > 0, together with all its
faces, thought of as a simplicial complex, and let £ denote those simplexes
which lie in the boundary of A"*!. So |Z"| is homeomorphic to . Now
Z"and A" * ! have precisely the same simplexes up to and including dimension n.
Also, the definition of the gth homology group does not involve simplexes of
dimension greater than g + 1, and therefore H (X") =~ HA"* ) for0<g<
n — 1.But A" ! is a cone, so by Example 4 we have Hy(X") =~ Z and H A=) =0
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for 1 < g < n— 1. (Remember we have assumed n > 0. £° consists of two
points and so Hy(Z°) =~ Z @ Z by Example 2.)

Since X" has no (n + 1)-simplexes, H,(Z") = Z,(X") = Z,(A"* ). And, since
H,(A"*1Y) =0, we have Z,(A"*') =B, A"*!)=0C,, (A"*"). The latter
group is clearly infinite cyclic, therefore H,(X") o~ Z. We can obtain a generator
by orienting all the n-simplexes of X" compatibly. Of course, H (Z") = 0 for
q>n.

Once we have verified the topological invariance of homology groups, we
will be able to refer to the groups H (X") as the homology groups of the n-sphere.

Example 6. Edge loops and elementary 1-cycles look remarkably similar, so
we are not surprised to find a close connection between the edge group of a
complex and its first homology group.

Suppose | K | is connected and choose a vertex v to act as base point. Any
edge loop o = vv;v,...00 gives us a l-cycle z(a) = (v,vy) + (Vy,v2) + ... +
(vw,v) if we agree to omit (v;,v; + ;) whenever v; = v;, 1. If two edge loops differ
by a single operation of the type used to define equivalence of edge loops, they
clearly determine homologous cycles. So the correspondence o + z(c) gives us
a function ¢ :E(K,v)— H(K). It follows from the definition of ¢ that it is a
homomorphism. We shall show that ¢ is onto and that the kernel of ¢ is the
commutator subgroup of E(K,v). Remembering that the edge group E(K.,v) is
isomorphic to the fundamental group of | K |, we will have the following result:

(8.3) Theorem. If | K | is connected, abelianizing its fundamental group gives the
first homology group of K.

To show ¢ is onto, we need only prove that the homology class of each ele-
mentary 1-cycle lies in the image of ¢. Now an elementary 1-cycle is just an
oriented simple edge loop thought of as the sum of its oriented edges, say
z; = (Wi, Wy) + (Wa,w3) + ... + (wew,). If we join v to w, by an edge path y
and set o = yw;w,...wyy "1, then z(«) = z, as required.

Since H,(K) is an abelian group, the kernel of ¢ must contain the com-
mutator subgroup of E(K,v). To complete our proof, we must show that if o
is an edgé¢ loop for which z(«) is a bounding cycle, then {a} lies in the com-
mutator subgroup of E(K,v). As above, write oo = vv; v,...7; v, and suppose

Z(OC) = 6(2.1 0-1 + ...+ /110'1)

where the o, are oriented 2-simplexes of K. Suppose ¢; = (a;, b;, ¢;) and for
each i choose an edge path y; joining v to a;. The edge loop v;a; b; ¢; y; tis

equivalent to the trivial edge loop v, and therefore so is the product
1
B= H (i ai b c; i_l)l"
i=1
giving {¢f~ !} = {a}. Note that
2(y; a; b ¢y ) = ay, by, ¢)
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and hence z(xf~') = 0. Now the only way an edge loop can map to the zero
1-cycle under « + z(a) is if, whenever an oriented edge (a,b) occurs n times in it,
then (b,a) also occurs n times. Recall the homomorphism 6: E(K,v) — G(K,L)
defined in theorem (6.12). Under 8 the equivalence class of a loop such as
a B~ will map to a preduct of group elements in which each group element
occurs the same number of times as its inverse. Therefore if we first apply 6
and then abelianize G(K,L), our element {« 8~ '} will map to zero. But 6 is an
isomorphism, and so {& 7'} = {«} must lie in the commutator subgroup of
E(K,v), completing the argument.

Suppose now that K is a combinatorial surface. Then H,(K) = Z by theorem
(8.2), and in order to find H, (K) all we have to do is abelianize the fundamental
group of | K |. This was done at the end of Chapter 7, and we remind the reader
of the result:

0 if | K| is the sphere
H,(K) = <2gZ if | K| is an orientable surface of genus g
-z 7z, if | K| is a nonorientable surface of
genus g

Also the arguments given in Example 3 above show that H, (K) is Z if the
combinatorial surface K is orientable, and 0 if not. Accepting for the moment
that homology groups are topological invariants, we can rewrite this as

VA if | K | is an orientable surface
Hy(K) = {o if not.

Problems

11. Calculate the homology groups of the following complexes: (a) three copies
of the boundary of a triangle all joined together at a vertex; (b) two hollow
tetrahedra glued together along an edge; (c) a complex whose polyhedron is
homeomorphic to the Mobius strip; (d) a complex which triangulates the
cylinder.

12. What are the homology groups of a tree?

13. Show that any graph has the homotopy type of a bouquet of circles, and
suggest a formula for the first Betti number of the graph.

14. Calculate the homology groups of a triangulation of the ‘dunce hat’.
15. Finish the computation dd(c) = ¢ — dd(c) of Example 4.
16. Calculate the homology groups of a triangulation of the sphere with k holes.
17. If | K | is homeomorphic to the standard orientable surface H(p,r) with r
holes, show that the first Betti number of K is given by
Bi=2p+r—1
What is the second Betti number of K?
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18. What are the Betti numbers of K if | K | is homeomorphic to M(q,s) (defined
in Problem 28 of Chapter 7)?

19. What is the nth Betti number of a triangulation of P"?

8.4 Simplicial maps

Let K, L be complexes and s:| K |— | L| a simplicial map. Using s we shall
construct a homomorphism s,:C, (K) — C, (L) for each q.

Remember that a simplicial map takes simplexes linearly onto simplexes,
but that it may decrease the dimension of a simplex. Given an oriented g-simplex
a = (v,...,v,) of K, we define 5,(c) to be the oriented g-simplex (s(vy),. . .,5(v,))
of L if all the vertices s(v,),...,s(v,) are distinct, and we set s,(¢) = 0 otherwise.
This determines a homomorphism from C,(K) to C,/L), since clearly
s(—0) = —s,(0).

We claim that s, in turn, induces a homomorphism s, : H(K)— H(L).
In order to prove this, we must show that s, takes cycles of K to cycles of L,
and bounding cycles to bounding cycles. This is most efficiently done using the
following lemma:

(8.4) Lemma. 0s, =s,_;0:C(K)— C,_ (L), that is to say, the following
diagram commutes:

C,K)— C[(L)

1

Cy—1(K) 5 €, 4(L)

Proof. We show that 0s(0) =s,-,0(6) for any oriented g-simplex
o = (v,...,,) of K. This is clear if all the vertices s(v),...,s(v,) are distinct. If
not, suppose s(v;) = s(v), where j < k. By definition we have s,(c) = 0, so
0Os (o) = 0. Now

q .
Sq—100) = Y (—1)s4— 1(Vgs-- D5 . -0y).

i=0
Examining the terms in this sum, if i is not j or k, then
Sq—1(Vgs+ - sDis. . 0) = 0.
The two remaining terms are

(—1Ys, 100y D)o s05) and (— 1)s, _ 1 (Vs sBpo- - -50,)-
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These are nonzero only if v; and v, are the only vertices of ¢ identified by s,
and in this case the two terms cancel because

Sy 100y Do sly) = (S(UO),...,S/(UT),. - 8(v,))
= (=177 Ys(vg),. . S0 - ,5(0,)
= (=17 s, (0o oDk 5Vg)

Suppose now that z is a g-cycle of K, so d(z) = 0. By our lemma,
0s,(z) = s,- 10(z) = 0, and we see that s(z) is a g-cycle of L. Similarly, if
be B(K) then b = dc for some element ce C, , {(K). But 0s, , 1(c) = s,0(c) =
s,(b), giving s,(b) e B,(L). Therefore s (Z(K)) € Z,(L) and s,(B(K)) < B,(L)
as required.

We end this section with a little terminology which will considerably simplify
the exposition in later sections. The collection of groups and homomorphisms

B CK) S Cy((K) D 5 CyK) S 0

will be referred to as the chain complex of K and written C(K). Whenever we
have a homomorphism ¢,: C(K)— C (L) for each g satisfying

0y = by- 10

we abbreviate the whole collection to ¢ : C(K)— C(L) and call ¢ a chain map.

So a simplicial map from K to L induces a chain map from the chain complex
of K to that of L. The important property of a chain map is that it induces
homomorphisms ¢, :H,(K)— H,(L) of homology groups. The proof is
precisely the same as that given above for the special case where the chain map
is induced by a simplicial map.

We shall often abbreviate our notation even further and simply write our
homomorphisms as

$:C(K) > C(L)
by H(K)— H/(L)
when no confusion can arise from doing so.
(8.5) Lemma. Ify : C(L) — C(M) is a second chain map then  ° ¢ :C(K) - C(M)
is a chain map and (f © ¢),, = ¥, ° ¢, H (K) - H (M)
The proof is left to the reader (Problem 20).

8.5 Stellar subdivision

Our object in this section is to show that barycentric subdivision does not change
the homology groups of a complex. To this end, we shall explain how to bary-
centrically subdivide a complex by repeated application of a very simple
operation called stellar subdivision.

185



BASIC TOPOLOGY

Let K be a complex, A4 a simplex of K, and let v denote the barycentre of 4.
We chop up the simplexes of K as follows. Those simplexes which do not have
A as a face are left untouched. If 4 < B, let L denote the subcomplex of the
boundary of B consisting of those simplexes which do not have A as a face, and
replace B by the cone with base L and apex v as in Fig. 8.6. This makes sense

B .
L
v 4
A
Figure 8.6 Cone on L with apex v

because adding v to the set of vertices of any simplex of L gives a collection of
points which are in general position. We denote the resulting complex by K,
and say that K’ is formed from K by stellar subdivision of the simplex A.

o—<—<>—<>
<o-<Po—<—<P>

Figure 8.7

Suppose now we begin with a complex K and stellar-subdivide each of its
simplexes, taking the simplexes in order of decreasing dimension. (The actual
order inside any particular dimension does not matter.) Then we obtain the
first barycentric subdivision as Fig. 8.7 indicates. And of course we may repeat
the process, eventually producing any prescribed K™.

(8.6) Theorem. If K’ is obtained from K by a single stellar subdivision, then K’ and
K have isomorphic homology groups.

(8.7) Corollary. Barycentric subdivision does not change the homology groups
of a complex.

We shall construct a chain map y:C(K)— C(K') and show that it induces iso-
morphisms of homology groups. As usual, we need only specify the effect of x
on a typical oriented g-simplex o of K so long as we are careful that y(—o) =
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—x(0). Suppose K’ is obtained from K by stellar subdivision of the simplex A.
If A is a face of o, then o is broken up into smaller g-simplexes when we form K.
We define y(o) to be the g-chain of K’ which is the sum of those g-simplexes of
K’ that make up o, each taken with the orientation induced from the given

V2 Va

O D0

v Vi v
0 A 0

v
v 1

Lo, v1,v2) = (v, vy, vy) — (¥, v, vy)

Figure 8.8

orientation of ¢. Fig. 8.8 illustrates this definition. Put in a more formal way,
if 6 = (Vg5 sl Vg 4 15- - V), and if v,,. . .,v; are the vertices of A, then
k

26) = Y (= 10,0000 ViV 1reensUg)-
i=o

If o does not have A as a face we set x(o) = o.

(8.8) Lemma. y is a chain map.

The proof involves computing the effect of dy, and y, _ ;0 on a typical oriented
g-simplex of K and showing that the answer is the same in both cases. We ask
the reader to do this for himself. While the proof of a lemma like lemma (8.8)
is, of necessity, computational, the geometry of the situation always tells us
why the result ought to be true. When we apply y to an oriented simplex of K,
we may well chop it up as a sum of oriented simplexes of K’, but the point is that
any extra boundary created in this way cancels out. We see this very clearly in
Fig. 8.8 where

aXZ(UOJ Uy, UZ) = 5(1), (2T UZ) - a(U, Vos Uz)
= %10(vo, V1, U3) — (0,05) + (v,03)

Not surprisingly we shall call y the subdivision chain map. We now have
homomorphisms y, :H(K)— H/(K') and we shall show that they are iso-
morphisms, thereby proving theorem (8.6).

Again let v,,...,v, denote the vertices of 4, and v stand for its barycentre. Let
0 be the simplicial map from K’ to K which sends v to v, and which fixes all
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the other vertices of K'. We use the same symbol 6 for the induced chain map
from C(K’) to C(K). Now 0y is the identity homomorphism of C,(K) for each
g, allowing us to conclude from lemma (8.5) that H (K)Q H q(K)A H(K) is
the identity.

We suspect, quite rightly, that 0, is an inverse for ... Let z be a g-cycle of K’
and consider z — x0(z). If L denotes the set of all simplexes of K’ which have v
as a vertex, together with all their faces, then L is a subcomplex of K’ and is a
cone with apex at v. Also, z — y6(z) is a g-cycle of L since x and 6 are the identity
outside of L and d(z — y8(z)) = d(z) — x0d(z) = 0. But we know all about the
homology of a cone from Example 4 of Section 8.3: if ¢ > 0 then H,(L) = 0
and Hy(L) = Z. So for g > 0 the cycle z — x0(z) must be the boundary of a
(g + 1)-chain of L, and therefore automatically the boundary of a (¢ + 1)-chain
of K'. In other words, z and x0(z) represent the same homology class in H (K").
This proves that Hq(K’)g HK)“ H,K’) is the identity and completes our
verification that y, is an isomorphism. We leave the special case g = 0 to the
reader. This completes the proof of theorem (8.6).

If K™ is a barycentric subdivision of K, then we can produce it from K by a
finite sequence of stellar subdivisions. The composition of all the associated
subdivision chain maps gives a chain map y:C(K)— C(K™) which we shall
also refer to as a subdivision chain map. Going in the other direction, we have a
simplicial map 6 corresponding to each stellar subdivision: it is not unique
but we agree to make a particular choice at each stage. The composition of all
these will be denoted by the same symbol, so we write 6:| K" |— | K|, and a
map constructed in this way will be called a standard simplicial map.

Problems

20. Prove lemma (8.5).
21. Check that the subdivision map y:C(K)— C(K’) is a chain map.

22. Give a second proof that barycentric subdivision does not change the Euler
characteristic of a complex by showing that a single stellar subdivision does
not change it.

23. If s:| K™ | — | L | simplicially approximates f :| K™|— | L|, if n = m, and if
0:| K"|— | K™| is a standard simplicial map, prove that s6:| K"|— | L | sim-
plicially approximates f:| K"|— | L]|.

8.6 Invariance

The homology groups of a complex, though defined using the simplicial structure
of the complex, are invariants of the homotopy type of its underlying polyhedron.
We shall now explain why this is the case. Some of the more computational
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details of our argument, which only cloud the issue on first reading, will be
relegated to the problems at the end of the section.
The main theorems are these:

(8.9) Theorem. Any map f:| K | — | L | induces a homomorphism
f, :H(K)— H/(L) in each dimension.}}

(8.10) Theorem. If { is the identity map of | K| then each f, :H (K)— H(K) is
the identity homomorphism, and if we have two maps |K |4 |L |4 | M| then
(8° )y = gy °f, ' H(K)— H(M) for all q.

(8.11) Theorem. If f,g:| K |— | L | are homotopic maps then
f, = g, H(K)— HL) for all q.

It follows at once that if the polyhedra | K | and | L | have the same homotopy
type, then K and L have isomorphic homology groups. Forif f:| K|— |L|isa
homotopy equivalence, with homotopy inverse g, then the composite homo-
morphisms

H/(K) - H(L) "> H{K)

H,(L)—2> H(K)—% H/(L)

are both identity homomorphisms. Therefore f,:H/(K)— H (L) is an iso-
morphism for each g.

So if X is a compact triangulable space, we can choose a triangulation
t:| K|— X and use it to define the homology groups H,(X) of X by H (X) =
H(K). It does not matter which triangulation we choose, we shall always get
the same groups (up to isomorphism).

