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Preface 

This is a topology book for undergraduates, and in writing it I have had two 
aims in mind. Firstly, to make sure the student sees a variety of different tech­
niques and applications involving point set, geometric, and algebraic topology, 
without delving too deeply irito any particular area. Secondly, to develop the 
reader's geometrical insight; topology is after all a branch of geometry. 

The prerequisites for reading the book are few, a sound first course in real 
analysis (as usual !), together with a knowledge of elementary group theory and 
linear algebra. A reasonable degree of 'mathematical maturity' is much more 
important than any previous knowledge of topology. 

The layout is as follows. There are ten chapters, the first of which is a short 
essay intended as motivation. Each of the other chapters is devoted to a single 
important topic, so that identification spaces, the fundamental group, the idea of 
a triangulation, surfaces, simplicial homology, knots and covering spaces, all 
have a chapter to themselves. 

Some motivation is surely necessary. A topology book at this level which 
beg ins with a set ofaxioms for a topological space, as if these were an integral 
part of nature, is in my opinion doomed to failure. On the other hand, topology 
should not be presented as a collection of party tricks (colouring knots and 
maps, joining houses to public utilities, or watching a fly es cape from a Klein 
bottle). These things all have their place, but they must be shown to fit into a 
unified mathematical theory, and not remain dead ends in themselves. For this 
reason, knots appear at the end of the book, and not at the beginning. It is not 
the knots which are so interesting, but rather the variety of techniques needed 
to deal with them. 

Chapter 1 begins with Euler's theorem for polyhedra, and the theme of the 
book is the search for topological invariants of spaces, together with techniques 
for calculating them. Topology is complicated by the fact that something which 
is, by its very nature, topologically invariant is usually hard to calculate, and 
vice versa the invariance of a simple number like the Euler characteristic can 
involve a great deal of work. 

The balance of material was influenced by the maxim that a theory and its 
payoff in terms of applications should, wherever possible, be given equal weight. 
For example, since homology theory is a good deal oftrouble to set up (a whole 
chapter), it must be shown to be worth the effort (a whole chapter of applica­
tions). Moving away from a topic is always difficult, and the temptation to 
incIude more and more is hard to resist. But to produce a book of reasonable 
length some topics just have to go; I mention particularly in this respect the 
omiSSion of any systematic method for calculating homology groups. In 
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PREFACE 

formulating definitions, and choosing proofs, I have not always taken the 
shortest path. Very often the version of adefinition or result which is most 
convenient to work with, is not at all natural at first sight, and this is above all 
else a book for beginners. 

Most of the material can be covered in a one-year course at third-year 
(English) undergraduate level. But there is plenty of scope for shorter courses 
involving a selection of topics, and much of the first half of the book can be 
taught to second-year students. Problems are inc1uded at the end of just about 
every section, and a short bibliography is provided with suggestions for parallel 
reading and as to where to go next. 

The material presented here is all basic and has for the most part appeared 
elsewhere. IfI have made any contribution it is one of selection and presentation. 

Two topics deserve special mention. I first learned about the Alexander 
polynomial from J. F. P. Hudson, and it was E. C. Zeeman who showed me 
how to do surgery on surfaces. To both ofthem, and particularly to Christopher 
Zeeman for his patience in teaching me topology, I offer my best thanks. 

I would also like to thank R. S. Roberts and L. M. Woodward for many 
useful conversations, Mrs J. Gibson for her speed and skill in producing the 
manuscript, and Cambridge University Press for permission to reproduce the 
quotation from Hardy's 'A Mathematician's Apology' which appears at the 
beginning ofChapter 1. Finally, a special word ofthanks to my wifeAnne Marie 
for her constant encouragement. 

M.A.A. 
Durham, July 1978. 

IX 



Contents 

Preface vii 

Chapter 1 Introduction 

1. Eu1er's theorem 1 
2. Topo1ogica1 equivalence 4 
3. Surfaces 8 
4. Abstract spaces 12 
5. A classification theorem 16 
6. Topologica1 invariants 19 

Chapter 2 Continuity 

1. Open and closed sets 27 
2. Continuous functions 32 
3. A space-filling curve 36 
4. The Tietze extension theorem 38 

Chapter 3 Compactness and connectedness 

1. Closed bounded subsets of IEn 43 
2. The Heine-Borel theorem 44 
3. Properties of compact spaces 47 
4. Product spaces 51 
5. Connectedness 56 
6. Joining points by paths 61 

Chapter 4 I dentification spaces 

1. Constructing a Möbius strip 65 
2. The identification topology 66 
3. Topo1ogica1 groups 73 
4. Orbit spaces 78 

Chapter 5 The fundamental group 

1. Homotopic maps 87 
2. Construction of the fundamental group 92 
3. Calculations 96 
4. Homotopy type 103 
5. The Brouwer fixed-point theorem 110 
6. Separation of the plane 112 
7. The boundary of a surface 115 

Xl 



CONTENTS 

Chapter 6 Triangulations 

l. Triangulating spaces 119 
2. Barycentric sub division 125 
3. Simplicial approximation 127 
4. The edge group of a complex 131 
5. Triangulating orbit spaces 140 
6. Infinite complexes 143 

Chapter 7 SurJaces 

l. Classifica tion 149 
2. Triangulation and orientation 153 
3. Euler characteristics 158 
4. Surgery 161 
5. Surface symbols 165 

Chapter 8 Simplicial homology 

l. Cycles and boundaries 173 
2. Homology groups 176 
3. Examples 179 
4. Simplicial maps 184 
5. Stellar subdivision 185 
6. Invariance 188 

Chapter 9 Degree and LeJschetz number 

l. Maps of spheres 195 
2. The Euler-Poincare formula 199 
3. The Borsuk-Ulam theorem 202 
4. The Lefschetz fixed-point theorem 206 
5. Dimension 210 

Chapter 10 Knots and covering spaces 

l. Examples of knots 213 
2. The knot group 216 
3. Seifert surfaces 223 
4. Covering spaces 227 
5. The Alexander polynomial 234 

Appendix: Generators and relations 241 

Bibliography 244 

Index 246 

xii 



1. Introduction 

Beauty is the first test,' there is no permanent place in the 
worldlor ugly mathematics. 

G. H. HARDY 

1.1 Euler's theorem 
We begin by proving a beautiful theorem ofEuler concerning polyhedra. As we 
shall see, the statement and proof of the theorem motivate many of the ideas 
of topology. 

Figure 1.1 shows four polyhedra. They look very different from one another, 

Figure 1.1 

yet if for each one we take the number of vertices (v), subtract from this the 
number of edges (e), then add on the number of faces (f), this simple calcula­
tion always gives 2. Could the formula v - e + I = 2 be valid for all polyhedra? 
The ans wer is no, but the result is true for a large and interesting class. 

We may be tempted at first to work only with regular, or maybe convex, 
polyhedra, and v - e + I is indeed equal to 2 for these. However, one of the 
examples in our illustration is not convex, yet it satisfies our formula and we 
would be unhappy to have to ignore it. In order to find a counterexample we 
need to be a little more ingenious. If we do our calculation for the polyhedra 
shown in Figs 1.2 and 1.3 we obtain v - e + I = 4 and v - e + I = 0 respect-
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BASIC TOPOLOGY 

ively. What has gone wrong? In the first case we seem to have cheated a little by 
constructing a polyhedron whose surface consists of two distinct pieces ; in 

" " " 
...-

I ..,----- -'" 
.... > .... : ",. I 

""--1--(' I 
I I I I 
I I I I 

: ...-J.---:---;J 
1// 1./ 
I.o:/ __ .....JL-

" " 
...-

A cube with a smaller 
cube removed from its interior 

Figure 1.2 

Figure 1.3 

A prism with a hole straight 
through the centre 

technicallanguage its surface is not connected. We suspect (quite correctly) that 
we should not allow this, since each of the pieces of surface contributes 2 to 
v - e + f. Unfortunately, this objection does not hold for Fig. 1.3, as the 
surface of the polyhedron shown there is certainly all one piece. However, this 
surface differs from those shown earlier in one very important respect. We can 
find a loop on the surface which does not separate it into two distinct parts; 
that is to say, if we imagine cutting round the loop with a pair of scissors then 
the surface does not fall into two pieces. A specific loop with this property is 
labelled with arrows in Fig. 1.3. We shall show that v - e + f = 2 for poly­
hedra which do not exhibit the defects illustrated in Figs 1.2 and 1.3. 

Before proceeding any further, we need to be a little more precise. In our 
discussion so far we have only made use of the surfaces of the solids illustrated 
(except, that is, when we have mentioned convexity). So let us agree to use the 
word 'polyhedron' for such a surface, rather than for the solid which it bounds. 
A polyhedron is therefo~e a finite collection of plane polygons which fit together 
nicely in the following sense. Iftwo polygons meet they do so in a common edge, 
and each edge of a polygon lies in precisely one other polygon. In addition, 
we ask that if we consider the polygons which contain a particular vertex, then 
we can label them Ql, Q2' .... ' Qk in such a way that Qi has an edge in common 
with Qi + 1 for 1 ~ i < k, and Qk has an edge in common with Ql' In other 
words, the polygons fit together to form a piece of surface around the given 
vertex. (The number k may vary from one vertex to another.) This last condition 
rules out, for example, two cubes joined together at a single vertex. 

(1.1) Euler's theorem. Let P be a polyhedron which satisfies: 
(a) Any two vertices ofP can be connected by a chain of edges. 
(b) Any loop on P which is made up of straight line segments (not necessarily edges) 

separates P into. two pieces. 
Then v - e + f = 2for P. 

2 



INTRODUCTlON 

The formula v - e + f = 2 has a long and complicated history. It first 
appears in a letter from Euler to Goldbach dated 1750. However, Euler placed 
no restrictions on his polyhedra and his reasoning can only be applied in the 
convex case. It took sixty years before Lhuilier drew attention (in 1813) to the 
problems raised by polyhedra such as those shown in our Figs 1.2 and 1.3. 
The precise statement oftheorem (1.1), and the proof outlined below, are due to 
von Staudt and were published in 1847. 

Outline proo.(. A connected set of vertices and edges of P will be called a graph: 
connected simply means that any two vertices can be joined by a chain of edges 
in the graph. More generally, we shall use the word graph for any finite con­
nected set of line segments in 3-space which fit together nicely as in Fig. 1.4. (If 
two segments intersect they are required to do so in a common vertex.) A graph 
which does not contain any loops is called a tree. Notice that for a tree, the 
number ofvertices minus the number of edges is equal to 1.lfthe tree is denoted 
by Twe shall write this as v(T) - e(T) = 1. 

loop 

(a) Tree (b) Graph-not a tree 

Figure 1.4 

By hypothesis (a), the set of all vertices and edges of Pis a graph. It is easy to 
show that in any graph one can find a subgraph which is a tree and which 
contains all the vertices of the original. So choose a tree T which consists of 
some of the edges and all of the vertices of P (Fig. 1.4a shows such a tree for 
one of the polyhedra of Fig. 1.1). 

Now form a sort of 'dual' to T. This dual is a graph r defined as follows. 
For each face A of P we give r a vertex 1. Two vertices A and B of rare joined 
by an edge if and only if the corresponding faces A and B of P are adjacent with 
intersection an edge that is not in T. One can even represent r on P in such 
a way that it misses T (the vertex A corresponding to an interior point of A) 
though to do this we have to allow its edges to be bent. Figure 1.5 illustrates 
the procedure. 

It is not too hard to believe that this dual r is connected and is therefore a 
graph. Intuitively, if two vertices of r cannot be connected by a chain of edges 
of r, then they must be separated from one another by a loop of T. (This does 
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BASIC TOPOLOGY 

A 

C 

Tree T 

Associated tree r 

Figure 1.5 
r represented on P 

need some proof and we shall work out the details in Chapter 7.) Since T does 
not contain any loops we deduce that r must be connected. 

In fact r is a tree. For if there were a loop in r it would separate P into two 
distinct pieces by hypothesis (b), and each of these pieces must contain at least 
one vertex of T. Any attempt to connect two vertices of T which lie in different 
pieces by a chain of edges results in a chain which meets this separating loop, 
and therefore in a chain which cannot lie entirely in T. This contradicts the fact 
that T is connected. Therefore r is a tree. (The proof breaks down here for a 
polyhedron such as that shown in Fig. 1.3, because the dual graph r will 
contain loops.) 

Since the number of vertices of any tree exceeds the number of edges by 1 
we have v(T) - e(T) = 1 and ver) - e(r) = 1. Therefore 

v(T) - [e(T) + e(r)] + v(r) = 2. 

But by construction v(T) = v, e(T) + e(r) = e and ver) = f This completes the 
argument. 

1.2 Topological equivalence 
There are several proofs of Euler's theorem. We have chosen the one above for 
two reasons. Firstly, its elegance; most other proofs use induction on the number 
of faces of P. Secondly, because it contains much more information than Euler's 
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INTRODUCTION 

formula. With very little extra effort it actually teils us that P is made up of two 
discs which are identified along their boundaries. To see this, simply thicken 
each of T and r a little on P (Fig. 1.6) to obtain two disjoint discs. (Thickening a 
tree always gives a disc, though thickening a graph with loops will give aspace 
with holes in it.) Enlarge these discs little by !ittle until their boundaries coincide. 
The polyhedron P is now made up oftwo discs which have a common boundary. 
Granted these discs may have a rather odd shape, but they can be deformed into 
ordinary, round flat discs. Now remember that the sphere consists of two discs, 
the north and south hemispheres, sewn along their common boundary the 
equator (Fig. 1.7). In other words, the hypotheses ofEuler's theorem tell us that 
P looks in some sense like a rather deformed sphere. 

T and r lhickened on P 

Figure 1.6 

------/-- --.......... " 
identify 

boundaries 

Figure 1.7 

Of course, for a specific polyhedron it may be very easy to set up adecent 
correspondence between its points and those of the sphere. For example, in 
the case of the regular tetrahedron T we can use radial projection from the 
cent re of gravity f of T to project T onto a sphere with centre f. The faces of T 
project to curvilinear triangles on the sphere as shown in Fig. 1.8. In fact 
Legendre used exactly this procedure (in 1794) to prove Euler's theorem for 
convex polyhedra; we shall describe Legendre's argument later. 

5 



BASIC TOPOLOGY 

The polyhedron shown on the right in Fig. 1.1 is not convex and does not 
lend itself to the above argument. However, if we think of it as being made of 
rubber then we can easily imagine how to deform it into an ordinary round 
sphere. During the deformation we stretch and bend the polyhedron at will, 
but we never identify distinct points and we never tear it. The resulting corre­
spondence between the points of the given polyhedron and the points of the 

Radial proj ection 7f 
Figure 1.8 

sphere is an example of a topological equivalence or homeomorphism. In formal 
terms it is a one-one and onto continuous function with continuous inverse. 

We shall go carefully into the definition of a homeomorphism in Section 1.4, 
but to help make things a little more concrete at present here are four spaces 
wh ich are homeomorphic (see Fig. 1.9) : 

~------
.... _----, 

----- ...... 

(a) (b) 

Figure 1.9 

holes 

(e) (d) 
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INTRODUCTION 

(a) the surface of a cylinder offinite height, excluding the two circles at the ends; 
(b) the one-sheeted hyperboloid given by the equation x 2 + y2 - Z2 = 1; 
(c) the open annulus in the complex plane specified by 1 < I z I < 3; 
(d) the sphere with the points at the north and south poles removed. 

We propose to give a specific homeomorphism (i.e., a continuous, one-one, 
and onto function which has continuous inverse) from space (b) to space (c). 
It is most convenient to specify the points of(b) by cylindrical polar coordinates 
(r, e, z) and to use plane polar coordinates (r, e) for space (c). When e = 0 in 
(b) we obtain a branch of the hyperbola x 2 - Z2 = 1, and we plan to send this 
nicely onto the corresponding piece ofthe annulus, i.e., the ray {(x,y) 11 < x< 3, 
y =: O}. If we can do a similar trick for each value of e, in a continuous manner 
as evaries from 0 to 2n, we shall have the required homeomorphism. Define 
f:(-oo, (0)~(1,3) by f(x) = x/(1 + lxi) + 2; thenfis a bijection, is con­
tinuous, and has continuous inverse. Now send the point (r, e, z) of the hyper­
bola to (f(z), e) on the annulus. 

We leave the reader to investigate the other possibilities: we note that the 
relation of topological equivalence is clearly an equivalence relation, so that 
proving each of spaces (a) and (d) homeomorphic to space (c) will suffice. In 
topology these four are considered to be the 'same space'. The sphere with 
three points removed is different (not homeomorphic to the above). Why? Can 
you describe a subset of the complex plane homeomorphic to a sphere with 
three points removed? 

Returning to the proof of Euler's theorem, thickening the trees T and r 
gave a decomposition of P into two discs with a common boundary and there­
fore, by sending the points of one disc into the northern hemisphere and sending 
the points of the other south, a way of defining a homeomorphism from the poly­
hedron P to the sphere.1t is possible to produce an argument in the opposite direc­
tion (we shall do so in Chapter 7) and show that if Pis topologically equivalent to 
the sphere then P satisfies hypotheses (a) and (b) oftheorem (l.1)t, and therefore 
Euler's theorem holds for P. So if P and Q are polyhedra which are both homeo­
morphic to the sphere, and if we call v - e + f the Euler number of a poly­
hedron, then we know from the above discussion that P and Q have the same 
Euler number, namely 2. 

The polyhedron shown in Fig. 1.3 has an entirely different form. It is homeo­
morphic to a torus (we can even imagine how to deform it continuously to a 
nice round torus such as that shown in Fig. 1.10b) and its Euler number is O. 
Drawing any other polyhedron which is topologically equivalent to a torus and 
computing its Euler number will always give 0 (though this is hard to prove 
and will have to wait until Chapter 9). We are now only a short stept away 
from one of the most basic and central results of topology. 

t Hypothesis (a) is easy to verify; (b) is harder and is a special case of the famous Jordan curve 
theorem. 

t A short step, that is, in mathematical intuition; in terms of carefuI proof we have an extremely 
long walk ahead. 
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BASIC TOPOLOGY 

(1.2) Theorem. Topologically equivalent polyhedra have the same Euler number. 

This remarkable result was the starting point for modem topology. It is remark­
able because in calculating the Euler number of a polyhedron we make use of 
the numbers of vertices, edges, and faces of the polyhedron, none of which need 
be preserved by a topological equivalence. It led to the search for other proper­
ties of spaces which are left unchanged by the application of a homeomorphism. 

We shall return to the Euler number later, and show that it can be defined 
for a much wider dass of spaces than the ordinary polyhedra considered so far. 
These polyhedra are rather rigid objects with corners, edges, and flat faces, and 
will be of no special interest to uso From the point of view of the topologist, the 
sphere is good enough to represent all the polyhedra shown in Fig. 1.1. Our 
philosophy will be roughly as follows: the Euler number 2 does not belong to a 
particular dass of polyhedra, it really belongs to the sphere. A polyhedron 
satisfying the hypotheses of Euler's theorem (i.e., a polyhedron which is homeo­
morphic to the sphere) merely gives a convenient way of calculating the Euler 
number of the sphere. With this emphasis, theorem (1.2) now states that cal­
culating in apparently different ways always gives the same answer. We shall 
continue this line of argument in Section 9.2. 

We end this section with Legendre's highly original proof of Euler's formula 
for convex polyhedra. Using radial projection as in Fig. 1.8, project the poly­
hedron onto a sphere of radius 1. The polygonal faces of the polyhedron project 
to spherical polygons. Now if Q is a spherical polygon with angles 0(1,0(2'···' O(k 
and with n edges, then the area of Q is given by 

0(1 + 0(2 + ... + O(k - (n - 2)n = (0(1 + 0(2 + ... + O(k) - nn + 2n 

The sum of the areas of the spherical polygons is therefore 2nv - 2ne + 2nf 
(at each vertex the total angle is 2n, so 2nv takes care of all the O('s; each edge 
has to be counted twice since it belongs to exactly two polygons; and each face 
gives a contribution of 2n). Equating this to the area of the unit sphere, 4n, 
gives the result. 

1.3 Surfaces 
Topology has to do with those properties of aspace which are left unchanged 
by the kind of transformation that we have caBed a topological equivalence or 
homeomorphism. But what sort of spaces interest us and what exact1y do we 
mean by a 'space'? The idea of a homeomorphism involves very strongly the 
notion of continuity; what do we mean by a continuous function between two 
spaces? We shaB.try to answer these questions in this section and the next. 

We begin with a few examples of interesting spaces. Someone working in 
analysis is used to considering the realline, the complex plane, or even the set 
of aB real-valued continuous functions defined on the dosed unit interval as 
(metric) spaces. Being geometers at heart, we are more interested in bounded 
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INTRODUCTION 

configurations which occur naturally in euclidean space. For example, the 
unit circ1e and the unit disc in the plane; surfaces such as the sphere, the torus, 
the Möbius strip, the cylinder, and the double torus with a puncture, all of 
which live in three-dimensional space and are illustrated in Hg. 1.10. 

Of a more complicated nature and more difficult to visualize is a surface such 
as the Klein bottle. This surface is difficult to imagine because in any attempt 
to represent it in three dimensions the Klein bottle must cross itself. In our 
drawing (Fig. 1.10) the surface cuts itself in a small circ1e. We can understand 
the Klein bottle a little better by trying to make a model of it. Consider the 
usual method of modelling a torus. One begins with a rectangle of paper and 

(a) Sphere (b) Torus (c) Möbius strip 

,...--------....... 

(d) Cylinder (e) Klein bottle (1) Punctured d'lUble torus 

Figure 1.10 

identifies the edges as in Fig. 1.11. To build a Klein bottle, the first half of the 
construction, that is as far as a cylinder, is the same, but then the ends of the 
cylinder are identified in the opposite direction. In order to do this, the cylinder 
has to be bent around and one end pushed through the side as in Fig. 1.12. 

The Klein bottle (K) can be represented in four-dimensional space without 
any self intersections. Imagine an extra dimension perpendicular to the paper, 
remembering all the time that the paper represents ordinary three-dimensional 
space. Near the intersection circ1e of K we have two pipes, one of which cuts 
through the other. Lift one pipe a little c1ear of the other into the fourth dimen­
sion. If you find this hard, examine the following procedure which is easier to 
visualize: Fig. 1.13a shows two lines in the plane which cross at right angles. 
Suppose we wish to move them very slightly so that they no longer intersect. 
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It is obvious that we cannot do this in the plane. However, adding an extra 
dimension perpendicular to the plane of the paper gives us three-dimensional 
space, and we can simply lift one line a very small amount near the intersection 
point in this extra direction. This gives the two lines of Fig. 1.13b which no 
longer meet. 

------

Figure 1.11 

--

-----
Figure 1.12 

--------~~~--------

(a) (b) 

Figure 1.13 

Our way of introducing surfaces by representing them in euc1idean space is 
not such a good idea as it might appear at first sight. We are interested in 
surfaces 'up to alteration by a homeomorphism', in other words topologically 
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equivalent surfaces will be treated as the same space. We illustrate in Fig. 1.14 
three copies of the Möbius strip M. That the first two are homeomorphic is no 
surprise, one only has to take a rubber versiont of the first and stretch it into 
the second. But how about Figs 1.14a and 1.14c? These spaces are homeo­
morphic, yet no amount of stretching, bending, and twisting will deform one 
into the other. To show two spaces are homeomorphic one must find a con­
tinuous bijection between them, whose inverse is also continuous. Forget about 

(al 
(b) 

~ 
Figure 1.14 

(c) 

the various pictures of M and ask yourself how you construct M. Building a 
model is easy: begin with a rectangle of paper and identify a pair of opposite 
edges with a half twist (Fig. 1.15). This gives the usual representation of M 

A~,---_IB E= ~A 
Figure 1.15 

shown in Fig. 1.14a. To obtain Fig. 1.14c we must add a full twist to the above 
process, i.e., identify the edges of our strip after twisting one and one-half times. 
But in terms of the identification of the edges A and B this changes nothing, the 
same points of A and B are made to coincide. Therefore the spaces shown in 
Figs 1.14a and 1.14c are homeomorphic. They are merely different representa­
tions of the same space in euclidean space. The representations are different in 

t The idea of explaining topological equivalence by thinking of spaces as being made of rubber is 
due to Möbius and dates back to about 1860. 
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the sense that although we can find a homeomorphism between them, there is 
no way of extending such a homeomorphism over all the points of euc1idean 
space. In other words, there is no homeomorphism from euc1idean' space to 
itselfthat throws Fig. 1.14a onto Fig. 1.14c. 

If our intuition can be led astray by pictures as naive as Fig. 1.14, this suggests 
very strongly that we need some way of considering our spaces abstractly 
rather than relying on particular representatives of them in euc1idean space. In 
what follows we shall try to translate the notion of a surface into precise mathe­
maticallanguage. The programme is rather long, involving firstly the definition 
of an abstract (topological) space, and secondly the recognition of surfaces as 
those spaces which look locally like the euclidean plane. 

1.4 Abstract spaces 
In trying to find a satisfactory definition of a topological spacet we shall have 
two aims in mind. The definition should be general enough to allow a wide range 
of different structures as spaces. We would like to consider a finite, discrete set 
of points as aspace, or equally a whole uncountable continuum of points such 
as the realline; one of our nice geometrical surfaces should qualify under the 
definition, and so too should a function space such as the set of continuous 
complex-valued functions defined on the unit circ1e in the complex plane. We 
would like to be able to perform simple constructions with our spaces, such 
as taking the cartesian product of two spaces, or identifying some of the points 
of aspace in order to form a new one (think of the construction of the Möbius 
strip outlined earlier). On the other hand, the definition of aspace should con­
tain enough information so that we can define the notion of continuity for func­
tions between spaces. It is really this second consideration which leads to the 
abstract definition given b~low. 

Letfbe a function between two euc1idean spaces, say f: lErn ~ IEn• The c1assical 
definition of continuity for f goes as folIows: fis continuous at x E lErn if given 
6 > 0 there exists b > 0 such that Ilf(Y) - f(x) 11 < 6 whenever 11 y - xii< b. 
The function f is continuous if it satisfies this condition for each X in lErn. Call a 
subset of N of lErn a neighbourhood of the point pE lErn if for some real number 
r > 0 the c10sed disc centre P radius r lies entirely inside N. It is easy to rephrase 
the above definition of continuity as follows: f is continuous if given any 
x EIErn and any neighbourhood N off(x) in IEn, thenf-l(N) is a neighbourhood 
ofx in lErn. 

This notion of each point in aspace having a collection of 'neighbourhoods', 
the neighbourhoods leading in turn to a good definition of continuous function, 
is the crucial one. Notice that in defining neighbourhoods in a euc1idean space 
we used very strongly the euc1idean distance between points. In constructing an 
abstract space we would like to retain the concept of neighbourhood but rid 

t The modern definition emerged quite late, the axioms for a topological space appearing for the 
first time in 1914 in the work of Hausdorff. 
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ourselves of any dependence on a distance function. (A topological equivalence 
does not preserve distances.) 

Inspection of the properties of neighbourhoods of points in a euclidean space 
leads to the following axioms for a topological space. 

(1.3) We ask for a set X and for each point x of X a nonempty collection of 
subsets of X, called neighbourhoods of x. These neighbourhoods are required 
to satisfy four axioms: 

(a) x lies in each ofits neighbourhoods. 
(b) The intersection oftwo neighbourhoods ofx is itself a neighbourhood ofx. 
(c) IfN is a neighbourhood ofx and ifU is a subset ofX which contains N, then 

U is a neighbourhood ofx. 
(d) IfN is a neighbourhood ofx and ifN denotes the set {z E NIN is a neighbour­

hood of z}, then N is a neighbourhood ofx. (The set N is called the interior 
of N.) 

This whole structure is called a topological space. The assignment of a collec­
tion of neighbourhoods satisfying axioms (a)-(d) to each point x E Xis called a 
topology on the set X. (To provide a little motivation for axiom (d) take a point 
x in lErn and let B (for ball) denote the set of points distance less than or equal to 
1 from x. Then B is a neighbourhood of x. The interior of B is simply those 
points distance less than 1 from x (the ball minus its boundary) and is still a 
neighbourhood of x.) 

We can now say precisely what we mean by a continuous function and by a 
homeomorphism. Let X and Y be topological spacest. A functionf:X ---+ Y is 
continuous if for each point x of X and each neighbourhood N off(x) in Y the 
setf -1(N) is a neighbourhood of x in X. A function h:X ---+ Y is called a homeo­
morphism if it is one-one, onto, continuous, and has a continuous inverse. 
When such a function exists, X and Yare called homeomorphic (or topologically 
equivalent) spaces. 

Suddenly things have become very complicated; we need a few examples in 
order to clear the air and help our intuition along. 

Examples. 
1. Any euclidean space with the usual definition of neighbourhood is a topo­
logical space. We shall show later that euclidean spaces of different dimensions 
cannot be homeomorphic. This is a hard problem, but its solution is essential if 
we are to have any confidence that our definition of homeomorphism can 
survive happily alongside our idea of the dimension of aspace. 
2. Let X be a topological space and let Y be a subset of X. We can define a 
topology on Y as folIows. Given a point y E Y take the collection of its neigh­
bourhoods in the topological space X and intersect each of these neighbour-

t So each of the letters X and Y represents a lot of information, namely the complicated structure 
of definition (1.3). 
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hoods with Y. The resulting sets are the neighbourhoods of y in Y. The axioms 
for a topology are easily checked and we say that Y has the subspace topology. 
This is a very useful procedure; it allows us, for example, to consider any sub set 
of a euclidean space as a topological space. In particular, our examples of 
surfaces become topological spaces. 
3. Let C denote the unit circle in the complex plane and [0,1) those real numbers 
which are greater than or equal to ° and less than 1. Give both of these sets the 
subspace topology from the plane and the real line respectively. Defining 
f: [0,1) ~ C by f(x) = e21tix gives an example of a continuous function. Note 
that this function is one-one and onto. Its inverse is not continuous. (Why not?) 
This illustrates very weIl the importance of the condition that the inverse 
function be continuous in the definition of a homeomorphism: we would after 
all be very unhappy if the circle turned out to be homeomorphic to an interval. 
4. Take the situation shown in Fig. 1.8 and consider the sphere and the surface 
of the tetrahedron as subspaces of [3. Check that radial projection TC gives a 
homeomorphism between these two spaces. This type of homeomorphism is 
called a triangulation (of the sphere in this case) and will be the subject of a 
later chapter. 
5. A distance function or metric on a set gives rise to a topology on the set. 
The construction of the neighbourhoods is entirely analogous to the procedure 
in a euclidean space. We illustrate the situation for aspace of functions. Let X 
be the set of all continuous real-valued functions defined on a closed interval I 
of the realline. A function in the set is necessarily bounded and the usual distance 
function on X is defined by 

d(f,g) = ~~~ If(x) - g(x) I· 

Given a function fEX, a subset N of X is a neighbourhood of f if for some 
positive real number e the collection of all functions distance less than or equal 
to e fromflies inside N. 
6. Two different topological spaces may have the same underlying set of points. 
As an example of a rather peculiar topology on the set of real numbers, define a 
sub set of the reals to be a neighbourhood of a particular real number if it 
contains that number and if in addition its complement is finite. This gives a 
topological space very different from (not homeomorphic to) the real line. 
Notice that no distance function on the set of real numbers can give rise to this 
topology. (Why not?) 
7. Let X be a set and for each point x E X define {x} to be a neighbourhood of x. 
So by axiom (c), any subset of X which contains x is a neighbourhood of x. 
Intuitively we think of this topology as making X into a discrete set of points­
we have arranged for each point x to have a neighbourhood that contains no 
other points. With this topology any function with domain X is continuous. 

We have now developed enough machinery to say exactly what we mean by a 
surface, and free ourselves from the straightjacket of having to work inside 
some euclidean space. 
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(1.4) Dermition. A surface is a topological space in wh ich each point has a neigh­
bourhood homeomorphic to the plane, and for which any two distinct points 
possess disjoint neighbourhoods. 

It is worth taking the time to examine this definition in some detail. The require­
ment that each point ofthe space should have a neighbourhood which is homeo­
morphic to the plane fits exacdy our intuitive idea of what a surface should be. 
If we stand in it at some point (imagining a giant version of the surface in 
question) and look at the points very elose to our feet we should be able to 
imagine that we are standing on a plane. The surface of the earth is a good 
example. Unless you belong to the Flat Earth Society you believe it to, be 
(topologically) a sphere, yet locally it looks distincdy planar. Think more 
carefully about this requirement: we ask that some neighbourhood of each 
point of our space be homeomorphic to the plane. We have then to treat this 
neighbourhood as a topological space in its own right. But this presents no 
difficulty; the neighbourhood is after all a subset of the given space and we can 
therefore supply it with the subspace topology. 

The second requirement, that any two distinct points possess disjoint neigh­
bourhoods, is more technical in nature. It is motivated by our experience: all of 
our examples of surfaces have this property; unfortunately it is not automatically 
satisfied by spaces which locally look like the plane. 

We have given the simplest possible definition. If we wish to allow a-s-ufface 
to have an edge or boundary (as in the case ofthe Möbius strip), then we cannot 
expect every point to have a neighbourhood homeomorphic to the plane. We 
must allow in addition points which have neighbourhoods homeomorphic to 

homeomorphism 

homeomorphism 

Figure 1.16 

the upper half-plane (consisting ofthose points ofthe plane whose y-coordinates 
are greater than or equal to zero). All of our examples of surfaces now fit in 
nicely with this definition when they are given the subspace topology from 
euclidean space. Figure 1.16 illustrates the definition for a Möbius strip. 
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1.5 A classification theorem 
At the beginning of Section 1.3 we c1aimed to be geometers at heart, yet here 
we are slowly sinking into amorass of technical detail. To escape (temporarily 
at least; the properties of abstract topological spaces will be examined in more 
detail in the next chapter) we return to our theory of surfaces. 

We shall restrict ourselves to a rather nice c1ass of surfaces, and consider 
only those which have no boundary and which are in some sense c10sed up on 
themselves: in addition we ask that our surfaces be connected, i.e., consist of a 
single piece. The sphere, the torus, and the Klein bottle are the sort of surfaces 
that we have in mind; the cylinder and the Möbius strip are ruled out because 
they have edges. We rule out the whole plane and surfaces such as that repre­
sented in Fig. 1.9 as not being 'c1osed up'. To be precise we are dealing with 
compact, connected surfaces, but the precise definitions of compactness and 
connectedness will have to wait until Chapter 3. 

The remarkable thing is that if we agree to work only with these so-called 
'c1osed' surfaces, then we can say exact1y how many there are, that is, we can 
classify them. Such a c1assification entails making a list of surfaces so that given 
an arbitrary c10sed surface it is homeomorphic to one on the list. In addition, 
the list should not be too long; in other words no two surfaces on our list 
should be homeomorphic. 

We can construct examples of c10sed surfaces as follows. Take the ordinary 
sphere, remove two disjoint discs and then add on a cylinder by identifying its 
two boundary circ1es with the boundaries of the holes in the sphere as in Fig. 
1.17. This process is called 'adding a handle' to the sphere. By repetition we 
obtain a sphere with two, three, or any finite number ofhandles. You should be 
able to convince yourself that a sphere with one handle is nothing more than 
(is homeomorphic to) the torus. This process of adding handles gives half the 
surfaces of our list. 

Sphere with one handle 

Figure 1.17 

The others are unfortunately like the Klein bottle in the sense that they do 
not admit representatives in euclidean three-dimensional space and are there-
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fore more difficult to imagine. Luckily, the construction of models for these 
surfaces is an easy process to describe. Begin with the sphere, remove a single 
disc, and add a Möbius strip in its place. The Möbius strip has after all a single 
circle as boundary, and all that we are asking is that the points of this boundary 
circle be identified with those of the boundary circle of the hole in the sphere. 
One must imagine this identification taking place in some space where there 
is plenty ofroomt (euclidean four-dimensional space will do); as noted above, it 
cannot be realized in three dimensions without having the Möbius strip inter­
sect itself. The resulting closyd surface is called the projective plane. 

For each positive integer n we can form a closed surface by removing n 
disjoint discs from the sphere and replacing each one by a Möbius strip. When 
n = 2, we re ca pt ure the Klein bottle and Fig. 1.18 is an attempt to illustrate 

(a) 

(b) 

(c) 

Figure 1.18 

t In Chapter 4 we shall explain how to glue two topological spaces together in order to form a new 
space, without relying in any way on models of the spaces in [ 3 or [ 4. 
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why this is so. Slicing the usual picture of the Klein bottle in two in the plane of 
the paper. and removing the self intersections of the two pieces, gives the two 
Möbius strips ofFig. 1.18a. Take one ofthese and mark in a strip neighbourhood 
of its boundary (1.18b); this neighbourhood is homeomorphic to a cylinder. 
Remove the cylinder (1.18c), leaving a slightly smaller Möbius strip and remem­
ber that a cylinder is homeomorphic to a sphere with two disjoint discs removed. 
So the usual description of the Klein bottle agrees with our construction when 
n = 2. 

(1.5) Classification theorem. Any closed surface is homeomorphic ei/her to the 
sphere, or to the sphere with a finite number of handles added, or to the sphere 
with afinite number of discs removed and replaced by Möbius strips. No two of 
these surfaces are homeomorphic. 

For example, taking a sphere with one handle, removing a single disc, and 
replacing it by a Möbius strip gives a surface which is homeomorphic to the 
sphere with three disjoint discs removed and replaced by Möbius strips. We 
will prove the classification theorem in Chapter 7. 

(a) Figllre 1.19 (b) 

The sphere with n hartdIes added is called an orientable surface of genus n. We 
call it orientable for the following reason. If we draw a smooth closed curve on 
it, choose tangent and normal vectors at some point (i.e., choose a co ordinate 
system near the point-orten called a local orientation), and then push these 
vectors once round the curve we come back to the same system of vectors 
(Fig. 1.19a). Any surface which contains a Möbius strip, and therefore all those 
on the second half of our list, cannot satisfy this property and is consequently 
called nonorientable. Figure 1.19b shows what happens when we push the 
tangent and normal vectors once round the central circle of the Möbius strip­
the normal vector is reversed. 

The classification of surfaces was initiated, and carried through in the 
orientable case, by Möbius (1790-1868) in a paper which he submitted for 
consideration for the Grand Prix de Mathematiques of the Paris Academy of 
Sciences. He was 71 at the time. The jury did not consider any ofthe manuscripts 
received as being worthy of the prize, and Möbius' work finally appeared as 
just another mathematical paper. 

18 



INTRODUCTION 

1.6 Topological invariants 
We should say at once that we have no hope of classifying all topological 
spaces. However, we would like to develop ways of deciding whether or not two 
concrete spaces, such as two surfaces, are homeomorphic. 

Showing that two spaces are homeomorphic is a geometrical problem, 
involving the construction of a specific homeomorphism between them. The 
techniques used vary with the problem. We have already given an example (at 
least in outline) in showing that the Klein bottle is homeomorphic to the sphere 
with two disjoint discs replaced by Möbius strips. 

Attempting to prove that two spaces are not homeomorphic to one another 
is a problem of an entirely different nature. We cannot possibly examine each 
function between the two spaces individually and check that it is not a homeo­
morphism. Instead we look for 'topological invariants' of spaces: an invariant 
may be a geometrical property of the space, a number like the Euler number 
defined for the space, or an algebraic system such as a group or a ring con­
structed from the space. The important thing is that the invariant be preserved 
by a homeomorphism - hence its name. If we suspect that two spaces are not 
homeomorphic, we may be able to confirm our suspicion by computing some 
suitable invariant and showing that we obtain different answers. We give two 
examples below. 

In Chapter 3 we shall introduce the notion of connectedness: roughly 
speaking, aspace is connected if it is all in one piece. This idea can be made 
quite precise, and it will be no surprise to us to find that the property of being 
connected is preserved ifwe apply a homeomorphism to aspace, i.e., connected­
ness is a topological invariant. The plane !E2 is an example of a connected space; 
so is the line !E 1. However, if we remove the origin from !E1 the space falls into 
two pieces (corresponding to the positive and negative real numbers) and we 
have an example of aspace which is not connected. Suppose now that we have a 
homeomorphism h:!E1 ----+ le. It will induce a homeomorphism from !E1 - {Ö} 
to !E2 - {h(O)}. But !E2 with a single point removed is a connected space (it is all 
in one piece) whereas Ifl - {O} is not connected. We conclude that!E1 and !E2 are 
not homeomorphic. 

As a second example, we consider a construction due to Poincare which will 
be the subject of Chapter 5. The idea is to assign a group to each topological 
space in such a way that homeomorphie spaees have isomorphie groups. If we 
want to distinguish between two spaces, we can try to solve the problem 
algebraically by first computing their groups and then looking to see whether 
or not the groups are isomorphie. If the groups are not isomorphie then the 
spaces are different (not homeomorphic). Of course, we may be unlucky and 
wind up with isomorphie groups, in which case we must look for a more delicate 
invariant to separate the two spaces. 

Consider the two spaces shown in Fig. 1.20. We would not expect them to be 
homeomorphic, after all the annulus has a hole through it and the disc does not. 
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This hole is represented very weIl by the loop IY. of Fig. 1.21. It is the hole which 
prevents us from continuously shrinking IY. to a point without leaving the 
annulus, whereas in a disc any loop can be continuously shrunk to a point. 

Figure 1.20 

Figure 1.21 

Poincare's construction uses loops like IY. to produce a group, the so-called 
fundamental group of the annulus: this group will pick out the fact that the 
annulus has a hole. 

A loop such as IY. will give rise to a non trivial element of the fundamental 
group. Looking again ilt the annulus, the loop ß is for our purposes of hole 
recognition just as good as IY., as it can be continuously deformed into IY. without 
crossing the hole. This suggests that ß should represent the same element of the 
fundamental group as IY.. W orking with loops which begin and end at a particular 
point means that there is a natural way of multiplying loops together. One 
should think of the product IY.. ß of two loops as being the composite loop 
obtained by first going round the loop IY., then going round ß. The loops them­
selves do not form a group under this multiplication, but if we agree to identify 
loops when one can be continuou~ly deformed into the other (without moving 
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their endpoints), then we do get a group from the resulting equivalenee c1asses 
ofloops. 

The above diseussion ean be made quite precise. Mathematieally, a loop in a 
topological spaee X is nothing more than a eontinuous funetion IX: C ~ X, 
where C denotes the unit eirc1e in the eomplex plane, and we say that the loop 
begins and ends at the point p of X if 1X(1) = p. The arrows on the loops in our 
illustrations indicate the direetion of inereasing (), where we parametrize C as 
{ei6 1 0 ~ () ~ 2n}. Reversing an arrow produees a different loop and eorre­
sponds to taking the inverse of the appropriate element in the fundamental 
group. Perhaps the simplest possible loop is the funetion whieh sends all of C 
to the point p, and it is this loop whieh represents the identity elernent of the 
fundamental group. 

The fundamental group of a dise is the trivial group, sinee any loop ean be 
eontinuously shrunk to a point-we leave the teehnicalities of defining a eon­
tinuous deformation to Chapter 5. For the annulus we obtain the infinite 
eyelie group of integers. Loops representing 0, - 1, and + 2 are shown in 
Fig.1.22. 

o -1 +2 

Figure 1.22 

It is not hard to imagine that homeomorphie spaees will have isomorphie 
fundamental groups. After all, if IX: C ~ X is a loop in X, and h: X ~ Y a 
hobeomorphism, then hlX : C ~ Y defines a loop in Y; eontinuous deformations 
also earry over via a homeomorphism. We eonc1ude that the dise and the 
annulus are not homeomorphie. 

Perhaps the best way for us to eomplete our introduetion, and at the same 
time to eapture the flavour of later ehapters, is to list some problems (three 
from geometry, one from algebra) whieh we shall use the fundamental group 
to help solve. 

Classification 0/ sur/aces. No two surfaees on the list given in theorem (1.5) 
have isomorphie fundamental groups, so these surfaees are all topologieally 
distinet. 

Jordan separation theorem. Any simple c10sed eurve in the plane divides the 
plane into two pieees. 
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Brouwer jixed-point theorem. Any continuous function from a disc to itself 
leaves at least one point fixed. 

Nielsen-Schreier theorem. A subgroup of a free group is always free. 

Problems 
1. Prove that v(T) - e(T) = 1 for any tree T. 

2. Even better, show that v(r) - e(r) :::; 1 for any graph r, with equality 
precise1y when r is a tree. 

3. Show that inside any graph we can always find a tree which contains all 
the vertices. 

4. Find a tree in the polyhedron of Fig. 1.3 which contains all the vertices. 
Construct the dual graph rand show that r contains loops. 

5. Having done Problem 4, thicken both T and r in the polyhedron. T is a tree, 
so thickening it gives a disco What do you obtain when you thicken r? 

6. Let P be a regular polyhedron in which each face has p edges and for which 
q faces meet at each vertex. Using Euler's formula prove that 

1 1 1 1 - + - = - +-. 
p q 2 e 

7. Deduce from Problem 6 that there are only five regular polyhedra. 

8. Check that v - e + f = ° for the polyhedron shown in Fig. 1.3. Find a 
polyhedron which can be deformed into a pretzel (see Fig. 1.23c) and calculate 
its Euler number. 

9. Borrow a tennis ball and observe that its surface is marked out as the union 
of two discs which meet along their boundaries. 

10. Find a homeomorphism from the realline to the open interval (0,1). Show 
that any two open intervals are homeomorphic. 
11. Imagine all the spaces shown in Fig. 1.23 to be made of rubber. For each 
pair of spaces X, Y, convince yourse1f that X can be continuously deformed 
into Y. 

(a) 
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x = Cylinder with a puncture Y = Disc with two punctures 

Figure 1.23 



(b) 

(c) 

x = Punctured torus 

x = Pretzel or double 
torus 

INTRODUCTION 

Y = Two cylinders glued together 
over a square patch 

Y = Pretzel with its arms 
'linked' 

12. 'Stereographic projection' 11: from the sphere minus the north pole to the 
plane is shown in Fig. 1.24. W ork out a formula for 11: and check that 11: is a 
homeomorphism . 

• (X)~--~ 
\ '---------- / 

Figure 1.24 

Notice that 11: provides us with a homeomorphism from the sphere with the 
north and south poles removed to the plane minus the origin. 

13. Let x and y be points on the spheie. Find a homeollorphism of the sphere 
with itself which takes x to y. Work the same problem with the sphere replaced 
by the plane and by the torus. 

14. Make a Möbius strip out of a rectangle of paper and cut it along its central 
circle. What is the result? 

15. Cut a Möbius strip along the circle which lies halfway between the boundary 
of the strip and the central circle. Do the same for the circle which lies one-third 
of the way in from the boundary. What are the resulting spaces? 

16. Now take a strip which has one fuH twist in it, cut along its central cirele 
and see what happens. 
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17. Define f:[0,1)--+ C by f(x) = e21tix. Prove that f is one-one, onto, and 
continuous. Find a point XE [0,1) and a neighbourhood N of x in [0,1) such 
that f(N) is not a neighbourhood of f(x) in C. Deduce that f is not a homeo­
morphism. 

18. If you had difficulty with Problem l1(b), make a model of a torus minus a 
disc as follows. Begin with a square whose sides are to be identified in the usual 
way to give a torus (Fig.1.25). Note that the four shaded areas together represent 
a disc in the torus. Cut these areas out of the square, then make the identifica­
tions on the remaining parts of the edges of the square. 

Figure 1.25 

19. Let X be a topological space and let Y be a subset of X. Check that the 
so-called subspace ~opology is indeed a topology on Y. 

20. Prove that the radial projection shown in Fig. 1.8 is a homeomorphism 
from the surface of the tetrahedron to the sphere. (Both spaces are assumed to 
have the subspace topology from 1E3 .) 

21. Let C denote the unit circ1e in the complex plane and D the disc which it 
bounds. Given two points x,y E D - C, find a homeomorphism from D to D 
which interchanges x and y and leaves all the points of C fixed. 
22. With C, D as above, define h : D - C --+ D - C by 

h(O) = ° 
h(r eiß) = r exp [i (0 + 12: r r) ] 

Show that h is a homeomorphism, but that h cannot be extended to a homeo­
morphism from D to D. Draw a picture which shows the effect of h on a diameter 
ofD. 
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23. Using the intuitive notion of connectedness, argue that a circle and a circle 
with aspike attached cannot be homeomorphic (Fig. 1.26.) 

Circle Circle with spike 

Figure 1.26 

24. Let X, Y be the subspaces ofthe plane shown in Fig. 1.27. Under the assump­
tion that any homeomorphism from the annulus to itself must send the points of 
the two boundary circles among themselves,t argue that X and Y cannot be 
homeomorphic. 

Figure 1.27 

25. With X and Y as above, consider the following two subspaces of 1E3 : 

X x [0,1] = {(X,Y,Z) I (X,Y)EX, 0 ~ z ~ I}, 

Y x [0,1] = {(X,y,z) I (X,Y)E Y, 0 ~ z ~ 1}. 

Convince yourself that if these spaces are made of rubber then they can be 
deformed into one another, and hence that they are homeomorphic. 
26. Assuming you have done Problem 14, show that identifying diametrical.1y 
opposite points on one of the boundary circles of the cylinder leads to the 
Möbius strip. 

t This is not easy to verify: for a proof see theorem (5.24). 
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27. Make a model for a Klein bottle as shown in Fig. 1.28. Cut along the line CD, 
then identify the two lines labelIed AB. Inspect the result and deduce that the 
Klein bottle is made up of two Möbius strips which have a common boundary 
circle. 

A .----___ ----, B 

C I--------j D 

A B 

Figure 1.28 
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2. Continuity 

Geometry formerly was the chief borrower from arithmetic 
and algebra, but it has since repaid its obligations with 
abundant usury; and if I were asked to name, in one 
word, the pole star round wh ich the mathematical 
firmament revolves, the central idea which pervades the 
whole corpus of mathematical doctrine, I should point to 
Continuity as contained in our notions of space, and say, 
it is this, it is this! 

J. J. SYLVESTER 

2.1 Open and closed sets 
The definition of a topological space given in Chapter 1 fits quite weIl our 
intuitive idea of what aspace ought to be. Unfortunately, it is not terribly 
convenient to work with, and our first job is to produce an equivalent, more 
manageable, set ofaxioms. 

Let X be a topological space and call a subset 0 of X open if it is a neighbour­
hood of each of its points. Notice that the union of any collection of open sets is 
open by axiom (c) of definition (1.3), and the intersection of any finite number 
of open sets is open by axiom (b). The whole space X is an open set, as is the 
empty set 0. Also, given a neighbourhood N of a point x, axiom (d) teIls us 
that the interior of N is an open set which lies inside N and which contains x. 

In [3 a set is open if each of its points can be surrounded by a ball which lies 
entirely inside the set. For example, the half-space defined by the inequality 
z > 0 is open, as is the set of points whose coordinates satisfy x 2 + y2 + Z2 < 1. 
On the other hand, the half-space defined by z ~ 0 is not open because any 
ball, however smaIl, wh ich surrounds a point of the (x,y) plane must dip down 
into the lower half-space given by z < o. The intersection of an infinite coIlec­
ti on of open sets need not be open, for example if we intersect the sets 

{ex,y,z) I x2 + y2 + Z2 <~} n = 1,2,3, ... 

we obtain the origin in [3, which is not open. 
We shall now try to work in the opposite direction, starting from the idea of 

an open set, then building up a collection of neighbourhoods for each point. 
Suppose then we have a set X together with a nonempty collection of subsets of 
X, which we call open sets, such that any union of open sets is itself open, any 

27 



BASIC TOPOLOGY 

finite intersection of open sets is open, and both the whole set and the empty 
set are open. Given a point x of X, we shall call a sub set N of x a neighbourhood 
of x if we can find an open set 0 such that x E 0 ~ N. 

We claim that this definition of neighbourhood makes X into a topological 
space. Each point hasat least one neighbourhood, namely the whole set X, and 
axioms (a) and (c) ofdefinition (1.3) clearly hold. If Ni' N 2 are neighbourhoods 
of x we can find open sets 0 1, O2 such that XE0 1 ~ Ni and XE02 ~ N 2, 
giving XE 0 1 !l O2 ~ Ni !l N 2' But 0 1 !l O2 is open, therefore Ni !l N 2 is a 
neighbourhood of x, and we have verified axiom (b). Finally, suppose N is a 
neighbourhood of x and let N denote the set of points z such that N is a neigh­
hood of z. Choose an open set 0 such that XE 0 ~ N. Now 0, being open, is a 
neighbourhood of each of its points, so 0 is contained in N. Therefore, N is a 
neighbourhood of x as required for axiom (d). 

Suppose we go full circle. In other words, we start with a collection of so­
called open sets, construct a topological space X using them, then look at the 
open sets ofthis space. Do the two notions of'open' coincide? The answer is yes. 
For if 0 is one ofthe original open sets, then it is by definition a neighbourhood 
of each of its points in X, and therefore an open set of X. Conversely, if U is an 
open set of X it is a neighbourhood of each of its points. So given x E U we 
can find one of the original open sets, say 0x, such that XE OX ~ U. But then 
U = U {Ox I XE U}, and is therefore open in the original sense because any 
union of open sets is open. We leave the reader to check out the other possibility, 
namely, if we begin with a topological space, introduce the notion of an open 
set, then construct a family of neighbourhoods for each point using these open 
sets, the neighbourhoods which result are precisely those of the original space. 

The above discussion means we are justified in rephrasing our definition of a 
topological space in terms of open sets. 

(2.1) Def'mition. A topology on a set X is a nonempty collection of subsets ofX, 
called open sets, such that any union of open sets is open, any finite intersection of 
open sets is open, and both X and the empty set are open. A set together with a 
topology on it is called a topological space. 

This is the definition we shall adopt from now on. 
The open sets of the 'usual' topology on IE" are characterized as follows. A set 

U is open if given x E U we can always find a positive real number e such that 
the ball with centre x and radius e lies entirely in U. Whenever we refer to IEn 

we shall have this topology in mind. 
If we have a topological space X and a subset Y of X, the open sets of the 

subspace or induced topology on Y are obtained simply by intersecting all of 
the open sets of X with Y. In other words, a subset U of Y is open in the subspace 
topology if we can find an open set 0 of X such that U = 0 !l Y. Any subset of 
a euclidean space picks up a topology from the surrounding space in this way. 
Whenever we refer to a subspace Y of a topological space X, we shall mean that 
Y is a subset of X and has the subspace topology. 
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A rather extreme topology is the discrete topology on X. Here every suhset of 
X is an open set. This is the largest possihle topology on a given set ·X. (lf one 
topology contains all the open sets of another, we say it is 'larger' than the other.) 
lf X has the discrete topology we call it a discrete space. For example, ifwe take 
the set of points of IEn which have integer coordinates, and give it the suhspace 
topology, the result is a discrete space. 

A suhset of a topological space is closed if its complement is open. Think of 
suhsets of the plane such as the unit circle, the unit disc (points whose co­
ordinates satisfy x2 + y2 ~ 1), the graph of the function y = eX, or the set of 
points (x,y) such that x ~ y2. All these sets are closed. Still working in 1E2 , 

consider the set A whose points (x,y) satisfy x ~ ° and y > 0. This set A is not 
closed, hecause the x axis lies in its complement, yet any hall with centre on the 
positive part of the x axis must meet A. Notice that A is not open either. So 
sets may he neither open nor closed. They can equally weIl he hoth open and 
closed. For example, take the space X whose points are those points (x,y) of 1E2 

such that f ~ 1 or x ~ -1, and whose topology is that induced from 1E2• The 
suhset of X consisting of those points with positive first coordinate is hoth open 
and closed in X. (Though of course it is not open in 1E2 .) We note that the inter­
section of any family of closed sets is closed, as is the union of any finite family 
of closed sets. To prove these statements one simply applies the Oe Morgan 
formulae. 

We can characterize closed sets very nicely as follows. Let A he a suhset of a 
topological space X and call a point p of X a limit point (or accumulation point) 
of A if every neighhourhood of p contains at least one point of A - {p}. Such a 
point may or may not he in A as the following examples show. 

Examples. 
1. Take X to he the realline ~ (the usual name and notation for 1E1), and let A 
consist ofthe points l/n, n = 1,2, .... Then A has exact1y one limit point, namely 
the origin. 
2. Again with X as the realline, take A = [0,1). Then each point of Ais a limit 
point of A, and in addition 1 is a limit point of A. 
3. Let X he 1E3 and let A consist of those points all of whose coordinates are 
rational. Then every point of 1E3 is a limit point of A. 
4. At the other extreme, let A s;; 1E3 he the set of points which have integer 
coordinates. Then A does not have any limit points. 
5. Take X to he the set of all real numhers with the so called finite-complement 
topology. Here a set is open if its complement is finite or all of X. lf we now take 
A to he an infinite subset of X (say the set of all integers), then every point of X 
is a limit point of A. On the other hand a finite suhset of X has no limit points in 
this topology. 

(2.2) Theorem. A set is closed if and only if it contains a/l its limit points. 

Proo/. If A is closed, its complement X - A is open. Since an open set is a 
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neighbourhood of each of its points, no point of X - A can be a limit point of 
A. Therefore A contains all its limit points. Conversely, suppose A contains all 
its limit points and let x E X - A. Since x is not a limit point of A we can find 
a neighbourhood N of x which does not meet A. So N is inside X - A, showing 
X - A to be a neighbourhood of each of its points and consequently open. 
Therefore A is closed. 

The union of A and all its limit points is called the closure ofA and is written A. 

(2.3) Theorem. The closure of A is the smallest closed set containing A, in other 
words the intersection of all closed sets which contain A. 

Proof. We first observe that Ä is indeed a closed set. For if x E X - Ä, we can 
find an open neighbourhood U of x which does not contain any points of A. 
Since an open set is a neighbourhood of each of its points, U cannot contain any 
of the limit points of A either. Therefore we have an open set U such that 
XE U s; X - Ä. Consequently X - Ä is a neighbourhood of each of its points 
and must be open. Now let B be a closed set wh ich contains A. Then every limit 
point of A is a limit point of Band therefore must lie in B since B is closed. This 
gives Ä s; B. Since Ä is closed, contains A, and is contained in every closed set 
which contains A, it must be the intersection of all such sets. 

(2.4) Corollary. A set is closed if and only if it is equal to its closure. 

A set whose closure is the whole space is said to be dense in the space. This 
is the case in example 3 above. A dense set meets every nonempty open subset 
of the space. 

The interior of a set A, usually written A, is the union of all open sets contained 
in A. One readily checks that a point x lies in the interior of A if and only if A 
is a neighbourhood of x. An open set is its own interior; if we work in 1E2 and 
use D to denote the unit disc consisting of points (x,y) such that x2 + y2 ~ 1, 
the interior of D is D - C, where C stands for the unit circle; the circle C has 
empty interior because the only open set of the plane contained in C is the 
empty set. 

One other useful notion is that of thefrontier of a set. We define the fron tier 
of A to be the intersection of the closure of A with the closure of X - A. An 
equivalent definition is to take those points of X which do not belong to the 
interior of A nor to the interior of X - A. For example, in the plane, the unit 
disc D, its interior D, and the unit circle C all have the same frontier, namely C. 
The frontier of the set of points in 1E3 which have rational coordinates is all of 
1E 3 , so the fron tier of a set can be the whole space. 

Suppose we have a topology on a set X, and a collection ß of open sets such 
that every open set is a union of members of ß. Then ß is called a base for the 
topology and elements of ß are called basic open sets. An equivalent formulation 
is to ask that given a point x E X, and a neighbourhood N of x, there is always 
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an element B of ß such that x E B S; ß. A good example is provided by the 
topology of the realline, where the set of all open intervals is a base. The set of 
open intervals which have rational endpoints is a smaller base. (Notice that 
this second base is countable.) 

It can be useful to describe a topology on a set by specifying a base for the 
topology. For this reason we would like to be able to decide when a given 
collection of subsets of a set X is a base for some topology on X. 

(2.5) Theorem. Let ß be a nonempty collection of subsets of a set X. 1f the inter­
section of any finite number of members of ß is always in ß, and if U ß = X, then 
ß is a base for a topology on X. 

Proof. Take the obvious candidate, namely the collection of all unions of 
members of ß as the open sets, then check the requirements for a topology. 

Problems 
1. Verify each of the following for arbitrary sEbsets A, B of aspace X: 
(a) A u B = Au.8; (b) A (l B S; A (l.8; (c) Ä = A; 
(d) (A u B)O :2 Au B; (e) (A (l B)" = A (l B; (f)(A)O = A. 
Show that equality need not hold in (b) and (d). 

2. Find a family of closed subsets of the realline whose union is not closed. 

3. Specify the interior, closure, and fron tier of each of the following subsets of 
the plane: 
(a) {(x,y) 11 < x 2 + y2 ~ 2}; (b) [2 with both axes removed; 
(c) [2 - {(x, sin(Ilx)) 1 x > O}. 

4. Find all the limit points of the following subsets of the realline: 
(a) {(11m) + (Iln) 1 m,n = I,2, ... }; (b) {(Iln) sin n 1 n = I,2 ... }. 

5. If A is a dense subset of aspace X, and if 0 is open in X, show that 
o S; A (l O. 

6. If Y is a subspace of X, and Z a subspace of Y, prove that Z is a subspace 
ofX. 

7. Suppose Y is a subspace of X. Show that a subset of Y is closed in Y if it 
is the intersection of Y with a closed set in X. If A is a subset of Y, show that we 
get the same answer whether we take the closure of A in Y, or intersect Y with 
the c10sure of A in X. 

8. Let Y be a subspace of X. Given A s; Y, write Ay for the interior of A in Y, 
and Ax for the interior of A in X. Prove that Ax S; Ay, and give an example to 
show the two may not be equal. 

9. Let Y be a subspace of X. If A is open (closed) in Y, and if Y is open (closed) 
in X, show that A is open (c1osed) in X. 
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10. Show that the frontier of a set always contains the frontier of its interior. 
How does the frontier of A u B relate to the fron tiers of A and B? 

11. Let X be the set of real numbers and ß the family of all subsets of the form 
{x I a ~ x < b where a < b}. Prove that ß is a base for a topology on X and 
that in this topology each member of ß is both open and closed. Show that this 
topology does not have a countable base. 

12. Show that if X has a countable base for its topology, then X contains a 
countable den se sub set. Aspace whose topology has a countable base is called 
a second countable space. Aspace which contains a countable dense sub set is 
said to be separable. 

2.2 Continuous functions 
The notion of continuity is particularly easy to formulate in terms of open sets. 
Let X and Y be topological spaces. 

(2.6) Theorem. A function from X to Y is continuous if and only i[ the inverse 
image of each open set ofY is open in X. 

Proof. Recall the definition of continuity given in Chapter 1. A function 
f: X -) Y is continuous if for each point x of X and each neighbourhood N of 
fex) in Y the setf-1(N) is a neighbourhood of x in X. Now iffis continuous 
and if 0 is an open sub set of Y, then 0 is a neighbourhood of each of its points 
and therefore f - 1(0) must be a neighbourhood of each of its points in X. We 
conclude thatf-1(0) is an open set in X. The converse implication is left to 
the reader. 

