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An algebra A, over a field K, with divided powers is a graded algebra
A=4,+ 4, + Ay +

which is unitary, associative, commutative and has another structure specified
by the functions * described below, For each 2 > 0 and for each n > |,
there is given a set-theoretical map

yE Ay — Ay

satisfying the following conditions

I A

2) Y(x) - vix) = [ + R)RIRL] (),

3 A+ = Ty () ()

4) y¥(x - ) = 0 if x and y are homogeneous elements of odd degrees.
{k>2),

5) yH(x - y) = x* - ¥¥(») if & and y are homogeneous elements of even

degrees (positive for y).

Now let us consider two algebras with divided powers 4’ and A", over the
same field K. Then the tensor product 4 = 4" @, 4" is itself a graded,
unitary, associative, commutative algebra. It has divided powers in a canonical
way: To give the definition, use the sum formula 3) and the product formulas.
4} and 5), and notice the equality

@y =@ (1®)
In this way the algebra with divided powers 4’ &) A" is well defined.
A Hopf algebra with divided powers A is an algebra with divided powers A
plus two homomorphisms of algebras with divided powers
A:A—-AR A e: A+ K
19
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such that 4 is coassociative and e is a counit for 4. A Hopf algebra with divided
powers is a commutative Hopf algebra in the usual sense. A Hopf algebra 4 is
connected if 4, is isomorphic to K.

The aim of this paper is the proof of the following theorem, which will
surprise nobody.

TureoreM. Let 4 be a connected Hopf algebra of finite type, with divided
powers, over a field K. Then its dual Hopf algebra A* is isomorphic to the
universal enveloping algebra of a graded Lie algebra over the field K.

See Theorem 17 (p. 38). The property that the comultiplication preserves
divided powers is essential in the proof.

Notice that the Lie algebra is not restricted. If we do not assume the existence
of divided powers for the commutative Hopf algebra 4, then, under a weaker
condition, the dual Hopf algebra 4* is isomorphic to the universal enveloping
algebra of a graded restricted Lie algebra (see Chap. 6 of Milnor-Moore [4]).
Actually I prove a little more than the theorem above: As a Hopf algebra with
divided powers, A is isomorphic to the “universal enveloping coalgebra’ of a
“graded Lie coalgebra”. The condition of finite type is unnecessary.

I assume that the reader is more or less familiar with Milnor-Moore’s

paper [4].
Remark. In characteristic 2 we consider Hopf algebras having divided

powers in any positive degree, even and odd. It is equivalent to consider Hopf
algebras, with divided powers, having no homogeneous element of odd degree.

ExampLes, For a first example let us consider an Eilenberg—MacLane
space K(w, #) and a field K. Then the singular homology vector space

H(m,n, K) = X H{K(x, n), K)

has a natural structure as a Hopf algebra with divided powers over the field
K, see [2]. For a second example let us consider a local ring R and its residue
field K. Then the Tor vector space

B(R) = Z TorA(K, K)

has a natural structure as a Hopf algebra with divided powers over the field K,
see [1]. In both examples, if the field K has characteristic 2, it is not true in full
generality.

1. NOTATIONS

The ground field K is fixed. All vector spaces, algebras, coalgebras are
graded
W= Wyt Wyt Wyt .
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The vector space W is connected if W, is isomorphic to K and it is reduced if
W, is equal to 0. To a vector space ¥ there corresponds a canonical reduced
vector space W' contained in W/

W= 0+ W, + W, + -

and to a reduced vector space W there corresponds a canonical connected
vector space "W containing I

W =K+ W, + Wy+ .
All homomorphisms have degree (. Only tensor products over K are used
W@W =W W,
Then 7 denotes the fzwisting homomorphism
TTWRW W QW

mapping x ¢0 &' onto (—1)""'x’ () x if x belongs to W, and &' to W, . It is
useful to consider the decomposition W = W, -+ W_ with

W, =Wy W, + W, 4, W_ =W, -+ W, -+ W, -
if the characteristic is different from 2 and with
W, =W, W_=20

if the characteristic is equal to 2.
Let us consider a graded algebra A, called simply an algebra, with structural
homomorphism ’

P:A®A— A

If this algebra is associative and has a unit 5 : K — 4, we shall consider the
following homomorphisms

AR -RA>A4 (% copies of 4)
with
P =y, PL = I, Pl = @i o (D ® Id).

Let us consider a graded coalgebra A, called simply a coalgebra, with structural
homomorphism

4:4—>AQ A
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If this coalgebra is coassociative and has a counit € : A4 — K, we shall consider
the following homomorphisms
A8 A->A® @A  (kcopies of A)
with
N =¢ P =1Id AN =(ARId)-A'.
A I-glgebra is an algebra with divided powers as defined in the introduction.
More precisely it is an algebra A with structural homomorphism @ (the

product x - y = $(x & y) is supposed to be unitary, associative, commutative)
and with a set-theoretical map y* for each & > 0

Yerdy -4y
fulfilling the following conditions
0) ¥(dy) € g
) e =1 yia) =a
2) ¥Ma) - vH(a) = [(h - R)l[hIk]] y**¥(a),
3) YH@ +a") = v (@) YT (@")),
4) Y¥a'-a"y=0 if aded_, a"ced., k=2,
5) y¥a' -a") =a*-ya™) i aecd,, a4, .

A homomorphism of I'algebras f: 4 — A’ is a homomorphism of algebras
compatible with the divided powers

fo yk(a) = -yk cf(a) for ac A+'.

The tensor product 4 & B of two [-algebras has a natural structure as a
I-algebra. Then the two maps

a:A—-+AKB, (efa) =a®1)

B:B—>AR®B, (f(b)=1R10)
are homomorphisms of I-algebras. This property determines completely
the I™-algebra structure of the tensor product: for more details see [2, p. 7-04].
A Hopf I™-algebra is a Hopf algebra with divided powers as defined in the

introduction. More precisely it is a I™algebra A4 plus two homomorphisms of
TI'-algebras

4:4—-ARA, e: A— K,

such that 4 is coassociative and ¢ is a counit for 4. A homomorphism of
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Hopf IM-algebras 1s a map which is both a hemomorphism of Ialgebras and a
homomorphism of coalgebras. For a (connected) Hopf I™algebra A, the
following reduced spaces are important. The reduced vector space P = P(4)

consists of the elements a of A- satisfying the following equality
da)=a®1+1&a

The reduced vector space | = J(4) is equal to the following sum in A"

A4+ Y KyMA,)).

k=2

The reduced vector space Q = () is equal to the quotient 4"/ J{A4). The

quotient A4/ J(4) is denoted by R = R(A).
For a vector space W, we can consider the vector space

T,(Wy=W@®& - QW  (ncopies of ).
If a homomorphism e : W — K is given, then a homomorphism
el T(W)y— T, (W), I <<i<m,
is defined by the following equality
iy, ® - Ru, @ Ruy) =cw)m Q) R, R @D, .
For a vector space W, we can consider the vector space
T(V) = Ty(W)+ Ty(F) + Tu(W) + -

obtained by direct sum. Actually T(J¥) has a double graduation. For

T, W= Y W@ QW

Bybe et =k

the integer & is the primary degree, due to the graduation of ¥ and the integer

n 1s the secondary degree.