We have already seen how a simplicial map induces homomorphisms of
homology groups. Not surprisingly, it is the simplicial approximation theorem
(6.7) which allows us to pass to the general case of an arbitrary map. Let
f:| K |—|L| be continuous and choose a simplicial approximation s:| K™ | —
| L|. Let x:C(K)— C(K™) be the subdivision chain map and define the homo-
morphism f, : H (K) — H (L) induced by f to be the composition

H,(K) % HK™)* H,(L)

Unfortunately, there is a choice involved in this definition, namely the choice
of the simplicial approximation s. In order to show that this choice does not
really matter, and in order to check theorems (8.10) and (8.11), we shall need
the following two results:

1L If s;t:|K|— | L| are ‘close’ simplicial maps, in the sense that for each simplex

T We should really use the more cumbersome notation Jos tH(K)— H (L).
1 Remember that all simplicial complexes in this chapter are finite.
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A of K we can find a simplex B in L such that both s(A) and t(A) are faces of B,
thens, = t,:H/(K)— H,L) for all q.
2. If f,g:| K |— | L| are homotopic maps we can find a barycentric subdivision
K™ and a sequence of simplicial maps s,,...,s,:| K™|— |L| such that s; sim-
plicially approximates f, s, simplicially approximates g, and each pair s;, s; 4 1
are close in the sense of result 1 above.

The proofs of 1, and 2 are broken up into easy stages in Problems 24-32 at
the end of this section.

Suppose then that we simplicially approximate a given map f:|K|— | L |
in two different ways via s:| K™|— |L| and t:| K"|— | L | where n = m. Let
%1 :C(K)— C(K™), yx,:C(K™)— C(K") be subdivision chain maps, and let
0:] K"|— | K™| be a standard simplicial map. If we want to show that we can
use either s or t to define f,, we must check that

SaX1x = LaXasd1s Hy(K)— H(L)

It is easy to see that sf:] K" | — | L | simplicially approximates f:| K" |— | L|.
But so does t. Therefore s6 and ¢t must be close simplicial maps and
5.0, = t,:H,(K")— H(L). Since we also know that 6, and y,, are inverse
to one another, we have £, 5,14 = Sx0sX24X15% = SxX14 as required. We now
really do have a well-defined homomorphism f, : H,(K) — H (L), and we have
proved theorem (8.9), the first of our three main theorems.

Proof of theorem (8.10). The first part of the theorem clearly follows by con-
struction. Suppose we are given maps | K | % | L|%|M |. Choose a simplicial
approximation ¢:| I | — | M | for g:| I | — | M |, then a simplicial approxima-
tion s:| K™ | — | I'| for f:| K™ |- | I’ |. Let x,: C(K)— C(K™), x,:C(L) — C(I*)
be subdivision chain maps, and let 0:| I | — | L | be a standard simplicial map.
We now have the following diagram of homology groups and homomorphisms:

H/(K™)—— H/(L)

XZ*[)O* <

H(K)—7~ H,(L) e H (M)

Xl*

One easily checks that 6s simplicially approximates f:| K™ |— | L|, and that
ts simplicially approximates gf :| K™ | — | M |. Therefore

s °Jo = L2048 X 14
= LySuX14
= (I8) X 14
=(9°f )«

as required.
190



SIMPLICIAL HOMOLOGY

Proof of theorem (8.11). This follows directly from results 1 and 2 above since,
with the notation established in result 2,

f* = S14dx = S25dsx = o+ = Snxdx = Gx

Having completed our invariance proofs, we can begin to solve some interest-
ing problems. Referring back to the calculations in Section 8.3, we know that
the homology groups of the n-sphere, n > 0, are as follows.

HyS") = Z

H(S") =~ Z

H(S") =0 for g + O,n
Also Hy(S°) = Z ® Z and H(S°) = Ofor g # 0.

(8.12) Theorem. If m + n then S™ and S* are not of the same homotopy type.

Proof. H,(S™ is isomorphic to H,(S") only when m = n.

(8.13) Corollary. Two euclidean spaces are homeomorphic if and only if they
have the same dimension.

Proof. If h:E™ — E" is a homeomorphism, then
S"Tl~ " — {0} = E" — {h(0)} ~ S" !

So by theorem (8.12) we must have m = n.

(8.14) Brouwer fixed-point theorem. A map from B" to itself must leave at least
one point fixed.

Proof. Mimic the proof given for the case n = 2 in Section 5.5, using the (n — 1)th
homology group in place of the fundamental group. (For an alternative proof,
see theorem (9.18).)

(8.15) Theorem. If h:|K|— S is a triangulation of a closed surface, then S is
orientable if and only if the triangles of K can be oriented in a compatible manner.

Proof. If S is orientable, we have already shown that the triangles of K can be
compatibly oriented in Chapter 7. If § is not orientable, we can find a triangula-
tion of S by a simplicial complex L whose simplexes cannot be compatibly
oriented. Using L to calculate the homology of S gives H,(S) = 0. But if we
calculate using K, we must obtain the same answer. Therefore H,(K) = 0,
showing that the simplexes of K cannot be compatibly oriented.
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Problems

24. If s,t:| K™ | — | L | both simplicially approximate f:| K™ | — | L |, show that
s and t are close simplicial maps.

25. Suppose s,t:|K|— | L| are simplicial, and assume we have a homo-
morphism d,:C(K)— C,, (L), for each g, such that

d,_ 10+ 2d, =t — s:C(K)— C,L).

Show that s and ¢ induce the same homomorphisms of homology groups. The
collection of homomorphisms {d,} is called a chain homotopy between s and t.

In the next three problems we shall construct a chain homotopy between two
close simplicial maps s,t:|K|— L|. First a little terminology. If ¢ is an
oriented simplex of K, call the smallest simplex of L which has both s(s) and
t(o) as faces, the carrier of o.

26. Given ¢ = ve Cy(K), define dy(o) = 0 if s(v) = t(v), and dy(o) = (s(v),t(v))
if s(v) # t(v). Check that ddy, = t — 5:Co(K) — Cy(L) and that dy(o) is a chain
which lies in the carrier of 6. Where have you used the fact that s and ¢ are close?
27. Suppose we have defined homomorphisms d;:C(K)— C;, (L) for
0 <i<gq— 1sothat:

(@) d;_ 10 + 0d; =t — s:C(K)— C{(L);

(b) d{o) is always a chain in the carrier of o.

If o is an oriented g-simplex of K, prove that

ot(o) — s(o) — d, _ 10(0)) = 0
and deduce that |
t(o) — s(o) — d, _ 10(0) = ¢
for some chain c e C, , ;(L). The point is that the carrier of ¢ is a cone.

28. Set d,(0) = c and show that you have completed an inductive construction
for a chain homotopy between s and t.

29. You should now be able to show that close simplicial maps induce the
same homomorphisms of homology groups.

30. Let f,g:| K|— | L | be maps, and write d(f,g) < 0 if for any xe| K| the
distance between f(x) and g(x) is less than 6. If J is a Lebesgue number for the
open covering of | L | by the open stars of its vertices, and if d(f,g) < J/3, show
that the sets

f~Y(star (v,L)) n g~ Ystar (v,L)), v a vertex of L,

form an open covering of | K |.

31. Use the conclusion of Problem 30 to find an integer m and a simplicial map
s:| K™|— | L | which simplicially approximates both f:|K™|—|L| and
g:|K"|—|L|
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32. Suppose f,g:| K |— | L | are homotopic maps, let F:]K| x I— |L| be a
specific homotopy between them, and write f,(x) = F(x,t). Given é > 0, find
a positive integer n such that

d(.f;/mﬁr#- 1)/n) < 5: 0 <r<n
Now verify result 2 of this section by finding, for each r, a common simplicial
approximation to f,, and f;, . 1, provided n is large enough.

33. Give a second proof of corollary (8.13) using the fact that the one-point
compactification of E" is S".

34. Work through the details of the proof of theorem (8.14).

35. If two closed manifolds are homeomorphic, show they must have the same
dimension.

36. An n-manifold with boundary consists of a second-countable Hausdorff
space in which each point has a neighbourhood homeomorphic to either E”
or to the closed upper half-space E” . Those points which have a neighbourhood
homeomorphic to E" form the interior of the manifold. Those points x for which
there is a neighbourhood U, and a homeomorphism f:E" — U such that
f(0) = x, form the boundary. Show that the interior and boundary of a manifold
are disjoint. If : M — N is a homeomorphism between two n-manifolds, prove
that i induces a homeomorphism between the interior of M and the interior of
N, and between the boundary of M and the boundary of N.
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9. Degree and Lefschetz
Number

9.1 Maps of spheres

The whole of this chapter will be devoted to applications of homology theory.
We start by defining the ‘degree’ of a map from the n-sphere to itself, a concept
due to Brouwer which ailows one to decide whether or not two such maps are
homotopic.

Choose a triangulation h:| K | — S" of the n-sphere, and choose a generator
[z] for the infinite cyclic group H,(K). Given a map f:S"— S", we write f*
for the composite map h~'fh:| K |— | K|, and note that the induced homo-
morphism f}:H,(K)— H,K) sends [z] to an integer multiple A[z] of itself,
This integer A is called the degree of the map f and is usually written deg f.

The choices made above do not matter. For suppose we triangulate S”
via t:| L | — S" and take [w] as generator for H,(L). Then

Lw]) = ¢ f),(w))
= (@7 '/"9)([w])

where ¢ is the homeomorphism h~'t:|L|-—>|K|. Remembering that f*
multiplies every element of H,(K) by 4, we have

DD = 65 (R DwD)
= 62 (b, [¥])
= i[%])

In other words, f,; multiplies [w] by the same integer 4, as required.

Homotopic maps have the same degree. For if f ~ g:S"— S, then f* and g"
are homotopic maps from | K | to itself, and therefore induce the same homo-
morphism from H(K) to H,(K). (It is in fact true that maps of the same degree
are homotopic, though we shall not prove this here) We also note that
deg fog = deg f x deg g for any two maps f,g:S" — S". This is true because
(f°g) =f"° 4", giving (f° g) = f1° g, by theorem (8.10).

Clearly the degree of a homeomorphism must be +1; that of the identity
map is +1; and that of a constant map (one which identifies all of S” to a single
point) is zero. We deduce at once that the identity map of S" is never homotopic
to a constant map.
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Since we can work with any triangulation of ", we may as well construct a
convenient one and stick to it from now on. Let v; denote the point of F* ™!
whose ith coordinate is 1 and all of whose other coordinates are zero, and let
v_; denote its antipode. Any collection v;,,0;,,...,v;, of such points for which
iy ] < |iy] < .. <]ig| is in general position and therefore spans a simplex
in E"* 1. The collection of all these simplexes forms a simplicial complex which
we shall denote by X (see Fig. 9.1 for the case n = 2). The polyhedron of X is

nothing more than the set of points (xi,...,x,+)€E"*! which satisfy
n+1

Y | x;| = 1, and radial projection n:| £ |— S" gives us a triangulation of S".
i=1
V3
q
/
/
/
/

/v:_l__ o vy
ey AN =
Ve // \ ~

4 \.
v_
2 \ Vi
\
\
\
\
\
\
V-3
Figure 9.1

From now on we identify H,(S") with H,(X) = Z,(X), and we specify a
generator for this group as follows. Start with the simplex spanned by the
vertices vy,0,,...,0, + ; and orient it as ¢ = (vy,0,,...,0, + ;) then go round the
complex orienting all the other top-dimensional simplexes in a compatible
manner, The sum of the n-simplexes of X oriented in this way is an n-cycle z,
which we know generates Z,(X).

Here is a second way of thinking of deg f. With n:| £ | — S" as above, choose
a simplicial approximation s:|X™|— |X| to f™ and orient all the top-
dimensional simplexes of £™ by taking the orientations induced from those of
the simplexes of X. In other words, orient each n-simplex of X™ exactly as it
appears in y(z), where y:C(X)— C(X™) is the subdivision chain map. Let a
denote the number of oriented n-simplexes t of ™ such that s(t) = o, and let
B be the number such that s(tr) = —o. '

(9.1) Theorem. degf = o — f.

Proof. The homomorphism f} : H,(X) — H,(Z) is by definition the composition
H,(Z)™ H,(")> H,(Z), where y is the subdivision chain map. Since there are
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no simplexes of dimension greater than n, the homology groups H,(X),
H (™ are the same as the groups of n-cycles, and we can rewrite this as
Z(Z) Z,(Z™) > Z,(Z). Now y,, (2} is just the sum of all the oriented n-simplexes
of Z", and by the way s, is defined the coefficient of the oriented simplex ¢ in
S,Xx(2) is just o — B. But f(z) = s,x,(z) = (deg f)z, so deg f =a — f as
required.

(9.2) Theorem. The antipodal map of S" has degree (—1)" 7 1,

Proof. 1f f is the antipodal map of S” then f(v;) = v_, for each i and /" is a sim-
plicial homeomorphism. Recall that all the top-dimensional simplexes of £ are
oriented compatibly with ¢ = (v,,0,,...,0, 4 ;). This means that the n-simplex
obtained when we change v; to v_, must be oriented as —(v_,U3,.. ..U, 4 1)
since it has to induce the opposite orientation to that induced by ¢ on the face
spanned by v,,...,0, 4 ;. If we now change v, to v_, in this new simplex, the
resulting oriented simplex must be (v_{,v_,,03,...,0, 1 1), and so on. By inter-
changing all the v; with their antipodes, one by one, we arrive at the oriented
simplex (—1Y*!(v_y,v_5,....0_,+ 1) This obviously maps to (—1)"*'c
under f7, and nothing else maps to +o. Therefore deg /= (—1)"* 1.

(9.3) Corollary. A map from the n-sphere to itself which has no fixed points must
have degree (—1y"* 1.

Proof. If f:S" — S" has no fixed points, it is homotopic to the antipodal map
via the homotopy F:5" x I — $" given by

(I-9fx) —x
11 =2f(x) — x|l

Therefore f has the same degree as the antipodal map.

F(x,t) =

(9.4) Corollary. If n is even, and if {:S"— S" is homotopic to the identity, then f
has a fixed point.

Proof. Any map homotopic to the identity has degree +1, and by corollary
(9.3) a map without fixed points shouid have degree (—1)** ! = —1.

Given a group G acting as a group of homeomorphisms of a space X, we
shall say that G acts freely if the only group element which has any fixed points
is the identity element. Suppose now that G acts freely on S" and that n is even.
Ifg,he G — {e} thendegg = degh = (—1)"* ! = —1, therefore deg gh = +1.
But this means that gh must have a fixed point. By assumption, the given action
is free, so gh = e, in other words h = g~'. We have therefore proved the
following result:

(9.5) Theorem. Only Z, (and the trivial group) can act freely on S" when n is even.
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We know from the discussion of Lens spaces in Chapter 4 that any finite
cyclic group can act freely on S3. It is not hard to produce the same type of
actions on the odd-dimensional spheres of higher dimension.

If for each point x of S" we are given a vector in E** ! which begins at x, is
tangent to S" at x, and whose endpoint v(x) varies continuously in E**! as x
varies in §”, then we say that we have a continuous vector field on §”. If in addition
v(x) is never equal to x, we say we have a nonvanishing field. When n is odd, it is
easy to construct a nonvanishing vector field on S". For suppose n = 2m — 1,
let x = (xy,...,X,,,) be a point of S", and observe that the vector represented by
(=X 4+ 15eees= XmsX15---,X,,) 18 Orthogonal to the radius vector through x. We
now assign to x the vector which begins at x and ends at the point denoted by
UX) = (X1 = Xyt 1500 esXm = XgmoXm 4 1 T XpseeesXam T Xpp).

For n even, no such field can be found. For the map f:S" — §" defined by
f(x) = v(x)/|| v(x)|| is clearly homotopic to the identity and so must have a
fixed point by corollary (9.4). In other words, the vector field must vanish at
some point x of §”. We have proved the following result:

(9.6) Theorem. S" admits a continuous nonvanishing vector field if and only if n
is odd.

The lack of any continuous nonvanishing vector field on S? is a favourite
result and is nicknamed the ‘hairy ball theorem’. If we have a hair growing
out from each point on the surface of a ball, any attempt to comb the hairs
smoothly round the ball meets with defeat. Just about the best we can do if we
want the hair to lie down smoothly is to comb the ball as shown in Fig. 9.2,
leaving the odd bald spot. If we could comb the hair smooth then the tangent
vectors to the hairs would contradict theorem (9.6) for n = 2.

One bald spot Two bald spots

Hairy torus

Figure 9.2
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We can, however, comb the hairy torus (Fig. 9.2). In fact, the torus is the only
orientable hairy surface which can be combed smooth, as we shall see in
Section 9.4.

Problems

1. The map z + z" from the complex plane to itself extends in a unique way to a
map from S? to S2. What is the degree of this map?

2. Prove that the set of homotopy classes of maps from S” to itself is infinite
for n = 1, by constructing a map of degree k for each integer k.