A continuous function is very often called a map for short. 

(2.7) Theorem. The composition of two maps is a map. 

Proof. Suppose f: X -) Y, g: Y -) Z are continuous; let 0 be an open set in Z 
and notice that (gof)-l(O) =f- 1g- 1(0). Now g-l(O) is open in Y because 9 
is continuous, So.f-1g -1(0) must be open in X by the continuity off. Therefore 
gof is continuous. 

(2.8) Theorem. Suppose f: X -) Y is continuous, and let A ~ X have the subspace 
topology. Then the restrietion fl A: A -) Y is continuous. 

Proof. Let 0 be an open set in Y and notice that (fl A)-l(O) = A nf-1(0). 
Sincefis continuous,f-1(0) is open in X. Therefore (fIA)-l(O) is open in the 
subspace topology on A, and the continuity off I A follows from theorem (2.6). 
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The map from X to X which sends each point x to itself is called the identity 
map oJ X and written Ix. If we restrict Ix to a subspace A of X we obtain the 
inclusion map i: A - X. 

(2'9) Theorem. The Jollowing are equivalent: 
(a) f:X- Y is a map. 
(b) IJ ß is a base Jor the topology oJY, the inverse image oJ every member oJ ß is 

open in X. 
(c) f(Ä) S;;; f(A)Jor any subset A oJX. 
(d) f- l(B) s;;; f- 1(B) Jor any subset B oJY. 
(e) The inverse image oJ each closed set in Y is closed in X. 

Proof. The most efficient way of dealing with this is to verify the five implica­
tions (a) ::::} (b) ::::} (c) ::::} (d) ::::} (e) ::::} (a). We shall deal with two of them and 
leave the other three to the reader. Consider (b) ::::} (c). Let A be a subset of X. 
Certainly every point of J(A) lies in f(A) , therefore we must show that if 
x E A - A, and fex) E f(A), the point f(x) is a limit point of frA). If N is a 
neighbourhood of f(x) in Y we can find a basic open set B in ß such thatf(x) 
E B ~ N. Assuming (b), the set jl (B) is open in X and is therefore a 
neighbourhood of x. But x is a limit point of A, which means that jl (B) 
must contain a point of A. So B, and therefore N, contains a point of f(A) 
as required. To prove (d) ::::} (e) we note that if Bis a closed subset of Y then 
B = B. But if we assurne (d), we have J-1(B) S;;; f- 1 (B) = J-1(B). SO J-1 
(B) is closed in X. 

Example. Let C denote the unit circle in the complex plane, taken with the 
subspace topology, and give the interval [0,1) the induced topology from the 
realline. DefineJ: [0,1) - C by J(x) = e27t;x.1t is easy to see thatJis continuous. 
We can take the set of all open segments of the circle as a base for the topology 
on C. Now if S is such a segment, and if S does not contain the complex number 1, 
then J -l(S) is just an open interval of the form (a,b) where ° < a < b < 1. SO 
J- 1(S) is open in [0,1). If S does happen to contain 1 (as in Fig. 2.1) then 

b 
) f 

Figure 2.1 

J- 1(S) has the form [O,a) u (b,l) where ° < a < b < 1. This is open in [0,1) 
because it is the intersection of the open set ( -l,a) u (b,l) of the realline with 
[0,1). Part (b) oftheorem (2.9) now establishes the continuity off Our function 
is clearly one-one and onto. However, its inverse is not continuous. To see 
this we need only produce an open set 0 of [0,1) such that (f-1)-1(0) =f(O) 
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is not open in C. Take 0 to be the interval [O,t); this is open in [0,1), but its 
image under the exponential map consists of those complex numbers z in C 
for which ° ::::; arg z < n, and this set is not open in C. 

A homeomorphism h: X ---+ Y is a function which is continuous, one-one, and 
onto, and which has continuous inverse. From theorem (2.6) we see that a set 0 
is open in X if and only if h( 0) is open in Y. Therefore, hinduces a one-one onto 
correspondence between the topologies of X and Y, justifying our assertion 
that X and Y should be thought of as the same topological space. 

Example. Let sn denote the n-dimensional sphere whose points are those of 
IEn + 1 which have distance 1 from the origin, taken with the subspace topology. 
We claim that removing a single point from sn gives aspace homeomorphic to 
IEn. Which point we remove is irrelevant because we can rotate any point of 
S" into any other; for convenience we choose to remove the point p = (0, ... ,0,1). 
Now the set of points of [E"+ 1 which have zero as their final coordinate, when 
given the induced topology, is clearly homeomorphic to IEn• We define a function 
h : sn - {p} ---+ IE", called stereographie projection, as follows. If X E sn - {p}, 
then h(x) is the point of intersection of IE" and the straight line determined by 
x and p. (For a picture when n = 2 see Fig. 1.24.) 

Clearly h is one-one and onto. If 0 is an open set in IEn, we form a new set 
U in IE" + 1 whose points are those which lie on the half lines which start at p 
and pass through points of 0, except the point p itself which we rule out. One 
readily checks that U is open in IE" + 1. But h - 1(0) is precisely the intersection 
of U with S" - {p}, and therefore h- 1(0) is open in sn - {p}. This establishes 
the continuity of h, and a precisely similar argument deals with h - 1. Therefore 
h is a homeomorphism. 

We end this section with a couple of results which will be needed in the 
chapter on surfaces. By a disc we shall mean any space homeomorphic to the 
closed unit disc D in 1E2• As usual, C stands for the unit circle. If A is a disc, and 
if h : A ---+ D is a homeomorphism, then h - 1 (C) is called the boundary of A and is 
written cA. It is intuitively obvious that this definition of boundary is inde­
pendent of the choice of the homeomorphism h. We shall verify this fact 
rigorously in theorem (5.24) by showing that any homeomorphism from D to 
itse1f must send C to C. 

(2.10) Lemma. Any homeomorphism Irom the boundary 01 a disc to itself can be 
extended to a homeomorphism of the whole disco 

Proof. Let A be a disc and choose a homeomorphism h : A ---+ D. GiveQ a homeo­
morphism g: cA ---+ cA, we can easily extend hg h -1: C ---+ C to a homeo­
morphism of all of D as follows. Send ° to 0, and if x E D - {O} send x to the 
point 11 x 11 hg h- 1 (x/li x 11). In other words extend conically. If we call this 
extension!, then h- 1 fh extends g to a homeomorphism ofall of Aas required. 
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(2.11) Lemma. Let A and B be discs which intersect along their boundaries in an 
arc. Then A u B is a disco 

Proo/. Let y denote the are A (\ B, and use (X,ß for the eomplementary ares in 
the boundaries of A and B (Fig: 2.2). We eonstruet a homeomorphism from 

p 

figure 2.2 

A u B to D, with the aid of lemma (2.10), as follows. The y axis in the plane 
divides up D in a particularly nice way, as the union of two discs D 1 and D 2• 

We label the three arcs which together make up the boundaries of D1 and D 2 

as (x' , ß', y' as shown in Fig. 2.2. Both (X and (x' are hömeomorphic to the c10sed 
unit interval [0,1], so we can find a homeomorphism from (X to (x'. We first 
extend this over y, to give a homeomorphism from (X u y to (x' u y' (this much 
is easy); then over A to give a homeomorphism from A to DI which takes y to 
1", using lemma (2.10). Finally, we extend our homeomorphism over ß, so that 
ß goes to ß', using our common sense, then over B by means of lemma (2.10) 
again. The result is a homeomorphism from A u B to DI U D 2 = D. Therefore 
A u B is a disco 

Problems 
13. Hf : IR ~ IR is a map (i.e., a eontinuous function), show that the set of points 
which are left fixed by f is a c10sed sub set of IR. Hg is a continuous real-valued 
function on X show that the set {x I g(x) = O} is c1osed. 

14. Prove that the function h(x) = eX/(l + e) is a homeomorphism from the 
realline to the open interval (0,1). 

15. Let f: ,e ~ [1 be a map and define its graph rj : [1 ~ [2 by rj(x) = 
(x,f(x». Show that r j is continuous and that its image (taken with the topology 
induced from [2) is homeomorphie to [1. 

16. What topology must X have if every real-valued funetion defined on X is 
eontinuous? 

17. Let X denote the set ofall real numbers with the finite-eomplement topology, 
and define f: [1 ~ X by f(x) = X . Show that f is eontinuous, but is not a 
homeomorphism. 
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18. Suppose X = Al U A 2 U ... , where An s;:;; An + 1 for each n. Iff:X --+ Y is a 
function such that, for each n, f I An : An --+ Y is continuous with respect to the 
induced topology on Am show that f is itself continuous. 

19. The characteristic function of a sub set A of aspace X is the real-valued 
function on X which assigns the value 1 to points of A and 0 to all other points. 
Describe the fron tier of A in terms of this function. 

20. An open map is one which sends open sets to open sets; a closed map takes 
closed sets to closed sets. Which of the following maps are open or closed? 

(a) The exponential map x f-t eix from the realline to the circle. 
(b) The folding mapf: le --+ [2 given by f(x,y) = (x, I y I). 
(c) The map which winds the plane three times on itself given, in terms of 

complex numbers, by z f-t Z3. 

21. Show that the unit ball in [n (the set of points whose coordinates satisfy 
xi + ... + x; ~ 1) and the unit cube (points whose coordinates satisfy 
I Xi I ~ 1, 1 ~ i ~ n) are homeomorphic if they are both given the subspace 
topology from [no 

2.3 A space-filling curve 
At the end of the last century Guiseppe Peano made a surprising, and at first 
sight, paradoxical, discovery. He pointed out the existence of a continuous 
function defined on a closed interval of the real line which maps the interval 
onto a two-dimensional region in the plane, say onto a square or triangle. Such 
a function is called a Peano curve or space-jilling curve. One thinks ofthe image 
of the interval as a curve which goes through every single point of the two­
dimensional region in question. 

The existence of space-filling curves shows that a great deal of care is necessary 
when defining the dimension of aspace. Taking the dimension of X to be the 
least number of continuous parameters needed to specify each point of X is no 
good. Peano's example shows that the square has dimension 1 under this 
definition. For abrief discussion of dimension we refer the reader to Chapter 9. 

There are many versions of Peano's construction. Here is a simple one 
which has an equilateral triangle as image. As we might guess, our space-filling 
curve will be the limit of a sequence of simpler curves which fill out more and 
more ofthe triangle as we go along the sequence. Let Ll be an equilateral triangle 
in the plane whose sides have length one half, and construct a sequence of con­
tinuous functions In: [0,1] --+ Ll as folIows. The first three functions are ade­
quately described by Fig. 2.3, and further members ofthe sequence are obtained 
by iterating the procedure shown there. At any particular stage Ll is divided 
into a number of congruent triangles, and the part of the curve inside each 
triangle looks precisely like the image off1 andjoins two vertices ofthe triangle 
by a broken line which passes through its centre of gravity. To pass to the next 
stage we subdivide each triangle into four smaller congruent triangles and insert 
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the more complicated curve which is shown as the image off2' As we keep sub­
dividing, the image off" fills out more and more of Il. 

Given two points x and y of 1E2, we shall use 11 x - yll to denote the 
distance between them. Suppose n ~ m, then given t E [0,1] we can find a 
triangle which contains both fm(t) and fn(t) and whose sides have length I/2m• 

Therefore Ilfm(t) - fn(t) 11 :::;; I/2m for every value of t in [0,1], which proves 
that our sequence {f,,} is uniformly convergent. Let f : [0,1] ~ Il denote the 
limit function. Since eachf" is continuous, so isf 

h ([0,1]) 

Figure 2.3 

We are left to show that the image offreally is all of Il. First note that, for 
any n, the image off" comes within 1/2n of every point of Il. Suppose we are 
given a point x of Il together with a neighbourhood U of x in 1E2• Choose N large 
enough so that the disc centre x, radius 1/2N - 1, lies inside U, and choose a 
point to from [0,1] such that 11 x - fN(tO)ll :::;; 1/2N. Since IlfN(t) - f(t) 11 :::;; 1/2N 

for every t in [0,1], the triangle inequality gives 11 x -.f(to}ll :::;; 1/2N - 1. There­
foref(to) must lie inside U. This argument shows every point of Il to be a limit 
point of the set f([O,l J). But, as we shall see in the next chapter (theorems (3.4) 
and (3.9)), the image of a continuous function from [0,1] to 1E2 must be a closed 
subset of 1E2, and must therefore contain all its limit points. We conclude that 
the image of our functionfis all of Il. 
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Problems 
22. Find a Peano curve which fills out the unit square in le. 

23. Find an onto, continuous function from [O,lJ to S2. 

24. Can a space-filling curve fin out an of the plane? 

25. Can a space-filling curve fill out an of the unit cube in 1E3? 

26. Do you think that a Peano curve can be one-one? (See theorem (3.7).) 

2.4 The Tietze extension theorem 
Let X be a topological space and let A be a subspace of X. Given a real-valued 
continuous function defined on A, it is natural to ask whether or not we can 
always extend it to an of X. In other words, can we find a real-valued continuous 
function on X whose restriction to A is the given function? The ans wer is, in 
general, no. For example, let X = [O,lJ, A = (0,1), and definef:(O,l)- 1E 1 by 

x 
f(x) = log 1 _ x 

Then f is a homeomorphism from (0,1) to the realline, but f cannot be extended 
to the c10sed unit interval because any continuous function defined on [0,1 J 
must be bounded. The object of this section is to describe a particular situation 
where we can always extend continuous functions. 

(2.12) Definition. A metric or distance function on a set X is a real-valued function 
d defined on the cartesian product X x X such that for all x,y,z EX: 
(a) d(x,y) ~ ° with equality ifJx = y; 
(b) d(x,y) = d(y,x); 
(c) d(x,y) + d(y,z) ~ d(x,z). 
A set together with a metric on it is called a metric space. 

The idea of a metric space is very useful in analysis and the reader may wen 
be familiar with several examples. Any euclidean space, with the usual distance 
between points, is a metric space, as is the set of an real-valued continuous 
functions defined on [0,1] with the distance between two functions defined by 

d(f,g) = sup If(t) - g(t) I. 
rE [0.1] 

Any subset of a metric space inherits ametrie from the whole space, so a surface 
in 1E3 is ametrie space. 

A metric on a set gives rise to a topology on the set as fonows. Let d be a 
metric on the set X. Given x E X, the set {y E X I d(x,y)} ~ c} is called the ball 
ofradius c, or c-ball, centred at the point x, and is denoted by B(x,c). We define 
a subset 0 of X to be open if given XE 0 we can find a positive real number c 
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such that B(x,G) is contained in O. The axioms for a topology are easily checked. 
Note that different metrics on a set may give the same topology. For 

ex am pie, we can make the underlying set of points of euclidean n-space into a 
metric space in three different ways as folIows. Write x = (X l ,X2'''' ,xn) for a 
typical point of IEn and define: 

(a) dt(x,y) = [(Xl - Yl)2 + .,. +(xn - Yn)2]t; 

(b) d2(x,y) = max 1 Xi - Yi 1 ; 
1 ~ i ~ n 

(c) d3(x,y) = 1 Xl - Yl 1 + .... + 1 Xn - Yn I· 

Figure 2.4 shows the ball ofradius 1, cent red at the origin, for each ofthese three 
metrics when n = 2. To see that dl and d2 give rise to the same topology, we 
note that inside any disc we can find a square, and conversely inside a square 

1 1 

Figure 2.4 

we can find a disco So d l and d2 determine the same open sets. The same remarks 
hold ifwe replace the disc or square by the diamond shape ofmetric d3 • Therefore 
all three of these metrics give rise to the usual topology on le. We leave the 
reader to work out the general case. 

Given two distinct points in a metric space, we can always find disjoint open 
sets containing them. For if d(x,y) = b > 0, set U = {z E X 1 d(x,z) < b/2} and 
V = {z E XI d(y,z)} < b/2. Then both U and Vare open sets (they are in fact the 
interiors of B(x,b/2) and B(y,b/2) respectively), they are disjoint, and of course 
X lies in U and Y lies in V. The set U is usually called the open ball with centre X 

and radius b/2. A topological space with the property that two distinct points 
can always be surrounded by disjoint open sets is called a HausdoriJ space. Not 
every topological space is Hausdorff; for example, if we give the set of all real 
numbers the finite-complement topology, then any two nonempty open sets 
overlap. 

If d is a metric on X, and if A is a subset of X, the distance d(x,A) of the point 
X from A is defined to be the infimum of the numbers d(x,a) where a E A. 

(2.13) Lemma. The real-valuedfunction on X defined by x r. d(x,A) is continuous. 

Proof. Let X E X and let N be a neighbourhood of d(x,A) on the real line. 
Choose G > 0 small enough so that the interval (d(x,A) - G, d(x,A) + G) lies 
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inside N. Let U denote the open ball centre x, radius c/2, and choose a point 
a E A such that d(x,a) < d(x,A) + c/2. If z E U we have 

d(z,A) ~ d(z,a) ~ d(z,x) + d(x,a) < d(x,A) + c 

By reversing the roles of x and z we also have d(x,A) < d(z,A) + c. Therefore 
U is mapped inside (d(x,A) - c, d(x,A) + c), and hence inside N, by our function, 
showing that the inverse image of N is a neighbourhood of x in X as required. 

(2.14) Lemma. If A,B are disjoint closed subsets of ametrie space X there is a 
continuous real-L"aluedfunction on X which takes the value 1 on points of A, -Ion 
points ofB, and ralues strictly between ± 1 on points ofX - (A u B). 

Proof. Since A and Bare both closed, and are disjoint, the expression d(x,A) + 
d(x,B) can never be zero (see Problem 27). Therefore we can define a real-valued 
functionf on X by 

d(x,B) - d(x,A) 
f(x) = d(x,A) + d(x,B) 

Clearly, f takes on the required values, and its continuity follows easily from 
lemma (2.13). 

(2.15) Tietze extension theorem. Any real-valued continuousfunction defined on a 
closed subset of a metric space can be extended over the whole space. 

Proof. Let X be a metric space, C a closed subset, and f: C -+ le a map. To 
begin with we shall ass urne thatfis bounded; say If(x) I ~ M for all x in C. 

Let Al consist of those points of C for whichf(x) ~ M/3, and BI those for 
whichf(x) ~ -M/3. Then Al and BI are obviously disjoint, and they are both 
closed subsets of X. For example, Al is the inverse image of the closed subset 
[M /3, :x;) of [EI, and is therefore closed in C by the continuity of f But C is 
closed in X, and therefore Al must be closed in X. A similar argument works for 
BI' By lemma (2.14) we can find a map gl:X -+ [ -M/3,M/3] which takes the 
value M/3 on Al' - M/3 on BI' and which takes values in (- M/3,M/3) on 
X - (Al U BI)' Notice that If(x) - gl(X) I ~ 2M/3 on C. 

Now consider the func.tionf(x) - gl(X) and let A2 consist ofthose points of 
C for which f(x) - gl(X) ~ 2M/9, and B2 those points for which f(x) -
gl(X) ~ -2M/9. We apply lemma (2.14) a second time to find a map 
g2: X -+ [- 2M/9,2M/9] which takes the value 2M/9 on A 2, - 2M/9 on B2, 
and values in (- 2M/9,2M/9) on the remaining points of X. If we compute 
f(x) - gl(X) - g2(X), we see that If(x) - gl(X) - g2(X) I < 4M/9 on C. 

By repeating this process we can construct a sequence of maps gn: X -+ 

[_2n - 1M/3", 2"-lM/3"] which satisfy: 

(a) If(x) - gl(X) - ... - gn(x) I ~ 2nM/3" on C; and 

(b) Ign(x) I < 2n- IM/3n on X - C. 
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00 

The series L gn(x) converges uniformlyon X (by the Weierstrass M-test), 
n = 1 

so it has a well-defined sum g(x) which is continuous. Also,f and g agree on C 
by (a). Therefore g extendsfto all of X. We note, for use in the unbounded case 
below, that I g(x) I is bounded by M because 

00 00 

Ig(x) I :::; L I gn(x) I :::; M L 2n- 1/3n = M 
n = 1 n = 1 

and I g(x) I is strict1y less than M on X - C by (b). 
If the given map f is not bounded, choose a homeomorphism h from the real 

line to the interval (-1,1) and consider the composition hof. This is bounded, 
and by the above argument we can extend it to a continuous real-valued 
function g on X, all of whose values lie strict1y between -1 and 1. So the 
composition h- 1 0g is well defined, and by construction it extends f over X. 
This completes the proof. 

We shall make use of the Tietze theorem in Section 5.6. 

Problems 
27. Show d(x,A) = 0 iff xis a point of Ä. 

28. If A,B are disjoint c10sed sub sets of ametrie space, find disjoint open sets 
U, V such that A s;; U and B s;; V. 

29. Show one can define a distance function on an arbitrary set X by d(x,y) = 1 
if x =1= y and d(x,x) = O. What topology does d give to X? 

30. Show that every c10sed sub set of ametrie space is the intersection of a 
countable number of open sets. 

31. If A,B are subsets of ametrie space, their distance apart d(A,B) is the infi.mum 
of the numbers d(x,y) where x E A and y E B. Find two disjoint c10sed subsets of 
the plane which are zero distance apart. Thediameter of A is the supremum of 
the numbers d(x,y) where x,y E A. Check that both of the c10sed sets which you 
have just found have infinite diameter. 

32. If A is a c10sed subset of a metric space X, show that any map f : A _ [Eil 

can be extended over X. 

33. Find a map from [Ei - {O} to [Ei which cannot be extendeo over [Ei. 

34. Let f: C - C be the identity map of the unit circ1e in the plane. Extend f to 
a map from [E2 - {O} to C. Would you expect to be able to extendf over all of 
[E2? (For a precise solution to this latter problem see Section 5.5.) 

35. Given a map f : X - [En + 1 - {O} find a map g : X _ sn which agrees with 
fon the setf-l(sn). 
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36. If Xis ametrie space and A closed in X, show that a mapf:A~ sn can 
always be extended over a neighbourhood of A, in other words over a sub set 
of X which is a neighbourhood of each point of A. (Think of sn as a subspace of 
IEn + 1 and extendfto a map of X into IEn + 1. Now use Problem 35.) 
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3. Compactness and 
Connectedness 

3.1 Closed bounded subsets of [n 

Those subsets of a euclidean space [n which are both c10sed and boundedt will 
be of special importance to uso As examples we mention the surfaces described 
in Chapter 1 and the finite simplicial complexes which we shall construct in 
Chapter 6 in order to triangulate spaces. We shall show that one can characterize 
these subsets by a purely topological property, that is to say a property which 
involves only the topological structure of [n and makes no mention of the idea 
of distance. This property, when formulated for topological spaces in general, 
is called 'compactness'. 

Before giving more details it is convenient to introduce some terminology. 
Let X be a topological space and let fF be a family of open subsets of X whose 
union is all of X. Such a family will be called an open cover of X. If fF' is a sub­
family of fF and if U fF' = X, then fF' is called a subcover of fF. We give two 
examples. Let X be the plane and for fF take the collection of all open balls of 
radius 1 whose centres have integer coordinates. These balls form an open 
cover ofthe plane. Notice that ifwe remove any ball B from fF then the resulting 
family ofballs fails to cover the plane, since its union does not contain the centre 
of B. Therefore fF has no proper subcover. For our second example we let X 
be the c10sed unit interval [0,1] with its usual topology induced from the real 
line, and take the following family of open subsets of [0,1] for fF: 

[0, 1/10); (1/3, 1]; the sets (l/(n + 2), l/n) where nE 7L and n ;;:,: 2. 

This open cover is infinite; however, we obviously do not need all ofthese sets 
in order to cover the unit interval. We can manage with only a finite number of 
them, namely 

[0, 1/10); (1/3, 1]; and (1/(n + 2), 1/n) for 2 ~ n ~ 9. 

So this open cover of [0,1] contains a finite subcover. In fact, as we shall see 
in the next section, any open cover of [0,1] contains a finite subcover. It is this 
property which picks out the c10sed bounded subsets of [n. 

t Bounded means contained in some ball which has centre the origin and finite radius. 

43 



BASIC TOPOLOGY 

(3.1) Theorem. A subset X of IEn is closed and bounded if and only if every open 
cover ofX (with the inducedtopology) has afinite subcover. 

Motivated by this result we make the following definition. 

(3.2) Definition. A topological space X is compact if every open cover ofX has a 
finite subcover. 

With this terminology, theorem (3.1) can be restated as folIows. The closed 
bounded subsets of a euclidean space are precisely those sub sets which (when given 
the induced topology) are compact. 

The proof of theorem (3.1) will occupy us in one way or another for the next 
three sections. At the same time we shall build up a useful body of results on 
c0mpact spaces. These spaces have some very nice properties; we state two of 
them now, though their proofs will have to wait untillater sections: 

(a) A continuous real-valued function defined on a compact space is bounded 
and attains its bounds. 

(b) An infinite set ofpoints in a compact space must have a limit point. 

We close this seetion by noting that by its very definition compactness is a 
topological property of aspace. That is to say, if Xis compact and if X is homeo­
morphic to Y, then Y will be compact. 

3.2 The Heine-Borel theorem 
In this seetion we give two proofs of the celebrated Heine-Borel theorem. We 
include two proofs because both are interesting (the techniques involved are 
completely different from one another), and because the theorem lies at the 
heart of theorem (3.1). 

(3.3) The Heine-Borel theorem. A closed interval of the realline is compact. 

'Creeping along' proo/ 0/ theorem (3.3). Let [a, b] be a closed interval of the 
realline, with the induced topology, and let §l be an open cover of [a,b J. The 
idea is to 'creep along' the interval from a towards band see how far we can 
get without violating the condition that our path be contained in the union of a 
finite number ofmembers of §l. The theorem says that we can get all the way to b. 

We define a sub set X of [a,b] by 

X = {x E [a,b] I [a,x] is contained in the union of a finite subfamily of §l}. 

Then X is nonempty (a E X) and is bounded above (by b). So X has a supremum 
or least upper bound, say s. We claim that sEXt and that s = b. For let 0 
be the member of §l which contains s. Since 0 is open we can choose B > 0 small 
enough that (s - B, s] <;;; 0, and if s is less than b we can assume (s - B, S + B) <;;; O. 

t This needs proof: the supremum of a set of real numbers need not lie in the set. 

44 



COMPACTNESS AND CONNECTEDNESS 

Now s is the least upper bound of X, consequently there are points of X arbi­
trarily elose to s. Also, X has the property that if x E X and if a ~ y ~ x then 
Y E X. Therefore we may assume s - 8/2 E X. By the definition of X, the interval 
[a, s - 8/2] is contained in the union of some finite subfamily ~' of ~. Adding 
o to ~' we obtain a finite collection of members of ~ whose union certainly 
contains [a,s]. Therefore SEX. If s is less than b then U ~'u 0 contains 
[a,s + 8/2], giving s +8/2 E X and contradicting the fact that s is an upper 
bound for X. Therefore s = band all of [a,b] is contained in U~' u O. This 
completes the proof. 

'Subdivision' proof oftheorem (3.3). Our second proofis less direct: we shall 
argue by contradiction. However, it is also less 'one-dimensional'. The same idea 
can be used to show, for example, that a square in the plane is a compact space. 

Suppose then that theorem (3.3) is false. Let ~ be an open cover of [a,b] 
which does not contain a finite subcover. Set 11 = [a,b]. Subdivide [a,b] into 
two elosed subintervals of equallength Ca, -!(a + b)] and [-!(a + b), b]. At least 
one of these must have the property that it is not contained in the union of any 
finite subfamily of ~.t Select one of [a, !(a + b)], [-!(a + b), b] which has this 
property and call it 12, Now repeat the process, bisecting 12 and selecting one 
half, called 13 , which is not contained in the union of any finite subfamily of ~. 
Continuing in this way we obtain a nested sequence of elosed intervals 

11 :2 12 :2 13 :2 '" 

whose lengths tend to zero as we proceed along the sequence. 
00 

We claim that n In consists of precisely one point. In our first proof of 
n = 1 

theorem (3.3.) we used the so-called completeness property of the real numbers 
(in the form that a nonempty set of real numbers which is bounded above has a 
least upper bound) and it is at this point that we use it here. To show that the 
intersection of our intervals is nonempty we let Xn denote the left-hand end 
point of the interval In and we consider the sequence {xn}. This sequence is 
monotonic increasing and bounded above. Therefore if p denotes the supremum 
of the X n we know that {xn} converges to p. It is now elementary to check that 
PEIn for all n. Also, since the lengths ofthe In tend to zero as n tends to infinity, 

00 

it should be clear that n In cannot contain more than one point. (The reader 
n=1 

should make sure that he can supply the details for these statements.) Therefore 
00 

n 01 In = {p}. 

N ow p belongs to [a,b] and so lies in some open set 0 of ~. We choose 
8> 0 small enough that (p - 8,p + 8) n [a,b] s; 0, and we choose a positive 
integer n large enough that length (In) < 8. Since pE IR' we see that In is com-

t For if [a, !(a + b)] s;;. U ffi'1 and [!(a + b), b] S;; U ''''2 where ffi'1 and ffi'2 are both finite sub­
families of ffi', then ffi' I U ffi' 2 is a finite subcover of ffi', contradicting our assumption. 
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pletely contained in O. But In was selected fO that it did not He in the union of 
any finite subfamily of fF, and here we have In inside a single member of fF! 
This contradiction completes the argument. 

As a corollary of theorem (3.3) we can prove that a continuous real-valued 
function defined on a closed interval is bounded. (We shall prove this result for a 
general compact space in Section 3.3.) Suppose!: [a,b J ~ IR is continuous. 
Given XE [a,b J we can find a neighbourhood O(x) of x in [a,b J such that 
I!(x') - !(x) I < 1 for all points x' E O(x). The family of all such O(x) forms an 
open cover of [a,b J. Therefore by the Heine-Borel theorem we can find a finite 
subfamily, say O(xd, ... ,O(Xk)' such that O(X1) U ... u O(Xk) = [a,bJ. Now if x 
lies in O(x;) then I!(x) I ::;; 1!(Xi) I + 1. So for any point x of [a,b J we have 

I!(x) I ::;; max{ 1!(X1) 1, .. ·, 1!(Xk) I} + 1 

We mentioned earlier that the subdivision argument generalizes to higher 
dimensions. Consider for example the square 

S = {(x,y) I ° ::;; x ::;; 1, 0::;; y ::;; 1} 

with its usual topology induced from the plane. To show that S is compact entails 
proving that any family of open subsets of S whose union is all of S contains a 
finite subfamily whose union is also all of S. The idea, to assume the existence 
of a family fF for which this is false and to work by contradiction, is exactly as 
before. In the subdivisionprocess we subdivide Sinto four smaller squares by 
joining the midpoints of its opposite sides. We select one of the four which is 
not contained in the union of any finite subfamily of fF and call it S l' Repeating 
this process produces a nested sequence of squares 

S 2 Sl 2 S2 2 ... 

whose diameters tend to zero as we move along the sequence. It is an interesting 
00 

exercise to prove that n Sn is exactly one point. Having done this the 
n = 1 

remainder of the argument follows as before. The details are left to the reader. 
We shall give a different proof of the compactness of S in Section 3.4. The 

idea is quite simple: we shall define the product of two topological spaces and 
show that the product of compact spaces is compact. Since S is the product 
space [O,lJ x [O,lJ, it will follow that S is compact. 

Problems 
1. Find an open cover of [1 which does not contain a finite subcover. Do the 
same for [0,1) and (0,1). 
2. Let S 2 Sl 2 S2 2 ... be a nested sequence of squares in the plane whose 
diameters tend to zero as we proceed along the sequence. Prove that the inter­
seetion of all these squares consists of exactly one point. 

46 



COMPACTNESS AND CONNECTEDNESS 

3. Use the Heine-Borel theorem to show that an infinite subset of a c10sed 
interval must have a limit point. 

4. Rephrase the definition of compactness in terms of c10sed sets. 

3.3 Properties of compact spaces 
We noted earlier that compactness is a topological property of aspace, that is 
to say it is preserved by a homeomorphism. Even more, it is preserved by any 
onto continuous function. 

(3.4) Theorem. The continuous image of a compact space is compact. 

Proof. If f: X ~ Y is an onto continuous function, and if X is compact, then 
we must show Y compact. Let ff be an open cover of Y. If ° E ff thenf - 1(0) is 
an open subset of X by the continuity off, and so the family 

rg= U- 1(0)IOEff} 

is an open cover of X. Since X is compact, ~ contains a finite subcover, say 
X = f- 1(01) u ... u f- 1(Ok)' Now fis an onto function, thereforef(f-1(Oi)) = 
Oi for 1 ~ i ~ k and we have Y = 0 1 U O2 U ... U 0k' These open sets °1,°2 , 

... , 0k are therefore a finite subcover of ff. 

A subset of C of a topological space X is called a compact sub set of X if C 
with the induced topology from X is a compact space. Remember that a subset 
U of C is open in the induced topology if and only if U = V (') C for some 
open set V of X. Therefore C is a compact sub set of X if and only if every family 
of open subsets of X whose union contains C has a finite subfamily whose 
union also contains C. 

(3.5) Theorem. A closed subset of a compact space is compact. 

Proof. Let X be a compact space, C a c10sed subset of X, and ff a family of 
open subsets of X such that C ~ U ff. If we add the open set X - C to ff we 
obtain an open cover of X. Using the compactness of X we know that this open 
cover has a finite subcover. Therefore we can find °1,°2 , ••• , 0k E ff such that 
0 1 u O2 U ... U 0k U (X - C) = X. This gives C ~ 0 1 U O2 U ... U 0k' and 
the sets °1"", 0k provide the required finite subfamily of ff. 

(3.6) Theorem. If A is a compact subset of a Hausdorff space X, and if 
x E X - A, then there ex ist disjoint neighbourhoods of x and A. Therefore a 
compact subset of a Hausdorff space is closed. 

Proof.Let z be a point of A. Since X is Hausdorff, we can find disjoint open sets 
U z and v" such that x E U z and Z E v", We shall vary z in A and the notation is 
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chosen to emphasize the dependence of U z and v" on z; remember x is a fixed 
point of X - A. Varying z throughout A produces a family of open sets 
{v"I z E A} whose union contains A. But A is compact, so A s;;; v,,1 U ... u VZk 

for some finite collection of points Zl' Z2"'" Zk E A. Let V = v,,1 U ••• u VZk• 

Since v", is disjoint from the open neighbourhood U z, of x, V is disjoint from 
the intersection U = UZt n ... n UZk' The sets U, V are disjoint open neigh­
bourhoods of x and A. 

We have seen in Chapter 2 that a one-one onto continuous function need 
not have a continuous inverse, and so it need not be a homeomorphism. 
However, if the function goes from a compact space to a HausdortT space then 
we can use the preceding results to check that its inverse is continuous. 

(3.7) Theorem. A one-one, onto, and continuous function from a compact space 
X to a HausdorfJ space Y is a homeomorphism. 

Proof. Let f: X ~ Y be the function and let C be a c10sed subset of X. Then 
C is compact (theorem 3.5). Therefore f(C) is compact (theorem 3.4) and 
consequently c10sed in Y (theorem 3.6). So f takes c10sed sets to c10sed sets, 
which proves that f - 1 is continuous. 

Our next result gives us a good feeling for the type of spaces that can be 
compact. It says that if we have an infinite number of points in a compact 
space, then the points must crowd together somewhere; in more formal 
language they must have a limit point. 

(3.8) Bolzano-Weierstrass property. An infinite subset of a compact space must 
have a limit point. 

Proof. Let X be a compact space and let S be a subset of X which has no limit 
point. We shall show that S is finite. Given x E X we can find an open neigh­
bourhood O(x) of x such that 

{
cf> ifx~ S 

O(x) n S = {x} if XE S, 

since otherwise x would be a limit point of S. By the compactness of X the open 
cover {O(x) I x E X} has a finite subcover. But each set O(x) contains at most eine 
point of Sand therefore S must be finite. 

The Bolzano-Weierstrass propery tells us, for example, that a compact sub set 
of a euclidean space cannot stretch otT to infinityin some direction. For if it did, 
we could find infinitely many points, all weH spaced out from one another and 
running otTto infinity, with no limit point. We can of course give a precise proof 
of this fact using open covers of the set in question. 

(3.9) Theorem. A compact subset of a euclidean space is closed and bounded. 
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Proof. Let C be a compact subset of P. Then C is a closed set by theorem 3.6. 
Now the open balls, centre the origin with integer radius, fil! out all of P. 
Therefore if C is compact it must be contained inside the union of finitely many 
of these balls, i.e., there is an integer n such that C is contained in the ball with 
centre the origin and radius n. In other words C is bounded. 

(3.10) Theorem. A continuous real-valued junction dejined on a compact space is 
bounded and attains its bounds. 

Proof. If j: X - IR is continuous and if X is compact, then j(X) is compact. 
Thereforej(X) is a closed bounded subset of IR by theorem (3.9) andjis certainly 
bounded. Since j(X) is closed, both the supremum and infimum of j(X) lie in 
j(X). We can therefore find points Xl' X2 E X such that 

j(X l ) = sup(j(X)) and j(X2 ) = inf(j(X)), 

which says precisely thatjattains its bounds. 

We end this section with a rather technical result concerning open covers of a 
compact metric space: the result will be applied several tirries in later chapters. 

(3.11) Lebesgue's lemma. Let X be a compact metric space and let $' be an open 
cover ojX. Then there exists areal nu mb er b > 0 (calIed a Lebesgue number oj 
$') such that any sub set ojX oj diameter less than b is contained in so me member 
oj$'. 

Proof. If Lebesgue's lemma is false we can find a sequence A l ,A2,A3, ... of sub­
sets of X, none of which are contained inside a member of $', and whose 
diameters tend to zero as we proceed along the sequence. For each n choose a 
point X n belonging to An' Either the sequence {xn} contains only finitely many 
distinct points, in which case some point repeats infinitely often; or it is infinite, 
in which ca se it must have a limit point since X is compact. Denote the repeated 
point, or limit point, by p. Let U be an element of $' which contains p. Choose 
8 > 0 such that B(p,8) ~ U, and choose an integer N large enough so that: 
(a) the diameter of AN is less than 8/2, and 
(b) x N E B(p, 8/2). 
Then d(xN, p) < 8/2 and d(X,XN) < 8/2 for any point X of AN' Therefore 
d(x,p) < 8 if X E AN, showing AN ~ U. This contradicts our initial choice of the 
sequence {An}. 

Problems 
5. Which of the following are compact? (a) the space of rational numbers; 
(b) sn with a finite number of points removed; (c) the torus with an open disc 
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removed; (d) the Klein bottle; (e) the Möbius strip with its boundary circ1e 
removed. 

6. Show that the Hausdorff condition cannot be relaxed in theorem (3.7). 

7. Show that Lebesgue's lemma fails for the plane. 

8. (Lindelöf's theorem). If X has a countable base for its topology, prove that 
any open cover of X contains a countable subcover. 

9. Prove that two disjoint compact subsets of a Hausdorff space always possess 
disjoint neighbourhoods. 

10. Let A be a compact subset of a metric space X. Show that the diameter of 
A is equal to d(x,y) for some pair of points x,y E A. Given x E X, show that 
d(x,A) = d(x,y) for some y E A. Given a c10sed subset B, disjoint from A, show 
that d(A,B) > O. 

11. Find a topological space and a compact subset whose c10sure is not compact. 

12. Do the real numbers with the finite-complement topology form a compact 
space? Answer the same question for the half-open interval topology (see Problem 
11 of Chapter 2). 
13. Let f: X -+ Y be a c10sed map with the property that the inverse image of 
each point of Y is a compact subset of X. Show that f -leK) is compact whenever 
K is compact in Y. Can you remove the condition that f be c1osed? 
14. If f:X --4 Y is a one-one map, and if f:X --4 feX) is a homeomorphism 
when we give feX) the induced topology from Y, we call f an embedding of X 
in Y. Show that a one-one map from a compact space to a Hausdorff space 
must be an embedding. 
15. Aspace is locally compact if each of its points has a compact neighbour­
hood. Show that the following are all locally compact: any compact space; 
P; any discrete space; any c10sed sub set of a locally compact space. Show that 
the space of rationals is not locally compact. Check that local compactness is 
preserved by a homeomorphism. 

16. Suppose X is locally compact and Hausdorff. Given x E X and a neighbour­
hood U of x, find a compact neighbourhood of x which is contained in U. 

17. Let X be a locally compact Hausdorff space which is not compact. Form a 
new space by adding one extra point, usually denoted by 00, to X and taking 
the open sets of X u {CI)} to be those of X together with sets of the form 
(X - K) u { CI)}, where K is a compact subset of X. Check the axioms for a 
topology, and show that X u { CI) } is a compact Hausdorff space which contains 
X as a den se subset. The space X u { CI) } is called the one-point compactification 
ofX. 

18. Prove that P u { oo} is homeomorphic to sn. (Think first of the case n = 2. 
Stereo graphie projection gives a homeomorphism between 1E2. and S2 minus 
the north pole, points 'out towards infinity' in the plane becoming points near 
to the north pole on the sphere. Think of replacing the north pole in S2 as 
adding a point at CI) to 1E 2 .) 
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19. Let X and Y be locally compact Hausdorff spaces and let f: X -+ Y be an 
onto map. Show f extends to a map from X u {oo} onto Y u {oo} iff f-l(K) is 
compact for each compact subset K of Y. Deduce that if X and Yare homeo­
loorphic spaces then so are their one-point compactifications. Find two spaces 
whiGB are not homeomorphic but which have homeomorphic one-point 
compactifications. 

3.4 Product spaces 
We now turn to the study of spaces which have a natural product structure. 
Examples spring readily to mind: we can think of the plane as the product of 
two copies ofthe realline, the torus as the product oftwo circles, or the cylinder 
as the product of a circle with the unit interval. It is worth looking at one of 
these examples in more detail. Take a specific cylinder in 1E3, say 

{(x,y,z)lx2 + y2 = 1 and 0 ~ z ~ I} 

and give it the induced topology. As a set it is the cartesian product Si x I, where 
Si denotes the unit circle in the (x,y) plane and I the unit interval on the z axis. 
We claim that the topology ofthe cylinder is, in a very natural sense, the product 
of the topologies of the circle and the interval. To see this, we note that if U is 
an open set in Si, and if V is open in I, then the product U x V is open in the 
cylinder (Fig. 3.1). Also, ifwe are given an open set 0 ofthe cylinder, and a point 

Figure 3.1 ~s' 
p belonging to 0, then we can easily find open sets U s;;; Si, V s;;; I such that 
pE U X V s;;; O. In other words, these product sets U x V form a base for the 
topology ofthe cylinder. We summarize this by saying that the cylinder has the 
'product topology'. Motivated by the above, we can give apreeise definition of 
theproduct of two topologieal spaces. Once this is done we shall prove (as the 
main result of this seetion) that the produet of two compaet spaees is compaet. 

Let X and Y be topologieal spaces and let !J6 denote the family of all subsets 
of X x Y of the form U x V, where U is open in X and V open in Y. Then 
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U f1l = X x Y and the intersection of any two members of 96 lies in f1l. There­
fore f1l is a base for a topology on X x Y. This topology is called the product 
topology and the set X x Y, when equipped with the product topology, is 
called a product space. We need hardly mention that the same construction goes 
through for a finite product. If X l'X 2, ••. ,X n are topological spaces, the product 
topology on Xl x X 2 X ..• X Xn has as base the sets U1 x U2 X •.. X Un> 
where Ui is open in Xi' 1 ~ i ~ n. We notfl that the natural topology of euclidean 
n-space is precisely the product topology relative to the decomposition of IEn 
as the product of n copies of the realline. For simplicity, we shall work with the 
product of two spaces, but we emphasize that all the results (and proofs!) go 
through for finite products. In fact, since X 1 x X 2 X ••• x X n is clearly 
homeomorphic to (Xl X X 2 X ••• x X n _ 1) X X n' results for finite products 
follow by induction from those for the product of two spaces. 

The functions Pl : X x Y ---+ X and P2: X x Y ---+ Y defined by Pl (x,y) = x, 
P2(X,y) = Y are called projections. We can characterize the product topology in 
terms of these projections as folIows. 

(3.12) Theorem. lf X x Y has the product topology then the projections .are 
continuous functions and they take open sets to open sets. The product topolQgy 
is the smallest topology on X x Y for which both projections are continuous. ,. 

Proof. Suppose U is an open subset of X, then Pll (U) = U x Y, which is 
open in the product topology: therefore Pl is coIitinuous. The argument for P2 
is similar. To see that Pl' say, takes open sets to open sets we need only look at 
the effect of Pl on basic open sets, since arty other open set is a union of these. 
But Pl (U X V) = U, so a basic open set of the product topology)s sent byp 
to an open set in X. Again we argue in a similar fashion for P2. . ~ 

Now suppose that we have some topology on X x Y and that both projec­
tions are continuous. Take open sets U s;;; X, V s;;; YamHorm Pl 1 (U) n Pl 1 (V). 
This must be open in the given topology. But this set is precisely U x V. There­
fore the given topology contains all the basic open sets of the product topology, 
and is therefore at least as large as the product topology. 

Whenever we mention X x Y from now on, we shall assume that it has the 
product topology, and that both X and Yare nonempty. We can check the con­
tinuity of a function into a product space simply by checking that we obtain 
continuous functions if we compose the given function with each of the 
projections. 

(3.13) Theorem.A junction f:Z ---+ X x Y is continuous if and only if the two 
compositejunctions Plf:Z ---+ X, P2f:Z ---+ Y are both continuous. 

Proof. Suppose that both ptJand p2jare continuous. To check the continuity of 
j we need only show that j -1 (U X V) is open in Z for each basic open set 
U x V of X x Y. But 
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f-l(U x V)=(pd)-1(U)n(p2f)-1(V) 

the interseetion of two open subsets of Z. Therefore f -1 (U X V) is open in Z. 
Conversely, iffis continuous then pdand pdare continuous, by the continuity 
of the projections PI' P2' 

(3.14) Theorem. The product space X x Y is a HausdorfJ space if and only if 
both X andY are Hausdorff 

Proof. Suppose that X and Y are both Hausdorff spaces. Let (Xl' Yt) and 
(X2, Y2) be distinct points of X x -Y. Then either Xl =1= X2 or Yl =1= Y2 (or both): 
assume for the sake of argument that Xl =1= X2' Since X is Hausdorff we can 
find disjoint open sets U 1, U 2 in X such that Xl E U 1 and X2 E U 2' To find 
disjoint open neighbourhoods of(Xl,Yl) and (X2,Y2) we simply form the products 
U l x Y, U 2 X Y. 

Conversely, suppose that X x Y is Hausdorff. Given distinct points 
Xl> X2 EX, we choose a point Y E Y and find disjoint basic open sets U 1 x VI, 
U2 X V2 in X x Y such that (Xl>Y)E UI x VI and(X2,Y)"E U2 x V2. Then Ul, 
U 2 are disjoint open neighbourhoods of Xl and X2 in X. Therefore X is a 
Hausdorff space. The argument for Y is similar. 

(3.15) Theorem. X x Y is compact if and only if both X and Y are compact. 

(3.16) Lemma. Let X be a topological space and let fßj be a base for the topology 
ofX. Then X is compact if and only if every open cover ofX by members of fßj has 
a finite sub cover. 

Proof ofthe lemma. Suppose that every open cover of X by members of fßj has 
a finite subcover, and let ff be an arbitrary open cover of X. Since fßj is a base 
for the topology of X we know that we can express each member of ff as a 
union of members of fßj. Let Pß' denote the family of those members of fßj which 
are used in this process. By construction we have U fßj' = U ff = X; so fßj' is 
an open cover of X (by members of Pß) and must therefore contain a finite 
subcover. For each basic open set in this finite subcover, we select a single 
member of ff which contains it. This gives a finite subcover of ff and shows 
that X is compact. The converse is obvious.' 

Proof of theorem (3.15). If X x Y is compact, then both X and Y have to be 
compact since the projections PI: X x Y ~ X, P2:X x Y ~ Y are onto and 
continuous functions. (Remember we have assumed both X and Y are non­
empty.) 

Now for the more interesting part of the result: suppose both X and Yare 
compact spaces and let ff be an open cover of X x Y by basic open sets of 
the form U x V, where U is open in X and V open in Y. We shall show that ff 
must contain a finite subcover. This is enough to show X x Y compact by 
the previous lemma. 

53 



BASIC TOPOLOGY 

Select a point x E X and consider the sub set {x} x Y of X x Y with the 
induced topology. It is easy to check that 

P21{ x} x Y: {x} x Y - Y 

is a homeomorphism. In other words {x} x Y is just a copy of Y in our product 
space which lies 'over' the point x (see Fig. 3.2). So {x} x Y is compact and we 
can find a minimal finite subfamily of ff whose union contains {x} x Y. We shall 
label the members of this finite subfamily 

U~ x Vi, U~ x Vi", ... , U~x x v"xx 

in order to emphasize their dependence on the point x. Note that the union of 
these sets contains more than {x} x Y, it actually contains all of U X x Y 

nx 
where UX = n Ufo 

i; 1 

So far we have only made use of the compactness of Y. Now the set UX x Y 
appears in Fig. 3.2 as a strip in X x Y lying over the sub set U X of X. The idea 
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Figure 3.2 

of the remainder of the proof is to use the fact that X is compact to show that 
we can cover all of X x Y by a finite number of such strips. The family 
{UX I x E X} is an open cover of X and we select from it a finite subcover, say 

Since X is the union of these sets we have 

X x Y = (UX' x Y) U (UX 2 X Y) U ... u (UXs x Y) 

But UX , x Y is contained in (U~' x Vi') u ... u (U~~, X Vn:'). Therefore the basic 
open sets 

form a finite subcover of ff. This completes the proof. 

We are now in a position to prove theorem (3.1) and complete our charac­
terization of closed bounded subsets of a euclidean space. We recall the state­
ment of the theorem: 
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(3.1) Theorem. A subset oflEn is compact if and only ifit is closed and bounded. 

Proof. We have already shown, in theorem (3.9), that a compact subset of a 
euclidean space is both c10sed and bounded. Suppose, conversely, that X is a 
c10sed bounded subset of IEn. We think of IEn as the product of n copies of the 
realline, and note that since X is bounded it must be contained in 

[ -s,s] x [ -s,s] x ... x [ -s,s] 

(the product of n copies of the c10sed interval [ - s,s]) for some real number s. 
The Heine-Bore1 theorem tells us that [ -s,s] is compact and theorem (3.15) 
shows the product of any finite number of copies of this interval to be compact. 
Therefore X is a c10sed subset of a compact space, and hence compact by 
theorem (3.5). 

Before leaving the notion of compactness, we should mention that it is 
possible to define the product of an infinite collection of topological spaces, 
and to prove that any product of compact spaces is compact. This result is 
usually referred to as the TychonotT theorem; it is considerably deeper than the 
finite version, theorem (3.15), being equivalent to the Axiom of Choice. For 
details of the TychonotT theorem we refer the reader to Kelley [17]. 

Problems 
20. If X x Y has the product topology, and if A s; X, B s; Y, show that 
AX'""B = A x B, (A x B)0 = A x 13, and Fr(A x B) = [Fr(A) x B] u [A x 
Fr(B)] where Fr ( ) denotes fron tier. 

21. If A and Bare compact, and if W is a neighbourhood ofAx B in X x Y, 
find a neighbourhood U of A in X and a neighbourhood V of B in Y such that 

UxVs;w. 

22. Prove that the product oftwo second-countable spaces is second-countable, 
and that the product of two separable spaces is separable. 

23. Prove that [0,1) x [0,1) is homeomorphic to [0,1] x [0,1). 

24. Let Xo EX and Yo E Y. Prove that the functions f: X ~ X x Y, g : Y ~ X x Y 
defined by fex) = (x,Yo), g(y) = (xo,Y) are embeddings (as defined in Problem 
14). 

25. Show that the diagonal map Ll:X ~ X x X defined by Ll(x) = (x,x) is 
indeed a map, and check that X is HausdortT itT Ll(X) is c10sed in X x X. 

26. We know that the projections Pl:X x Y ~ X, P2:X x Y ~ Y are open 
maps. Are they always c1osed? 

27. Given a countable number of spaces X l' X 2, .•• , a typical point of the 
product rrxi will be written x = (X 1,X2, ... ). The product topology on rrxi is 
the smallest topology for which all of the projections Pi: rrxi ~ Xi' Pi(X) = Xi, 
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are continuous. Construct a base for this topology from the open sets of the 
spaces X 1,X 2' ••.. 

28. If each Xi is a metric space, the topology on Xi being induced by a metric 
d;, prove that 

d(x,y) = f ~ di(Xi,yi) 
i = 1 2 1 + di(Xi,Yi) 

defines a metric on nX i which induces the product topology. 

29. The box topology on nx i has as base all sets of the form V 1 X V 2 X .•• , 

where Vi is open in Xi' Show that the box topology contains the product 
topology, and that the two are equal iff Xi is an indiscrete space for all but 
finitely many values of i. (X is an indiscrete space if the only open sets are 0 
and X.) 

3.5 Connectedness 
Aspace such as the realline, or the torus, seems to be connected, i.e., to be all 
in one piece. It is not hard to give a precise definition of this intuitive idea of 
connectedness and to see that it is a topological property of aspace. 

We have already said that being connected means, intuitively, being all in 
one piece. So if X is a connected space, and if we write X as the union A u B 
of two nonempty subsets, then we expect A and B either to intersect or at the 
very least to abut against one another in X. We can express this mathematically 
by asking that one of 

ÄnB, AnB 

be nonempty: in other words, either A and B have a point in common, or some 
point of B is a limit point of A, or some point of A is a limit point of B. F or 
example, if we decompose the closed interval [0,1] as CO,!) u [!,lJ then the 
point! lies in [o,f) n [!,1 J. 

(3.17) Definition. Aspace X is connected if whenever it is decomposed as the 
union Au B oftwo nonempty subsets then Ä n B =F 0 or An B =F 0. 

(3.18) Theorem. The realline is a connected space. 

Proof. Suppose IR = A u B, where both A and Bare nonempty and A n B = 0. 
We shall show that some point of Ais a limit point of B, or that some point of 
Bis a limit point of A. Choose points a E A, bEB, and (without loss of generality) 
suppose that a < b. Let X consist of those points of A which are less than b 
and let s denote the supremum of X. This point s may or may not lie in A; 
however, if s does not lie in Athen, by the very definition of supremum, s must 
lie in Ä. We shall consider these two possibilities separately. Suppose s lies in 
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A, then s < b, and since s is an upper bound for X, all the points between s 
and b lie in B. Therefore s is a limit point of B. If s does not belong to A, then 
automatically s lies in B as A and B fill out all of IR. We noted above that in 
this case s is a limit point of A. Therefore we have shown that either A intersects 
B or A intersects B. 

As usual, we say that a subset of a topological space is connected if it becomes 
a connected space when given the induced topology. We shall call a subset X 
of the realline an interval if, whenever we have distinct points a,b E X, then all 
points which are greater than a and less than b also lie in X. This is the usual 
notion of interval : it includes the possibility that an interval be open, closed, 
half open, or that it stretch off to infinity in some direction. Our intuition 
suggests very strongly that the intervals should be the only connected subsets 
of the realline. All other subsets have 'gaps' in them, and therefore consist of 
several distinct pieces. 

(3.19) Theorem. A nonempty subset of the realline is connected if and only if it is 
an inter val. 

Proof. The proof oftheorem (3.18) adapts very easily to show that any interval 
is connected. If X is not an interval, then we can find points a,b EX and a point 
p which lies outside X yet nevertheless satisfies a < p < b. Let Adenote the 
subset of X consisting ofthose points which are less than p, and let B = X - A. 
Since p is not in X, every point of the closure of A in X is less than p, and every 
point of the closure of B in X is greater than p. Therefore A n Band A n Bare 
both empty and we see that X is not connected. 

The definition of connectedness can be formulated in more than one way. 

(3.20) Theorem. The following conditions on aspace X are equivalent,' 

(a) X is connected. 
(b) The only subsets ofX which are both open and closed are X and the empty set. 
(c) X cannot be expressed as the union oftwo dis joint nonempty open sets. 
(d) There is no onto continuousfunctionfrom X to a discrete space wh ich contains 

more than one point. 

Proof· We shall show that (a) ==> (b) ==> (c) ==> (d) ==> (a). Suppose X is connected 
and let A be a subset of X which is both open and closed. If B = X - Athen 
Bis also both open and closed. Since both A and Bare closed we have A = A 
and B = B, giving An B = An B = An B = 0. But Xis connected, so one 
of A, B must be empty and the other one the whole space. This proves (a) ==> (b). 
The implication (b) ==> (c) is obvious. 

Now suppose (c) is satisfied, and let Y be a discrete space with more than one 
point and letf:X ~ Y be an onto continuous function. Break up Y as a union 
U U V of two disjoint nonempty open sets. Then X = (f - 1 U) U (f - 1 V), 
contradicting (c). 
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We are left to show (d) ~ (a). Let X be aspace which satisfies (d) and suppose 
X is not connected. Decompose X as A u B where A and Bare nonempty and 
satisfy Ä n B = A n B = 0. We notice that both A and B are open sets, for 
example, B is the complement of the c10sed set Ä, and we define a function f 
from X to the subspace { - 1,1} of the realline by 

f(x) = {-1 ~f XE A 
1 If XEB. 

Thenfis continuous and onto, contradicting (d) for X. 

A continuous function should not be able to tear aspace into pieces (i.e., 
send a connected space onto aspace which is not connected): we expect quite 
the reverse, namely that a continuous function should preserve connectedness. 

(3.21) Theorem. The continuous image of a connected space is connected. 

Proof. Let f: X ~ Y be an onto continuous function and suppose that X is 
connected. If A is a subset of Y which is both open and c1osed, then f -l(A) 
is open and c10sed in X. Since X is connected f - l(A) must be all of X or the 
empty set, by condition (b) oftheorem (3.20). Therefore A is equal to Yor empty 
and we have proved Y to be connected. 

(3.22) Corollary. If h : X ~ Y is a homeomorphism, then X is connected if and 
only ifY is connected. In brief, connectedness is a topological property of aspace. 

(3.23) Theorem. Let X be a topological space and let Z be a subset ofX. /fZ is 
connected, and if Z is dense in X, then X is connected. 

Proof. Let A be a nonempty subset of X which is both open and c1osed. Since 
Z is dense in X we know that Z must intersect every nonempty open subset of 
X, and therefore A n Z is nonempty. Now An Z is both open and c10sed in 
Z, and since Z is connected we deduce that A n Z = Z, i.e., Z s; A. Thereföre 
X = Z s; Ä = A, giving X = A as required. 

(3.24) Corollary. /f Z is a connected subset of a topological space X, and if 
Z s; Y s; Z, then Y is connected. In particular, the closure Z of Z is connected. 

Proof. Notice that the c10sure of Z in Y is all of Yand apply theorem (3.23) to 
the pair Z s; Y. 

We need a Httle more terminology. If A and Bare subsets ofa space X, and if 
Ä n B is empty, we say that A and Bare separated from one another in X. 

(3.25) Theorem. Let:F be a family of subsets of aspace X whose union is alt ofX. 
If each member of :F is connected, and if no two members of :F are separated 
from one another in X, then X is connected. 
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Proof. Let A be a subset of X which is both open and closed. We shall show that 
Ais either empty or equal to all of X. Each member of:F is connected, so if Z E:F 
we know that Z 11 A is either empty or all of Z. If Z 11 A = 0 for an Z in :F 
then A = 0. The other possibility is that we can find so me element Z E:F 
for which Z 11 A = Z, i.e., for which Z is contained in A. Suppose W is some 
other element of :F. If W 11 A is empty, then Wand Z are separated from one 
another in X. (For W 11 A = 0 gives W ~ X - A and since X - A is closed 
we have W ~ X - A. Now combine this with Z ~ Ä = A.) However, we are 
told that no two sub sets of:F are separated from one another in X. Therefore 
W ~ A for an W E :F and A = U :F = X. 

(3.26) Theorem. IfX and Y are connected spaces then the product space X x Y 
is connected. 

Proof. If xis a point of X, the subspace {x} x Y of X x Y is connected since 
it is homeomorphic to Y. Similarly X x {y} is connected for any point y of Y. 
Now {x} x Y and X x {y} overlap in the point (x,y), therefore Z(x,y) = 
({x} x Y) u (X x {y}) is connected. (Apply theorem (3.25) to the space 
Z(x,y).) Also X x Y = U Z(x,y), and any two of the Z(x,y) have nonempty 

xeX 
yeY 

intersection. Therefore a second application of theorem (3.25) shows X x Y to 
be connected. Figure 3.3 illustrates this proof. 

/ 
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y I 
I 
I 

y 
I 
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----I 

: 
z (x, y) 

• • 
Figure 3.3 "'x x' x 

This last result teIls us immediately that euclidean n-space is connected, 
since it is the product of a finite number of copies of the realline. Now consider 
the unit sphere sn in IEn + 1 where n ~ 1. If we remove a point from sn we obtain 
aspace homeomorphic to IEn. But the closure of sn minus a point is an of sn 
when n ~ 1. Therefore sn is a connected space for n ~ 1, by theorem (3.23). 
We also see that the torus is connected, since we can think of it as the product 
space Si x Si. 
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We should point out that if a product space X x Y is connected, and if X x Y 
is nonempty, then the factors X and Y have to be connected. This follows from 
the continuity of the projections. 

If aspace is not connected then i-t breaks up as a union of connected pieces, 
any two of which are separated from one another. We call these pieces com­
ponents. More formally, a component of a topological space X is a maximal 
connected subset of X. 

(3.27) Theorem. Each component of a topological space is a closed set and distinct 
components are separated from one another in the space. 

Proo/. Let C be a component of X. Then C is connected, and so E is connected 
by corollary (3.24). But C is a maximal connected subset of X, therefore C = C 
and we see that C is closed. If D is some other component of X, and if D is not 
separated from C in X, then C u D is connected by theorem (3.25). This con­
tradicts the maximality of C (and D). 

We note that every connected subset of aspace is contained in a component. 
Für if A s;;; X and if A is connected, then define C to be the union of the family 
of all connected subsets of X which contain A. This set C is connected by 
theorem (3.25) and is maximal by its very construction. Therefore C is a com­
ponent which contains A. 

One or two examples should help the intuition along. 

Examples. 
1. A connected space, such as the torus, has only one component. At the other 
extreme, each point of a discrete topological space is a component of the space. 
2. !E1 - SO has three components, namely (- 00, -1), (-1, 1), and (1, 00). For 
n ~ 1 the space !En + 1 - sn has two components given by the conditions 
11 xII> 1 and 11 X 11 < 1. 
3. Bach point of the rationals (Q (with the induced topology from the realline) 
is a component. Note that (Q is not a discrete space. Aspace like this, in which 
every point is a component, is said to be totally disconnected. 