Let S} denote the kth symmetric group. An element o of Sy can be described

as a reordering of an ordered set with % elements
0% youry Xg) = (K, yeees &g )
Now let us consider the following set of integers

By >0, k>0, R+ Ry =k
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We denote by X the following subset of the ordered set (xy ,..., ;), with ;
elements,
(Key e ebeg_gbL omees Fieypor ottty gl
We define
S(ky yoeey ) C S,

as being the set of reorderings preserving the relative order of the elements of
X, for any ¢: for more details about these shufHles see [3].

The special case k) = - = k,, = ¢ Is specially interesting. We use the
following notation

8@ [ m) = 8(,...,2) C Sy -
Let us consider the following equality with & = ém

(Nl yerey xk) = (Xl yeesy Xm)‘

The elements of S;, permute the different x,’s and the elements of S,
permute the different X;’s. Thus we get a natural imbedding of .S, into S;,, :
write simply S,, CS;, . The subset S(i|m) of the group S, is invariant
under the right action of the subgroup .S, . We consider the quotient set

S[i | m] = S| m)[Sy, .
In a non-unique way we have a set-theoretical isomorphism
S(i | m) >~ S[i|m] X Sy .
The surjective map
s(@ | m) : S(Z | m)— S[i | m]

has much to do with divided powers, as we shall see later.
Notice that a product is denoted sometimes by a letter (@, @,...), sometimes
by a point.

2. Tensor HorF I'-ALGEBRAS
Let us consider a vector space W and its associated vector space T(I1)

in its primary graduation. We shall see that T(1¥) has a natural structure as a
Hopf I'algebra. For the definition of the structural homomorphisms we shall
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use the secondary graduation and let the group S, act on the vector space
T.(W) as follows. For the situation

ee S, w; € W, (f=1,., k)
we define

ol @+ @ w) = (—1)™(w,, @ -+ By
where the summation is over all pairs {7, j) with
I < <j <k, G; > 0j.

Tensor products will appear in two different ways: in the definition of the
vector space T(W) and in the tensor product T(W} & T(W). We shall
introduce brackets for the first type of tensor products and we shall use the
notation 1 = () in K = Ty(W).

The structural homomorphism 4 : T(W)— T(W) ® T(W) is defined by
the following equality

E(ﬂ)l@"'@wk): Z (, ® - @ w;) @ (W57 ® - @ wy).

o<CiCh

The structural homomorphism @ : T(W) @ T(W)— T(W) (shuffle product)
is defined by the following equality

5[(""’1 & @ w) B (W @ @wiyy)] = Z o1, & - & wyy)

with summation over all elements ¢ of S(z, j). The structural homomorphisms
7: K— T(W)and é : T(W)— K are the canonical injection and projection
due to the equality K = Ty(I¥).

Now we have to define the map ¢* : T(W)," — T(¥), for each £ = 0. At
first let us consider the following equality for w; &) -- @ e; in T(W)~

Dy @ @w) @~ @ (@, @ - Dwy)]
~Yom @ @uE T ®um®  Ow)
with summation over all elements o of S(i | £). The element
o @ Qe @ Qo @ @)
depends only on the image of ¢ in S[7 | £]. We get the following equality
D, @ Rw) @ R (2, @ - @ wy)]
=kY @ @ Qu@ @@ @w)

with summation over all elements o of S[{ | k].
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LemMa 1. For a vector space W, there is one and only one set of maps
$*: T(W), — T(W)," satisfying the two following conditions

) P +y) = 3 Py 7))

i+i=k

2) P® - @u)= ) om® QuE " Qu® - @u)

oeS[Ek]

Proof. Lemma 1 and Proposition 2 are proved together.

ProrostrioN 2. Let W be a vector space. Then T(W) with its primary
graduation and with the structural homomorphisms @, A, 7, € and maps *
described above is a Hopf I'-algebra.

Proof. Since the results of Lemma I and Proposition 2 are well known, the
proofs are sketched only, for further details see [5, p. 101]. First, direct
computations prove that T'(W) with its primary graduation and with the
structural homomorphisms @, 4, 7, € is a commutative Hopf algebra. Then it
remains to prove Lemma 1, to prove that 7(I¥) with @ and #* is a I-algebra,
not only an algebra, and to prove that 4 is a homomorphism of I™algebras, not
only a homomorphism of algebras.

Let us begin with the case of characteristic 0. It is clear that the second
equality of Lemma 1 can be written

PHwy @ - @) = (w; @+ @ wy)¥[k!

Consequently, Lemma 1 is proved by setting #(x) = x*/k! for any element x
of T(W),". Then it is clear that 7(W) is a I-algebra and that 4 is a homo-
morphism of I'algebras. Thus Lemma 1 and Proposition 2 are proved in the
case of characteristic 0.

The proof in the case of positive characteristic can be deduced from the
proof in the case of characteristic 0. All the definitions T(W), @, 4, 7, ¢, 7* are
quite natural and are valid not only for a vector space ¥ over a field K, but
also for a graded module I over any commutative ring R.

Let us denote by 2, (i =1, 2, 3,4) Lemma ] and Proposition 2 in the
following cases:

1) The ring R is the field of all rational numbers and the module W is
any vector space over this field.

2) The ring R is the ring of all rational integers and the module T is
any abelian group which is free in all degrees.

3) The ring R is the ring of all rational integers and the module W is
any graded abelian group.
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4) The ring R is any field K and the module ¥ is any vector space over
this field.

We know that £, holds. We prove 2, by showing that £2; implies £;,, . Each
time we use an auxiliary module W. For the first step, we consider an abelian
group W which is free in all degrees, we choose a vector space ¥ over the
rationals containing the abelian group W, we use the injection T(W)— T(I").
For the second step, we consider a graded abelian group ¥, we choose an
abelian group W which is free in all degrees and which has a quotient equal to
W, we use the surjection T(I¥)— T(W). For the third step, we consider a
vector space W over K, we choose a graded abelian group W equal to ¥,
we use the surjection T(W)— T(W). Now Lemma 1 and Proposition 2 are
proved,
We shall use Jater the following result.

ProrostTiON. 3. Let W be a reduced vector space. Let H be a subspace of
T(W), for both graduations, having the following properties

1) for any = > 0, the homogeneous elements of H of secondary degree
equal to # are S,-invariant;

2) the vector space H is a subalgebra of T'(IV);

3) for any x of W_ | the element x of T,(1¥) belongs to H and for any %
of W, and any & == 0, the clement & &) - @ x of T(WW) belongs to H.