3. If the degree of f:S"— $" is not + 1, show that f must map some point to
its antipode.

4, Show that the antipodal map of the circle is homotopic to the identity.

5. Let X and Y be subsets of E” positioned in such a way that if x,, x, are distinct
points of X, and y,, y, are distinct points of Y, then the line segments which
join x, to y, and x, to y, do not intersect. Write X Y for the union of all the
line segments which join a point of X to a point of Y, and call this the join of
X and Y. Show that a typical point of the join can be written as tx + (1 — 1)y,
where xe X, yeY, and 0 <t < 1, and that this representation is unique
provided the point in question does not lie in X or in Y.

6. If X >~ [0,1] = Y show that X * Y is a tetrahedron. More generally, if X is
an m-simplex and Y an n-simplex, show that X * Y is an (m + n + 1)-simplex.
Deduce that B"« B* =~ B™"*"*!and S"» S" =~ S+ "+ 1

7. Suppose we have two joins X * Y and X' # Y'. Invent a definition of the join
fxg: X*xY— X Y of two maps f/:X— X', g:Y— Y. Show that if both f
and ¢ are homotopic to the identity, then so is f* g.

8. Prove that an odd-dimensional sphere is a join of circles, then show that the
antipodal map of an odd-dimensional sphere is homotopic to the identity.

9. Given maps f:S" — S™, g:S"— S" show that degf+ g = (degf).(deg g).

10. If f : S" — S" is a map, and if n is even, show that f? must have a fixed point.
Even better, prove that either f has a fixed point, or it sends some point to its
antipode.

9.2 The Euler—Poincaré formula

Recall that the rank of the free abelian part of H, (K) is called the gth Betti
number of K and written .. We will prove:
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(9.7) Euler—Poincaré formula. The Euler characteristic of a finite complex K is
given by the formula .
2wK) = Y (=1,
qg=0

where n is the dimension of K.

Since the homology groups H,(K), and therefore the numbers f,, depend only
on the homotopy type of | K | we at once deduce the same property for y(K):

(9.8) Corollary. Complexes whose polyhedra are homotopy equivalent have the
same Euler characteristic.

A special case of this result was widely advertised in Chapter 1 and provided
much of the impetus for all the machinery we have developed since then. There
we worked with rather concrete ‘polyhedra’ made up of plane polygonal faces
fitting together nicely, and we claimed as theorem (1.2) that if two such were
topologically equivalent they had the same Euler number (defined as vertices
minus edges plus faces). But we can subdivide such a ‘polyhedron’ into a two-
dimensional simplicial complex simply by chopping up each face as a cone
with apex its centre of gravity. The Euler characteristic of the resulting complex
is precisely the Euler number of the original ‘polyhedron’, allowing us to deduce
theorem (1.2) from corollary (9.8).

In order to prove theorem (9.7), it is convenient to reinterpret the Betti
numbers slightly as follows. Suppose we go through the process of setting up
the homology groups of a complex, but allowing rational numbers as coefficients
when we form linear combinations of oriented simplexes. To be precise, con-
sider formal linear combinations r,6, + ... + o, where each g, is an oriented
g-simplex of K and each r; is a rational number. Clearly the set of all such
expressions forms a vector space V over the rational field Q in a natural way.
Let W be the subspace of V spanned by elements of the form ¢ 4 7, where
0,7 are the same g-simplex with opposite orientations. We call the quotient
space V/W the vector space of rational g-chains of K, and denote it by C (K,Q).
The dimension of C,(K,Q) over Q is just the number of g-simplexes in K. We
can produce a boundary homomorphism and use it to define rational g-cycles,
and rational bounding cycles, exactly as before. In this setting, the boundary
homomorphism is a linear map of vector spaces over @, so the rational g-cycles
Z(K.,Q), and the bounding cycles B,(K,Q) € Z,(K,Q), form subspaces of
C,K.Q). The quotient space H,(K,Q) = Z(K,Q)/B,(K,Q) is called the gth
homology group of K with rational coefficients.

(9.9) Lemma. f, is the dimension of H,(K,Q) as a vector space over Q.

Proof. Choose a minimal set of generators [z,],....[z5 ].[wi],-.[w, ] for
H (K), where the [z;] generate the free part of the group and the [w;] all have
finite order. A g-cycle z with integer coefficients can be thought of as having
rational coefficients, and it therefore determines an element of H (K,Q) which
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we denote by {z} in order to distinguish it from the corresponding element [z]
of H (K). Suppose
a, as

—0y+ ...+ —0y
bl ! bs
is a rational g-cycle, the g;, b; being integers. Then
it + ...+ & ! x (a cycle with integer coefficients)
—0 et —0y=————
b, 7t b.%* = byb,.. b, Y &
1 . L
= —— X (a linear combination of z;s and w;’s).
b.b,...b,

Therefore the elements {z,},...,{zy }, {W1},...,{w, } span H(K,Q).

If [w] is an element of H (K) which has finite order m, then mw is the boundary
of a (g + 1)-chain with integer coefficients. Dividing by m, we find that w is
itself the boundary of a (¢ + 1)-chain which has rational coefficients, and
consequently {w} = 0. Therefore H (K,Q) is spanned by {z,},....{zs,}.

Finally, if some linear combination of z,,.. .,Zg, With rational coefficients is
the boundary of a rational (g + 1)-chain, multiplying by the product of the
denominators of all the rational coefficients involved produces a linear com-
bination of the z; in which the coefficients are integers, and which is the boundary
of a (g + 1)-chain with integer coefficients. But this can happen only if the
coefficient of each z; is zero. Therefore the original rational coefficients
must all have been zero and we conclude that {z,},...,{z, } are linearly inde-
pendent over Q.

n

Proof of theorem (9.7). By definition, y(K) = ) (—1)%, where o, is the num-

=0

ber of g-simplexes in K. We shall abbreviqate C/K,Q) simply to C,, and
use cortesponding abbreviations for the subspaces of cycles and bounding
cycles. Choose bases for the C, as follows. Since K has no (n + 1)-simplexes,
B, =0, and therefore f, is the dimension of Z, Begin by selecting a basis
24,...,2p, for Z,, then extending this by elements c},...c}, to a basis for the whole
of C,. Applying @ to these basis elements gives us a basis dct,...,0c) for B, _ 4,
which we extend by z; = ',...z;. ! to a basis for Z, _ ;, and then extend further
by i~ 1,....c% ! to a basis for all of C, _ . Note that the dimension of Z, _ ,
minus that of B, _, is indeed §, _; by lemma (9.9). Continue in this way. The

; +1 +1 ; :
general step is to use 0c¢{ ™ ',....0c} " | as a basis for B, extend via z4,...,z§_to Z,,
1

then via ¢f,...,c2 to C,. The process terminates with the basis dci,...,0ct ,z9,
o 1 Yq q 1 y1241
ooz for Zy = C,,.

Now o, is the dimension of C, and therefore equals y, . ; + f, + 7,. Hence

Yo (=D =¥ (=D + B, + 7))

q=0 g=0

= ¥ (—18,

q=0

201



BASIC TOPOLOGY

since each y, occurs with the sign (—1)? and with (—1)* "' if 0 < g < n, and
both of y, and vy, , , are zero.

Problems

11. Show that the Euler characteristic of the standard orientable surface of
genus g is 2 — 2g.

12. Show that the Euler characteristic of the standard nonorientable surface of
genus gis2 — g¢.

13. Calculate the Euler characteristic of the sphere with k holes punched in.

14. Calculate the Euler characteristic of H(p,r) and M(g,s).

15. Let K and L be finite complexes. By triangulating | K | x | L | appropriately,
show

K| > [L]) = x( K).x(I L)

16. Use Problem 14 of Chapter 7 to work out the Euler characteristic of the
Lens space L(p,q). Now write down the Betti numbers of this space.

17. What is x(P")? What is 3(S™ x S")?
18. Show that the Fuler characteristic of the n-dimensional torus

T" = S x 8! x ... x §' is zero using Problem 15. Now give a second proof
by finding a free simplicial action of Z, on T" which has T" as quotient space.

9.3 The Borsuk—Ulam theorem

In order to prove the topological invariance of the Euler characteristic, we
‘changed coefficients’ from the integers to the rational numbers. If we examine
carefully the definition of the homology groups of a complex K, we see that it
makes sense to replace the integers by any abelian group G. A g-chain now
becomes a formal linear combination g,0; + ... + g,0, where the g; belong to
G, the o, are oriented g-simplexes of K, and (—g)o is always identified with
g(— o). The remainder of the construction is automatic and it results in the so-
called homology groups of K with coefficients in G. We do not have the space to
work in this degree of generality here, but we would like to mention a second
special case, namely the case of Z, coefficients.

Consider linear combinations as above where each coefficient g; is either
0 or 1, and agree to add these coefficients mod 2. The identifications
(—g)o = g(— o) reduce in this case to ¢ = —o¢ (taking g = 1); in other words
there is no longer any need to orient each simplex of K, we can simply work
with linear combinations of unoriented g-simplexes of K in which each coefficient
is either O or 1. Such linear combinations are called ‘mod-2’ ¢g-chains of K, and
they form a finitely generated abelian group C,(K,Z,) in which each element
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has order 2. Notice that every mod-2 g-chain has a geometrical interpretation
because it is the sum of certain g-simplexes of K.

The mod-2 boundary of a g-simplex is just the sum of its (3 — 1)-dimensional
faces. Extending linearly to sums of simplexes, we have a boundary homo-
morphism

0 :Cq(KazZ) - Cq - l(KazZ)

which satisfies 62 = 0. The kernel of this homomorphism divided by those
elements which lie in the image of 0:C,, (K,Z,)— C(K,Z,) is the g-th
homology group of K with Z, coefficients, and is written H (K,Z,). Clearly,
each element of this group has order 2, so H (K,Z,) is a finite sum of copies of
Z,. 1t is easy to redo the invariance proofs of Chapter 8 in this setting and show
that these mod-2 homology groups depend only on the homotopy type of | K |.
(In fact the homology groups of a complex with coefficients in an arbitrary
abelian group G are completely determined by the integral homology groups
of the complex.)

If we work with Z, as coefficient group, then we do of course lose some
information, because we are throwing away any consideration of orientation.
We can see this clearly in the case of two surfaces like the torus and Klein
bottle, which are nicely distinguished by their second homology groups with
integer coefficients. However, when we use Z, as coefficient group, the second
homology group is Z, in both cases, since we obtain a 2-cycle by taking the
sum of all the triangles in any triangulation of the surface, and this is the only
nonzero 2-cycle. (When we take the boundary of this sum, every edge of the
triangulation occurs twice and therefore disappears since we are working
mod 2.) We invite the reader to work out the mod-2 homology groups of each
of the standard closed surfaces.

We shall use Z, coefficients to give a reasonably efficient proof of the
following result:

(9.10) Theorem. Let f:S"— S" be a map which preserves antipodal points, in
other words f(—x) = —{(x) for every point x of S". Then { has odd degree.
Let n:| £ |— S" be the triangulation described in Section 9.1 and, as before,

write /™ for the map n~Yfn:|Z|— | Z|.

(9.11) Lemma. The map " admits a simplicial approximation s:| ™| — | X |
which preserves antipodal points.

Proof. The proof is made easy by the amount of choice available in the construc-
tion of a simplicial approximation. Choose m large enough, as in theorem (6.7),
so that for each vertex v of £™ we can find a vertex w of X for which

fT(star (v,2™)) < star (w,X) (*)
Note that if ¢:|X|—|X] is the antipodal map, then ¢f = fp, giving
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f7(star (¢(v),2™) < star (¢p(w),X). Now select one half of the vertices of ™ in
such a way that no two are antipodal, and for each such vertex v make a choice
of win Z so that (*) is satisfied. Define s(v) = w and complete the definition of s
on the remaining vertices of Z” by s(¢(v)) = ¢(w). The first half of the proof of
theorem (6.7) shows us that this mapping of vertices determines a simplicial
approximation s to f":| X" | — [ X |, and by construction s preserves antipodal
points.

Proof of theorem (9.10). We know how to calculate the degree of f using a
simplicial approximation by theorem (9.1). Now if « and B are integers, then
o — f and a + f are even, or odd, together. Therefore in order to show f has
odd degree, all we have to do is to verify that s maps an odd number of »-
simplexes of ™ onto each n-simplex of L. We reinterpret this in terms of
homology with mod-2 coefficients as follows. The sum of all the n-simplexes
of ¥ is the only nonzero mod-2 n-cycle, giving H,(X,Z,) = Z,. Similarly
H,/(x"Z,) = Z,, the nonzero element being the sum of the n-simplexes of ™.
Now s maps an odd number of n-simplexes of £™ onto each n-simplex of X if
and only if s sends the unique nonzero mod-2 n-cycle of ™ to that of X; in
other words, if and only if s, : H,(Z",Z,)— H,Z,Z,) is an isomorphism.

We need a little extra notation. Write X, for the subcomplex of £ made up of
simplexes whose vertices are the points v, v.; where 1 < i<k + 1. So X,
consists of the two points vy, v_; and X, _ { is the ‘equator’ in ¥, = X. Let z,
be the sum of all the k-simplexes of X, and note that

Ze = ¢ + ¢lcy)

where a k-simplex of Z}! lies in ¢, if and only if the k-simplex of X, which contains
it has v, , ; as a vertex. Note also that d(c,) = z, _ ;.

Suppose s(z,) is the zero element of Z(X,Z,) = H(X,Z,), then s(c,) +
s¢(c,) = 0. But s preserves antipodal points and therefore commutes with ¢,
giving s(c,) + ¢s(c,) = 0 or equivalently, since we are working mod 2,
s(c,) = ¢s(c,). If this is the case, s(c,) can be written as

s(c,) = d, + ¢(d,)

where d, is the sum of those n-simplexes in s(c,) which contain the vertex
v, + 1- Taking the boundary of both sides, we now have

$0(c,) = 8(2, - 1) = 8(¢cy - 1) + Ps(c, - 1)
= d(d,) + ¢d(d,)
and therefore
s(¢u— 1) + 0(dy) = P(s(c, - 1) + 0(dy)

So we can write the (n — 1)-chain s(c,_,) + dd, of £ in the form
s(c,— 1) +0d,=d,_; + ¢, _ ), where d, _ ; is the sum of those simplexes in
the chain which contain v, , ;, and those which contain v, but not v_, .y,
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Applying the boundary operator again, we obtain
$0(cy - 1) + 8%(dy) = s(z, - 2) = 5(c, - 2) + Ps(c, - 2)
= 0(d, - 1) + ¢0(d, - ,)
and we can keep repeating this process until we arrive at
S(zo) = 0(dy) + ¢o(d,)

where d; is a 1-chain of Z. But this is impossible because s(z,) is a single pair
of antipodal vertices of X, whereas d(d,) + ¢d(d,) consists of an even number
of such pairs of vertices. This contradiction proves that s(z,) is a nonzero
mod-2 n-cycle of Z, and therefore that s induces an isomorphism of H,(Z".Z,)
with H,(2,Z,) as required. This completes the proof of theorem (9.10).

The above result has some interesting consequences.

(9.12) Theorem. If f:S™— S" sends antipodal points to antipodal points, then
m < n.

Proof. Suppose m > n and let g denote the restriction of f to the n-sphere
consisting of those points of S™ whose last m — n coordinates are all zero.
Then g is a map from S” to S” which preserves antipodal points, and should
therefore have odd degree by theorem (9.10). But g is homotopic to a constant
map because it extends over the (n + 1)-ball consisting of those points of §™
whose last m — n — 1 coordinates are all zero and whose (m — n)th coordinates
are nonnegative. So the degree of g is zero and we have a contradiction.

(9.13) Borsuk—Ulam theorem. Any map {:S" — E* must identify a pair of antipodal
points of S".

Proof. Suppose f(x) and f(—x) are never equal. Then the formula
_ ) — f(=x)
lf(x) = f(=x) |

defines a map from $" to $" ~ ! which preserves antipodal points, contradicting
theorem (9.12).

g(x)

(9.14) Corollary. It is impossible to embed S" in E".
Proof. $" is not homeomorphic to a subset of E”, by theorem (9.13).

(9.15) Lusternik—Schnirelmann theorem. If S" is covered by n + 1 closed sets,
then one of the sets contains a pair of antipodal points.

Proof. Suppose A,...,4, , ; are closed subsets of S” whose union is all of S
The function f:S" — E” defined by f(x) = (d(x,4,),....d(x,4,)), where d(x,A,) is
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the distance of the point x from A, is continuous and must therefore identify a
pair of antipodal points. In other words, we can find a point y of S" with the
property d(y,A;,) = d(—y,A4;,) for 1 € i< n If d(y,4;) >0 for 1 < i< n, then
y and —y lie in 4, ,, since A,,...,4,,, cover S". On the other hand, if
d(y,A;) = 0forsomei, we have bothyand —y in 4; because each 4; isa closed set.