Problems 
30. Let X be the set of all points in the plane which have at least one rational 
coordinate. Show that X, with the induced topology, is a connected space. 

31. Give the set of real numbers the finite-complement topology. What are the 
components of the resulting space? Answer the same question for the half-open 
interval topology. 

32. If X has only a finite number of components, show that each component is 
both open and closed. Find aspace none of whose components are open sets. 
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33. (Intermediate value theorem). If f: [a,b] ~ IfI is a map such that f(a) < 0 
andf(b) > 0, use the connectedness of [a,b] to establish the existence of a point 
c for whichf(c) = O. 

34. Aspace X is locally connected if for each x E X, and each neighbourhood 
U of x, there is a connected neighbourhood V of x which is contained in U. 
Show that any euclidean space, and therefore any space which is locally euc1idean 
(like a surface), is locally connected. If X = {O} u {lln I n = 1,2, ... } with the 
subspace topology from the realline, show that X is not locally connected. 

35. Show that local connectedness is preserved bya homeomorphism, but need 
not be preserved by a continuous function. 

36. Show that X is locally connected iff every component of each open subset 
of X is an open set. 

3.6 Joining points by paths 
A path in a topological space X is a continuous function y : [0,1] ~ X. The points 
y(O) and y(l) are called the beginning and end points ofthe path respectively, and 
y is said to join y(O) to y(1). Note that if y-l is defined by y-l(t) = y(1 - t), 
o ~ t ~ 1, then y-l is a path in X whichjoins y(l) to y(O). 

(3.28) Definition. Aspace is path-connected if any two oj its points can be joined 
byapath. 

If y is a path in X, and ifj: X ~ Y is a continuous function, then the composition 

y J 
[O,I]~X~Y 

is a path in Y. From this remark it should be c1ear that if h : X ~ Y is a homeo­
morphism, and if Xis path-connected, then Y is also path-connected. In other 
words, the property of being path-connected is, like compactness and con­
nectedness, a topological property of aspace. 

A path-connected space is always connected, but the converse is not true. 
We shall often require our spaces to be path-connected. This is a natural 
condition to impose, for example, when working with the fundamental group 
of aspace, since the elements of the fundamental group are constructed using 
paths in the space. 

(3.29) Theorem. A path-connected space is connected. 

Proof. Let X be a path-connected space and let A be a nonempty subset of X 
wh ich is both open and c10sed in X. Assurne A is not all of X, choose points 
XE A, Y E X - A, and join x to Y by a path y in X. Then y-l(A) is a nonempty 
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proper sub set of [0,1] which (by the continuity of y) is both open and closed. 
This contradicts the fact that [0,1] is connected. Our assumption A i= X must 
therefore be false, and we have A = X as required. 

Note that if we have points x,y,z in aspace X, and paths rx,ß joining x to y 
and y to z respective1y, then the path y defined by 

{
rx(2t) 

y(t) = ß(2t - 1) 

joins x to z. 

o::;;t::;;! 
1::;;t::;;1 

(3.30) Theorem. A connected open subset 0/ a euclidean space is path-connected. 

Proof. Let X be a connected open subset of P. Given x E X, we denote by 
U(x) the collection of those points of X which can be joined to x by a path in X. 
Our aim will be to show that U(x) is all of X. Since U(x) is quite clearly path­
connected, this will prove the theorem. Let y E U(x) and choose a ball B with 
centre y which lies entire1y in X. If z E B then we can join z to x by a path in X, 
for we can join z to y by a straight line in Band follow this by a path from y 
to x. Therefore B is contained in U(x) and we see that U(x) is open in X. Also, 
the complement of U(x) in X is the union of the family {U(y) I y E X - U(x)}, 
and is therefore open. So U(x) is closed in X. Since X is connected and U(x) is 
nonempty (it contains at least the point x) we have U(x) = X. 

We mentioned earlier the existence of spaces which are connected, yet not 
path-connected: Fig. 3.4 illustrates a compact subspace of the plane with these 
properties. Define 

Y = {(O,y) E [2 I -1 ::;; y ::;; 1} 

Z = { (x, sin ~) E [2 I ° < x ::;; 1} 

and set X = Y u Z. Now Z is a connected space because it is the image of 
(0,1] under a continuous function. It is easy to check that the closure of Z in [E2 

is precisely X, so X is connected. To show that X is not path-connected, we 
shall prove that it is impossible to join a point of Y to a point of Z by a path in 
X. Let y E Yand let y : [0,1] - X be a path which begins at y. Since Y is closed 
in [2 it is a closed sub set of X, and therefore y -l(y) is closed in [0,1 J. Now 
y-l(y) is certainly nonempty (it contains 0), so if we can show it is open in 
[0,1] we will have y -1(Y) = [0,1], i.e., y([0,1]) s; Y, as required. Suppose 
tE y-l(Y) and choose e > ° small enough so as to ensure that y((t - e, t + e» 
is contained in the closed disc D, centre y(t) and radius 1. The intersection of 
this disc with our space X consists of a closed interval on the y axis, together 

with segments of the curve y = sin~, each of which is homeomorphic to a 
x 
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closed interval. Furthermore, any two of these sets are separated from one an­
other in D n X. Therefore D n Y is a component of D n X. Since y(t) E D n Y, 
and (t - s, t + s) is connected, we must have all ofy«t - s, t + s)) in D n Y. This 

• It 
Y = sm x 

y ~~+-~~~-----+--------------.--

Figure 3.4 

proves y-l(Y) is open in [0,1] and completes our verification that X is not 
path-connected. 

A path component of aspace X is (by analogy with the notion of component) 
a maximal path-connected subset of X. Each path component is connected 
and therefore lies inside a component. However, path components are not in 
general separated from one another, nor are they necessarily closed. For 
example, the path components of the space shown in Fig. 3.4 are precisely the 
sets Y,Z. These are not separated from one another, and Z is not closed. 

Problems 
37. Show that the continuous image of a path-connected space is path­
connected. 

38. Show that sn is path-connected for n > O. 

39. Prove that the product of two path-connected spaces is path-connected. 

40. If A and Bare path-connected subsets of aspace, and if A n B is nonempty, 
prove that A u B is path-connected. 

41. Find a path-connected subset of aspace whose closure is not path-connected. 

42. Show that any indiscrete space is path-connected. 

43. Aspace X is locally path-connected if for each x E X, and each neighbour­
hood U of x, there is a path-connected neighbourhood V of x which is contained 
in U. 1s the space shown in Fig. 3.4 locally path-connected? Convert the space 
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{O} u {l/n I n = 1,2, ... } into a subspace of the plane which is path-connected 
but not locally path-connected. 

44. Prove that aspace which is connected and locally path-connected is path­
connected. 
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4. Identification Spaces 

4.1 Constructing a Möbius strip 
Many interesting spaces can be constructed as folIows. Begin with a fairly 
simple topological space X and produce a new space by identifying some of the 
points of X. We have already made use of this process: in Chapter 1 we had 
occasion to construct various surfaces and we showed how to obtain the 
Möbius strip, the torus, and the Klein bottle by making appropriate identifica­
tions of the edges of a rectangle. We propose to examine the construction of the 
Möbius strip in more detail and explain how to use the topology ofthe rectangle 
in order to make the Möbius strip into a topological space. The Möbius strip, 
when defined in this way, will be an example of an identification space. 

The construction can be generalized, and the generalization will be the 
object of Seetion 4.2. The idea is to replace the rectangle by an arbitrary topo­
logical space X and to use the topology of X in order to make X, with certain 
of its points identified, into a topological space. 

To construct a Möbius strip, one takes a rectangle and identifies a pair of 
opposite edges with a half twist. Our first job is to translate this process into 
precise mathematicallanguage. For the rectangle take the subspace R of [2 

consisting ofthose points (x,y) for which 0 ~ x ~ 3 and 0 ~ y ~ 1. To describe 
the identification of the vertical edges of R with a half twist, we partition R 
into disjoint nonempty sub sets in such a way that two points lie in the same 
subset if and only if we wish them to be identified. If we now take these sub sets 
as the points of OUf Möbius strip, then we have made the required identifications. 
The appropriate partition of R consists of: 

(a) sets consisting of a pair of points of the form (O,y), (3, 1 - y), where 
o ~ y ~ 1; 

(b) sets consisting of a single point (x,y) where 0 < x < 3, 0 ~ y ~ 1. 

So far we have defined a set which we shall call M, its points being the subsets 
of the above partition of R. There is a natural function n from R onto M that 
sends each point of R to the subset of the partition in which it lies. The identi­
fication topology on M is defined to be the largest topology for which n is 
continuous. That is to say, a subset 0 is defined to be open in the identification 
topology on M if and only if n- 1(O) is open in the rectangle R. 

A glance at Fig. 4.1 shows the sort of open sets we obtain. We represent the 
points of M in the usual way as a sub set of [3, and we label with the letter L 
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the image under 11: of the two vertical edges of R. If we use R* to denote R minus 
its vertical edges, then the restriction of 11: to R* is one-one and is a homeo­
morphism of R* with M - L. Therefore we know all about the neighbourhoods 

(O,y)~ R J. 
rL-________ ~....J(3, 17 

Figure 4.1 

of points of M - L: they are simply the images under 11: of neighbourhoods of 
points of R*. If p lies on the line L then 11:- 1(p) consists of two distinct points, 
situated on the vertical edges of R, of the form (Ü,y), (3,1 - y). The union of two 
open half-discst in R, centres (Ü,y), (3, 1 - y) and of equal radius, maps via 11: 

to an open neighbourhood of p in the identification topology on M. Notice 
that if we take a single half-disc, its image in M is not a neighbourhood of p 
and is not open, so 11: is not an open mapping. The points of L are in no sense 
special in the Möbius strip; they have the same sort of neighbourhoods in the 
identification topology as all the other points of M. In fact, it is easy to check 
that the identification topology coincides with that induced from 1E 3 on our 
set M. 

For convenience we have illustrated M pictorially in 1E 3 • However, we 
emphasize that the definition of the Möbius strip as an 'identification space' 
given in this section is entirely abstract, and in no way relies on a particular 
representation of the strip as a set of points in euclidean space. 

4.2 The identification topology 
Let X be a topological space and let f!J be a family of disjoint nonempty sub sets 
of X such that U f!JJ = X. Such a family is usually called a partition of X. We 
form a new space Y, called an identification space, as follows. The points of Y 
are the members of f!J and, if 11::X ----+ Y sends each point of X to the sub set of f!JJ 
containing it, the topology of Y is the largest for which 11: is continuous. There­
fore a sub set 0 of Y is open if and only if 11:- 1(0) is open in X. This topology is 
called the identification topology on Y. We think of Y as the space obtained 
from X by identifying each of the subsets of f!JJ to a single point. 

Our construction ofthe Möbius strip in Section 4.1 was a special case ofthis 
procedure. We shall give several other concrete examples below, but first we 

t Quarter-discs if p is an endpoint of L. 
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prove one or two general results on identification spaces. We begin with a 
theorem that is useful when checking the continuity of a function which has an 
identification space as domain. 

(4.1) Theorem. Let Y be an identification space defined as above and let Z be an 
arbitrary topological space. A function f: Y - Z is continuous if and only if the 
composition fn : X - Z is continuous. 

Proo/. Let U be an open subset of z. Thenf- 1(U) is open in Y if and only if 
n- 1(f-1(U)) is open in X, i.e., ifand only if(fn)-1(U) is open in X. 

Let f: X - Y be an onto map and suppose that the topology on Y is the 
largest for which f is continuous. Then we call 1 an identlfzcation map, the 
reason for our terminology being as follows. Any function I: X - Y gives rise 
to a partition of X whose members are the subsets {f-1(y)}, where y E Y. Let 
Y* denote the identification space associated with this partition, and n : X - Y* 
the usual map. 

(4.2) Theorem. If f is an identification map, then: 
(a) the spaces Y and Y * are homeomorphic; 
(b) alunction g:Y - Z is continuous if and only ifthe composition gf:X- Z is 
continuous. 

Proo/. The proof of (b) is exact1y that of theorem (4.1) because Y has the largest 
topology for which 1 is continuous. The points of Y* are the sets {f-1(y)}, 
where YE Y. Define h:Y*- Y by h({f-l(y)}) = y. Then h is a bijection and 
satisfies hn = I, h- 11 = n. By theorem (4.1), h is continuous, and h- 1 is con­
tinuous by (b). Therefore h is a homeomorphism. 

(4.3) Theorem. Let f: X - Y be an onto map. Iffmaps open sets ofX to open sets 
ofY, or closed sets to closed sets, then fis an identification map. 

Proo/. Suppose 1 maps open sets to open sets. Let U be a subset of Y for which 
1- 1(U) is open in X. Since/is onto, we havelif- 1(U)) = U, and therefore U 
must be open in the given topology on Y. So this topology is the largest for 
which/is continuous, andfis an identification map. The prooffor closed maps 
is similar. 

(4.4) Corollary. Let f: X - Y be an onto map. IfX is compact andY is HausdorfJ, 
then fis an identification map. 

Proo/. A closed subset of the compact space X is compact and its image under 
the continuous function 1 is therefore a compact subset of Y. But a compact 
subset of a Hausdorff space is closed. Therefore/takes closed sets to closed sets, 
and we can apply theorem (4.3). 
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We shall use theorem (4.2) and eorollary (4.4) in order to eompare different 
deseriptions of the same topologieal spaee. We begin with two methods of 
eonstrueting a torus. 

The torus. Take X to be the unit square [O,lJ x [O,lJ in 1E2, with the subspaee 
topology, and partition X into the following subsets : 

(a) the set {(0,0),(1,0),(0,1),(1,1)} of four eorner points; 
(b) sets eonsisting of pairs of points (x,O), (x,l), where ° < x < 1; 
(e) sets eonsisting of pairs of points (O,y), (l,y), where ° < y < 1; 
(d) sets eonsisting of a single point (x,y), where ° < x < 1 and ° < y < 1. 

The resulting identifieation spaee is the torus. An equally eommon deseription 
is to say that the torus is the produet S1 x S1 oftwo eircles. As usual, S1 denotes 
the unit circle in the plane. Thinking of the points of S1 as eomplex numbers, we 
ean define a map f: [0,1 J x [0,1 J ~ S1 X S1 by f(x,y) = (e2"ix, e2";Y). The 
partition of [0,1 J x [0,1 J whieh eonsists of the inverse images under f pf 
points of S1 x S1 is exaetly that given earlier. By eorollary (4.4),/ is an identi­
fieation map and therefore our two deseriptions ofthe torus are homeomorphie. 

The co ne construction. We aim to define the eone on an arbitrary topologieal 
spaee X. Begin with X x I and let CX be the identifieation spaee associated 
with the partition which eonsists of: 

(a) thesubsetX x {I}; 
(b) sets eonsisting of a single point (x,t), where x E X and ° ~ t < 1. 

CX is ealled the eone on X. Intuitively we have pinehed (identified) the top of 
X x I to a single point, this point beeoming the apex of our eone. 

If X happens to be a eompaet subspaee of some euclidean spaee IEn there is an 
even more natural proeedure. Include IEn in IEn + 1 as the set of points with final 
eoordinate zero, and let v denote the point (0,0, .... ,0,1) of IEn + 1. Define the 
geometrie eone on X to eonsist of those points of IEn + 1 whieh ean be written in the 
form tv + (1 - t)x where x E X and ° ~ t ~ 1. S'o the geometrie eone is made 
up of all straight-line segments that join v to some point of X. 

(4.5) Lemma. The geometrie eone on X is homeomorphie to CX. 

Proof. Define a funetionffrom X x I to the geometrie eone on X by f(x,t) = 

tv + (1 - t)x. Then f is eontinuous, onto, and f(x,t) = f(XI,t') if and only if 
either x = x' and t = t', or t = t' = 1. Therefore the partition of X x I indueed 
by f is precisely that assoeiated with the identifieation spaee CX. Sinee X is 
eompaet, X x I is also eompaet, and the geometrie eone is of eourse Hausdorff 
sinee it lies in IEn+ 1. Thereforefis an identifieation map by eorollary (4.4) and 
the result follows from part (a) of theorem (4.2). 

The identification space Bn/sn - 1. Let Bn denote the unit ball in n-dimensibnal 
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euclidean space, and let sn - 1 denote its boundary. Consider the partition of 
Bn which has as members: 

(a) theset sn - 1 ; 

(b) the individual points of Bn - sn - 1. 

The associated identificatiqn space is usually written Bn /sn - 1. ljJ. general, if we 
replace Bn by an arbitrary space X and sn - 1 bya subspace A, thep X/A means 
X with the subspace A identified to a point. Note that in this notation, CX 
becomes X x I/X x {1}. 

We claim that Bn/sn - 1 is homeomorphic to sn. This is not very surprising. 
Take for example n = 1, then we are saying that identifying the endpoints of 
[ -1,1] gives aspace homeomorphic to a circle. To give a for1Jlai proof we need 
only construct a map f: Bn ~ sn which is onto, one-one on Bn - sn - 1, and 
which identifies all of sn - 1 to a single point. Our map will be an identification 
map by corollary (4.4), and so theorem (4.2) provides the required homeo­
morphism. We can produce f as follows. We know that IEn is homeomorphic 
to Bn - sn - 1 and to sn - {p} for any point pE sn. Choose specific homeo­
morphisms h1 :Bn - sn - 1 ~ IEn, hz : IEn ~ sn - {p} and define 

f(x) = {hzhp1(X) for XE Bn - sn - 1 

for X E sn - 1 

The continuity off is easy to check. 

The g lueing lemma. Let X, Y be subsets of a topological space and give each of 
X, Y, and X u Ythe induced topology. Iff:X ~ Z and g: Y ~ Z are functions 
which agree on the intersection of X and Y, we can define 

fug:Xu Y~Z 

by fu g(x) = f(x) for X E X, and fu g(y) = g(y) for Y E Y. We say that fu g 
is formed by 'glueingtogether' the functionsfand g. The following result allows 
us, under certain conditions, to deduce the continuity of fu g from the con­
tinuity offand g. 

(4.6) Glueing lemma. If X and Y are closed in X u Y, and if both fand gare 
continuous, then f u g is continuous. 

Proof. Let C be a closed subset of Z. Thenf- 1(C) is closed in X (by the con­
tinuity of f), and therefore closed in X u Y (since X is closed in X u Y). 
Similarly, g-1(C) is closed in X u Y. But (fu g)-1(C) = f-1(C) u g-1(C), and 
therefore (fu g)-1(C) is closed in X u Y. This provesfu g is continuous. 

The glueing lemma remains true if we ask that X and Y are both open in 
X u Y. We have stated the result for the closed case because it is this case that 
is most useful in practice. The lemma is of course false if we place no restrictions 
onXand Y. 
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As we shall see, the glueing lemma can be explained in terms of identification 
maps and interpreted as a special case of theorem (4.3). In order to do this, we 
introduce the dis joint union X + Y of the spaces X, Y, and the function 
j: X + Y - X u Y which when restricted to either X or Y is just the inclusion 
in X u Y. This function is important for our purposes because: 

(a) it is continuous; 
(b) the composition (jug)j:X + Y -Z is continuous if and only if bothfand 

gare continuous. 

By combining (b) and part (b) oftheorem (4.2), we have the following result: 

(4.7) Theorem. lf j is an identification map, and if both f:X -Z and 
g : Y - Z are continuous, then f u g: X u Y - Z is continuous. 

The glueing lemma is a special case of this result, since if both X and Y are 
closed in X u Y, then j sends closed sets to closed sets and is an identification 
map by theorem (4.3). 

If j is an identification map, then we can think of X u Y as an identification 
space formed from the disjoint union X + Y by identifying certain points of 
X with points of Y. In this case, we often say that X u Y has the identification 
topology. The open (closed) sets of X u Yare those sets A for which A " X and 
A" Y are open (closed) in X and Y respectively. 

Theorem (4.7) generalizes to the case of an arbitrary union. Let Xa., (X E A, be 
a family of subsets of a topological space and give each X a.' and the union U X a.' 
the induced topology. Let Z be aspace and suppose we are given maps 
fa.: X a. - Z, one for each (X in A, such that if (X,ß E A, 

fa.IXa."Xp =fpIXa."Xp 

Define a function F: U Xa. - Z by glueing together the fa., i.e., F(x) = fa.(x) if 
x E X a.' Let E9 X a. denote the disjoint union of the spaces X a.' and let 
j : E9 X a. - U X a. be the function which when restricted to each X a. is the 
inclusion in U X a.' 

(4.8) Theorem. Ifj is an identification map, and if each fa. is continuous, then Fis 
continuous. 

Proof. Observe that Fj:E9Xa.- Z is continuous if and only if eachfa. is con­
tinuous, and apply part (b) oftheorem (4.2). 

As before, we say that U Xa. has the identification topology when j is an 
identification map. If the Xa. are finite in number, and if each Xa. is closed in 
U Xa., then U Xa. automatically has the identification topology. If the Xa. are 
infinite in number, one must be careful. Figure 4.2 represents an infinite collection 
of closed intervals in the plane. The subspace topology on their union quite 
clearly gives aspace homeomorphic to the circle, whereas the identification 
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topology gives aspace homeomorphic to the nonnegative part of the realline 
(send the intervallabelled n to [n - 1, n ]). 

2 

1 3 

..• 6 5 4 

Figure 4.2 

Projective spaces. We give three descriptions of real n-dimensional projective 
space pn. As usual, theorem (4.2) and corollary (4.4) can be used to show that 
all three lead to the same space. 

(a) Take the unit sphere sn in !En + 1 and partition it into sub sets which contain 
exact1y two points, the points being antipodal (at opposite ends of a 
diameter). pn is the resulting identification space. We could abbreviate our 
description by saying that pn is formed from sn by identifying antipodal 
points. 

(b) Begin with !En + 1 - {O} and identify two points if and only if they lie on the 
same straight line through the origin. (Note that antipodal points of sn 
have this property.) 

(c) Begin with the unit ball Rn and identify antipodal points of its boundary 
sphere. 

Attaching maps. As a final example of an identification space we formalize 
the notion of attaching one space to another by means of a continuous function. 

Let X, Y be spaces, let A be a subspace of Y, and let f : A ~ X be a continuous 
function. Our aim is to attach Y to X using fand to form a new space which 
we shall denote by X U f Y. We begin with the disjoint union X + Y and 
define a partition so that two points lie in the same subset if and only if they are 
identified under f. Precisely, the subsets of the partition are: 

(a) pairs of points {aj'(a)} where a E A; 
(b) individual points of Y - A; 
(c) individual points of X - image(!). 

The identification space associated with this partition is X U f Y. The map f is 
called the attaching map. 

In many applications, Y will be a ball and A its boundary sphere. Consider 
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the description of the projective plane (real projective space of dimension 2) 
given in Chapter 1. The idea was to attach a disc to a Möbius strip by glueing 
together their boundary circles. We can now make this precise. Let M denote 
the Möbius strip and D the disco Choose a homeomorphism h from the boundary 
circle of D to that of M and form the identification space MUh D. The result 
is p2 and is (as we shall see in Chapter 7) independent of the choice of h. We 
leave the reader to reconcile this description with those listed in 'Projective 
spaces' above. 

One final comment: if Y is an identification space formed from X, then Y is 
the image of X under a continuous function and therefore inherits properties 
such as compactness, connectedness, and path-connectedness from X. However, 
X may be Hausdorff and yet Y not satisfy the Hausdorffaxiom. As an example, 
take X to be the realline with its usual topology, and partition X so that real 
numbers rand s lie in the same element of the partition if and only if r - s is 
rational. We invite the reader to check that the corresponding identification 
space is an indiscrete space. 

Problems 

1. Check that the three deseriptions (a), (b), (e) of pn listed in 'Projeetive spaees' 
above do all lead to the same spaee. 

2. Whieh spaee do we obtain ifwe take a Möbius strip and identify its boundary 
eircle to a point? 

3. Letf:X -4 Y be an identifieation map, let A be a subspaee of X, and give 
f(A) the induced topology from Y. Show that the restrietion f IA: A -4 f(A) 
need not be an identification map. 

4. With the terminology of Problem 3, show that if Ais open in X and ifftakes 
open sets to open sets, or if A is closed in X and f takes closed sets to closed 
sets, thenf I A: A -4 f(A) is an identifieation map. 

5. Let X denotetheunion oftheeircles [x - (l/n)]2 + y2 = (l/n)2,n = 1,2,3, ... , 
with the subspaee topology from the plane, and let Y denote the identifieation 
spaee obtained from the realline by identifying all the integers to a single point. 
Show that X and Y are not homeomorphie. (X is ealled the Hawaiian earring.) 

6. Give an example of an identifieation map which is neither open nor closed. 
7. Describe each of the following spaces: (a) the cylinder with each of its 
boundary circles identified to a point; (b) the torus with the sub set consisting 
of a meridianal and a longitudinal eircle identified to a point; (e) S2 with the 
equator identified to a point; (d) 1E2 with each of the circles centre the origin 
and of integer radius identified to a point. 

8. Let X be a eompaet Hausdorff spaee. Show that the eone on X is homeo­
morphie to the one-point eompactification of X x [0,1). If A is closed in X, 
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show that X/A is homeomorphic to the one-point compactification of X - A. 

9. Let j: X ~ X' be a continuous function and suppose we have partitions 
[1JJ, [1JJ' of X and X' respectively, such that if two points of X lie in the same 
member of f!J, their images under j lie in the same member of [1JJ'. If Y, Y' are 
the identification spaces given by these partitions, show that j in duces a map 
f: Y~ Y', and that ifjis an identification map then so isJ 

10. Let S2 be the unit sphere in 1E3 and definej:S2 ~ 1E4 by j(x,y,z) = (x2 _ y2, 
xy, xz, yz). Show that j induces an embedding of the projective plane in 1E4 

(embeddings were defined in Problem 14 of Chapter 3). 

11. Show that the function j: [O,2n] x [O,n]~ IEs defined by j(x,y) = (cosx, 
cos 2y, sin 2y, sin x cos y, sin x sin y) induces an embedding of the Klein bottle 
in IEs. 

12. With the notation of Problem 11, show that if (2 + cos x)cos 2y = 

(2 + cos x')cos 2y' and (2 + cos x)sin 2y = (2 + cos x')sin 2y', then cos x = 
cos x', cos 2y = cos 2y', and sin 2y = sin 2y'. Deduce that the function 
g: [O,2n] x [O,n] ~ 1E4 given by g(x,y) = ((2 + cos x)cos 2y, (2 + cos x)sin 2y, 
sin x cos y, sin x siny) induces an embedding of the Klein bottle in 1E4 • 

4.3 Topological groups 
We leave the notion of an identification space briefly in order to consider spaces 
which have, in addition to their topology, the structure of a group. A good 
example is the circ1e, thought of as the set of complex numbers of unit modulus. 
Its topology is that induced from the plane and the group structure is simply 
multiplication of complex numbers. Note that the two functions 

S1 x S1 ~ S1 
(eie, ei 4» 1-+ ei(6 + 4» (group multiplication) 

(inversion in the group) 

are continuous, so the topology and the algebraic structure fit together nicely. 

(4.9) Dermition. A topological group G is both a HausdorJJ topological space 
and a group, the two structures being compatible in the sense that the group 
multiplication m: G x G ~ G, and the function i: G ~ Gwhich sends each 
group element to its inverse, are continuous. 

Most of this seetion will be taken up by examples, inc1uding examples of 
matrix groups. In Section 4.4 we return to identification spaces. We shall define 
there the action of a topological group on aspace, show how an action leads 
to an identification space, and consider a variety of identification spaces which 
ari3e in this way. 
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Examples oftopological groups 

1. The realline, the group structure being addition of real numbers. 

2. The circle, as described above. 

3. Any abstract group with the discrete topology. 

4. The torus considered as the product of two circles. We take the product 
topology and the product group structure. (The product of two topological 
groups is a topological group; see Problem 13.) 

5. The three-sphere considered as the unit sphere in the space of quaternions D-lJ. 
(D-lJ is topologically [4 and has the algebraic structure of the quaternions.) 

6. Euclidean n-space. We choose the notation Iffi" to emphasize that we have a 
topological group (usual addition as group structure) and not simply the topo­
logieal space P. 

7. The group of invertible n x n matrices with real entries. The group structure 
is matrix multiplication. For the topology we identify each n x n matrix 
A = (ai}) with the corresponding point 

of !E,,2 and take the subspace topology. This topological group is called the 
general linear group, and we denote it by GL(n).t A detailed verification that 
GL(n) is a topological group will be given in theorem (4.12). 

8. The orthogonal group O(n) consisting of n x n orthogonal matrices with real 
entries. O(n) has both its topology and its group structure induced from GL(n). 
It is a subgroup (as a topological group) of GL(n). The subgroup of O(n) con­
sisting of those matrices which have determinant + 1 is called the special 
orthogonal group and written SO(n). 

The terms 'isomorphism' and 'subgroup' for topological groups require a 
few words of explanation. In each case we need to take into consideration both 
the topological and the algebraic structures. So an isomorphism between two 
topological groups is a homeomorphism which is also a group isomorphism. 
In the same spirit, a subset of a topological group is called a subgroup if it is 
algebraically a subgroup and in addition has the subspace topology. There­
fore the integers 7L with the discrete topology form a subgroup of the realline Iffi. 
If we form the factor group 1ffi/7L and give it the identification topology (the 
corresponding partition of Iffi is that given by the cosets of 7L) then we have a 
topological group isomorphie to the circle. For the map f: Iffi -+ Sl defined by 
fex) = e2nix takes open sets to open sets and is an identification map, by 
theorem (4.3). Two points of Iffi are identified by f if and only if they differ by an 

t Or GL(n,lR) to emphasize that the matrices have real entries. GL(n,1C) then denotes the corre­
sponding group of invertible matrices with complex entries. 
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integer, and therefore f induces a homeomorphism of ~/Zt with S1, by theorem 
(4.2). It is elementary to check that this homeomorphism is a group isomorphism. 
For a second example involving the ideas of subgroup and isomorphism, we 
turn to our matrix groups. Associating each (n - 1) x (n - 1) orthogonal 
matrix A with the n x n orthogonal matrix 

(~ ~) 
shows that O(n - 1) is isomorphie to a subgroup of O(n) 

Let G be a topological group and x an element of G. The function Lx: G ~ G 
defined by Lx(g) = xg is called left translation by the element x. It is clearly 
one-one and onto, and it is continuous because it is the composition 

m 
G~GxG~G 

g 1-+ (x,g) 1-+ xg. 

The inverse of Lx is Lx-l and therefore Lx is a homeomorphism. Similarly the 
right translation Rx: G ~ G given by Rig) = gx is also a homeomorphism. 

These translations show that a topological group has a certain 'homogeneity' 
as a topological space. For if x and y are any two points of a topological group 
G there is a homeomorphism of G that maps x to y, namely the translation 
L yx -l. Therefore G exhibits the same topological structure locally near each 
point. 

(4.10) Theorem. Let G be a topological group and let K denote the connected 
component of Gwhich contains the identity element. Then K is a closed normal 
subgroup of G. 
Remark. If G = O(n) then K = SO(n). We shall prove this later. 

Proof. Components are always closed. For any XE K the set Kx- 1 = R X -l(K) 
is connected (since R x - 1 is a homeomorphism) and contains e = xx- 1• Since 
K is the maximal connected subset of G containing e, we must have Kx- 1 s; K. 
Therefore KK- 1 = K, and K is a subgroup of G. Normality follows in a 
similar mann er. For any gE G the set gKg- 1 = R g -1Lg(K) is connected and 
contains e. Therefore gKg- 1 s; K. 

(4.11) Theorem. In aconnected topological group any neighbourhood of the 
identity element is a set of generators for the whole group. 

t We have an unfortunate cIash of notation. II\ljZ is used for the identification space whose points 
are the cosets of Z in 1I\l, and for lI\l with the single subspace Z pinched to a point. The first of 
these is the circIe, the second is an infinite bouquet of circIes (i.e., an infinite collection of circIes 
all joined together at one point). It should always be cIear from the context which of the pos si­
bilities we are considering. 
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Proof. Let G be a connected topological group and let V be a neighbourhood 
of e in G. Let H = < V) be the subgroup of G generated by the elements of V. 
If hE H then the whole neighbourhood h V = Lh(V) of h lies in H, so H is 
open. We claim that the complement of H is also open. For if gE G - H, 
consider the set g V. If g V n H is nonempty, say XE g V nH, then x = gv for 
some v E V. This gives g = xv - 1, which implies the contradiction gEH since 
both x and V-i lie in H. Therefore the neighbourhood LiV) = gV of g lies in 
G - H, and we see that G - H is an open set. Now G is connected and so 
cannot be partitioned into two disjoint nonempty open sets. Since H is 
nonempty we must have G - H = 0, i.e., G = H. 

(4.12) Theorem. The matrix group GL(n) is a topological group. 

Proof. Let M denote the set of all n x n matrices which have real entries, and 
let A = (aij) represent a typical element of M. We can identify M with euclidean 
space of dimension n2 by associating A = (ai) with the point (all,a12'"'' 
alma21'" .,a2ma31'" .,ann). The identification gives us a topology on M and we 
claim that, with respect to this topology, matrix multip~ication m: M x M ...... M 
is continuous. To see this, we need only examine the' well-known formula for 
the entries of a product matrix: if A = (aij) and B = (bij) then the ijth entry in 

n 

the product m(A,B) is L aikbkj' Now M has the topology ofthe product space 
k = 1 

[1 X [1 X ... X [1 (n2 copies), and for each i, j satisfying I ~ ij ~ n we have 
a projection 1tij: M ...... [1 which sends a given matrix A to its ijth entry. By 
theorem (3.13), m is continuous if and only if all of the composite functions 

M x M~M~[l 
n 

are continuous. But 1tijm(A,B) = L aikbkj' a polynomial in the entries of A and 
k=l 

B. Therefore 1tijm is continuous. 
The elements of GL(n) are the invertible matrices in M. If we give GL(n) the 

subspace topology from M then, by the above, matrix multiplication GL(n) x 
GL(n) ...... GL(n) is continuous. It remains to prove that the inverse function 
i:GL(n) ...... GL(n) is also continuous. We usethe same technique: i:GL(n) ...... 
GL(n) ~ [1 x ... X [1 is continuous if and only if all ofthe composite functions 

GL(n) --!- GL(n) ~ [1 I ~ j,k ~ n 

are continuous. Now the composition of 1tjk with i sends a matrix A to the 
jkth element of A - 1, i.e., to (l/det A) (kjth cofactor of A). It should be clear that 
the determinant of A and the cofactors of Aare polynomials in the entries of 
A. Since det A does not vanish 011 GL(n), our composition 1tjki is continuous. 
This completes the proof that GL(n) is a topological group. 

We note in passing that GL(n) is the inverse image ofthe nonzero real numbers 
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under the determinant function det: M -+ R So GL(n) is not compact (it is an 
open subset of M), and is not connected (the matrices with positive and negative 
determinants partition GL(n) into two disjoint nonempty open sets). How 
many components has GL(n)? 

(4.13) Theorem. O(n) and SO(n) are compact. 

Proof. O(n) consists of those matrices in GL(n) which have their transpose as 
inverse. It is algebraically a subgroup of GL(n) and we give it the subspace 
topology. In order to show O(n) compact we show that it corresponds to a 
c10sed bounded subset of [n 2 under our identification of M with [n 2

• 

n 

Let A E O(n). Since AAt = I we have L aipkj = bik for 1 ~ i,k ~ n. For 
j = 1 n 

each choice of i,k we define a map /;k: M -+ [1 by /;k(A) = L aipkj' Then 
j = 1 

O(n) is the intersection of all sets of the form 

/;; 1(0) 

/;i- 1(1) 

1 ~ i,k ~ n, i =1= k 

Therefore O(n) is c10sed in M since it is the intersection of a finite number of 
c10sed sets. 

For the boundedness of O(n) we have only to look at the conditions 

L aijaij = 1. These imply that the entries of any orthogonal matrix A satisfy 
j = 1 

I aij I ~ 1. This completes the proof that O(n) is compact. 
Finally, SO(n) is compact because it is c10sed in O(n). 

We note that SO(2) ~ Si, and SO(3) ~ p3, where '" means isomorphism 
of topological groups. Sending the rotation matrix 

( cos (J - sin (J ) 
sin (J cos (J 

to the point eie of Si gives the first of these. For the second, we think of S3 as 
the quaternions of norm 1, and note that conjugation in IHI by a nonzero quater­
nion always induces a rotation of the three-dimensional subspace of pure 
quaternions. This defines a function IHI - {O} -+ SO(3) which is in fact (check 
these statements!) a homomorphism, onto, and continuous. Its kerne1 is 
~ - {O}. Restricting this function to S3 gives a continuous epimorphism from 
S3 to SO(3) with kernel {l, -1}. Now the set of co sets S3/{1,-1}, with the 
identification topology, is of course p3, and therefore we have a continuous 
group isomorphism p3 -+ SO(3). Since p3 is compact and SO(3) is Hausdorff, 
this map is a homeomorphism. 
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Problems 
13. Show that the produet of two topologieal groups is a topologieal group. 

14. Let G be a topologieal group. If H is a subgroup of G, show that its closure 

fi is also a subgroup, and that if H is normal then so is fi. 
15. Let G be a eompaet Hausdorff spaee whieh has the strueture of a group. 
Show that G is a topological group if the multiplieation funetion m : G x G ~ G 
is eontinuous. 

16. Prove that O(n) is homeomorphie to SO(n) x Z2' Are these two isomorphie 
as topologieal groups? 

17. Let A,B be eompaet subsets of a topologieal group. Show that the produet 
set AB = {ab I a E A, bEB} is eompaet. 

18. If U is a neighbourhood of e in a topologieal group, show there is a neigh­
bourhood V of e for which VV- 1 s U. 

19. Let H be a diserete subgroup of a topologieal group G (i.e., H is a subgroup, 
and is a diserete spaee when given the subspaee topology). Find a neighbourhood 
N of e in G sueh that the translates hN = Lh(N), hE H, are all disjoint. 

20. If C is a eompaet subset of a topologieal group G, and if H is a diserete 
subgroup of G, show that H 1\ C is finite. 

21. Prove that every nontrivial diserete subgroup of IR is infinite eyeIie. 

22. Prove that every non trivial diserete subgroup of the eircle is finite and 
eyclie. 

23. Let A,B E 0(2) and suppose det A = + 1, det B = -1. Show that B2 = I 
and BAB- 1 = A -1. Deduee that every diserete subgroup of 0(2) is either 
eyclie or dihedral. 

24. If T is an automorphism of the topologieal group IR (i.e., T is a homeomor­
phism whieh is also a group isomorphism) show that T(r) = rT(1) for any 
rational number r. Deduee that T(x) = xT(1) for any real number x, and henee 
that the automorphism group of IR is isomorphie to IR x 7L 2 • 

25. Show that the automorphism group of the eircle is isomorphie to 7L 2 • 

4.4 Orbit spaces 
The infinite eyclie group 7L ean be thought of as a group of homeomorphisms 
ofthe realline in a very natural way. Eaeh integer n E 7L determines a translation 
x I-> x + n of the line. 

If we eonsider the matrix group O(n), then eaeh matrix gives rise to a linear 
transformation of euelidean n-spaee. Sinee the elements of O(n) are invertible, 
and sinee orthogonal transformations preserve the euelidean metrie (and there-
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fore send unit vectors to unit vectors), each orthogonal matrix gives us a homeo­
morphism from the unit sphere sn - 1 to itself. This operation of the orthogonal 
group on the sphere is compatible with the topologies of O(n) and sn - 1 in the 
sense that the function 

O(n) x sn - 1 ~ sn - 1 

(A,x) I-> Ax 

is continuous. We say that O(n) 'acts' on the space sn - 1 as a group of homeo­
morphisms. 

If we give 7L its natural topology (the discrete topology induced from IR), then 
both of these examples fit into a general setting. 

(4.14) Definition. A topological group G is said to act as a group oJ homeo­
morphisms on aspace X if each group element induces a homeomorphism oJ the 
space in such a way that,' 

(a) hg(x) = h(g(x))t Jor all g,h E G,for all x E X; 
(b) e(x) = xJor all x E X, where e is the identity element oJG; 
(c) the Junction G x X ~ X defined by (g,x) I-> g(x) is continuous. 

If x is a point of the space X, then for each gE G the corresponding homeo­
morphism either fixes x or maps it to some new point g(x). The sub set of X 
consisting of all such images g(x), as 9 varies through G, is called the orbit of 
x and written O(x). If two orbits intersect then they must coincide: the relation 
defined by x ~ y if and only if x = g(y) for some 9 E Gis an equivalence relation 
on X whose equivalence c1asses are precise1y the orbits of the given action. So 
the orbits define a partition of X. The corresponding identification space is 
called the orbit space and is written X/Go In constructing X/G we 'divide' by 
G in the sense that we identify two points of X if and only if they differ by one of 
the homeomorphisms x I-> g(x). 

In our first example, the orbit of areal number x consists of all points x + n 
where nE 7L. Therefore in forming 1R/7L we identify two points of IR if and only 
if they differ by an integer and, as explained in the preceding section, we obtain 
the circ1e as orbit space. 

The orthogonal action on sn - 1 is an example of a transitive action, that is, 
an action for which the orbit of any point is the whole space (in this case all of 
sn - 1). The proof is quite easy. Let e1,e2, ... ,en be the standard orthonormal 
basis for !En and, given x E sn - 1, construct a second orthonormal basis with x 
as first member. If Ais the matrix of this new basis with respect to e1,e2, ..• ,eH' 
then A is orthogonal and A(e1) = X. Therefore we have shown that the orbit of 
e1 is all of sn - 1. Whenever we have a transitive action, i.e., only one distinct 
orbit, then of course the orbit space is a single point. 

t We use the same letter for a group element and the homeomorphism induced by it. 
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More examples 
1. Taking the product of our first example with itself in the natural way gives 
an action of 71. x 71. on the plane. An ordered pair of integers (m,n) E 71. x 71. 
sends the point (x,y) E 1E2 to (x + m, y + n). The orbit space is the product of 
two circles, in other words the torus. It may help to think of this action geo­
metrically. Divide the plane into squares ofunit side by drawing in all horizontal 
and vertical lines through the points with integer coordinates. The homeo­
morphisms of our group action preserve this pattern of squares, and any single 
square contains points from each orbit and therefore maps onto the torus under 
the identification map 

1E2 ~ [2/71. x 71. = T 

Each square has its sides identified by 1t in the usual way in order to form T. 

2. We describe an action of 71.2 on the n-sphere which has the projective space 
pn as orbit space. 71.2 has only two elements.t We know from the definition of a 
group action that the identity element must give rise to the identity homeo­
morphism, and we ask that the generator (Le., the non-identity element) give 
the antipodal map which takes each point of sn to its antipode. (Note that 
if we do this homeomorphism twice then we arrive at the identity homeo­
morphism of sn.) The orbits of the action are pairs of antipodal points and the 
orbit space corresponds to one of our descriptions of pn given in Section 4.2. 

y 

Figure 4.3 

t We take the discrete topology when the group is finite. 
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3. A given group may act in many different ways on the same space. Here are 
three different actions of 7l.. 2 on the torus. Take the torus T in [3 formed by 
rotating the circle (x - 3)2 + Z2 = 1 about the z axis. Let 9 denote the generator 
of 7l..2 and define: 

(a) g(x,y,z) = (x, - y, - z), rotation of T through 1t about the x axis; 
(b) g(x,y,z) = (-x, - y, z), rotation of T through 1t about the z axis; 
(c) g(x,y,z) = (- x, - y, - z), reflexion of Tin the origin. 

Each of these homeomorphisms determines an action of 7l.. 2 on T. The orbit 
spaces are the sphere, torus, and Klein bottle respectively, and Fig. 4.3 shows 
why. In each case 9 interchanges the cylinders Cl and C2 • So in order to form 
the orbit space we can ignore C 2 and simply make the appropriate identifications 
on the boundary circles of Cl. 

4. If G is a topological group and H a subgroup of G, then H acts on G by left 
translation. The homeomorphism induced by an element h of H is Lh, Le., 
h(g) = Lh(g) = hg, and the associated function H x G -+ Gis continuous, since 
multiplication in G is continuous. Two elements g,g' lie in the same orbit if and 
only if g' E Hg. Therefore the orbits are the right co sets of Hin G. 

We also have a 'right action' of H on G given by the map 

HxG-+G 

(h,g) 1-+ Rfi-t (g) 

where the inversion of his needed to make property (a) of definition (4.14) valid. 
The orbits are now the left co sets of H in G. 

We denote both orbit spaces by G / H; they are of course homeomorphic. 

5. We return to the actionof O(n) on sn - 1. Note that if A E O(n), and if 
A(el) = e1' then A has the form 

where B is orthogonal. Conversely any matrix of this form fixes e1. Therefore. 
the subgroupt of O(n) consisting of those elements which leave e1 fixed is 
isomorphie to O(n - 1). 

We can define a function f: O(n) -+ sn - 1 by f(A) = A(e1). This function is 
continuous because it is the composition 

O(n) -+ O(n) x sn - 1 -+ sn - 1 

A 1-+ (A, e l ) .... A(e1) 

and it is onto because the given action is transitive. Now O(n) is compact and 
sn - 1 Hausdorff, which makes f an identification map by corollary (4.4). If 

t Often called the isotropy subgroup or stabilizer of el. Points in the same orbit always have 
conjugate stabilizers. 
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X E sn - 1 one easily checks that j-1(X) is precisely the left coset A O(n - 1), 
where A E O(n) satisfies A(e1) = x. Therefore the partition of O(n) induced by 
j coincides with the left-coset decomposition of O(n) corresponding to the sub­
group O(n - 1). Applying theorem (4.2) shows that O(n)/O(n - 1) is homeo­
morphic to sn - 1. A similar argument gives SO(n)/SO(n - 1) ~ sn - 1. 

We deduce, by induction, that SO(n) is connected. The induction starts since 
80(1) is a single point. For the inductive step we use SO(n + 1)/80(n) ~ sn 
(remembering that the n-sphere is connected for n ~ 1) and the following 
theorem. 

(4.15) Theorem. Let G act on X and suppose that both G and X/G are connected, 
then X is connected. 

Proof. 8uppose Xis the union of two disjoint nonempty open subsets U and V. 
8ince the identification map n:X ---t X/G always takes open sets to open sets 
(Problem 29), and since X/G is connected, n(U) and n(V) cannot be disjoint. 
Now if n(x) E neU) n n(V), then both U n O(x) and V n O(x) are nonempty. 
These two sets decompose the orbit O(x) as a disjoint union of two nonempty 
open sets. But O(x) is the image of Gunder the continuous function j: G ---t X 
defined by j(g) = g(x). O(x) is therefore connected, and we have established the 
required contradiction. 

6. Let p and q be relatively prime integers (not necessarily primes). Consider the 
3-sphere as the unit sphere in complex space of dimension 2, that is 

S3 = {(ZO,Z1) E C2 1 zozo + Z1Z1 = 1}. 

Let g denote the generator of the cyclic group 7Lp and define an action of 7L p on 
S3 by 

g(ZO,Z1) = (e27ti/pzo. e27tqi/PZ1)· 

Of course, having specified the effect of g, the homeomorphisms induced by 
g2 ,g3, . .. are completely determined by property (a) of defmition (4.14) for a 
group action. If we repeat g a total of p times, we arrive at the identity homeo­
morphism. The quotient space S3/7Lp is called a Lens space and written L(p,q). We 
shall see later that L(p,q) is locally euclidean of dimension 3, and has fundamental 
group isomorphic to 7Lp• (For an alternative description of L(p,q), see Problem 
33.) 
7. 80 far, most of our orbits have been rather simple, namely discrete sets of 
points or the whole space. To show things can be much more complicated, we 
describe an action of the real line on the torus where each orbit is a dense 
proper subset of the torus. Identify the torus with S1 x S1 and define the 
homeomorphism induced by the real number r to be 

If n: 1E2 ---t S1 X S1 denotes the identification map (x,y) 1-+ (e27tix, e27tiY), the 
orbits of this action are simply the images under n of the straight lines in the 
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plane with gradient .J2. The important fact for our purposes is that .J2 is 
irrational. Notice that n is one-one when restricted to a line of gradient .J2, 
since n can only identify (x + r, y + r.J2), (x + s, Y + s.J2) if both r - sand 
r.J2 - s.J2 are integers, which is clearly impossible. 

We shall examine the orbit ofthe point n(O,O) E T.1t is simply the image under 
n of the straight line through the origin ( or through any other point with integer 
coordinates) in [2 with gradient .J2. Call this line L. We can represent our orbit 
on the unit square in the plane (Fig. 4.4), remembering that the torus is formed 
from this square by identifying its edges in the usual way. Ifwe travel away from 
the origin along L in the first quadrant, we stay inside the unit square as far as 
the point (1/.J2,1). This point represents the same point on the torus as (1/.J2, 0) 
and we continue along our orbit with gradient.J2 from (1/.J2, 0) to (1,.J2 - 1). 
Now we jump (in the square, though not in the torus!) to (0, .J2 - 1) and 
continue with gradient .J2, etc. 

Figure 4.4 

Our orbit winds round and round the torus. It alm ost fills out the whole 
torus, but not quite. We leave the reader to check for himselfthat the orbit is a 
proper dense subset of T. 

This action of ~ on T is called an 'irrational flow' on the torus, the orbits 
being called 'flow lines'. 

8. We end this section by mentioning a rather interesting class of groups of 
isometries of the plane. The groups we shall consider have the property that 
they preserve some repeating pattern of convex polygons which fills out the 
whole plane (i.e., the elements of the group are all symmetries of the pattern). 
We illustrate three examples in Fig 4.5 by giving in each case a set of generators 
for the group. Weshall denote the magnitude and direction of a translation by 
an arrow _. A half-arrow ____ will represent a glide reflection, that is a 
reflection in the line of the arrow followed by a translation of magnitude and 
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direction indicated by the arrow. Rotation through 1800 about the midpoint 

of a line segment will be denoted by ~ and called a half-turn. 

(a) Generators-two translations 
Orbi t space - the torus 

(b) Generators - three half-turns 
Orbit spaee - the sphere 

Figure 4.5 

(e) Generators -two paral1el glide reflections 
Orbit space-the Klein bottle 

The shaded area in each picture is a so-calledJundamental region for the group, 
that is to say its images under all the group elements fill out the entire plane, 
and if twa such intersect they do so only in their boundaries. So no two points 
in the interior of a fundamental region are identified by a group element. Of 
course, a fundamental region can be chosen in many different ways and its 
shape is by no means unique. 

These three groups are members of a family which can be described as 
follows. We consider the group of all isometries of the plane and we assume 
known the fact that an isometry can be written as an ordered pair (e,v) where 
e E 0(2) and v E IfZ. So e is either a rotation about the origin or a reflection in 
some line through the origin, and v has the effect of a translation. The isometry 
acts on 1E2 by 

(e,v) (x) = e(x) + v 

and group multiplication is given by 

(e,v) (cjJ,w) = (ecjJ, e(w) + v) 

We give this group of isometries the topology of the product space 0(2) x 1E 2 

and call the resulting topological group the euclidean group E(2). (Note that 
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although E(2) has the product topology from the spaces 0(2) and 1E2, the group 
structure is notlhe product structure. Aigebraically we have in fact the semidirect 
product of 0(2) and [[2.) 

If G is a discrete subgroup of E(2), that is to say the topology induced from 
E(2) makes G into a discrete space, and if the orbit space 1E2 jG is compact, then 
G is called a plane-crystallographic group. 

Our three examples rather c1early fit this description, and the orbit spaces 
are the torus, sphere, and Klein bottle respectively. (In each case take a funda­
mental region and work out what identifications have to be made to its sides 
in order to form 1E2 jG.) 

If G is a plane-crystallographic group, and if p is a point of the plane which is 
not left fixed by any non-identity element of G, then 

{x E 1E2 111 x - p 11 ~ 11 x - g(p) 11 for all gE G} 

is a convex polygon which is a fundamental region for G, and G is a subgroup 
of finite index in the full group of symmetries of the resulting tessellation of the 
plane. The compactness of 1E2 jG ensures that this fundamental region is bounded. 

Plane-crystallographic groups can be c1assified and they fall into precisely 
17 distinct isomorphism c1asses.t Higher-dimensional crystallographic groups 
are defined in the same sort of way, and the number of isomorphism c1asses 
for a particular dimension is always finite.:j: 

Problems 
26. Give an action of 7L on 1E1 x [0,1] which has the Möbius strip as orbit space. 

27. Find an action of 7L 2 on the torus with orbit space the cylinder. 

28. Describe the orbits of the natural action of SO(n) on IEn as a group of linear 
transformations, and identify the orbit space. 

29. If n:X ~ XjG is the natural identification map, and if 0 is open in X, 
show that n- 1(n(O» is the union ofthe sets g(O) where gE G. Deduce that n takes 
open sets to open sets. Does n always take c10sed sets to c10sed sets? 

30. Show that X may be Hausdorff yet XjG non-Hausdorff. If Xis a compact 
topological group and G a c10sed subgroup acting on X by left translation, show 
that XjG is Hausdorff. 

31. The stabilizer of a point x € X consists of those elements gin G for which 
g(x) = x. Show that the stabilizer of any point is a c10sed subgroup of G when X 
is Hausdorff, and that points in the same orbit have conjugate stabilizers for any X. 

32. If Gis compact, X Hausdorff, and if G acts transitivelyon X, show that X 
is homeomorphic to the orbit space Gj(stabilizer of x) for any XE X. 

t H. S. M. Coxeter, Introductiol1 to Geometry, Wiley, 1961. 
R. L. E. Schwarzenberger, 'The 17 Plane Symmetry Groups', M athematical Gazette, 1974. 

tOne of Hilbert's problems, solved by Bieberbach (1911). 
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33. Let p, q be integers which have highest common factor 1. Let P be a regular 
polygonal region in the plane with centre of gravity at the origin and vertices 
aO,a1, ... ,ap _ 1, and let X be the solid double pyramid formed from P by joining 
each of its points by straight lines to the points bo = (0,0,1) and bq = (0,0, -1) 
of 1E3 (see Fig. 4.6). Identify the triangles with vertices a;, ai + l' bo, and ai + q, 

bo 

Figure 4.6 

p = 9 
q = 2 

ai + q + l' bq for each i = 0,1, ... , p - 1, in such a way that ai is identified to ai + q, 

ai + 1 to ai + q + l' and bo to bq• (The subscripts i + 1, i + q, i + q + 1 are of 
course read mod p.) Prove that the resulting space is homeomorphic to the 
Lens space L(p,q). 

34. Show that L(2,1) is homeomorphic to p3. If p divides q - q', prove that 
L(p,q) is homeomorphic to L(p,q'). 
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5. The Fundamental Group 
On a dit souvent que la geometrie est tart de bien 
raisonner sur les figures mal faites. 

H. POINCARE 

5.1 Homotopic maps 
We gave abrief description of how to set about defining the fundamental group 
of aspace at the end of Chapter 1. We recall that the idea is to manufacture a 
group out of the set of loops in the space which begin and end at some specified 
point (usually referred to as the base point). 

By a loop in aspace X we shall understand a map oe: I -+ X such that 
oe(O) = oe(1),t and we shall say that the loop is based at the point oe(O). If oe and ß 
are two loops based at the same point of X, we define the product oe.ß to be the 
loop given by the formula 

. {oe(2S) 
oe.ß(s) = ß(2s - 1) 

O~s~! 
!~s~1. 

Notice that oe.ß is continuous, maps [O,!] onto the image of oe in X, and maps 
[!,l] onto the image of ß. 

Unfortunately, this multiplication does not give a group structure on the set 
of loops based at a particular point; it is a simple matter to check that it is not 
even associative. To resolve this problem and obtain a group we agree to 
identify two loops if one can be continuously deformed into the other, keeping 
the base point fixed throughout the deformation. The object of this section is to 
say exact1y what we mean by a continuous deformation. 

We shall work in a rather more general setting: if f,g : X -+ Y are maps, we 
shall consider what it means to deform I continuously into g. Such a con­
tinuous deformation will be called a homotopy. Intuitively, we would like a 
family {!t} of maps from X to Y, one for each point t of [0,1], with 10 = I, 
11 = g, and the property that!t changes in a continuous fashion as t varies 
between 0 and 1. To capture this notion of continuous change we make use of 
the product space X x I, observing that a map F:X x 1-+ Y gives rise to a 
family {!t} ifwe set!t(x) = F(x,t). 

t A slight change from the terminology used in Chapter 1, where a loop was a map from a circle 
toX. 
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(5.1) Dermition. Let f,g: X - Y be maps. Then fis homotopic to g if there exists 
a map F:X x 1- Y such that F(x,O) = fex) and F(x,l) = g(x) for alt points 
xeX. 

The map F is called a homotopy from f to g and we shall write f y g. If, in 
addition, fand g agree on some subset A of X, we may wish to deformfto g 
without altering the values of fon A. In this case we ask for a homotopy F 
fromfto g with the additional property that 

F(a,t) = f(a) for all ae A, for all te 1. 

When such a homotopy exists we say thatfis homotopic to g relative to A and 
write f y g rel A. 

If we have two loops IX,ß: I - X based at the same point p of X, then asking 
that IX can be continuously deformed into ß without moving the base point p is 
exactly the same as asking that IX be homotopic to ß relative to the subset 
{O,l} of 1. A homotopy from IX to ß rel {O,l} is by definition a map F from the 
square I x I to X which sends the bottom of the square via IX, the top via ß, 
and the two vertical sides to the base point p. This last condition means that 
the restriction of F to any horizontalline I x {t} in the square is a loop based 
at p: sliding the line from the bottom ofthe square to the top gives a continuous 
family of loops starting at IX and finishing at ß. Figure 5.1 illustrates this situation 
for two loops on a torus. Of course the picture is very much simplified: in reality 
the loops IX and ß may cross themselves (and one another) and the image of the 
square I x I in the torus may be extremely complicated. 

viap 

• 

.........----tO P 

top/ 

~ 
via IX 

Figure 5.1 

Examples 0/ homotopies 
1. Let C be a convex sub set of aeuc1idean space and let f,g : X - C be maps, 
where X is an arbitrary topological space. For each point x of X, the straight 
line joining fex) to g(x) lies in C, and we can define a homotopy from f to g 
simply by slidingfalong these straight lines. To be precise, define F:X x 1- C 
by F(x,t) = (1 - t)f(x) + tg(x). Notice that if fand g happen to agree on a 
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subset A of X then this homotopy is a homotopy relative to A. The homotopy 
F is ealled a straight-line homotopy. 

2. Let f,g : X -4 sn be maps whieh if evaluated on the same point of X never 
give a pair of antipodal points of sn (i.e., f(x) and g(x) are never at opposite 
ends of a diameter). If we take Sn to be the unit sphere in IEn + \ and think of 
f, gas maps into IEn + 1, then we have a straight-line homotopy fromfto g. Sinee 
f(x) and g(x) are not antipodal, the straight line joining them does not pass 
through the origin. Therefore we ean define F : X x I -4 sn by 

F(x,t) = (1 - t)f(x) + tg(x) 
11 (1 - t)f(x) + tg(x)11 

This map is a homotopy fromfto g. 

3. Let Si denote the unit eirc1e in the eomplex plane, and eonsider the loops 
rt.,ß in Si (both based at the point 1) defined by 

{
exp 4nis ° ::::; s ::::; t 

rt.(s) = exp 4ni(2s - 1) t ::::; s ::::; i 
exp 8ni(1 - s) i ::::; s ::::; 1 

ß(s) = exp 2nis ° ::::; s ::::; 1. 

Geometrieally, rt. winds eaeh of the segments [O,t], [t,i-J, [i, 1] onee round the 
eirc1e, the first two being wound in an antic10ekwise direetion, and the third 
c1oekwise. The loop ß simply winds the whole interval [0,1] onee round the 
eirc1e antic10ekwise (Fig. 5.2). 

o 

o 

1 
T 

3 
4" 1 

1 

CI -

Figure 5.2 

We ean define a homotopy F from rt. to ß relative to {O,l} as follows, the 
eontinuity of our map being ensured by the glueing lemma (4.6): 

4nis 
exp-­

t + 1 

F(s,t) = exp 4ni(2s - 1 - t) 

exp 8ni(1 - s) 

t + 1 O::::;s::::;--
2 

t+1 t+3 
--::::;s::::;--

2 4 

t+3 
-4-::::; s::::; 1. 
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This homotopy is illustrated in Fig. 5.3. We show the effect of Fon the square 
I x I, and the halfway stage s f-+ F(s,!) of the homotopy. 

(5.2) Lemma. The relation of 'homotopy' is an equivalence relation on the set of 
all maps from X to Y. 

Proof. All mapsf, g, h are from X to Y. For any fwe havef y fwhere F(x,t) = 
f(x}, so the relation is reflexive. If f Y g then g 1f f where G(x,t) = F(x,1 - t), 
giving symmetry. Finally, iff y g and g 1f h, thenf i h where H is defined by 

{
F(X,2t) 0 ~ t ~ ! 

H(x,t) = G(x,2t - 1) ! ~ t ~ 1, 

so the relation is transitive. 

wound once round 
circle (anticlockwise) 

- s 

F(s, t) 
Ir-----------rl ~I ~I ~ 

o } t 1 

Figure 5.3 

wound clockwise 
back to 1 

wound anticlockwise as 
far as exp 2xi (1.- t) 

(5.3) Lemma. The relation of 'homotopy relative to a subset A ofX' is an equiva­
lence relation on the set of all maps from X to Y which agree with some given 
map on A. 

Proof. If all the maps involved agree on A, then the homotopies defined above 
are homotopies relative to A. 

(5.4) Lemma. Homotopy behaves weil with respect to composition ofmaps. 

Proof. We note that if we have maps 
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f 
X ~ Y ___ h __ .... _ Z 

~ 
9 

and iffy 9 rel A, then hf ~ hg rel A as maps from X to Z. 
Also given maps 

9 

X ___ f __ .... _ y ~ Z 

~ 
h 

with 9 ~ h rel ß for some subset ß of Y, then gfy hfrelf-1ß via the homotopy 
F(x,t) = G(f(x),t). 

Problems 
1. Let C denote the unit circle in the plane. Suppose f: C ---+ C is a map which is 
not homotopic to the identity. Prove thatf(x) = -x for some point x of C. 

2. With C as above, show that the map which takes each point of C to the point 
diametrically opposite is homotopic to the identity. (We shall see later that 
the antipodal map of sn is homotopic to the identity if and only if n is odd.) 
3. Let D be the disc bounded by C, parametrize D using polar coordinates, and 
let h:D ---+ D be the homeomorphism defined by h(O) = 0, h(r,e) = (r, e + 2nr). 
Find a homotopy F from h to the identity map such that the functions 
F 1 D x {t}:D x {t} ---+ D, 0:::::; t:::::; 1, are all homeomorphisms. 

