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ABSTRACT. This is an account of the author’s use of computer
algebra tools to explore the structure of the maximal elementary
abelian 2-subgroups of the exceptional Lie group Eg. The princi-
pal result obtained thus far by these methods is that any rank 8
connected 2-compact group (BX, X) with Weyl group isomorphic
to that of the exceptional Lie group Eg has its normalizer of the
maximal torus isomorphic to that of Eg at the prime 2. Similar re-
sults hold for the comparison of possible exotic forms of G2, DI(4),
Fy, and Ey/Z(Ey) to the standard forms.

Corollaries of this result include that the Krull dimension of
the mod 2 cohomology of such BX is 9 and that the cohomology
ring is not Cohen-Macaulay.

The proof follows from

(1) calculations of the ambient cohomology group H2(BW (@), Te)
that classifies extensions

1=Tg = Ng(Te) » W(G) - 1
and the
(2) discovery of subgroups in common between the “real” Eg and

possible W-clones X which are large enough to detect the k-
invariant.
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the 2000 sabbatical of the author. Thanks to the Clay Foundation for travel support
during this research.
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1. Introduction and Outline

E is one of the few remaining simple exceptional Lie groups G for
which the complete structure of H*(BG, F3) is not known. In 1987,
using details about the Lie representation theory of the semi-spin (i.e.
half-spin) group SSpin(16) and Fs, Frank Adams [1] determined that
the maximal elementary abelian 2-subgroups of g fall into two conju-
gacy classes, of ranks 8 and 9 respectively. This answered a question
raised by Borel in the notes to his collected works [5] -~ namely, whether
the 2-rank of Eg is 9 or 10. Work of Quillen [22] allows us to interpret
this maximal elementary abelian 2-subgroup information in terms of
the commutative algebra structure of H*(BEsg, F3) — it has Krull di-
mension nine and (see our last section) is not Cohen-Macaulay.

Classification efforts for 2-compact groups have narrowed to those
with the Weyl groups of standard Lie groups but with possibly exotic
multiplicative structures. In this setting the tools of representation
theory are not available. This note is a test case to explore the ex-
tent to which the abstract reflection group structure of the Weyl group
forces the overall structure of the connected 2-compact group. It is
labwork both in the sense that it studies the special case of Eg and
that it is experimental — the facts were first obtained using the sym-
bolic computational tools GAP, CoCoA, Magma, and Macaulay 2.

These experiments were successful in that we show that any con-
nected rank eight 2-compact group X wtih the same Weyl group as Eg
must also have its normalizer of the maximal torus isomorphic to the
fiberwise-2-completion of the normalizer in the standard Es.

TuEOREM 1.1. If X be a connected 2-compact group of rank eight
with W(X) abstractly isomorphic to W(Eg). Then BNx(Tx) is ho-
motopy equivalent to the fibrewise 2-completion of BNpg, (Tg,. In par-
ticular, H*(BNx(Tx),F2) and H*(BX,Fy) have Krull dimension nine
and H*(BX,Fy) does not have the Cohen-Macaulay property.

One can explain in general terms why the 2-rank of Es and its
clones must have Krull dimension at least nine:

THEOREM 1.2. Let X be a 2-compact group such W(X) contains
a central element ¢ that acts as —1 on m(Tx). If TV is trivial, then
there is an elementary abelian 2-subgroup E — X with 2-rank (E) =
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The above is applicable to 2-compact groups with the Weyl groups
of type Dy, adj(Cy), adj(Er), G4, and F, as well as that of Eg. The
methods of calculation of this paper produce analogues of Theorem 1.1
in the G, DI(4), Fy, and adj(Ey) cases.

Recall that the classifying map (k-invariant) for the extension
Tx = N x(Tx) = W(X) can be viewed as a member of the cohomol-
ogy group H*(W(G), m(Te)). The strategy is rather straight forward.
First, we use computer algebra programs to calculate A SW(G), m(Te))
in the cases of exceptional 2-compact groups.