Then the vector space H is unique. For any n = 0, the homogeneous elements
of H of secondary degree equal to # are exactly the .S -invariant elements of
7. ().

Proof. Let us choose a well ordered basis (z; , 7 € I') of the vector space I¥.
Then for any # = 0, the vector space of the S, -invariant elements of T,,(W)
has a basis consisting of the following elements

(wi,® @ wil} . (w,,12 @ ® w; ) (w?_m @ ® i"'z‘m)
k, times w,; ,kytimesw; ,..., k, times; with
nm

m=0, k >0k >0..,k, >0, B <Cdy << <Ly,
n=rk +k+ "+ ky and k=1 if  w,eW_.

Then the rest of the proof is obvious.

3. Lie COALGEBRAS

A Lie coalgebra is a coalgebra L with structural homomorphism A such that
there exists a coassociative, counitary coalgebra 4 with structural homo-
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morphisms 4 and e and such that there exists an epimorphism of vector
spaces p : A — L, both giving the following commutative diagram

A—42 > ARAT AR 4

! e

L A L®L

All Lie coalgebras that we shall be considering are reduced. The coalgebra 4,
more precisely the coalgebra A with the epimorphism p, is called a cover
of the Lie coalgebra L. Now we shall define and study a special cover, the
universal enveloping coalgebra.

Let us consider a reduced Lie coalgebra L. Of course L has the underlying
structure of a vector space. Consequently, the Hopf I'-algebra T(L) is well
defined. For the moment we consider only the coassociative, counitary
coalgebra T(L). Since the vector space L is reduced, a homogeneous element
of T(L) of primary degree # has the following decomposition

a=ayg+og+ -+ o, a; € Ty(L).

By definition this element « satisfies the Lie condition if the following equality
holds in L & L

Moy) = (Id — 7)(o).

ProposITION. 4. Let L be a reduced Lie coalgebra. In the set of all subco-
algebras of T(L) consisting of elements satisfying the Lie condition, there is a
unique maximal one, denoted by U(L). This coalgebra is a cover of the Lie
coalgebra.

Proof. Let E be the specified set of subcoalgebras of T(L). This set £ is not
empty, for the coalgebra (0) belongs to it. Further the sum (in the vector
space sense) of subcoalgebras belonging to E is a subcoalgebra belonging to E,
since the Lie condition is linear. Consequently, the sum of all subcoalgebras
belonging to E is this unique maximal subcoalgebra U(L). The coassociative,
counitary coalgebra U(L) is thus defined.

Let us denote by p the homomorphism of vector spaces mapping U(L)
into L in the following way p(og + oy + " + o) = &, . Actually this
homomorphism is an epimorphism: use the equality o [p = p of the next
proposition and notice that p is an epimorphism. The coalgebra U(L) with
the structural homomorphism 4 and the epimorphism p is a cover of the Lie
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coalgebra L. The following equality (see the diagram above appearing in the
definition of a cover)

Xep=(P@p)olld—r)od

is another way of writing the Lie condition, so the proposition is proved.

ProrosiTioN 5. Let L be a reduced Lie coalgebra. Then the coalgebra U(L)
with the homomorphism p : U(L) — L has the following universal property. Let
the coalgebra A with the epimorphism p be a cover of the Lie coalgebra L, then there
exists one and only one homomorphism | p : A — U(L) of coalgebras satisfying
the equality p = [ p = p.

Because of this property, U(L) is called the universal enveloping coalgebra
of L.

Proof. Let us consider the following homomorphisms of vector spaces
pF =T p)ed¥: A— T(L).

The homomorphism p* maps A, onto 0 if £ > #, since the vector space L is
reduced. Consequently the homomorphism of vector spaces

Jp=Zp:a-10)

is well defined. We have the equality
pofp=1p" =2

and we shall see that | p is a homomorphism of coalgebras. Let us use the
isomorphism T (W) ~ T(W) & Ty W) appearing in the explicit definition
of the comultiplication 4 of T(I¥). Since the comultiplication 4 is
coassociative, the following diagram is commutative

4 2 T,.A4) Tl 7, (L)
¢ |= }=
44— 1) ® T, -0, 10y @ T,

Thus we get the following commutative square

) i+j N
A Ti(L)

|- |

A®4-2 % Ty ® TL);
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in other words
([r@]p)ca=ao[

and [ p is a homomorphism of coalgebras.
The uniqueness of the homomorphism [p of coalgebras such that
P o [p = pis a consequence of the following equalities

(PR @p)de[p=FR®@F)([p®®[p) 4
=@ @p) o4 =p~

The proposition is proved.

PropPOSITION 6. Let L be a reduced Lie coalgebra. Then the universal
enveloping coalgebra U(L) has a canonical structure of a Hopf I-algebra, more
precisely it is a Hopf I'-subalgebra of the Hopf I'algebra T(L).

Proof. Actually we have to prove that U(L) is a I-subalgebra of T(L).
Let V(L) be the I'-subalgebra of T(L) generated by U(L). We shall prove that
V(L) is a subcoalgebra of T(L) and that its elements satisfy the Lie condition.
Then according to the maximal character of U(L) (see Proposition 4), F(L}
and U(L) are equal; in other words, U/(L) is a I-subalgebra of T(L).

The homomorphism 4 : T(L) — T(L) ® T(L) of I'algebras maps U(L)
into U(L) ® U(L) and consequently V(L) into the I-subalgebra of
T(L) & T(L)generated by U(L) ® U(L). But this I-subalgebra is contained
in the I-subalgebra V(L) @ V(L). Therefore V(L) is a subcoalgebra of T(L).

The product « = o'a” of two elements of T'(L) satisfying the Lie condition
satisfies the Lie condition. Indeed we have

@ = o by by, ol = ooy of o

a=qayto +ot+
with

o = ay'oy + ooy, ap = ay'oy + agay + (Id 4 7)o" & o)
(the graduation used is the secondary one) and we conclude by the equalities
Aen) = o"A(o) + ogA(ey),
(d — 7)(oe) = o (ld — 7)(03) -+ ag({d — 7)(oe)-

"The i-th divided power 8 = $*(«) of an element o of T(L), " satisfying the Lie
condition satisfies the Lie condition. Indeed we have

a =0y + o - 18:181+B2+’
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with
Br=0, Bo=0 if i>2, By =0, ®oy if =2,

and the Lie condition is satisfied since oy belongs to L. . Thus the elements of
V(L) satisfv the Lie condition since the elements of U{L) satisfy the Lie
condition. Furthermore V(L) is a subcoalgebra of T(L) containing U{L).
Consequently U(L) and I"(L) are equal and the proposition is proved.