4. With the terminology of Problem 3, show that h is homotopic to the identity 
map relative to C. 

5. Let f: X ---+ sn be a map which is not onto. Prove that f is null homotopic, that 
is to say fis homotopic to a map which takes all of X to a single point of sn. 
6. As usual, CY denotes the cone on Y. Show that any two mapsf,g:X ---+ CY 
are homotopic. 

7. Show that a map from X to Y is null homotopic if and only if it extends to a 
map from the cone on X to Y. 

8. Let Adenote the annulus {(r,e) 11 :::::; r :::::; 2,0:::::; e :::::; 2n} in the plane, and 
let h be the homeomorphism of A defined by h(r,e) = (r, e + 2n(r - 1)). Show 
that h is homotopic to the identity map. Convince yourself that it is impossible 
to find a homotopy from h to the identity which is relative to the two boundary 
circles of A. (For a precise solution to this, see Problem 23.) 
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5.2 Construction of the fundamental group 
Let X be a topological space, choose a base point PE X, and consider the set of 
aIlloops in X based at p. As we have seen in Section 5.1 the relation ofhomotopy 
relative to {0,1} is an equivalence relation on this set. We shall refer to the 
equivalence classes as homotopy classes, and denote the homotopy class of a 
loop oe by (oe). 

Multiplication of loops induces a multiplication of homotopy classes via 

(oe).(ß) = (oe.ß) 

Of course we must check that this multiplication is weIl defined. If oe' y oe rel 
{0,1} and ß' ~ ß rel {0,1}, then oe/.ß' Ti oe.ß rel {0,1}, where 

{ F(2S, t) ° ~ s ~ ! 
H(s,t) = G(2s - 1, t) ! ~ s ~ 1 

(As usual, we refer to the glueing lemma to see that H is continuous.) Therefore 
(oe/)·(ß') = (oe)·(ß)· 

(5.5) Theorem. The set of homotopy classes of loops in X based at p forms a 
group under the multiplication (oe).(ß) = (oe.ß). 

Proof. We first check that multiplication is associative, i.e., (oe.ß).(y) = 
(oe).(ß.y) for any three loops oe, ß, y based at p. To do this we must show that 
(oe.ß).y is homotopic to oe.(ß.y) relative to {0,1}. One easily checks that (oe.ß).y 
is equal to the composition (oe.(ß.y)) 0 f, wherefis the map from I to I defined by 

r O~s~! 

f(s) = s+! !~s~! 
s + 1 

!~s~1 2 

Since I is convex andf(O) = 0,/(1) = 1, there is a straight-line homotopy from 
fto the identity map 1[ relative to {0,1}. By lemma (5.4) we have 

(oe.ß).y = (oe.(ß.y)) 0 f 
~ (oe.(ß.y)) 0 1[ rel {0,1} 

= oe.(ß.y) 

As usual, a diagram is much more efTective than the formulae (Fig. 5.4). 

The identity element is the homotopy class of the constant loop e at p defined 
bye(s) = p for ° ~ s ~ 1. We can use a similar argument to the above to check 
that (e).(oe) = (oe) and (oe).(e) = (oe) for any loop oe based at p. Consider 
the first of these. We need a homotopy relative to {0,1} from e.oe to oe. Now 
e.oe is the composition oe 0 J, wheref:I - I is defined by 
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f(s) = {~s - 1 

So 

=cx 

THE FUNDAMENTAL GROUP 

o~s~! 
!~s~l 

We leave the verification of (cx).(e) = (IX) to the reader. 
FinaHy, we define the inverse of the homotopy class (IX) to be (cx- 1) where 

1X- 1(S) = 1X(1 - s), ° ~ s ~ 1. (So IX-I is just cx 'in the opposite direction'.) The 
inverse is weH defined, since if cx y ß rel {0,1} then IX-I ~ p-I where G(s,t) = 
F(l - s,t). To show (IX).(CX- I ) = (e) we note that IX.IX- I = IX cf where 
f:1 ~ 1 is defined by 

{ 2S 
f(s) = 2 - 2s 

o~s~! 
!~s~l. 

Since f(O) = f(l) = 0, we know that f ~ g rel {0,1}, where g(s) = 0, ° ~ s ~ 1. 
Therefore 

=e 

To show (IX- I ).(IX) = (e) is no more difficult. This completes the proof of 
the theorem. 

t 
\ 

o 

, , , 
\ 

t , , , , , 
" 

., 
1 3 
"2 "4 

Figure 5.4 

x 

We have given a fairly painless proof of theorem (5.5) by leaning heavily on 
the fact that any two maps from the unit interval to itself which agree on ° and 1 
are homotopic relative to {O, 1 }. One can of course sit down and construct the 
necessary homotopies in a barehanded fashion (as in example 3 of Section 5.1) 
and we recommend the reader to do this for hirnself. 

The group constructed in theorem (5.5) is called the fundamental group of X 
based at p, and written 1t1(X,P). Since any loop based at p must lie entirely 
inside the path component of X which contains p, we restrict ourselves to path­
connected spaces. With this restriction, the fundamental group is independent 
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(up to isomorphism) of the choice of base point, aHowing us to refer to the 
fundamental group ofa path connected space and use the notation 1tl(X).t 

(5.6) Theorem.IJ X is path-conneeted then 1t 1 (X,p) and 1t 1 (X,q) are isomorphie 
Jor any two points p,q E X. 

Before giving the proof, we observe that two paths y, a in aspace which satisfy 
y(1) = a(O) give rise to a new path y.a via our product formula 

{
y(2S) 

y.a(s) = a(2s - 1) 
o~s~t 
t~s~1 

The foHowing facts can be verified exactly as for loops. 

(a) Ify ~ y' rel {O,1} and a ~ a' rel {O,l} then y.a ~ y'.a' rel {O,l}. 
(b) For any three paths y, a, J satisfying y(1) = a(O) and a(1) = J(O), we have 

(y.a).J ~ y.(a.J) rel {O,1). 
(c) If y-l is the path defined by y-l(S) = y(1 - s), then y.y-l is homotopic 

rel {O,l} to the constant path at y(O); similarly y-l.y is homotopic to the 
constant path at y(l). 

Proof oftheorem (5.6).Choose a path y which begins at p and ends at q (such a 
path exists because X is path-connected). If IX is a loop based at p, then 
(y-l.IX).y is based at q and we define 

1tl(X,P)~ 1t 1(X,q) 

<IX) t----> <y-l.lX.y) 

Using (a), (b), and (c) above, it is elementary to check that y* is weH defined, is a 
homomorphism, and has an inverse, namely (y-1k Therefore y* is an iso­
morphism. 

So far we have assigned a group to each path-connected topological space. 
We can do even better. To each continuous function between two spaces we 
can assign a homomorphism between their respective groups. The construction 
is very natural and geometrie. Let J: X ~ Y be continuous, let p be the chosen 
base point in X, and choose q = J(p) as base point in Y. For any loop IX based 
at p in X, the composite function Jo IX is a loop based at q in Y; moreover, 
lemma (5.4) shows us that composing two homotopic loops withJgives loops 
which are homotopic in Y. Therefore we can define a function 

J* :1t l(X,P) ~ 1tl(Y,q) 

by J*«IX») = <J 0 IX). SinceJ 0 (IX.ß) = (f 0 IX).(f 0 ß), we see thatJ* is a homo­
morphism: we say thatJ* is indueed by f. 

t 1t j because it is the first of a sequence of groups 1tj(X).1t2(X), .... the so-called homotopy groups 
of X. 
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Our construction immediately gives: 

(5.7) Theorem. (g ° f)* = g* ° f* whenever we have spaees and maps 
X ~ Y -----4 z. 
We ought to be more careful: our statement oftheorem (5.7) is really a convenient 
abbreviation. To be completely precise, we should make explicit mention of 
base points, i.e., choose base points pE X, q = f(p) E Y, r = g(q) E Z, and say 
that (g °f)*:1t1(X,P)- 1t1(Z,r) is the composition 

1t1(X,P)~ 1t1(Y,q)~ 1t1(Z,r) 

In the special case where we have a homeomorphism h: X - Y, we may 
apply theorem (5.7) to X ~ Y ~ X, and to Y ~ X ~ Y, obtaining 

h- 1 ... ° h ... = (lx) ... :1t1(X,P)- 1t1(X,P) 

h ... ° h- 1 * = (1 y )* :1t1(Y,h(p»- 1t1(Y,h(p» 

But an identity function quite c1early induces the identity homomorphism, 
and therefore h*:1t1(X,P)-1r1(Y,h(p» is an isomorphism. So homeomorphie 
(path-eonneeted) spaees have isomorphie fundamental groups. 

We now have one way of attempting to distinguish between two path­
connected topological spaces. We can try to compute their fundamental groups . 
and then check whether or not these groups are isomorphie. If they are not 
isomorphie, the spaces are not homeomorphic. If the groups are isomorphie 
then we gain no information and we are left to look for a finer, more sophisticated 
invariant to distinguish between the spaces in question. 

Problems 
9. Let 0(, ß, y be loops in aspace X, all based at the point p. Write out formulae 
for (O(.ß).y and O(.(ß.y), and work out a specific homotopy between these two 
loops. Make sure that your homotopy is a homotopy rel{0,1}. 

10. Let y, u be two paths in the space X which begin at the point p and end at q. 
As in the proof of theorem (5.6), these paths induce isomorphisms y*, u ... of 
1t1(X,P) with 1t1(X,q). Show that u* is the composition ofy* and the inner auto­
morphism ofn1(X,q) induced by the element <u- 1 y). 

11. Let X be a path-connected space. When is it true that for any two points 
p,q E X all paths from p to q induce the same isomorphism between 1t 1(X,p) 
and 1t1(X,q)? 

12. Show that any indiscrete space has trivial fundamental group. 

13. Let G be a path-connected topological group. Given two loops 0(, ß based 
at e in G, define a map F: [0,1] x [0,1] - G by F(s,t) = O(s).ß(t}, where the 
dot denotes multiplication in G. Draw a diagram to show the effect of this map 
on the square, and prove that the fundamental group of G is abelian. 
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14. Let IE~ denote those points of 1E3 which have nonnegative final coordinate. 
Show that the space IE~ - {(x,y,z) I y = 0, ° ~ z ~ 1} has trivial fundamental 
group. 

5.3 Calculations 

This section contains our first calculations. We shall deal with the circle and 
one or two other simple spaces: more general calculations will have to wait 
until Chapter 6. 

Space 

Convex subset of IEn 
Circle 

sn, n ~ 2 
pn,n ~ 2 

Torus 
Klein bottle 

Lens space L(p, q) 

Fundamental group 

Trivial 
l 

Trivial 
lz 

lxl 
{a,blaZ = bZ} 

lp 

Convex subset o/IE". In this case, we can shrink any loop to the constant loop 
at the base point by means of a straight-line homotopy. So the fundamental 
group of a convex subset of a euclidean space is the trivial group. A path­
connected space whose fundamental group is trivial is said to be simply 
connected. 

The circle. Identify the circ1e with the unit circ1e in the complex plane, and 
let 1t: ~ ~ S1 denote the exponential mapping x f-+ e2ltix• All integers are 
identified to the point 1 E S1 by the exponential map, and we choose this point 
as our base point. 

Given an integer nE 7L, let Yn denote the path yn<s) = ns, ° ~ s ~ 1, joining ° 
to n in ~. Then Yn projects under 1t to a loop based at 1 in S1. Also, 1t 0 Yn winds 
round the circle n times, in an anticlockwise direction for n positive, or clockwise 
if n is negative. 

(5.8) Theorem. The function <jJ:7L ~ 1t1(Sl, 1) defined by <jJ(n) = (1t 0 Yn> is an 
isomorphism. 

In order to prove theorem (5.8) we shall need the help of some lemmas. First 
note that if Y is any other path joining ° to n in ~, then Y and Yn are homotopic 
relative to {0,1} and therefore project to homotopic loops in S1. 
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(5.9) Lemma. 4J is a homomorphism. 

Proof. Given integers m, n, let u be the path in ~ defined by u(s) = yis) + m. 
Then n° u = n° Yn and Ym'U joins 0 to m + n. Therefore 

4J(m + n) = (n 0 Ym + n) = (n 0 (Ym'u» 

= «(n 0 Ym) (n 0 u» = «(n 0 Ym) (n 0 Yn» 

= cf>(m).4J(n) 

Our next job is to show that 4J is onto. In order to do this we begin with an 
element ofnl(Sl,1), represent the element by a loop oe based at 1, and try to 'lift' 
this loop to a path Y in ~ which begins at O. In other words, we try to find a 
path Y in ~ which satisfies n 0 Y = oe and y(O) = O. Suppose we can do this, then 
the endpoint y(1) ofy projects to oe(1) = 1 in si, and therefore must be an integer 
n. By construction 4J(n) = (oe). This integer is called the degree of oe, it measures 
the number of times oe winds round the circ1e. 

To carry out this lifting process we need to examine our identification map 
n : ~ -+ Sl in more detail. Let U be the open set in Sl formed by deleting the 
point -1, and consider the inverse image of U in ~. This is precisely the union 
of all open intervals of the form (n - !, n + !), n E Z. We note that these 
intervals are pairwise disjoint and that the restriction of n to any one of them 
is a homeomorphism of the interval with U. Similarly, if V = Sl - {1}, the 
inverse image of V breaks up as a disjoint union of open sets in such a way that 
the restriction of n to any one of the open sets is a homeomorphism. Now 
U u V is all of Sl. Therefore if we have a loop in Sl we can try to break it up 
into segments so that each segment lies in either U or V, then lift these segments 
one by one back into ~ using the special properties of U and V noted above. 

(5.10) Path-lifting lemma. 1f u is a path in Sl which begins at the point 1, there 
is a unique path a in ~ which begins at 0 and satisfies n° a = u. 

Proof. The open sets u- 1(U), u- 1(V) give an open cover of [0,1], so by 
Lebesgue's lemma (3.11) we know that we can find points 0 = 
to < t1 < ... < tm = 1 such that each [ti' ti + l]1ies in u- 1(U) or u- 1(V). We 
first define 8 on the subinterval [O,t 1]. Since u begins at the point 1 we must 
have u([0,t1])!;;; U. Remember that nl (-!,!) is a homeomorphism from 
( -!,!) to U, and let f denote its inverse. Now set 8(s) = fu(s) for 0 ~ s ~ t l' 
Suppose, inductively, that we have defined 8 on [0, tk] and wish to extend our 
defmition over [tk , tk + 1]' If u([tk> tk + 1]) !;;; U, and if 8(tk) E (n - !, n + !), we 
let g denote the inverse of nl (n - t, n + t) and set a(s) = gu(s), tk ~ S ~ tk + l' 
If u([tk , tk + 1]) !;;; V, then 8(tk) E (n, n + 1) for some n. The restriction of n to 
(n, n + 1) is a homeomorphism, with inverse, say h, and we can define 
8(s) = hu(s), tk ~ S ~ tk + l' This completes our inductive definition of the 
lifted path 8. Notice that having defined 8 on [0, t k ], there is only one way to 
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extend it over [tk, tk + 1]; therefore a is unique. 

Of course, we could have stated lemma (5.10) in a more general form. If (1 

is a path in Si which begins at the point p, we can find a unique path a in IR 
which satisfies 7t 0 a = (1 and which begins at any preassigned point of 7t- 1(p). 
Such a path a is called a lift of (1. 

In order to show that cfJ is one-one we shall need to lift homotopies from the 
circle back into the realline. This can be done using the following result: 

(5.11) Homotopy-lifting lemma. If F: I x I - Si is a map such that F(O,t) = 
F(l,t) = 1 for 0 ~ t ~ 1, there is a unique map F:I x I - IR which satisfies 

7t 0 F = F; and 
F(O,t) = 0, 0 ~ t ~ 1. 

Proo/. We shall give only an outline, since the idea is precisely the same as for 
lemma (5.10). Subdivide 1 x 1 into squares by means ofhorizontal and vertical 
lines so that each square maps into U, or into V, under F. This requires an 
application of Lebesgue's lemma. We build up our definition of F over these 
squares one at a time, beginning with the bottom row, working from left to right; 
then dealing with the second row in the same direction; etc. There is one point 
to be made: notice that when we want to extend the definition of P over a 
particular square, the part of the square on which F is already defined consists 
of either the left-hand edge, or the left-hand edge and the bottom. In both 
cases, this set is connected. This means that its image under Flies entirely 
inside one of the components of 7t- 1(U) or 7t- 1(V) (according as F sends the 
square in question inside U or V), and we use the fact that the restriction of 7t 
to this component is a homeomorphism in order to complete the definition of 
F over our square. 

Proo/ 0/ theorem (5.8). By lemmas (5.9) and (5.10), we know that 
cfJ:7L- 7tl(St, 1) is a homomorphism and is onto. To see that cfJ is one-one, 
we argue as follows. Let nE 7L and suppose cfJ(n) is the identity element of 
7tl(Sl,I). This means that ifwejoin 0 to n by a path y, then 7t 0 Y is a null-homo­
topic loop, i.e., is homotopic to the constant loop at the base point. Choose a 
specific homotopy F from the constant loop at 1 E Si to 7t 0 y, and ap~ly lemma 
(5.11) to find F:l x 1 - IR which projects onto Fand satisfies F(O,t) = 0, 
o ~t ~ 1. 

Let P denote the union of the left- and right-hand edges and bottom of 
1 xl: then F maps all of P to 1. Since 7t 0 F = F, and since P is connected, 
we know that F must map all of P to some integer. But F sends the left-hand 
edge of 1 x 1 to 0, so F(P) = O. 

The path in IR defmed by F(s, 1) is a lift of 7t 0 Y which begins at 0, and must 
therefore be y by the uniqueness part of lemma (5.10). Since F(l,l) = 0, we 
conclude that y(l) = n = O. Therefore the kernel of cfJ consists of the integer 0 
alone and we have proved that cfJ is an isomorphism. 
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The n-sphere. To show that sn has trivial fundamental group, for n ~ 2, we use 
the following result: 

(5.12) Theorem. Let X be aspace which can be written as the union 0/ two simply 
connected open sets U, V in such a way that U n V is path-connected. Then Xis 
simply connected. 

Proof. We show that any loop in X is homotopic to a product of loops each 
of which is contained in either U or V. This is enough to prove the theorem since 
U and V are both simply connected. 

Choose a base point pE U n V, and let IX: I - X be a loop based at p. Using 
Lebesgue's lemma (3.11), we can find points 0 = to < t1 < t2 < .. . < tn = 1 
in I such that 1X([tk _ 1, tk]) is always contained in U or V. Write IXk for the path 
s 1-+ 1X((tk - tk _ 1)S + tk _ 1)' 0 ~ s ~ 1. Join p to each point lX(tk ), 1 ~ k ~ n - 1. 
by a path Yk which lies in U if lX(tk ) E U, and which lies in V if lX(tk ) E V. If 
lX(tk) EU n V we need to find Yk in U n V; this poses no problem since we have 
assumed U n V to be path-connected. Our loop IX is homotopic to the product 

(lXl'Y1 1).(Y1· 1X2.Y2"1).(Y2· 1X3·Y3 1) •... ·(Yn - 1· lXn) 

each member of which is a loop contained in U or V. Figure 5.5 illustrates the 
argument for the 2-sphere written as the union of two open discs. 

u 

v 

Figure 5.5 

To apply this result to sn, take distinct points x, y and set U = sn - {x}, 
V = sn - {y}. Both U and V are homeomorphic to IEn, and therefore simply 
connected, and U n V is path-connected provided n ~ 2. 

Orbit spaces. The circle is the orbit space (Section 4.4) of the action of the 
integers on the realline by addition, and our computation of1<1(S1) is a special 
case of the following result, wh ich also allows us to compute the fundamental 
groups of the torus, the Klein bottle, and the Lens space L(p,q). 
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(5.13) Theorem. If G aets as a group of homeomorphisms on a simply eonneeted 
spaee X, and if eaeh point x E X has a neighbourhood U whieh satisfies 
U 11 g(U) = 0 Jor all gE G - {e },t then n1 (X/G) is isomorphie to G. 

Sketch prooJ. The idea is exactly as before. Fix a point Xo EX and, given g E G, 
join X o to g(xo) by a path]l. If n:X -4 X/G denotes the projection, n 0]1 is a loop 
based at n(xo) in X/Go Define 

cjJ: G -4 nl(X/G, n(xo)) 

by cjJ(g) = <n 0 ]I). Since X is simply connected, we can change ]I to any other 
path joining Xo to g(xo) without affecting cjJ. 

It is not hard to check that cjJ is a homomorphism.t In order to prove cjJ 
one-one and onto we need analogues of our homotopy-lifting and path-lifting 
lemmas, (5.10) and (5.11). (For example, to show cjJ onto, start with an element 
<oe) E nl(X/G, n(xo)) and try to find a path ]I in X which begins at Xo and 
satisfies n 0 ]I = oe. The endpoint ]1(1) lies in the orbit of xo, so there is an element 
gE G such that g(xo) = ]1(1). By construction cjJ(g) = <oe).) 

Thinking back to our work on the circle, we see that these two lemmas hold 
for any map n:X -4 Y with the following property.t For each Y E Y we require 
an open neighbourhood V, and a decomposition of n-1(V) as a family {U~} 
of pairwise disjoint open sets, in such a way that the restriction of n to each U ~ 
is a homeomorphism from U~ to V. Such a map n is called a eovering map, and 
X is called a eovering spaee§ of Y. 

Now given Y E X/G, we choose a point x E n-1(y) and a neighbourhood U of 
x in X such that U 11 g(U) is empty for all elements of G other than the identity. 
We set V = n(U), remembering that n:X -4 X/G takes open sets to open sets, 
and take {g( U) I g E G} for the family {U~}. This shows that n is a covering map 
and completes our sketch proof of theorem (5.13). 

Several of the examples of group actions in Section 4.4 satisfy the hypotheses 
of theorem (5.13): 

Example 1. 7L x 7L on le with orbit space the torus T, giving nl(T) ~ 7L x 7L. 
Example 2. 7L2 on sn with orbit space pn, giving n1(pn) ~ 7L 2 for n ~ 2. 
Example 6. 7L p on S3 with orbit space the Lens space L(p,q), giving nl(L(p,q)) ~ 7L p • 

Consider example 1. Given a point of the plane, take the open disc of radius! 
about this point as U. Then any translation in 7L x 7L (other than the identity) 
moves this disc off itself. We leave examples 2 and 6 to the reader. 

Fundamental groups are not always abelian. Let G be the group with 
generators t, u, subject to the relation u - 1 tu = C 1, and consider the action of 
G on the plane determined by 

t If this condition is satisfied then G has the discrete topology. 
t Details are left to the reader, though we give some help in Problems 17-20. 
§ For a detailed treatment of covering spaces see Chapter 10. 
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t(x,y) = (X + 1, y) 

u(x,y) = (-x + 1, Y + 1) 

Then t is a translation parallel to the x axis, and u a glide reflection along the 
line x = 1. The hypotheses of theorem (5.13) are easily checked, and the orbit 
space is the unit square with its sides identified as shown in Fig. 5.6, i.e., the 
Klein bottle K. Therefore the fundamental group of the Klein bottle is the 
group G. In terms of the parallel glide reflections a = tu, b = u, we recapture 
example 8c of Section 4.4 and we have 11: 1(K) ~ {a,b I a2 = b2 }. 

y 

u 

I 

X 

Figure 5.6 

Product spaces. The final result of this seetion provides another tool for 
calculating fundamental groups: 

(5.14) Theorem. IfX andY are path-eonneeted spaces 11: 1(X x Y) is isomorphie 
to 11: 1(X) x 11: 1(Y). 

Proof. Choose base points X o EX, Yo E Y, and (xo, Yo) E X x Y. All loops will 
be based at these points though, for simplicity, we shall omit them from the 
notation. The projections PI,P2 induce homomorphisms PI*:11: I(X x Y)~ 
11: I (X), P2*: 11: I (X X Y) ~ 11: I (y), and provide us with a ready-made homo­
morphism 

11: 1(X x Y)~ 11:t(X) x 11: t(Y) 

(1X>f---+ (PI 0 IX>, (P2 0 IX» 

If 0( is a loop in X x Y, and if Pt 0 0( 7 e xo , P2 0 0( 9f e yO' then 0( If e(xo, YO) 

where H(s,t) = (F(s,t),G(s,t». Therefore t/J is one-one. 
To show that t/J is onto, we begin with loops ß in X, y in Y, and form the loop 

O((s) = (ß(s), y(s» in X x Y. By construction, PI 0 0( = ß and P2 0 0( = y. 
Therefore t/J(O(» = (ß>, (y» as required. 
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This result gives a second proof that the torus has fundamental group 
7L x 7L and shows, for example, that n 1(sm x sn) is the trivial group when 
m,n ~ 2. 

Problems 
15. Use theorem (5.13) to show that the Möbius strip and the cylinder both have 
fundamental group 7L. 

16. Think of sn as the unit sphere in [En + 1. Given a loop 0( in sn, find a loop ß 
in [En + 1 which is based at the same point as 0(, is made up of a finite number of 
straight line segments, and satisfies 1100(s) - ß(s) 11 < 1 for 0 ~ s ~ 1. Deduce 
from this that sn is simply connected when n ~ 2. Where does your argument 
break down in the case n = I? 

17. Read through the sketch proof of theorem (5.13). If gl' g2 E G, join Xo to 
gl (xo) by a path Yl' and Xo to g2(XO) by Y2- Observe that Yl.(g 1 0 Y2) joins Xo to 
glg2(XO) and deduce from this that cjJ is a homomorphism. 

18. Let n : X - Y be a covering map. So each point Y E Y has a neighbourhood 
V for which n- 1(V) breaks up as a union of disjoint open sets, each of which 
maps homeomorphically onto Vunder n. Call such a neighbourhood 'canonical'. 
If 0( is a path in Y, show how to find points 0 = to < t 1 < ... < tm = 1 such 
that O(([t;,t; + 1]) lies in a canonical neighbourhood for 0 ~ i ~ m - 1. Hence 
lift 0( piece by piece to a (unique) path in X which begins at any preassigned 
point of n- 1(0((0)). 

19. Let n:X - Y be a covering map, pE Y, q E n- 1(p), and F:I x 1- Ya map 
such that F(O,t) = F(l,t) = p for ° ~ t ~ 1. Use the argument of lemma (5.11) 
to find a map F: I x I _ X which satisfies n 0 F = F, and F(O,t) = q, ° ~ t ~ 1. 
Check that F is unique. 

20. Redo Problem 19 as follows. For each t in [0,1] we have a path Ft(s) = F(s,t) 
in Y which begins at p. Let Ft be its unique lift to a path in X which begins at 
q, and set F(s,t) = Ft(s). Check that F is continuous and lifts F. 

21. Describe the homomorphismf*:n1(Sl, 1)- nl(S\ f(l)) induced by each of 
the following maps: 
(a) The antipodal map f(e i8 ) = ei (8 + 1tl, ° ~ () ~ 2n. 
(b) f(e iO ) = ein8, ° ~ () ~ 2n, where nE 7L . 

. 8 {ei8 0 ~ () ~ n 
(c) fee' ) = ei (21t - 8l, n ~ () ~ 2n 

22. In Section 4.4 we described three different actions of 7L 2 on the torus, and 
found the orbit spaces to be the sphere, the torus, and the Klein bottle. F or each 
of these actions, describe the homomorphism from the fundamental group of 
the torus to that of the orbit space induced by the natural identification map. 

23. Provide apreeise solution to the second part of Problem 8 as follows. Let 
a, ß be the paths in A defined by a(s) = (s + 1,0) and ß(s) = ha(s), ° ~ s ~ 1. 
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Show that if h is homotopic to the identity relative to the two boundary circ1es 
of A, then the loop ~-lß is homotopic rel{O,I} to the constant loop at the point 
(1,0). Now check that this loop represents a nontrivial element of the funda­
mental group of A. 

5.4 Homotopy type 
The fundamental group is in fact left invariant by a much larger c1ass of maps 
than the c1ass of homeomorphisms. Like the other algebraic invariants which 
we shall construct later (homology groups and the Euler characteristic), it is an 
invariant of the so-called 'homotopy type' of aspace. 

(5.15) DefInition. Two spaces X and Y have the same homotopy type, or are 
homotopy equivalent, if there exist maps 

J 

X~Y 
~ 

g 

suchthatgof~ l x andf o g ~ l y. 

The map g is called a homotopy inverse for f, and a map which has a homotopy 
inverse will be called a homotopy equivalence. We shall write X ~ Y when 
X and Y have the same homotopy type. 

(5.16) Lemma. The relation X ~ Y is an equivalence relation on topological 
spaces. 

Proof. The reflexive and symmetry properties are obvious. The relation is 
transitive because if we have maps 

J 

X~Y 
~ 

g 

u 

Y~Z 
~ 

v 

which are homotopy equivalences, then by lemma (5.4) 

govouoJ~ go lyoJ= goJ~ Ix 
and 

u 0 Ja g 0 V ~ U 0 l y 0 V = U 0 V ~ Iz 

Therefore the maps 
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g ou 

show that X and Z have the same homotopy type. 

Examples. 
1. Homeomorphic spaces have the same homotopy type. 

2. Any convex subset of a euclidean space is homotopy equivalent to a point. 

3. P - {O} has the homotopy type of sn - 1. Define g : P - {O} _ sn - 1 by 
g(x) = x/ li xi i, and let f : sn - 1 _ lEn - {O} be indusion. Then g of = I s" , 
and 1[" _ :01 c::= f og via G(x, t) = (1 - t)x + t(x/ II xii). The case n = 2 is illus­
trated by Fig. 5.7; the arrows indicate how points move during the homotopy G. 

Figure 5.7 

4. Let A be a subspace of X. A homotopy G : X x I - X wh ich is relative to A 
and for which 

G(x,O) = x} 
G(x,l)E A 

for all x E X 

will be called adeformation retraction of X onto A. If there is adeformation 
retraction of X onto A, then of course X and A have the same homotopy type 
(take f: A - X to be indusion and g : X - A to be x ~ G(x,l)). Fig. 5.8 shows 
deformation retractions of a disc with two holes onto the one-point union of 
two cirdes (figure of eight); onto two cirdes joined by a line segment; and 
onto aspace which looks like the letter e. We condude that aB these spaces are 
homotopy equivalent. (Their fundamental group is the free group 7L * 7L on 
two generators, as we shaB see in Chapter 6.) 
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Suppose thatf,g:X ~ Yare homotopie maps. As a first step towards showing 
that spaees of the same homotopy type have isomorphie fundamental groups, 
we propose to ex amine the relation between the homomorphisms f* , g* of 
fundamental groups indueed by fand g. As we shall see they differ by an 
isomorphism. 

Figure 5 .8 

(5.17) Theorem. 1f f T g: X ~ Y then g*: n 1 (X,p) ~ n 1 (Y,g(p» is equal to the 
composition 

n1(X,p)~ n1(Yj(p» ~ n1(Y,g(p», 

where I' is the path joining f(p) to g(p) in Y defined by y(s) = F(p,s). 

Proof. Let rx be a loop in X based at p. By definition, g*«rx» = <g ° rx) and 
yJ*«rx» = <y -l.(f° rx). y). We must therefore show that the loops g orx 
and (I' -1.(f ° rx». I' are homotopie relative to {O,l}. 

Consider the map G: I x I ~ Y defined by G(s,t) = F(rx(s) ,t). This maps the 
sides of the square 1 x 1 as shown in Fig. 5.9a. Using G we construet a homo­
topy H: 1 x 1 ~ Y between our two loops, whose effeet on the square is illus­
trated in Fig. 5.9b, and whose preeise definition is as follows: 

H(s,t) = 

1 - t 
1'( 1 - 4s) ° ~ s ~ --

4 

G(4S + t - 1 t) 
3t + 1 ' 

y(2s - 1) 

1-t 1+t 
--~s~--

4 2 

1 + t 
- 2- ~ s ~ 1 
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As usual, we appeal to the glueing lemma (4.6) to see that both G and H are 
continuous. 

gorx go.rx 

l' G l' l' 

Jo rx l' t t l' 

Jorx 

(a) (b) 

Figure 5.9 

(5.18) Theorem. If two path-eonneeted spaees are of the same homotopy type, 
they have isomorphie fundamental groups. 

Proof. We shall have to keep a careful eye on base points during this proof. We 
are given spaces and maps 

f 

X~Y 
~ 

9 

such that 1x y gof and 1y 71 fog. Choose a base point pE X which lies in 
the image of g, say p = g(q). We shall show thatf*:1l:1(X,P)~ 1l:1(Y,j(P» is 
an isomorphism. 

Let y be the pathjoining p to gf(P) in X defined by y(s) = F(P,s). Theorem 5.17 
gives 

(g ° f)* = y* :1l:1(X,P) ~ 1l:1(X,gf(P» 

which means that (g ° 1)* is an isomorphism. But (g 0f)* is the composition 

1l:1(X,P)~ 1l:1(Y,f(P»~ 1l:1(X,gf(P» 

and therefore f* is one-one. 
To show f* is onto, we proceed in a similar fashion. Let u be the path joining 

q to f(P) in Y defined by u(s) = G(q,s). By theorem (5.17) 

(Jo g)* = u* :1l:1(Y,q) ~ 1l:1(Y,j(P» 
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and so (/0 g)* is an isomorphism. But (/0 g)* is the composition 

1J:l(Y,q)~ 1J:l(X,P)~ 1J: 1(Y,j(P)) 

and we see thatf* is onto. Thereforef* is an isomorphism. 

Using the above, we can squeeze a little more information out of our calcula­
tions. The Möbius strip, the cylinder, the punctured plane IfZ - {O}, and the 
solid torus, all have the homotopy type of a circle, and consequently have 7L 
as fundamental group. IEn - {O} deformation-retracts onto sn -1, and is there­
fore a simply connected space when n ~ 3. 

Aspace X is called contractible if the identity map Ix is homotopic to the 
constant map at some point of X. 

(5.19) Theorem. (a) Aspace is contractible if and only ifit has the homotopy type 
ofapoint. 
(b) A contractible space is simply connected. 
(c) Any two maps into a contractible space are homotopic. 
(d) If X is contractible, then Ix is homotopic to the constant map at x for any 

XEX. 

Proof. (a) Given pE X, write cp for the constant map at p and i for the inclusion 
of {p} in X. If Ix is homotopic to cp ' the maps 

cp 

X~{p} 

show X has the homotopy type of a point. Conversely, given maps 

f 

x~{a} 
g 

such that gof ~ Ix, we see that Ix is homotopic to the constant map at the 
point p = g(a). 
(b) If Ix 7 Cp' the path y(s) = F(x,s) joins x to p. So X is path-connected.t Now 
apply theorem (5.18). 
(c) If Ix ~ cp ' then given mapsf,g:Z --4 X we have 

f = Ix 0 f ~ cp 0 f = cp 0 g ~ Ix 0 g = g 

(d) Suppose Ix ~ cp and apply (c) to the maps cp ' cx:X --4 X. 

t If X and Y have the same homotopy type then X is path-connected if and only if Y is path­
connected. 
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Any convex subset of a euc1idean space is contractible, and we can easily 
imagine how to deform the identity map (along straight lines) to the constant 
map at any point. However, this example should not lead to too much optimism. 
In 'homotoping' the identity map Ix to a constant map cp ' we may be forced to 
move the point p during the homotopy, i.e., there may not be a homotopy 
relative to {p} from Ix to cp' For an example, take the 'co mb space' shown in 
Fig. 5.10 as X, and take p to be the point (O,t). There is no homotopy from 1x 
to cp which keeps p fixed. (Why not?) But we can shrink each tooth of the co mb 
vertically until we arrive at the interval [0,1] on the x axis, then shrink this 
interval to the point 0: 

y 

p 

o • • • 1.. I 1 
4"3 ~ x 

Figure 5.10 

The co mb has a 
'tooth' joining 
(0, 0) to (0, +), 
a?d ~ +, 0) to 
( n, , ) for 
n = 1, 2, 3, ... 

this shows 1 x homotopic to co. Moving ° up the y axis top completes a homotopy 
from Ix to cp' 

Figrire 5.11 

A contractible space may not look very contractible. If we identify the sides 
of a triangle in the mann er indicated in Fig. 5.11 we obtain aspace called the 
'dunce hat'. The dunce hat is contractible (Problems 27, 28), though there 
appears no obvious way of setting about contracting it. 
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Problems 
24. If X ~ Y and X' ~ Y', show that X x X' ~ Y x Y'. Show also that CX 
is contractible for any space X. 

25. Show that the punctured torus deformation-retracts onto the one-point 
union of two circles. 

26. Consider the following examples of a circle C embedded in a surface S: 
(a) S = Möbius strip, C = boundary circle; 
(b) S = torus, C = diagonal circle 

= {(x,y)e SI x SI I x = y} ; 
(c) S = cylinder, C = one of boundary circles. 
In each case, choose a base point in C, describe generators for the fundamental 
groups of C and S, and write down in terms of these generators the homo­
morphism of fundamental groups induced by the inclusion of C in S. 

27. Prove that if f,g : SI ---+ X are homotopic maps, then the spaces formed from 
X by attaching a disc using 1 and using gare homotopy equivalent; in other 
words, X ufD ~ X ugD. 

28. Use Problem 27, and the third example of a homotopy given in Section 5.1, 
to show that the 'dunce hat' has the homotopy type of a disc, and is therefore 
contractible. 

29. Show that the 'house with two rooms' pictured in Fig. 5.12 is contractible. 

Entrance to Room 1/"..----

Room 2 

Room 1 

Entrance 10 Room 2 

Figure 5.12 
\",----",/;' 

30. Give detailed proofs to show that the cylinder and Möbius strip both have 
the homotopy type of the circle. 

31. Let X be the comb space shown in Fig. 5.10. Prove that the identity map of 
X is not homotopic rel{p} to the constant map at p. 

32. (Fundamental theorem 01 algebra) Show that any polynomial with complex 
coefficients, which is not constant, has a root in IC as folIows. We can clearly 
take the leading coefficientto be 1, so let p(z) = zn + an _ 1 zn - 1 + ... + a1 z + ao. 
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Under the assumption that p(z) is never zero, define a map ft: Si _ Si by 
.t;(z) = p(tz)/I p(tz) I for each nonnegative real number t. Prove that any two of 
these maps are homotopic, note that fo is a constant map, and produce a 
contradiction by showing that for t large enough, .t; is homotopic to the func­
ti on g(z) = zn. 

5.5 The Brouwer fixed-point theorem 
Our first application of the machinery created so far is to a celebrated result of 
L. E. J. Brouwer concerning fixed points of continuous functions. Brouwer's 
theorem states that a continuous function from a ball (of any dimension) to itse/f 
must leave at least one point fixed. For reasons which will emerge shortly, we 
cannot deal with the result in this degree of generality here. We shall give proofs 
assuming the dimension of the ball to be no more than two, leaving the general 
case to Chapter 8, theorem (8.14). 

Proof for dimension 1. We can replace any ball of dimension 1, up to homeo­
morphism, by the unit interval 1 = [0,1]. We must show that if f:1 - 1 is 
continuous, there is a point XE 1 such that f(x) = x. If not, then 
1 = {x E 1 If(x) < x} U {x E 1 If(x) > x}. Now f(l) < 1 and f(O) > 0, so that 
these sets are nonempty, and using the continuity off it is easy to check they 
are both open. Since 1 is connected, we have a contradiction. 

A slightly different version of this argument, and one which lends itself better 
to higher dimensions, is the following. Again assume the result false, and define 
g:1 - {0,1} by g(x) = ° iff(x) > x and g(x) = 1 iff(x) < x. The continuity of 
9 follows from that off, and gis onto since g(O) = ° and g(l) = 1. We have on ce 
more contradicted the fact that 1 is a connected space. 

Proof for dimension 2. We take the unit disc D in the plane as our standard 
two-dimensional ball and assume we have a map f: D - D which has no fixed 
points. Mimicking the above, for each point x draw a line segment from f(x) 
to x (the direction is important) and extend it until it hits the unit circle C 
(Fig. 5.13). Sending x to the intersection of this line segment with C defines a 
function g: D - C. The continuity of f ensures that 9 is continuous, and by 
construction g(x) = x for all points of C. 

We feel very strongly that a function 9 : D - C, which is the identity on C, 
will have to te ar D and therefore cannot possibly be continuous. In dimension 
1 we obtained our contradiction by comparing the connectedness of 1 with the 
fact that {O, 1} is not connected. Both D and C are connected spaces, so we 
cannot use the same argument here. However, D is simply connected, whereas 
C has fundamental group 7L, and the contradiction now comes by arguing 
that the induced homomorphism g* :1t 1 (D) - 1tl (C) must be onto. 
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D 
p 

f(x) 

Figure 5.13 

Take the point p = (1,0) as base point for both C and D, and denote the 
inclusion of C in D by i: C ~ D. The spaces and maps C ~ D ~ C give 
rise to groups and homomorphisms 

1t1(C,p) ~ 1t1(D,p) ~ 1t1(C,p) 

Now g 0 i(x) = x for all x in C, therefore g* 0 i* is the identity homomorphism 
and g* must be onto. But 1t 1(D,p) is the trivial group and 1t1(C,P) ~ 71., so we 
have our contradiction and Brouwer's theorem must be true in dimension 2. 

The above argument shows the interplay between algebra and topology at 
its best. The initial geometrical problem is difficult, yet once translated into 
algebra the solution uses only the simplest of ideas. Note the importance of 
theorem (5.7) in allowing us to identify the homomorphisms g* 0 i* and (g 0 i)*. 
For balls of dimension greater than 2 we can proceed in the same way, but 
we cannot use the fundamental group for the proof because the boundary of 
the n-ball (sn - 1) is simply connected for n> 2. We use homology groups 
instead; see Chapter 8. 

If Ais a subspace of X and if g:X ~ A is a map for which g I A = 1A, then g 
is called a retraction of X onto A. With this terminology, the proof given above 
amounts to showing that there is no retraction of a disc onto its boundary 
circle. The important property of a retraction is that it induces an onto homtJ­
morphism of fundamental groups. (The proof is as above with D and C replaced 
by X and A respectively, and p replaced by a point of A.) 

Problems 
We shall say that the space X has the jixed-point property if every continuous 
function from X to itself has a fixed point. 

33. Which of the following spaces have the fixed-point property? 
(a) The 2-sphere ; (b) the torus; (c) the interior ofthe unit disc; (d) the one-point 
union of two circles. 
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34. Suppose X and Yare of the same homotopy type and X has the fixed-point 
property. Does Y also have it? If X retracts onto the subspace A, and A has the 
fixed-point property, need X also have it? 

35. Show that if X has the fixed-point property, and if X retracts onto the sub­
space A, then A also has the fixed-point property. Deduce the fixed-point 
property for the 'house with two rooms' of Problem 29. 

36. Letfbe a fixed-point-free map from a compact metric space to itself. Prove 
there is a positive number B such that d(x, f(x)) > B for every point ofthe space. 

37. Does the unit ball Rn in [n with the point (1,0, ... ,0) removed have the fixed­
point property? 

38. Show that the one-point union of X and Y has the fixed-point property if 
and only if both X and Y have it. 

39. How does changing 'continuous function' to 'homeomorphism' in the 
definition of the fixed-point property affect Problems 33 and 37? 

5.6 Separation of the plane 
We say that a subset A of aspace X separates X if X - A has more than one 
component. In this section we shall prove two separation theorems for the 
plane: 

(5.20) Theorem. 1f J is a subspaee of [2 whieh is homeomorphie to the circle, then 
J separates [2. 

(5.21) Theorem. 1f A is a subspaee of [2 whieh is homeomorphie to the closed 
interval [0,1 J, then A does not separate [2. 

A subspace J ~ [2 homeomorphic to the circle is normally called a Jordan 
eurve, or a simple closed curve. A subspace A ~ [2 homeomorphic to [0,1 J is 
called an are. If J ~ [2 is a Jordan curve, then [2 - J has (as one would expect) 
exaetly two components, one bounded, the other unbounded, and J is the 
frontier of each. This is the famous Jordan curve theorem, a detailed discussion 
of which can be found in Munkres [10J and Wall [12]. We shall content our­
selves here with the weaker statement of theorem (5.20), though we do give 
better results for polygonal curves in the problems. 

Pro%/ theorem (5.20). We identify [2 with the plane in [3 determined by the 
equation z = 0, and we use 82 to denote the unit sphere in [3. Let h be a homeo­
morphism from [2 to 82 - {(0,0,1)}, choose a point pE h(J), and choose a 
homeomorphism k: [2 ~ 82 - {p}. 

SetL = k- 1(h(J) - {p});thenLisaclosedsubsetof[2whichishomeomorphic 
to the realline. We imagine L as a line in the plane which runs off to infinity at 
both of its ends (Fig. 5.14). It is easy to check that [2 - J,82 - h(J), and 
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[[2 - L aIl have the same number of components. We shaIl prove theorem 
(5.20) by showingt that [[2 - L is not connected. 

We assurne 1E2 - L eonnected and aim for a contradiction. L is closed in 1E 2 

and therefore 1E2 - L is path-eonneeted by theorem (3.30). Let H +, H _ denote 
the open half-spaees of 1E3 defined by z > 0, z < 0, and set 

U = H+ u {(x,y,z) I (X,Y)E 1E2 - L, - 1 < z:::; O} 

V = H_ u {(x,y,z) I (X,Y)E 1E2 - L, 0:::; z < 1} 

Then U u V = 1E 3 - L, and U n V is homeomorphie to (1E2 - L) x (-1,1) 
whieh is a path-eonneeted spaee. Also, both U and V are simply eonneeted 
beeause any loop ean be pushed vertieaIly until it lies in either H + or H _, and 
then shrunk to a point. Theorem (5.12) now teIls us that 1E 3 - L is simply 
conneeted. To reaeh a eontradietion, and henee to eomplete the proof of 
theorem (5.20), we use the foIlowing lemma. 

(0, 0, 1) 

~2 . J~ ~_h __ @)~~(JL __ , 

• 
p 

Figure 5.14 

(5.22) Lemma. There is a homeomorphism h: 1E3 - 1E 3 such that heL) is the z axis. 

If we ean prove this lemma, then we have our contradietion as foIlows. By the 
lemma, 1E3 - L is homeomorphie to 1E 3 - (z axis), whieh is in turn homotopy 
equivalent to 1E2 - {O}. But the latter has infinite eyclie fundamental group. 
Therefore 7!1(1E3 - L) ~ 71., eontradieting the ealculation made above. 

Proof of (5.22). Choose a homeomorphism f : L -IE 1 and consider the set of 
points L 1 S;; 1E 3 defined by 

L 1 = {(x,y,j(x,y)) I (x,y) E L} 

This is a closed line in 1E 3 whieh lies vertieaIly 'over' Land whieh interseets eaeh 
horizontal plane in exactly one point. The idea is first to move L to L 1 by 
moving its points vertieally, then to push L 1 horizontally aeross to the z axis 
(Fig. 5.15). 

t Using an argument due to Doyle [24]. 
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Figure 5.15 

We must do this by means of a homeomorphism of all of 1E 3 . Extend 
j: L ---> 1E 1 to a continuous function g: 1E2 ---> 1E 1 using the Tietze extension 
theorem (2.15), and define h 1 : 1E 3 ---> 1E 3 by h 1(x,y,z) = (x,y,z + g(x,y)). Then 
h1 is a homeomorphism and h1(L) = L 1. Now set 

where U- 1(Z)x,j-1(Z)y) are the coordinates ofj-1(Z) in 1E 2 . So h2 is also a 
homeomorphism, and h2(Ld is the z axis. Finally, define h = h2 0 h1• Then 
h is a homeomorphism and heL) is the z axis as required. This completes the 
proof of theorem (5.20). 

Proof of theorem (5.21). Suppose 1E 2 - A has more than one component. Since 
A is compact, and therefore bounded, 1E 2 - A has a unique unbounded com­
ponent. Let K denote a bounded component of 1E 2 - A. Choose a disc D with 
centre the origin and large enough so that A u K lies in its interior. Let pE K 
and let r: D - {p} ---> Sl be the obvious retraction along straight lines joining p 
to the points of the boundary circle Sl of D. Set j = r I D - K: D - K ---> Sl. 

Now consider h = r IA:A ---> Sl. Since A is homeomorphic to [O,lJ we can 
use lemma (5.10) to lift h to a map fi: A ---> IR wh ich satisfies n° fi = h, where 
n: IR --> Sl is the exponential map. By the Tietze extension theorem, fi extends 
to a map g:A u K ---> IR. Set g = n° g:A u K ---> Sl. 

We plan to gluej and g together to give a map fu g:D ---> Sl. Now j and g 
certainly agree on A; the only question is whether ju g is continuous. The 
components of an open subset of a euclidean space are always open sets, so K 
is open. Therefore D - K is closed in D. Also, the closure of K cannot meet any 
other component of 1E 2 - A, so K ~ A u K. Since A is clearly closed in D we 
see that Au K is closed in D. By the glueing lemma, fu g: D ---> Sl is con-
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tinuous. But fu g(X) = f(x) = X for all points x of SI, in other words,fu g 
is a retraction. We have seen in Section 5.5 that there is no retraction of a disc 
onto its boundary, and we have the required contradiction. 

Problems 
40. Let A be a compact subset of IEn• Show that IE" - A has exactly one un­
bounded component. 

41. Let J be a polygonal Jordan curve in the plane. Choose a point p in the 
unbounded component of 1E2 - J which does not lie on any ofthe lines produced 
by extending each of the segments of J in both directions. Given a point x of 
1E2 - J, say that x is inside (outside) J if the straight line joining p to x cuts 
across J an odd (even) number of times. Show that the complement of J has 
exactly two components, namely the set of inside points and the set of outside 
points. 

42. Let J be a polygonal Jordan curve in the plane, and let X denote the closure 
of the bounded component of J. Show that X can be broken up into a number 
of convex regions by extending the edges of J, then divide each of these regions 
into triangles. Now use induction on the number of triangles to show that X 
is homeomorphic to a disco 

43. Having done Problem 42, show there is a homeomorphism of the plane 
which takes J to the unit circle. (This is the Schönflies theorem for polygonal 
Jordan curves. It is true for a general Jordan curve, but much harder to prove.) 

44. If J is a Jordan curve in the plane, use theorem (5.21) to show that the 
fron tier of any component of 1E 2 - J is J. 

45. Give an example of a subspace of the plane which has the homotopy type 
of a circle, which separates the plane into two components, but which is not 
the fron tier of both of these components. 

46. Give examples of simple closed curves on the torus, and on the projective 
plane, which separate, and which fail to separate. 

47. Let X be a subspace ofthe plane which is homeomorphic to a disco Generalize 
the argument oftheorem (5.21) to show that X cannot separate the plane. 

48. Suppose X is both connected and locally path-connected. Show that a map 
f:X ~ SI lifts to a mapl:X ~ ~ (in other wordsjfollowed by the exponential 
map is precisely f) if and only if the induced homomorphismf* : n i (X) ~ n I (SI) 
is the zero homomorphism. 

5.7 The boundary of a surface 
A surface is a Hausdorff space S in which each point has a neighbourhood 
homeomorphic either to 1E 2 , or to the closed half space IE~ (Fig. 1.16). The 
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interior of S consists of the points of S which have a neighbourhood homeo­
morphic to le. Those points XE S for which there is a neighbourhood U, and 
a homeomorphismf: IE~ ~ U such thatf(O) = x, form the boundary of S. 

These definitions satisfy our intuition as to what 'interior' and 'boundary' 
should mean for a surface. We must, however, check that a point cannot lie 
both in the interior and on the boundary. 

(5.23) Theorem. The interior and boundary of a surface are disjoint. 

Proo/. We shall assume the result false and obtain a contradiction. Suppose 
x lies both on the boundary and in the interior of S. This means we can find 
neighbourhoods U, V of x in S, and homeomorphisms 

f:lE~ ~ U 

g:1E2 ~ V 

such that f(O) =g(O) = x. Choose a half-disc D1 S IE~, centre the origin and 
small enough so that f(Dd S V. Set </J = g-1 f:D 1 ~ 1E2. 

Figure 5.16 

Because fand gare homeomorphisms, </J(D 1) must be a neighbourhood of 0 
in 1E2. Choose a disc D2 S 1E2 with centre the origin and of small enough radius 
so that D2 S </J(D1). Write oD2 for the boundary circle of D2 and let r: 1E2 -
{O} ~ oD2 denote radial projection. Formally, if the radius of D2 is R arid if 
y E 1E2 - {O}, then r(y) = R(y/II y 11). The restriction of r to </J(D1) - {O} is a 
retraction of </J(D1) - {O} onto oD2, and should therefore induce a homo­
morphism of 1t1(</J(D1) - {O}) onto 1t1(oD2). But </J(D1) - {O} is homeomorphic 
(via </J) to D 1 - {O}, and the latter is easily seen to be contractible. Therefore 
1t1(</J(D 1) - {O}) is the trivial group, whereas 1t1(oD2) is an infinite cyclic group. 
This gives us our contradiction. 

(5.24) Theorem. Let h: S1 ~ S2 be a homeomorphism between two surfaces. 
7hen h takes the interior of S1 to the interior of S2, and the boundary of S1 to 
the boundary 0/S2' 
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Proof. If X lies in the interior of S 1, we can find a neighbourhood U of x in S 1 

together with a homeomorphism f: le ~ U. Since h is a homeomorphism, 
h(U) is a neighbourhood of h(x) in S2' and hf: IfZ ~ h(U) is a homeomorphism. 
Therefore h(x) lies in the interior of S2 and we have proved that h sends the 
interior of S 1 to that of S 2' The same argument can be applied to h - 1, so h 
maps the interior of Sl onto the interior of S2' Since the interior and boundary 
of a surface are disjoint, the boundary of Sl must go onto the boundary of S2 
under h, completing the proof. 

(5.25) Corollary. Homeomorphic surfaces have homeomorphic boundaries. 

(5.26) Corollary. The cylinder and the Möbius strip are not homeomorphic to 
one another. 

Problems 
49. Use an argument similar to that of theorem (5.23) to prove that le and [3 

are not homeomorphic. 

50. Use the material of this section to show that the spaces X, Y illustrated in 
Problem 24 of Chapter 1 are not homeomorphic. 
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6. Triangulations 

6.1 Triangulating spaces 
The collection of all topological spaces is much too vast for us to work with. 
We have seen in previous chapters how to develop an abstract theory of topo­
logical spaces and continuous functions and to prove many important results. 
However, working in such a general setting we quickly run into two kinds of 
difficulty. On the one hand, in trying to prove a concrete geometrical result 
such as the c1assification theorem for surfaces, the purely topological structure 
of the surface (that it be locally euclidean) does not give us much leverage from 
which to start. On the other hand, although we can define algebraic invariants, 
such as the fundamental group, for topologicalspaces in general, they are not a 
great deal of use to us unless we. can calculate them for a reasonably large 
collection of spaces. Both of these problems may be dealt with effectively by 
working with spaces that can be broken up into pieces which we can recognize, 
and which fit together nicely, the so called triangulable spaces. 

Fig. 6.1 shows the sort of construction we have in mind. A homeomorphism 
from the surface of a tetrahedron to the sphere gives a decomposition of the 
sphere into four triangles, the triangles being joined along their edges. As a 

homeomorphism 

Figure 6.1 

second example, suppose we chop up a strip into triangles and then identify 
its ends with a half twist (Fig. 6.2). We obtain aspace homeomorphic to a 
Möbius strip and we say that we have 'triangulated' the Möbius strip. 

Both the sphere and the Möbius strip are surfaces. They are two-dimensional 
and so we can make models of them using triangles. F or spaces of higher 
dimension we need higher-dimensional building blocks for our construction. 

Let vo,v l , .. "vk be points of euclidean n-space [n. The hyperplane spanned by 
these points consists of all linear combinations Aovo + Al Vi + ... + Akvk, where 
each Ai is areal nurnber and the surn of the Ai is 1. The points are in general 
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position if any subset of them spans a strictly sm aller hvperplane. It is an easy 
matter to check that if we regard /En as a vector space, then this is equivalent to 
asking that the vectors V1 - VO, V2 - Vo,· · .'Vk - Vo be linearly independent. 

A simplicial complex homeomorphic 
to the Möbius strip 

Figure 6.2 

Given k + 1 points vo, V 1, •.• , Vk in general positiOn, we call the smallest 
convex set containing them a simplex of dimension k (or a k-simplex). The 
points vo, v1, . . . ,Vk are called the vertices of the simplex. We recall that a point x 
lies in the smallest convex set containing vo, V1, ... , Vk if and only if it can be 
written as a linear combination 

x = Aovo + A1V1 + ... + Akvk 

where the Ai are all nonnegative real numbers and ,1.0 + Al + ... + Ak = 1. 
Looking at the first few dimensions we obtain: 

O-simplex = pOint 

1-simplex = closed line segment • • 

~ Vo vI 

2- simplex = triangle 

3-simplex = tetrahedron (solid) 

Simplexes have 'faces' in a natural way. If A and B are simplexes and if the 
vertices of B form a subset of the vertices of A, then we say that B is a face of 
A and write B < A. The idea of simplexes fitting together 'in a nice way' can be 
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made precise by asking that if two simplexes intersect, then they do so in a 
common face (Fig. 6.3). We shall call aspace triangulable if it is homeomorphic 
to the union of a finite collection of simplexes which fit together nicely in some 
euclidean space. We now look into this idea in a !ittle more detail. 

(6.1) Definition. A finite collection of simplexes in some euclidean space P 
is called a simplicial complex if whenever a simplex lies in the collection then so 
does each 01 its laces, and whenever two simplexes 01 the collection intersect they 
do so in a commonlace. 

Simplexes which fit together 
nicely 

Figure 6.3 

The sort of interseetions 
that are not allowed 

We shall use letters such as K, L for simplicial complexes, reserving X and Y 
to denote topological spaces. Now the union of the simplexes which make up 
a particular complext is a subset of a euclidean space, and can therefore be 
made into a topological space by giving it the subspace topology. A complex K, 
when regarded in this way as a topological space, is called a polyhedron and 
written 1 K I· 

(6.2) Dermition. A triangulation 01 a topological space X consists 01 a simplicial 
complex K and a homeomorphism h:1 K 1- X. 

Going back to our first example, X is the sphere, K the collection of simplexes 
which make up the surface of the tetrahedron, and, if the tetrahedron lies inside 
the sphere as in Fig. 1.8, h can be taken to be radial projection. 

Asking that aspace be triangulable is of course asking a great deal. A sim­
plicial complex K is built up of a finite number of simplexes which live in a 
euc!idean space, and consequently its polyhedron 1 K I will have many pleasant 
properties: for example, it will be compact and a metric space. Therefore if a 
space is to be triangulable it must possess these properties. None the less, 
many important spaces admit a triangulation; in Chapter 7 we shall make 
essential use of the fact that all closed surfaces are triangulable. 

t We often omit the word simplicial. 
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Triangulations are not unique.t The definition of a triangulation leaves us a 
great deal of choice, namely the choice of the simplicial complex K and of the 
triangulating homeomorphism h. A triangulation should be regarded as a tool 
which helps us to prove a particular result or do some calculation. It is its 
existence that is important: which triangulation we use is often of no great 
relevance. 

A model for a triangulation of the torus is shown in Fig. 6.4. Making the 
identifications indicated via arrows on the edges of the rectangle, one can 
build a simplicial complex in [3 whose polyhedron is homeomorphic to the 
torus. 

Figure 6.4 

By definition, a simplicial complex always consists of simplexes which 
lie in some euclidean space [no If we wish to emphasize the role played by the 
euclidean space, we say that K is a complex in P. (We emphasize that K is a 
collection of simplexes and not a set of points.) Regard [n as the subspace of 
[n + 1 consisting of those points which have final coordinate zero. We can 
construct a complex CK in [n + 1, which is called the co ne on K, as follows. Let 
v denote the point (0,0, ... ,0,1) in [n + 1. If A is a k-simplex in [n with vertices 
va' V 1,·.·, Vk' then the points va' V 1, ... , Vk' v are in general position and there­
fore determine a (k + 1)-simplex in [n + 1. This (k + 1)-simplex is called the 
join of A to V. Our cone CK consists of the simplexes of K, the join of each of 
these simplexes to v, and the O-simplex v itself. One can easily check that the 
simplexes of this collection do fit together nicely and form a simplicial complex. 
CK is often called the join of K to V. As a set of points in [n + 1, its polyhedron 
consists of all straight-line segments joining v to so me point of I K I (Fig. 6.5). 
In Chapter 4 we defined the cone CX on an arbitrary topological space X. The 
two ideas coincide in the sense that I CK land C I K I are homeomorphic 
topological spaces (see lemma 4.5). 

This cone construction gives us an easy way of triangulating the projective 
plane P. Recall that P is formed by taking a Möbius strip and a disc and sewing 
their boundaries together. Now we have already triangulated the Möbius 
strip M by means of the simplicial complex K in [3 shown in Fig. 6.2. Let L 

t The only space with a uniqlle triangulation consists of a single point. 
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consist of those simplexes of K which triangulate the boundary of M, i.e., the 
nineteen I-simplexes and nineteen vertices which in our picture form the edge 
of K. Then K u CL is a complex in 1E4 whose polyhedron is homeomorphic to 
the projective plane, for I K I is homeomorphic to M and I CLI is, up to homeo­
morphism, just a cone with base a cirele, i.e., a disco L as defined above is an 

Figure 6.5 

example of a subeomplex of a simplicial complex, i.e., it is a subcollection of the 
simplexes of a complex K which itself forms a complex. 

In defining the cone on a complex K, we had to make a choice of point to 
represent the apex of the cone. We chose a point outside IE" to ensure that 
adding this new point to the set of vertices of a simplex of K produced a set of 
points in general position. But why choose v; why not choose some other point 
of IE" + 1 - IE"? A different choice would give a different set of simplexes in 
IE" + 1, but the simplexes would intersect one another in the same sort of way 
as the simplexes of CK. This leads us naturally to the idea of two simplicial 
complexes being isomorphic. Let K and L be complexes, not necessarily in the 
same euelidean space. They are isomorphie if there is a bijection cp from the 
set of vertices of K to the set of vertices of L such that v1, V2' ... , Vs form the 
vertices of a simplex of K if and only if cpv1, cpV2' ... , cpvs form the vertices of a 
simplex of L. The notion of isomorphism has nothing to do with the particular 
euelidean spaces in which the complexes lie, or the way in which their polyhedra 
are embedded in these euelidean spaces. It is simply a statement that K and L 
have the same number of simplexes of each dimension and that these simplexes 
exhibit the same pattern of intersections. The most important thing ab out 
isomorphie complexes is that they have homeomorphie polyhedra. Try to prove 
this. (The function cp is defined only on the vertices of K; try to extend it 'linearly' 
over · eaeh simplex of K to eonstruet a homeomorphism from I K 1 to 1 L I. We 
shall give the details of this eonstruction in Seetion 6.3.) Now if V,W E IE" + 1 - IE", 
then the join of K to v and the join of K to ware isomorphie eomplexes (use the 
identity funetion on the vertiees of K and send v to w). So our choice of apex in 
IE" + 1 - IE" does not really matter. 