Results using Derek Holt’s cohomolo routine in GAP3:

CALCULATION 1.3.

Weyl group Order HYW(G), m (Te))
W(Gs) 12 0

W (DI(4)) 336 7).

W (Ey) 1152 727,

W (adj(Es)) 27315 Z/2*7, k>1

W (E;) 2WgInNT (Z./27.)*

W (adj(Er)) 2137517 7]27.

W (Es) 21135577 Z]27.

W (Spin(12)) 273151 (z/27)°

Results using Kasper Andersen’s implementation of the De Concini-
Salvetti algorithm in Magma 2.8:

CALCULATION 1.4.

Weyl group Order HY(W(G), m(Te))
W(G,) 12 0

W (DI(4)) 336 7177

W (Fy) 1152 7)77.

W (adj(Eq)) 50840 7)7.

W (E) 2,903, 040 (Z]2Z)

W (adj(E7)) 2,903, 040 7)7.

W (Es) 696, 729, 600 7)27.

W (Spin(12)) 23,040 (z/)27.)"
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Derek Holt’s routines work with Z/pZ modules over finite groups,
while the De Concini-Salvetti algorithm works with integral or modular
modules over a Coxeter group. The results agree, except in the case
of adj(Eg), where the Holt program can only determine the number of
2-primary summands.

The second piece of our strategy is to demonstrate that in all the
cases mentioned above (except Gs), Nx(Tx) must have the non-trivial
k-invariant! We achieve this by showing that G or its clone X contains
a proper maximal rank subgroup H for which the associated k-invariant
of its NT is non-trivial. Recall that if H is maximal rank in G, then
W (H) is a reflection subgroup of W(G) and Ny (T%) is the pullback of
Ne(Tg) to W(H).

In the Lie case, one has some freedom of choice for such subgroups.
For example, for Eg, there is a copy of Spin(16)/Cy = SSpin(16). Here
C, is a Z/2Z suitably embedded in the center of Spin(16).

However, from the viewpoint of 2-compact groups SSpin(16) is no
better understood than Es. Hence this paper seeks simpler maximal
rank subgroups which are “well-known” in both settings. One useful
collection consists of the 2-compact subgroups which have Weyl groups
generated by commuting reflections. We'll discover these subgroups as
centralizers of certain elementary abelian 2-subgroups of X. Recall
that G is semi-simple if 71(G) is finite.

PROPOSITION 1.5. [11] Let G be a connected semi-simple 2-compact
group such that W (G) is abelian. Then there exists a compact Lie group
H = (SU(2))" and a subgroup Vg C Center(H) = (Z/2Z)" such that

BG =~ B(H/Vg),

up to 2-completion.

Thus the Weyl group provides part of the recognition algorithm for
the desired subgroups. The second ingredient assures that the exam-
ples obtained as centralizers are actually connected.
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PROPOSITION 1.6. [12] Let G be a connected 2-compact group and
A = Tx a 2-abelian subgroup. Suppose further that no reflection in
W(G) acts as the identity on the elements of order 2 in Tx. Then the
centralizer Cx (A) is connected if and only W(Cx(A)) ={w e W(G) :
w|A = Ida} is generated by reflections,

The hypothesis above holds for all simple 2-adic reflection groups

except those of type {B,, C,}. The search for suitable centralizers was
first carried out by computer algebra:

THEOREM 1.7. Let G be a compact connected 2-compact group of
exceptional type not Fg, and let T be its mazimal discrete torus. There
ezists a subgroup E of ;T such that the Weyl group of Cu(E) is gen-
erated by rk(G) commuting reflections.

It follows that Co(E) ~ (SU(3))™ /Vy for some Vg, In the
particular case of Eg or clones, Vg is a 4-dimensional subspace of
Z(5U(2)%), embedded as the [8, 4] Hamming code. We emphasize that
the isomorphism type of this Cg(E) depends only on the action of

W(G) on Tg and therefore it is present in both the Lie model and in
any clone.