4. SvrprorTs OF HoPF I-ALGEBRAS

Let us consider a connected Hopf I™-algebra 4 with structural homo-
morphisms and maps @, 4, 7, €, ¥*. Further, let us consider a connected
coalgebra M with structural homomorphism p. Finally, let us consider an
epimorphism of vector spaces = : A — M. We say that M, more precisely
M with 7, is a support of the Hopf I-algebra A if the following properties are
satisfied (see Section 1 for the definition of P and J)

1) on P(A4) the homomorphism = is a monomorphism
2} on J(A) the homomorphism s is the zero homomorphism

3) the following diagram is commutative
A—2>A@4 1% 4®4

k o
¥
M u M@M

Let us notice the following facts useful for the future. Since A4 has a counit ¢,
the image of (Id — 7)o 4 is contained in A ® A4'. Consequently, the
homomorphism p maps M"into M* & M. To the homomorphism #=: A — M,
there corresponds a homomorphism p : 4 — M". Then M is a reduced Lie
coalgebra and 4 is one of its covers. We consider 34 instead of M for technical
reasons.

Levma 7. Let A be a connected Hopf I'-algebra. Then the homomorphism
(Id — 7y o 4 maps J(A)into J(A) R A + 4 & J(4).
Proof. By definition we have the equality

JA) =4 A+ T K- yMd).

k=2

Since A has a counit we have

AA)VCIA+NARA) + A @A
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Consequently we have
AA) - AHA)CUd+ ) AQ@AD)+ (A4 A)RA+ARQA - 4).
But 4 is a homomorphism of algebras and we have
(Jd—7yod(Ad - AYCA - A)RA+AR (4 -4).

Now let us use the third property and the equality y¢c7 = 705’ of the
divided powers of 4 (% 4. For & > 2 we get the following inclusions

A ®A),CA A)RA+AR A - 4)
yho (Id+ YA ® A), C(Id + YA @ ), + B

where B is the subspace of A ) 4 generated by the elements - 7o with
we (A ® A4), . But 4 is a homomorphism of I'-algebras and we have

doyHAy) = ¥ o A(A,)
A(A)CHd+ YA @A), + (4 @A), .

We use once more the third property of the divided powers of 4 X 4 and we
get the following inclusion

Aoy (AN)CA - AYRA+ARA -A)+Td+)NARA)+ B
and consequently the following inclusion
(Id—r)odod,)C(A - A) QA+ AR - 4).
In summary (Id — 7) o 4 maps A" * 4" and y%(A,’) for k£ = 2 into
A-AYRA+A4AR A -4).

Thus the lemma is proved.

ProrositioN 8, Let 4 be a connected Hopf I'-algebra. Then
R) = Af[4 -4 + ¥ Kpa,)]
k=2
is a support of the Hopf [-algebra A.

Proof. We consider the vector space R(A) = A[J(4). Let 7 be the
canonical epimorphism of A onto R(A). Lemma 7 proves that there is one
and only one homomorphism

fi:RA)—>RA)@RA) with GF@#)e(Id—7)od =fow
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The coalgebra R(A) is a support provided on P(A4) the homomorphism 7 is a
monomorphism.

A Hopf I'-algebra is said to be finitely generated if it has a finite number of
generators as a I-algebra. For an element x of degree n > 0 of a Hopf
I'-algebra A

Ay —x @1 —1Rxe 5 A ®A.
Li<n
Consequently, a Hopf I'-algebra is the union of its finitely generated Hopf
I'-subalgebras. For this assertion the fact that 4 is a homomorphism of
T-algebras is essential. We argue in the following way. If B is a finitely
generated Hopf I-subalgebra of A generated by %, ,..., x,, and if y, ,..., y,, are
elements of 4 such that

Ay)~y: @1 —-1Ry,eBRB

then the I-subalgebra of A generated by the elements

X yeeey Xy 3 V1 3ees Vi

is a finitely generated Hopf I-subalgebra of A. Then it is possible to prove
the following assertion by induction on k: each finite set (z,..., z,) of
elements of A of degree smaller than & is contained in a finitely generated
Hopf I'-subalgebra of 4. The different elements

Az)— 2R — 1R

can be written with a finite number of elements of A4 of degree smaller than
k — 1. By hypothesis of the induction, those elements belong to a finitely
generated Hopf I-subalgebra of 4. The conclusion for (2,..., 2,) is a
consequence of the assertion above with (x; ,..., x,,} 2 set of generators of the
preceding Hopf I'-subalgebra and with ¥, equal to &; . Thus a Hopf I'-algebra
is the union of its finitely generated Hopf I-subalgebras. Therefore it remains
to prove that the homomorphism

#| P(4) : P(4) — Q(4) = R'(4)

is a monomorphism for a connected and finitely generated Hopf ™algebra 4.
The proof goes by induction on the dimension of the vector space O(4), in
other words on the minimal number of generators of A.

When the connected Hopf I'™algebra A has only one generator x of degree
#n, there is an isomorphism P(4) = O(4). This is clear if we notice the
following. If x belongs to 4_, the vector spaces A; arc equal to 0 except 4,
generated by 1 and 4, generated by . If x belongs to 4, , the vector spaces

481/18/-3
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A; are equal to 0 except A, , for 2 =0, 1, 2,..., generated by y*(x) 7= 0.
Once more the fact that 4 is a homomorphism of [algebras is essential.

Now let us go from the case dim Q(4) < k to the case dim O(4) = k. Let
us choose £ homogeneous elements x, ,..., ), generating the Hopf I'algebra A
with deg x, = deg x; for any z. Let A’ be the I-subalgebra of 4 generated
by %; .., %31 - According to the inequality deg x,, > degx;, it is a Hopf
I-subalgebra of 4. Let A” be the quotient 4/4 - A”. It is a Hopf [-algebra
too. Thus we have the following situation

A—A4-4, dimQA)=%k—1, dimQ") =1

Now let us consider the following commutative diagram

P(A) — P(4) — P(4")

| e £2

Q') =2 ) — O(A").

Using the elements #; ,..., &, , we sce that £ is a monomorphism. By the
induction hypothesis, #° and #” are monomorphisms. Consequently # is a
monomorphism if the sequence

P4’y —> P(4) — P(A")

is exact. But it is a well-known result of the theory of Hopf algebras: see
{4, Proposition 4.10]. Thus the proposition is proved.

PropostrioN 9. Let L be a reduced Lie coalgebra. Then the connected
coalgebra M = "L is a support of the connected Hopf I-algebra U(L).

Proof. More precisely, we consider the vector space M == K +- L and
the following comultiplication p : M — M @ M : on K, the homomorphism
& is equal to 0 and on L, the homomorphism p is equal to the comultiplication
A:L—L®L. Further, we consider the canonical homomorphism
P ULYy—L and the corresponding hemomorphism 7 : U(L) - M. We
prove that the coalgebra M with this homomorphism 7 is a support. We
know that it is an epimorphism (see Proposition 4) and we have to verify the
three axioms of the definition of a support.