Problems

19. Assume the Borsuk—Ulam theorem and give a proof of theorem (9.12).

20. Check that only n of the sets 4,,...,4, , ; need be closed for the argument
of theorem (9.15) to work.

21. If a map from S" to S" extends over B"* !, show it must identify a pair of
antipodal points of §”. Prove that the same conclusion holds under the weaker
assumption that f have even degree.

22. (Ham sandwich theorem). Let A;, A,, A; be bounded convex subsets of E*, and
define a function f:S* — E> using them as follows. A point x € S* determines
a unique three-dimensional hyperplane P(x) in E* which is perpendicular to the
radius vector through x and goes through the point (0,0,0,3). Let fi(x) be the
volume of that part of 4; which lies on the same side of P(x) as x, and define
f(x) = (fi(x), fo(x), f3(x)). Check the continuity of f, then find a plane in E3
which bisects each of 4,, A,, A; by applying the Borsuk—Ulam theorem to f.
23. Work out the mod-2 homology groups of an arbitrary closed surface and
compare them with the integral homology groups.

24. Define the gth mod-2 Betti number Bq of a finite complex K to be the number
of copies of Z, in H,(K,Z,). Show that

Y (~1F, = 1K)

where n is the dimension of K.

9.4 The Lefschetz fixed-point theorem

Let f:X — X be a map from a compact triangulable space to itself. Fix a
triangulation h:| K | — X and let n denote the dimension of K. If we work with
rational coefficients, the homology groups H (K,Q) are all vector spaces over Q,
and the homomorphisms £}, : H,(K,Q)— H,(K,Q) are linear maps. The alter-
nating sum of the traces of these linear maps, that is to say the number

n

Y (—1)tracef,

q=0
is called the Lefschetz number of f and written A,. As usual, the choice of tri-
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angulation does not matter: any other triangulation will give the same value
for A,. We leave the reader to check this.

Since homotopic maps induce the same homomorphisms of homology, we
see that A, = A, whenever f'is homotopic to g.

(9.16) Lefschetz fixed-point theorem. If A, O then f has a fixed point.

In order to understand the proof, we look at the simplest possible case, namely
that where X is the polyhedron of a finite simplicial complex K and
[ K|—|K/|1is a simplicial map. Suppose f has no fixed points, then if 4 is a
simplex of K we know that f(A4) #+ A. Now orienting each g-simplex of K in
some way gives a basis over Q for the vector space C,(K,Q); with respect to this
basis, the matrix representing the linear map f, : C(K,Q) — C(K,Q) will have
zeros along the diagonal, and therefore have trace zero. The crucial observation
now (provided by theorem (9.17) below) is that whether we calculate the
Lefschetz number of f at homology level, or at chain level, does not matter. In
other words,

n

Y (—1)Ytracef, = Y (—1)tracef,,
q=0 q=0

giving A, = 0. As usual, only technical difficulties are involved in passing from
this special situation to the general case.

(9.17) Hopf trace theorem. If K is a finite complex of dimension n, and
¢ :C(K,Q)— C(K,Q) a chain map, then

n

(—1)ytrace ¢, = Y, (—1)!trace ¢,,.

0 g=0

IIM:

q

Proof. Choose a ‘standard’ basis for C(K,Q) as in the proof of theorem (9.7).
The basis of C,(K,Q) therefore consists of elements

g+ 1 q+1 .9 q 4
acd ,...,acw1,21,...,z,,q,c1,...,cgq

A diagonal element of the matrix of ¢, with respect to this basis is obtained by
taking a basis element w, expressing ¢,(w) in terms of the basis (i.e., as a linear
combination of its elements), and reading off the coefficient of w. We shall call
this coefficient A(w). With this convention the trace of ¢, is
Yg+1 Bq Yq
YAMEATHY+ Y M+ Y M)

i=1 i=1 i=1

But ¢ is a chain map, in other words ¢0 = d¢, giving A(0ci ™) = At 1).
Therefore

n

n Bq
Y (—=1tracep, = Y (—1) 2 Mz

q=0 q=0 ji=1
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the other terms cancelling out in pairs. Since {z{},...,{z§ _} form a basis for the
homology group H,(K,Q), we have

Bq
Y. Mz9) = trace g,

i=1

completing the argument.

Proof of theorem (9.16).We suppose that £, and therefore f*, has no fixed points,
and try toshow A, = 0.Let d be the metricon | K | induced from the surrounding
euclidean space. The real-valued function on | K| given by x b d(x,/"(x)) is
never zero since " has no fixed points, and attains its lower bound > 0 since
| K| is compact. By changing to a suitable barycentric subdivision if necessary,
we may assume that the mesh of K is less than 9/3.

Choose a simplicial approximation s:| K™|— | K| to f*:| K™|— | K| and,
as usual let y:C(K,Q)— C(K™,Q) denote the subdivision chain map. By
definition f}, is the composition

H/(K,Q)-2= H/(K",Q) —=> H/(KQ)

Therefore, by the Hopf trace theorem, we can show that A, = 0 by showing
that each of the linear maps s,y,: C (K,Q) — C,(K,Q) has trace zero.

Let ¢ be an oriented g-simplex of K and let t be an oriented g-simplex of
K™ which lies in the chain y,(0). So 7 is contained in . If xet we have
d(s(x),f"(x)) < /3 since s simplicially approximates f"; consequently we must
have d(x,s(x)) > 26/3. If now yeo, then d(x,y) < 6/3 giving d(y,s(x)) > d/3.
This means that s(x) and y do not lie in the same simplex of K, and therefore
s(t) # 0. So our simplex ¢ has coefficient zero in the chain sx,(0), and trace

s,xq = 0 as required.

As in Chapter 5, we shall say that a space X has the fixed-point property if
every map from X to itself has a fixed point.

(9.18) Theorem. A compact triangulable space which has the same rational
homology groups as a point has the fixed-point property.

Proof. If we take a triangulation h:| K |— X of our space and calculate the
homology groups of K we are told the answer is Hy(K,Q)= Q@ and
H (K,Q) = 0 otherwise. So for any map f : X — X, the induced homomorphisms
fh are all zero when g > 0. Also, | K| has only one component since
Hy(K,Q) = Q. But Hy(K,Q) is generated by the homology class of any vertex
of K, and therefore f{, : @ — Q is the identity linear transformation. This shows
that A, = 1, so f'has a fixed point.

As a direct corollary, we have a second proof of the Brouwer fixed-point
theorem and, even better, we see that any contractible compact triangulable
space has the fixed-point property. Now remember that the integral homology
groups of the projective plane P? are Hy(P?) =~ Z, H,(P*) = Z,, and
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H(P?) = 0 for g > 2. Therefore the rational homology groups are the same as
those of a point and we deduce that any map from the projective plane to itself
must have a fixed point.

If X is a compact triangulable space, the Lefschetz number of the identity
map 1y is the Euler characteristic of X, by theorem (9.7). Since homotopic maps
have the same Lefschetz number, the next result follows immediately:

(9.19) Theorem. If the identity map of X is homotopic to a fixed-point free map
then y(X) = 0.

So the only closed surfaces which admit a fixed-point-free map that is homo-
topic to the identity are the torus and Klein bottle. This proves our claim, made
in Section 9.1, that the only hairy orientable surface which can be combed
smooth is the torus, because by moving each point slightly along the hair growing
out from it, we can produce a map without fixed points which is homotopic
to the identity.

Finally, suppose we have a map f:S"— S". The only nonzero rational
homology groups of S” are @ in dimensions 0 and », and in dimension n the
homomorphism induced by f is just multiplication by the degree of /. We
therefore have the following formula for the Lefschetz number of f.

(9-20) Theorem. A, = 1 + (—1)" deg f.

From this formula we see that a map from S” to §” which does not have
degree +1 must have a fixed point. Motivated by theorem (9.1), we shall call a
homeomorphism h:S" — S* orientation preserving if the degree of his +1, and
orientation reversing if its degree is — 1. If n is even (odd) then any orientation-
preserving (reversing) homeomorphism of S" has a fixed point, by the above
formula.

Problems
25. If X is a compact triangulable space, and if f:X — X is null homotopic,
show that f must have a fixed point.

26. Let G be a path-connected topological group. Show that left translation
L,:G— G by an element g € G is homotopic to the identity. (Notice you can
join g to e by a path.)

27. Show that the Fuler characteristic of a compact, connected, triangulable
topological group is zero.

28. Show that the torus is the only closed surface which is a topological group.

29. Prove that an even-dimensional sphere cannot be a topological group. (In
fact, S* and S are the only spheres which are topological groups, though this
is much harder to prove.)
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30. Let K be a finite complex. If f ;| K | — | K | is simplicial and has only isolated
fixed points (in other words, the fixed points form a discrete set) show that A is
the number of fixed points.

31. If K is a finite complex, and if f:| K| — | K| is simplicial, show that A is
the Euler characteristic of the set of fixed points of f. (Remember the fixed
points form a subcomplex of K'.)

9.5 Dimension

We shall outline a method of defining the dimension of a compact Hausdorff
space X. Let # be a finite open cover of X. Set V = &, and agree that a collec-
tion Uy,...,U, of members of & belongs to S iff the intersection U, n...n U,
is nonempty. The hypotheses of the realization theorem (6.14) are easily checked,
and realizing {V,S} in a euclidean space gives a complex which we call the
nerve of &.

If K is a finite complex, and if & is the covering of | K | by the open stars of
the vertices of K, then the nerve of & is isomorphic to K by lemma (6.9).
However, this example is not typical. Even if X is a triangulable space, the
nerve of # may look nothing at all like X. Fig. 9.3 shows three open coverings
of the circle. In the first case we obtain a 3-simplex plus its faces as nerve; and
in the second case two vertices with a 1-simplex joining them. We do better
with the third covering, whose nerve consists of four vertices and four 1-sim-
plexes which fit together like the vertices and edges of a square. Here we have
recaptured the topology of the circle.

~—

Figure 9.3

An open cover ' is a refinement of # if each member of #' is contained
in some member of . So in the above example, the second cover refines the
first, and the third refines both of the other two. The idea is that refining an
open cover gives a better approximation to the original space X.

(9.21) Definition. A compact Hausdorff space X has dimension n if every open
cover of X has a refinement whose nerve has dimension at most n, and n is the
smallest integer with this property.
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Since a homeomorphism from a space X to a space Y sends a finite open cover
of X to one of Y, the dimension of a space is clearly a topological invariant of
the space.

The definition of dimension given above is ‘monotonic’ in the following sense.
If X and Y are compact Hausdorff spaces, and if Y is a subspace of X, then the
dimension of Y is no more than that of X (Problem 34). Also, as we shall see
below, our definition gives the correct answer for polyhedra.

Let K be a finite simplicial complex of dimension m and let & be a finite open
cover of | K |. Using Lebesgue’s lemma (3.11), we can find a barycentric sub-
division K" with the property that the open stars of the vertices of K” form a
refinement of &. But the nerve of this covering of | K | by open stars is isomor-
phic to K" by lemma (6.9), and therefore has dimension m. This shows that the
dimension of the space | K | is no more than m.

We still have to check that the dimension of | K| cannot be less than m.
Now K contains an m-simplex A so, by monotonicity, it is enough to check
that | A| has dimension m. Suppose the dimension of | A| is less than m, and
let # be the open cover of | A | provided by the open stars of the vertices of A.
Then # must have a refinement &’ whose nerve is of dimension less than m.
Choose a barycentric subdivision A" with the property that the open stars of
its vertices form a refinement #" of &#'. Write N(#) for the nerve of #. Since
F' refines & we can define a simplicial map s:|N(F') | - | N(F) | as
follows. The vertices of N(#") are the open sets of #'. If U is one of these open
sets, choose V from % containing it and set s(U) = V. In exactly the same way,
we have a simplicial map t:| N(F")| - | N(¥')|. Now N(&Z) is isomorphic to
A and N(F") to A’, so the composition st is a simplicial map from | A" | to | A |.
Also, the image of st has dimension less than m because st factors through
| N(#)|. So st is a map from | A| to | 0A |. Clearly stl | 0A| is a null-homotopic
map since it extends over | A|. But, by its very construction, st is a simplicial
approximation to the identity map from | A" | to | A |. Consequently, its restric-
tion to | 0A| cannot possibly be null homotopic, and we have the required
contradiction.

We have proved the following result:

(9.22) Theorem. If K is a finite simplicial complex of dimension m, its polyhedron
| K | has dimension m.

(9.23) Corollary. The dimension of a finite simplicial complex is a topological
invariant of its underlying polyhedron.

Problems

32. Produce an open covering of the comb space whose nerve is a comb with
only a finite number of teeth. What is the dimension of the comb space?
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33. Where has homology theory been used in our proof of theorem (9.22)?

34, Show that our definition of dimension is ‘monotonic’ in the following sense.
If X and Y are compact Hausdorff spaces, and if Y is a subspace of X, then the
dimension of Y is no more than that of X. Where have you used the Hausdorff
condition in your argument?

35. Define the dimension of a locally compact Hausdorff space to be that of
its one-point compactification. Show that the dimension of the polyhedron of
a (possibly infinite) complex is the dimension of the complex, and that this
definition is monotonic.

36. What is the dimension of a discrete space?
37. Show that an n-manifold has dimension n.
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10. Knots and Covering Spaces

But, as for everything else, so for a mathematical
theory —beauty can be perceived but not explained.
A. CAYLEY

10.1 Examples of knots

We return to geometry in this chapter and consider various ways of embedding
the circle as a subspace of E>. At first sight, the problem may seem rather narrow
and special but, as we shall soon see, it is a meeting point for almost all the
geometric and algebraic tools which we have developed so far.

A knot is a subspace of euclidean three-dimensional space which is homeo-
morphic to the circle. Fig. 10.1 illustrates four knots which happen to have
special names; of course, in order to draw the knots we are forced to represent
them by their projections in the plane of the paper. In addition, we mention
the so-called trivial knot, or ‘unknot’, which consists of the unit circle in the
{x,y) plane.

& @)

Trefoil Figure of eight
Q
Stevedore’s True lovers’
Figure 10.1
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Suppose we make up each of the above knots using pieces of string (we
urge the reader actually to do this). A little experiment quickly convinces us
that we cannot convert any of these four into the trivial knot, nor indeed any
one into another, simply by wobbling the string around. In order to do so we
would have to let the string cross itself or (god forbid!) cut the string, make
up our knot in a different way, and then tie the string up again. In some sense,
which we need to make mathematically precise, these knots are all different.

The easiest way of saying when two knots are the same is to ask for a homeo-
morphism of 3-space which simply throws one knot onto the other, and this is
the attitude we shall adopt here.

(10.1) Definition. Two knots k, k, are equivalent if there is a homeomorphism h
of B such that h(k,) = k,.

We may be slightly disappointed that our definition says nothing about actually
‘sliding’ k; about in space until it lands up on top of k,. In fact, the two ideas
are not the same. Reflection in a plane is a perfectly good homeomorphism of
E3 and transforms a knot to its mirror image. However, try as we may, we find
that we cannot deform the trefoil knot into its mirror image (Fig. 10.2) without

untying it.

Trefoil Figure 102 Mirror image

If we are looking for a definition of equivalence which involves sliding one
knot around until it becomes the other, we have to be rather wary. Pulling a
knot tight (Fig. 10.3) gives a continuous one-parameter family of knots which
always ends up with the trivial knot, so any definition must rule this out. To
avoid this we insist that as the knot moves it carries the neighbouring points of
euclidean space with it.

SRCA®

Figure 10.3
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We say that a homeomorphism h of E* is isotopic to the identity if there is a
homotopy H:[E* x I — [E> such that each h,:E* — E> is a homeomorphism, k,
is the identity, and h, = h. If we have a homeomorphism A which is isotopic to
the identity and for which h(k,) = k,, then the knots h(k,) provide a continuous
family which move gradually from k; to k, as t increases from 0 to 1.

If h:E® — E3 is a homeomorphism, we know that it extends in a unique way
to a homeomorphism /:S® — S3, because S is the one-point compactification
of E3. We say that h is orientation preserving or orientation reversing, according
as h preserves or reverses the orientation of $°. Now a homeomorphism which
is isotopic to the identity must be orientation preserving. For we can extend
each h, to f,:8% — S, and all we have to do is remember that homotopic maps
have the same degree. On the other hand, reflection in a plane is orientation
reversing and so cannot be isotopic to the identity. It is in fact true that any
orientation-preserving homeomorphism of E* is isotopic to the identity,
though we shall not give a proof here.