Third, we prove that the extension class for N a#(Tw) of this cen-
tralizer is non-zero:

THEOREM 1.8. For each of the connected 2-compact groups of ez-
ceptional type not G,, the Cq(E) described above does not have a split
normalizer of the maizimal torus.

For example, for Eg, if the normalizer were split the 2-rank of
CEs(Va) would be at least 12. However, direct computations show that
the 2-rank of Cg,(V}) is only 9. Hence the NT for Crs(V4) is not split,
and therefore the NT for Fg or a clone is not split either.

Two strategies evolved for verifying that Cc(E) has a relatively
small 2-rank. Both have sucessful computational implementations.
The first is a Grobner basis attack on the computation of an estimate
of the Krull dimension of H* (BCs(E),Z/2Z). The second attack uses
maximal clique algorithms to search for maximal elementary abelian
2-subgroups in C(E). Both methods work in all the exceptional cases,
but require non-trivial resources for the Eg case.
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THEOREM 1.9. For each simple 2-adic Weyl group W of exceptional
type, if G and H are connected centerfree 2-compact groups with W as
Weyl group, then Ng(Tg) is isomorphic to Ny(Ty).

We do not currently have a direct path from knowledge of NxT'x
to the determination of BX, although such a principle holds in the Lie
category. However, several authors [19, 25, 13] have established ad
hoc methods for this in special cases. The following corollary is then a
combination of those results together with those of this paper:

COROLLARY 1.10. For the exceptional types Go, DI(4), and Fy,
any connected 2-compact Lie group with this Weyl group is isomorphic
to the standard example.

Parts of the above strategy work for non-exceptional groups. I have
included W (Spin(12)) in several of the tables to illustrate this. How-
ever, for most Lie groups G, H*(W(G), m (T¢)) has rank larger than
one. Therefore the above strategy in those cases fails to identify the
extension class, except to prove that it is non-zero.

One motivation for this paper was a long fascination with the work
of Curtis-Wiederhold-Williams, [8], and Tits, [24]. The extension of
these ideas to the 2—-compact group realm has seemed rather mys-
terious and this paper at best lifts the veil only slightly. The author
dedicates this paper to the memory of Morton L. Curtis, who intro-
duced the beautiful subject of Lie groups to him in 1965.

The author is happy to acknowledge mathematical conversations
and e-mails with a long list of people, including K. Andersen, L. Avramov,
Dave Benson, Jon Carlson, Bill Dwyer, Dan Grayson, Derek Holt, Jean
Lannes, Brad Lucier, and Brend Ulrich. Versions of this material were
given in talks at the Oberwolfach Conference on Group Cohomology
and Representation Theory(2000), Bonn M.P.I. Workshop on Algebraic
Topology (2001), M.1.T.(2001), and Northwestern (2002).

The author would also like to thank the many authors of GAP,
Macaulay 2, CoCoA, and Magma. These tools allowed an insight into
the structure of Fg that would have otherwise been impossible.
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2. The cohomology computation

Two independent algorithms are available for the calculations. The
first is the cohomolo package for GAP3 by Derek Holt, [17]. It has the
advantage of being applicable to general finite groups. Because it uses
reduction to the p-Sylow subgroup, the modules need to be modules
over Z/pZ. Luckily, for all of the groups in question, except W (Fg),
the it suffices to use Z/2Z calculations, [14]. For the W (Eg) case, we

learn that H*(W (Es),m1(Es)) consists of a single cyclic 2-group, but
the method does not yield its order.

The relatively small resolutions described by De Concini and Sal-
vetti, [9] provide the second method. This algorithm uses the Coxeter
structure and seems rather effective. Kasper Andersen [3] has imple-
mented the De Concini-Savetti algorithm in MAGMA and permitted
me to use it. The algoritm works for modules with base ring Z and

verifies the GAP3 calaculations as well as providing the definitive an-
swer for the W (Es) case.

Source files for the scripts used in these calculations are available
from the author’s website,

hittp://www.math.purdue. edu/ “wilker/labnotes.