The vector space P(U(L)} is contained in the vector space P(7'(L)) which is
equal to T(L) according to the explicit definition of the comultiplication 4
of T(L). Consequently the restriction of 7 to P(U(L)) is a monomorphism.
The vector space J{U(L)) is contained in the vector space J(7'(L)). But the
vector space J(T(L)) is contained in the sum Y, ., T,(L) since the multiplica-
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tion @ maps T{L) ® T(L) into T, (L) and since the map ¥* maps T,(L).
mto Ty (L). Consequently the restriction of 77 to J{U(L)) is equal to 0. Finally

(F&a)ye(d— T)OA-_:{)JO‘E
or equivalently
(p@p)o(d—r)od =Aop

since U(L) is a cover of the Lie coalgebra L (see Proposition 4). Thus the
proposition is proved.

5. POINCARE-BIRKHOFF—WITT THEOREM

Let us consider a connected Hopf I-algebra 4 with a support M. Out of the
epimorphism 7 : 4 — M we can get new homomorphisms of vector spaces

b = Ty(m) o 4%+ A—> Ty(M).

Now let us introduce a filtration £%(A4) on the Hopf I'algebra 4, the so~called
Lie filtration (see Lemma 10). By definition we have

Fr = Fo(4d) = Ker 7% 1 A —> T, _(M)
and we prove the following result.

Lemma 10. Let A be a connected Hopf I'-algebra with a support M. Then
Fr(A4) contains F*1(4) and =" maps F*(A4) into T,(M").

Proof. We shall use the homomorphisms
e: 4— K (counit), e: M—>K (M,>=K),
and the associated homomorphisms (see Section 1}
gl T(d)— T 4{4), & TW(M)— Tpy(D).

The proof of the lemma is an immediate consequence of the existence of the
following commutative diagram with 1 <7 << N

A o T (4) _ T T (M) 7 == Tylm) o A

‘!’Id lsn‘i leni

n—1 o
A ()T, (M) At = Ty () o A




36 ANDRE

Thus #* maps #F* into T,(M") and the kernel is equal to F*+1. In other
words, we have a monomorphism of vector spaces

FrFni s T (M").

By definition the n-trace of the Hopf I-algebra A in the support M is the
image of this monomorphism. The trace of the Hopf I-algebra 4 in the
support A is the direct sum of the #-traces. It is a vector subspace of T'(M")
for both graduations,

Here is a result we can consider as a Poincaré—Birkhoff-Witt Theorem with
divided powers: by means of Proposition 6 and of Proposition 9, it is a result
for Lie coalgebras.

TaroreM 11. Let A be a connected Hopf I-algebra with a support M. Then
the trace of A in M depends on the vector space M only. The n-trace is equal to
the wvector space of the S,-invariant elements of T,(M").

Proof. Since F' is equal to A" and since 7! is equal to , the 1-trace is
equal to T(M"). For the general proof we use Proposition 3, where IV is the
reduced vector space M and where H is the trace of A in M. We have to
verify the three conditions appearing in Proposition 3. That is done by the
three following propositions whose proofs appear in Section 8.

ProrosimioN 12. Let A be a connected Hopf I'-algebra with a support M.
Then for any n = 0, the elements of the n-trace of A in M are S, -invariant.

ProrositioN 13. Let A be a connected Hopf I'-algebra with a support M.
Then the trace of A in M is a subalgebra of T(M").

ProrosITION 14. Let A be a connected Hopf I'-algebra with a suppors M.
Then for any k =0 and for any element x of M, the element 7*(x) =
&+ ® xof Ty(M") belongs to the k-trace of A in M.

The last three propositions are proved in Section 8. We shall use the
following lemma for getting a corollary of the Poincaré-Birkhoff-Witt theorem.

LemMa 15. Let A be a connected Hopf Ialgebra with a support M. Then
the Lie filiration has the following property. The vector space F;> of the
homogeneous elements of F* of degree k is equal to O if n is large enough with
respect to k.

Proof. It suffices to prove, by induction on %, that the homomorphism
7" is a monomorphism for the homogeneous elements of degree £ if # is large
enough. If it is proved for all degrees smaller than %, we choose r and s (equal
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or not) such that z* and #* are monomorphism for all degrees smaller than %,
Then we consider n = 4 s and we write

= (" Q7)o d
identifying T,(M}and T, (M) @ T{M). Now let us use the equality
AE) =2R1 + 1R x4 o aed @A,

for a homogeneous element x of degree k. If #"(x) is equal to 0, then
(7" & #*)(x) is equal to 0. But on (4" ® A'),. , the homomorphism =" & =*
is a monomorphism, Consequently «is equalto Qand 4(x) = 2 ® 1 4+ 1 ®=.
The preceding equality implies the following equality

m(x) = @) @1@ @1+ + 1@ @1 @ n().

Since #"(x) is equal to 0, the element =(x) is equal to 0. In summary x is an
element of P(4) and an element of the kernel of #. According to the first
property of a support, the element x is equal to 0. In other words =" is a
monomorphism for the homogeneous elements of degree 4 The lemma is
proved.

ProrosiTioN 16. Let A be a connected Hopf I'-algebra with a support
A — M and let A’ be a connected Hopf I'-algebra with a support o’ 1 A' > M.
Let p: A— A’ be a homomorphism of coalgebras and let w : M — M’ be a
homomorphism of vector spaces such that the homomorphisms =" o p and w o 7
are equal. Then p is an isomorphism if and only if « is an isomorphism,

Proof. The definition of the Lie filtration and of the trace of a Hopf
T'-algebra with a support involves only the coalgebra structure of the Hopf
I’-algebra and the vector space structure of the support. Consequently the
homomorphism p maps F7(4) into F*(A’} and the homomorphism 7{w)
maps the k-trace of 4 in M into the k-trace of 4’ in M. After this remark it is
clear that the proposition is a consequence of the following assertions.

1} The vector spaces F,*(A) and F,"(A") are equal to O for # large enough
with respect to k; the vector space F;,}(4) is equal to 4;" and the vector space
F}(4") is equal to 4,"". See Lemma 15.

2) There is a commutative diagram with exact sequences
0 —— F{(4) — F(A) — F(A)Fi™d) —0
0 —FYA) ——>FM4) — F(A)Fr Ay —>0

That is obvious.
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3) The homomorphism p gives an isomorphism
Fi(d)[F(d) = FHA) (A

if and only if the homomorphism w gives an isomorphism M, o~ M, . See
Theorem 11.

4) For n > 2, the homomorphism p gives an isomorphism
F(AYFE(A) o B AYFEHA)

if the homomorphism w gives an isomorphism M, ~ M, for any { < k.
See Theorem 11.

6. ResuLTs
Now we have a structure theorem.

Tueorem 17. Let A be a connected Hopf Ialgebra. Then

0) = 4 [[4 -4+ ¥ K4,
r>2
is a reduced Lie coalgebra. Its universal enveloping coalgebra U(Q(A4)) is a Hopf
I-algebra. The Hopf I'algebras A and U(Q(A)) are isomorphic.