A knot is polygonal if it is made up of a finite number of line segments. We
shall work only with knots which are equivalent to polygonal knots, the so-
called tame knots. An example of a wild knot (obtained by tying an infinite
number of knots one after the other) is shown in Fig. 10.4, but the study of such
knots is outside the scope of our work here.

S EOL

Figure 104

In order to picture knots and work with them effectively, we need to be able
to project them into the plane in a nice way, the meaning of ‘nice’ being as
shown in Fig. 10.1. The projection only crosses itself at a finite number of points,
at most two pieces of the knot meet at such crossings, and they do so at ‘right
angles’. Our first result says that a polygonal knot always has a nice projection.

Let k be a polygonal knot. Given a direction, specified by a line in space, we
can project k into the plane through the origin which is perpendicular to this
direction. We call the projection nice if no more than two points of k map to
each point of the image of k in the plane, the number of pairs of points of k
identified by the projection is finite, and no such pair contains a vertex of k.
A nice projection for a polygonal version of the figure-of-eight knot is shown
in Fig, 10.5.

(10.2) Theorem. Every polygonal knot has a nice projection.
215



BASIC TOPOLOGY

Proof. Certain directions have to be avoided. Firstly, those specified by
prolonging the edges of k to give lines in E3; secondly, those determined by
lines which join a vertex of k to an edge of k; and finally, those specified by
lines which meet three edges of k. Now the set of all lines joining a given vertex

N

Figure 10.5

of k to a given edge determines a plane, and those lines which meet three skew
edges of k form a ruled surface, called a regulus. By translating each of the
generators of a regulus to a line through the origin which is parallel to the
generator, we obtain a ruled surface which is a cone. So to find a nice projection,
all we have to do is to avoid the directions determined by a finite number of
lines, planes and cones.

We have not ‘dotted all the i’s” in the above proof. Our intention is to relax
a little in this chapter and allow ourselves the luxury of explaining ideas rather
than including every last detail of proof. The reader may well ask why we have
not adopted this approach much earlier!

10.2 The knot group

If k,, k, are equivalent knots we have a homeomorphism h:E* — E? such that
h(k,) = k,. Restricting h to E> — k, gives a homeomorphism of E* — k; with
E3 — k,, in other words, equivalent knots have homeomorphic complements.
So it seems sensible to have a look at the fundamental group of the complement
of a knot and see if we can use it to distinguish between various knots. Given a
knot k, the fundamental group =n,(E®> — k) is called the knot group of k. Our
first job is to obtain some sort of reasonable presentation for a knot group
in terms of generators and relations.

Take a copy of the knot in question in the upper half of 3-space and assume
that projection into the plane z = 0 is nice. Break up the knot into ‘overpasses’
and ‘underpasses’, relative to this projection, which alternate as we go round
the knot. Exactly how to do this is illustrated in Fig. 10.6 for the trefoil and the
square knot, the overpasses are the heavier lines. Note that although we need
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to work with polygonal representations for our knots, we shall usually draw
knots as smooth curves.

AN KU

Square knot
Figure 10.6

Replace each underpass by the curve obtained on dropping perpendiculars
from the endpoints of the underpass to the plane z = 0, then joining the free
ends of these perpendiculars by the projection of the underpass. In this way,
we obtain a new knot (Fig. 10.7) which is clearly equivalent to the original and

Figure 10.7 l

L

which we shall denote by k. The idea is to calculate the knot group of k by
building up E* — k out of several pieces, each of which has a fundamental group
that we can recognize, and applying van Kampen’s theorem (6.13) at each stage.

We first calculate n,(E3 — k), where E2 is the closed half-space defined by
the inequality z > 0. Give a sense of direction to k and choose a base point p
high in the air above k. For each overpass introduce a loop, which is based at p,
and which winds once round the overpass in the sense of a right-hand screw
relative to the direction of k, as shown in Fig, 10.8. Call these loops «y,...,q,
and write x; for the element of = ,(E3 — k) determined by ;.

(10.3) Lemma. 7,(E3 — k, p) is the free group generated by X4,... X,

Proof. Let k denote the overpasses of k plus the vertical line segments which
join their end points to the plane z = 0. Then clearly E3 — k and E3 — & have
the same fundamental group. For each overpass we build a vertical wall up
from the plane z = 0 to fit exactly underneath it, and we thicken this wall
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slightly in E3 to give a three-dimensional ball (Fig. 10.9). We do this in such a
way that the resulting balls Bj,...,B, are all disjoint. Suppose we now remove
the interior of each B,, plus the interior of the horseshoe-shaped disc in which

[

it meets the plane z = 0, from E3. Then the resulting space X is simply con-
nected ; actually it is homeomorphic to E3 but we do not need this much. We
shall build up F3 — £ as the union X U (B; — bhu..u®,—k.

Any B, — k is homeomorphic (Fig. 10.9) to a solid cylinder with its centre line
removed. This deformation-retracts onto a disc minus its centre point, and
therefore has fundamental group Z generated by a loop which links once

Figure 10.8

overpass

| | —wall

Figure 10.9

218
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round k. Also, the intersection of B, — k with X is homeomorphic to a disc and
is therefore simply connected. R

Suppose we know the fundamental group of X U (B; — k)u...u (B; — k)
is the free group generated by x,,....x, When we add in B;,; — k, van
Kampen’s theorem tells us we need an extra generator, which we can clearly
take to be x; , ;. So we have an inductive proof of the lemma.

We end lemma (10.3) with a short dialogue:

Fussy Algebraist. You don’t seem to care much about base points anymore.
Optimistic Geometer. They usually take care of themselves in this type of
argument. Anyway I like drawing pictures, not worrying about base points.
F.A. To apply van Kampen’s theorem there really should be a common base
pointin [X U(B, — k) u...uB; — k] (B, — k).

0.G. Here’s an easy way out. For each i, join the base point p to some point on
the top of B; by a straight line and add this line to B,. Now you really can base
all the loops involved at p.

F.A. Even worse, yow've only given a careful proof of van Kampen’s theorem
for finite simplicial complexes.

0.G. Convert E° into S* by adding an extra point at oo, and thicken k so as
to give a tube T which is just a knotted solid torus in S*. If we now replace
E® by S, E2 by the upper hemisphere, and if we remove the interior of the tube
T whenever we should remove k, then all the spaces involved can be triangu-
lated as finite simplicial complexes. But in terms of the fundamental group we
have not changed anything because the extra point at oo is irrelevant, and
because T — k deformation retracts onto the boundary of T.

We still have all of E* — k to add in. Suppose we look at the underpass of our
knot which lies between the ith and (i + 1)th overpass, and assume the kth
overpass goes over it as in Fig. 10.10. Move the loops «;, &; . ; close to the
crossing, and take two loops oy, &, to represent Xx,, one on each side of the
underpass as shown. Now thicken up the projection of the underpass in E2
to give a three-dimensional ball D, and consider the effect of adding D, — k
to E2 — k. So that we can base all loops at p, we add to D; a line which runs
from p to g then vertically down to a point r on the top of D,. Now D, — k is
clearly simply connected, and (D; — k) n (E3 — k) consists of a disc with a
polygonal arc removed from its interior. This latter has the same homotopy
type as a disc with an interior point removed, and therefore has infinite cyclic
fundamental group. If B; is a loop which is based at p and which winds once
round the projection of the underpass clockwise in the plane z = 0, then S;
represents a generator of this group which we shall denote by y;.

According to van Kampen’s theorem, if we want the fundamental group of
(EX — k) U (D; — k) we must add the relation j,(y;) = e to n(E3 — k), where
j is the inclusion map of (E} — k) n (D; — k) in E3 — k. But j,(y;) is repre-
sented by the loop B; thought of as a loop in E2. — k. By simply sliding f; vertically
upwards, we obtain a loop homotopic to the product loop a7t ,d; ! (Fig.
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10.10). So adding D; — k has the effect of imposing the relation x,x,x; ! \x; ! = e
on Xy,...,X, Or equivalently

XXy = XX+ 1

Note that if we reverse the direction of the kth overpass, then the relation
changes to x,x; = X; + 1X-

E

Figure 10.10

The other possibility is that our underpass is one which has been included
simply to keep two overpasses apart. In this case, it should be clear that §;
is homotopic to oo, ;. So the extra relation to be added this time is x; = x; 4 1.
Whichever relation we have, we denote it by the symbol r;.

We have n underpasses altogether. The first n — 1 give us relations
F1,.. ., — 1 and tell us that the fundamental group of

Y=(E —kuD, —kuv...uD,-; —k)

i8 {XqseeesXy | Fpae sty 1}

We claim that the relation corresponding to the final underpass is a conse-
quence of the first n — 1 and adds nothing new. For let Z denote the closure of
E3 — Y. To complete our construction of E* — k, all we have to do is to add
Z — kto Y. But Z — k is simply connected, and Y n (Z — k) has infinite cyclic
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fundamental group, generated by a loop which winds once round the projection
of the final underpass. Now we are at liberty to choose this loop to be a large
circle in the plane z = 0 which has the projection of our knot inside it. Simply
sliding such a circle vertically upwards until it lies above k, then contracting it,
shows that it represents the trivial element of 7,(Y). A final application of van
Kampen’s theorem now gives our main result:

(10.4) Theorem. The knot group of k is generated by the elements Xy,.. .,X, subject
to the relations rq,....t, _ ;.

Here are some examples.

The trivial knot. We break up the circle into two semicircles, calling one an
overpass. The above recipe then gives us one generator and no relations.
Therefore the knot group of the trivial knot is the infinite cyclic group.

The trefoil. Take overpasses and underpasses as shown in Fig. 10.8. Then we
have three generators x;,X,,x; subject to the relations x;x, = x;x,
X;X3 = X;X,. Eliminating x; and writing @ = x;,b = x,, this simplifies to
give the group G = {a,b | aba = bab}.

Note that sending a to (12) and b to (23) defines a homomorphism from G
to the symmetric group on three letters, since (12)(23)(12) = (13) = (23)(12)(23).
The homomorphism is onto because (12) and (23) generate the symmetric
group S;. This shows that G cannot be an abelian group; in particular, it
cannot be Z. We have therefore proved that the trefoil is not equivalent to the
trivial knot. In other words the trefoil really is knotted.

The square knot. Take overpasses and underpasses as shown in Fig. 10.11,
and label the underpasses 1 to 7. The letters a, b, c represent the generators of the
knot group corresponding to three of the overpasses as shown, and using the
relations given by underpasses 1,2,4,5, we quickly express the other four
generators in terms of these three. The relations corresponding to underpasses
3 and 6 are

pla lbas

Figure 10.11
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(b tab)b lalbab)=(b"'a lbabh
which gives aba = bab, and
(ctacb ta tbab)y=clc tac)

which reduces to aca = cac when we replace bab by aba. The knot group of the
square knot is therefore {a,b,c | aba = bab, aca = cac}.

Nonequivalent knots may have the same knot group. The left-hand half of
the square knot looks like a trefoil, and the right-hand half like its mirror image.
If we change the right-hand part to be a trefoil also, the resulting knot is called
the granny, and is known to be a different knot. We ask the reader to compute
the knot group of the granny and check it is isomorphic to that of the square
knot.

Deciding whether or not two groups, given in terms of generators and
relations, are isomorphic is in general impossible, and at best a painful task.
For this reason, we would like a simpler invariant for distinguishing between
knots, and one such will be introduced in Section 10.5. Note that abelianizing
the knot group does not help. Looking at the form of the relations, we see that
abelianizing simply sets all the generators equal to one another, giving the
following result:

(10.5) Theorem. Abelianizing a knot group always gives the infinite cyclic group.

Problems

1. Find a presentation for the knot group of the figure-of-eight knot which
has two generators. Show there is no homomorphism from this group onto the
symmetric group S;, and deduce that the figure of eight is not equivalent to the
trefoil.

2. Check that the square knot and the granny have isomorphic knot groups.

3. Find presentations for the knot groups of the stevedore’s and true lovers’
knots.

4. Let k be a tame knot in E3, and thicken k slightly to produce a knotted tube
T. Give a precise argument to show that n,(E® — k) is isomorphic to
(83 — T).

5. A whole family of interesting knots occur as curves which lie on the surface
of a standard torus in E3. If p and q are relatively prime integers, the torus knot
k,, is defined in cylindrical polar coordinates by r = 2 + cos(pf/q), z =
sin(p/q). It lies on the torus (r — 2)*> + z* = 1, winds round p times in the
longitudinal direction, and g times meridianally. Show that k, 5 is the trefoil,
and draw k, s.
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6. Show that k, , is equivalent to k,, and to k
knotted if | p| =1l or|q| = 1.

- g Show also that k, , is un-

7. Here are two ways of showing that the 3-sphere is the union of two solid tori:

(a) Prove that the set of points in S* = E* whose coordinates satisfy x? + x3 =
x3 + x2 is a torus, and that the inequalities x? + x2 < x2 + x2,x} + x3 >
x3 + x3 both define solid tori.

(b) Think of S3 as the join §* * §* of two circles. Show that the halfway section,
which consists of points tx + (1 — t)y for which t = 1, is a torus, and that
the inequalities ¢ < ,t > 1 both give solid tori.

8. Use Problem 7 and van Kampen’s theorem to show that the knot group of

k,, has a presentation of the form {x,y | x? = y1}.

9. If G denotes the knot group of k, ,, and H the subgroup generated by the
element x? (= y7), show that H is contained in the centre of G and that

10. Show that the free product of two nontrivial groups always has a trivial
centre.

11. Assuming | p| # 1,| q| # 1, show that H is the centre of G. Now prove that
ifl<p<g,1<p <q then k,, is equivalent to k, , iff p=p' and g = ¢’
12. Show that the set of equivalence classes of tame knots in E2 is countable,
but not finite.

10.3 Seifert surfaces

In this section we shall show how to span a tame knot k by an orientable surface.
That is to say, we shall construct a compact, connected, orientable surface S
in 2 which has the knot k as boundary.

We illustrate the construction for the trefoil in Fig. 10.12. Orient the knot
and choose a nice projection. Cut each crossing of the projection as shown to
give a collection of disjoint oriented circles, called Seifert circles. Span each
Seifert circle by a disc, keeping the discs disjoint, then replace the crossings by
adding in a twisted strip at each crossing, as illustrated. The result is a compact
connected surface S with boundary k. To see that S is orientable, notice that
each Seifert circle has an orientation given from that of k. This determines an
orientation for the disc which it spans, and the twisted strips are added in just
such a way as to make these orientations all compatible with one another.
S is called a Seifert surface for k.

Of course, we can span a given knot in many different ways; for example,
take one Seifert surface and produce another by adding some handles to it well
away from the knot. Now any Seifert surface S spanning k has boundary a
single circle, so we can convert it into a closed surface by sewing a disc across
this circle. By the genus of S we shall mean the genus of this orientable closed
surface. One can read off the genus from a picture of the Seifert surface, because
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removing a disc from a closed orientable surface of genus g produces a space
which deformation retracts onto the one-point union of 2g circles. The surface
illustrated in Fig. 10.12 clearly deformation retracts onto the one-point union
of two circles, so it has genus 1. Attaching a disc to it gives the torus.

Figure 10.12

Call a surface S in 3 tame if there is a homeomorphism of E* which throws S
onto a finite simplicial complex, in other words onto a combinatorial surface
(which may have a boundary). The smallest integer which occurs as the genus
of a tame Seifert surface for k is called the genus of k and is written g(k).

Our next result shows that having genus 0 is the same as being unknotted:

(10.6) Theorem. A knot is equivalent to the trivial knot if and only if it can be
spanned by a tame disc.

Proof. Suppose k is equivalent to the unknot, and let & be a homeomorphism
of E? which throws k onto the boundary of the unit disc D in the (x,y) plane.
Then h~ (D) is a tame disc spanning k.

Conversely, suppose k is polygonal and suppose we have a disc spanning k
which is embedded polygonally in E>. In other words, the disc is chopped up
into triangles, each of which lies linearly in E®. By a sequence of moves, each
of which replaces one side of a triangle by the other two sides (or vice versa),
we can change k to the boundary of a single triangle. But each such move
can be realized by a homeomorphism of E*. Once we have thrown k onto the
boundary of a triangle, it is a simple matter to find a homeomorphism which
moves this triangle onto the unit disc in the plane. Therefore k is unknotted.
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The genus of a knot is additive in the following sense. Suppose we have
two oriented knots k and [ which lie on opposite sides of a plane in E>, apart
from a common arc in the plane on which they induce opposite orientations.
Their sum k + 1 is defined to be k U I with all the points of this common arc,
except the endpoints, removed (Fig. 10.13). Put in a less formal way, tie the
knots one after the other in a piece of string, making sure their orientations
agree. It is essential to work with oriented knots otherwise the definition may
be ambiguous.