THEOREM 2.1. Let W(E;g) be the Weyl group of the exceptional
compact Lie group Ey and o : W(Eg) — GL(8,Z) the standard reflec-
tion group action on L = m(Tg,).

(1) Up to inner automorphism in GL(8,Z,y), this is the unique
8-dimensional reflection representation of W (Eg).

(2) This induces an action on Tg, = (L®R)/L such that H*(W(Esg), L),
H*(W(Eg), L), H*(W(Eg), TEs) and H*(W(ES),TES) are ele-
mentary abelian 2-groups.

(3) Also, H(W (Es), L) = B*(W (By), Tg,) = H(W (Ey), I,/2L) =
7./27.

Similar calculations can be performed for the other exceptional 2-
compact groups. Let G be a connected simple 2-compact of exceptional
type, with L = m, (T) the W(G)-lattice and M = L/2L. We summa-
rize the results of the GAP/cohomolo calculations:

PsEuDO-CODE 2.2.

(1) Define W(G) and action of W(G) on M in GAPS.
(2) Use these to define a cohomolo data structure, CHR.



8 C. W. WILKERSON

(3) Call the functions FirstCohomologyDimension(CHR) and
SecondCohomologyDimension(CHR) from the package co-
homolo from within GAPS.

The procedure for Andersens’s MAGMA routines is similar:

PsSEUDO-CODE 2.3.

(1) Specify Weyl group to used.

(2) Specify which lattice to use as the module.
(3) Call the routines BuildMatrix.

(4) Use these matrices to calculate kernel/image.
(5) Format and print results.

CALCULATION 2.4. Ho(W, L), H*(W, L/2L), and H*(W, L)

Weyl group | Hy HY H' H? H*(W, L)
W(G,) 0 0 0 0 0

W (DI(4)) 0 0 0 Z]27. | Z]2Z
W (Fy) 0 0 0 727 | Z]2Z
Wl(adi(Ee)) |Z/3Z |0 0 7)27 | Z]2Z
W (Er) 0 2L [ (Z)2Z)* | (Z]2L)" | (Z]27)°
Wladj(E;)) |Z/2Z |0 0 7./22 | 7]27Z
W (Es) 0 0 0 0 7.]27.
W (Spin(12)) |0 (Z/2Z)* [(Z]20)" | (Z]2Z)" | (Z[2Z)

REMARK 2.5. The rightmost column is deduced from the long exact
sequence corresponding to the SES 0 — L — L — L/2L — 0, and the
fact the integral cohomology groups (except in the W(Ejg) case) are
known to be elementary abelian 2-groups. Notice that these methods
do not determine H3(W (Fs), L) completely. However, the calculations
with Andersen’s program verifies the above calculations in all cases,
and supplies the result for Es. The Spin(12) group example is included
to show that the strategy of this note will not completely determine
Ng(Tg) in general.

REMARK 2.6. The Fjs calculation by the Holt routines requires
about 3 minutes on a 850 mhz Pentium III machine. The same cal-
culation using Andersen’s code for the De Concini-Salvetti resolutions,
requires about 30 seconds. Calculations seem to be feasible by these
methods for ranks less than 12.
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3. Finding a (SU(2))%/V, within Fs and its W-clones

In the cases of G5, DI(4), and F, there are maximal rank subgroups
of the form SU(2)¥/A(Z/2Z) that arise as centralizers of elementary
abelian 2-subgroups. Here A(Z/2Z) is a Z/2Z embedded diagonally in

(Z/2Z)* with respect to the product coordinates. One must generalize
somewhat to understand Es.

REMARK 3.1. Cohen-Seitz, [7] used subgroups similar to the ones
below to find the 2-ranks of the exceptional groups.

If ¢ : SU2)™S — G is a surjective homomorphism with finite
kernel then
(1) ker ¢ C Z(SU(2)™O)) = (7/2Z)74O.
(2) W(image ¢) is generated by Tk(G) pairwise commuting reflec-
tions from W(Q).
(3) For Vy = Image Z(SU(2)™ (@), Vs is centralized by at least
W (image ¢) C W(G).
To find a subgroup of F of the form (SU (2)®)/Vg, first perform a

search for 8 pairwise commuting reflections within W(Eg). In GAP3
such a search is not difficult:

PsEUDO-CODE 3.2.