Proof. By Proposition 8, the vector space R(A4) ==Q(A4) is actually a
support of the Hopf I-algebra 4. Consequently it suffices to prove the
following result.

ProrosiTion 18. Let A be a connected Hopf I-algebra with a support M.
Then L = M is a reduced Lie coalgebra. Its universal enveloping coalgebra U(L)
is @ Hopf I'algebra. The Hopf I'algebras A and U(L) are isomorphic.

Proof. Let us consider the homomorphism o : 4~ M and the corres-
ponding homomorphism p : A — L forL = M. According to the beginning
of Section 4, the coalgebra L is a Lie coalgebra and the coalgebra A is one of
its covers. By Proposition 4, the universal enveloping coalgebra U(L) of the
Lie coalgebra L is one of its covers. Let us consider the homomorphism
p:UL)—~L and the corresponding homomorphism 7 : U(L)— M for
M ="L.

By Proposition 5, there is a homomorphism [ p : 4 — U(L) of coalgebras
with po [p = p or equivalently with 7o [p = = But w: 4— M is the
canonical homomorphism of the support M of 4 and 7 : U(L)— M is the
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canonical homomorphism of the support M of U(L), by Proposition 9. We can
apply Proposition 16. The homomorphism f p of coalgebras is an
isomorphism. Thus the proposition is a consequence of the following result.

ProrositioN 19. Let A be a connected Hopf I'-algebra with a support M.
Then for the reduced Lie coalgebra L = M", the canonical homomorphism
[ p: A— U(L) of Proposition 5 is a homomorphism of Hopf I'-algebras.

Progf.  See Section 8.
Here is a corollary of Theorem 17.

TrEOREM 20. The category of all connected Hopf I'-algebras over the field
K is equivalent fo the category of all reduced Lie coalgebras over the field K.

Proof. To a reduced Lie coalgebra L, there corresponds a unique
connected Hopf I-algebra U(L) by Proposition 6. To a connected Hopf
I-algebra A4, there corresponds a unique reduced Lie coalgebra O{4) bv
Proposition 8. The Hopf I-algebras 4 and U(Q(4)) are isomorphic by
Proposition 18. The Lie coalgebras L and Q(U{(L)) are isomorphic by Proposi-
tions 9 and 21. Thus the theorem is a consequence of the following result.

Prorosition 21. Up to an isomorphism, a support of a connected Hopf
I'-algebra is determined by this Hopf I'-algebra.

Proof. Let M be a support of the Hopf I-algebra A, with canonicai
homomorphism =. By Proposition 8, there is another support R(4) of the
Hopf I'algebra 4, with canonical homomorphism 7. Since 7 is equal to 0 on
J{A) and since R(4) is equal to A/ J(4), there is a homomorphism
w : R(A)— M with w o # = 7. By Proposition 16, it is an isomorphism and
the proposition is proved.

7. ProoFs oF SoME LEMMAS

For the proofs of Propositions 12, 13, 14, 19 we need some auxiliary lemmas.
Let us introduce a little more notation. Let us consider a vector space W and
the corresponding vector space T,(W). Actually this vector space T',() is
the direct sum of the vector spaces T, (W} defined as follows

Tn,z‘(H]) = Z ]-/le ® ® Wmn 3

with summation over the set of the n-tuples (m, ,..., m,) where ¢ of the m;’s are
positive and # — 7 of the m,’s are equal to 0. As before, the multiplication of
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T(W) is denoted by @, the comultiplication by 4 and the divided powers by

7E.

Now let us consider a connected Hopf I™-algebra 4. The multiplication of
A is denoted by @, the comultiplication by 4 and the divided powers by y*.
For any » = 0, the tensor product 7,(A) is itself a Hopf I-algebra. The
multiplication of T',(4) is denoted by ,®, the comultiplication by ,4 and the
divided powers by ,»*. Further, we shall use the element 1, equal to
1® - @ lin T,(4).

Now let us consider a connected I™-algebra /4. The multiplication of M is
denoted by @ and the divided powers by y*. For any » = 0, the tensor
product T,(M) is itself a I-algebra. 'The multiplication of 7',(M) is denoted
by & and the divided powers by ,»*. Further, we shall use the element 1,
equal to 1 ® - ® 1 in T,(M). The connected Ialgebra M is said to be
trivial if

M @M)=0, HFM)=0, k=2

Lemma 22. Let A be a connected Hopf I'-algebra with a support w : A — M.
Then M has one and only one I-algebra structure such that m is a homomorphism
of I-algebras. The connected I-algebra M is trivial.

Proof. We have uniqueness since # is an epimorphism and we have
existence since w is the zero homomorphism on J(A).

Lemma 23. Let A be a Hopf algebra and let a be an element of A°. Then the
element A%(a) of T,(A) and the product P(A(a) ® 1,,_;) of the elements A(a)
and 1,,_; of the algebra T(A) have the same component in T, (A).

Proogf. We shall use the following decomposition

() = 3(x) + d(©)

where d(x) is the component of A(x) in T, 4(A). Then for any element w of
T,,(A4) there is an equality

P[(d @Id)(w) @ 1]
= (¢ @Id)° D(d @ d)(w) @ L4] + (d @1d) o Pl ® 1,]-

The proof uses the explicit definition of @. Let us denote by d™(a) the
component of 4%(a) in T, ,(4). We shall use the following equality

d™a) = (d ® Id) = d"(a).
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Now we apply the last but one equality with 7 =7 — I, s =2 — 7 and
w = d*Y(a) and we get the following equality

Bd(a) ® 1,
- (5 @ 1d) < Bd(@) @ Ly 1] + (d @ 1d) o Bd @) ® 1,

This equality proves the lemma by induction on #. If the lemma holds for
7 — 1, then the elements

Dld(a) @ lpia), P ® 1, 4], 4" Ha)
have the same component in T',_; ;(4) and the elements
B Ha) @ 1,1, PN o) ® 1) 4"7{a)
have the same component in T,,_; ;_;(d). Further, the clements
(@) @ 1], D[4¥a) @ 1]

have the same component in T, {A4). Consequently by the last equality, the
elements

BA@) @ 1, ], 47(a) = ( @ Id) o 4-a) + (d @ Id) o 4" a)
have the same component in T, {4). The lemma is proved for 7.
LeMMA 24. Let M be a trivial -algebra. Let us consider k elements of T, (M)
% €Ty i (M),eny 3 € Ty, i (M).

Then the product ,@*(x; R - ® xy) of the elements x; of the algebra T,(M)
belongs to T, (M) withm =i + -+ 414,

Proof. It suffices to prove the case k& = 2. It is an obvious consequence of
the equality M" - M = 0.
Levva 25, Let M be a trivial T-algebra. Let us consider k elements of
T,(M)
% =(y; @ lag),  yi€ T (M)

Then the product ,P*(x; & *+ & x3,) of the elements x; of the algebra T(M)
is equal to the product ®*H(y, ® -* ® ¥ ® 1,,_,) of the elements y; and
1, of the algebra T(M) with m = &, + = + i
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Proof. By multilinearity it suffices to prove the lemma with

yi= a0 Qay g, a; €M
Then we write
YiRlyy, =81 Q" Ry, ajp=1 if h>i.