We elose this section by noting, for future reference, one or two facts con­
eerning simplicial complexes. Let A be a simplex in IE" with vertices va' V 1, ... , Vk . 
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We define the interior of A to consist ofthose points x of A which can be written 
k 

in the form x = AoVo + A1V l + ... + ;~kVk where L: )~i = 1 and the Ai are all 
o 

positive. Note that this notion coincides with the topological definition of 
interior when k = n, but not otherwise. 

(6.3) Lemma. Let K be a simplicial complex in IEn. 
(a) I K I is a closed bounded subset of IEn, and so I K I is a compact space. 
(b) Each point ofl K I lies in the interior of exactly one simplex ofK. 
(c) 1f we take the simplexes ofK separately and give their union the identification 

topology, then we obtain exactly I K I. 
(d) 1f I K I is a connected space, then it is path-connected. 

Proof. Each simplex of K is closed and bounded. Since K is finite, the result (a) 
folIows. For (b), suppose A and B are simplexes of K whose interiors overlap. 
Since K is a complex, A and Bare required to meet in a common face. But the 
only face of a simplex which contains interior points is the whole simplex itself. 
Therefore A = B. In (c) we note that simplexes of Kare closed subsets of I K I 
since they are closed in IEn. So if C is a sub set of I K I, and if C n A is closed in 
A for each simplex A of K, then C n A must be closed in 1 K I. Therefore the 
finite union C = U {C n A I A E K} is closed in I K I. SO the closed sub sets of 
I K I are precisely those wh ich intersect each simplex of K in a closed set, in other 
words I K I has the identification topology. Finally, for part (d), suppose I K I 'is 
connected. Given x E I K I, let L denote the subcomplex of K consisting of all 
those simplexes of K that do not contain x, and let I-: denote the distance from 
x to I L I. Then if b < I-: the set B(x,b) n I K I is path-connected, because any point 
in this set can be joined to x by a straight line in some simplex of K. This means 
that I K I is a locally path-connected space, and we can mimic the proof of 
theorem (3.30) to show that it is path-connected. 

Problems 
1. Construct triangulations for the cylinder, the Klein bottle, and the double 
torus. 

2. Finish off the proof of lemma (6.3). 

3. If I K I is a connected space, show that any two vertices of K can be con­
nected by a path whose image is a collection of vertices and edges of K. 

4. Check that I CK land C I K I are homeomorphic spaces. 

5. If X and Y are triangulable spaces, show that X x Y is triangulable. 

6. If K and L are complexes in IEn, show that I Kin I LI is a polyhedron. 

7. Show that sn and pn are both triangulable. 

8. Show that the 'dunce hat' (Fig. 5.11) is triangulable, but that the 'comb space' 
(Fig. 5.10) is not. 
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6.2 Barycentric subdivision 
Let K be a simplicial complex in [En. In this section we describe a construction 
which allows us to chop up the simplexes of K and produce a new complex K 1, 

which has the same polyhedron as K, but wh ich has simplexes of smaller diameter. 
The process is called 'barycentric subdivision'. If A is a simplex of K with 

vertices VO,V1, ... ,Vb then each point x of A has a unique expression of the form 
k 

x = Aovo + A1V 1 + ... + Akvk where 2)i = 1 and all the Ai are nonnegative. 
o 

These numbers Ai are ca lIed the barycentric coordinates of the point x, and the 
barycentre (or centre of gravity) of Ais the point 

_ 1 
A = -k -(vo + V 1 + ... + vk )· 

+ 1 

In order to form K 1 we begin by adding extra vertices to K at the barycentres 
of its simplexes. Then, working in order of increasing dimension, we chop up 
each simplex of K as a cone with apex the extra vertex at its barycentre. Figure 
6.6 illustrates the process. 

To define K 1 precisely, we need to describe its simplexes. The vertices of K 1 

are the barycentres of the simplexes of K. (This includes the original vertices of 
K since a O-simplex is its own barycentre.) 

Figure 6.6 

A collection .40 , A1 , ... ,Ak of such barycentres form the vertices of a k-simplex 
of K 1 if and only if 

Aq(o) < Aq(l) < ... < Aq(k) 

for some permutation (J of the integers 0,1,2, .. . ,k. For example, in our illustra­
tion the barycentres A, S, C determine a 2-simplex of K\ and looking at K we 
see C < B .:::. A. Note that if Aq(Ol < Aq(l) < ... < A,,\!<), then for each i the 
barycentre A"(i) lies off the hyperplane spanned by Aq(o), ... ,A"(i _ 1)' Conse­
quently, the points Aq(o), ... ,A"(k) are in general position. 

The dimension of a simplicial complex K is the maximum of the dimensions 
of its simplexes, and its mesh f1(K) is the maximum of the diameters of its 
simplexes. 
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(6.4) Lemma. The collection of simplexes described above forms a simplicial 
complex. It is denoted by K 1 and is called the first barycentric subdivision ofK. 
K 1 has the following properties: 
(a) each simplex ofK1 is contained in a simplex ofK; 
(b)IK1 I=IKI; n 
(c) ifthe dimension ofK is n, then ,u(K 1) ~ --,u (K). 

n + 1 
Proof. If (J is a simplex of Kt, we can label its vertices Ao,A1 , ••• ,Ak , where the 
Ai belong to K and Ao < Al< ... < Ak • So all the vertices of (J lie in Ab and 
therefore (J is contained in Ak • This proves property (a). Note that any face of 
(J lies in K 1, so in checking that K 1 is a simplicial complex we need only verify 
that its simplexes fit together nicely. 

We shall prove that K 1 is a complex and satisfies 1 K 1 1 = 1 K 1 by induction 
on the number of simplexes of K. The induction begins trivially when K consists 
of a single vertex. Suppose the result is true for all complexes which have less 
than m simplexes, and let K be a complex which is made up of m simplexes. 
Choose a simplex A of maximum dimension in K, and form a new complex 
L by removing A from K. Then L has m - 1 simplexes and its polyhedron 
consists of 1 K 1 with the interior of the simplex Adeleted. By the inductive 
hypothesis, IJ is a simplicial complex and 1 L1 1 = 1 L I. We need to look at the 
simplexes of K 1 that do not lie in L1• Let (J be such a simplex ((J not equal to A) 
and label its vertices as Ao,A 1 , ... ,Ak - l' A where A o < Al < ... < A k - 1 < A. 
The vertices AO.Al'" .,Ak _ 1 determine a face 'r of (J which lies in L1, and 
'r = (J n 1 L1 I. Therefore if (J meets a simplex of L1, it must do so in a face of 'r, 
and consequently in one of its own faces. Let (J' be a second simplex of K 1 - L1 

(again, not the vertex A) and define r' as above. Then if rand r' intersect, they 
do so in a common face (since L1 is a complex). In this ca se the vertices of 
r n r' together with Adetermine a common face of (J and (J' which is exact1y 
(J n (J'. If rand r ' do not intersect, then (J and (J' intersect in the vertex A. 
Therefore K 1 is a simplicial complex. 

Each simplex of K 1 being contained in a simplex of K, we know that 
1 K 1 1 5;; 1 K 1 ; so we now prove the reverse indusion. Let XE 1 K 1 and let A be 
the unique simplex of K which contains x in its interior. If x = A, then certainly 
XE 1 K 1 I. If not, join A to x by a straight line and prolong the line until it meets 
a face of A. Call the intersection point y. Then y EIL 1 = IL1 1 , and so y E r for 
some simplex r of L 1. The vertices of'r together with Adetermine a simplex of 
K 1 which contains x. Therefore XE 1 K 1 1 and we have proved 1 K 1 1 = 1 K I, 
which is property (b). 

It remains to verify property (e). First observe that the diameter of a simplex 
is the length of its longest edge. Let (J be an edge of K 1 with vertices A and B, 
say, where B < A. Then (J is contained in A, and if the dimension of Ais k we 
have 

length (J ~ _k_ (diameter A) ~ ~1 (diameter A) ~ ~1 ,u(K) 
k+l n+ n+ 
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Define the m-th barycentric subdivision Km of K inductively by Km = (Km - 1 )1. 
Figure 6.7 shows K 2 when K consists of a 2-simplex plus all its faces. Property 
(c) of Lemma (6.4) teIls us that, by taking m large enough, we can make the 
diameters of the simplexes of Km as small as we like. 

Figure 6.7 

Problems 
9. Make sure you can visualize the first barycentric subdivision of a 3-simplex. 

10. Let fi' be an open cover of 1 K I. Show the existence of a barycentric sub­
division Kr with the property that given a vertex V of Kr, there is an open set 
U in fi' which contains all the simplexes of Kr that have V as a vertex. 

11. Let L be a subcomplex of K, and let N be the following collection of sim­
plexes of K 2 : a simplex B lies in N if we can find a simplex C in JJ such that 
the vertices of Band C together determine a simplex of K 2 • Show that N is a 
subcomplex of K 2 , and that 1 N 1 is a neighbourhood of 1 L 1 in 1 K I. 
12. Use the construction of Problem 11 to prove that if X is a triangulable 
space, and Ya subspace of X which is triangulated by a subcomplex of some 
triangulation of X, then the space obtained from X by shrinking Y to a point 
is triangulable. 

6.3 Simplicial approximation 
Let X and Y be topological spaces with triangulations h: 1 K 1- X, k: 1 L 1- Y. 
Then any map f: X - Y automatically induces a map k- 1jh: 1 K 1- 1 L I. 
There is a particular kind of map between polyhedra which is easy to work 
with, namely the so-called simplicial map which takes simplexes to simplexes, 
and which is linear on each simplex. In many problems, for example in calculating 
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the fundamental group of a triangulable space, it is important to be able to 
approximate a given map by a simplicial map. The approximation we choose 
will be close enough to the given map so that the two are homotopic; i.e., the 
approximation can be continuously deformed into the original map. 

(6.5) Definition. Let K and L be simplicial complexes. A function s: 1 K 1- 1 L 1 
is called simplicial if it takes simplexes ofK linearly onto simplexes ofL. 

Writing this out in detail: if Ais a simplex of K, we require s(A) to be a simplex 
of L; the condition of linearity means that if A has vertices VO,v1, ••• ,Vk' and if 
XE Ais the point x = AoVo + A1Vl + ... + AkVk, where the Ai are nonnegative 

k 

and LAi = 1, then s(x) when expressed in terms of the vertices of s(A) is 

° s(x) = AoS(Vo) + A1S(Vl) + ... + AkS(Vk). Note that s(A) may have lower dimen-
sion than A (we do not require s to be one-one), in which case s(vo), ... ,s(vk ) 

will not all be distinct. 
It should be clear that a simplicial function is continuous. This follows from 

the fact that a linear function between two simplexes is continuous, and applica­
tion of the glueing lemma (4.6). 

Because of its linearity on each simplex of K, a simplicial map s is completely 
determined once we know its effect on the vertices of K. In fact, if a function s 
from the vertices of K to the vertices of L has the property that if vertices 
V O,v1 , ••. ,vk determine a simplex of K then s(vo), ... ,s(vk) determine a simplex of 
L, then s can be extended linearly across each simplex of K to give a simplicial 
map 1 K 1- 1 L I. In particular, an isomorphism from K to L extends in this 
way to a simplicial homeomorphism from the polyhedron of K to the poly­
hedron of L. 

Now let f: IK 1- 1 L 1 be a map between polyhedra. Given a point XE 1 K I, 
the pointf(x) lies in the interior of a unique simplex of L. Call this simplex the 
carrier off(x). 

(6.6) Definition. A simplicial map s: 1 K 1- 1 L 1 is a simplicial approximation of 
f: 1 K 1- 1 LI if s(x) lies in the carrier off(x)for each XE 1 K I. 
Note that if s simplicially approximates f, then sand f are homotopic. This 
follows immediately from the definition. For suppose L lies in [n, and let 
F: 1 K 1 x 1- [n denote the straight-line homotopy defined by F(x,t) = 
(1 - t)s(x) + tf(x). Given XE 1 K I, we know that some simplex of L contains 
s(x) and f(x) and, since a simplex is convex, all points (1 - t)s(x) + tf(x), 
o :0::; t :0::; 1, must also lie in this simplex. Therefore the image of F lies in 1 L I, and 
F is a homotopy from s to f 

Simplicial approximations do not always exist (see Example (6.8) below). 
However, we can guarantee their existence if we are prepared to replace K by 
a suitable barycentric subdivision Km. 

(6.7) Simplicial approximation theorem. Let f: IKI- 1 L 1 be a map between 
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polyhedra. 1f m is chosen large enough there is a simplicial approximation 
s: 1 Km 1-+ 1 LI to f: 1 Km 1-+ 1 L I. 

(6.8) Example. Let 1 K 1 = 1 L 1 = [0,1], with K having vertices at the points 
0, t, 1 and L at 0, 1, 1 (Fig. 6.8). Suppose the given map f: 1 K 1-+ 1 L 1 is 

1 

2 

fex) = x 2 
"3 

~ 

1 
"3 

K L 

0 0 

Figure 6.8 

f(x) = x 2• Thenf: 1 K 1-+ 1 LIdoes not admit a simplicial approximation. For if 
s: 1 K 1-+ 1 L 1 simplicially approximates J, then s must agree with f on the 
inverse image of each vertex of L, so s(o) = ° and s(l) = 1. But s is sim'plicial, 
wh ich forces sm = 1. Therefore stakes the segment [0, t] linearly onto [0, 1] 
and [t, 1] linearly onto [1, 1 J. We now have a contradiction, since the carrier of 
fm is [0,1] and this does not contain sm. Similar reasoning shows there is no 
simplicial approximation to f:1 K 1 1-+ 1 L I. However, simplicial approxima­
tions to f: 1 K 2 1-+ 1 Lido exist, and one such is shown in Fig. 6.9. We leave 

1 
linearly to [+, 1] 

to + 
K 2 linearly to [0, +] 

1 
"3 

to 0 

o 

Figure 6.9 

the reader to find a second, thereby showing that simplicial approximations 
are not unique. 
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The proof oftheorem (6.7) requires a lemma. Let K be a complex and let v be a 
vertex of K. The open star of v in K is the union of the interiors of those simplexes 
of K which have v as a vertex. It is an open subset of I K land we denote it by 
star (v,K) (Fig. 6.10). 

Figure 6 .10 
star (v, K ) 

(6.9) Lemma. Vertices vO,v1, ... ,Vk of a simplicial complex K span (i .e., are the 
vertices of) a simplex of K if and only if the intersection of their open stars is 
nonempty. 

Proof. If VO,v 1 , .• • ,Vk are the vertices of the simplex A of K then the whole of 
the interior of A lies in star(vi,K) for 0 ~ i ~ k. Conversely, suppose that 

k 

XE n star (vi,K) and let A be the carrier of x. By the definition of an open star, 

° each Vi must be a vertex of A, and therefore VO,v 1, ... ,Vk span some face of A. 

Proof of theorem (6.7). We first deal with a special case of the theorem where 
it is not necessary to chop up the simplexes of K. Suppose that for each vertex 
U of K we can find a vertex v of L satisfying the inclusion 

f(star (u,K)) !:;;; star (v,L) (*) 

Define a function s from the vertices of K to those of L by choosing such a v 
for each u and setting s(u) = v. Then lemma (6.9) and the inclusion (*) give 
immediately that if uo,u1, ••• ,Uk span a simplex of K, their images s(uo),s(u 1), 

.. . ,S(Uk) span a simplex of L. We can therefore extend s linearly over each 
simplex of K to give a simplicial map s: 1 K 1 ~ 1 L I. This map s simplicially 
approximates f For let x be a point of 1 K 1 and let UO,U 1 , . • • ,Uk be the vertices 

k 

of its carrier. Then XE n star (ui,K) and therefore by the inclusion (*) we have 
k 0 

f(x) E n star (s(uJ,L). This means that the carrier of f(x) in L has the simplex 

° 
spanned by s(UO),s(u 1 ), ••• ,S(Uk) as a face, and consequently it must contain the 
point s(x). 

To deal with the theorem in general, we need only show that we can arrange 
für inclusiün (*) to be satisfied at the expense of replacing K by a suitable bary­
centric subdivision Km. Now the open stars of the vertices 01 L form an open 
cover of I L I. Since f: I K I ~ 1 LI is continuous, the inverse images under f of 
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these open sets give an open cover of 1 K I. Let 0 be a Lebesgue number of this 
open cover (I K I is a compact metric space so we can apply Lebesgue's lemma 
(3.11)) and choose m large enough so that J.l(Km) < 0/2. Given a vertex u of 
Km, the diameter of its open star in Km is less than 0, so star (u,Km) s;;; j-1 
(star (v,L)) for so me vertex v of L, as required. This completes the proof. 

The simplicial approximation theorem will be used in the next section in 
calculating fundamental groups, and again in Chapter 8 to check the topo­
logical invariance of the so-called homology groups of aspace. 

Problems 
13. Use the simplicial approximation theorem to show that the n-sphere is 
simply connected for n ;?; 2. 

14. If k < m,n, show that any map from Sk to sm is null homotopic, and that 
the same is true of any map from Sk to sm X sn. 
15. Show that a simplicial map from 1 K 1 to 1 L 1 induces a simplicial map from 
1 Km 1 to 1 Lm 1 for any m. 

16. If s: I Kill I ~ I L I simplicially approximatesj: I Kill I ~ I LI, and t: I L" I ~ 
I MI simplicially approximates g: I L" I ~ I MI, is ts: I Kill + "I ~ I MI always a 
simplicial approximation for g/: I Kill + " I ~ I MI? 
17. If j : 1 K 1 ~ 1 K 1 is a simplicial map, prove that the set of fixed points of j 
is the polyhedron of a subcomplex of K 1, though not necessarily of a subcomplex 
ofK. 

18. Use the simplicial approximation theorem to show that the set ofhomotopy 
c1asses of maps from one polyhedron to another is always countable. 

19. Read the elegant proof of the Brouwer fixed-point theorem due to M. W. 
Hirsch given in Maunder [18]. 

6.4 The edge group of a complex 
We calculated the fundamental groups of one or two spaces in Chapter 5, but 
our calculations, though efficient for the examples given there, were rather 
ad hoc. If we agree to work with triangulable spaces, we can be much more 
systematic. We shall show how to read off generators and relationst for the 
fundamental group from a triangulation of the space. 

Let X be a path-connected triangulable space, take a specific triangulation 
h : I K I ~ X, and replace X by I K I (we are at liberty to do this since the funda­
mental group is a topological invariant). Now the advantage of a polyhedron 

t The material on generators and relations, free groups and free products necessary for this section 
is collected together in the Appendix at the end of the book. 
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I K I is that the elements of its fundamental group can be represented by loops 
wh ich are made up of edges of K. Using such 'edge loops' we shall construct a 
group, called the edge group of the complex K, which can be computed and 
wh ich is isomorphie to the fundamental group of I K I. 

An edge path in a complex K is a sequence Vo Vi .. • . Vk of vertices in which 
each consecutive pair Vi Vi + 1 spans a simplex of K. For technical reasons, we 
allow the possibility Vi = Vi + 1; if we apply a simplicial map to an edge path we 
want the result to be an edge path, even though two adjacent vertices may have 
been identified in the process. If Vo = Vk = V, we have an edge [aap based at v. 
In order to define the edge group of K, we need a simplicial version of the notion 
of homotopy. We consider two edge paths to be equivalent if we can obtain 
one from the other by a finite number of operations of the following type. If 
three vertices uvw span a simplex of K they may be replaced, in any edge 
path in which they occur consecutively, by the pair uw; under the same assump­
ti on the pair uw may be replaced by uvw. (Geometrically this allows us to replace 
two sides of a triangle by the third side, and vice versa, or to remove and intro­
duce edges which make the path double back on itself; see Fig. 6.11.) In addition 
we allow ourselves to change a repeated vertex uu to u and vice versa. 

v 

w equivalent w 

u, w 
equivalent 

u, w 

Figure 6.J1 

We shall denote the equivalence dass of the edge path Vo Vi ... Vk by 
{vo Vi ... Vk}' One easily checks that the set of equivalence dasses of edge loops 
based at a particular vertex V forms a group under the multiplication 

{VV1",Vk-l V}.{VW1 ... W/-l v} = {VV1 , ,,Vk-l VW 1 ... W/- 1 v} 

The identity element is the equivalence dass {v}, and the inverse of 
{VVl .•. Vk _ 1 v} is the dass {VVk _ 1 ... Vi v}. This is the edge graup afK based at 
V; it will be written E(K,v). 
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(6.10) Theorem. E(K,v) is isomorphie to 1t l (1 K I, v). 

Proof. We construct a function cP :E(K,v) ~ 1t l (1 K I,v) by simply interpreting 
each edge loop in K as a loop in 1 K I. Formally, given an edge loop VV l •• 'Vk _ 1 v, 
divide the unit interval I into k equal segments and let IX: I ~ 1 K 1 be the linear 
extension of 

IX(O) = 1X(1) = v, lX(i/k) = Vi 1~i~k-1 

Then IX is a loop in 1 K 1 based at v. Since equivalent edge paths plainly give 
homotopic loops, we may define 

cP{ { vv 1 " . Vk - 1 v}) = < IX ) 

It should be clear that cP is a homomorphism. 
To show that cP is onto, we begin with a loop IX: I ~ 1 K 1 based at v, regard 

I as the polyhedron of a complex L which consists of the I-simplex [0,1] and 
its two vertices, and apply the simplicial approximation theorem to produce a 
simplicial map s: 1 Lm 1 ~ 1 K 1 which is homotopic to IX. The vertices of Lm are 
the points i/2m, ° ~ i ~ 2m, and s picks out the edge loop VV l ... V2'" _ 1 V of K, 
where Vi = s(i/2m), 1 ~ i ~ 2m - 1. By construction, 

cP({VVl".V2 m- l V}) = <s) = <IX) 

To complete our proof we must show that cP is one-one. Suppose vV l .•. 

Vk _ 1 V is an edge loop which, when interpreted as a loop in 1 K 1 gives a null­
homotopic loop IX. We must prove that VV l ..• Vk _ 1 V is equivalent to the edge 
loop consisting of the single vertex v. Since IX is null homotopic, we have a 
homotopy F:1 x 1 ~ 1 K 1 which satisfies 

F(s,O) = IX(S), 

and which sends the other three sides of the square to v. We think of 1 x 1 
as the polyhedron of the complex L shown in Fig. 6.12, where a,b,e,d denote 