C78)

Figure 10.13

(10.7) Theorem. g(k + 1) = g(k) + g(l).

Sketch proof. First take copies of k and [ which lie on opposite sides of a plane
in E3, and span each of them by a (tame) Seifert surface of minimal genus in the
appropriate half-space. Connect a little segment on k to one on [ by a thin band,
which is otherwise disjoint from the two spanning surfaces, and which twists
if necessary so that the boundary of the resulting surface S is k + [ (Fig. 10.14).
Clearly, the genus of S is the sum of the genus of the spanning surface for k
with that for I. Therefore gk + I) < g(k) + g()).
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Figure 10.14

For the converse, begin with a tame Seifert surface S of minimal genus for
k + l. We can always arrange that where S meets the plane P which separates k
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from [ it cuts through at ‘right angles’. Therefore the intersection of S with P
will be a collection of disjoint circles, plus an arc A whose endpoints are the
points where k + [ pierces P. The idea is to do surgery on these circles, one by
one, to produce a new minimal spanning surface which meets P only in A.
Cutting along the arc A then gives Seifert surfaces for each of k and / whose
genera add to the genus of S. Therefore g(k) + g(I) < g(k + I).

The surgery goes as follows. Some of the circles of S n P may be nested
inside one another, and may even contain the arc A. Choose an innermost
circle which does not contain 4. Cut S along it and span the resulting circles by
discs, one on each side of P. We can do this without running into other pieces
of S because the circle in question does not contain any of the other circles,
and does not contain A. The result must be a new surface which spans k + |
and meets P in one less circle, plus a closed surface which we ignore. (For if not,
we have a single surface which spans k + ! and has smaller genus than before,
by theorem (7.11), contradicting the fact that S has minimal genus.) We eliminate
the intersection circles in this way. When we come to circles - which contain the
arc A, we start with the outermost one, cut along it, then cap off the two resulting
circles by large discs which, in order to avoid S, go round behind & and [ (just
as if we blew up two balloons, pulled one over the part of S which is in the left-
hand half-space, the other over the part on the right, and then attached their
necks to the circles in question). Eventually, S meets P only in A4, as required.

(10.8) Corollary. Ifk + 1is equivalent to the trivial knot, then so is each of k and 1.

Proof. If k + 1is equivalent to the trivial knot, then g(k) + g(I) = g(k + ) = 0,
giving g(k) = g(I) = 0. Therefore both k and I are unknotted by theorem (10.6).

This shows the impossibility of tying two knots in a row in a piece of string
so that they cancel one another out.

Problems

13. Show that any tame knot in E3 can be spanned by a tame disc in E*.

14. Let k be a polygonal knot in E*. Show that by a judicious choice of direction,
k can be projected in a one—one fashion into a three-dimensional subspace of
E4. Deduce that any tame knot in E* is unknotted.

15. Construct Seifert surfaces for the knots shown in Fig. 10.15 and identify the
resulting surfaces.

16. Draw a set of pictures to illustrate how the surgery is carried out in the
proof of theorem (10.7).

17. Show that neither the trefoil knot, nor the figure of eight, can be written as
the sum of two nontrivial knots.
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(D 2%

Figure 10.15

10.4 Covering spaces

The notion of a covering space was introduced rather briefly in Section 5.3.
We plan to develop the idea a little further here, then have a look at a rather
special covering space of the complement of a knot in the next section.

We recall the definition and one or two examples.

(10.9) Definition. A map n:X — X is called a covering map and X is said to be
a covering space of X if the following condition holds. For each point x € X there
is an open neighbourhood V, and a decomposition of n~1(V) as a family {U,} of
pairwise disjoint open subsets of X, in such a way that the restriction of m to each
U, is a homeomorphism from U, to V.

The exponential map from the real line to the unit circle in the complex plane
is a covering map, as is the map from the 2-sphere to the projective plane
obtained by identifying antipodal points. Both of these were considered in some
detail in Chapter 5. Let n be a positive integer and consider the map from

— {0} to itself which raises each nonzero complex number to the nth power.
This is a covering map (familiar from complex variable theory) which winds
the punctured complex plane n times on itself.

Figure 10.16 shows a covering space of the one-point union of two circles,
Reading from left to right, = winds the first circle of X once round circle A,
the second twice round circle B, the third twice round circle 4, and so on. Note
that exactly four points of X map to each point of X. If x and V are as shown,
then =~ }(V) consists of the open sets U;, 1 < i < 4, each of which maps homeo-
morphically onto V under n. We leave the reader to choose appropriate neigh-
bourhoods for points of B and for the point p where the two circles meet.

We shall assume that all our spaces are path-connected and locally path-
cornected. The latter condition (first introduced in Problem 43 of Chapter 3)
simply means the topology on the space has a basis each of whose members is
path-connected. For example, all polyhedra have this property.

Suppose then X is a covering space of X with covering map n:X — X.
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Figure 10.16

Choose ~base points pe X,qeX with =n(q) = p, and write G = n,(X,p),
H = 7,(X,q). We already have two basic results from our work in Chapter 5,
lemmas (5.10) and (5.11):

(10.10) Path-lifting lemma. [ [fv is a path in X which begins at p, there is a unique
path § in X which begins at q and satisfies moy = 7.

(10.11) Homotopy-lifting lemma. If F:1 x I— X is a map such that F(Ot) =
F(1,t) = p for 0 < t < 1, there is a unique map F:1 x 1 — X which satisfies
noF =Fand FOt) =q0<t < 1.

Given f:Y— X, a map f: Y — X with the property n o f = fis usually called
a lift of f. The fact that we can lift paths and homotopies into covering spaces
has important consequences.

(10.12) Theorem. The induced homomorphism n, : H— G is one—one.

Proof. Suppose & is a loop in X based at g for which & = 7 © & is null homotopic
in X. Choose a specific homotopy F from the constant loop at p to « and apply
lemma (10.11) to find F:I x - X satisfying n°F = F and F(0,t) = g,
0 < t < 1. Let P denote the union of the left- and right-hand edges and bottom
of I x I; then F maps all of P to p. But 7o F = F, the set 7~ !(p) is a discrete
set of points, and P is connected; therefore F maps all of P to g. Also, the path
in X defined by F(s,1) is a lift of « which begins at g, and must therefore be & by
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the uniqueness part of lemma (10.10). So F is a homotopy from the constant
loop at ¢ to & as required.

(10.13) Theorem. A loop « in X based at p lifts to a loop & in X based at q if and
only if {ay € m, (H).

Proof. One way is clear: if & is a loop then {a) = (n°&) e n (H). For the
converse, suppose we have {a) € n(H); then we can find a loop p based at g
in X such that o ~ 7 ¢ B. Choose a specific homotopy between these two loops
and lift it into X using lemma (10.11). An argument just like that of the proof of
theorem (10.12) shows § and & must have the same endpoint, so & is a loop
based at q.

Note that a loop in X may have one lift in X which is a loop, and another
which is a path with distinct endpoints. For example, the loop based at p in
Fig. 10.16 represented by the circle A taken anticlockwise lifts to a loop based
at g, yet the lift which begins at r is not a loop.

(10.14) Theorem. For any point x of X the cardinality of the set n~(x) is the
index of m (H) in G.

Proof. First note that if x,y € X then 7~ !(x) and =~ !(y) have the same cardinality.
For let y be a path in X which joins x to y. Given X e ™ (x), lift y to a path §
in X which begins at . Then we have a function from 7~ (x) to =~ !(y) defined
by X  §(1). This function must be one—one and onto, since we can produce
an inverse for it using the path y 1.

Now consider =~ (p). Given a loop o in X based at p, lift it to a path & in
X which begins at ¢, and notice that (1) is a point of 7~ !(p). If Xen~1(p),
projecting a path which joins g to X into X gives a loop based at p, so every
point of =~ (p) arises in this way. Now two loops « and f give the same point
of 1~ *(p) if and only if ¢~ lifts to a loop based at g, and so by theorem (10.13),
if and only if (o> and {f) determine the same right coset of 7, (H) in G. So we
have a one—one onto correspondence from the right cosets of 7, (H) in G to
the set ©~ (p).

If the inverse image of each point under # contains a finite number of points,
say n, we say X is an n-sheeted or n-fold covering space. For example, S% is a
2-sheeted covering of the projective plane; and the covering of C — {0} des-
cribed earlier is n-sheeted. In the first case H = n,(S%) = {e} and G = n,(P?) =~
Z,, therefore n (H) has index 2 in G. In the second case, we have H = G =
7(C — {0}) = Z and =, (H) = nZ < Z, so the index of n,(H) in G is indeed n.

(10.15) Theorem.The groups n*(nl(f(, X)), X e n~X(p), form a conjugacy class of
subgroups of G.

Proof. The conjugacy class in question is that determined by = (H). If
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X en~(p), join q to X by a path § in X, write y for the loop 7  §, and check that
the following diagram commutes:

H—"n, X%

1T

G——0

So the inner automorphism of G given by y,, throws = (H) onto n*(nl()? > X)).
For the converse, suppose K = (o>~ ! m,(H) (o), where {a) € G. Lift o to a
path & in X which begins at ¢, and set X = d(1). Then Xen~'(p) and
K = m,(m, (% %)

So far, we have shown that a covering space of X picks out a conjugacy class
of subgroups of the fundamental group of X. To make any further progress, we
need a more general map-lifting result. Let Y be a space (path-connected and
locally path-connected as always) with base point », and let f:Y — X be a
map which takes r to p.

(10.16) Map-lifting theorem. There is a lift of f which takes t to q if and only if
f(n,(Y,r)) € n,(H), and this lift is unique.

Proof. The necessity of the condition is clear since a lift f gives a commutative

diagram
H
-
G

my(Yi)

Also, if we have a lift f which satisfies f(r) = g, it must be unique. For suppose
fi,J> both lift f and send r to q. Given ye Y, join r to y by a path y. Then
fi oy and f, o y are both lifts of f~ y which begin at g, so they must agree, and
in particular have the same final point. In other words, f;(y) = /().

Now suppose we have f,(n,(¥;r))  n,(H), then we can construct /: Y — X as
follows. Given y € Y, join r to y by a path v, lift the path & = foy to a path &
in X which begins at g, and set f(y) = &(1). The choice of y does not matter for
if 7' is a second path joining r to y, and if § = f°y’ then af~! is a loop in X
based at p. Also, {aB ™' lies in f,(r,(Y,r)) and therefore in 7, (H). So by theorem
(10.13), o~ * lifts to a loop based at g in X. But for this to happen, & and B
must have the same final point.

We are left to check the continuity of f. Suppose f(y) = £ and =n(%) = x,
and let N be a neighbourhood of £ in X. Choose a neighbourhood V of x and
a neighbourhood U of X such that | U:U — V is a homeomorphism. Then
f (N n U) is a neighbourhood of y in Y. Using the fact that Y is locally
path-connected choose a path-connected neighbourhood W of y inside
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f~'a(N n U). We claim that f(W) € N, and if we can prove this we are finished.
Let ze W, and join y to z in W by a path ¢. To find f(z), we lift the path
fo(ya) = (fo y)(f° 6) to a path which begins at g in X, and take the endpoint
of this path. Now f° ¢ lies inside n(N n U), and its lift has to start at the end-
point of the lift of fo y, which is X. But n| N n U is a homeomorphism, so the
endpoint of this lift lies in N n U, and therefore in N as required.

We are now in a position to produce a hierarchical structure for the covering
spaces of a given space. Let 7, : X, — X, n,:X, — X be covering maps. Choose
base points ¢, efquz eX, so that m,(q,) = m,(¢;) = p and write H, =
(K1, 1) Hy = 14X, ¢5).

(10.17) Theorem. If =,,(H,) < =, (H,) there is a covering map n:X,— X,
which sends q, to q, and satisfies 7, ° n = 7,.

Proof. Simply apply theorem (10.16) to lift the map =,:X,— X to a map
n:X,— X, which sends g, to g,, then check that 7 is a covering map.

Of course, if 7,,(H,) happens to equal 1*(H 1), then we can play this game
in both directions and find basepoint-preserving covering maps g:X, — X,
h:X,— X, which satisfy n,°g = n, and n,°h =n,. Now n,°g°h = m,,
s0 g °h and 13, both lift n,: X, — X to a map from X, to X, which sends ¢,
to g;. By the uniqueness part of theorem (10.16), we must have goh = 13,.
Similarly, h° g = 13, and we see that h: X (| — X, is a homeomorphism.

We shall call two covering spaces X ,, X, equivalent if we can find a homeo-
morphism h:X,; — X, such that 7, o h = 7,. Combining the above discussion
with theorem (10.15), we see that two covering spaces of X are equivalent if and
only if they determine the same conjugacy class of subgroups of the fundamental
group of X.

Now let 7: X — X be a covering map, and define a covering transformation of
X to be a homeomorphism 4:X — X which satisfies 7 h = z. In the case of
the covering of the projective plane by S2, there are precisely two covering trans-
formations, namely the identity map of S*> and the antipodal map. For the
covering n:E! — S§* defined by n(x) = €™, a typical covering transformation
is a translation of the real line by an integer. The set of all covering transforma-
tions of X forms a group K under composition of homeomorphisms, and K acts
freely on X. (For if h is a covering transformation of X, and if h(%) = %, then both
h and 13 agree on the point X and lift 7: X — X. So they must be equal.)

(10.18) Theorem. If n (H) is a normal subgroup of G then X is homeomorphic to
the orbit space X/K, and X is isomorphic to the factor group G/r,(H).

Proof. The covering map n:X — X and the natural projection of X onto X/K
are both identification maps, so we must check that the orbits of K are precisely
the inverse images of points of X under n. Given x € X, we know that each
member of K permutes the points of # ™ !(x) because it is a covering transforma-
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tion. Also, if %, j e n~1(x), then n(n(X, X)) = n(H) = n,(n,(X.)) by theorem
(10.15) and the fact that n,(H) is normal in G. Therefore we can find a covering
transformation which sends x to j.

We are left to show K is isomorphic to G/n(H). Given a loop « based at p
in X, lift it to a path & which begins at g in X, and let k, denote the unique
covering transformation which sends g to &(1). Clearly, we can produce every
element of K in this way, and by theorem (10.13) two loops a and f give the
same element of K if and only if (o~ ') € n,(H). Therefore the correspondence
o +~ k,, induces a one—one onto function from G/n,(H) to K. To see this is a
homomorphism, note that given two loops o,  based at p, the lift of a. § which
begins at g is the path 4. (k, ° ), and the endpoint of this is k,(ks(g)). In other
words, a. f corresponds to k, © k.

If = (H) is a normal subgroup of G, we call X a regular covering space. If a
covering is not regular, there may not be enough covering transformations to
go round, in the sense that we can have two points which map to the same point
of X under 7, and yet be unable to find a covering transformation which maps
one to the other. The covering space of Fig. 10.16 is a good illustration of this
situation. Here there is only one non-identity covering transformation; it acts as
the antipodal map on the middle circle of X and interchanges the two circles
on the left with those on the right. In particular, no covering transformation
maps q to r. Note that K is isomorphic to Z,, whereas the covering is 4-sheeted.
We leave the reader to check that the orbit space X/K consists of three circles
joined together in a row.

Suppose X is a simply connected covering space of X, then it is unique up to
homeomorphism, since any two such must be equivalent, and it is a regular
covering space of any other covering space of X by theorem (10.17). For these
reasons, X is called the universal covering space of X. Here are some examples.
The universal covering space of the circle is the real line; that of projective
n-space is S"; that of the Klein bottle is the plane; and finally, that of the one-
point union of two circles is the universal television aerial described in Chapter
6 (Fig. 6.21).

Suppose X has a universal covering space, and denote it by X. Then the
covering transformations form a group isomorphic to the fundamental group
of X. Given any subgroup H of =,(X), it acts on X and the associated orbit
space X/H is a covering space of X whose fundamental group is isomorphic to
H. So if X has a universal covering space, it has a covering space which corre-
sponds to any subgroup of its fundamental group.

In order to ensure the existence of a universal covering space for a space X,
we need to impose an extra condition on X. Call X semi-locally simply connected
if each point of X has a neighbourhood U such that each loop in U is null
homotopic in X. This is true of any polyhedron, but not for example of the
Hawaiian earring (see Chapter 4, Problem 5).