Now let us use the following equalities

% = a(yf & l'n—ii) = Z aja”]_f @ Qo "

oleStis,mn—iy

They give the following equality
D@ @)= ) Y Q.. o)

oleSliy,n—i))  oFeS(iy,n—iz)
with £2(c%,..., ¢¥) equal to
ﬂdjk[(al,gll ® ® a]fgnl) @ ® (a_r,-,glh‘ @ ® ak.qrf)l
= ig‘ik(al’ﬁl & ® ak,o{:) ® - ® ij(ai,o,} ® @ 41‘,0,;)_

But O%(a,,1 @ * ® ay,.x) is equal to 1 if a7 >3; for all f’s, to a8 if
o) > i; for all {’s except j* and to O otherwise. Therefore 2(ql,..., 07) is equal
to 0 except when the set of elements

ale S(y , 7 — i), O € Sy, 1 — i)

has the following property /. We usc the ordered set

(al sures an) = (am seany Oy gy 5mees AR 500es Biyiy 1,.--, l).

The property A holds if there exists one (and only one if the elements a;  are
general enough) permutation o of S(7 ,..., & , # — m) such that for any 7, the
sets

(@100 @ on)  and (@, 1 1)
are equal up to the order. If the property /4 holds with the permutation ¢, then

QA" 0f) = 0(a, @ @ a,) = (1 @ @3 © lnm)-

Consequently we get the equalities

n(ﬁk(xl ® ® xk) = Z D'(_'}’l ® N ®yk ® l-n—m)

OES (dyyuuesipyN—11)

= (fbk”(yl ® Ry @ 1)

The lemma is proved.
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Levva 26. Let M be a trivial T-algebra. Let us consider an element x of
T,.{(M), . Then the divided power ,y"(x) of the element x of the I'-algebra T, (M)
belongs to T, (M) with m = Ii.

Proof. Let us consider x = x* 4 x” and the equality
) = Y WPl (%) ® ()]
RLR7=h
If the lemma is proved for &" and for &7, then it is proved for x according to
Lemma 24. Consequently it suffices to prove the lemma for

s=a® - @a,

i elements a; belonging to M and # — 1 elements a; being equal to 1. Since
the I-algebra M is trivial, the element ,»%(x) is equal to 0 if 4 is greater than 1.
The lemma is proved.

Lemma 27. Let M be a trivial I'-algebra. Let us consider an element of
Tn(M)v'v.

¥ =By R 1,4, yeTL{M).
Then the divided power ,y"(x) of the element x of the I'-algebra T (M) is equal

to the product D(F(y) ® 1,_,,) of the elements 3"(y) and 1,_,, of the I'-algebra
T(M) with m = hi.

Proof. Letus consider x = &' + a"and y = 3" 4 »" with

x = @-(y’ ® ln—-z'): I\'J” - @-(y” ® ln—i)'

Let us suppose that the lemma holds for 3" and for ¥” and let us prove it for y.
We use Lemma 25 and we get the following equalities

n'yh('x") = Z ﬂ@[nyh'(x’) & ﬂ’}/?"”(x”)]

h'+R"=h

Y WPPF(Y) @ 1) @PF(Y) @ Luarill

= 2 PFO)IPN) R L]

R 407 =R

=B T D) RPN @ Lane) = FF) @ Lawd:

'R =h

Thus the lemma holds for y. Consequently it suffices to prove the lemma for

y=a® ®a.
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Let us order the set S(z, # — ): o%,..., o*. Then we have to consider
P @ @E@I® @)+ + oy @ @a®1® @)
We get the following equality

W) = Y D@ ® QDR @ ed (e ® @1

gt Hig=h

But the I-algebra M is trivial. Then we have the following equalities

AE) =Y DM G @ @)@ @ e (e ® - ®1)]
Byt Hiyg=h
Byslyeneyhip<l

= ¥ @)@ @da® @1

1y < <y <R

Now we can use the end of the proof of Lemma 25 in a special case:
i; = i and a; , = a, . Since we are no longer working with general elements
a; , , the permutation ¢ of Property A is no longer unique. We use the
following notation

S| h|n—m) = S@,....,i,n —m)CS,  with m = hi.

An element o of S, is described by the following equality

0'(‘,‘:1 bR x'ﬂ.) = ("val )y xuﬂ)‘

We denote by X, the following subset of the ordered set (x ,..., &,), with ¢
elements, )

(Fi)4z oo %at) = Xy, 1 <1< h
Let us consider the following equality
("vl EXXRE) xﬂ) — (XI ey Xh » XRitd seee xn)'

The elements of S,, permute the different x,’s and the elements of .S}, permute
the different X,’s. Thus we get a natural imbedding of S, into S, : write
simply S, C.S, . The subset S(Z| 4 |n — m) of the group S, is invariant
under the right action of the subgroup S} . We consider the quotient set

Sl h|n—m] = SG|h|n—m)S,.

Now let us come back to Property A in the special case: i; =iand a;, = a, .
We can replace the permutation o of S(Z| A |n# — m) by an element o of



HOPF ALGEBRAS WITH DIVIDED POWERS 45

S[Z | i | # — m]. In other words the summations over the set S(i | & | n — m)
can be replaced by summations over the set S[i|%|n — ). Actually the
summations of the first type must be replaced by summations of the second
type since the condition #; < ** < i, appears in the last summation above
describing ,y*(¥). Thus we get the following equalities

M(®) = Y DM, ® ) ® - ®oMay @ -+ @ 1)]

1y < <l <R

. z U‘(j’@“'@_y@ln—m)

o&STi|h|n—m]

= ) Y (R @)@ 1,

o'eS{m,n—m) a"eS[£|h]
= BF(3) ® Lyl

The lemma is proved.

8. ProoFs oF SOME PROPOSITIONS

Here are the proofs of four propositions appearing in the proofs of
Theorems 11, 17, 20.

Prorosrrion 12. Let A be a connected Hopf I-algebra with a support M.
Then for any n < 0, the elements of the n-trace of 4 in M are S, ~invariant.

Proof. Let « be the canonical homomorphism of A4 onto 3. Let & be
the structural homomorphism of the coalgebra M. Let ¢ be an integer with
I <1 < n. Let us consider the element ¢ of S, described by the equality

(X yerny X)) = (By sees ¥ 14 Xip1s Xi s Xipg yeeny ¥y)

acting on 7T',(A) and on T,(M). To prove the lemma it suffices to verify the
following equality

(Id — o) o a(F™(A4)) = 0.