b c 

L 

~~~~~~~~--~--~d 

° °1 0 2 0 k - I 

Figure 6.12 
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the four corners of the unit square and ai stands for the point (i/k,O), and we 
note that F(ai) = Vi' 1 ::( i ::( k - 1. 

The two edge paths aal az ... ak _ 1 d and abcd are clearly equivalent in L. 
If we take a barycentric subdivision Lm of L, we obtain two edge paths in Lm 

which have 2m - 1 vertices inserted between each pair ofvertices ofthe original 
paths. We shall denote these new paths by the symbols E b Ez, so as to avoid 
introducing notation for all the extra vertices. One can check by induction on 
m (Problem 21) that E1 and Ez are equivalent in Lm . 

The simplicial approximation theorem gives us a barycentric subdivision 
E' and a simplicial approximation S:I E' 1-+ 1 K 1 to F :ILm 1-+ 1 K I. Now if 
two edge paths differ by a single operation of the type introduced in defining 
our notion of equivalence, and if we apply a simplicial map to the two paths, 
then their images will also differ by a single such operation. In other words, 
a simplicial map preserves the relation of equivalence between edge paths. 
Therefore the images under S of E 1 and E z are equivalent in K. But S applied 
to Ez just gives the vertex V repeated a total of 3.2m + 1 times, which is equi­
valent to the edge loop v. Since F(a;) = Vi' 1 ::( i ::( k - 1, and since S simplicially 
approximates F, the image under S of each new vertex in E 1 introduced between 
a i and a i + 1 is either Vi or Vi + 1. Therefore applying S to E1 gives an edge loop 
equivalent to V V 1 Vz ..• Vk _ 1 V. This completes the argument. 

We now turn to the problem of reading off generators and relations for 
E(K,v). Let L be a subcomplex of K which contains allthe vertices of K and 
for which 1 L 1 is path-connected and simply connected. Such a subcomplex 
always exists: we can in fact build one using the edges of K as follows. A one­
dimensional subcomplex of K whose polyhedron is both path-connected and 
simply connected is called a tree. 

(6.11) Lemma. A maximal tree contains all the vertices ofK. 

Proo/. Let T be a maximal tree in K; maximal means of course that if T' is 
a tree and contains T then T' = T. If T does not contain all the vertices of 
K, then some ver tex V must lie in K - T. Choose a vertex U of T and, remem­
bering that 1 K 1 is path-connected, join u and V by a path in 1 K I. By the sim­
plicial approximation theorem, we may replace this path by an edge path 
u V1 Vz ..• v k v. Let Vi be the last vertex of this edge path which lies in T, and 
form a new subcomplex T' by adding the ver tex Vi + 1 and the edge spanned by 
Vi Vi + 1 to T. The space 1 T' 1 is just 1 TI with a 'spike' attached, and it clearly 
deformation retracts onto 1 TI. Therefore T' is a tree, contradicting the 
maximality of T. 

Suppose then that we have chosen our subcomplex L. Since 1 L 1 is simply 
connected, edge loops in L will not contribute to E(K,v), and therefore we can 
effectively ignore the simplexes of L in our calculations. List the vertices of K 
as V = V o , V 1, Vz, ... , VS' and write G(K,L) for the group which is determined by 
generators gij' one for each ordered pair of vertices Vi' Vj that span a simplex of 

134 



TRIANGULATIONS 

K, subject to the relations gij = 1 if Vi' Vj span a simplex of L, and gij gjk = gik 
if Vi' Vj' vk span a simplex of K. 

(6.12) Theorem. G(K,L) is isomorphie to E(K,v). 

The above description of G(K,L) is designed to facilitate the proof of theorem 
(6.12). However, we can do a little better and rid ourselves of some unwanted 
generators. Notice that setting i = j gives gii = 1, and setting i = k shows 
gji = gijl. Therefore we need only introduce a generator gij for each pair of 
vertices Vi' Vj which span an edge of K - Land for which i < j. The first type 
of relation is now redundant, and the only ones of the second type which 
matter are the relations gijgjk = gik whenever Vi' Vj' vkt span a 2-simplex of 
K - Land i < j < k. 

Proof of theorem (6.12). We shall construct homomorphisms 

~ 
G(K,L) __ E(K,v) 

which are inverse to one another. Join V to each vertex Vi of K by an edge path 
Ei in L, taking Eo = v, and define 4> on the generators of G(K,L) by 

4>(gi) = {Ei Vi Vj Ej- l } 

If V;, Vj span a simplex of L, then Ei Vi vj Ei 1 is an edge loop which lies entirely 
in L, and therefore represents the identity element of E(K,v) since I L I is simply 
connected. Also, if Vi' Vj' vk span a simplex of K, we have 

4>(gi)4>(gjk) = {Ei Vi Vj Ej- l }{Ej Vj Vk Ek l} 

= {EivivjEil EjVjVkEk l } 

= {EiViVjVkEkl} 

= {Ei Vi Vk Ek l} 

= 4>(gik) 

So the relations in G(K,L) are preserved and 4> defines a homomorphism from 
G(K,L) to E(K,v). 

It is not hard to check that the function 

e({v Vk VI Vrn ··· vn v}) = gOk gkl glrn'" gnO 

defines a homomorphism from E(K,v) to G(K,L). Now 

e4>(gij) = e({EiViVjEi l }) = %' 

t If two of these vertices, say Vi' Vj' span a simplex of L, we interpret gij as 1. 
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since the pairs ofvertices in Ei and Ej 1 span simplexes of L. So 8tjJ is the identity. 
Further, for any edge loop v Vk VI'" Vn V we have 

{v Vk VI .•. Vn v} = {Eo V Vk Ek 1 }{ Ek Vk VI EI- 1} ... {En Vn v Eü 1 }. 

But tjJ8 is the identity on each of the terms in this product, and therefore tjJ8 
is the identity homomorphism. 

Examples 
1. Take X to be the one-point union of n circ1es (often called a 'bouquet of 
circ1es'), and triangulate each circ1e using the boundary of a triangle, labelling 
the vertices as illustrated in Fig. 6.13 for the case n = 3. Let L consist of the 
two edges from each triangle which contain the common vertex v, plus all the 
vertices. Then E(K,v) ~ G(K,L) is generated by n elements g12' g34"'" g2n - 1, 2m 
and there are no relations. So 1r 1(X) is thefree group on n generators. For the 
ca se of a single circ1e we obtain the free group Z on a single generator, agreeing 
with our earlier calculations. 

Note that if X is path-connected and can be triangulated by means of a 
one-dimensional complex, then 1r 1(X) is a free group since there are no 2-
simplexes to enforce relations between the generators. 

h 

Figure 6.13 

2. The fundamental group of any (path-connected) triangulable space is finitely 
presented, that is to say it is determined by a finite number of generators and a 
finite number of relations. (This follows because a complex is made up of a 
finite number of simplexes.) 

3. The definition of E(K,v) involves only the vertices, edges, and triangles of K. 
Therefore if K(2) denotes the subcomplex of K consisting of those simplexes 
which have dimension at most 2, we have 1r1(1 K I) ~ 1r1(1 K(2) I). This sub­
complex K(2) is called the 2-skeleton of K. Using this observation we can give a 
second, rather neat, proof that sn is simply connected when n ~ 2. Triangulate 
sn by the boundary of an (n + 1)-simplex, and note that when n ~ 2 the 2-
skeleton of the (n + 1)-simplex and that of its boundary coincide. The result 
now follows since a simplex is contractible. 

4. Triangulate the Klein bottle by means ofthe complex represented in Fig. 6.14, 
and let L be the shaded subcomplex. The I-simplexes of K - L provide us 
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Figure 6.14 

with eleven generators, and the 2-simplexes with ten relations between them. 
Set t = gOI and u = g04' The tri angle spanned by the vertices Vo, VI' Vs gives 

gOI gIS = gos 

in other words t = gos, since the vertices VI' Vs span an edge of L. Working 
down the triangles in the left-hand column of Fig. 6.14, we obtain 

t = gos = g3S = g37 = g47 

g24 t =g27 

1 g24 = u. 

Combine the last two relations to give g27 = ut. We now work along the 
remaining triangles in the hottom row, obtaining 

ut = gI7 = gIS 

tut = gos 

u 1 = gos 

So we are finally led to the single relation tut = u. Therefore the fundamental 
group of the Klein bottle is given by two generators t, u subject to the single 
relation tut = u. (It is worth comparing this with the calculation given in 
Chapter 5.) 

This last ex am pIe shows that, even for a very simple space, we may have so 
many generators and relations as to make practical calculation unpleasant. 
Luckily, we can use theorem (6.12) to produce a short cut. To this end, let J, K 
be simplicial complexes in the same euclidean space which intersect in a common 
subcomplex, and suppose that 1 J I, 1 K I, 1 J (l Klare all path-connected 
spaces. Imagine we know the fundamental groups of these three spaces and 
want to calculate nl(1 J u K 1). 

Think first of the simplest possible case, namely when J and K intersect in a 
single vertex. Then any edge loop in J u K based at this vertex is clearly a 
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product of loops, each of which lies in either J or K, and we expect to obtain 
the free product nl(1 J I) * nl(1 K I) for the fundamental group of I J u K I. In 
the general case, the same sort of reasoning holds, except that the free product 
nl(1 J I) * nl(1 K I) effectively counts the homotopy classes of those loops which 
lie in I J n K I twice (once in each of nl(1 J I), nl(l K I)), and therefore we must 
correct this by adding some extra relations. 

Let j, k denote the inclusion maps I J n K I ~ I J I, I J n K I ~ I K I, and 
take a vertex v of J n K as base point. 

(6.13) Van Kampen's theorem.t Thefundamental group ofl J u K I based at v is 
obtained from the free product nl(1 J I, v) * nl(1 K I, v) by adding the relations 
j*(z) = k*(z)for allt z E nl(1 J n K I, v). 

Proof. Take a maximal tree To in J n K and extend it to give maximal trees Tl, 
T2 in J and K respectively. Then Tl u T2 is a maximal tree in J u K. By theorems 
(6.10) and (6.12), nl(1 J u K I) is generated by elements gij corresponding to 
edges of J u K - Tl U Tl> with relations gij gjk = gik given by the triangles of 
J u K. But this is precisely the group which results from taking a generator aij 
for each edge of J - Tl' a generator bij for each edge of K - T2 , with relations 
of the form aij ajk = aik> bij bjk = bik corresponding to the triangles of J, K, 
and adding the extra relations aij = bij whenever aij and bij correspond to the 
same edge of J n K. It remains only to note that the edges of J n K - To, 
when regarded as edges of J, give a set of generators for j*(nl(1 J n K I»; 
similarly the same edges, when thought of as in K, generate k*(n l ( I J n K I». 

Examples 
1. We return to the triangulation ofthe Klein bottle given in Fig. 6.14, and let J 
be the complex which results from deleting the 2-simplex spanned by the vertices 
vo, Vl' vs. Then I J I is the Klein bottle with an open disc punched out. For K 
we take the 2-simplex just mentioned together with all its faces. So I K I is a 
disc and I J n K I a circle. 

Now the square with the interior of a triangle removed in this way deforma­
tion retracts onto its boundary. But in I J I the edges of the square are identified 
so as to give two circles joined together at the point vo, and the deformation 
retraction is compatible with these identifications since it leaves the boundary 
of the square fixed throughout. Therefore we have adeformation retraction of 
I J I onto the one-point union of two circles, and we see that nl(1 J I, vo) is the 
free group 7L * 7L with generators t, u represented by the sides of the square. 

Choose a generator z far the infinite cyclic group nl(1 J n K I, vo) as in Fig. 
6.15. Then k*(z) is the identity element, since I K I is simply connected, and 
j*(z) is plainly identified by our deformation retraction with the word t u-lt u 
in n 1 (I J I, vo)' Van Kampen's theorem now teUs us that n 1 (I J u K I, vo) is 

t Proved independently by H. Seifert and E. R. van Kampen. 
t We need only add such relations far a set of generators of 1t,(1 J n K I, v). 
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Vo ...... ___ --,-__ - ...... vQ 

z 

j. (z) 

u u 

IJI 

~IKI Figure 6.15 

obtained from the group (1:: * 1::) * {e} by adding the extra relation tu - 1 tu = e. 
In other words, the Klein bottle has fundamental group 

{t,u I t u - 1 t u = e} = {t,u I tut = u} 

2. We often apply van Kampen's theorem without actually specifying triangula­
tions for the spaces involved.t The triangulations were important as tools, 
enabling us to prove theorem (6.13), but the actual statement ofthe theorem is a 
statement about polyhedra (and therefore about triangulable spaces), and does 
not depend on them. 

Suppose we think of the projective plane P as obtained by glueing together 
theboundary circles of a Möbius band and a disco We know that the Möbius 
band has infinite cyclic fundamental group, and its boundary circle clearly 
represents twice a generator (Fig. 6.16). So van Kampen's theorem teIls us that 

Figure 6.16 

t We must, however, be sure that our spaces can be triangulated. Although there are more general 
versions of van Kampen's theorem (see for example Massey [9]), the result is false for arbitrary 
topological spaces. 
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11: 1 (P) is obtained from the free product 7L * {e} by adding the relation a2 = e. 
In other words, 11: 1(P) = 7L 2 • 

Problems 
20. Use van Kampen's theorem to calculate the fundamental group of the 
double torus by dividing the surface into two halves, each of which is a punc­
tured torus. Do the calculation again, this time splitting the surface into a disc 
and the closure of the complement of the disco 

21. Show that the edge paths E l , E 2 introduced in the proof of theorem (6.10) 
are equivalent. 

22. Prove that the 'dunce hat' (Fig. 5.11) is simply connected using van Kampen's 
theorem. 

23. Let X be a path-connected triangulable space. How does attaching a disc 
to X affect the fundamental group of X? 

24. Let G be a finitely presented group. Construct a compact triangulable space 
which has fundamental group G. 

6.5 Triangulating orbit spaces 
Let K be a simplicial complex whose simplexes lie in [En. Then K is completely 
described once we know two things: the whereabouts of its vertices in [E" and 
which sub sets of these vertices span simplexes. Let V denote the set of vertices 
of K, and S the collection of those subsets of V which span simplexes of K. 

The pair {V,S} is called the vertex scheme of K. The set V is finite and S has 
the following properties: 

(a) Each element of V belongs to S. (A vertex is a O-simplex.) 
(b) If X belongs to S then any nonempty subset of X belongs to S. (Any face of 

a simplex of K is itself in K.) 
(c) The sets in S are nonempty and have at most m + 1 elements for some non­

negative integer m. (Take m to be the dimension of K.) 

It is sometimes useful to be able to construct a simplicial complex by first 
specifying a finite nonempty set V, together with a collection S of subsets of V 
satisfying (a)-(c), and then 'realizing' the pair {V,S} as the vertex scheme of a 
specific complex in some euclidean space. Realization means finding a simplicial 
complex K, and a bijection from V to the set of vertices of K, so that members 
of S correspond exactly to those sets of vertices which span simplexes. It should 
be c1ear that any two realizations of a given pair {V,S} will be isomorphic 
complexes. 
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(6.14) Realization theorem. Let V be a finite nonempty set and S a collection of 
sub sets of V which satisfies properties (a)-(c) listed above. Then {V,S} can be 
realized as the vertex scheme of a simplicial complex. 

Proof. Suppose V has k elements, and let L1 be a (k - 1 )-simplex in IEk - 1. Then 
any one-one onto correspondence between the elements of V and the vertices 
of L1 realizes {V,S} as the vertex scheme of a subcomplex of L1. (In fact, no 
matter how large k is, we can always realize {V,S} in 1E2 m + 1; see Problem 25.) 

This method of constructing complexes will be used below to triangulate 
the orbit spaces of certain group actions, and again in Chapter 9 to define the 
dimension of a compact Hausdorff space. 

It may happen that the space on which a group acts can be triangulated so 
that each group element induces a simplicial homeomorphism of the triangula­
tion. In such a case, we shall say that the group action is simplicial. Fig. 6.17 
gives a suitable triangulation for the antipodal action on S2 ; take a regular octa­
hedron inscribed inside the sphere and use radial orojection TC from the origin 

Figure 6.17 

as the triangulating homeomorphism. The action is simplicial because the anti­
podal map cp: S2 -+ S2 induces a simplicial map TC - 1 cp TC from the surface of 
the octahedron to itself. The three actions of Z2 on the torus described in 
Section 4.4, and the action of Zp on S3 which gives the Lens space L(p,q) as 
orbit space, are other examples of simplicial actions. When we have a simplicial 
action, we shall show that the orbit space can be triangulated. Even better, we 
shall arrange things so that the natural projection is a simplicial map. 

Suppose then we havea simplicial action ofG onX, that is to say we assurne the 
existence of a triangulation h: 1 K 1-+ X such that h - 1 g h : 1 K 1-+ 1 K 1 is a 
simplicial homeomorphism for every element g of G. These homeomorphisms 
define an action of G on 1 K I, and to begin with we ignore X and work with this 
induced action on 1 K I. 

We aim to triangulate the orbit space I K I/G. Using the projection 
p : 1 K 1-+ 1 K I/G, we define a pair {V,S} as follows: the elements of V are the 
orbits (projections) of the vertices of K, and a subset U o, .. "Uk of V lies in S iff 
there exist vertices Vo," "Vk of K which span a simplex of K and satisfy 
p(v;) = Ui for 0 ~ i ~ k. The hypotheses of the realization theorem are easily 
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checked; realizing {V,S} in some euclidean space produces a complex which we 
shall denote by KjG. Now p sends vertices of K to vertices of KjG, and if 
VO, .. "Vk span a simplex of K, then p(vo), ... ,P(Vk) span a simplex of KjG. So p 
determines a simplicial map s: 1 K 1---+ 1 KjG I. Also, for any XE 1 K I, g E G we 
have sg(x) = s(x), so that s induces a function t/J: 1 K I/G ---+ 1 KjG I. The situation 
is best represented by means of a diagram 

~J~ 
IKljG~IKjGI 

Clearly t/J is onto and, by theorem (4.1), is continuous iff s is continuous. But s 
is a simplicial map and therefore continuous. If t/J is one-one, it must be a 
homeomorphism by theorem (3.7), giving us a triangulation 

t/J-l:1 KjG 1---+ 1 K I/G. 

In general, t/J fails to be one-one. For example, in Fig. 6.17 the space IK IjG 
is homeomorphic to the projective plane, whereas 1 KjG 1 is a disco However, 
ifwe replace K by its second barycentric subdivision K 2 , then the corresponding 
map t/J: 1 K IjG ---+ 1 K 2 jG 1 is one-one (Problems 28, 29). 

Now let h:1 K IjG---+ XjG denote the homeomorphism of orbit spaces 
induced by h, then 

h t/J-l: 1 KZjG 1---+ XjG 

is a triangulation of the orbit space XjG. In addition, we have a commutative 
diagram 

where n is the natural identification map. (To say the diagram commutes 
means simply that nh(x) = ht/J -1 s(x) for all XE 1 K 2 I.) The map s is simplicial, 
and it preserves the dimension of the simplexes of K 2 , since two vertices of a 
simplex of K 2 cannot be mapped into one another by an element of G. 

Problems 
25. Suppose {V,S} satisfies the hypotheses of the realization theorem, and label 
the elements of Vas Vl, ... ,Vk• If Xi denotes the point (i,i 2 , ... ,izm + 1) of IEZm+ 1, 

show that any 2m + 2 ofthe points Xl'" "Xk are in general position, and deduce 
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that the correspondence Vi +-+ Xi can be used to realize {V,S} in 1E2m + 1. 

26. By Problem 25 the vertex scheme of any one-dimensional complex can be 
realized in 1E3 . Find a one-dimensional complex whose vertex scheme cannot 
be realized in 1E2 • 

27. Consider the antipodal action on S2 and the triangulation shown in Fig. 
6.17. Show that the map l/J: I K I/G -+ I K 1/G I is a homeomorphism, and draw 
the resulting triangulation of the projective plane. 

28. Show that the map l/J: I K I/G -+ I K/G I is a homeomorphism iff the action 
of G on I K I satisfies: 
(a) The vertices of a 1-simplex of K never lie in the same orbit. 
(b) If the sets of vertices Vo, .. "Vba and Vo, ... ,vbb span simplexes of K, and if 

a, b lie in the same orbit, then there exists gE G such that g(v i) = Vi for 
o :::;; i :::;; k and g(a) = b. 

29. Check that conditions (a) and (b) of Problem 28 are always satisfied if we 
replace K by its second barycentric subdivision. 

6.6 Infinite complexes 
So far, our simplicial complexes have contained only a finite number of sim­
plexes. In order to deal with problems concerning noncompact spaces, we 
would like to relax this a little and allow certain infinite collections of simplexes 
to be complexes. 

Weshall insist that a complex be made up of simplexes which fit together 
nicely in some finite-dimensional euc1idean space, and that the union of these 
simplexes form a c10sed subset of the euc1idean space. Now if K is such a 
collection of simplexes in IEn, then we can make a topological space I K I out 
of their union by giving it the induced topology. An equally natural procedure 
is to take the simplexes of K separately, each with its topology induced from 
IEn, and give their union the identification topology. We have seen in lemma (6.3) . 
that these two procedures lead to the same topological space when K is finite. 
However, if we allow K to be infinite, then we may well obtain different answers. 
Indeed, a specific one-dimensional example where this happens is shown in 
Fig.4.2. 

Here is a tentative definition of an infinite complex, not the most general 
possible, but quite sufficient for our needs. 

(6.15) Definition. An infinite simplicial complex is an infinite collection of 
simplexes in so me euclidean space IEn satisfying: 
(a) if a simplex lies in the collection, then so does each of its faces; 
(b) the simplexes in the collectionfit together nicely; 
(c) the union of all the simplexes is a closed sub set of IEn; 
(d) the induced and identification topologies agree on the union of the simplexes. 
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As a simple example of an infinite complex, take the strip {(x,y) 1 0 :( y :( I} 
in 1E 2 divided up into triangles as shown in Fig. 6.18. 

y 

Figure 6.18 

(6.16) Theorem. Let K denote an infinite simplicial complex in IEn, and let 
1 K 1 denote its polyhedron. 
(a) K has finite dimension. 
(b) The number of simplexes in K is countable. 
(c) K is locally finite (that is to" say, each vertex ofK lies in only afinite number 

of simplexes). 
(d) Each point oflEn has a neighbourhood wh ich intersects at most afinite number 

of simplexes of K. 

Proof· 

(a) Since K lies in IEn, it cannot contain any simplexes of dimension greater 
than n, so the dimension of K is at most n. 
(b) We prove that K contains only countably many simplexes by counting the 
set of barycentres of its simplexes. The topology on I K I agrces with the identi­
fication topology , so this set of barycentres has no limit points in IE". There 
are therefore only finitely many baryeentres inside any ball, centre the origin, 
of finite radius. Taking the union of the balls with integer radius shows the 
total number of baryeentres to be countable. 
(e) Suppose K is not loeally finite and seleet a vertex v whieh is a vertex of 
infinitely many simplexes A 1,A 2 , . .. of K. For each i, let Xi be a point which 
lies in the interior of Ai and whose distanee from v is no more than 1. The set 
{xJ must have an accumulation point, say p, in IEn, and since 1 K 1 has the 
identification topology, p cannot lie in 1 K I. But this contradicts the fact that 
1 K 1 is supposed to be c10sed in IEn• 

(d) If x rt 1 K 1 then IEn - 1 K 1 is a neighbourhood of x ( I K 1 being c1osed) which 
does not meet 1 K I. If XE 1 K I, select a vertex v of K for which x E star (v,K). 
Since star (v,K) is open in 1 K 1 we have star (v,K) = 0 n 1 K 1 for some open 
subset 0 of IEn, and 0 meets only a finite number of simplexes of K, by part (c). 

We can define the notions of triangulation and simplicial map exactly as 
before. Aspace may now be noneompaet and yet triangulable, though by 
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part (c) of theorem (6.16) it must be locally compact, in the sense that each of 
its points must have a compact neighbourhood. As we shall see, quite a few of 
the results of this chapter go through in this more general setting. 

Note that our proof of the simplicial approximation theorem (6.7) made 
heavy use of the finiteness of the domain complex K (we needed I K I to be 
compact), but the range L could have been infinite. Therefore we can show 
that the edge group of an infinite complex is isomorphie to the fundamental 
group of its polyhedron, and write down generators and relations for the group, 
exactly as in the finite case. However, the edge group need no longer be finitely 
presented. 

2 2 

1 1 

x IKI 
h .. 

o o 

-1 -1 

Figure 6.19 

For example, if X consists ofthe realline with a circ1e attached at each integer, 
triangulated as in Fig. 6.19, its fundamental group is the free group on a count­
able number of generators. (We obtain a maximal tree containing all the 
vertices of K by taking the line together with two sides from each tri angle. The 
remaining sides give the generators for 1l: 1(X), and there are no relations since 
K has no simplexes of dimension 2.) By shrinking the line to a point, we see that 
X has the homotopy type of a countable number of circ1es joined together at a 
single point. 

If {V,S} is the vertex scheme of an infinite complex, then V is a countable set, 
and in addition to properties (a)-(c) of Section 6.5 we have the property: 

(d) Each element of V belongs to only a finite number of members of S. (K is 
locally finite.) 

The realization theorem (6.14) remains true. Of course, the proof given earlier 

145 



BASIC TOPOLOGY 

for the finite case cannot work, since K may now have an infinite number of 
vertices, but the method of Problem 25 goes through without difficulty. 

We ask the reader to verify that we can allow infinite complexes in our work 
on triangulations of orbit spaces. This means we have many more examples of 
simplicial actions. The action of the integers on the real line by addition is 
simplicial; one has only to triangulate the realline as a one-dimensional com­
plex by introducing a vertex at each integer. The action of a crystallographic 
group on the plane is simplicial: chop up a fundamental region into triangles 
and use the group action to tell you how to subdivide its translates. If the 
group is generated by a translation and a glide reflection acting at right angles, 
the fundamental region can be taken to be a rectangle and the resulting 
triangulation of the plane is illustrated in Fig. 6.20. 

Figure 6.20 

Let F be the free group on two generators x,y, set V = F, and agree that S 
consists of the elements of F together with pairs of elements g, h from F which 
ha ve the property that h - 1 g is one of x, x-I, y, y - 1. Let T denote the one­
dimensional complex obtained by realizing {V,S}. Then T is connected because 
we can get from any element of F to any other by a sequence of operations, 
each of which amounts to multiplying on the right by one of x, x-I, y, y-l. 
Also, T must be simply connected, because any loop in T would lead to a non­
trivial relation in F, and F is free. So T is a tree. 

The complex T can in fact be realized in the plane, and we indicate how to do 
this in Fig. 6.21. Of course we have not been able to draw all of T! We shall 
call T the universal television aerial. 

The action of Fon itselfby left multiplication (g sends h to gh) clearly in duces 
a simplicial action of F on 1 TI, and the orbit space 1 T I/F is the one-point 
union of two circles. Incidentally, this gives a second proof that the funda-
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mental group of the one-point union of two circ1es is 7L * 7L, since the action of 
F on T satisfies the hypotheses of theorem (5.13). Now let H be a subgroup of 
F. Then H acts on T, and by our work in Section 6.5 we can triangulate the 
orbit space I T l/H as a one-dimensional simplicial complex. The fundamental 
group of this orbit space is precisely H, by theorem (5.13), and we deduce that 

y 

e x 

Figure 6.21 

H is a free group since the fundamental group of a one-dimensional complex 
is always free. We have therefore proved the following result: 

(6.17) Theorem. Any subgroup ofthefree group on two generators isfree. 

This is a special case of the Nielsen-Schreier theorem, which states that any 
subgroup of a free group is free. For more information see Problem 34. 

We end this chapter with a generalization of theorem (5.13). Let G act sim­
plicially on the path-connected triangulable space X, and let F be the normal 
subgroup of G generated by those elements which leave fixed at least one point 
of the space X. 

(6.18) Theorem. Jf X is simply connected, the fundamental group of the orbit 
space X/G is isomorphie to thefactor group G/F. 

The proof is broken up into small steps in Problems 37-40. As an example, 
consider the crystallographic group generated by three half-turns illustrated 
in Fig. 4.5. For this action G and F coincide, since each of the three generators 
has a fixed point. Therefore the orbit space (the 2-sphere) is simply connected. 
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Problems 
30. Find the triangulations of the sphere, torus, and Klein bottle which we 
obtain from the crystallographic groups shown in Fig. 4.5. 

31. Check that the construction illustrated in Fig. 6.21 really can be carried out 
to produce a realization of Tin 1f2. 
32. Show that the following collection of simplexes in [2 is not a simplicial 
complex. For each positive integer n, we have a vertical l-simplex joining 
(ljn,O) to (ljn,l) and a sloping l-simplex with vertices (ljn,O) and (ljn + 1,1). 
In addition, we have al-simplex on the y axis joining (0,0) to (1,1). Do we 
obtain a simplicial complex ifwe remove the l-simplex which lies on the y axis? 

33. Can either the co mb space (Fig. 5.10), or the space illustrated in Fig. 3.4, be 
triangulated by an infinite simplicial complex? 

34. Show that the free group on a countable number of generators is a sub­
group of Z * Z, and deduce that any subgroup of this group must be free. 

35. Call a homeomorphism h : X --> X pointwise periodic if for each point x of X 
there is a positive integer nx such that h"" (x) = x. Call h periodic if hn = 1x 
for some positive integer n. Show that if X is the polyhedron of a finite complex, 
and if h is simplicial, then pointwise periodic implies periodic. Find a connected 
infinite complex K and a simplicial homeomorphism of I K I which is pointwise 
periodic but not periodic. 

36. Does a pointwise periodic homeomorphism of a compact space have to be 
periodic? Be careful! (We comment that any pointwise periodic homeo­
morphism of a euclidean space is periodic, though this is hard to prove.) 

37. Let G be a group ofhomeomorphisms ofthe space X. If N is anormal sub­
group of G, show that GjN acts in a natural way on XjN and that XjG is homeo­
morphic to X jN / GjN. If Fis the smallest normal subgroup of Gwhich contains 
all the elements that have fixed points, show that GjF acts freely on XjF in 
the sense that only the identity element has any fixed points. 

38. Suppose in addition to the conditions of Problem 37, X is a simply con­
nected polyhedron, G acts simplicially, and XjG is triangulated so that the 
projection p:X --> XjG is simplicial. Choose a vertex v of X as base point and 
define <f;:G-->1C1(XjG,p(v)) as follows. Given gEG,join v to g(v) by an edge 
path E in X; then <f;(g) is the homotopy dass of the edge loop p(E). Show that 
<f; is a homomorphism, and that each element of F goes to the identity under <f;. 
Show also that <f; is onto. 

39. With the assumptions of Problem 38, show that X/F is simply connected, 
and that the action of GjF on XjF satisfies the hypotheses of theorem (5.13). 

40. Now deduce theorem (6.18). 
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7.1 Classification 
Results which allow one to classify completely a collection of objects are among 
the most important and aesthetically pleasing in mathematics. The fact that 
they are also rather rare adds even more to their appeal. As specific examples, 
we mention the classification of finitely generated abelian groups up to iso­
morphism in terms of their rank and torsion coefficients; that of quadratic 
forms in terms of the rank and signature of a form; and that of regular solids 
up to similarity by the number of edges of each face and the number of faces 
meeting at each vertex. It should be clear that we have no hope of classifying 
topological spaces up to homeomorphism, or even up to homotopy equivalence. 
We can, however, give a complete classification of closed surfaces. 

A surface is closed ifit is compact, connected, and has no boundary; in other 
words it is a compact, connected, Hausdorff space in which each point has a 
neighbourhood homeomorphic to the plane. When we say that we can classify 
such spaces, we mean that we can draw up a list (albeit infinite) of standard 
closed surfaces, all ofwhich are topologically distinct, so that ifwe are presented 
with an arbitrary closed surface then it is homeomorphic to one on our list. 

We recall (from Chapter 1) the statement of the classification theorem for 
closed surfaces: 

(7.1) Classification theorem. Any closed surface is homeomorphic either to the 
sphere, or to the sphere with a finite number of handles added, or to the sphere 
with a finite number of discs removed and replaced by M öbius strips. No two of 
these surfaces are homeomorphic. 

Adding a handle to the sphere means removing the interiors of a pair of 
disjoint discs, then attaching a cylinder by glueing its boundary circles to the 
edges öf the two holes in the sphere, as illustrated in Fig. 7.1. When we add 
further handles, we do so on different parts of the sphere. Precisely where we 
add the handles (or Möbius strips) does not matter; we shall prove this carefully 
in Section 7.5. Notice how the handles are attached. If we mark arrows on the 
boundary circles of the cylinder, and on the edges of the holes in the sphere, to 
show how the identifications are to be made, and ifthe arrows on the cylinder go 
in the same direction, then those on the sphere will have opposite directions. 

It is natural to ask what happens if, when we glue on a particular handle, 
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we reverse one of the arrows so that the two circles on the sphere are also given 
the same sense. Take a disc in the sphere which contains, in its interior, the two 
circles along which the cylinder is to be attached. Then the two possibilities are 

Figure 7.1 

illustrated in Fig. 7.2. Now Fig. 7.2a is homeomorphic to the punctured torus, 
and Fig. 7.2b to the punctured Klein bottle. Therefore adding a handle corre­
sponds to removing a single open disc from the sphere and from the torus, and 
glueing the two resulting boundary circles together. At first sight, we appear to 
have a choice as to how we do this. For having marked an arrow on our circle 
in the sphere, we can direct the boundary circle of the torus in two different 
ways. However, there is a homeomorphism from the punctured torus to itself 
which revers es the direction given to the boundary circle (Fig. 7.3a), and so 
the two possibilities give homeomorphic answers. t 

Ca) 
Figure 7.2 

(b) 

t The reader with a flair for precision will notice that we appeal to the following elementary 
proposition several times in this section. Given spaces X, A >;; Y, B >;; Z together with maps 
f: A --+ X, g: B --+ X , and a homeomorphism h: Z --+ Y such that h(B) = A and jh = g, then 
X U f Y and X U 9 Z are homeomorphic. 
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(a) Reflect in the plane of the paper (b) Rotate through 7[ about axis AB 

Figure 7.3 

If the cylinder is attached the other way, as in Fig. 7.2b, then we must take 
a copy of the punctured Klein bottle and sew its boundary circ1e to the edge of a 
circular hole in the sphere. As above, the direction in which we glue the two 
circ1es is irrelevant. Now we know that the Klein bottle is the union of two 
Möbius strips along their boundary circ1es, or equivalently (Fig. 1.18) a cylinder 
with a Möbius strip glued to each of its boundary circ1es. So the punctured 
Klein bottle can be thought of as a disc with two holes punched in and a Möbius 
strip sewn into each hole. We have therefore shown that glueing a cylinder to 
the sphere 'in the wrong way' corresponds to removing two disjoint open discs 
from the sphere and sewing a Möbius strip into each of the resulting holes. 
Since the Möbius strip admits a homeomorphism which revers es the direction 
of its boundary circ1e (Fig. 7.3b), there is no ambiguity as to how we sew in 
these strips. 

To complete our intuitive picture of how the sphere is modified when we add 
handles or sew in Möbius strips, we consider the possibility of doing a mixture 
of these operations. Suppose we have al ready replaced a disc by a Möbius 
strip, and we decide to add a handle. Then it does not matter how we do it; 
the operations shown in Figs 7.2a and 7.2b amount, in this situation, to the 
same thing. For call the Möbius strip M and the disc to which our cylinder 
is to be attached D. Run an arc from a point of the boundary circ1e of M to a 
point ofthe edge of D, and thicken it slightly to produce a band B, as in Fig. 7.4. 
ThenM u B u D is a Möbius strip and we are left to prove that the two spaces 
shown in Fig. 7.5 are homeomorphic. This is easily seen by cutting along the 
lines marked xy, when both become rectangles with a tube attached in precisely 
the same manner. 

D 

M 
Figure 7.4 
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Figure 7.5 

We summarize our discussion in the following resuIt: 

(7.2) Theorem. Modi/ying the sphere by adding m handles and replacing n (> 0) 
disjoint discs by Möbius strips produces the same surface as replacing 2m + n 
disjoint discs by Möbius strips. 

Problems 
1. The construction of a 'cross cap' is illustrated in Fig. 7.6. Show that punching 
a disc out of the sphere and adding a cross cap in its place gives a representation 
of the projective plane as a surface in [3 with self intersections. 

Figure 7.6 

2. Let X consist of S2 plus one extra point p. The neighbourhoods of the points 
of S2 are the usual ones, and those of p are sets of the form [u - {(O,O, I)}] v {p} 
where U is a neighbourhood of (0,0,1) in S2. Show that X is not Hausdorff, but 
is locally homeomorphic to the plane. Does it seem reasonable to call X a 
surface? 

3. The connected sum of two surfaces is defined as folIows. Remove a disc from 
each surface and connect up the two resulting boundary circles by a cylinder. 
Assuming this is a well-defined operation (i.e., it does not matter where we 
remove the discs, or how we sew on the cylinder), show that the connected sum 
of a torus with itself is a sphere with two handles, and the connected sum of a 
projective plane with itself is a Klein bottle. 

4. Wh at is the connected sum of a torus and a projective plane? 
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7.2 Triangulation and orientation 
In order to make any headway at all we need to assurne that our surfaees ean 
be triangulated. That every eompaet surface admits a triangulation is a classieal 
result of Rado proved in 1925. We shall not give a proof here;t we prefer to 
outline the idea but omit the details whieh are eomplieated and rather tedious. 

Think of the problem of triangulating a closed surfaee S. Sinee S is eompaet 
and loeally homeomorphic to the plane, we ean find a finite number of closed 
dises in S whose union is all of S. To avoid annular regions between the dises, 
we agree to throw away any dise which lies entirely inside some other. Suppose 
(and this is the diffieult step) we ean arrange that the boundaries of these dises 
meet one another nicely, in the sense that if two meet then they do so in a finite 
number ofpoints and ares. Apriori this need not be the ease: think for example 
of the way a eurve like x sin (I/x) meets the x axis near the origin. The union of 
the boundaries of our dises breaks up naturally as a set of ares, and we introduee 
a vertex on the surfaee at eaeh point where three or more ares meet and at the 
midpoint of eaeh are (Fig. 7.7a). This produees most of the vertices and edges 

(a) 

Figure 7.7 (b) 

of our triangulation. To fill in the triangles, we note that S is nieely subdivided 
into patehes whieh are homeomorphie to dises. All we have to do now is to 
triangulate eaeh pateh as a eone with apex some interior point, as in Fig. 7.7b. 
All this sounds temptingly easy, but we emphasize that finding a suitable 
eovering by dises needs deep results, including a sharp version of the Jordan 
eurve theorem. 

t A short proof can be found in Doyle and Moran [25]. 
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From now on we shall assume that all our surfaces can be triangulated. Let 
S be a closed surface and let h: 1 K 1--+ S be a triangulation of S. As we might 
expect, K has some very nice properties. It has dimension 2; it is connected in 
the sense that any two of its vertices can be joined by an edge path; each of its 
edges is a face of exactly two triangles ; and each vertex lies in at least three 
triangles which fit together to form a co ne with apex the given vertex and base a 
polygonal simple closed curve (as in Fig. 7.8). A triangulation constructed by 

Figure 7.8 

the method outlined above will automatically have these properties, but they 
can be verified directly for any triangulation of a closed surface (see Problem 7). 
A complex with these four properties will be called a combinatorial surface. 

Figure 7.9 

We now turn to the idea of orientation. Fig. 7.9 shows what happens if we 
translate a small circle, to which we have given a sense of rotation, once round 
the central circle of a Möbius strip. The effect on the circle is to reverse its sense. 
For this reason, surfaces which contain a Möbius strip are said to be non­
orientable. A surface like the torus which does not contain a Möbius strip, and 
for which the operation of translating a smalI, oriented circle round a simple 
closed curve always preserves the &ense of the circle, is called orientable. 

We can approach this idea in a different way by making use of the fact that 
our surfaces are triangulable. There are two ways to orient, or give a sense of 
rotation to, a triangle. The two possibilities are shown in Fig. 7.10 and can be 
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specified either by drawing arrows on the triangle or, ifwe want to be completely 
precise, by appropriately ordering the vertices of the triangle. Of course, if we 
choose the ordering Va' VI' V2 to specify a particular orientation, then we must 

Figure 7.10 

1I0L--------..l.1I2 

agree that the cyclic variations V2' Va' VI and VI' V2' Vo represent the same 
orientation. 

This idea works for a simplex of any dimension. Let A be a general simplex 
and consider two orderings of its vertices to be equivalent if they differ by an 
even permutation. There are precisely two equivalence classes (unless A consists 
of a single vertex), each of which is called an orientation of A. Of course, a vertex 
can only be oriented in one way. Suppose now that we have chosen an orienta­
tion for A by ordering its vertices in some way, say as Va' VI'"'' Vk, and let B be 
the face of A determined by deleting Vi' Then the vertices of Bare automatically 
ordered. If i is even, the orientation of B specified by this ordering is called the 
orientation induced from A. If i is odd, we take the other orientation of B as 
that induced from A. The simplest case is the sense of direction given to each 
edge of a triangle by a choice of orientation of the triangle. It is easy to see that 
this definition depends only on the orientation of A, and not on the particular 
ordering of the Vi chosen to represent this orientation. 

We say that a combinatorial surface K is orientable if it is possible to orient 
all the triangles of K in a compatible manner. That is to say, in such a way that 
two adjacent triangles always induce opposite orientations on their common 
edge. Fig. 7.11 illustrates this definition. We leave the reader to experiment 

Compatible Figure 7.11 Incompatible 

with triangulations ofthe torus and Klein bottle: for the torus there is never any 
difficulty in orienting the triangles compatibly; in the case of the Klein bottle 
one always gets stuck. 
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If h : 1 K 1---- S is a triangulation of an orientable surface S, then the complex 
K must be orientable. For choose a 2-simplex in K and orient it; induce com­
patible orientations to its neighbours and continue round the complex. We 
never get stuck. For if we did, we could find a sequence of distinct 2-simplexes 
A 1,A2 , •.. ,Ak such that: 

(a) Ai has an edge in common with Ai + l' 1 ~ i ~ k - 1; 
(b) A k has an edge in common with Al; 
(c) the orientations of Ai' Ai + 1 are compatible for 1 ~ i ~ k - 1, but those of 

Ab Al are not. 

Figure 7.12 

Join the barycentre of Ai to the midpoints of the edges Ai _ 1 n Ai and 
Ai n Ai + 1 by straight lines, where Ai _ 1 is interpreted as A k when i = 1, and 
Ai + 1 as Al when i = k. This gives a simple closed polygonal path in 1 K 1 

which we thicken slightly to obtain a strip (Fig. 7.12). Since the orientations of 
the triangles are compatible, with the exception of those of Al and Ab the 
strip is a Möbius strip in 1 K I. This contradicts the assumption that S is an 
orientable surface. 

We shall return to the question of orienting surfaces in the next chapter and 
show that if S is a closed surface which can be triangulated by an orientable 
combinatorial surface, then any other triangulation of S must also be orientable. 

We have used the idea of thickening a polygonal curve in a combinatorial 
surface. Since this type of process will be needed quite frequently, we end this 
section with a couple of lemmas designed to make it quite precise. Let K be a 
combinatorial surface, and let L be a one-dimensional subcomplex of K. To 
thicken L we first barycentrically subdivide K twice, and then form the sub­
complex consisting of those simplexes of K 2 which meet L, together with all 
their faces (Fig. 7.13). Finally we take the polyhedron of this subcomplex. We 
obtain in this way a closed neighbourhood of 1 L 1 in 1 K 1 which, it is not too 
hard to prove, has the same homotopy type as 1 L I. 

(7.3) Lemma. Thickening a tree always gives a disco 

Proof. Proceed by induction on the number of vertices in the tree T. If T consists 
of a single vertex v, then thickening T gives precisely the union of those sim­
plexes of K 2 which have-v as a vertex: this is called the closed star of v in K 2 

and written star (v,K 2 ). It should be clear that K 2 is a combinatorial surface, 
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and that star (v,K 2 ) is a disco If T has n vertices, choose an 'end' vertex v, that 
is, one which belongs to only onet edge E of T. Remove this edge to produce a 
tree Tl with one less vertex. Thickening Tl gives a disc D hy assumption, and in 

Figure 7.13 

order to thicken T, all we have to do is to add to this disc the two closed stars 
A = star CE,K 2 ), B = star (v,K 2 ). Now A and Bare both discs; moreover, A 
and D meet along their boundaries in an are, as do A and B. Two applications 
of lemma (2.11) show that D u A u B is a dise. 

(7.4) Lemma. Thickening a simple closed polygonal curve gives either a cylinder 
or a Möbius strip. 

Proof. Remove an edge E from the curve to give a tree in K. Thickening this 
tree gives a dise D, by lemma (7.3). To thieken the original eurve, we need to 
take the union of D with the closed star of the baryeentre E in K 2 . Now star 
(E, K 2 ) and D meet along their boundaries in two disjoint ares. If we glue 
star (E, K 2 ) to D along one of these ares we obtain a dise, by lemma (2.11). It 
remains only to identify two disjoint ares in the boundary of this new dise. 
Define a homeomorphism from the disc to a rectangle so that the ares go to a 
pair of opposite sides. (The homeomorphism is defined on the two ares first, 
then extended over the rest ofthe boundary, and finally extended over the whole 
disc by means of lemma (2.10).) We now have to identify a pair of opposite 
sides of a rectangle: there are only two ways of doing this, and they give the 
cylinder and the Möbius strip. 

t Such a vertex exists, since if each vertex lies in two edges it is easy to find a loop in T. But T is 
a tree and therefore cannot contain a loop. 
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Problems 
5. Suppose we want to triangulate a surface which has a boundary. How does 
the definition of a combinatorial surface need to be adjusted? 
6. Let K be a combinatorial surface. Show that the triangles of K can be labelled 
Tl' ... ,T" in such a way that 7; always has an edge in common with at least one 
of Tl' .. . ,7; _ 1. Now build a model for the surface 1 K 1 in the form of a regular 
polygon in the plane, which has an even number of sides, and whose sides have 
to be identified in pairs in some way. 

7. If h: 1 K 1- S is a triangulation of a closed surface, show that K must be a 
combinatorial surface. This requires a litde patience. First use a connectivity 
argument locally to show that K cannot have dimension 1. Then prove K 
cannot contain a simplex of dimension greater than 2, and that every edge of 
K lies in precisely two triangles, using methods like those of theorem (5.23). 
Finally, check that the triangles of K which contain a particular vertex fit 
together as in Fig. 7.8. 

8. Let G be a finite group which acts as a group of homeomorphisms of a closed 
surface S in such a way that the only element with any fixed points is the identity. 
Show that the orbit space SjG is a closed surface. Show that S may be orientable, 
yet SjG nonorientable. If SjG is orientable, does S have to be so? A group action 
for which only the identity element has any fixed points is said to befixed-point 
free, and the group in question is said to actfreely. 

9. Let K be an orientable combinatorial surface, orient all its triangles in a 
compatible manner, and let h: 1 K 1- 1 K 1 be a simplicial homeomorphism. 
Suppose there is a triangle A, oriented by the ordering u, v, W of its vertices, 
whose image h(A) occurs with the orientation h(u), h(v), h(w) induced by h. 
Prove that the same must hold for any other triangle of K, and call h orientation­
preserving. Give an example of an orientable combinatorial surface and a 
simplicial homeomorphism which is not orientation-preserving. 

10. Let K be an orientable combinatorial surface. If G acts simplicially on 1 K I, 
if the action is fixed-point free, and if each element of G is orientation-preserving, 
show that the complex K 2 jG is an orientable combinatorial surface. 

7.3 Euler characteristics 
Let S be a closed surface. We know from our remarks on triangulation that we 
may replace S, up to homeomorphism, by the polyhedron of a combinatorial 
surface K. F or the remainder of this section we shall work with the space 1 K I. 

If L is a finite simplicial complex of dimension n, we define its Euler charac­
teristic to be 

n 

X(L) = L (-l)i lXi 
i = 0 
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where lX i is the number of i-simplexes in L. So if L happens to be a combinatorial 
surface, X(L) is the number of vertices minus the number of edges plus the 
number of triangles, and the Euler characteristic of a grapht is the number of 
vertices minus the number of edges. As mentioned in Chapter 1, X(L) is a 
topological invariant of the space 1 L I. The proof of this fact will be given in 
Chapter 9; we do not need it here. 

(7.5) Lemma.x(r) ~ 1 Jor any graph r, and equality occurs if and only if r is 
a tree. 

Proof. If r is a tree, it is easy to show X(r) = 1 by induction on the number of 
vertices. If r is not a tree, then it must contain a loop. Removing an edge from 
the loop leaves r connected and increases the Euler characteristic, since the 
number of edges decreases by 1 while the number of vertices remains constant. 
By repetition of this process we eventually convert r into a tree. Therefore 
X(r) < 1. 

Suppose now that K is a combinatorial surface, and that T is a maximal 
tree in K. We know from lemma (6.11) that T contains all the vertices of K. 
Construct a graph r, called the dual to T, by realizing the following vertex 
scheme: the vertices of rare the barycentres of triangles of K, and two such 
barycentres span a 1-simplex of r if and only if the corresponding triangles 
meet in an edge of K which does not lie in T. (We refer the reader back to 
Fig.1.5.) 

If we take the first barycentric subdivision r 1, then we can think of it as the 
subcomplex of K 1 consisting of all those simplexes which do not meet T. We 
make use of this representation of r 1 to show that r is connected. Thicken T 
and do the same for r (in other words, form the union of those simplexes of K 2 

which meet r). Call the resulting spaces N(T) and N(r) respectively. We know· 
from lemma (7.3) that N(T) is a disc, and it is not hard to check the following: 

(a) N(T) u N(r) = 1 K I; 
(b) N(T) and N(r) intersect in precisely the boundary circle of N(T); 
(c) r is a connected complex if and only if N(r) is a connected space. 

Now any two points x, y of N(r) can be joined by a path in 1 K I. Let p, q be 
the first and last points where this path intersects the boundary of N(T). Follow 
the given path from x to p, go round the boundary circle of N(T) from p to q, 
then take the given path again from q to y. This joins x to y by a path in N(r). 
Therefore r is a graph, by (c) above. 

Note that r need not be a tree. Fig. 7.14 shows a triangulation of the torus, 
and a choice of tree T, for which r has the homotopy type of a bouquet of 
two circles. 

t A connected one-dimensional complex. 
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Figure 7.14 

(7.6) Lemma. X(K) ~ 2for any combinatorial surface K. 

Proof. Choose a maximal tree T in K and construct its dual graph r as above. 
Observe that X(K) = X(T) + X(r), since all the vertices of K lie in T, r has an 
edge for every edge of K not in T, and the number of vertices in r is precisely 
the number of triangles in K. Therefore X(K) ~ 2 by lemma (7.5). 

(7.7) Theorem. The Jollowing are equivalent Jor any combinatorial surJace K: 
(a) Every simple closed polygonal curve in 1 K 1 which is made up of edges of K 1 

separates 1 K 1 ; 

(b)x(K) = 2; 
(c) 1 K 1 is homeomorphic to the sphere. 

Proof. Suppose (a) is satisfied. Choose a maximal tree Tin K and let r be its 
dual. We claim that r is also a tree giving X(K) = X(T) + X(r) = 2. For if not, 
r must contain a loop, and by assertion this loop separates 1 K I. But each 
component of the complement of this loop must contain a vertex of T, con­
tradicting the fact that T is connected and disjoint from r. Therefore r is indeed 
a tree. 

If X(K) = 2, then X(r) must be 1 and so r is a tree. Therefore 1 K 1 is the 
union of two discs N(T) and N(r) along their boundary circles, giving the 
sphere. 

Finally, the proof of theorem (5.20) teIls us that any simple closed curve on 
the sphere separates the sphere. This completes the chain of implications 
(a) = (b) = (c) = (a). 

We shall need two further results concerning the Euler characteristic; we 
relegate their proofs to the exercises which follow. 

(7.8) Lemma. Let K, L be simplicial complexes which intersect in a common 
subcomplex, then X(K u L) = X(K) + X(L) - X(K n L). 

(7.9) Lemma. The Euler characteristic is left unchanged by barycentric sub­
division. 
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Problems 
11. Prove lemma (7.8). 

12. Prove lemma (7.9) by induction on the number of simplexes in the complex. 

13. Deduce from Problem 12 that the Euler characteristic of a graph r is a 
topological invariant of 1 r I. 
14. Let K be a finite complex. If G acts simplicially on 1 K I, and if the action is 
fixed-point free, show that 

X(K) = 1 G I.X(K 2 j G) 

where 1 G 1 denotes the number of elements in G. 

15. Let K be a combinatorial surface. Make a model for 1 K 1 in the plane, as 
in Problem 6, and let J denote the boundary curve of the resulting regular 
polygon. Identifying the edges of J in pairs according to the prescription for 
building 1 K I, gives a graph r in K . Show that X(K) = X(r) + 1, then deduce 
lemma (7.6) from lemma (7.5). 

16. Continuing from Problem 15, if r has an edge, one end of which is not 
joined to any of the other edges, show theremust be two edges in J wh ich ha ve a 
vertex in common and which are 'folded together' about this common vertex 
when we form r from J. Hence give a second proof that X(K) = 2 implies 
IKI ~ S2. 

7.4 Surgery 
We now begin our attack on the classification theorem by showing how to 
modify a given combinatorial surface in such a way as to increase its Euler 
characteristic. The modification involves cutting out part of the surface and 
replacing it by something else, and is quite aptly called 'surgery'. We have just 
seen that a combinatorial surface has Euler characteristic less than or equal to 2, 
and that equality occurs precisely when the underlying space is homeomorphic 
to the sphere. Consequently, we shall be able to convert every surface into the 
sphere by a finite number of our so-called surgeries. 

Fig. 7.15 illustrates the type of modification we have in mind for the double 

Figure 7.15 
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torus. We begin with a simple closed curve which does not separate the surface 
into two pieces, and thicken it to obtain a cylinder. Döing surgery along the 
curve involves removing the interior of this cylinder and filling in each of the 
two resulting holes with a disco The result is a surface homeomorphic to the 
torus. A further surgery will give us the sphere. Of course, if we begin with a 
nonorientable surface, then thickening the curve may weIl give a Möbius strip. 
In this case, we remove the interior of the strip to give a compact surface with 
boundary a single circle, then close up the surface again by capping off this 
circle with a disco 

We have drawn our picture without reference to any particular triangulation 
for the sake of clarity, and because this is how we visualize a surgery. However, 
we emphasize that we do need to work throughout with combinatorial surfaces 
in order to have the Euler characteristic available as a tool. 

Let K be a combinatorial surface in IEn, and let L be a simple closed polygonal 
curve which is a subcomplex of K and which does not separate 1 K I. Form the 
second barycentric subdivision K 2 and thicken L, calling the resulting complex 
N. By lemma (7.4), we know that 1 N 1 is either a cylinder or a Möbius strip. Let 
M be the subcomplex of K 2 which is complementary to N, that is to say M 
consists of those simplexes of K 2 which do not meet L, together with all their 
faces. One possibility is that thickening L gives a cylinder: then 1 M 1 is a com­
pact surface with boundary consisting of two circles, and we label the sub­
complexes which triangulate these circles by L 1, L 2• We now form the new 
combinatorial surface 

K* = M U CL 1 U CL2 

where the apexes of the cones CL1, CL2 are points of IEn + 1 - IEH which lie 
on opposite sides of IEn. The other possibility is that thickening L gives a Möbius 
strip. In this case, 1 M 1 has a single circle as boundary; we call the subcomplex 
triangulating this circle L 1 and define K* to be M u CL1• In both cases we 
say that K* is obtained from K by doing surgery along L. 

(7.10) Lemma. X(N) = 0 

Proof. Examine carefully the proof of lemma (7.4). N is built up of the closed 
stars, star (v,K2) where v E L1• Now the closed star of a vertex in a combinatorial 
surface clearly has Euler characteristic 1. If two of these closed stars meet, they 
do so in precisely three vertices and two edges (see Fig. 7.13), so the Euler 
characteristic of their union is 1 + 1 - (3 - 2) = 1. So build up N by walking 
round Land adding in each closed star as we meet it. The Euler characteristic 
of the resulting subcomplex is always 1 until the last step, when we add a star 
which intersects the union of all the others in 6 vertices and 4 edges. Therefore 
X(N) = 1 + 1 - (6 - 4) = o. Notice that this proof goes through indepen­
dently of whether 1 N 1 is a cylinder or a Möbius strip. 

(7.11) Theorem. X(K*) > X(K) 
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Proo/. If thickening L gives a cylinder, 

X(K*) = X(M) + X(CL1) + X(CL2 ) - X(L1) - X(L2 ) 

= X(M) + 2 

If thickening L gives a Möbius strip, 

X(K*) = X(M) + X(CL1) - X(L1) 

= X(M) + 1 

Also, combining previous lemmas, 

X(K) = X(K2 ) = X(M) + X(N) - X(M n N) = X(M) 

This completes the argument. 

SURFACES 

If K is a combinatorial surface, and if 1 K 1 is homeomorphic to the sphere, 
then we shall call K a combinatorial sphere. 

(7.12) CoroUary. Any combinatorial surface can be changed into a combinatorial 
sphere by a finite number of surgeries. 

Proo/. If X(K) = 2, then K is a combinatorial sphere and we have nothing to do. 
If X(K) < 2, there is a simple c10sed polygonal curve in K 1 which does not 
separate 1 K I, by theorem (7.7). So replace K by K 1 and do surgery along such a 
curve. The result is a new combinatorial surface whose Euler characteristic is 
larger than that of K. Continuing in this way, we eventually produce a com­
binatorial surface with Euler characteristic 2. 

We shall need a slight refinement of the above argument. Each time we do a 
surgery, we create either one or two discs on the surface, and we would like to 
ensure that the curves along which we do our subsequent surgeries avoid these 
discs. If we are unlucky and find ourselves with a curve, along which we wish 
to do surgery, and which runs through a disc, then we simply shrink the disc 
into the interior of one of its triangles, and hence off the curve. Of course we 
must becareful when shrinking our disc, not to move any of the other discs onto 
the curve. The following lemma allows us to realize this shrinking process. 

(7.13) Lemma. Let K be a combinatorial surface, D a disc which is a subcomplex 
of K, and A a triangle of D. 1here is a homeomorphism h: 1 K 1 ~ 1 K 1 which 
satisfies h(D) = star (Ä, K 2 ) and wh ich is the identity on all simplexes ofK that 
do not meet D. 

The idea of the proof is very simple. Thicken the boundary of D to produce a 
slightly larger disc D 1, then shrink D onto star (..1, K 2 ) inside D 1, keeping all 
of 1 K 1 - D1 fixed. Further details can be found in Problems 19-21. If L is a 
polygonal curve in K which intersects D and along which we need to do surgery, 
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then before carrying out the surgery we replace D by star (,4, K 2 ) and replace 
Kby K 2 • 

We can now prove one half of the c1assification theorem: 

(7.14) Theorem. Every closed surface is homeomorphic to one ofthe standard ones. 

Proof. Given a closed surface S, triangulate it and do surgery on the resulting 
combinatorial surface until it becomes a combinatorial sphere. The triangulation 
is no longer needed and we can forget it. After the surgeries, we are left with a 
sphere which has a number of disjoint discs marked on it. To recapture S, all 
we have to do is reverse each of the surgeries; this involves either removing a 
pair of discs and attaching a cylinder in their place, or replacing a single disc 
by a Möbius strip. 

If our original surface S is orientable, it does not contain any Möbius strips, 
therefore reversing a surgery must always amount to removing a pair of discs 
and adding a handle in their place. So we obtain a sphere with handles. If S is 
nonorientable, then both types of operation can occur. But we know from 
Section 7.1 that, in this case, removing two discs and sewing on a cylinder is 
always equivalent to replacing each of the discs by a Möbius strip. Therefore 
we obtain a sphere with a finite number of Möbius strips sewn in. 

Problems 
17. The straight lines shown in Fig. 7.16 represent three simple c10sed curves 
in the Klein bottle. Thicken each curve, decide whether the result is a cylinder 
or a Möbius strip, and describe the effect of doing surgery along the curve. 

Figure 7.16 

18. Show that the surface illustrated in Fig. 7.17 is homeomorphic to one of 
the standard ones using the procedure of theorem (7.14). 
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Figure 7.17 

19. Let X ::::l Y::::l Z be three concentric discs in the plane. Find a homeo­
morphism from X to itself which is the identity on the boundary circle of X 
and which throws Y onto Z. 

20. Suppose we have two discs in the plane, both of which are bounded by 
polygonal curves, and one of which lies in the interior of the other. Prove that 
the region between them is homeomorphic to an annulus. (The best hint we 
can give is Fig. 7.18, plus areminder that any polygonal simple closed curve 
in the plane bounds a disc.) 

Figure 7.18 

21. With the notation oflemma (7.13) and Problem 19, find a homeomorphism 
h :D 1 --4 X such that h(D) = Yand h(star (A,K 2 )) = Z. Nowprove lemma (7.13). 

7.5 Surface symbols 
Write H(p) for the sphere with p handles added, and M(q) for the sphere with q 
Möbius strips sewn in. Two questions remain unanswered. 

Question 1. Are the surfaces H(p) and M(q) weIl defined? In other words, if we 
take a sphere and add some handles (or Mö bius strips), and if we take a second 
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copy of the sphere and add the same number of handles (or Möbius strips) but 
to different parts of the sphere, are the resulting surfaces homeomorphic? 

Question 2. Are the standard surfaces S2, H(I), M(I), H(2), M(2), H(3), ... 
topologically distinct? 

We shall deal with these two questions by constructing models for our standard 
surfaces. Consider the orientable ca se first. Suppose we are given a sphere with 
two handles attached. For each of the handles we choose a pair of simple closed 
curves which wind round it once, as shown in Fig. 7.19. The curves are all based 

Figure 7.19 
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at the same point and are otherwise disjoint. Suppose we now cut the surface 
along the curves labelIed a, b in the directions indicated by the arrows. Then we 
can open the surface out to become a rectangle with a handle attached in its 
interior. A further pair of cuts, along the curves c andd, produces a model in the 
form of an eight-sided polygon with its sides labelIed appropriately (Fig. 7.20). 

b 
b 

a 

a 

'C 
Figure 7.20 

Now the original surface is completely defined by the way in which we identify 
the edges ofthis polygon in pairs, and this information is efficiently stored in the 
so-called surface symbol obtained by reading round the polygon clockwise and 
listing the labels on its edges as they occur, adding a superscript -1 to each edge 
whose arrow points anticlockwise. So the surface symbol of the sphere with 
two handles attached is aba- 1b- 1cdc- 1d- 1. 

By increasing the number of cuts, we can clearly produce a model for the 
sphere with p handles attached in the form of a 4p-sided polygon whose edges 
are to be identified in pairs according to the symbol a1b1al1bl1a2b2ai1bi1 
.. . apbpa; 1b; 1. Since two surfaces which have the same surface symbol are 
quite clearly homeomorphic, we have disposed of Question 1 for orientable 
surfaces. 

In the nonorientable case, we cut each Möbius strip along a curve which cuts 
across it once, as in Fig. 7.21. We leave the reader to check that if we have 
q Möbius strips, then we obtain a 2q-sided polygon with surface symbol 
a1a1a2a2 .. . aqaq' Again, we have answered Question 1 in the affirmative. 

To show that the surfaces S2, H(l), M(l), H(2), ... are all topologically 
distinct, we shall calculate their fundamental groups. To illustrate the method, 
wh ich uses van Kampen's theorem (6.13), we again choose to work with H(2). 
Removing an open disc from H(2) pro duces aspace which deformation retracts 
onto the one-point union of four circles; the fundamental group of this space 
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a 

p p ' 

a 

Figure 7.21 

is 7l.. * 7l.. * 7l.. * 7l.. with generators a, b, c, d represented by our original four loops. 
Now if we use C to denote the boundary circle of this space, then the loop 
aba-1b-1cdc-1d- 1 is quite clearly homotopic to a generator of1t 1(C). So van 
Kampen's theorem gives 

1t1{H2 ) ~ {a,b,c,dlaba-tb - 1cdc-1d- 1 =e} 

The same sort of argument shows 

and 

P 

1tl (H(p)) ~ {a1,b 1, . .. ,ap,bp I n ai bi ai- 1 bi 1 = e} 
i = 1 

q 

1t 1 (M(q)) ~ {a 1,a2 ,· •• ,aq I n af = e} 
i = 1 

We also know, of course, that S2 is simply connected. 

If we now abelianize each of these groups, in other words, form the quotient 
of each group by its commutator subgroup, then 1t 1(H(p)) becomes the free 
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abelian group 7L x 7L x ... x 7L on 2p generators, and 1tl(M(q» the abelian 
group generated by q elements Xl,X2 ••• ,xq subject to (XIX2 ... X q)2 = e. Changing 
to the new set of generators XIX2 ••• xq, X2,X3, ••• ,xq, we see that this latter group 
is 7L 2 x 7L x ... x 7L, there being q - 1 infinite cyclic factors. Since no two of 
the abelianized groups are isomorphie, we conclude that no two of our standard 
surfaces are homeomorphic. This completes our classification of closed surfaces. 

H(P) is called the standard orientable surface of genus p, and M(q) the 
standard nonorientable surface of genus q. A closed surface is completely 
determined once we know its genus and whether or not it is orientable. 

At this point we recommend the reader to work through the alternative 
(historically much earlier) proof of the classification theorem for closed surfaces 
given in Massey [9]. 

Much current work in topology centres on the study of manifolds, the higher­
dimensional analogues of surfaces. A manifold of dimension n (n-manifold for 
short) is a second-countable Hausdorff space, each point of which has a neigh­
bourhood homeomorphic to [En. The spaces [En, sn, pn are all n-manifolds; 
S3 x Sl is a closed 4-manifold ('closed' meaning it is compact and connected); 
any open subset of an n-manifold is itself an n-manifold, so GL(n) is a manifold 
of dimension n2 ; SO(n) is a closed manifold of dimension !n(n - 1); finally, the 
Lens spaces L(p,q) are all examples of closed 3-manifolds. Despite a great deal 
of progress, many basie questions remain unanswered. The most important is 
the famous Poincare conjecture. When posed as a question, it asks if every 
closed, simply connected manifold of dimension 3 is homeomorphic to S3. 

Problems 
22. Are the surfaces shown in Fig. 7.22 homeomorphie? 

Figure 7.11 

23. What happens if we remove the interiors of two disjoint discs from a closed 
surface, then glue the two resulting boundary circles together? 

24. Use the classification theorem to show that the operation of connected sum 
(Problem 3) is weIl defined. 
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25. Assuming every compact surface can be triangulated, show that the boundary 
of a compact surface, if nonempty, consists of a finite number of disjoint circles. 

26. Show that any compact connected surface is homeomorphic to a closed 
surface from which the interiors of a finite number of disjoint discs have been 
removed. 

27. What is the fundamental group of the space obtained by punching k holes 
in the sphere? 

28. Write H(p,r) for H(p) with the interiors of r disjoint discs removed, and 
M(q,s) for M(q) with s discs similarly removed. Show that H(p,r) can be obtained 
from a (4p + 3r)-sided polygonal region in the plane by glueing up its edges 
according to the surface symbol 

b -lb-l b -lb- 1 -1 -1 
al lai 1 ... a p pap p X 1YI X l ... XrYrXr . 

(Figure 7.23 is supplied as a hint.) 

Yt 

Figure 7.23 

29. Find a surface symbol for M(q,s), as defined in Problem 28. 

30. Calculate the fundamental groups of H(p,r) and M(q,s). 

31. Show that H(p,r) ~ H(p' ,r') implies p = p' and r = r'; that M(q,s) ~ M(q',s' ) 
implies q = q' and s = s' ; and that there are no va lues of p, q, r, S for which 
H(p,r) ~ M(q,s). 

32. Define the genus of a compact connected surface to be the genus of the 
closed surface obtained on capping off each boundary circle with a disco Show 
that a compact connected surface is completely determined by whether or not 
it is orientahle, together with its genus and its number of boundary circles. 
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33. Identify the surfaces shown in Fig. 7.24. Can you suggest a general result 
from these two pictures? 

Figure 7.24 
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8. Simplicial Homology 

8.1 Cycles and boundaries 
If we wish to distinguish between the sphere and the torus, we have already 
seen one way of doing so using the fundamental group. Any loop in the sphere 
can be continuously shrunk to a point, in other words the sphere is simply 
connected, whereas this is not the case for the torus. The fundamental group is 
a very valuable tool, but it has a significant defect. Remember that the funda­
mental group of a polyhedron depends only on the 2-skeleton of the underlying 
complex, making it ideal for studying questions which are essentially two­
dimensional (say distinguishing between two surfaces), but leaving it impotent 
in the face of a problem such as showing that S3 and S4 are not homeomorphic. 

In an attempt to overcome this difficulty, we shall associate to each finite 
simplicial complex K a collection of groups Hq(K), q = 0,1,2, ... , called the 
simplicial homology groups of K. These groups will be defined using the sim­
plicial structure of K, but they will turn out to depend only on the homotopy 
type of the polyhedron I K I, allowing us to define the homology groups of 
any compact triangulable space. Each Hq(K) is a finitely generated abelian 
group, and is to be thought of as in some sense measuring (q + l)-dimensional 
holes in the space 1 K I. For ex am pie, the group H4(S4) will be shown to be non­
trivial, verifying our feeling (when we look at S4 in [E5) that S4 has a five­
dimensional hole. 

The construction of the homology groups of a complex is quite complicated, 
and for this reason we attempt to provide a little motivation in what follows. 
We can distinguish between the sphere and the torus in a rather different manner 
from that suggested above. Every simple closed curve drawn on the sphere 
separates it, and therefore forms the boundary of a region on the sphere. This 
is not so for the torus: Fig. 8.1 shows three simple closed curves on the torus 

Figure 8.1 
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only one ofwhich, the curve B, bounds a piece ofthe surface. In order to recognize 
the fact that the torus has holes in it, we would like some way of working with 
simple closed curves that ignores those which bound part of the surface. 

It is important to realize that a curve may bound part of a surface and yet not 
be null homotopic. For example, the boundary circle of the punctured torus 
bounds the whole surface, but we know that it represents a nontrivial element 
in the fundamental group. 

For reasons which will become apparent later, we choose to work with 
oriented polygonal curves in some fixed triangulation K of the torus, denoting 
orientation as usual by arrows on the edges ofthe curves. Ifan edge has vertices 
v, W, then the symbol (v,w) will denote this edge oriented in the direction from 
v to w. In a similar manner, if u, v, ware the vertices of a triangle of K, then 
(u,v,w) denotes this triangle oriented by the ordering u, v, w of its vertices; so 
(u,v,w) = (v,w,u) = (w,u,v). We denote a change of orientation by a minus sign, 
thus (w,v) = -(v,w) and (v,u,w) = -(u,v,w). The boundary of the oriented edge 
(v,w) is defined to be 

8(v,w) = w - v 

and the boundary of the oriented triangle (u,v,w) is 

8(u,v,w) = (v,w) + (w,u) + (u,v) 

Note that the boundary of (u,v,w) is the sum of its edges, each taken with the 
orientation induced by the given orientation of the whole triangle. 

B 
e,, __ -c-

A 
Figure 8.2 

If we now think of an oriented curve such as A in Fig. 8.2 as the sum of its 
oriented edges 

A = (u,v) + (v,w) + (w,x) + (x,y) + (y,u) 

and define its boundary linearly by 

oA = o(u,v) + o(v,w) + o(w,x) + o(x,y) + o(y,u) 

then of course all the terms cancel out and we have a formal way of recognizing 
that a curve like Ais closed and consequently has no boundary. Now consider 
the oriented curve B. It is also closed and, in addition, it encloses three of the 
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triangles of K. If we orient these triangles as indicated, write their union as 

(e,a,b) + (e,b,c) + (e,c,d) 

and compute the boundary of this, we obtain 