(1) Define G = W (Eg).

(2) Define R = Reflections(G).

(8) Define S = SylowSubgroup(G, 2).
(4) Define Refls = RN S.

(5) Define A = Group(Refls).

(6) Test for A abelian.

(7) Find card(A).

Given the large size of W(Es) this worked rather quickly — a few
seconds in GAP3.

CALCULATION 3.3. Each 2-Sylow subgroup of W(FEg) contains eight
reflections. These commute and thus generate an elementary abelian
2-subgroup Aw of rank 8.

The next step is to realize Ay as the Weyl group of the centralizer of
some subgroup of Tg,.

THEOREM 3.4. Let G be a connected 2-compact group and P C Tg q
2-toral subgroup. Then Cg(P) and Ng(P) are defined, and W(Cg(P)) =
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{w € W(G)|w|P = Idp} and W(Ng(P)) = {w € W(G)|w(P) C P}.
Co(P) and Ng(P) have a common identity component. If W(Ce(P))
is generated by reflections which do not act as the identity mod 2 on
Lg, then Cg(P) is connected.

We need to find suitable subgroups of T¢ to centralize. The obvious
candidate is Tg W

PSEUDO-CODE 3.5.

(1) Define the action of W(G) and Aw on L/2L =V = Tg.
(2) Compute VAw.

(8) Compute Centralizer(W VAW ).

(4) Compute Normalizer(W ,VAw ).

(5) Compute Normalizer(W VAW ) /Centralizer(W ,VAW ).

CALCULATION 3.6.
For the Aw above VAW C V has dimension 4. Cyw(VA%) = Aw, and
Ny (VAW) = Ny (Aw) has 344064 elements and acts by permutations
on the reflection generators of A. T'a,, = Ty = Ny (VAW)/Cw (VAW)
also acts by permuatations on the reflections in Vi and has order 1344.

Similar results hold for other 2-compact groups of exceptional type:

CALCULATION 3.7.

Weyl group Aw dim VAW #Nw (Aw) #Tay,
W(Gs3) (Z./27.)* 1 4 3
W(DI(4)) (Z]27.)° 1 48 6
W (Fy) (a) (Z/2Z)" |3 384 24

W (Fy) (b) (Z)2Z)" |1 384 24
W(Es) (7.]27)" 3 384 24
W{(E) (Z./22)" 4 21504 168
Wiadj(E7)) | (Z/2Z)' 3 21504 168
W(Fs) (Z.)27.)" 4 344064 1344
W (Spin(12)) | (Z/2Z)" 4 1536 24

THEOREM 3.8. 'y permutes the 8 reflections in Aw C W(Eg). This
permutation action can be identified with the action of

AGLg(IFg) = (Z/QZ)s A GLg(]Fz)

on the 8 points of affine 3-space over Fy. The action of Ty on V' =
Z(SU(2)®) can be identified with this action on A. Then the action of
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Ly on V4 is that of Ty on V/Vi. That is, there is a short ezact sequence
of I'y modules

0=Vi=V o V/V,=2Z(SU@2)8/V,) =V4 = .

We can use this action to determine V; more explicitly. The action
of I'y on (SU(2)®) induces an action on Z((SU(2)8) ~ (Z)27.)8.

THEOREM 3.9. Given the permutation of coordinates action of T,
onV = (Z/2Z)%, there is a unique rank 4 Ty-submodule V, of V. It is
spanned by the row vectors of the matrix

OO =
OO = O
O = OO
O
— o oo
== O e
= O =
== =0

With respect to this coordinate system, each element of V, has either
0, 4, or 8 non-zero coordinates. As I'y-modules, there is the S.E.S.

O—>V4—>V—>V;*zv;—>0.