For that purpose, we use the identity homomorphisms I’, I, J', J" of
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T (A, Tooiy(4), Ty (M), T,_; (M) respectively. Since »"~! maps F*(4)
onto 0, the equality above is a consequence of the following equalities
(ld — o)oa® = {ld — 6) o Ty(m) 0 4% = Tp(m) o (Id — o) o 4™

=Tym)e(d—o)o(I' QA QI")c A"
= Tp(m)o(I' ®[({d — 7)o A] @ I") o A1
= (Tia(m) @ Ur @7) o (Id — 7) 0 A] @ Ty_io(m)) 0 4"
= (T1a(m) @ (o m) @ Ty y(m)) o 477
= @pr®J)e Thy(m)e d* = ('@ p & J')ea"L

The proposition is proved.
ProposiTION 13. Let A be a connected Hopf I-algebra with a support M.
Then the trace of A in M is a subalgebra of T(M").

Proof. Let us consider two elements @, and @, of A'. Further let us
consider the following element

"o Pay &) @) = T(w) o A" o Play () ay)
= Ty(m) o ,P[4"(a,) ® 4"{(a)]
== (B[Ty(m) 0 47(ay) @ Tofm) o 47(ar)].
By Lemma 23, the elements
Tum)od™a) and  T(m) o D(4"(a) ® 1, p)

have the same components in T, ,, (M). Now we can apply Lemma 24. The
element

,,@[Tn(ﬂ") o A™ay) ) T'o(w) o 4%(ay)]

and the element

Y w@ITu(m) o B(A™(ar) @ L,-p,) ® T() o B(d™(a) @ 15-5,)]

Dyt py=m

have the same components in T, ,,(3). But we have the following equalities
Tn(”) © 5@]?‘(“1') & ln-—m\;) = (ﬁ(Tﬂ;(ﬁ) e Api(ai) () lﬂ*ﬁt)

== 6(771"'(&5) ® ln-—-p;)'

In summary the elements

wo®(a, ®a) and ¥ B(P(r"(a) @ 1, p) @ P("Han) @ 1, )]

Dytpg==m
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have the same components in 7}, ,,(A1). Now we can apply Lemmas 24 and 25.
The component in T, (M) of the element

DD (ay) @ 1,5,) @ D(r"(a) @ 1o.)]
is equal to the component in T, ,,(M) of the element
Br"(a,) @ 7Has) @ L]
Consequently the elements

7" o D(ay ) ay) and Z Dn™(a;) @ 7"a) @ Lnm]

Dy+Py=m
have the same components in T, . (37).
Now let us suppose that a; is an element of F{(4}. The preceding result for
n =1 +r, — | shows that &(a, ® a,) is an element of Fr+7:(4), The
preceding result for # = r; + 7, proves the equality

7" o Blay @ ag) — Bl (my) @ (@)

In other words the product of the element #'1{a;) of the r;-trace and of the
element 72(a,) of the 7,-trace is equal to the element 771+ o @(a; X a,) of the
(r; -+ ry)-trace. Then the trace of A in I/ is a subalgebra of T(A{").

ProposttioN 14, Let A be a connected Hopf I-algebra with a support M.
Then for any k& >0 and for any element x of M., the element P*(x) --
x @ - ® & of T(M") belongs to the k-trace of A in M.

Proof. Let us consider an element @ of 4. and let us use the following
decomposition

ma) = x; +  + Xy, x,eT, (M)
Further let us consider the following element
w0 @) = Tylm) o 470 34@) = Tlm) o o @) = o T < @)
=y e m(@) = M o &)

= z ngbﬂ[nykl(xl) ® T ® n'ykn(xn)]'

Fpbeoth=k
Now we use Lemmas 24 and 26 and we get the following equality
7o ?’k(a) = z ﬂ@n[‘n'ykl(xl) & ® n'}’kn(xn)]'

kyfeeothp=k
Lekytertnoky<n
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Now let us suppose that # = & — 1. Then the equation and the inequality
B+ -tk =k and 1k + - bnk, <k—1
have no common solution and consequently
71 o yh(a) = 0.

Now let us suppose that # = k. Then the equation and the inequality

b+ -tk =rF and Vb + - +uk, <k
have a unique common solution

ki=Fk and ky='"=Fk,=0
and consequently
o yi(@) = ().
Now we use Lemmas 23 and 27 and we get the following equalities
W) = ¥ 0 Blm(a) @ Ly y) = 7% w(a).
In summary
T loyia) =0 and o yia) = 7o n(a).

In other words, the element ¥* o =(a) belongs to the k-trace. The proposition
is proved with x = =(a).

PROPOSITION 19. Let A be a connected Hopf I'-algebra with a support M.
Then for the reduced Lie coalgebra L = M, the canonical homomorphism
[p: A— U(L) of Proposition 5 is a homomorphism of Hopf I'-algebras.

Proof. By Proposition 5, we already know that [ p is a homomorphism of
coalgebras. There remains to prove that it is a homomorphism of I™algebras.
The explicit definition of [ p appears in the proof of Proposition 5:

[p=%p and  pF = Typ)os",

Now let us use the following result appearing in the proof of Proposition 13.
Proposition 13. For two elements @, and a, of 4-, the elements

"o Pla; ®a,)  and Y D" (ay) ® 7(ay) ® 1yom]

Py+Da=mm
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have the same components in T, ,,(M). But T, (M) is equal to T,(L) and
for m = n, the preceding result implies the following equality

"o e @ ay) = Z D p™ @) @ p™{an)].

Pyt Ry=i

In other words
J‘pnqb X Up@'p]

"The homomorphism [ p of coalgebras is a homomorphism of algebras.
Now let us use the following result appearing in the proof of Proposition 14,
For an element @ of 4" with

aa) = x;, + -+ xy,, x;e T, {M),

the elements

atoy¥a)  and Yo L) ® o ® ()]

A

Byt fhp=k
are equal. Let us use the decomposition
AMa) = 4@) + -~ + A@),  Ap(@) € T, AA),
and Lemmas 23 and 27. We get the following equalities

Y (%;) = ¥ o Ty(m) o 4,%a)
= nyh ° Trz(w) e 5(Aij(a) & ]ﬂ—j) = ﬂ')’h c @(TJ(’H‘) ° Ai'j(a) ® ln—-j)

= o D(p(a) @ 1,-5) = P(F* o pla) @ 1)

Consequently we have the following equalities

7" o y¥a)
= Y BB e p @) ® Lag) © - @DEF 0 p7(@) @ Ly )]

Byt b=l

= Y O"hopa)® - @77 p"(@) D Lucsryn,)

[EROPES ¢

the last one by means of Lemma 25. The preceding equality for the component
T,..(M) equal to T',(L) can be rewritten in the following way

provia) = Y @) @ @ e p™a):
Byt th=k
LeReyeeednekp=n

481/18/-1
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In other words
[2or4a) = 7% | pta)
The homomorphism [ p of Hopf algebras is a homomorphism of I™algebras.

‘The proposition is proved.
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