o(e,a,b) + o(e,b,c) + o(e,c,d) 

=~+M+~+M+M+~+M+~+M 

= (a,b) + (b,e) + (e,a) + (b,c) + (c,e) -' (b,e) + (c,d) + (d,e) - (c,e) 

= (a,b) + (b,c) + (c,d) + (d,e) + (e,a) 

=B 

making precise the fact that B bounds a piece of the torus. 
We now consider arbitrary linear combinations Al(Ul,Vl ) + .,. + Ak(UbVk) 

of oriented edges of K, with integer coefficients,t which have no boundary in 
the sense that Al O(Ul,Vl) + ... + Ak O(Uk,Vk) vanishes. Such an expression will be 
called a one-dimensional cycle of K. We have lost some geometrie content in 
doing this (after all, 'five times a simplex' does not mean very much I), but we 
do have the advantage that our l-cycles form an abelian group under the 
addition 

~Ai(Ui,Vi) + ~J)iUi,Vi) = ~(Ai + J.li)(UjoVi) 

We denote this group by Zl(K). 
An oriented, simple c10sed polygonal curve in K, when thought of as the sum 

of its oriented edges, is a particularly simple sort of l-cyc1e and may be referred 
to as an elementary l-cyc1e. It is an easy exercise (which we recommend to the 
reader) to verify that Zl(K) is generated by these elementary cyc1es. 

Thinking back to the curve B above, we say that a one-dimensional cye1e is a 
bounding cycle if we can find a linear combination of oriented triangles whose 
boundary is' the given cyc1e. The bounding cyc1es rather obviously form a 
subgroup Bl(K) of Zl(K), and we wish to ignore these. Consequently, we form 
the quotient group 

Hl(K) = Zl(K)/Bl(K) 

which we call the first homology group of K. 

Figure 8.3 

t Keeping in mind that .il(u,v) always means the same as ( -.il) (v,u). 
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Two eyc1es whose differenee is abounding eyc1e represent the same element 
of H 1(K) and are said to be homologous. For example, the two eyc1es Zl' Z2 

shown in Fig. 8.3 are homologous, sinee Zl - Z2 is the boundary of the tube 
(with its triangles oriented as shown) between them. 

As we shall see later, H 1 (K) turns out to be isomorphie to 7L EB 7L, and we 
ean represent the generators by elementary eyc1es Zl' Z2' where Zl winds onee 
round the torus longitudinally, and Z2 winds onee round meridianally. So any 
other one-dimensional eyc1e is homologous to a linear eombination of these 
two. For example, in the triangulation shown in Fig. 8.4, the 'diagonal' eyc1e Z 

is homologous to Z 1 + Z 2 sinee Z 1 + Z 2 - z bounds half of the torus. 

Z2 

(\ In 
0 0 

---_. 

0 0 
21 

0 

0 

Figure 8.4 

In order to motivate the definition of the first homology group, we have 
worked with a speeifie triangulation of the torus. However, it is c1ear that our 
eonstruetion makes sense for any simplieial eomplex K. Even better, it general­
izes easily to provide a homology group HiK) for eaeh nonnegative integer q, 
as we shall see in what folIows. 

8.2 Homology groups 
Let K be a finite simplieial eomplex. We know there are preeisely two different 
ways of orienting eaeh simplex of K, with the exeeption that a vertex ean be 
oriented in only one way. A simplex together with a speeifie ehoiee of orientation 
will be ealled an oriented simplex and usually be denoted by the symbol (J or 't'. 

We define Cq(K) to be the free abelian group genera ted by the oriented 
q-simplexes of K, subjeet to the relations (J + 't' = 0 whenever (J and 't' are just 
the same simplex with opposite orientations. An element of this group is ealled 
a q-dimensional chain, and CiK) itself will be referred to as the qth ehain group 
of K. Note that Cq(K) is free abelian with rank equal to the number of q-simplexes 
in K. 
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A q-chain can be thought of as a linear combination Al 0" 1 + ... + AsO" s of 
oriented q-simplexes of K with integer coefficients, provided we remember that 
A( -0") and (-A)O" always mean the same thing, where -0" as usual stands for 
0" with its orientation reversed. 

Weshall often want to define homomorphisms on these chain groups, and 
in doing so our approach will always be the same: specify the value ofthe homo­
morphism on each generator of Cq(K), that is to say on an arbitrary oriented 
q-simplex 0" of K; check that the relations 0" + (-0") = 0 are preserved; then 
extend linearly to the other elements. 

A good example is the boundary homomorphism. The boundary of an oriented 
q-simplex is defined to be the (q - l)-chain determined by the sum of its 
(q - l)-dimensional faces, each taken with the orientation induced from that 
on the whole simplex. 

We need a litde more notation in order to produce a formula from which 
we can compute boundaries. If a q-simplex has vertices Vo, ... ,vq, the symbol 
(vo, ... ,vq) means this simplex oriented by the given ordering. 
Therefore 

for any permutation () of 0, .. . ,q, where sign () = + 1 (-1) if () is an even (odd) 
permutation. According to the above description the boundary of the oriented 
q-simplex (vo, ... ,vq) is 

q 

8(vo, ... ,vq) = L (_l)i (vo, ... , V;, ... ,vq), 

i = ° 
where (vo, ... ,Vi' ... ,vq) is shorthand for the oriented (q - l)-simplex obtained by 
deleting the vertex Vi. One easily checks that changing the orientation of 0" 

changes the induced orientation on each of its faces, so 80" + 8( - 0") is zero. 
Therefore 8 determines a homomorphism 

In the special case when q = 0, we define the boundary of a single vertex to be 
zero and set C _ 1 (K) = O. 

Thinking back to our work in Section 8.1, it is natural for us to call the 
kernel of 8: CiK) -+ Cq _ l(K) the group of q-cycles of K, and denote it by 
Zq(K). 

8.1 Lemma. The composition Cq+ l(K)~ CiK)~ Cq_ 1(K) is the zero homo­
morphism. 

Proof. We need only check that 82 = 8 08 gives zero when applied to any 
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oriented (q + 1)-simplex of K. Now 
q+1 

a2(Vo," .,Vq + 1) = a L (_1)i (VO, .. ·,Vi, .. ·,Vq + 1) 
i= 0 

q+1 q+1 
~ (_l)i ~ _ . - 1 
L... L... ( I)' (vo, ... ,Vi , ... ,Vj , ... ,vq + 1) 

i=O j=i+1 

q+1 i-1 

+ L (_l)i L (-l)i (Vo, .. ·,Vj,. .. ,Vi, .. ·,Vq + 1) 
i=O j=O 

All the terms in this expression cancel in pairs, since each oriented (q - 1)­
simplex (vo, ... ,Vi , ... ,Vj ,. .. ,vq + 1) appears twice, the first time with sign 
(_l)i + j - 1 and the second time with the opposite sign (_1)i + j. 

If we write BiK) for the image of a: Cq + 1 (K) -+ CiK), the above lemma 
shows us that Bq(K) is a subgroup of Zq(K). We call BiK) the group of bounding 
q-cycles. 

The qth homology group oi K is now defined to be 

Hq(K) = ZiK)/BiK ) 

The element of HiK) determined by a q-cycle z will be called the homology 
class of z and written [z J. Two q-cycles whose difference is abounding q-cycle 
have the same homology class and will be called homologous cycles. 

A homology group HiK) is by its very definition a finitely generated abelian 
group. Therefore it can be written in the form F $ T, where F is a finitely 
generated free abelian group (in other words, the direct sum of a finite number 
of copies of Z), and T is a finite abelian group. The elements of T are precisely 
those elements of the homology group which have finite order, and they are 
called torsion elements. The rank of F, that is, the number of summands when 
we express F as a sum of cyclic groups, is called the qth Betti numbert of K and 
denoted by ßq. 

Problems 
1. Check that changing the orientation of a simplex changes the induced 
orientation on each of its faces. 
2. Show the elementary 1-cycles, mentioned in Section 8.1, generate Z1(K) for 
any complex K. 

3. Take the triangulation of the Möbius strip shown in Fig. 6.2, orient one of 
the triangles, then go round the strip orienting each triangle in a manner com­
patible with the one preceding it. (Of course, when you get back to where you 
started the orientations do not match up.) What is the boundary of the two­
dimensional chain formed by taking the sum of these oriented triangles? 

t After the Italian mathematician Enrico Betti (1823-92). 
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4. Let K be the complex shown in Fig. 6.4, assuming the identifications are 
made so that I K I is a torus. Orient the triangles of K in such a way that if two 
have an edge in common, their orientations are not compatible. Now take 
the sum of all the oriented triangles and compute its boundary. 

5. As for Problem 4, but this time orient all the triangles compatibly, with the 
exception of one of them which is given the 'wrong' orientation. 

6. Triangulate the 'dun ce hat' (Fig. 5.11) in some way and decide whether or not 
there are any 2-cycles. 

7. Show that any cycle of K is abounding cycle of the cone on K. 

8. Triangulate sn so that the antipodal map is simplicial and induces a triangula­
tion of pn. Ifn is odd, find an n-cycle in this triangulation of pn. What difficulties 
arise when n is even? 

9. Triangulate the Möbius strip in a simple way so that its centre circle is a 
subcomplex. Orient the boundary circle of the strip, and the centre circle, 
calling the resulting elementary l-cycles Zl' Z respectively. Show that Zl is 
homologous to either 2z or - 2z. 

10. Suppose I K I is homeomorphic to the torus with the interiors of three dis­
joint discs removed. Orient each boundary circle of I K I and let Zlh,Z3 be the 
resulting elementary l-cycles of K . Show that [Z3J = A[ZlJ + Il[Z2J where 
A = ± 1, Il = ± 1. Do we have the same result if we replace the torus by the 
Klein bottle? 

8.3 Examples 
In this section we shall calculate one or two homology groups. The methods 
used will be rather primitive, and purposely so because any systematic calcula­
tion of these groups would take us too far afield. Our aim is to reach the stage 
where we can present some significant applications of homology theory as 
quickly as possible, and with a minimum of fuss. For a more sophisticated 
approach, see Maunder [18]. 

Example 1. Let K be the complex shown in Fig. 8.5. 

Figure 8.5 
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The vertices Vi' V2, V3, V4 generate Zo(K) = Co(K), and C1(K) can be thought 
of as the free abelian group generated by the oriented i-simplexes (Vl,V2), 
(Vl,V4), (V2,V3), (V 2,V4), (V 3,V4)· SO Bo(K) = oC1(K) is generated by V2 - Vi' 
V4 - Vi' V3 - V2, V4 - V2, V4 - V3, and we see that Vi' V2, V3, V4 all determine 
the same homology class. Therefore Ho(K) = Zo(K)jBo(K) is an infinite cyclic 
group generated by [Vi]. 

The group Z 1 (K) is generated by the elementary i-cycles, and by inspection 
there are six such, namely 

Zl = (Vl,V2) + (V2,V4) + (V4,Vl) 

Z2 = (V2,V3) + (V3,V4) + (V4,V2) 

Z3 = (Vl,V2) + (V2,V3) + (V3,V4) + (V4,V 1) 

plus -Zl, -Z2, and -Z3. Since Z3 = Zl + Z2, we see that Zl(K) ~ 7L EB 7L with 
generators Zl, Z2. Our complex K has only one two-dimensional simplex, so 
C2(K) is an infinite cyclic group generated by (V2, V3, V4). This means that 
B 1(K) = oC2(K) is generated by O(V2' V3, V4) = Z2. SO the first homology 
group H 1 (K) is isomorphie to 7L and generated by [z 1]. 

Finally, there are no 2-cycles, and no simplexes of dimension greater than 2, 
therefore Hq(K) = 0 for q ~ 2. 

Example 2. If two vertices V, W of a complex K lie in the same component of 
1 K I, then thtly are homologous. For we can join V to W by an edge path 
V Vi V2 ... Vk W, in which no two consecutive vertices are equal, and then check 
that W - V is the boundary of the i-chain (v,v 1) + (Vl,V 2) + ... + (Vk'W). We 
leave the reader to convince himself that vertices which lie in different com­
ponents of 1 Klare not homologous, and that an integer multiple of a single 
vertex can never be a boundary, thus proving the following result: 

(8.2) Theorem. Ho(K) is a /ree abelian group whose rank is the number 0/ com­
ponents 0/1 K I. 

Example 3. Let K be a triangulation ofthe torus. Ifwe orient all the 2-simplexes 
of K compatibly, take their sum, and compute the boundary of this sum, then 
each edge ofthe triangulation occurs exactly twice in the result, once with each of 
its two possible orientations. So we have a two-dimensional cycle. It is ele­
mentary to check that any other 2-cycle has to be an integer multiple of this one. 
(For suppose the oriented triangle (a,b,c) occurs in a 2-cycle with coefficient A, 
then A(b,c) automatically appears in its boundary. Now the edge spanned by 
band c lies in precisely one other triangle of K whose third vertex we denote by 
d. The only way we can rid ourselves of the above term A(b,c) is to orient this 
adjacent triangle as (d,c,b), in other words, compatibly with (a,b,c), and include 
it in our cycle with the same coefficient A. Going round the complex in this 
way, we see we must orient all the simplexes compatibly, and give them all the 
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same coefficient.) Since there are no 3-simplexes in a triangulation of the torus, 
there are no bounding cyc1es, and therefore H 2(K) is isomorphie to 7L. 

I[ we now change to a triangulation of the punctured torus, there are no 
2-cyc1es, since even if we inc1ude all the triangles oriented compatibly as above, 
when we compute the boundary we are left with those edges which form the 
boundary of the hole in the torus. So the second homology group is zero. 

The second homology group of a triangulation of the Klein bottle is also 
zero. Again, there are no 2-cyc1es, but this time for a different reason. The 
Klein bottle being nonorientable, there is no way to orient compatibly all the 
2-simplexes of a triangulation. 

Notice how the second homology group very nicely distinguishes between 
the torus, which is orientable, and the Klein bottle, which is not. 

Example 4. Suppose we have a complex K which is a cone, in other words K is 
isomorphie to a complex of the form CL where the dimension of L is one less 
than that of K. Let v be the unique vertex of K which does not lie in L, usually 
called the apex of K. 

A cone is always connected, so Ho(K) ~ 7L, by theorem (8.2). Now assume 
q > 0 and define a homomorphism d: Cq(K) ~ Cq + l(K) as follows. I[ 

a = (vo, ... ,vq) is an oriented q-simplex of K which happens to lie in L, define 
d(a) = (v,vo, ... ,vq); otherwise set d(a) = O. Clearly d(a) depends only on the 
orientation of a (and not on the particular ordering of its vertices chosen to 
represent this orientation), and d(a) + d( -a) = 0 in Cq + l(K). So d gives a 
homomorphism from CiK) to Cq + l(K). Now check that 

od(a) = a - do(a) 

for any oriented q-simplex a. (For example, if a lies in L then 

od(a) = o(v,vo," .,vq) 

= a - do(a) 

The other case is left to the reader.) So if z is a q-cyc1e of K, we have Od(z) = 
z - do(z) = z. This shows every q-cyc1e to be abounding cyc1e, and therefore 
Hq(K) = 0 for q > O. 

Example 5. Let An + 1 denote an (n + 1)-simplex, n > 0, together with aB its 
faces, thought of as a simplicial complex, and let Ln denote those simplexes 
which lie in the boundary of An + 1. So I Ln I is homeomorphic to sn. Now 
Ln and An + 1 have precisely the same simplexes up to and inc1uding dimension n. 
Also, the definition of the qth homology group does not involve simplexes of 
dimension greater than q + 1, and therefore Hq(Ln) ~ HiAn + 1) for 0 ~ q ~ 
n - 1. But An + 1 is a cone, SO by Example 4 we have Ho(Ln) ~ 7L and HiLn) = ° 
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for 1 :;:; q :;:; n - 1. (Remember we have assumed n > o. ~o eonsists of two 
points and so Ho(~O) ~ 7L EB 7L by Example 2.) 

Sinee ~n has no (n + l)-simplexes, Hn(~n) = Zn(~n) = Zn(l1n + 1). And, sinee 
HiN + 1) = 0, we have Zn(l1n + 1) = BiN + 1) = aen + 1(l1n + 1). The latter 
group is elearly infinite eyelie, therefore Hn(~n) ~ 7L. We ean obtain a generator 
by orienting all the n-simplexes of ~n eompatibly. Of course, Hi~n) = 0 for 
q > n. 

Onee we have verified the topologieal invarianee of homology groups, we 
will be able to refer to the groups Hi~n) as the homology groups ofthe n-sphere. 

Example 6. Edge loops and elementary l-eyeles look remarkably similar, so 
we are not surprised to find a elose connection between the edge group of a 
eomplex and its first homology group. 

Suppose 1 K 1 is eonneeted and ehoose a vertex v to aet as base point. Any 
edge loop a = VV 1V2 ... vkv gives us a l-eycle z(a) = (v,v 1) + (V1,V2) + ... + 
(vk,v) if we agree to omit (Vi,Vi + 1) whenever Vi = Vi + 1. If two edge loops differ 
by a single operation of the type used to define equivalenee of edge loops, they 
elearly determine homologous eyeles. So the correspondenee a 1-+ z(a) gives us 
a function c{J: E(K,v) - H 1 (K). It follows from the definition of c{J that it is a 
homomorphism. We shall show that c{J is onto and that the kernel of c{J is the 
commutator subgroup of E(K,v). Remembering that the edge group E(K,v) is 
isomorphie to the fundamental group of 1 K I, we will have the following result: 

(8.3) Theorem. 1f 1 K 1 is connected, abelianizing its fundamental group gives the 
first homology group ofK. 

To show c{J is onto, we need only prove that the homology class of eaeh ele­
mentary l-cycle lies in the image of c{J. Now an elementary l-cyele is just an 
oriented simple edge loop thought of as the sum of its oriented edges, say 
Z1 = (W 1,W2) + (W 2,W3) + ... + (W"W1)· If we join V to W1 by an edge path Y 

and set a = YW1W2 •.• WsY-1, then z(a) = Z1 as required. 
Sinee H 1 (K) is an abelian group, the kernel of c{J must contain the com­

mutator subgroup of E(K,v). To eomplete our proof, we must show that if a 
is an edg~ loop for which z(a) is abounding eyele, then {a} lies in the com­
mutator subgroup of E(K,v). As above, write a = VV1 v2 ... Vk v, and suppose 

z(a) = a(A1 (J 1 + ... + AI (JI) 

where the (Ji are oriented 2-simplexes of K. Suppose (Ji = (ai> bi> Ci) and for 
eaeh i ehoose an edge path Yi joining V to ai. The edge loop Yi ai bi Ci Yi- 1 is 
equivalent to the trivial edge loop v, and therefore so is the product 

I 

ß = n (Yi ai bi Ci Yi- 1 ).l., 
i = 1 

givlng {ar 1 } = {a}. Note that 

Z(Yi ai bi Ci Yi- 1 ) = 8(ai' bi, Ci) 
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and hence Z(exß-1) = O. Now the only way an edge loop can map to the zero 
l-cycle under ex 1-+ z(ex) is if, whenever an oriented edge (a,b) occurs n times in it, 
then (b,a) also occurs n times. Recall the homomorphism 8: E(K,v) ----> G(K,L) 
defined in theorem (6.12). Under 8 the equivalence class of a loop such as 
ex ß -1 will map to a pmduct of group elements in which each group element 
occurs the same number of tim es as its inverse. Therefore if we first apply 8 
and then abelianize G(K,L), our element {ex ß-1} will map to zero. But 8 is an 
isomorphism, and so {ex r 1} = {ex} must lie in the commutator subgroup of 
E(K,v), completing the argument. 

Suppose now that K is a combinatorial surface. Then H o(K) ~ 1L by theorem 
(8.2), and in order to find H 1 (K) all we have to do is abelianize the fundamental 
group of 1 K I. This was done at the end of Chapter 7, and we remind the reader 
of the result: 

if 1 K 1 is the sphere 
{
o 

H 1 (K) ~ 2glL 
(g - 1)1L EB 1L2 

if 1 K 1 is an orientable surface of genus g 

if 1 K 1 is a nonorientable surface of 
genus g 

Also the arguments given in Example 3 above show that H 2 (K) is 1L if the 
combinatorial surface K is orientable, and 0 if not. Accepting for the moment 
that homology groups are topological invariants, we can rewrite this as 

if 1 K 1 is an orientable surface 
if not. H 2(K) = {~ 

Problems 
11. Calculate the homology groups of the following complexes: (a) three copies 
of the boundary of a triangle all joined together at a vertex; (b) two hollow 
tetrahedra glued together along an edge; (c) a complex whose polyhedron is 
homeomorphic to the Möbius strip; (d) a complex which triangulates the 
cylirtder. 

12. What are the homology groups of a tree? 

13. Show that any graph has the homotopy type of a bouquet of circles, and 
suggest a formula for the first Betti number of the graph. 

14. Calculate the ho molo gy groups of a triangulation of the 'dunce hat'. 

15. Finish the computation od(a) = a - do(a) of Example 4. 

16. Calculate the homology groups of a triangulation of the sphere with k holes. 

17. If 1 K 1 is homeomorphic to the standard orientable surface H(p,r) with r 
holes, show that the first Betti number of K is given by 

ß1 = 2p + r - 1. 

What is the second Betti number of K? 
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18. What are the Betti numbers of Kif 1 K 1 is homeomorphic to M(q,s) (defined 
in Problem 28 of Chapter 7)? 
19. What is the nth Betti number of a triangulation of pn? 

8.4 Simplicial maps 
Let K, L be complexes and s: 1 K 1---+ 1 L 1 a simplicial map. Using s we shall 
construct a homomorphism Sq: Cq (K) ---+ Cq (L) for each q. 

Remember that a simplicial map takes simplexes linearly onto simplexes, 
but that it may decrease the dimension of a simplex. Given an oriented q-simplex 
a = (vo, ... ,vq) of K, we define sia} to be the oriented q-simplex (s(vo), ... ,s(vq)) 
of L if all the vertices s(vo), ... ,s(vq) are distinct, and we set sia) = ° otherwise. 
This determines a homomorphism from Cq(K) to CiL), since clearly 
si - a) = - sq(a). 

We claim that Sq, in turn, induces a homomorphism sq*:Hq(K)---+ HiL). 
In order to prove this, we must show that Sq takes cycles of K to cycles of L, 
and bounding cycles to bounding cycles. This is most efficiently done using the 
following lemma: 

(8.4) Lemma. 8sq = Sq _ 18: CiK) ---+ Cq _ 1 (L), that is to say, the following 
diagram commutes: 

CiK)~ Cq(L) 

c 1 a 1 
Cq-1(K)~ Cq_ 1(L) 

Proof. We show that 8sq(a) = Sq _ 18(a) for any oriented q-simplex 
a = (vo, ... ,vq) of K. This is clear if all the vertices s(vo), ... ,s(vq) are distinct. If 
not, suppose s(v) = s(vk ), where j < k. By definition we have sq(a) = 0, so 
8sia) = 0. Now 

q 

Sq_18(a) = L (-lYsq_1(vo,· .. ,vi,·.·vq). 
i = ° 

Examining the terms in this sum, if i is not j or k, then 

The two remaining terms are 
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These are nonzero only if Vj and Vk are the only vertices of (J identified by s, 
and in this case the two terms cancel because 

Sq _ l(VO'" .,Vj, ... ,vq) = (s(vo), ... ,s{v); ... ,s(vq» 

= (-ll-j-l(S(VO),""s(v;J, ... ,s(vq» 

= (-lt-j-1Sq_l(VO, .. ·,Vk> ... ,Vq) 

Suppose now that z is a q-cycle of K, so o(z) = O. By our lemma, 
OSq(z) = Sq _ 10(Z) = 0, and we see that Sq(z) is a q-cycle of L. Similarly, if 
bE BiK) then b = oe for some element e E Cq + l(K). But OSq + l(e) = sqo(e) = 

sq(b), giving sib) E Bq(L). Therefore siZq(K) ~ Zq(L) and siBiK» ~ Bq(L) 
as required. 

We end this section with a little terminology which will considerably simplify 
the exposition in later sections. The collection of groups and homomorphisms 

... ~ Cq(K)~ Cq-l(K)~ ... ~ Co(K)~ 0 

will be referred to as the ehain eomplex of K and written C(K). Whenever we 
have a homomorphism cPq: Cq(K) ~ CiL) for each q satisfying 

ocPq = cPq - 10 

we abbreviate the whole collection to cP: C(K) ~ C(L) and call cP a ehain map. 
So a simplicial map from K to L induces a chain map from the chain complex 

of K to that of L. The important property of a chain map is that it induces 
homomorphisms cPq* : Hq(K) ~ HiL) of homology groups. The proof is 
precisely the same as that given above for the special case where the chain map 
is induced by a simplicial map. 

We shall often abbreviate our notation even further and simply write our 
homomorphisms as 

cP:Cq(K)~ Cq(L) 

cP*:HiK)~ HiL ) 

when no confusion can arise from doing so. 

(8.5) Lemma. Ifl/l: C(L) ~ C(M) is a seeond ehain map then 1/1 0 cP: C(K) ~ C(M) 
is a ehain map and (1/1 0 cP)* = 1/1* 0 cP* :HiK)~ HiM). 

The proof is left to the reader (Problem 20). 

8.5 Stellar subdivision 
Our object in this section is to show that barycentric subdivision does not change 
the homology groups of a complex. To this end, we shall explain how to bary­
centrically subdivide a complex by repeated application of a very simple 
operation called stellar subdivision. 
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Let K be a complex, A a simplex of K, and let v denote the barycentre of A. 
We chop up the simplexes of K as follows. Those simplexes which do not have 
A as a face are left untouched. If A < B, let L denote the subcomplex of the 
boundary of B consisting of those simplexes which do not have A as a face, and 
replace B by the cone with base Land apex v as in Fig. 8.6. This makes sense 

Figure 8.6 Cone on L with apex v 

because adding v to the set of vertices of any simplex of L gives a collection of 
points which are in general position. We denote the resulting complex by K', 
and say that K' is formed from K by stellar subdiuision of the simplex A. 

Figure 8.7 

Suppose now we begin with a complex K and stellar-subdivide each of its 
simplexes, taking the simplexes in order of decreasing dimension. (The actual 
order inside any particular dimension does not matter.) Then we obtain the 
first barycentric subdivision as Fig. 8.7 indicates. And of course we may repeat 
the process, eventually producing any prescribed Km. 

(8.6) Theorem. IfK' is obtainedfrom K by a single stellar subdivision, then K' and 
K haue isomorphie homology groups. 

(8.7) Corollary. Barycentric subdivision does not change the homology groups 
of a complex. 

We shall construct a chain map x: C(K) -> C(K') and show that it induces iso­
morphisms of homology groups. As usual, we need only specify the effect of X 
on a typical oriented q-simplex rr of K so long as we are careful that X( - rr) = 
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- X(O"). Suppose K' is obtained from K by stellar subdivision of the simplex A. 
If Ais a face of 0", then 0" is broken up into sm aller q-simplexes when we form K'. 
We define X(O") to be the q-chain of K' which is the sum of those q-simplexes of 
K' that make up 0", each taken with the orientation induced from the given 

Figure 8.8 

orientation of 0". Fig. 8.8 illustrates this definition. Put in a more formal way, 
if 0" = (v o, ... 'Vk> Vk + 1> •• • ,vq), and if Vo, ... 'Vk are the vertices of A, then 

k 

X(O") = I ( _1)i(V,VO'·· .,vi,·· .,Vk,Vk + 1,· . • ,Vq). 

i ~ ° 
If 0" does not have A as a face we set X(O") = 0". 

(8.8) Lemma. X is a chain map. 

The proof involves computing the effect of OXq and Xq _ 10 on a typical oriented 
q-simplex of K and showing that the answer is the same in both cases. We ask 
the reader to do this for hirnself. While the proof of a lemma like lemma (8.8) 
is, of necessity, computational, the geometry of the situation always teIls us 
why the result ought to be true. When we apply X to an oriented simplex of K, 
we may well chop it up as a sum of oriented simplexes of K', but the point is that 
any extra boundary created in this way cancels out. We see this very c1early in 
Fig. 8.8 where 

0X2(VO, Vl, V2) = o(v, V1, V2) - o(v, Vo, v2) 

= Xl 0(VO, V1, V2) - (V,V2) + (v,v2) 

Not surprisingly we shall call X the subdivision chain map. We now have 
homomorphisms X* : Hq(K) - Hq(K') and we shall show that they are iso­
morphisms, thereby proving tlieorem (8.6). 

Again let Vo, ... ,Vk denote the vertices of A, and v stand for its barycentre. Let 
e be the simplicial map from K' to K which sends v to Vo and which fixes all 
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the other vertices of K'. We use the same symbol 8 for the induced chain map 
from C(K') to C(K). Now 8X is the identity homomorphism of Cq(K) for each 
q, allowing us to conclude from lemma (8.5) that HiK)~ Hq(K')~ Hq(K) is 
the identity. 

We suspect, quite rightly, that 8* is an inverse for X*. Let z be a q-cycle of K' 
and consider z - X8(z). If L denotes the set of all simplexes of K' which have v 
as a vertex, together with all their faces, then L is a subcomplex of K' and is a 
cone with apex at v. Also, z - X8(z) is a q-cycle of L since X and 8 are the identity 
outside of Land o(z - XO(z)) = o(z) - XOo(z) = O. But we know all about the 
homology of a cone from Example 4 of Section 8.3: if q > 0 then Hq(L) = 0 
and H o(L) ~ 71.. So for q > 0 the cycle z - X8(z) must be the boundary of a 
(q + l)-chain of L, and therefore automatically the boundary of a (q + l)-chain 
of K'. In other words, z and XO(z) represent the same homology class in Hq(K'). 

This proves that HiK') ~ HiK) ~ Hq(K') is the identity and completes our 
verification that X* is an isomorphism. We leave the special case q = 0 to the 
reader. This completes the proof of theorem (8.6). 

If Km is a barycentric subdivision of K, then we can produce it from K by a 
finite sequence of stellar sub divisions. The composition of all the associated 
subdivision chain maps gives a chain map x: C(K) -4 C(Km) which we shall 
also refer to as a subdivision chain map. Going in the other direction, we have a 
simplicial map 0 corresponding to each stellar subdivision : it is not unique 
but we agree to make a particular choice at each stage. The composition of all 
these will be denoted by the same symbol, so we write 0: 1 Km 1-4 1 K I, and a 
map constructed in this way will be called a standard simplicial map. 

Problems 
20. Prove lemma (8.5). 

21. Check that the subdivision map x: C(K) -4 C(K') is a chain map. 

22. Give a second proof that barycentric subdivision does not change the Euler 
characteristic of a complex by showing that a single stellar subdivision does 
not change it. 

23. If s: 1 Km 1-4 1 L 1 simplicially approximates f : 1 Km 1-4 1 L I, if n ~ m, and if 
() : 1 K n 1-4 1 Km 1 is a standard simplicial map, prove that sO: 1 K n 1-4 1 L 1 sim­
plicially approximates f: 1 K n 1-4 1 L I· 

8.6 Invariance 
The homology groups of a complex, though defined using the simplicial structure 
of the complex, are invariants of the homotopy type of its underlying polyhedron. 
We shall now explain why this is the case. Some of the more computational 
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details of our argument, whieh only c10ud the issue on first reading, will be 
re1egated to the problems at the end of the seetion. 

The main theorems are these: 

(8.9) Theorem. Any map f: I K 1- I L I induces a homomorphism 
f* :HqtK)- Hq(L) in each dimension.H 

(8. 10)· Theorem. If f is the identity map of I K I then each f* : HiK) - Hq(K) is 
the identity homomorphism, and if we have two maps I K I 1., I L I 14 I M I then 
(g 0 f)* = g* 0 f* : Hq(K) _ Hq(M) for all q. 

(8.11) Theorem. Iff,g: I K 1- I L I are homotopic maps then 
f* = g*: Hq(K) - Hq(L) for all q. 

It follows at onee that if the polyhedra I K I and I L I have the same homotopy 
type, then K and L have isomorphie homology groups. For iff: I K 1- I L I is a 
homotopy equivalence, with homotopy inverse g, then the eomposite homo­
morphisms 

HiK)~ Hq(L)~ Hq(K) 

HiL)~ HiK)~ HiL ) 

are both identity homomorphisms. Therefore f* :Hq(K)- HiL) is an iso­
morphism for each q. 

So if X is a compact triangulable space, we can choose a triangulation 
t: I K 1- X and use it to define the homology groups Hq(X) of X by Hq(X) = 
HiK). It does not matter which triangulation we choose, we shall always get 
the same groups (up to isomorphism). 

We have already seen how a simplicial map induces homomorphisms of 
homology groups. Not surprisingly, it is the simplicial approximation theorem 
(6.7) which allows us to pass to the general ca se of an arbitrary map. Let 
f : I K 1- I L I be continuous and choose a simplicial approximation s : I Km l­
I L I. Let x: C(K) - C(Km) be the subdivision chain map and define the homo­
morphismf* : Hq(K) - Hq(L) induced by fto be the composition 

HiK)~ Hq(Km)~ HiL) 

Unfortunately, there is a choice involved in this definition, namely the choice 
of the simplicial approximation s. In order to show that this choice does not 
really matter, and in order to check theorems (8.10) and (8.11), we shall need 
the following two results: 

1. If s,t: I K 1- I L I are 'dose' simplicial maps, in the sense that for each simplex 

t We should really use the more cumbersome notation!q* : HiK) -> Hq(L). 
:j: Remember that all simplicial complexes in this chapter are finite. 
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A ofK we canfind a simplex B in L such that both s(A) and t(A) arefaces ofB, 
then s. = t* :Hq(K)~ HiL)for all q. 

2. If f,g: 1 K 1 ~ 1 L 1 are homotopic maps we can find a barycentric subdivision 
Km and a sequence of simplicial maps Sl'" .,sn: 1 Km 1 ~ 1 L 1 such that Sl sim­
plicially approximates f, Sn simplicially approximates g, and each pair Si' Si + 1 

are dose in the sense of result 1 above. 

The proofs of 1, and 2 are broken up into easy stages in Problems 24-32 at 
the end of this section. 

Suppose then that we simplicially approximate a given map f: 1 K 1 ~ 1 L 1 

in two different ways via s: 1 Km 1 ~ 1 L 1 and t: 1 Kn 1 ~ 1 L 1 where n ~ m. Let 
Xl: C(K) ~ C(Km), X2: C(Km) ~ C(Kn) be subdivision chain maps, and let 
() : 1 K n 1 ~ 1 Km 1 be a standard simplicial map. If we want to show that we can 
use either s or t to define f. we must check that 

S.Xl* = t.X2.Xl. : Hq(K) ~ HiL ) 

It is easy to see that s(): 1 K n 1 ~ 1 L 1 simplicially approximates f : 1 K n 1 ~ 1 L I. 

But so does t. Therefore s() and t must be elose simplicial maps and 
s*()* = t* : HiKn) ~ Hq(L). Since we also know that ()* and X2. are inverse 
to one ~mother, we have t*X2*Xl* = S*()*X2.Xh = S*Xl. as required. We now 
really do have a well-defined homomorphism f. : Hq(K) ~ Hq(L), and we have 
proved theorem (8.9), the first of our three main theorems. 

Prool 01 theorem (8.10). The first part of the theorem elearly follows by con­
struction. Suppose we aregiven maps 1 K 1.4 1 L 1 ~IM I. Choose a simplicial 
approximation t: 1 E 1 ~ 1 M 1 for g : 1 E 1 ~ 1 MI, then a simplicialapproxima­
tion s: 1 Km 1 ~ 1 E 1 for f: 1 Km 1 ~ 1 E I· Let Xl : C(K) ~ C(Km), X2: C(L) ~ C(E) 
be subdivision chain maps, and let () : 1 E 1 ~ 1 L 1 be a standard simplicial map. 
We now have the followlng diagram ofhomology groups and homomorphisms: 

One easily checks that ()s simplicially approximates f: 1 Km 1 ~ 1 L I, and that 
ts simplicially approximates gf: 1 Km 1 ~ 1 M I. Therefore 

as required. 
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Proof oftheorem (8.11). This follows direetly from results 1 and 2 above sinee, 
with the notation established in result 2, 

J* = Sl*X* = S2*X* = ... = sn*X* = g* 

Having eompleted our invarianee proofs, we ean begin to solve some interest­
ing problems. Referring baek to the ealculations in Seetion 8.3, we know that 
the homology groups of the n-sphere, n > 0, are as follows. 

Ho(sn) ~ 7l.. 

Hn(sn) ~ 7l.. 

H q(sn) = 0 for q =1= O,n 

Also Ho(SO) ~ 7l.. E9 7l.. and HiSO) = 0 for q =1= O. 

(8.12) Theorem. 1fm =1= n then sm and sn are not ofthe same homotopy type. 

Proof. Hm(sm) is isomorphie to Hm(sn) only when m = n. 

(8.13) Corollary. Two euclidean spaces are homeomorphic if and only if they 
have the same dimension. 

Proof. If h : IEm _ IEn is a homeomorphism, then 

sm-1 ~ IEm - {O} ~ IEn - {h(O)} ~ sn-1 

So by theorem (8.12) we must have m = n. 

(8.14) Brouwer flXed-point theorem. A map from Bn to itself must leave at least 
one point fixed. 

Proof. Mimie the proof given for the ease n = 2 in Seetion 5.5, using the (n - l)th 
homology group in plaee of the fundamental group. (For an alternative proof, 
see theorem (9.18).) 

(8.15) Theorem. 1f h : 1 K 1- S is a triangulation of a closed surface, then S is 
orientable if and only ifthe triangles ofK can be oriented in a compatible manner. 

Proo/. If S is orientable, we have already shown that the triangles of K ean be 
eompatibly oriented in Chapter 7. If S is not orientable, we ean find a triangula­
tion of S by a simplicial eomplex L whose simplexes eannot be eompatibly 
oriented. Using L to ealculate the homology of S gives H 2(S) = O. But if we 
ealculate using K, we must obtain the same answer. Therefore H 2(K) = 0, 
showing that the simplexes of K eannot be eompatibly oriented. 
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Problems 
,24. If s,t : 1 Km 1 - 1 L 1 both simplicially approximate f : 1 Km 1- 1 LI, show that 
sand t are c10se simplicial maps. 

25. Suppose s,t: 1 K 1- 1 L 1 are simplicial, and assume we have a homo­
morphism dq : C q(K) - C q + 1 (L ), for each q, such that 

dq - 1o + odq = t - s:CiK)- CiL). 

Show that sand t induce the same homomorphisms of homology groups. The 
collection of homomorphisms {dq} is called a chain homotopy between sand t. 

In the next three problems we shall construct a chain homotopy between two 
c10se simplicial maps s,t: IK 1- L I. First a little terminology. If a is an 
oriented simplex of K, call the smallest simplex of L which has both s(a) and 
t(a) as faces, the carrier of a. 

26. Given a = v E Co(K), define do(a) = 0 if s(v) = t(v), and do(a) = (s(v),t(v)) 
if s(v) =1= t(v). Check that odo = t - s: Co(K) - Co(L) and that do(a) is a chain 
which lies in the carrier of a. Where have you used the fact that sand t are c1ose? 

27. Suppose we have defined homomorphisms di: Ci(K) - Ci + 1 (L) for 
o ~ i ~ q - 1 so that: 
(a) di - 10 + odi = t - s:Ci(K)- Ci(L); 
(b) di(a) is always a chain in the carrier of a. 
If a is an oriented q-simplex of K, prove that 

o(t(a) - s(a) - dq _ lo(a)) = 0 

and deduce that 

t(a) - s(a) - dq _ lo(a) = c 

for so me chain CE Cq + l(L). The point is that the carrier of ais a cone. 

28. Set dq(a) = c and show that you have completed an inductive construction 
for a chain homotopy between sand t. 

29. You should now be able to show that c10se simplicial maps induce the 
same homomorphisms of homology groups. 

30. Let f,g: 1 K 1- 1 L 1 be maps, and write d(f,g) < b if for any XE 1 K 1 the 
distance betweenf(x) and g(x) is less than b. If bis a Lebesgue number for the 
open covering of 1 L 1 by the open stars of its vertices, and if d(f,g) < b/3, show 
that the sets 

f- 1(star (v,L)) n g-l(star (v,L)), va vertex of L, 

form an open covering of 1 K I. 
31. Use the conc1usion ofProblem 30 to find an integer m and a simplicial map 
s: 1 Km 1- 1 L 1 which simplicially approximates both f: 1 Km 1- 1 L 1 and 
g:IKml_ILI· 
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32. Suppose f,g : I K I ~ I L I are homotopic maps, let F: I K I x I ~ I L I be a 
specific homotopy between them, and write ft(x) = F(x,t). Given 6 > 0, find 
a positive integer n such that 

d(fr/n>1(r + l)/n) < 6, 0 ~ r < n. 

Now verify result 2 of this section by finding, for each r, a common simplicial 
approximation to f../n and 1(r + l)/ti, provided n is large enough. 

33. Give a second proof of corollary (8.13) using the fact that the one-point 
compactification of P is sn. 
34. Work through the details of the proof of theorem (8.14). 

35. If two closed manifolds are homeomorphic, show they must have the same 
dimension. 

36. An n-manifold with boundary consists of a second-countable Hausdorff 
space in which each point has a neighbourhood homeomorphic to either IEn 
or to the closed upper half-space IE~. Those points which have a neighbourhood 
homeomorphic to IEn form the interior ofthe manifold. Those points x for which 
there is a neighbourhood U, and a homeomorphism I: IE~ ~ U such that 
1(0) = x, form the boundary. Show that the interior and boundary of a manifold 
are disjoint. If h : M ~ N is a homeomorphism between two n-manifolds, prove 
that hinduces a homeomorphism between the interior of M and the interior of 
N, and between the boundary of M and the boundary of N. 
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9. Degree and Lefschetz 
Number 

9.1 Maps of spheres 
The whole of this chapter will be devoted to applications of homology theory. 
Westart by defining the 'degree' of a map from the n-sphere to itself, a concept 
due to Brouwer which allows one to decide whether or not two such maps are 
homotopic. 

Choose a triangulation h: 1 K 1- sn of the n-sphere, and choose a generator 
[z] for the infinite cyclic group Hn(K). Given a mapf:sn_ sn, we writefh 
for the composite map h -lfh: 1 K 1- 1 K I, and note that the induced homo­
morphism f: : H n(K) - H n(K) sends [z] to an integer multiple A[ z] of itself. 
This integer ,1, is called the degree of the map fand is usually written degf 

The choices made above do not matter. For suppose we triangulate sn 
via t: 1 L 1- sn and take [w] as generator for H iL). Then 

f;([ w]) = (t-1jt)*([ w]) 

= (cfJ - lf\P)*([ w ]) 

where cfJ is the homeomorphism h-1t: 1 L 1- 1 K I· Remembering that f~ 
multiplies every element of Hn(K) by ,1" we have 

f;([ w]) = cfJ; l(J:(cfJ*([ w]))) 

= cfJ; l(AcfJ*([ w])) 

= A[w] 

In other words,f; multiplies [w] by the same integer ,1" as required. 
Homotopic maps have the same degree. For if f =::: g :sn _ sn, then fh and gh 

are homotopic maps from 1 K 1 to itself, and therefore induce the same homo­
morphism from Hn(K) to HiK). (It is in fact true that maps of the same degree 
are homotopic, though we shall not prove this here.) We also note that 
deg fog = deg f x deg g for any two maps f,g : sn _ sn. This is true because 
(Ja gt = fh a gh, giving (Ja g)~ = f: a g~ by theorem (8.10). 

Clearly the degree of a homeomorphism must be ± 1; that of the identity 
map is + 1 ; and that of a constant map (one which identifies all of sn to a single 
point) is zero. We deduce at once that the identity map of sn is never homotopic 
to a constant map. 
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Since we can work with any triangulation of sn, we mayas weil construct a 
convenient one and stick to it from now on. Let Vi denote the point of P + 1 

whose ith co ordinate is 1 and aB of whose other coordinates are zero, and let 
V-i denote its antipode. Any collection Vi1 ,Vi2 '" "v is of such points for which 
1 i 1 1 < 1 iz 1 < ... < 1 is 1 is in general position and therefore spans a simplex 
in P + 1. The coBection of aB these simplexes forms a simplicial complex which 
we shall denote by L (see Fig. 9.1 for the ca se n = 2). The polyhedron of L is 
nothing more than the set of points (Xl'" "Xn + 1) E P + 1 which satisfy 
n + 1 

L 1 Xi 1 = 1, and radial projection n : 1 L 1----* sn gives us a triangulation of sn. 
i = 1 

Figure 9.1 

From now on we identify Hn(sn) with Hn(L) = Zn(L), and we specify a 
generator for this group as foBows. Start with the simplex spanned by the 
vertices V 1'V 2' .. "Vn + 1 and orient it as (J = (Vl,V 2 ,,, "Vn + 1) then go round the 
complex orienting all the other top-dimensional simplexes in a compatible 
manner. The sum of the n-simplexes of L oriented in this way is an n-cycle z, 
which we know generates ZiL). 

Here is a second way of thinking of degf With n: 1 L 1----* sn as above, choose 
a simplicial approximation s: 1 L m 1 ----* 1 L 1 to rand orient all the top­
dimensional simplexes of L rn by taking the orientations induced from those of 
the simplexes of:E. In other words, orient each n-simplex of :Ern exactly as it 
appears in X(z), where x: C(L) ----* C(L rn) is the subdivision chain map. Let a 
denote the number of oriented n-simplexes T of L m such that S(T) = (J, and let 
ß be the number such that S(T) = -(J. 

(9. t) Theorem. deg f = a - ß. 

Proof. The homomorphism J: : H i:E) ----* H n(L) is by definition the composition 

Hn(L)~ Hn(Lm),-,+ Hn(L), where X is the subdivision chain map. Since there are 
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no simplexes of dimension greater than n, the homology groups H n(~)' 
H n(~m) are the same as the groups of n-cycles, and we can rewrite this as 
Zn<~)~ Zn(~m) ~ Zn(~)' Now x* (z) isjust the sum ofallthe oriented n-simplexes 
of ~m, and by the way s* is defined the coefficient of the oriented simplex (1 in 
s*X*(z) is just IX - ß. But J:(z) = s*X*(z) = (deg f)z, so deg f = IX - ß as 
required. 

(9.2) Theorem. The antipodal map ofS" has degree (-1)· + 1. 

Proof. Iffis the antipodal map of S" thenf(vi) = V-i for each i andf" is a sim­
plicial homeomorphism. Recall that all the top-dimensional simplexes of ~ are 
oriented compatibly with (1 = (V1,V2," "Vn + 1)' This means that the n-simpl~x 
obtained when we change V1 to V- 1 must be oriented as -(V-1,V2," .,V" + 1) 
since it has to induce the opposite orientation to that induced by (1 on the face 
spanned by V2," "Vn + l' If we now change V2 to V-2 in this new simplex, the 
resulting oriented simplex must be (V-1,V-2,V3"",V.+1), and so on. By inter­
changing all the Vi with their anti po des, one by one, we arrive at the oriented 
simplex (-1)"+ 1 (V-l,V-2"",V-(n+1»' This obviously maps to (_1)"+1(1 
under f;, and nothing else maps to ± (1. Therefore degf = (_1)n + 1. 

(9.3) Corollary. A map from the n-sphere to itself which has no fixed points must 
have degree ( _l)n + 1. 

Proof. If f : S" ~ S" has no fixed points, it is homotopic to the antipodal map 
via the homotopy F: S" x I ~ S" given by 

F(x t) _ (1 - t)f(x) - tx 
, - 11 (1 - t)f(x) - tx 11 

Thereforefhas the same degree as the antipodal map. 

(9.4) Corollary.lfn is even, and iff:S"~ sn is homotopic to the identity, then f 
has a fixed point. 

Proof. Any map homotopic to the identity has degree + 1, and by corollary 
(9.3) a map without fixed points should have degree (_l)n + 1 = -1. 

Given a group G acting as a group of homeomorphisms of aspace X, we 
shall say that G acts freely if the only group element which has any fixed points 
is the identity element. Suppose now that G acts freely on sn and that n is even. 
If g,h E G - {e} then deg g = deg h = (-1)" + 1 = -1, therefore deg gh = + 1. 
But this means that gh must have a fixed point. By assumption, the given action 
is free, so gh = e, in other words h = g - 1. We have therefore proved the 
following result: 

(9.5) Theorem. Only 7L2 (and the trivial group) can actfreely on sn when n is even. 
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We know from the discussion of Lens spaces in Chapter 4 that any finite 
cyc1ic group can act freely on S3. It is not hard to produce the same type of 
actions on the odd-dimensional spheres of high er dimension. 

If for each point x of sn we are given a vector in IEn + 1 which begins at x, is 
tangent to sn at X, and whose end point v(x) varies continuously in IEn + 1 as x 
varies in sn, then we say that we have a continuous vector field on sn. If in addition 
v(x) is never equal to x, we say we have a nonvanishing field. When n is odd, it is 
easy to construct a nonvanishing vector field on sn. For suppose n = 2m - 1, 
let x = (Xl'" "X Zm) be a point of sn, and observe that the vector represented by 
(-Xm + 1"",-XZm,Xl""'Xm) is orthogonal to the radius vector through x. We 
now assign to x the vector which begins at x and ends at the point denoted by 
v(x) = (Xl - Xm + 1,·· "Xm - XZm,Xm + 1 + Xl'" "X Zm + X m)· 

For n even, no such field can be found. For the map f: sn ~ sn defined by 
f(x) = v(x)/II v(x)11 is c1early homotopic to the identity and so must have a 
fixed point by corollary (9.4). In other words, the vector field must vanish at 
some point X of sn. We have proved the following result: 

(9.6) Theorem. sn admits a continuous nonvanishing vector field if and only if n 
is odd. 

The lack of any continuous nonvanishing vector field on SZ is a favourite 
result and is nicknamed the 'hairy ball theorem'. If we have a hair growing 
out from each point on the surface of a ball, any attempt to comb the hairs 
smoothly round the ball meets with defeat. Just about the best we can do if we 
want the hair to lie down smoothly is to comb the ball as shown in Fig. 9.2, 
leaving the odd bald spot. If we could comb the hair smooth then the tangent 
vectors to the hairs would contradict theorem (9.6) for n = 2. 

One bald spot Two bald spots 

Hairy torus 

Figure 9.2 
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We can, however, comb the hairy torus (Fig. 9.2). In fact, the torus is the only 
orientable hairy surface which can be combed smooth, as we shall see in 
Section 9.4. 

Problems 
1. The map z 1-+ zn from the complex plane to itself extends in a unique way to a 
map from S2 to S2. What is the degree of this map? 

2. Prove that the set of homotopy classes of maps from sn to itself is infinite 
for n ~ 1, by constructing a map of degree k for each integer k. 

3. If the degree of f : sn ---+ sn is not + 1, show that f must map some point to 
its antipode. 

4. Show that the antipodal map of the circle is homotopic to the identity. 

5. Let X and Y be sub sets of !En positioned in such a way that if Xl' X2 are distinct 
points of X, and Yl, Y2 are distinct points of Y, then the line segments which 
join Xl to Yl and X2 to Y2 do not intersect. Write X * Y for the union of all the 
line segments which join a point of X to a point of Y, and call this the join of 
X and Y. Show that a typical point of the join can be written as tx + (1 - t)y, 
where x E X, Y E Y, and 0 ==:; t ==:; 1, and that this representation is unique 
provided the point in question does not lie in X or in Y. 

6. If X ~ [0,1] ~ Y show that X * Y is a tetrahedron. More generally, if Xis 
an rn-simplex and Yan n-simplex, show that X * Y is an (rn + n + 1)-simplex. 
Deduce that Bm * Bn ~ Bm + n + 1 and sm * sn ~ sm + n + 1. 

7. Suppose we have two joins X * Y and X' * Y'. Invent adefinition of the join 
! * g:X * Y ---+ X' * Y' of two maps !:X ---+ X', g: Y ---+ Y'. Show that if both! 
and gare homotopic to the identity, then so isf * g. 

8. Prove that an odd-dimensional sphere is a join of circles, then show that the 
antipodal map of an odd-dimensional sphere is homotopic to the identity. 

9. Given mapsf :sm ---+ sm, g :sn ---+ sn show that degf * g = (degf).(deg g). 

10. Iff: sn ---+ sn is a map, and if n is even, show thatf2 must have a fixed point. 
Even better, prove that either f has a fIXed point, or it sends some point to its 
antipode. 

9.2 The Euler-Poincare formula 
Recall that the rank of the free abelian part of Hq(K) is called the qth Betti 
number of K and written ßq. We will prove: 
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(9.7) Euler-Poincare formula. The Euler characteristic of afinite complex K is 
given by the formula 

n 

X(K) = L (-l)qßq 
q=O 

where n is the dimension ofK. 

Since the homology groups HiK), and therefore the numbers ßq, depend only 
on the homotopy type of I K I we at once deduce the same property for X(K): 

(9.8) Corollary. Complexes whose polyhedra are homotopy equivalent have the 
same Euler characteristic. 

A special case of this result was widely advertised in Chapter 1 and provided 
much of the impetus for all the machinery we have developed since then. There 
we worked with rather concrete 'polyhedra' made up of plane polygonal faces 
fitting together nicely, and we claimed as theorem (1.2) that if two such were 
topologically equivalent they had the same Euler number (defined as vertices 
minus edges plus faces). But we can subdivide such a 'polyhedron' into a two­
dimensional simplicial complex simply by chopping up each face as a cone 
with apex its cent re of gravity. The Euler characteristic of the resulting complex 
is precisely the Euler number ofthe original 'polyhedron', allowing us to deduce 
theorem (1.2) from corollary (9.8). 

In order to prove theorem (9.7), it is convenient to reinterpret the Betti 
numbers slightly as follows. Suppose we go through the process of setting up 
the homology groups of a complex, but allowing rational numbers as coefficients 
when we form linear combinations of oriented simplexes. To be precise, con­
sider formal linear combinations r i (J1 + ... + rs(J" where each (Ji is an oriented 
q-simplex of K and each r i is a rational number. Clearly the set of all such 
expressions forms a vector space V over the rational field iIJ in a natural way. 
Let W be the subspace of V spanned by elements of the form (J + r, where 
(J, rare the same q-simplex with opposite orientations. We call the quotient 
space V/W the vector space of rational q-chains of K, and denote it by CiK,iIJ). 
The dimension of CiK,iIJ) over iIJ is just the number of q-simplexes in K. We 
can produce a boundary homomorphism and use it to define rational q-cycles, 
and rational bounding cycles, exactly as before. In this setting, the boundary 
homomorphism is a linear map of vector spaces over i1J, so the rational q-cycles 
ZiK,iIJ), and the bounding cycles Bq(K,iIJ) ~ ZiK,iIJ), form subspaces of 
Cq(K,iIJ). The quotient space Hq(K,iIJ) = ZiK,iIJ)/BiK,iIJ) is called the qth 
homology group of K with rational coefficients. 

(9.9) Lemma. ßq is the dimension ofHiK,iIJ) as a vector space over i1J. 

Proof. Choose a minimal set of generators [Zl]'" .,[zßq ],[W1]'·' .,[wyJ for 
Hq(K), where the [zJ generate the free part of the group and the [wJ all have 
finite order. A q-cycle z with integer coefficients can be thought of as having 
rational coefficients, and it therefore determines an element of Hq(K,iIJ) which 

200 



DEGREE AND LEFSCHETZ NUMBER 

we denote by {z} in order to distinguish it from the corresponding element [z ] 
of Hq(K). Suppose 

is a rational q-cyc1e, the a;, bi being integers. Then 

I x (a cyc1e with integer coefficients) 
b1b2 ..• b. 

I x (a linear combination of z/s and w/s). 
b 1b2 .. ·b. 

Therefore the elements {zd,,,,,{zßq}, {wd, ... ,{wyq } span HiK,Q). 
If [w ] is an element of H iK) which has finite order m, then mw is the boundary 

of a (q + I)-chain with integer coefficients. Dividing by m, we find that w is 
itself the boundary of a (q + I)-chain which has rational coefficients, and 
consequently {w} = 0. Therefore HiK,Q) is spanned by {zd,,,,,{zßJ 

Finally, if some linear combination of ZI," .,zßq with rational coefficients is 
the boundary of a rational (q + I)-chain, multiplying by the product of the 
denominators of all the rational coefficients involved pro duces a linear com­
bination ofthe Zi in which the coefficients are integers, and which is the boundary 
of a (q + l)-chain with integer coefficients. But this can happen only if the 
coefficient of each Zi is zero. Therefore the original rational coefficients 
must all have been zero and we conc1ude that {zd,,,,,{zß.} are linearly inde­
pendent over Q. 

Proof of theorem (9.7). By definition, X(K) = L (-I)qocq where ocq is the nun:-
q~O 

her of q-simplexes in K. We shall abbreviate CiK,Q) simply to Cq, and 
use corresponding abbreviations for the subspaces of cyc1es and bounding 
cyc1es. Choose bases for the Cq as follows. Since K has no (n + I)-simplexes, 
Bn = 0, and therefore ßn is the dimension of Zn" Begin by selecting a basis 
z'J., .. . ,zPn for Zn> then extending this by elements c1, . . ,c~n to a basis for the whole 
of Cn" Applying 8 to these basis elements gives us a basis 8c1, ... ,8c~n for Bn - b 
which we extend by z1- 1, .. ,ZPn __ : to a basis for Zn _ band then extend further 
by c'1- 1, .. "C~n-_ ~ to a basis for all of Cn _ l' Note that the dimension of Zn - 1 

minus that of Bn _ 1 is indeed ßn _ 1 by lemma (9.9). Continue in this way. The 
I · 8 q + 1 8 q + 1 b'f B d' q q Z genera step IS to use Cl , ... , Cyq + 1 as a aSls or q, exten vIa Zb,,,,Zßq to q, 

then via c1, ... ,c~ to Cq• The process terminates with the basis 8cL ... ,8C~1'Z?, o q 

.• • ,Z ßo for Zo = Co· 
Now ocq is the dimension of Cq and therefore equals Yq + 1 + ßq + Yq• Hence 

n n 

L (-IFocq = L (-l)q(yq+ 1 + ßq + Yq) 
q~O q~O 
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since each Yq occurs with the sign (-I)q and with (-I)q - 1 if 0 < q ~ n, and 
both of Yo and Yn + 1 are zero. 

Problems 
11. Show that the Euler characteristic of the standard orientable surface of 
genus g is 2 - 2g. 

12. Show that the Euler characteristic of the standard nonorientable surface of 
genus g is 2 - g. 

13. Calculate the Euler characteristic of the sphere with k holes punched in. 

14. Calculate the Euler characteristic of H(p,r) and M(q,s). 

15. Let K and L be finite complexes. By triangulating I K I x I L I appropriately, 
show 

x(l K! x I L I) = x(! K 1). x(l L 1). 

16. Use Problem 14 of Chapter 7 to work out the Euler characteristic of the 
Lens space L(p,q). Now write down the Betti numbers of this space. 

17. What is X(pn)? What is X(sm x sn)? 

18. Show that the Euler characteristic ·of the n-dimensional torus 
Tn = SI X SI X ••• X SI is zero using Problem 15. Now give a second proof 
by finding a free simplicial action of Z2 on T n which has T n as quotient space. 

9.3 The Borsuk-Ulam theorem 
In order to prove the topological invariance of the Euler characteristic, we 
'changed coefficients' from the integers to the rational numbers. If we examine 
carefully the definition of the homology groups of a complex K, we see that it 
makes sense to replace the integers by any abelian group G. A q-chain now 
becomes a formal linear combination glO'I + ... + gsO's where the gi belong to 
G, the O'i are oriented q-simplexes of K, and (-g)O' is always. identified with 
g( - 0'). The remainder of the coilstruction is automatic and it results in the so­
called homology groups of K with coefficients in G. We do not have the space to 
work in this degree of generality here, but we would like to mention a second 
special case, namely the case of 71. 2 coefficients. 

Consider linear combinations as above where each coefficient gi is either 
o or 1, and agree to add these coefficients mod 2. The identifications 
(-g)O' = g( -0') reduce in this case to 0' = -0' (taking g = 1); in other words 
there is no longer any need to orient each simplex of K, we can simply work 
with linear combinations of unoriented q-simplexes of Kin which each coefficient 
is either 0 or 1. Such linear combinations are called 'mod-2' q-chains of K, and 
they form a finitely generated abelian group CiK,71.2) in which each element 
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has order 2. Notice that every mod-2 q-chain has a geometrical interpretation 
because it is the sum of certain q-simplexes of K. 

The mod-2 boundary of a q-simplex is just the sum of its (q - l)-dimensional 
faces. Extending linearly to sums of simplexes, we have a boundary homo­
morphism 

8:Cq(K,22)~ Cq- 1(K,2 2) 

which satisfies 82 = O. The kernel of this homomorphism divided by those 
elements which lie in the image of 8: Cq + 1 (K,2 2) ~ Cq(K,2 2) is the q-th 
homology group of K with 2 2 coefficients, and is written HiK,22). Clearly, 
each element of this group has order 2, so HiK,22) is a finite sum of copies of 
2 2• It is easy to redo the invariance proofs of Chapter 8 in this setting and show 
that these mod-2 homology groups depend only on the homotopy type of 1 K I. 
(In fact the homology groups of a complex with coefficients in an arbitrary 
abelian group Gare completely determined by the integral homology groups 
of the complex.) 

If we work with 2 2 as coefficient group, then we do of course lose some 
information, because we are throwing away any consideration of orientation. 
We can see this clearly in the case of two surfaces like the torus and Klein 
bottle, which are nicely distinguished by their second homology groups with 
integer coefficients. However, when we use 2 2 as coefficient group, the second 
homology group is 2 2 in both cases, since we oMain a 2-cycle by taking the 
sum of all the triangles in any triangulation of the surface, and this is the only 
nonzero 2-cycle. (When we take the boundary of this sum, every edge of the 
triangulation occurs twice and therefore disappears since we are working 
mod 2.) We invite the reader to work out the mod-2 homology groups of each 
of the standard closed surfaces. 

We shall use 2 2 coefficients to give a reasonably efficient proof of the 
following result: 

(9.10) Theorem. Let f: sn ~ sn be a map wh ich preserves antipodal points, in 
other words f( -x) = -f(x)for every point x ofS". Then f has odd degree. 

Let n: 1 L 1 ~ sn be the triangulation described in Seetion 9.1 and, as before, 
writef" for the map n- 1fn: 1 L 1 ~ 1 L I. 

(9.11) Lemma. T he map f" admits a simplicial approximation s: 1 L m 1 ~ 1 L 1 

which preserves antipodal points. 

Proof. The proof is made easy by the amount of choice available in the construc­
tion of a simplicial approximation. Choose m large enough, as in theorem (6.7), 
so that for each vertex v of Lm we can find a vertex w of L for wh ich 

f"(star (V,L m» ~ star (W,L) (*) 

Note that if <fJ: I L I ~ I L 1 is the antipodal map, then <Pi = f<fJ, giving 
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f"(star (4)(V),Lm)) ~ star (4)(W),L). Now select one half of the vertices of Lm in 
such a way that no two are antipodal, and for each such vertex v make a choice 
of w in L so that (*) is satisfied. Define s(v) = wand complete the definition of S 

on the remaining vertices of L m by s(4)(v)) = 4>(w). The first half of the proof of 
theorem (6.7) shows us that this mapping of vertices determines a simplicial 
approximation S to f" : 1 L m 1---+ 1 LI, and by construction S preserves antipodal 
points. 

Proof oftheorem (9.10). We know how to calculate the degree of f using a 
simplicial approximation by theorem (9.1). Now if IX and ß are integers, then 
IX - ß and IX + ß are even, or odd, together. Therefore in order to show f has 
odd degree, all we have to do is to verify that s maps an odd number of n­
simplexes of L m onto each n-simplex of L. We reinterpret this in terms of 
homology with mod-2 coefficients as follows. The sum of all the n-simplexes 
of L is the only nonzero mod-2 n-cycle, giving Hn(L,Z2) ~ Z2. Similarly 
H n(Lm,Z2) ~ Z2' the nonzero element being the sum of the n-simplexes of Lm. 
Now S maps an odd number of n-simplexes of L m onto each n-simplex of L if 
and only if S sends the unique nonzero mod-2 n-cycle of Lm to that of L; in 
other words, if and only if s* : Hn(Lm,Z2) ---+ Hn(L,Z2) is an isomorphism. 

We need a little extra notation. Write Lk for the subcomplex OfL made up of 
simplexes whose ver ti ces are the points Vi' V-i where 1 ~ i ~ k + 1. So Lo 
consists of the two points VI' V-I and Ln _ 1 is the 'equator' in Ln = L. Let Zk 

be the sum of all the k-simplexes of L;;', and note that 

Zk = Ck + 4>(ck) 

where a k-simplex OfL;;' lies in Ck ifand only ifthe k-simplex OfLk which contains 
it has Vk + 1 as a vertex. Note also that a(ck) = Zk - t. 

Suppose s(zn) is the zero element of Zn(L,Z2) = Hn(L,Z2)' then s(cn) + 
s4>(cn) = O. But S preserves antipodal points and therefore commutes with 4>, 
giving s(cn) + 4>s(cn) = 0 or equivalently, since we are working mod 2, 
s(cn) = 4>s(cn). If this is the case, s(cn) can be written as 

where dn is the sum of those n-simplexes in s(cn) which contain the ver tex 
Vn + 1. Taking the boundary of both sides, we now have 

sa(cn) = s(zn - d = s(cn - 1) + 4>s(cn - d 
= a(dn) + 4>a(dn) 

and therefore 

s(cn - d + a(dn) = 4>(s(cn - 1) + a(dn)) 

So we can write the (n - l)-chain s(cn _ 1) + adn of L in the form 
s(cn _ 1) + adn = dn - 1 + 4>(dn _ 1)' where dn _ 1 is the sum of those simplexes in 
the chain which contain Vn + l' and those which contain Vn but not v-in + 1). 

204 



DEGREE AND LEFSCHETZ NUMBER 

Applying the boundary operator aga in, we obtain 

s8(cn - 1) + 82(dn) = s(zn - 2) = s(cn - 2) + 4>s(cn - 2) 

= 8(dn - 1) + 4>8(dn - d 
and we can keep repeating this process until we arrive at 

s(Zo) = 8(d1) + 4>8(dd 

where d1 is a l-chain of L. But this is impossible because s(zo) is a single pair 
of antipodal vertices of L, whereas 8(d 1 ) + 4>8(d 1 ) consists of an even number 
of such pairs of vertices. This contradiction proves that s(zn) is a nonzero 
mod-2 n-cycle of L, and therefore that s induces an isomorphism of Hn(L m,7L 2) 

with H n(L,7L 2 ) as required. This completes the proof of theorem (9.10). 

The above result has some interesting consequences. 

(9.12) Theorem. If f:Sm -> sn sends antipodal points to antipodal points, then 
m:( n. 

Proof. Suppose m > n and let g denote the restriction of f to the n-sphere 
consisting of those points of sm whose last m - n coordinates are all zero. 
Then g is a map from sn to sn which preserves antipodal points, and should 
therefore have odd degree by theorem (9.10). But gis homotopic to a constant 
map because it extends over the (n + l)-ball consisting of those points of sm 
whose last m - n - 1 coordinates are all zero and whose (m - n)th coordinates 
are nonnegative. So the degree of g is zero and we have a contradiction. 

(9.13) Borsuk-Ulam theorem.Any map f: sn -> IEn must identify a pair of antipodal 
points of sn. 

Proo.t: Supposef(x) andf( -x) are never equal. Then the formula 

f(x) - f( -x) 

g(x) = Ilf(x) - f( -x) 11 

defines a map from sn to sn - 1 which preserves antipodal points, contradicting 
theorem (9.12). 

(9.14) Corollary. It is impossible to embed sn in IEn. 

Proo.f. sn is not homeomorphic to a subset of IEn,by theorem (9.13). 

(9.15) Lusternik-Schnirelmann theorem. [f sn is covered by n + 1 closed sets, 
then one of the sets contains a pair of antipodal points. 

Proof. Suppose Al'" .,An + 1 are closed subsets of sn whose union is all of sn. 
The functionf:Sn-> IEn defined by f(x) = (d(x,A 1 ), ••• ,d(x,An)), where d(x,AJ is 
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the distance of the point x from Ai' is continuous and must therefore identify a 
pair of antipodal points. In other words, we can find a point y of sn with the 
property d(y,Ai) = d( -y,Ai) for 1 ~ i ~ n. If d(y,AJ > 0 for 1 ~ i ~ n, then 
y and -y lie in An + l' since Al, ... ,An + 1 cover sn. On the other hand, if 
d(y,Ai) = 0 for some i, we have both y and - y in Ai because each Ai is a closed set. 

Problems 
19. Assume the Borsuk-Ulam theorem and give a proof of theorem (9.12). 

20. Check that only n of the sets Al' ... ,An + 1 need be closed for the argument 
oftheorem (9.15) to work. 

21. If a map from sn to sn extends over Bn + 1, show it must identify a pair of 
antipodal points of sn. Prove that the same conclusion holds under the weaker 
assumption thatfhave even degree. 

22. (Harn sandwich theorem). Let Ab A 2 , A 3 be bounded convex subsets Of[3, and 
define a function f: S3 -+ [3 using them as folIows. A point XE S3 determines 
a unique three-dimensional hyperplane P(x) in [4 which is perpendicular to the 
radius vector through x and goes through the point (O,O,O,t). Let f;(x) be the 
volume of that part of Ai which lies on the same side of P(x) as x, and define 
f(x) = (fl(X), f2(X), f3(X)). Check the continuity of f, then find a plane in [3 
which bisects each of Al' A 2 , A 3 by applying the Borsuk-Ulam theorem to f 
23. W ork out the mod-2 homology groups of an arbitrary closed surface and 
compare them with the integral homology groups. 

24. Define the qth mod-2 Betti number ßq of a finite complex K to be the number 
of copies of 71. 2 in Hq(K,71. 2 ). Show that 

n 

L (-1)qßq = X(K) 
q = 0 

where n is the dimension of K. 

9.4 The Lefschetz fixed-point theorem 
Let f:X -+ X be a map from a compact triangulable space to itself. Fix a 
triangulation h : 1 K 1-+ X and let n denote the dimension of K. If we work with 
rational coefficients, the homology groups HiK,~) are all vector spaces over ~, 
and the homomorphisms fq~ :HiK,~) -+ Hq(K,~) are linear maps. The alter­
nating sum of the traces of these linear maps, that is to say the number 

n 

I (-1)q tracefqh* 
q=O 

is called the Lefschetz number of fand written A f. As usual, the choice of tri-
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angulation does not matter: any other triangulation will give the same value 
for Af . We leave the reader to check this. 

Since homotopic maps induce the same homomorphisms of homology, we 
see that A f = Ag whenever f is homotopic to g. 

(9.16) Lefschetz fixed-point theorem. [fA f =1= 0 then f has afixed point. 

In order to und erstand the proof, we look at the simplest possible case, namely 
that where X is the polyhedron of a finite simplicial complex K and 
f: 1 K 1-4 1 K 1 is a simplicial map. Suppose f has no fixed points, then if A is a 
simplex of K we know that f(A) =1= A. Now orienting each q-simplex of K in 
some way gives a basis over iIJ for the vector space Cq(K,iIJ); with respect to this 
basis, the matrix representing the linear map h: Cq(K,iIJ) -4 CiK,iIJ) will have 
zeros along the diagonal, and therefore have trace zero. The crucial observation 
now (provided by theorem (9.17) below) is that whether we calculate the 
Lefschetz number off at homology level, or at chain level, does not matter. In 
other words, 

n n 

I (-I)q traceh = I (-I)q tracefq* 
q=O q=O 

giving A f = o. As usual, only technical difficulties are involved in passing from 
this special situation to the general case. 

(9.17) Hopf trace theorem. If K is a finite camplex of dimension n, and 
c/J: C(K,iIJ) -4 C(K,iIJ) a chain map, then 

n n 

I (-I)q trace c/Jq = I (-I)q trace c/Jq*. 
q=O q=O 

Proof. Choose a 'standard' basis for C(K,iIJ) as in the proof of theorem (9.7). 
The basis of CiK,iIJ) therefore consists of elements 

J q+1 Jq+1 q q q q 
Cl'··.' Cyq + "Zl,· .. ,ZPq,C1,···,Cyq 

A diagonal element of the matrix of c/Jq with respect to this basis is obtained by 
taking a basis element w, expressing c/Jiw) in terms of the basis (i.e., as a linear 
combination of its elements), and reading off the coefficient of w. We shall call 
this coefficient A(w). With this convention the trace of c/Jq is 

Yq + 1 Pq Yq 
I A(Jc] + 1) + I A(Z]) + I A(C]) 

j = 1 j = 1 j = 1 

But c/J is a chain map, in other words c/JJ = Jc/J, giving A(Jc] + 1) = A(C] + 1). 
Therefore 

n n ß. 

I (-l)qtracec/Jq = I (-l)q I A(Z]) 
q=O q=O j=l 

207 



BASIC TOPOLOGY 

the other terms cancelling out in pairs. Since {zi}, ... ,{zIU form a basis for the 
homology group HiK,Q), we have 

completing the argument. 

ßq 

L A(Zj) = trace cjJq* 
j = 1 

Proof of theorem (9.16). We suppose that!, and thereforef\ has no fixed points, 
and try to show A f = O. Let d be the metric on 1 K 1 induced from the surrounding 
euclidean space. The real-valued function on 1 K 1 given by x H d(X,Jh(X)) is 
never zero since fh has no fixed points, and attains its lower bound 0 > 0 since 
1 K 1 is compact. By changing to a suitable barycentric subdivision if necessary, 
we may assurne that the mesh of K is less than 0/3. 

Choose a simplicial approximation s: 1 Km 1_ 1 K 1 to fh : 1 Km 1- 1 K 1 and, 
as usual let X: C(K,Q) - C(Km,Q) denote the subdivision chain map. By 
definitionfqh* is the composition 

Hq(K,Q) ~ Hq(Km,Q) ---""--+ Hq(KQ) 

Therefore, by the Hopf trace theorem, we can show that A J = 0 by showing 
that each of the linear maps SqXq : CiK,Q) - CiK,Q) has trace zero. 

Let a be an oriented q-simplex of K and let r be an oriented q-simplex of 
Km wh ich lies in the chain xia). So r is contained in a. If XE r we have 
d(S(X),jh(X)) < 0/3 since S simplicially approximates fh; consequently we must 
have d(x,s(x)) > 20/3. If now y E a, then d(x,y) < 0/3 giving d(y,s(x)) > 0/3. 
This means that sex) and y do not lie in the same simplex of K, and therefore 
s(r) f a. So our simplex a has coefficient zero in the chain sqxq(a), and trace 
SqXq = 0 as required. 

As in Chapter 5, we shall say that aspace X has the fixed-point property if 
every map from X to itself has a fixed point. 

(9.18) Theorem. A compact triangulable space which has the same rational 
homology groups as a point has the jixed-point property. 

Proof. If we take a triangulation h: 1 K 1- X of our space and calculate the 
homology groups of K we are told the answer is Ho(K,Q) ~ Q and 
Hq(K,Q) = 0 otherwise. So for any mapf:X - X, the induced homomorphisms 
fqh* are all zero when q > O. Also, 1 K 1 has only one component since 
Ho(K,Q) ~ Q. But Ho(K,Q) is generated by the homology dass of any vertex 
of K, and therefore ft* : Q - Q is the identity linear transformation. This shows 
that A J = 1, so fhas a fixed point. 

As a direct corollary, we have a second proof of the Brouwer fixed-point 
theorem and, even better, we see that any contractible compact triangulable 
space has the fixed-point property. Now remember that the integral homology 
groups of the projective plane p2 are H O(P2) ~ 7L, H 1(p2) ~ 7L 2, and 
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HiP2) = 0 for q ~ 2. Therefore the rational homology groups are the same as 
those of a point and we deduce that any map from the projective plane to itself 
must have a fixed point. 

If X is a compact triangulable space, the Lefschetz number of the identity 
map 1x is the Euler characteristic of X, by theorem (9.7). Since homotopic maps 
have the same Lefschetz number, the next result follows immediately: 

(9.19) Theorem. If the identity map of X is homotopic to a Jixed-point free map 
then X(X) = O. 

So the only closed surfaces which admit a fixed-point-free map that is homo­
topic to the identity are the torus and Klein bottle. This proves our claim, made 
in Section 9.1, that the only hairy orientable surface which can be combed 
smooth is the torus, because by moving each point slightly along the hair growing 
out from it, we can produce a map without fixed points which is homotopic 
to the identity. 

Finally, suppose we have a map f: sn ~ sn. The only nonzero rational 
homology groups of sn are Q in dimensions 0 and n, and in dimension n the 
homomorphism induced by f is just multiplication by the degree of f We 
therefore have the following formula for the Lefschetz number off 

(9.20) Theorem. Af = 1 + (_l)n deg f 
From this formula we see that a map from sn to sn which does not have 

degree ± 1 must have a fixed point. Motivated by theorem (9.1), we shall call a 
homeomorphism h : sn ~ sn orientation preserving if the degree of h is + 1, and 
orientation reversing if its degree is -1. If n is even (odd) then any orientation­
preserving (reversing) homeomorphism of sn has a fixed point, by the above 
formula. 

Problems 
25. If X is a compact triangulable space, and if f : X ~ X is null homotopic, 
show thatfmust have a fixed point. 

26. Let G be a path-connected topological group. Show that left translation 
L g : G ~ G by an element gE G is homotopic to the identity. (Notice you can 
join g to e by a path.) 

27. Show that the Euler characteristic of a compact, connected, triangulable 
topological group is zero. 

28. Show that the torus is the only closed surface which is a topological group. 

29. Prove that an even-dimensional sphere cannot be a topological group. (In 
fact, Si and S3 are the only spheres which are topological groups, though this 
is much harder to prove.) 
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30. Let K be a finite complex. Iff: 1 K 1----> 1 K 1 is simplicial and has only isolated 
fixed points (in other words, the fixed points form a discrete set) show that A J is 
the number of fixed points. 

31. If K is a finite complex, and if f: 1 K 1----> 1 K 1 is simplicial, show that A J is 
the Euler characteristic of the set of fixed points of f (Remember the fixed 
points form a subcomplex of K l .) 

9.5 Dimension 
We shall outline a method of defining the dimension of a compact Hausdorff 
space X. Let $" be afinite open cover of X. Set V = $", and agree that a collec­
tion Vl"",Vk ofmembers of $" belongs to S iffthe intersection V l n ... n V k 

is nonempty. The hypotheses ofthe realization theorem (6.14) are easily checked, 
and realizing {V,S} in a euclidean space gives a complex which we call the 
nerve of $". 

If K is a finite complex, and if $" is the covering of 1 K 1 by the open stars of 
the vertices of K, then the nerve of $" is isomorphie to K by lemma (6.9). 
However, this example is not typical. Even if X is a triangulable space, the 
nerve of $" may look nothing at alllike X. Fig. 9.3 shows three open coverings 
of the circle. In the first case we obtain a 3-simplex plus its fa ces as nerve; and 
in the second case two vertices with aI-simplex joining them. We do better 
with the third covering, whose nerve consists of four vertices and four I-sim­
plexes which fit together like the vertices and edges of a square. Here we have 
recaptured the topology of the circle. 

Figare 9.3 

An open cover $'" is a refinement of $" if each member of $'" is contained 
in some member of $". So in the above example, the second cover refines the 
first, and the third refines both of the other two. The idea is that refining an 
open cover gives a better approximation to the original space X. 

(9.21) Definition. A compact Hausdorff space X has dimension n if every open 
cover of X has a refinement whose nerve has dimension at most n, and n is the 
smallest integer with this property. 
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Since a homeomorphism from aspace X to aspace Y sends a finite open cover 
of X to one of Y, the dimension of aspace is c1early a topological invariant of 
the space. 

The definition of dimension given above is 'monotonie' in the following sense. 
If X and Y are compact Hausdorff spaces, and if Y is a subspace of X, then the 
dimension of Y is no more than that of X (Problem 34). Also, as we shall see 
below, our definition gives the correct answer for polyhedra. 

Let K be a finite simplicial complex of dimension m and let $i be a finite open 
cover of 1 K I. Using Lebesgue's lemma (3.11), we can find a barycentric sub­
division Kr with the property that the open stars of the vertices of Kr form a 
refinement of $i. But the nerve of this covering of 1 K 1 by open stars is isomor­
phie to Kr by lemma (6.9), and therefore has dimension m. This shows that the 
dimension of the space 1 K 1 is no more than m. 

We still have to check that the dimension of 1 K 1 cannot be less than m. 
Now K contains an m-simplex Aso, by monotonicity, it is enough to check 
that 1 A 1 has dimension m. Suppose the dimension of 1 A 1 is less than m, and 