(10.19) Existence theorem. A space which is path-connected, locally path-
connected, and semi-locally simply connected has a universal covering space.
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Proof. The details are rather long, but not difficult, so we give only the idea.
Choose a base point p in X. The points of X are equivalence classes of paths in
X which begin at p, two such paths «,  being understood to be equivalent iff they
have the same endpoint and a8~ is homotopic to the constant loop at p.

To define 7: X — X, represent X € X by an appropriate path « in X, and let
7(X) be the endpoint of a.

To construct a basis for the topology of X, begin with a path-connected open
set V in X such that any loop in ¥ is null homotopic in X, and a point X € X
such that n(X)e V. Represent % by a path o in X which joins p to n(%), and
define V% to be the subset of X determined by paths in X of the form a. 5, where
B lies in V. These sets Vx are the basic open sets.

We leave the reader to check that m: X — X is a covering map, and that X is
path-connected and simply connected. No new ideas are involved, though we
should point out that having chosen ¥ so that all loops in V are null homotopic
in X ensures that n | V;:V; — V is one—one.

Problems

18. If X is a covering space of X, and ¥ a covering space of Y, show that X x ¥
is a covering space of X x Y.

19. Is the map f:(0,3)— S! defined by f(x) = e>™* a covering map?

20. Describe all the covering spaces of the torus, projective plane, Klein bottle,
Mobius strip, and cylinder.

21. Find the group of covering transformations for each of the coverings of
Problem 20.

22. The space shown in Fig. 6.19 is a covering space of the one-point union of
two circles. What is the corresponding subgroup of Z + Z?

23. If X is a connected, locally path-connected, Hausdorff space, and if a finite
group G of order n acts freely on X, show that X is an n-sheeted covering of X/G.

24. Assuming p > 3, find a fixed-point-free action of Z,_ ; on H(p) which has
orbit space H(2). Deduce that H(p) is a (p — 1)-fold covering space of H(2).
You may find Fig. 7.22 very helpful.

25. Formulate a similar result to that of Problem 24 for nonorientable surfaces.

26. Let n:G — G be a covering map, and suppose G is a topological group.
Find a multiplication on G which makes it into a topological group, and for
which = is a homomorphism. Now show that the kernel of # is a discrete sub-
group of G.

27. Examine the examples of group acticns given in Section 4.4, and for each
one deduce whether or not the associated projection is a covering map.
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28. Prove that every closed nonorientable surface has a 2-sheeted orientable
covering space.

10.5 The Alexander polynomial

The object of this final section is to produce a knot invariant in the form of a
polynomial with integer coefficients, and to give a very simple algorithm for
computing it. We shall explain the theory behind thé polynomial first, the
algorithm comes later!

Let k be a tame knot and, for convenience, think of k as a subset of the
3-sphere S°. Thicken k slightly to form a knotted tube T, and let X denote §°
with the interior of T removed. We refer to X as the complement of k: it has
the advantage of being compact, and can be triangulated by a finite complex.
Let G denote the knot group of k, in other words the fundamental group of X,
and write G’ for its commutator subgroup. By theorem (10.5), G/G’ is the
infinite cyclic group. If X denotes the regular covering space of X which corre-
sponds to G', we know that 7,(X) is isomorphic to G’, and that the group of
covering transformations of X is infinite cyclic. X is called the infinite cyclic
covering space of X.

The existence of such a covering space X follows from theorem (10.19), but
to give ourselves a better feeling for it, and to convince ourselves that we can
triangulate it as an infinite complex, we shall explain a simple method for
constructing it. Very briefly, find a Seifert surface S for k (tame as always),
and triangulate S® so that k, T, and S are all subcomplexes. Now cut X open
along S. (This is not hard to visualize. If we have a triangulated surface, and a
curve on the surface which is a subcomplex, we can imagine cutting the surface
open along the curve. Each 1-simplex on the curve gives a pair of 1-simplexes
when we cut, which have to be glued together again if we want to recapture the
original surface. Our situation is just one dimension up from this.) When we
cut X open along S, each triangle of S becomes a pair of triangles, and we label
one set of triangles with the number 1, the other with the number 2, to remember
which is which. (If you don’t like cutting things open, here is an alternative.
Begin with the disjoint union of all the 3-simplexes in X, and glue two together
iff they have a triangle in common in X which does not lie in the surface S.)
Denote the resulting simplicial complex by Y. Take a countable number of
copies ... Y_,Y,,Y;,Y,,... of Y, and glue them together as follows. Any triangle
labelled 1 in Y, should be glued to the corresponding triangle labelled 2 in
Y, ;. Write X for the resulting space, and note that X is triangulated as an
infinite simplicial complex.

There is a natural map from each Y, to X: simply glue up the simplexes
which were separated when we cut along S, and these fit together to give a map
7:X — X, which is easily checked to be a covering map. The homeomorphism
h:X — X which moves each point in ¥; to the corresponding point in ¥;, ,
generates an infinite cyclic group of homeomorphisms of X, and these are
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precisely the covering transformations. By theorem (10.18) we have
nl(X)/n*(nl()?)) = 7, and therefore n*(nl(X')) must contain the commutator
subgroup G' of G. Now consider the natural epimorphism =,(X)/G' —
nl(X)/n*(nl(X)) It must be an 1somorph1sm since both groups are Z. Since
its kernel is n*(nl(X ))/G’ we see that 7,(n,(X)) = G'. Therefore X is the infinite
cyclic covering space of X.

The next step is to take a look at the first homology group of X. Now X
is an infinite complex, so we should say what we. mean by this. We start from
the chain group whose elements are finite linear combinations 4,0, + ... + 4,0,
of oriented 1-simplexes of X with integer coefficients, agreeing that (— ) and
A(— o) always mean the same thing, and proceed exactly as in the case of a finite
complex. Notice that we do not allow linear combinations of infinitely many
1-simplexes of X. The resulting homology group is an abelian group (though
not finitely generated) which we denote by H,(X). It is a topological invariant
of X because the proof of theorem (8.3) works as before and shows it to be the
quotlent of n,(X) by its commutator subgroup The covermg transformation
h:X — X induces an automorphism h,, : H,(X) — H,(X), and it is h, which will
give us our polynomial. »

At this point, we need a small dose of commutative algebra: a good ele-
mentary reference is Hartley and Hawkes [28]. Let A be a commutative ring
with identity, and let 4 be an m x n matrix with entries from A. Write A" for
the free A module with basis x,,...,x,, and A™ for the free A module with basis
V1is- - sVm Now let f1 A" — A™ be the A module homomorphism determined by
A, in other words, that determined by the equations

flx) = Z a;;y;
i=1
and define M to be the quotient module A™/f(A"). The matrix A4 is called a
presentation matrix for the module M.
Two matrices 4, B give isomorphic A modules under this construction iff we
can convert 4 into B by a sequence of operations of the following type:

(a) interchange two rows or two columns;

(b) multiply a row, or a column, by a unit of A;

(c) add any multiple of one row to another row, or a multiple of one column
to another column;

(d) add, or remove, a column of zeros;

A 0
(e) interchange 4 with (O 1>, or vice versa.

Also, if 4 happens to be a square matrix, then its determinant is an isomorphism
invariant of the module M. (This determinant is of course only determined up
to multiplication by a unit of the ring A.)

Now back to the geometry. Let A be the ring Z[t,t™!] of finite Laurent
polynomials
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p)y=c_pt™ + ...+t

with integer coefficients, and the usual rules for addition and multiplication of
polynomials. Then h, makes H,(X) into a A module because we can define the
product of a polynomial p(f) € A with a homology class [z] € H,(X) by

pO)[z] = c_phg*[z] + ... + ¢ B [2]

We do not have a machine for computing homology groups, but we can
interpret H,(X) in terms of the knot group G of k, and we went to great lengths
in Section 10.2 to produce a nice presentation for G. Remembering that X has
fundamental group G, and writing G” for the commutator subgroup of G', we
have H,(X) = G'/G". The monomorphism n*:nl()f )— 74(X) induces an iso-
morphism n**:Hl()?)a G'/G". If ue G'/G" corresponds to the homology
class [z] under this correspondence, then G'/G” becomes a A module via
pH)u = n**(p(t) [Z])

Let us examine what this formula means geometrically for the simple
polynomial p(t) = t. Here we have

tu = m,(t[2]) = myuhy [2]

Choose a base point pe X — S, and let g be the corresponding point in Y, < X.
Remembering always that H,(X) is n,(X,q) abelianized, represent [z] by a loop
o based at ¢ in X. Then h, [z] is represented by the loop p(h o a)y ™', where y is a
path joining g to h(g) in X. (The choice of y is irrelevant.) This means that if
u = gG" € G'/G", and if x denotes the element of G = n,(X,p) determined by
the loop = °© y, then

tu=xgx 'G"

Notice that, by its construction, the homotopy class x goes to a generator of Z
when we abelianize G.

The pieces of the jigsaw are now beginning to fit together. We recall the
presentation {x,...,x, | 71,...,/,} of G developed in Section 10.2 from a projec-
tion of k. There is one generator for each overpass, and a relation for each
crossing. A typical relation has the form x, x; x; * x;};, and the last relation
can be omitted since it is a consequence of the others. When we abelianize G,
all the x; become equal and give a generator of Z. So if we change to the new
set of generators

-1 _ -1
X=X, 0 = XX 0y g = X, _ 1X

the elements ay,...,x, - ; all lie in G', and it is not very hard to check that,
together with all their conjugates under powers of x, they generate G'.

Write u; = «;G” and R, for the relation among the u; determined by r;. The u;
generate G'/G” as a module over A, and to find a presentation matrix all we
have to do is to write out each R; as a linear combination of the u;, with co-
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efficients from A, and then read off the coefficients and use them as the columns
of our matrix. The determinant of the resulting (n — 1) x (n — 1) matrix is the
famous Alexander polynomial of k.

For example, x; x; x; ! x;,}; when written in terms of the «; becomes

o xo xx " Lo P xT b a

or equivalently

oy xo x~ Y xog L x T va

Written additively, in terms of the u,, this is
W + tu; — Ty — U 4 q

in other words

(1 —tuy, + tu; — u; 4 4

We therefore have a column of the presentation matrix which has 1 — ¢ in the
kth place, t in the ith place, and —1 in the (i + 1)th place.
Suppose we do this for the trefoil. The group presentation is

-1, -1 -1, -1
{X1,%2,5 | X1X,X7 'x37 1, xx3%5 1x 71

the first relation corresponds to (1 — f)u, + tu,, the second to (1 — thu, — u,,
and our prescription gives the matrix

1—t -1
t 1—1
Therefore the Alexander polynomial of the trefoil knot is t2 —t + 1. We

comment again that the polynomial is only determined up to multiplication by
a unit of A, in other words up to multiplication by + t*.

It is not in fact necessary to work out the group presentation. Here is a
purely formal algorithm for computing the Alexander polynomial from a nice
projection of k. Orient the knot, and label the overpasses x;,...,x,. Construct
an n x n matrix B which has a column for each crossing, the nonzero entries
in the column corresponding to a crossing which looks like Fig. 10.17 being:

1 —t inplacek;
t in place i; and
—1 in placej.
Note that we only take into account the direction of x,, not that of x; and x;.

The determinant of the (n — 1) x (n — 1) matrix formed by removing the final
row and final column from B is the Alexander polynomial of k. We need to
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1"‘[—'r—xk

X; -1

Figure 10.17

remove a row and a column (it does not matter which), because by using all the
overpasses, and all the crossings, we have one too many generators and a
redundant relation. In fact this matrix B is a presentation matrix for the direct
sum of H,(X) and a free A module of rank 1.

As an example, consider the stevedore’s knot. Taking the crossings in the
order indicated in Fig. 10.18 leads to the following matrix:

11—t -1 0 0 ~1

0 t 11 -1 0 0
0 0 0 t 1—t t
0 0 -1 11—t 0 ~1
-1 1—1 t 0 0 0
t 0 0 0 t 11—t

and working out a 5 x 5 minor gives 2t> — 5t + 2.

There is another, very elegant, description of the Alexander polynomial
which we would like to mention, though the justification for it is too delicate
to give here. Suppose we use rational coefficients, then H,(X,Q) turns out to
be a finite-dimensional vector space over @, and the Alexander polynomial
is the characteristic polynomial of the linear transformation h,:H X,Q)—
H,X,Q).
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5
x6 6
xl\/\)Q
1 2\4_/\4

Figure 10.18

Problems

29. Show that the Alexander polynomial of the figure-of-eight knot is
t? — 3t + 1. This shows the figure of eight to be knotted.

30. Work out the Alexander polynomials of the true lovers’ knot and the two
knots shown in Fig. 10.15. Check your answers against the tables given in
Rolfsen [20].

31. Show that the Alexander polynomial of k + [ is that of k times that of L

32, Suppose A(t) is the Alexander polynomial of a tame knot, and assume it
has been normalized to have the form ao + a;t + ... + a;t*. Show that
Alt) = t*A(1/1).
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Appendix: Generators and
relations

First courses in group theory traditionally take a student ‘as far as’ the classifica-
tion theorem for finitely generated abelian groups, but invariably omit any
discussion of free groups, or of the idea of presenting a group by means of
generators and relations. Since these latter ideas are particularly important in
topology (most especially for us in Chapters 6 and 10), we offer a quick survey
here.

Perhaps the easiest idea to understand is that of a free set of generators for a
given group. A subset X of a group G is called a free set of generators for G
if every ge G — {e} can be expressed in a unique way as a product

g = X7t X5 ... xpx *

of finite length, where the x; lie in X, x; is never equal to x; , ;, and each n; is a
nonzero integer. We call the set of generators free because by the uniqueness
of (*) there can be no relations between its elements. If G has a free set of
generators, then it is called a free group.

Given a nonempty set X, we can construct ourselves a group which has X
as a free set of generators as follows. Define a word to be a finite product x7!... x}*
in which each x; belongs to X, and the #n, are all integers, and say that the word
is reduced if x; is never equal to x; ., and all the n; are nonzero. Given any
word, we can make a reduced word out of it by collecting up powers when
adjacent elements are equal, and omitting zeroth powers, continuing this
process several times if necessary. An example is worth a page of explanation:

x73x3x3 x5 x]x2 = x7t x9x] x3
=xy ' x]x}
— 33
which is now reduced. Reducing the word x? gives a word with no symbols which
we refer to as the empty word. Now we can multiply words together simply by
writing one after the other. If we do this with reduced words, the product may
not be reduced, but it does simplify down to a well-defined reduced word which

we call the product of the two given reduced words. The set of all reduced
words forms a group under this multiplication (of course there is a lot of rather
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tedious checking to be done); the identity element is the empty word, and the
inverse of the reduced word x7'...x}* is x; ™...x{ ™.

We shall call this group the free group generated by X, and denote it by
F(X). It should be clear that if two sets have the same cardinality (in other words,
if there is a one—one onto correspondence between them) then the free groups
generated by them are isomorphic. The free group with a single generator x is
the infinite cyclic group, the only possible nonempty reduced words being the
powers x".

Very often one says that a given group is determined by a set of generators
and a set of relations. For example, we may say that the dihedral group with
10 elements is determined by two generators x,y subject to the relations
x> =e, y? =e, xy = yx~ . We have in mind an intuitive idea that all the
elements of the group can be built as products of powers of x and y, and that
the multiplication table of the group is completely specified by the given
relations. We shall now make this precise using the notion of a free group.

Let G be a group, and X a subset which generates G. There is a natural
homomorphism from the free group F(X) onto G which sends a reduced word
xi...x¥ onto the corresponding product of group elements in G (again we
omit the details); it is onto because X generates G. If N denotes the kernel of
this homomorphism, then F(X)/N is isomorphic to G; so N determines G.
Now let R be a collection of words in F(X) with the property that N is the smallest
normal subgroup containing them. These words, together with all their con-
jugates, generate N, and they determine exactly which words in F(X) become
the identity when we pass from F(X) to G; that is to say, which products of
elements of G are the identity in G. In this situation, we say that the pair X, R
is a presentation for the group G. If X is a finite set, with elements x,,...,x,,, and
R is a finite set of words, with elements r,...,r,, we say that G is finitely presented
and write

G = {XyeesXm | 1o st}

Examples
1.7 = (x| @)
2.7, = {x|x"}

3. The dihedral group with 2n elements is
D2n = {xxy I xn,yZ’ (x.V)Z}
4.ZxZ={xy|lxyx 1y 1}

We finish with a brief mention of free products. If G and H are groups we
can form ‘words’ x,x,...x, where each x; lies in the disjoint union G U H.
Call a word reduced this time if x; and x; . ; never belong to the same group,
and if x; is never the identity of G or H. Throw in the empty word, multiply
reduced words by juxtaposition, reducing the product as necessary, and the
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result is a group called the free product G* H of G and H. In this book, we
only have occasion to take the free product of groups which are finitely pre-
sented, and we note that if

G = {XppeeesXpn| Froeeoslu}> H = {yiseeusdic| SgseeesSi}
then
G*xH = {xl" v XY 1se - Vi I Froee sl nySeyee -asl}

We note also that the free product ZxZ =... ¥ Z of n copies of the infinite

cyclic group is just the free group on a set of size n.

The most important facts concerning free groups and free products are the
following characterizations, which we give without proof:

(a) Let X be a subset of a group G. Then, X is a free set of generators for
G iff given an arbitrary group K, plus a function from X to K, there is a
unique extension of this function to a homomorphism from all of G to K.

(b) Let P be a group which contains both G and H as subgroups. Then P is
isomorphic to the free product G * H, via an isomorphism which is the
identity on both G and H, iff given an arbitrary group K, plus a homo-
morphism from each of G and H to K, there is a unique extension of
these homomorphisms to a homomorphism from all of P to K.
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Index

Abelianized knot group, 222
Accumulation point (= limit point), 29
Action of group on space, 79
fixed point free, 158
simplicial, 141
Adding a handle, 16, 149
Addition of knots, 225
Alexander polynomial, 237
Annulus, 7
Antipodal map, 80, 91, 199
degree of, 197
Antipodal points, 71
Apex of cone, 68, 123
Arc, 112
Attaching map, 71
Automorphism of topological group, 78

Ball:
n-dimensional, 36
in a metric space, 38, 39
Barycentre, 125
Barycentric coordinates, 125
Barycentric subdivision, 125
Base for a topology, 30
countable, 32
Base point, 87
Based loop, 87
Basic open set, 30
Betti number, 178
mod 2, 206
Bolzano-Weierstrass property, 48
Borsuk-Ulam theorem, 205
Boundary:
of manifold, 193
of oriented simplex, 177
of surface, 116
Boundary homomorphism, 177
Bounded subset of E', 43
Bounding cycle, 175
group of bounding g-cycles, 178
Bougquet of circles, 136
Box topology, 56
Brouwer degree, 195
Brouwer fixed point theorem:
for dimension 1, 110
for dimension 2, 110
general case, 191, 208
Hirsch’s proof, 131
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Carrier:
of point, 128
of simplex, 192
Chain:
g-dimensional, 176
with integer coefficients, 177
with rational coefficients, 200
with Z2 coefficients, 202
Chain complex, 185
Chain group, 176
Chain homotopy, 192
Chain map, 185
induced by simplicial map, 184
subdivision, 187, 188
Circle, 25
with spike, 25

Classification theorem for surfaces, 18, 149

Close simplicial maps, 189
Closed map, 36
Closed set, 29
Closed star, 156
Closed surface, 16, 149
Closure, 30
Comb space, 108
Combinatorial surface, 154
Commutative diagram, 142
Compact space, 44

locally compact, 50

one-point compactification, 50
Compact subset of E”, 55
Complex (see Simplicial complex), 121
Component, 60

path component, 63
Cone:

geometric, 68

on a complex, 122

on a space, 68
Connected space, 56

locally connected, 61

locally path connected, 63

path connected, 61

totally disconnected, 60
Connected sum, 152
Constant map, 107
Continuous family of maps, 87
Continuous function (= map), 13, 32
Contractible space, 107
Countable base, 32
Cover (see Open cover), 43



Covering map, 100, 227
Covering space, 100, 227
equivalence of, 231
existence theorem, 232
n-sheeted, 229
regular, 232
universal, 232
Covering transformation, 231
Crosscap, 152
Crossing of knot projection, 215
Crystallographic group, 85
Cube, 36
Cutting a surface, 167
Cycle, 175
bounding, 175, 178
group of g-cycles, 177
Cylinder, 9

Deformation retraction, 104
Degree:
of antipodal map, 197
of loop, 97
of map, 195 ‘
of map without fixed points, 197
Dense subset, 30
Diagonal map, 55
Diagram, commutative, 142
Diameter:
of set, 41
of simplex, 126
Dimension:
of compact Hausdorff space, 210
of manifold, 212
of polyhedron, 211
of simplex, 120
of simplicial complex, 125
Disc, 34
Discrete subgroup, 78
of circle; 78
of Euclidean group, 85
of O(2), 78
of real line, 78
Discrete topology, 14, 28
Distance between sets, 41
Distance function (= metric), 38
Dual graph, 3, 159
Dunce hat, 108

Edge group of complex, 132
Edge loop, 132

based at v, 132

equivalence of, 132
Edge path, 132
Elementary cycle, 175
Embedding, 50
Empty word, 241
Equivalence, topological, 6, 13
Equivalent covering spaces, 231
Equivalent knots, 214

INDEX

Euclidean space, 13, 28
Euler characteristic:
as invariant of homotopy type, 200
of closed surface, 202
of combinatorial surface, 160
of graph, 159
of orbit space, 161
of product space, 202
Euler number, 7
Euler-Poincaré formula, 200
Euler’s theorem, 2
Exponential map, 33, 96
Extension of map, 38

Face of simplex, 120
Figure of eight knot, 213
Finite complement topology, 14, 29
Finite simplicial complex, 121
Finitely presented group, 242
First homology group, 175
relation with fundamental group, 182
Fixed point free group action, 158
Fixed point free homeomorphisms of S”, 197
Fixed point property, 111
Fixed point theorem:
of Brouwer, 110, 191
of Lefschetz, 207
Flow, irrational, 83
Flow line, 83
Folding map, 36
Free group, 242
Free product, 243
Free set of generators, 241
Frontier, 30
Fundamental group, 93
as invariant of homotopy type, 106
change of base point, 94
of bouquet of circles, 136, 147
of circle, 96
of closed surface, 168
of complement of a knot, 221
of Klein bottle, 101, 137, 138
of Lens space, 100
of orbit space, 147
of P", 100
of polyhedron, 133
of product space, 101
of §”, 99, 131; 136
of torus, 100
van Kampen’s theorem, 138
Fundamental region, 84
Fundamental theorem of algebra, 109

General linear group, 74, 76
General position, 119, 120
Generator, 242
Genus:
of closed surface, 169
of compact surface, 170
of knot, 224
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INDEX

Geometric cone, 68 Identification space, 66
Glide reflection, 83 Identification topology, 66
Glueing lemma, 69 Identity map, 32
Granny knot, 222 Inclusion map, 32
Graph, 3, 159 Indiscrete space, 56
dual, 3, 159 Induced homomorphism:
Group: on fundamental group, 94
abelianized, 168 on homology groups, 189
finitely presented, 242 Induced orientation, 155
free, 242 Induced topology, 28
free product, 243 Infinite complex, 143
general linear, 74, 76 Infinite cyclic covering 234
orthogonal, 74, 77 Integral homology group, 178
special orthogonal, 74, 77, 82 Interior:
topological, 73 of manifold, 193
of neighbourhood, 13
Hairy ball theorem, 198 of set, 30

of simplex, 124

Hairy t 198
anry torus, of surface, 116

Half open interval topology, 32, 50

Half space, 27, 113, 217 Interval, 57

Half turn, 84 Irratlonal_ﬂow, 83

Ham sandwich theorem, 206 Isomorphic complexes, 123

Handle, 16, 149 Isomorphism of topological groups, 74

Isotopic to identity, 215

Hausdorff space, 39
Isotropy subgroup, 81

Hawaiian earring, 72
Heine-Borel theorem, 44
creeping along proof, 44

subdivision proof, 45 Join:
Homeomorphism, 6, 13, 34 of maps, 199
isotopic to identity, 215 of spaces, 199
orientation preserving, 158, 209 Jordan curve, 112
periodic, 148 Jordan curve theorem, 112
pointwise periodic, 148 Jordan separation theorem, 21, 112

Homologous cycles, 178
Homology class, 178

Homology groups: Klein bottle, 9, 10

as invariants of homotopy type, 189 Knot, 213

of closed surface, 183 equivalence, 214

of cone, 181 figure of eight, 213

Of S > 181, 182 i genus of, 224

with integer coefficients, 178 granny, 222

with rational coefficients, 200 polygonal, 215

with Z> coefficients. 203 square, 217
Homotopic maps, 88 stevedore’s, 213
Homotopy, 88 tame, 215

null homotopic, 91 torus, 222

relative to a subset, 88 trefoil, 213

straight line, 89 trivial, 213
Homotopy class, 92 true lovers’, 213
Homotopy equivalence, 103 wild, 215
Homotopy-lifting lemma, 98, 228 Knot group, 216
Homotopy type, 103 abelianized, 222
Hopf trace theorem, 207 of granny, 222
House with two rooms, 109 of square, 222
Hyperboloid, one sheeted, 7 of torus knot, 223
Hyperplane, 119 of trefoil, 221

of trivial knot, 221

Identification map, 67 presentation for, 221
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Knot projection, 215
nice, 215
overpass, 216
underpass, 216

Lebesgue’s lemma, 49
Lebesgue number, 49
Lefschetz fixed point theorem, 207
Lefschetz number, 206

of identity map, 209

in terms of degree, 209
Left translation, 75
Lens space, 82, 86
Lift:

of homotopy, 98 228

of map, 230

of path, 97, 228
Limit point, 29
Lindelof’s theorem, 50
Locally compact space, 50
Locally connected space, 61
Locally finite complex, 144
Locally path connected space, 63
Loop, 21, 87

edge, 132

null homotopic, 98
Lusternik-Schnirelmann theorem 205

Manifold, 169, 193

boundary of, 193

dimension of, 212

interior of, 193
Map, 32

antipodal, 80

chain, 185

closed, 36

covering, 100, 227

degree of, 195

identification, 67

open, 36

which preserves antipodes, 203
Map lifting theorem, 230
Maximal tree, 134
Mesh of complex, 125
Metric (= distance function), 38
Metric space, 38
Mirror image, 214
Mobius strip, 9, 65

Neighbourhood, 13, 28

of set, 42
Nerve of covering, 210
Nice projection of knot, 215
Nielsen-Schreier theorem, 22, 147
Non-orientable surface, 18, 154
n-sheeted (or n-fold) covering, 229
Null homotopic map, 91

INDEX

One-point compactification, 50
Open ball, 39
Open cover, 43

subcover, 43
Open map, 36
Open set, 27
Open star, 130
Orbit, 79
Orbit space, 79
Ordering of vertices of a simplex, 155
Orientable combinatorial surface, 155
Orientable surface, 18, 154
Orientation:

induced, 155

of simplex, 155
Orientation preserving homeomorphism,
158, 209
Orientation reversing homeomorphism, 209
Oriented polygonal curve, 174
Oriented simplex, 176
Orthogonal group, 74

compactness of, 77
Overpass, 216

Path, 61
edge path, 132
loop, 21, 87

product of paths, 94
Path component, 63
Path connected space, 61

locally path connected, 63
Path-lifting lemma, 97, 228
Peano curve, 36
Periodic homeomorphism, 148
Plane crystallographic group, 85
Poincaré conjecture, 169
Point at infinity, 50
Pointwise periodic homeomorphism, 148
Polygonal curve, 115
Polygonal knot, 215
Polyhedron, 121
Presentation matrix, 235
Presentation of group, 242
Pretzel (= double torus), 23
Product of homotopy classes, 92
Product of loops, 87
Product of paths, 94
Product of topological groups, 74
Product space, 52

compact, 53

connected, 59

Hausdorff, 53
Product topology, 52
Projection, 52
Projection of knot, 215
Projective plane, 17
Projective space, 71
Punctured double torus, 9
Punctured torus, 23
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INDEX

Quaternions, 74, 77

Radial projection, 5
Rank of free abelian group, 178
Rational coefficients for homology, 200
Real line, 29 .
Realization theorem, 141
Reduced word, 241
Refinement of open cover, 210
Regular covering space, 232
Regulus, 216
Relation, 242
Restriction of map, 32
Retraction, 111

deformation retraction, 104
Right translation, 75
Ruled surface, 216

Schonflies theorem, 115
Second countable space, 32
Seifert circle, 223
Seifert surface, 223
Semi-locally simply connected, 232
Separable space, 32
Separated sets, 58
Separation of a space, 112
Simple closed curve, 112
Simplex, 120

face of, 120

interior of, 124

of dimension &, 120

oriented, 176

vertex of, 120
Simplicial approximation, 128
Simplicial approximation theorem, 128
Simplicial complex, 121

barycentric subdivision, 125

cone on, 122

dimension of, 125

infinite, 143

isomorphic complexes, 123

locally finite, 144

mesh of, 125

stellar subdivision, 186

subcomplex, 123

vertex scheme, 140
Simplicial group action. 141
Simplicial map, 128
Simply connected space. 96
Solid torus, 219, 223
Space:

covering, 100, 227

Euclidean, 13, 28

metric, 38

orbit, 79

projective, 71

topological, 13, 28
Space filling curve, 36
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Special orthogonal group, 74
compactness of, 77
connectedness of, 82

Sphere, 9
n-dimensional, 34

Square knot, 217

Stabilizer, 81

Standard simplicial map. 188

Star:
closed, 156
open, 130

Stellar subdivision, 186
Stereographic projection, 23, 34
Straight line homotopy. 89
Subcomplex, 123
Subcover, 43
Subdivision chain map, 187, 188
Subgroup of topological group. 74
Subspace, 28
Subspace topology, 14, 28
Sum of oriented knots, 225
Surface, 15
classification theorem, 18, 149
closed, 16, 149
combinatorial, 154
fundamental group of, 168. 170
genus of, 169
homology of, 183
orientable, 18, 154
triangulation of, 153
Surface symbol, 167
for closed non-orientable surface, 167
for closed orientable surface, 167
for compact orientable surface., 170
Surgery, 162

Tame knot, 215
Tame Seifert surface. 224
Tesselation of plane. 85
Tetrahedron. 120
Thickening. 156
Tietze extension theorem, 40
Topological equivalence (= homeomorph-
ism). 6. 13, 34
Topological group. 73
abelian fundamental group. 95
automorphism of, 78
isomorphism between, 74
subgroup of, 74
Topological invariance:
of dimension. 211
of Euler characteristic. 200
of fundamental group. 95
of homology groups. 189
Topological invariant, 19
Topological property. 8. 19
Topological space. 13. 28



Topology, 13, 28

box, 56

discrete, 14, 28

finite complement, 14, 29

half open interval, 32, 50

indiscrete, 56

induced, 28

product, 52

subspace, 14, 28
Torsion element, 178
Torus, 9, 68
Torus knot, 222
Totally disconnected space, 60
Trace theorem of Hopf, 207
Transitive group action, 79
Translation of plane, 83
Translation of topological group, 75
Tree, 3, 134

maximal, 134
Trefoil knot, 213
Triangulable space, 121
Triangulation, 121

of orbit space, 142

of surface, 153
Trivial knot, 213

INDEX

True lovers’ knot, 213
Tychonoff product theorem, 55

Underpass, 216

Unit ball, 36

Unit cube, 36

Unit disc, 29

Universal covering space, 232
Universal television aerial, 146

Van Kampen’s theorem, 138
Vector field, 198
on sphere, 198
on torus, 198
Vertex, 120
Vertex scheme, 140

Wild knot, 215

Word, 241
empty, 241
product, 241
reduced, 241

Z, coefficients for homology, 203
Zeroth homology group, 180
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Schiff: The Laplace Transform: Theory
and Applications.

Sethuraman: Rings, Fields, and Vector
Spaces: An Approach to Geometric
Constructability.

Sigler: Algebra.

Silverman/Tate: Rational Points on
Elliptic Curves.

Simmonds: A Brief on Tensor Analysis.

Second edition.

Singer: Geometry: Plane and Fancy.

Singer/Thorpe: Lecture Notes on
Elementary Topology and
Geometry.

Smith: Linear Algebra. Third edition.

Smith: Primer of Modern Analysis.
Second edition.

Stanton/White: Constructive

Combinatorics.

Stillwell: Elements of Algebra: Geometry,
Numbers, Equations.

Stillwell: Mathematics and Its History.
Second edition.

Stillwell: Numbers and Geometry.
Readings in Mathematics.

Strayer: Linear Programming and Its
Applications.

Toth: Glimpses of Algebra and Geometry.
Second Edition.
Readings in Mathematics.

Troutman: Variational Calculus and
Optimal Control. Second edition.

Valenza: Linear Algebra: An Introduction
to Abstract Mathematics.

Whyburn/Duda: Dynamic Topology.

Wilson: Much Ado About Calculus.