let $i be the open cover of 1 A 1 provided by the open stars of the vertices of A. 
Then $i must have a refinement $i' whose nerve is of dimension less than m. 
Choose a barycentric subdivision N with the property that the open stars of 
its vertices form a refinement $il/ of $i'. Write N($i) for the nerve of $i. Since 
$i' refines §' we can define a simplicial map s: 1 N(§,') 1 ---> 1 N($i) 1 as 
follows. The vertices of N(§,') are the open sets of $i'. If U is one of these open 
sets, choose V from $i containing it and set s(U) = V. In exactly the same way, 
we have a simplicial map t: 1 N($il/) 1---> 1 N($i') I. Now N($i) is isomorphie to 
A and N(§'I/) to Ar, so the composition st is a simplicial map from 1 N 1 to 1 A I. 
Also, the image of st has dimension less than m because st factors through 
1 N($i') I. SO st is a map from 1 A 1 to 1 8A I. Clearly stl18A 1 is a null-homotopic 
map since it extends over 1 A I. But, by its very construction, st is a simplicial 
approximation to the identity map from 1 Ar 1 to 1 A I. Consequently, its restric­
tion to 1 8A 1 cannot possibly be null homotopic, and we have the required 
contradiction. 

We have proved the following resu1t: 

(9.22) Theorem. IfK is a finite simplicial complex of dimension m, its polyhedron 
1 K 1 has dimension m. 

(9.23) Corollary. The dimension of a finite simplicial complex is a topological 
invariant of its underlying polyhedron. 

Problems 
32. Produce an open covering of the comb space whose nerve is a comb with 
only a finite number of teeth. What is the dimension of the comb space? 
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33. Where has homology theory been used in our proof of theorem (9.22)? 

34. Show that our definition of dimension is 'monotonie' in the following sense. 
If X and Y are eompaet Hausdorff spaees, and if Y is a subspaee of X, then the 
dimension of Y is no more than that of X. Where have you used the Hausdorff 
eondition in your argument? 

35. Define the dimension of a loeally eompaet Hausdorff spaee to be that of 
its one-point eompaetifieation. Show that the dimension of the polyhedron of 
a (possibly infinite) eomplex is the dimension of the eomplex, and that this 
definition is monotonie. 

36. What is the dimension of a diserete spaee? 

37. Show that an n-manifold has dimension n. 
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10. Knots and Covering Spaces 
But, asIor everything else, so Ior a mathematical 
theory - beauty can be perceived but not explained. 

A. CAYLEY 

10.1 Examples of knots 
We return to geometry in this chapter and consider various ways of embedding 
the circ1e as a subspace of le. At first sight, the problem may seem rather narrow 
and special but, as we shall soon see, it is a meeting point for almost all the 
geometrie and algebraic tools which we have developed so far. 

A knot is a subspace of euc1idean three-dimensional space which is homeo­
morphic to the circ1e. Fig. 10.1 illustrates four knots which happen to have 
special names; of course, in order to draw the knots we are forced to represent 
them by their projections in the plane of the paper. In addition, we mention 
the so-called trivial knot, or 'unknot', which consists of the unit circ1e in the 
(x,y) plane. 

Trefoil Figure of eight 

Stevedore's True lovers' 
Figure 10.1 
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Suppose we make Up each of the above knots using pieces of string (we 
urge the reader actually to do this). A little experiment quickly convinces us 
that we cannot convert any of these four into the trivial knot, nor indeed any 
one into another, simply by wobbling the string around. In order to do so we 
would have to let the string cross itself or (god forbid!) cut the string, make 
up our knot in a different way, and then tie the string up again. In some sense, 
which we need to make mathematically precise, these knots are all different. 

The easiest way of saying when two knots are the same is to ask for a homeo­
morphism of 3-space which simply throws one knot onto the other, and this is 
the attitude we shall adopt here. 

(10.1) Definition. Two knots k l , k2 are equivalent ifthere is a homeomorphism h 
of 1E 3 such that h(k l ) = k2 • 

We may be slightly disappointed that our definition says nothing about actually 
'sliding' kl about in space until it lands up on top of k2 • In fact, the two ideas 
are not the same. Reflection in a plane is a perfectly good homeomorphism of 
1E3 and transforms a knot to its mirror image. However, try as we may, we find 
that we cannot deform the trefoil knot into its mirror image (Fig. 10.2) without 
untying it. 

Trefail 
Figure 10.2 

Mirrar image 

If we are looking for a definition of equivalence which involves sliding one 
knot around until it becomes the other, we have to be rather wary. Pulling a 
knot tight (Fig. 10.3) gives a continuous one-parameter family of knots which 
always ends up with the trivial knot, so any definition must rule this out. To 
avoid this we insist that as the knot moves it carries the neighbouring points of 
euclidean space with it. 

00 
Figure 10.3 
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We say that a homeomorphism h of 1E3 is isotopic to the identity if there is a 
homotopy H: 1E3 x I ~ 1E3 such that each ht : 1E3 ~ 1E3 is a homeomorphism, ho 
is the identity, and h1 = h. If we have a homeomorphism h which is isotopic to 
the identity and for which h(k1) = k2 , then the knots ht(k1) provide a continuous 
family which move gradually from k1 to k2 as t increases from 0 to 1. 

If h : 1E3 ~ 1E3 is a homeomorphism, we know that it extends in a unique way 
to a homeomorphism h : S3 ~ S3, because S3 is the one-point compactification 
of 1E3 • We say that h is orientation preserving or orientation reversing, according 
as h preserves or reverses the orientation of S3. Now a homeomorphism which 
is isotopic to the identity must be orientation preserving. For we can extend 
each ht to ht : S3 ~ S3, and all we have to do is remember that homotopic maps 
have the same degree. On the other hand, reflection in a plane is orientation 
reversing and so cannot be isotopic to the identity. It is in fact true that any 
orientation-preserving homeomorphism of 1E3 is isotopic to the identity, 
though we shall not give a proof here. 

A knot is polygonal if it is made up of a finite number of line segments. We 
shall work only with knots which are equivalent to polygonal knots, the so­
called tarne knots. An example of a wild knot (obtained by tying an infinite 
number of knots one after the other) is shown in Fig. 10.4, but the study of such 
knots is outside the scope of our work here. 

Figure 10.4 

In order to picture knots and work with them effectively, we need to be able 
to project them into the plane in a nice way, the meaning of 'nice' being as 
shown in Fig. 10.1. The projection only crosses itself at a fmite number of points, 
at most two pieces of the knot meet at such crossings, and they do so at 'right 
angles'. Our first result says that a polygonal knot always has a nice projection. 

Let k be a polygonal knot. Given a direction, specified by a line in space, we 
can project k into the plane through the origin which is perpendicular to this 
direction. We call the projection nice if no more than two points of k map to 
each point of the image of k in the plane, the number of pairs of points of k 
identified by the projection is finite, and no such pair contains a vertex of k. 
A nice projection for a polygonal version of the figure-of-eight knot is shown 
in Fig. 10.5. 

(10.2) Theorem. Every polygonal knot has a nice projection. 
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Proof. Certain directions have to be avoided. Firstly, those specified by 
prolonging the edges of k to give lines in 1E3 ; secondly, those determined by 
lines which join a vertex of k to an edge of k; and finally, those specified by 
lines which meet three edges of k. Now the set of alllines joining a given vertex 

Figure 10.5 

of k to a given edge determines a plane, and those lines which meet three skew 
edges of k form a ruled surface, called a regulus. By translating each of the 
generators of a regulus to a line through the origin which is parallel to the 
generator, we obtain a ruled surface which is a cone. So to find a nice projection, 
all we have to do is to avoid the directions determined by a finite number of 
lines, planes and cones. 

We have not 'dotted all the i's' in the above proof. Our intention is to relax 
a little in this chapter and allow ourselves the luxury of explaining ideas rather 
than including every last detail of proof. The reader may weH ask why we have 
not adopted this approach much earlier! 

10.2 The knot group 
If k l , k2 are equivalent knots we have a homeomorphism h: 1E 3 -+ 1E 3 such that 
h(k l ) = k2 . Restricting h to 1E 3 - kl gives a homeomorphism of 1E 3 - kl with 
1E 3 - k2 , in other words, equivalent knots have homeomorphic complements. 
So it seems sensible to have a look at the fundamental group of the complement 
of a knot and see if we can use it to distinguish between various knots. Given a 
knot k, the fundamental group nl(1E3 - k) is called the knot group of k. Our 
first job is to obtain some sort of reasonable presentation for a knot group 
in terms of generators and relations. 

Take a copy of the knot in quest ion in the upper half of 3-space and ass urne 
that projection into the plane z = 0 is nice. Break up the knot into 'overpasses' 
and 'underpasses', relative to this projection, which alternate as we go round 
the knot. Exact1y how to do this is illustrated in Fig. 10.6 for the trefoil and the 
square knot, the overpasses are the heavier lines. Note that although we need 
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to work with polygonal representations for our knots, we shall usually draw 
knots as smooth eurves. 

Square knot 
Figllre 10.6 

Replaee eaeh underpass by the eurve obtained on dropping perpendieulars 
from the end points of the underpass to the plane z = 0, then joining the free 
ends of these perpendieulars by the projeetion of the underpass. In this way, 
we obtain a new knot (Fig. 10.7) whieh is c1early equivalent to the original and 

Figllre 10.7 

whieh we shall denote by k. The idea is to ealculate the knot group of k by 
building up [3 - k out of several pieees, eaeh of which has a fundamental group 
that we ean reeognize, and applying van Kampen's theorem (6.13) at eaeh stage. 

We first ealeulate nl([~ - k), where [~ is the c10sed half-spaee defined by 
the inequality z ~ O. Give a sense of direetion to k and ehoose a base point p 
high in the air above k. For eaeh overpass introduee a loop, whieh is based at p, 
and whieh winds onee round the overpass in the sense of a right-hand serew 
relative to the direetion of k, as shown in Fig. 10.8. Call these loops (Xl>" "(Xn 

and write Xi for the element of nl([~ - k) determined by (Xi' 

(10.3) Lemma. nl([~ - k, p) is thefree group generated by Xl'" "Xn-

Proof. Let k denote the overpasses of k plus the vertieal line segments whieh 
join their end points to the plane z = O. Then c1early IE~ - k and [~ - k have 
the same fundamental group. For eaeh overpass we build a vertieal wall up 
from the plane z = 0 to fit exaet1y underneath it, and we thicken this wall 
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slightly in IE! to give a three-dimensional ball (Fig. 10.9). We do this in such a 
way that the resulting balls Bi' ... ,Bn are all disjoint. Suppose we now remove 
the interior of each Bi' plus the interior of the horseshoe-shaped disc in which 

Figure 10.8 

it meets the plane z = 0, from IE!. Then the resulting space X is simply con­
nected; actually it is homeomorphic to IE! but we do not need this much. We 
shall build up IE! - k as the union X u (Bi - k) u ... u (Bn - k). 

Any Bi - k is homeomorphic (Fig. 10.9) to asolid cylinder with its centre line 
removed. This deformation-retracts onto a disc minus its centre point, and 
therefore has fundamental group 7L generated by a loop which links once 

overpass 

wall 

Figure 10.9 
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round k. Also, the interseetion of Bi - k with X is homeomorphie to a dise and 
is therefore simply eonneeted. 

Suppose we know the fundamental group of X u (B 1 - k) u ... U (Bi - k) 
is the free group generated by Xl'" "Xi' When we add in Bi + 1 - k, van 
Kampen's theorem teIls us we need an extra generator, whieh we ean elearly 
take to be Xi + l' So we have an induetive proof of the lemma. 

We end lemma (10.3) with a short dialogue: 

Fussy Algebraist. You don't seem to eare mueh about base points anymore. 
Optimistic Geometer. They usually take eare of themselves in this type of 
argument. Anyway I like drawing pietures, not worrying about base points. 
F.A. To apply van Kampen's theorem there really should be a eommon base 
point in [X u (B 1 - k) U ... U (Bi - k)] n (Bi + 1 - k). 
O.G. Here's an easy way out. For eaeh i, join the base point p to some point on 
the top of Bi by a straight line and add this line to Bi' Now you really ean base 
all the loops involved at p. 
F.A. Even worse, you've only given a eareful proof of van Kampen's theorem 
for finite simplieial eomplexes. 
O.G. Convert 1E3 into S3 by adding an extra point at 00, and thieken k so as 
to give a tube T which is just a knotted solid torus in S3. If we now replaee 
1E3 by S3, IEt by the upper hemisphere, and if we remove the interior of the tube 
T whenever we should remove k, then an the spaees involved ean be triangu­
lated as finite simplieial eomplexes. But in terms of the fundamental group we 
have not ehanged anything beeause the extra point at 00 is irrelevant, and 
beeause T - k deformation retraets onto the boundary of T. 

We still have an of IE~ - k to add in. Suppose we look at the underpass of our 
knot whieh lies between the ith and (i + l)th overpass, and assurne the kth 
overpass goes over it as in Fig. 10.10. Move the loops OCi, oci + 1 elose to the 
erossing, and take two loops ock , flk to represent X k , one on eaeh side of the 
underpass as shown. Now thieken up the projeetion of the underpass in IE~ 
to give a three-dimensional ball Di, and eonsider the effeet of adding Di - k 
to IEt - k. So that we ean base an loops at p, we add to Di a line which runs 
from p to q then vertieally down to a point r on the top of Di• Now Di - k is 
elearly simply eonneeted, and (D i - k) n (lEt - k) eonsists of a dise with a 
polygonal are removed from its interior. This latter has the same homotopy 
type as a dise with an interior point removed, and therefore has infinite eyelie 
fundamental group. If Pi is a loop whieh is based at p and whieh winds onee 
round the projection of the underpass elockwise in the plane z = 0, then ßi 
represents a generator of this group whieh we shall denote by Yi' 

Aeeording to van Kampen's theorem, if we want the fundamental group of 
(lEt - k) u (Di - k) we must add the relation j*(Yi) = e to 1tl(lEt - k), where 
j is the inelusion map of (lEt - k) n (Di - k) in IEt - k. But jiYi) is repre­
sented by the loop ßi thought of as a loop in IEt - k. By simply sliding Pi vertieally 
upwards, we obtain a loop homotopie to the produet loop OCiOCkOCi) lai: 1 (Fig. 
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10.10). So adding D i - k has the effect of imposing the relation X iX kX i-;l xi: 1 = e 
on Xl'" "Xm or equivalently 

Note that if we reverse the direction of the kth overpass, then the relation 
changes to XkXi = Xi + 1 X k· 

p 

Figure 10.10 

The other possibility is that our underpass is one which has been included 
simply to keep two overpasses apart. In this case, it should be clear that ßi 
is homotopic to rl/J.i-;l' So the extra relation to be added this time is Xi = Xi + l' 
Whichever relation we have, we denote it by the symbol rio 

We have nunderpasses altogether. The first n - 1 give us relations 
rb' .. ,rn _ 1 and tell us that the fundamental group of 

Y = (IE! - k) u (D 1 - k) u ... u (Dn _ 1 - k) 

We claim that the relation corresponding to the final underpass is a conse­
quence of the first n - 1 and adds nothing new. For let Z denote the closure of 
1E3 - Y. To complete our construction of 1E 3 - k, all we have to do is to add 
Z - k to Y. But Z - k is simply connected, and Y n (Z - k) has infinite cyclic 
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fundamental group, generated by a loop which winds onee round the projeetion 
of the final underpass. Now we are at liberty to ehoose this loop to be a large 
cirele in the plane z = 0 whieh has the projeetion of our knot inside it. Simply 
sliding sueh a eirele vertieally upwards until it lies above k, then eontraeting it, 
shows that it represents the trivial element of 1tl(Y)' A final applieation of van 
Kampen's theorem now gives our main result: 

(10.4) Theorem. The knot group ofk is generated by the elements Xl'" "Xn subject 
to the relations r l , ... ,rn - l' 

Here are some examples. 

The trivial knot. We break up the eirele into two semicireles, ealling one an 
overpass. The above recipe then gives us one generator and no relations. 
Therefore the knot group of the trivial knot is the infinite cyclic group. 

The tre/oit. Take overpasses and underpasses as shown in Fig. 10.8. Then we 
have three generators Xl> X2, X3 subjeet to the relations XIX2 = X3Xl, 

X2X3 = XIX2' Eliminating X3 and writing a = Xl' b = X2, this simplifies to 
give the group G = {a,b I aba = bab}. 

Note that sending a to (12) and b to (23) defines a homomorphism from G 
to the symmetrie group on three letters, sinee (12)(23)(12) = (13) = (23)(12)(23). 
The homomorphism is onto beeause (12) and (23) generate the symmetrie 
group S3' This shows thatG eannot be an abelian group; in partieular, it 
eannot be 7L. We have therefore proved that the trefoil is not equivalent to the 
trivial knot. In other words the trefoil really is knotted. 

The square knot. Take overpasses and underpasses as shown in Fig. 10.11, 
and label the underpasses 1 to 7. The letters a, b, c represent the generators ofthe 
knot group eorresponding to three of the overpasses as shown, and using the 
relations given by underpasses 1,2,4, 5, we quiekly express the other four 
generators in terms of these three. The relations eorresponding to underpasses 
3 and 6 are 

Figure 10.11 
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(b- 1 ab)(b- 1 a- 1 bab) = (b- 1a- 1 bab)b 

which gives aba = bab, and 

(c- 1 a c)(b- 1 a- 1 ba b) = c(c- 1 a c) 

which reduces to aca = cac when we replace bab by aba. The knot group of the 
square knot is therefore {a,b,c I aba = bab, aca = cac}. 

Nonequivalent knots may have the same knot group. The left-hand half of 
the square knot looks like a trefoil, and the right-hand half1ike its mirror image. 
If we change the right-hand part to be a trefoil also, the resulting knot is called 
the granny, and is known to be a different knot. We ask the reader to compute 
the knot group of the granny and check it is isomorphie to that of the square 
knot. 

Deciding whether or not two groups, given in terms of generators and 
relations, are isomorphie is in general impossible, and at best a painful task. 
For this reason, we would like a simpler invariant for distinguishing between 
knots, and one such will be introduced in Section 10.5. Note that abelianizing 
the knot group does not help. Looking at the form of the relations, we see that 
abelianizing simply sets all the generators equal to one another, giving the 
following result: 

(10.5) Theorem~ Abelianizing a knot group always gives the infinite cyclic group. 

Problems 
1. Find a presentation for the knot group of the figure-of-eight knot which 
has two generators. Show there is no homomorphism from this group onto the 
symmetrie group S3' and deduce that the figure of eight is not equivalent to the 
trefoil. 

2. Check that the square knot and the granny have isomorphie knot groups. 

3. Find presentations for the knot groups of the stevedore's and true lovers' 
knots. 

4. Let k be a tarne knot in 1E3, and thicken k slightly to produce a knotted tube 
T. Give a precise argument to show that 1tl(1E3 - k) is isomorphie to 
1tl(S3 - t). 
5. A whole family of interesting knots occur as curves which lie on the surface 
of a standard torus in 1E3 • If p and q are relatively prime integers, the torus knot 
kp,q is defined in cylindrical polar coordinates by r = 2 + cos(pO/q), z = 
sin(pO/q). It lies on the torus (r - 2)2 + Z2 = 1, winds round p times in the 
longitudinal direction, and q times meridianally. Show that k2 ,3 is the trefoil, 
and draw k2 ,s. 
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6. Show that kp,q is equivalent to kq,p and to L p,q' Show also that kp.q is un­
knotted if I p I = 1 or I q I = 1. 
7. Here are two ways of showing that the 3-sphere is the union of two solid tori: 
(a) Prove that the set of points in S3 5; 1E4 whose coordinates satisfy xt + x~ = 

x~ + x~ is a torus, and that the inequalities xt + x~ ~ x~ + x~, xt + x~ ~ 
x~ + x~ both define solid tori. 

(b) Think of S3 as the join SI * SI of two circ1es. Show that the halfway section, 
which consists of points tx + (1 - t)y for which t = t, is a torus, and that 
the inequalities t ~ t, t ~ t both give solid tori. 

8. Use Problem 7 and van Kampen's theorem to show that the knot group of 
kp,q has a presentation of the form {x,y I xP = yq}. 

9. If G denotes the knot group of kp,q, and H the subgroup genera ted by the 
element x P (= yq), show that H is contained in the centre of G and that 
G/H ~ Z!p! * Z!q!' 
10. Show that the free product of two non trivial groups always has a trivial 
centre. 

11. Assuming I p I =1= 1, I q I =1= 1, show that H is the centre of G. Now prove that 
if 1 < P < q, 1 < pi < q' then kp,q is equivalent to kp',q' iff p = pi and q = q'. 

12. Show that the set of equivalence c1asses of tame knots in 1E 3 is countable, 
but not finite. 

10.3 Seifert surfaces 
In this section we shall show how to span a tame knot k by an orientable surface. 
That is to say, we shall construct a compact, connected, orientable surface S 
in 1E 3 which has the knot k as boundary. 

We illustrate the construction for the trefoil in Fig. 10.12. Orient the knot 
and choose a nice projection. Cut each crossing of the projection as shown to 
give a collection of disjoint oriented circ1es, called Seifert circles. Span each 
Seifert circ1e by a disc, keeping the discs disjoint, then replace the crossings by 
adding in a twisted strip at each crossing, as illustrated. The result is a compact 
connected surface S with boundary k. To see that S is orientable, notice that 
each Seifert circ1e has an orientation given from that of k. This determines an 
orientation for the disc which it spans, and the twisted strips are added in just 
such a way as to make these orientations all compatible with one another. 
S is called a Seifert surface for k. 

Of course, we can span a given knot in many different ways; for example, 
take one Seifert surface and produce another by adding some handles to it weIl 
away from the knot. Now any Seifert surface S spanhing k has boundary a 
single circ1e, so we can convert it into a closed surface by sewing a disc across 
this circ1e. By the genus of S we shall mean the genus of this orientable c10sed 
surface. One can read off the genus from a picture of the S~ifert surface, because 
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removing a disc from a closed orientable surface of genus g produces aspace 
which deformation retracts onto the one-point union of 2g circles. The surface 
illustrated in Fig. 10.12 clearly deformation retracts onto the one-point union 
of two circles, so it has genus 1. Attaching a disc to it gives the torus. 

Figure 10.11 

Call a surface S in 1E3 tarne if there is a homeomorphism of 1E 3 which throws S 
onto a finite simplicial complex, in other words onto a combinatorial surface 
(which may have a boundary). The smallest integer which occurs as the genus 
of a tarne Seifert surface for k is called the genus of k and is written g(k). 

Our next result shows that having genus 0 is the same as being unknotted : 

(10.6) Theorem. A knot is equivalent to the trivial knot if and only if it can be 
spanned by a tarne disco 

Proof. Suppose k is equivalent to the unknot, and let h be a homeomorphism 
of 1E 3 which throws konto the boundary of the unit disc D in the (x,y) plane. 
Then h - l(D) is a tarne disc spanning k. 

Conversely, suppose k is polygonal and suppose we have a disc spanning k 
which is embedded polygonally in 1E 3 . In other words, the disc is chopped up 
into triangles, each of which lies linearly in 1E 3 . By a sequence of moves, each 
of which replaces one side of a tri angle by the other two sides (or vice versa), 
we can change k to the boundary of a single triangle. But each such move 
can be realized by a homeomorphism of 1E3 . Once we have thrown konto the 
boundary of a triangle, it is a simple matter to find a homeomorphism which 
moves this triangle onto the unit disc in the plane. Therefore k is unknotted. 
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The genus of a knot is additive in the following sense. Suppose we have 
two oriented knots k and 1 whieh lie on opposite sides of a plane in 1E3, apart 
from a eommon are in the plane on whieh they induee opposite orientations. 
Their sum k + 1 is defined to be k u 1 with all the points of this eommon are, 
exeept the endpoints, removed (Fig. 10.13). Put in a less formal way, tie the 
knots one after the other in a piece of string, making sure their orientations 
agree. It is essential to work with oriented knots otherwise the definition may 
be ambiguous. 

Figure 10.13 

(10.7) Theorem. g(k + 1) = g(k) + g(l). 

Sketch proof. First take eopies of k and 1 whieh lie on opposite sides of a plane 
in 1E3, and span eaeh of them by a (tarne) Seifert surfaee of minimal genus in the 
appropriate half-spaee. Conneet a little segment on k to one on 1 by a thin band, 
wh ich is otherwise disjoint from the two spanning surfaees, and whieh twists 
if neeessary so that the boundary of the resulting surfaee S is k + 1 (Fig. 10.14). 
Clearly, the genus of S is the sum of the genus of the spanning surfaee for k 
with that for I. Therefore g(k + I) :::;; g(k) + g(I). 

Figure 10.14 

For the eonverse, begin with a tarne Seifert surfaee S of minimal genus for 
k + 1. We ean always arrange that where S meets the plane P whieh separates k 
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from 1 it cuts through at 'right angles'. Therefore the intersection of S with P 
will be a collection of disjoint circles, plus an are A whose endpoints are the 
points where k + 1 pierces P. The idea is to do surgery on these circles, one by 
one, to produce a new minimal spanning surface which meets P only in A. 
Cutting along the are Athen gives Seifert surfaces for each of k and 1 whose 
genera add to the genus of S. Therefore g(k) + g(/) ~ g(k + I). 

The surgery go es as follows. Some of the circles of S n P may be nested 
inside one another, and may even contain the are A. Choose an innermost 
circle which does not contain A. Cut S along it and span the resulting circles by 
dis es, one on each side of P. We can do this without running into other pieces 
of S because the circle in question does not contain any of the other circles, 
and does not contain A. The result must be a new surface which spans k + 1 
and meets P in one less circle, plus a closed surface which we ignore. (For if not, 
we have a single surface which spans k + 1 and has smaller genus than before, 
by theorem (7.11), contradicting the fact that S has minimal genus.) We eliminate 
the intersection circles in this way. When we come to circleswhich contain the 
are A, we start with the outermost one, cut along it, then cap off the two resulting 
circles by large dis es which, in order to avoid S, go round behind k and 1 (just 
as if we blew up two balloons, pulled one over the part of S which is in the left­
hand half-space, the other over the part on the right, and then attached their 
necks to the circles in question). Eventually, S meets P only in A, as required. 

(10.8) Corollary. Jfk + 1 is equivalent to the trivial knot, then so is each ofk andl. 

Proof. If k + 1 is equivalent to the trivial knot, then g(k) + g(1) = g(k + I) = 0, 
giving g(k) = g(l) = O. Therefore both k and 1 are unknotted by theorem (10.6). 

This shows the impossibility of tying two knots in a row in a piece of string 
so that they cancel one another out. 

Problems 
13. Show that any tarne knot in le can be spanned by a tarne disc in 1E4 . 

14. Let k be a polygonal knot in 1E4 . Show that by a judicious choice of direction, 
k can be projected in a one-one fashion into a three-dimensional subspace of 
1E4 . Deduce that any tarne knot in 1E4 is unknotted. 

15. Construct Seifert surfaces for the knots shown in Fig. 10.15 and identify the 
resulting surfaces. 

16. Draw a set of pictures to illustrate how the surgery is carried out in the 
proof of theorem (10.7). 

17. Show that neither the trefoil knot, nor the figure of eight, can be written as 
the sum of two non trivial knots. 
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Fillure 10.15 

10.4 Covering spaces 
The notion of a covering space was introduced rather briefly in Section 5.3. 
We plan to develop the idea a little further here, then have a look at a rather 
special covering space of the complement of a knot in the next section. 

We recall the definition and one or two examples. 

(10.9) Definition. A map TC: 5( - X is ca lied a covering map and 5( is said to be 
a covering space ofX if the following condition holds. For each point x EX there 
is an open neighbourhood V, and a decomposition OfTC- 1(V) as afamily {U,,} of 
pairwise dis joint open subsets of 5(, in such a way that the restriction of TC to each 
U" is a homeomorphismfrom U" to V. 

The exponential map from the realline to the unit circ1e in the complex plane 
is a covering map, as is the map from the 2-sphere to the projective plane 
obtained by identifying antipodal points. Both of these were considered in some 
detail in Chapter 5. Let n be a positive integer and consider the map from 
C - {O} to itselfwhich raises each nonzero complex number to the nth power. 
This is a covering map (familiar from complex variable theory) which winds 
the punctured complex plane n times on itse1f. 

Figure 10.16 shows a covering space of the one-point union of two circ1es. 
Reading from left to right, TC winds the first circ1e of g once round circ1e A, 
the second twice round circ1e B, the third twice round circ1e A, and so on. Note 
that exactly four points of g map to each point of X. If x and V are as shown, 
then TC -l(V) consists of the open sets Ui' 1 ~ i ~ 4, each of which maps homeo­
morphically onto V under TC. We leave the reader to choose appropriate neigh­
bourhoods for points of Band for the point p where the two circ1es meet. 

We shall assume that all our spaces are path-connected and locally path­
cor.nected. The latter condition (first introduced in Problem 43 of Chapter 3) 
simply means the topology on the space has a basis each of whose members is 
path-connected. For example, all polyhedra have this property. 

Suppose then g is a covering space of X with covering map TC:X - X. 
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x 

A B 

Figure 10.16 

Choose base points pE X, q EX with n(q) = p, and write G = n1(X,p), 
H = n1Cf,q). We already have two basic results from our work in Chapter 5, 
lemmas (5.10) and (5.11): 

(10.10) Path-lifting lemma. If y is a path in X which begins at p, there is a unique 
path y in X which beg ins at q and satisfies n 0 y = y. 

(10.11) Homotopy-Iifting lemma. If F:I x 1-+ X is a map such that F(O,t) = 
F(1,t) = P for ° ~ t ~ 1, there is a unique map F: I x I -+ X which satisfies 
n oF = Fand F(O,t) = q, ° ~ t ~ 1. 

Given f: Y -+ X, a map 1: Y -+ X with the property n 0 f = fis usually called 
a lift off The fact that we can lift paths and homotopies into covering spaces 
has important consequences. 

(10.12) Theorem. The induced homomorphism n* : H -+ G is one-one. 

Proof. Suppose & is a loop in X based at q for which 0( = n 0 & is null homotopic 
in X. Choose a specific homotopy F from the constant loop at p to 0( and apply 
lemma (10.11) to find F: 1 x 1 -+ X satisfying n 0 F = Fand F(O,t) = q, ° ~ t ~ 1. Let P denote the union of the left- and right-hand edges and bottom 
of 1 x I; then F maps all of P to p. But n° F = F, the set n-1(p) is a discrete 
set of points, and P is connected; therefore F maps all of P to q. Also, the path 
in X defined by F(s,1) is a lift of 0( which begins at q, and must therefore be & by 
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the uniqueness part of lemma (10.10). So F is a homotopy from the constant 
loop at q to & as required. 

(10.13) Theorem. A loop IX in X based at p lifts to a loop a in X based at q if and 
only if <IX) E n*(H). 

Proof.One way is clear: if a is a loop then <IX) = <n 0 a) E n*(H). For the 
converse, suppose we have <IX) E n*(H); then we can find a loop ß based at q 
in g such that iX ~ n 0 ß. Choose a specific homotopy between these two loops 
and lift it into g using lemma (10.11). An argument just like that of the proof of 
theorem (10.12) shows ß and & must have the same endpoint, so & is a loop 
based at q. 

Note that a loop in X may have one lift in gwhich is a loop, and another 
which is a path with distinct endpoints. For example, the loop based at p in 
Fig. 10.16 represented by the circle A taken anticlockwise lifts to a loop based 
at q, yet the lift which begins at r is not a loop. 

(10.14) Theorem. For any point x of X the cardinality of the set n- 1(x) is the 
index of n*(H) in G. 

Proof. First note that ifx,y E X then n- 1(x) and n- 1(y) have the same cardinality. 
For let y be a path in X which joins x to y. Given XE n- 1(x), lift y to a path y 
in gwhich begins at x. Then we have a function from n- 1(x) to n- 1(y) defined 
by x I-> ji(1). This function must be one-one and onto, since we can produce 
an inverse for it using the path y - 1. 

Now consider n- 1(p). Given a loop IX in X based at p, lift it to a path & in 
gwhich begins at q, and notice that &(1) is a point of n- 1(p). If XE n- 1(p), 
projecting a path which joins q to x into X gives a loop based at p, so every 
point of n- 1(p) arises in this way. Now two loops iX and ß give the same point 
ofn- 1(p) if and only if iXr 1 lifts to a loop based at q, and so by theorem (10.13), 
if and only if <IX) and <ß) determine the same right coset of n*(H) in G. So we 
have a one-one onto correspondence from the right co sets of n*(H) in G to 
the set n- 1(p). 

If the inverse image of each point under n contains a finite number of points, 
say n, we say g is an n-sheeted or n-fold covering space. For example, S2 is a 
2-sheeted covering of the projective plane; and the covering of C - {O} des­
cribed earlier is n-sheeted. In the first case H = n 1 (S2) = {e} and G = n 1 (p2) ~ 
Z2' therefore n*(H) has index 2 in G. In the second ca se, we have H = G = 
n1(1C - {O}) ~ Z and n*(H) = nZ ~ Z, so the index ofn*(H) in Gis indeed n. 

(10.15) Theorem. The groups n*(n1(X, x», XE n- 1(p),jorm a conjugacy dass of 
subgroups of G. 

Proof. The conjugacy class in question 1S that determined by n",(H). If 
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XE TC-l(p), join q to X by a pathjl in X, write y for the loop TC 0 jI, and check that 
the following dia gram commutes: 

H ~ TC l (X,x) 

n·1 1 n. 
G-->G 

Y. 

SO the inner automorphism of G given by y* throws TC*(H) onto TC*(TC1(X, x)). 
For the converse, suppose K = <IX) -lTC*(H) <IX), where <IX) E G. Lift IX to a 
path & in X which begins at q, and set x = &(1). Then XE TC-l(p) and 
K = TC*(TC 1 (X,x)). 

So far, we have shown that a covering space of X picks out a conjugacy dass 
of subgroups of the fundamental group of X. To make any further progress, we 
need a more general map-lifting result. Let Y be aspace (path-connected and 
Iocally path-connected as always) with base point r, and let f: Y ---+ X be a 
map which takes r to p. 

(10.16) Map-lifting theorem. There is a lift off which takes r to q if and only if 
f*(TC 1 (Y,r)) S;;; TC*(H), and this lift is unique. 

Proof. The necessity of the condition is dear since a lift] gives a commutative 
diagram 

Also, ifwe have a lift]which satisfies](r) = q, it must be unique. For suppose 
!t,lz both lift fand send r to q. Given y E Y, join r to y by a path y. Then 
h 0 y and lz 0 y are both lifts off 0 y which begin at q, so they must agree, and 
in particular have the same final point. In other words,Jl(Y) = ]2(Y). 

Now suppose we have f*(TC1(Y,r)) S;;; TC*(H), then we can construct]: Y ---+ X as 
follows. Given Y E Y, join r to Y by a path y, lift the path IX = f 0 Y to a path & 
inX which begins at q, and setf(y) = &(1). The choice ofy does not matter for 
if y' is a second path joining r to y, and if ß = f 0 y' then IXß-l is a loop in X 
based at p. Also, <lXr 1) lies inf*(TC1(Y,r)) and therefore in TC*(H). So by theorem 
(10.13), IXr 1 lifts to a loop based at q in X. But for this to happen, a and ß 
must have the same final point. 

We are left to check the continuity of J Suppose f(y) = X and TC(X) = x, 
and let N be a neighbourhood of x in X. Choose a neighbourhood V of x and 
a neighbourhood V of x such that TC I V: V ---+ V is a homeomorphism. Then 
f -lTC(N n V) is a neighbourhood of y in Y. Using the fact that Y is locally 
path-connected choose a path-connected neighbourhood W of y inside 
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f- 1'TT.(N n U). We claim thatJ(W) S;; N, and ifwe can prove this we are finished. 
Let Z E W, and join y to z in W by a path a. To find J(z), we lift the path 
fo ("la) = (jo y)(fo a) to a path which begins at q in X, and take the endpoint 
of this path. Now fo alies inside 'TT.(N n U), and its lift has to start at the end­
point of the lift off 0 y, which is X. But 'TT. I N n U is a homeomorphism, so the 
endpoint of this lift lies in N n U, and therefore in N as required. 

We are now in a position to produce a hierarchical structure for the covering 
spaces of a given space. Let 'TT.l :X 1 -4 X, 'TT.2 :X 2 -4 X be covering maps. Choose 
base points ql EX1 , q2 EX2 so that 'TT.l(ql) = 'TT.2(q2) = P and write H 1 = 
'TT.l(X 1,ql),H2 = ltl(X2,Q2)' 

(10.17) Theorem. 1f 'TT.2*(H2) S;; 'TT. h (H 1) there is a eovering map 'TT.:X2 -4 Xl 
which sends q2 to ql and satisfies 'TT. 1 0'TT. = 'TT.2' 

Proof. Simply apply theorem (10.16) to lift the map 'TT.2 :X2 -4 X to a map 
'TT.:X 2 -4 Xl which sends Q2 tOQl' then check that 'TT. is a covering map. 

Of course, if 'TT.2*(H 2) happens to equal'TT.l*(H 1)' then we can play this game 
in both directions and find basepoint-preserving covering maps g:X 2 -4 X l' 
h:X1 -4 X 2 which satisfy 'TT.l 0 g = 'TT.2 and 'TT.2 0 h = 'TT.l' Now 'TT. 1 0 go h = 'TT. 1, 

so go hand lXI both lift 'TT. 1 :X 1 -4 X to a map from Xl to Xl which sends Ql 
to Ql' By the uniqueness part of theorem (10.16), we must have go h = lXI' 
Similarly, h 0 g = 1 xz and we see that h : Xl -4 X 2 is a homeomorphism. 

We shall call two covering spaces X l' X 2 eQuivalent if we can find a homeo­
morphism h:X1 -4X2 such that 'TT.2 0 h = 'TT.l' Combining the above discussion 
with theorem (10.15), we see that two eovering spaees ofX are eQuivalent if and 
only if they determine the same eonjugaey dass of subgroups of the fundamental 
group ofX. 

Now let 'TT.:X -4 X be a covering map, and define a eovering transformation of 
X to be a homeomorphism h: X -4 X which satisfies 'TT. 0 h = 'TT.. In the case of 
the covering ofthe projective plane by S2, there are precisely two covering trans­
formations, namely the identity map of S2 and the antipodal map. For the 
covering 'TT.: Ifl -4 SI defined by 'TT.(X) = e21tix, a typical covering transformation 
is a translation of the realline by an integer. The set of all covering transforma­
tions of X forms a group K under composition of homeomorphisms, and K acts 
freely on X. (F or if his a covering transformation of X, and if h(x) = X, then both 
hand 1i agree on the point x and lift 'TT.:X -4 X. So they must be equal.) 

(10.18) Theorem. 1f 'TT.*(H) is anormal subgroup of G then X is homeomorphie to 
the orbit spaee X/K, and K is isomorphie to the faetor group G/'TT.*(H). 

Proof. The covering map 'TT.:X -4 X and the natural projection of X onto X/K 
are both identification maps, so we must check that the orbits of Kare precisely 
the inverse images of points of X under 'TT.. Given x E X, we know that each 
member of K permutes the points of 'TT.- 1(x) because it is a covering transforma-
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tion. Also, if X, 51 E 1t- 1(x), then 1t*(1t1(X, x)) = 1t*(H) = 1t*(1t1(X,y)) by theorem 
(10.15) and the fact that 1t*(H) is normal in G. Therefore we can find a covering 
transformation which sends x to y. 

We are left to show K is isomorphie to G/1t!f.(H). Given a loop rt based at p 
in X, lift it to a path a which begins at q in X, and let ka denote the unique 
covering transformation which sends q to &(1). Clearly, we can produce every 
element of K in this way, and by theorem (10.13) two loops rt and ß give the 
same element of K if and only if < rtr 1> E 1t*(H). Therefore the correspondence 
rt f-+ ka, induces a one-one onto function from G/1t*(H) to K. To see this is a 
homomorphism, note that given two loops rt, ß based at p, the lift of rt.ß which 
begins at q is the path &.(ka 0 /1), and the endpoint of this is ka(kß(q)). In other 
words, rt. ß corresponds to ka 0 kß. 

If 1t*(H) is anormal subgroup of G, we call X a regular covering space. If a 
covering is not regular, there may not be enough covering transformations to 
go round, in the sense that we can have two points which map to the same point 
of X under 1t, and yet be unable to find a covering transformation which maps 
one to the other. The covering space of Fig. 10.16 is a good illustration of this 
situation. Here there is only one non-identity covering transformation; it acts as 
the antipodal map on the middle circ1e of X and interchanges the two circ1es 
on the left with those on the right. In particular, no covering transformation 
maps q to r. Note that K is isomorphie to 7L 2 , whereas the covering is 4-sheeted. 
We leave the reader to check that the orbit space X/K consists of three circ1es 
joined together in a row. 

Suppose X is a simply connected covering space of X, then it is unique up to 
homeomorphism, since any two such must be equivalent, and it is a regular 
covering space of any other covering space of X by theorem (10.17). For these 
reasons, X is called the universal covering space of X. Here are some examples. 
The universal covering space of the circ1e is the real line; that of projective 
n-space is sn; that of the Klein bottle is the plane; and finally, that of the one­
point union of two circ1es is the universal television aerial described in Chapter 
6 (Fig. 6.21). 

Suppose X has a universal covering space, and denote it by X. Then the 
covering transformations form a group isomorphie to the fundamental group 
of X. Given any subgroup H of 1tl(X), it acts on X and the associated orbit 
spaceX/H is a covering space of X whose fundamental group is isomorphie to 
H. So if X has a universal covering space, it has a covering space which corre­
sponds to any subgroup of its fundamental group. 

In order to ensure the existence of a universal covering space for aspace X, 
we need to impose an extra condition on X. Call X semi-locally simply connected 
if each point of X has a neighbourhood U such that each loop in U is null 
homotopic in X. This is true of any polyhedron, but not for examp}e of the 
Hawaiian earring (see Chapter 4, Problem 5). 

(10.19) Existence theorem. Aspace which is path-connected, locally path­
connected, and semi-locally simply connected has a universal covering space. 
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Proo/. The details are rather long, but not difficult, so we give only the idea. 
Choose a base point p in X. The points of gare equivalence classes of paths in 
X which begin at p, two such paths oe, ß being understood to be equivalent iffthey 
have the same endpoint and oeß- 1 is homotopic to the constant loop at p. 

To define 1I::X -+ X, represent x E X by an appropriate path oe in X, and let 
1I:(X) be the endpoint of oe. 

To construct a basis for the topology ofg, begin with a path-connected open 
set V in X such that any loop in V is null homotopic in X, and a point x E g 
such that 1I:(x) E V. Represent x by a path oe in X which joins p to 1I:(x), and 
define Vx to be the subset of X determined by paths in X ofthe form oe.ß, where 
ß lies in V. These sets Vx are the basic open sets. 

We leave the reader to check that 1I::X -+ X is a covering map, and that X is 
path-connected and simply connected. No new ideas are involved, though we 
should point out that having chosen V so that allloops in V are null homotopic 
in X ensures that 11: I Vx: Vx -+ V is one-one. 

Problems 
18. Ifg is a covering space of X, and ra covering space of Y, show thatg x Y 
is a covering space of X x Y. 

19. Is the mapf:(0,3)-+ Si defined by f(x) = e21tix a covering map? 

20. Describe all the covering spaces of the torus, projective plane, Klein bottle, 
Möbius strip, and cylinder. 

21. Find the group of covering transformations for each of the coverings of 
Problem 20. 

22. The space shown in Fig. 6.19 is a covering space of the one-point union of 
two circles. What is the corresponding subgroup of 7L * 7L? 

23. If X is a connected, locally path-connected, Hausdorff space, and if a finite 
group G of order n acts freely on X, show that X is an n-sheeted covering of X/Go 

24. Assuming p ~ 3, find a fixed-point-free action of Zp _ 1 on H(P) which has 
orbit space H(2). Deduce that H(p) is a (p - 1)-fold covering space of H(2). 
You may find Fig. 7.22 very helpful. 

25. Formulate a similar result to that of Problem 24 for nonorientable surfaces. 

26. Let 11:: G -+ G be a covering map, and suppose G is a topological group. 
Find a multiplication on Gwhich makes it into a topological group, and for 
which 11: is a homomorphism. Now show that the kernel of 11: is a discrete sub­
group of G. 

27. Examine the examples of group actions given in Section 4.4, and for each 
one deduce whether or not the associated projection is a covering map. 
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28. Prove that every closed nonorientable surface has a 2-sheeted orientable 
covering space. 

10.5 The Alexander polynomial 
The object of this final section is to produce a knot invariant in the form of a 
polynomial with integer coefficients, and to give a very simple algorithm for 
computing it. We shall explain the theory behind the polynomial first, the 
algorithm comes later! 

Let k be a tame knot and, for convenience, think of k as a subset of the 
3-sphere S3. Thicken k slightly to form a knotted tubt. T, and let X denote S3 
with the interior of T removed. We refer to X as the complement of k: it has 
the advantage of being compact, and can be triangulated by a finite complex. 
Let G denote the knot group of k, in other words the fundamental group of X, 
and write G' for its commutator subgroup. By theorem (10.5), GIG' is the 
infinite cyclic group. If X denotes the regular covering space of X which corre­
sponds to G', we know that 7t1(X) is isomorphic to G', and that the group of 
covering transformations of g is infinite cyclic. g is called the infinite cyclic 
covering space of X. 

The existence of such a covering space X follows from theorem (10.19), but 
to give ourselves a better feeling for it, and to convince ourselves that we can 
triangulate it as an infinite complex, we shall explain a simple method for 
constructing it. Very briefly, find a Seifert surface S for k (tame as always), 
and triangulate S3 so that k, T, and S are all subcomplexes. Now cut X open 
along S. (This is not hard to visualize. If we have a triangulated surface, and a 
curve on the surface which is a subcomplex, we can imagine cutting the surface 
open along the curve. Each 1-simplex on the curve gives a pair of 1-simplexes 
when we cut, which have to be glued together again if we want to recapture the 
original surface. Our situation is just one dimension up from this.) When we 
cut X open along S, each triangle of S becomes a pair of triangles, and we label 
one set oftriangles with the number 1, the other with the number 2, to remember 
which is which. (If you don't like cutting things open, here is an alternative. 
Begin with the disjoint union of all the 3-simplexes in X, and glue two together 
iff they have a triangle in common in X which does not lie in the surface S.) 
Denote the resulting simplicial complex by Y. Take a countable number of 
copies ... Y- 1, Yo, Y1, Y2 , ... of Y, and glue them together as folIows. Any triangle 
labelIed 1 in Yi should be glued to the corresponding triangle labelled 2 in 
Yi + l' Write X for the resulting space, and note that X is triangulated as an 
infinite simplicial complex. 

There is a natural map from each Yi to X: simply glue up the simplexes 
which were separated when we cut along S, and these fit together to give a map 
7t:X -+ X, which is easily checked to be a covering map. The homeomorphism 
h:X -+ X which moves each point in Yi to the corresponding point in Yi + 1 

generates an infinite cyclic group of homeomorphisms of X, and these are 
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precisely the eovering transformations. By theorem (10.18) we have 
1tl(X)/1t*(1tl(X)) ~ Z, and therefore 1t*(1tl(X)) must eontain the eommutator 
subgroup G' of G. Now eonsider the natural epimorphism 1tl(X)/G' ~ 
1tl(X)j1t*(1tl(X))' It must be an isomorphism, sinee both groups are Z. Sinee 
its kernel is 1t*(1tl(X))/G' we see that 1t*(1tl(X)) = G'. ThereforeX is the infinite 
eyclie eovering spaee of X. 

The next step is to take a look at the first homology group of X. Now X 
is an infinite eomplex, so we should say what we. mean by this. We start from 
the ehain group whose elements are finite linear eombinations Al U 1 + ... + A.U. 
of oriented 1-simplexes of X with integer eoefficients, agreeing that (- A)U and 
A('- u) always mean the same thing, and proeeed exaetly as in the ease of a finite 
eomplex. Notiee that we do not allow linear eombinations of infinitely many 
1-simplexes of X. The resulting homology group is an abelian group (though 
not finitely generated) whieh we denote by H 1 (X). It is a topologieal invariant 
of X beeause the proof of theorem (8.3) works as before and shows it to be the 
quotient of 1t l (X) by its eommutator subgroup. The eovering transformation 
h:X ~ X induces an automorphism h* : H 1 (X) ~ H 1 (X), and it is h* whieh will 
give us our polynomial. 

At this point, we need a small dose of eommutative algebra: a good ele­
mentary referenee is Hartley and Hawkes [28]. Let A be a eommutative ring 
with identity, and let A be an m x n matrix with entries from A. Write N for 
the free A module with basis Xl'" .,xn, and Am for the free A module with basis 
Yl,' .. ,Ym' Now letf:N~ Am be the A module homomorphism determined by 
A, in other words, that determined by the equations 

m 

fex;) = L aj; Yj 
j = 1 

and define M to be the quotient module Am/ f(N). The matrix A is ealled a 
presentation matrix for the module M. 

Two matriees A, B give isomorphie A modules under this eonstruetion iff we 
ean eonvert A into B by a sequence of operations of the following type: 

(a) interehange two rows or two eolumns; 
(b) multiply a row, or a eolumn, by a unit of A; 
(e) add any multiple of one row to another row, or a multiple of one eolumn 

to another eolumn; 
(d) add, or remove, a eolumn of zeros; 

. h (AO). (e) mtere ange A with 0 l' or Vlce versa. 

Also, if A happens to be a square matrix, then its determinant is an isomorphism 
invariant of the module M. (This determinant is of course only determined up 
to multiplieation by a unit of the ring A.) 

Now baek to the geometry. Let A be the ring Z[tr 1] of finite Laurent 
polynomials 
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with integer coefficients, and the usual rules for addition and multiplication of 
polynomials. Then h* makes H 1 (X) into a A module because we can define the 
product of a polynomial p(t) E A with a homology class [z] EH 1 (X) by 

p(t) [z] = Ck h;k [z] + ... + Cl h~ [z] 

We do not have a machine for computing homology groups, but we can 
interpret H 1 (X) in terms of the knot group G of k, and we went to great lengths 
in Section 10.2 to produce a nice presentation for G. Remembering that X has 
fundamental group G', and writing GI! for the commutator subgroup of G', we 
have H 1 (X) ~ G'/GI!. The monomorphism 11:* :1I:l(X)- 11: 1 (X) induces an iso­
morphism 1I:**:H 1 (X) - G'/GI!. If U E G'/GI! corresponds to the homology 
class [z] under this correspondence, then G'/GI! becomes a A module via 
p(t) U = 1I:**(p(t) [z ]). 

Let us examine what this formula means geometrically for the simple 
polynomial p(t) = t. Here we have 

tu = 1I:**(t [z]) = 1I:**h* [z] 

Choose a base point p E X - S, and let q be the corresponding point in Yo s;; X. 
Remembering always that H 1 (X) is 11:1 (X,q) abelianized, represent [z] by a loop 
0( based at q in X. Then h* [z] is represented by the loop y(h 0 O()y -1, where y is a 
path joining q to h(q) in X. (The choice of y is irrelevant.) This means that if 
u = gGI! E G'/GI!, and if x denotes the element of G = 1I:1(X,P) determined by 
the loop 11: 0 y, then 

tu = xg x- 1 GI! 

Notice that, by its construction, the homotopy class x goes to a generator of 71 
when we abelianize G. 

The pieces of the jigsaw are now beginning to fit together. We recall the 
presentation {X1, ... ,Xn I r1, ... ,rn} of G developed in Section 10.2 from a projec­
tion of k. There is one generator for each overpass, and a relation for each 
crossing. A typical relation has the form Xk Xi xi: 1 xil1, and the last relation 
can be omitted since it is a consequence of the others. When we abelianize G, 
all the Xi become equal and give a generator of 71. So if we change to the new 
set of generators 

the elements 0(1)'' "O(n _ 1 all lie in G', and it is not very hard to check that, 
together with all their conjugates under powers of x, they generate G'. 

Write Ui = O(;GI! and Ri for the relation among the Ui determined by rio The Ui 

generate G'/GI! as a module over A, and to find a presentation matrix all we 
have to do is to write out each Ri as a linear combination of the Ui> with co-
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efficients from A, and then read off the coefficients and use them as the columns 
of our matrix. The determinant of the resulting (n - 1) x (n - 1) matrix is the 
famous Alexander polynomial of k. 

For example, Xk Xi Xi: 1 Xi-} 1 when written in terms of the (Xi becomes 

-1 -1 -1 -1 
(Xk X(Xi XX (Xk X (Xi + 1 

or equivalently 
-1 -1 -1 -1 

(Xk X(Xi X X(Xk X (Xi + 1 

Written additively, in terms of the Ui, this is 

in other words 

(1 - t)Uk + tUi - Ui + 1 

We therefore have a column of the presentation matrix which has 1 - tin the 
kth place, tin the ith place, and -1 in the (i + l)th place. 

Suppose we do this for the trefoil. The group presentation is 

the first relation corresponds to (1 - t)u 1 + tU2, the second to (1 - t)U2 - Ul> 

and our prescription gives the matrix 

( 1 - t -1 ) 
t 1 - t 

Therefore the Alexander polynomial of the trefoil knot is t2 - t + 1. We 
comment again that the polynomial is only determined up to multiplication by 
a unit of A, in other words up to multiplication by ± tk• 

It is not in fact necessary to work out the group presentation. Here is a 
purely formal algorithm for computing the Alexander polynomial from a nice 
projection of k. Orient the knot, and label the overpasses Xl" .. ,Xn• Construct 
an n x n matrix B which has a column for each crossing, the nonzero entries 
in the column corresponding to a crossing which looks like Fig. 10.17 being: 

1 - t in place k; 
t in place i; and 
-1 in place j. 

Note that we only take into account the direction of Xk, not that of Xi and Xj' 

The determinant of the (n - 1) x (n - 1) matrix formed by removing the final 
row and final column from B is the Alexander polynomial of k. We need to 
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Xi -1 

Figure 10.17 

remove a row and a column (it does not matter which), because by using all the 
overpasses, and all the crossings, we have one too many generators and a 
redundant relation. In fact this matrix B is a presentation matrix for the direct 
sum of H1CX) and a free A module ofrank 1. 

As an example, consider the stevedore's knot. Taking the crossings in the 
order indicated in Fig. 10.18 leads to the following matrix: 

1 - t -1 0 0 -1 0 

0 t 1 - t -1 0 0 

0 0 0 1 - t t 

0 0 -1 1 - t 0 -1 

-1 1 - t 0 0 0 

t 0 0 0 1 - t 

and working out a 5 x 5 minor gives 2t2 - 5t + 2. 

There is another, very elegant, description of the Alexander polynomial 
which we would like to mention, though the justification for it is too delicate 
to give here. Suppose we use rational coefficients, then H1(X,Q) turns out to 
be a finite-dimensional vector space over Q, and the Alexander polynOItlial 
is the characteristic polynomial of the linear transformation h.:H l(X,Q)­
H1(X,Q)· 
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Figare 10.18 

Problems 

29. Show that the Alexander polynomial of the figure-of-eight knot is 
t2 - 3t + 1. This shows the figure of eight to be knotted. 

30. W ork out the Alexander polynomials of the true lovers' knot and the two 
knots shown in Fig. 10.15. Check your answers against the tables given in 
Rolfsen [20]. 
31. Show that the Alexander polynomial of k + 1 is that of k times that of I. 
32. Suppose Ä(t) is the Alexander polynomial of a tarne knot, and assurne it 
has been normalized to have the form ao + alt + ... + aktk. Show that 
~(t) = tk~(l/t). 
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Appendix: Generators and 
relations 

First courses in group theory traditionally take a student 'as far as' the classifica­
ti on theorem for finitely generated abelian groups, but invariably omit any 
discussion of free groups, or of the idea of presenting a group by means of 
generators and relations. Since these latter ideas are particularly important in 
topology (most especially for us in Chapters 6 and 10), we ofTer aquick survey 
here. 

Perhaps the easiest idea to understand is that of a free set of generators for a 
given group. A subset X of a group G is called a free set of generators for G 
if every g E G - {e} can be expressed in a unique way as a product 

(*) 

of finite length, where the Xi lie in X, Xi is never equal to Xi + hand each ni is a 
nonzero integer. We call the set of generators free because by the uniqueness 
of (*) there canbe no relations between its elements. If G has a free set of 
generators, then it is called a free group. 

Given a nonempty set X, we can construct ourselves a group which has X 
as a free set of generators as folIows. Define a word to be a finite product xi! ... Xkk 

in which each Xi belongs to X, and the ni are all integers, and say that the word 
is reduced if Xi is never equal to Xi + 1 and all the ni are nonzero. Given any 
word, we can make a reduced word out of it by collecting up powers when 
adjacent elements are equal, and omitting zeroth powers, continuing this 
process several times if necessary. An example is worth a page of explanation: 

x1 3 xi x~ xis xi x~ = x11 x~ xi x~ 

= X1 1 xi x~ 

= X~ X~ 

which is now reduced. Reducing the word X? gives a word with no symbols which 
we refer to as the empty word. Now we can multiply words together simply by 
writing one after the other. If we do this with reduced words, the product may 
not be reduced, but it does simplify down to a well-defined reduced word which 
we call the product of the two given reduced words. The set of all reduced 
words forms a group under this multiplication (of course there is a lot of rather 
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tedious eheeking to be done); the identity element is the empty word, and the 
inverse ofthe redueed word xi1 ... Xkk is x;;nk ••• xl n1 . 

We shall eall this group the free group generated by X, and denote it by 
F(X). It should be clear that iftwo sets have the same eardinality (in other words, 
if there is a one-one onto eorrespondenee between them) then the free groups 
generated by them are isomorphie. The free group with a single generator x is 
the infinite eyclie group, the only possible nonempty redueed words being the 
powers xn• 

Very often one says that a given group is determined by a set of generators 
and a set of relations. For example, we may say that the dihedral group with 
10 elements is determined by two generators x, y subjeet to the relations 
XS = e, y2 = e, xy = yx- l. We have in mind an intuitive idea that all the 
elements of the group ean be built as produets of powers of x and y, and that 
the multiplieation table of the group is eompletely specified by the given 
relations. We shall now make this precise using the notion of a free group. 

Let G be a group, and X a subset whieh generates G. There is a natural 
homomorphism from the free group F(X) onto G whieh sends a redueed word 
xi1 ••• X;:k onto the eorresponding produet of group elements in G (again we 
omit the details); it is onto beeause X generates G. If N denotes the kernel of 
this homomorphism, then F(X)/N is isomorphie to G; so N determines G. 
Now let R be a eolleetion ofwords in F(X) with the property that N is the smallest 
normal subgroup eontaining them. These words, together with all their eon­
jugates, generate N, and they determine exaetly which words in F(X) beeome 
the identity when we pass from F(X) to G; that is to say, whieh produets of 
elements of Gare the identity in G. In this situation, we say that the pair X, R 
is a presentation for the group G. If Xis a finite set, with elements Xl" •. ,xm, and 
R is a finite set ofwords, with elements rl, ... ,rn, we say that Gis finitely presented 
and write 

Examples 
1. Z = {x 10} 
2. Zn = {x I xn} 
3. The dihedral group with 2n elements is 

D2n = {x,y I xn,y2, (xy)2} 

4. Z x Z = {x,y I x Y x-l y-l} 

We finish with abrief mention of free produets. If G and H are groups we 
ean form 'words' XIX2" 'Xn> where eaeh Xi lies in the disjoint union G u H. 
Call a word reduced this time if Xi and Xi + 1 never belong to the same group, 
and if Xi is never the identity of G or H. Throw in the empty word, multiply 
redueed words by juxtaposition, reducing the produet as neeessary, and the 
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result is a group called the free product G '" H of G and H. In this book, we 
only have occasion to take the free product of groups which are finitely pre­
sen ted, and we note that if 

then 

We note also that the free product 7L '" 7L '" •.• * 7L of n copies of the infinite 
cyclic group is just the free group on a set of size n. 

The most important facts concerning free groups and free products are the 
following characterizations, which we give without proof: 
(a) Let X be a sub set of a group G. Then, Xis a free set of generators for 

G iff given an arbitrary group K, plus a funetion from X to K, there is a 
unique extension of this funetion to a homomorphism from all of G to K. 

(b) Let P be a group which eontains both G and H as subgroups. Then Pis 
isomorphie to the free produet G * H, via an isomorphism whieh is the 
identity on both G and H, iff given an arbitrary group K, plus a homo­
morphism from eaeh of G and H to K, there is a unique extension of 
these homomorphisms to a homomorphism from all of P to K. 
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Index 

Abelianized knot group, 222 
Accumulation point (= limit point), 29 
Action of group on space, 79 

fixed point free, 158 
simplicial, 141 

Adding a handle, 16, 149 
Addition of knots, 225 
Alexander polynomial, 237 
Annulus, 7 
Antipodal map, 80, 91, 199 

degree of, 197 
Antipodal points, 71 
Apex of cone, 68, 123 
Are, 112 
Attaching map, 71 
Automorphism of topological group, 78 

Ball: 
n-dimensional, 36 
in ametrie space, 38, 39 

Barycentre, 125 
Barycentric coordinates, 125 
Barycentric subdivision, 125 
Base for a topology, 30 

countable, 32 
Base point, 87 
Based loop, 87 
Basic open set, 30 
Betti number, 178 

mod 2,206 
Bolzano-Weierstrass property, 48 
Borsuk-Ulam theorem, 205 
Boundary: 

of manifold, 193 
of oriented simplex, 177 
of surface, 116 

Boundary homomorphism, 177 
Bounded subset of IE.", 43 
Bounding cyc1e, 175 

group of bounding q-cyc1es, 178 
Bouquet of circ1es, 136 
Box topology, 56 
Brouwer degree, 195 
Brouwer fixed point theorem: 

for dimension 1, 110 
for dimension 2, 110 
general case, 191, 208 
Hirsch's proof, 131 
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Carrier: 
of point, 128 
of simplex, 192 

Chain: 
q-dimensional, 176 
with integer coefficients, 177 
with rational coefficients. 200 
with 71.2 coefficients, 202 

Chain complex, 185 
Chain group, 176 
Chain homotopy, 192 
Chain map, 185 

induced by simplicial map, 184 
subdivision, 187, 188 

Circ1e, 25 
with spike, 25 

Classification theorem for surfaces, 18, 149 
Close simplicial maps, 189 
Closed map, 36 
Closed set, 29 
Closed star, 156 
Closed surface, 16, 149 
Closure, 30 
Comb space, 108 
Combinatorial surface, 154 
Commutative diagram, 142 
Compact space, 44 

locally compact, 50 
one-point compactification, 50 

Compact subset 01" IE", 55 
Complex (see Simplicial complex), 121 
Component, 60 

path component, 63 
Cone: 

geometrie, 68 
on a complex, 122 
on aspace, 68 

Connected space, 56 
locally connected, 61 
locally path connected, 63 
path connected, 61 
totally disconnected, 60 

Connected sum, 152 
Constant map, 107 
Continuous family of maps, 87 
Continuous function (= map), 13,32 
Contractible space, 107 
Countable base, 32 
Cover (see Open cover), 43 



Covering map, 100, 227 
Covering space, 100, 227 

equivalence of, 231 
existence theorem, 232 
n-sheeted, 229 
regular, 232 
universal, 232 

Covering transformation, 231 
Crosscap, 152 
Crossing of knot projection, 215 
Crystallographic group, 85 
Cube, 36 
Cutting a surface, 167 
Cyde, 175 

bounding, 175, 178 
group of q-cydes, 177 

Cylinder, 9 

Deformation retraction, 104 
Degree: 

of antipodal map, 197 
of loop, 97 
of map, 195 
of map without fixed points, 197 

Dense subset, 30 
Diagonal map, 55 
Diagram, commutative, 142 
Diameter: 

of set, 41 
of simplex, 126 

Dimension: 
of compact Hausdorff space, 210 
of manifold, 212 
of polyhedron, 211 
of simplex, 120 
of simplicial complex, 125 

Disc,34 
Discrete subgroup, 78 

of cirele, 78 
of Euelidean group, 85 
of 0(2), 78 
of realline, 78 

Discrete topology, 14, 28 
Distance between sets, 41 
Distance function (= metric), 38 
Dual graph, 3, 159 
Dunce hat, 108 

Edge group of complex, 132 
Edge loop, 132 

based at v, 132 
equivalence of, 132 

Edge path, 132 
Elementary cyele, 175 
Embedding, 50 
Empty word, 241 
Equivalence, topological, 6, 13 
Equivalent covering spaces, 231 
Equivalent knots, 214 

INDEX 

Euclidean space, 13, 28 
Euler characteristic: 

as invariant of homotopy type, 200 
of elosed surface, 202 
of combinatorial surface, 160 
of graph, 159 
of orbit space, 161 
of product space, 202 

Euler number, 7 
Euler-Poincare formula, 200 
Euler's theorem, 2 
Exponential map, 33, 96 
Extension of map, 38 

Face of simplex, 120 
Figure of eight knot, 213 
Finite complement topology, 14, 29 
Finite simplicial complex, 121 
Finitely presented group, 242 
First homology group, 175 

relation with fundamental group, 182 
Fixed point free group action, 158 
Fixed point free homeomorphisms of Sn, 197 
Fixed point property, 111 
Fixed point theorem: 

of Brouwer, 110, 191 
of Lefschetz, 207 

Flow, irrational, 83 
Flow line, 83 
Folding map, 36 
Free group, 242 
Free product, 243 
Free set of generators, 241 
Frontier, 30 
Fundamental group, 93 

as invariant of homotopy type, 106 
change of base point, 94 
of bouquet of cireles, 136, 147 
of cirele, 96 
of elose.d surface, 168 
of complement of a knot, 221 
of Klein bottle, 101, 137, 138 
of Lens space, 100 
of orbit space, 147 
of pn , 100 
of polyhedron, 133 
of product space, 101 
of Sn, 99, 131, 136 
of torus, 100 
van Kampen's theorem, 138 

Fundamental region, 84 
Fundamental theorem of algebra, 109 

General linear group, 74, 76 
General position, 119, 120 
Generator, 242 
Genus: 

of elosed surface, 169 
of compact surface, 170 
of knot, 224 
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Geometric cone, 68 
Glide reflection, 83 
Glueing lemma, 69 
Granny knot, 222 
Graph, 3, 159 

dual, 3, 159 
Group: 

abelianized, 168 
finitely presented, 242 
free,242 
free product, 243 
general linear, 74, 76 
orthogonal, 74, 77 
special orthogonal, 74, 77, 82 
topological, 73 

Hairy ball theorem, 198 
Hairy torus, 198 
Half open interval topology, 32, 50 
Half space, 27, 113,217 
Half turn, 84 
Harn sandwich theorem, 206 
Handle, 16, 149 
Hausdorff space, 39 
Hawaiian earring, 72 
Heine-Borel theorem, 44 

creeping along proof, 44 
subdivision proof, 45 

Homeomorphism, 6, 13, 34 
isotopic to identity, 215 
orientation preserving, 158, 209 
periodic, 148 
pointwise periodic, 148 

Homologous cydes, 178 
Homology dass, 178 
Homology groups: 

as invariants of homotopy type, 189 
of dosed surface, 183 
of cone, 181 
ofS·, 181, 182 
with integer coefficients, 178 
with rational coefficients, 200 
with Z2 coefficients, 203 

Homotopic maps, 88 
Homotopy, 88 

null homotopic, 91 
relative to a subset, 88 
straight line, 89 

Homotopy dass, 92 
Homotopy equivalence, 103 
Homotopy-lifting lemma, 98, 228 
Homotopy type, 103 
Hopf trace theorem, 207 
House with two rooms, 109 
Hyperboloid, one sheeted, 7 
Hyperplane, 119 

Identification map, 67 
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Identification space, 66 
Identification topology, 66 
Identity map, 32 
Indusion map, 32 
Indiscrete space, 56 
Induced homomorphism: 

on fundamental group, 94 
on homology groups, 189 

Induced orientation, 155 
Induced topology, 28 
Infinite complex, 143 
Infinite cydic covering 234 
Integral homology group, 178 
Interior: 

of manifold, 193 
of neighbourhood, 13 
of set, 30 
of simplex, 124 
of surface, 116 

Interval, 57 
Irrational flow, 83 
Isomorphic complexes, 123 
Isomorphism of topological groups, 74 
Isotopic to identity, 215 
Isotropy subgroup, 81 

Join: 
of maps, 199 
of spaces, 199 

Jordan curve, 112 
Jordan curve theorem, 112 
Jordan separation theorem, 21, 112 

Klein bottle, 9, 10 
Knot,213 

equivalence, 214 
figure of eight, 213 
genus of, 224 
granny, 222 
polygonal, 215 
square, 217 
stevedore's, 213 
tarne, 215 
torus, 222 
trefoil, 213 
trivial, 213 
true lovers', 213 
wild, 215 

Knot group, 216 
abelianized, 222 
of granny, 222 
of square, 222 
of torus knot, 223 
of trefoil, 221 
of trivial knot, 221 
presentation for, 221 



Knot projection, 215 
nice,215 
overpass, 216 
underpass, 216 

Lebesgue's lemma, 49 
Lebesgue number, 49 
Ltrfschetz fixed point theorem, 207 
Lefschetz number, 206 

of identity map, 209 
in terms of degree, 209 

Left translation, 75 
Lens space, 82, 86 
Lift: 

of homotopy, 98 228 
of map, 230 
of path, 97, 228 

Limit point, 29 
Lindelöfs theorem, 50 
Locally compact space, 50 
Locally connected space, 61 
Locally finite complex, 144 
Locally path connected space, 63 
Loop, 21, 87 

edge,132 
null homotopic, 98 

Lusternik-Schnirelmann theorem, 205 

Manifold, 169, 193 
boundary of, 193 
dimension of, 212 
interior of, 193 

Map,32 
antipodal, 80 
chain, 185 
closed,36 
covering, 100, 227 
degree of, 195 
identification, 67 
open, 36 
which preserves antipodes, 203 

Map lifting theorem, 230 
Maximal tree, 134 
Mesh of complex, 125 
Metric (= distance function), 38 
Metric space, 38 
Mirror image, 214 
Möbius strip, 9, 65 

Neighbourhood, 13,28 
of set, 42 

Nerve of covering, 210 
Nice projection of knot, 215 
Nielsen-Schreier theorem, 22, 147 
Non-orientable surface, 18, 154 
n-sheeted (or n-fold) covering, 229 
Null homotopic map, 91 
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One-point compactification, 50 
Open ball, 39 
Open cover, 43 

subcover , 43 
Open map, 36 
Open set, 27 
Open star, 130 
Orbit, 79 
Orbit space, 79 
Ordering of vertices of a simplex, 155 
Orientable combinatorial surface, 155 
Orientable surface, 18, 154 
Orientation: 

induced, 155 
of simplex, 155 

Orientation preserving homeomorphism, 
158,209 
Orientation reversing homeomorphism, 209 
Oriented polygonal curve, 174 
Oriented simplex, 176 
Orthogonal group, 74 

compactness of, 77 
Overpass, 216 

Path,61 
edge path, 132 
loop, 21, 87 
product of paths, 94 

Path component, 63 
Path connected space, 61 

locally path connected, 63 
Path-lifting lemma, 97, 228 
Peano curve, 36 
Periodic homeomorphism, 148 
Plane crystallographic group, 85 
Poincare conjecture, 169 
Point at infinity, 50 
Pointwise periodic homeomorphism, 148 
Polygonal curve, 115 
Polygonal knot, 215 
Polyhedron, 121 
Presentation matrix, 235 
Presentation of group, 242 
Pretzel (= double torus), 23 
Product of homotopy classes, 92 
Product of loops, 87 
Product of paths, 94 
Product of topological groups, 74 
Product space, 52 

compact, 53 
connected, 59 
Hausdorff, 53 

Product topology, 52 
Projection, 52 
Projection of knot, 215 
Projective plane, 17 
Projective space, 71 
Punctured double torus, 9 
Punctured torus, 23 
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Quaternions, 74, 77 

Radial projection, 5 
Rank of free abelian group, 178 
Rational coefficients for homology, 200 
Realline,29 . 
Realization theorem, i41 
Reduced word, 241 
Refinement of open cover, 210 
Regular covering space, 232 
Regulus, 216 
Relation, 242 
Restrietion of map, 32 
Retraction, 111 

deformation retraction, 104 
Right translation, 75 
Ruled surface, 216 

Schönflies theorem, 115 
Second countable space, 32 
Seifert circle, 223 
Seifert surface, 223 
Semi-Iocally simply connected, 232 
Separable space, 32 
Separated sets, 58 
Separation of aspace, 112 
Simple closed curve, 112 
Simplex, 120 

face of, 120 
interior of, 124 
of dimension k, 120 
oriented, 176 
vertex of, 120 

Simplicial approximation, 128 
Simplicial approximation theorem, 128 
Simplicial complex, 121 

barycentric subdivision, 125 
cone on, 122 
dimension of, 125 
infinite, 143 
isomorphie complexes, 123 
locally finite, 144 
mesh of, 125 
stellar subdivision , 186 
subcomplex, 123 
vertex scherne, 140 

Simplicial group action. 141 
Simplicial map. 128 
Simply connected space, 96 
Solid torus, 219, 223 
Space: 

covering, 100, 227 
Euclidean, 13, 28 
metric,38 
orbit, 79 
projective, 71 
topologieal, 13, 28 

Space filling eurve, 36 
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Special orthog<,mal group, 74 
eompaetness of, 77 
eonnectedness of, 82 

Sphere,9 
n-dimensional, 34 

Square knot, 217 
Stabilizer, 81 
Standard simplicial map, IRR 
Star: 

closed, 156 
open, 130 

Stellar subdivision, 186 
Stereographie projeetion, 23, 34 
Straight line homotopy, 89 
Subeomplex, 123 
Subcover, 43 
Subdivision chain map, 187, 188 
Subgroup of topological group. 74 
Subspace, 28 
Subspace topology, 14, 28 
Sum of oriented knots, 225 
Surface, 15 

classifieation theorem, 18, 149 
closed, 16, 149 
eombinatorial, 154 
fundamental group of, 168. 170 
genus of, 169 
homology of, 183 
orientable, 18, 154 
triangulation of, 153 

Surface symbol, 167 
for closed non-orientable surfaee. 167 
for closed orientable surface, 167 
for eompact orientable surfaee. 170 

Surgery, 162 

Tarne kno!. 215 
Tarne Seifert surfaec. 22-1 
Tesselation of plane. 85 
Tetrahedron. 120 
Thiekening. 156 
Tietze ext;nsion theorem, 40 
Topologieal equivalencl' (= homeomorph­

ism). 6. 13.3-1 
Topologieal group. 73 

abelian fundamental group. 95 
automorphism of. 78 
isomorphism between. 74 
subgroup of. 74 

Topologieal invarianee: 
of dimension. 211 
of Euler eharaeteristie. 200 
of fundamental group. 95 
of homology groups. 189 

Topologieal invariant. 19 
Topologieal property. 8. 19 
Topologieal spaee. 13. 28 



Topology, 13, 28 
box, 56 
discrete, 14, 28 
finite complement, 14, 29 
half open interval, 32, 50 
indiscrete, 56 
induced,28 
product, 52 
subspace, 14, 28 

Torsion element, 178 
Torus, 9, 68 
Torus knot, 222 
Totally disconnected space, 60 
Trace theorem of Hopf, 207 
Transitive group action, 79 
Translation of plane, 83 
Translation of topological group, 75 
Tree, 3, 134 

maximal, 134 
Trefoil knot, 213 
Triangulable space, 121 
Triangulation, 121 

of orbit space, 142 
of surface, 153 

Trivial knot, 213 

True lovers' knot, 213 
Tychonoff product theorem, 55 

Underpass, 216 
Unit ball, 36 
Unit cube, 36 
Unit disc, 29 
Universal covering space, 232 
Universal television aerial, 146 

Van Kampen's theorem, 138 
Vector field, 198 

on sphere, 198 
on torus, 198 

Vertex, 120 
Vertex scheme, 140 

Wild knot, 215 
Word,241 

empty,241 
product,241 
reduced, 241 

Zz coefficients for homology, 203 
Zeroth homology group, 180 
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