Jean Lannes has pointed out to me that this mod 2 vector space is
the extension of the very first binary linear code, the Hamming code
[7,4], to an [8,4] code obtained by adding a parity bit to each 7-bit
word, e.g., [20].

‘PROPOSITION 3.10. If X is a connected 2-compact group with de-
screte mawimal torus Tx and a sub-2-compact group E C Tx, then if
Nx(Tx) has trivial k-invariant, the same is true for Noy &) (Tx)

In the next sections we explore two computational paths to exploit
this propostion. In each case, the finite 2-group E is the center of the
(SU(2)%)/V; found above. If the normalizer of the torus within this
group were split, then the 2-rank would be at least 12. Hence any
calculation or estimate that establishes a smaller 2-rank proves that
the normalizer is not split.

For reference, the same strategy can be employed in the DT (4), Fy,

Er, and E;/Z(E;) cases to show that the normalizer is not split. For
G however, it is split.

The table below summarizes the outcomes of this strategy for the
exceptional groups:
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Weyl VG Cg(Eg) PG Code X
Group 2-rank 2-rank
Gy 1 3 ¥y 2:1] 3
DI(4) 1 4 23 3: 1] 3
F4 1 5 24 4 : 1 3
Eg 4 9 AGL3(F,) | [8: 4 2025
Spin(12) |2 6 Y4 6:2 15

REMARK 3.11. W(Es) is anomalous in that it does not have a non-
trivial center. Thus the analogous computations are slightly different.
There are only four commuting reflections in each 2-Sylow subgroup
of W(Es). These reflections centralize a rank 2 subspace I of L/2L.

Then

CEG (E) =

SU@)! x U(L)*

Similar computations can be done here to establish that the 2-rank of

Cge(E) is six.
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4. Estimating 2-ranks using CoCoA

For G = (SU(2))*/Ve where Vo C V = Z(SU(2)¥). Choose the
basis {e;} for V corresponding to the center of each factor, and let {z;}
be the corresponding dual basis of V#. Let the forms {fi= ; Qi T5}
be a basis for the linear forms that vanish on Vo.

The fibration
Z(G) = G — (SU(2)*/Z(SU(2)*) = SO(3)*.
after converting to classifying spaces, yields
BZ(G) = BG — BSO(3)* — B’Z(G) = K(Z2(G),2).
We want to estimate
Image H*(BSO(3)*,F,) C H*(BG,T,).

This is smaller than the quotient of H *(BSO(3)*,F,) by the ideal J
generated by Image H*(B*Z(G),F,). In concrete terms, J is the
Steenrod closure of the ideal generated by

{gi = Zaijwz(j) c HZ(BSO(3)k,F2)},

where the {w3(j)} are the second Steifel Whitney classes of the j-th
term in the product. From the work of Quillen, [22], it is not hard to
see that '

2-rank (G) = 2-rank (Z(G)) + K.D.(Image (H*(BSO(3)k,1,)).

In turn, it’s clear that
K.D.(Image (H*(BSO(3)*,F,)) < K.D.(H*(BSO(3)*,F,)/.J).

Since each SO(3) contains a unique up to conjugacy Z/27Z x Z,/27, one
can convert to computations in H*(B(Z/2Z x Z/27)F T,).

COMPUTATIONAL PROBLEM

(1) Given an ideal I generated by a set of linear combinations
of the quadratic polynomials oz, 4:) = 22 + zy; + y2 from
the ring R = Z/2Z(z1,31), . . . (z, yx )], calculate the Krull di-

mension of the quotient ring R/Jg, where Jg is the Steenrod
closure of I.

(2) Equivalently, do the computation in the ring
Z)2Z{(w>(1),ws(1)), . .-, (wa(8), ws(8))].
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The Steenrod operations needed on w, are of the form {Sq', S¢?S¢q, . ..
which also can be calculated as the Milnor derivations {D;} of de-
gree 20 — 1 on wy. If one works with w, = % + 7y + y*, then
Djw, = z%y + zy¥, while if one works with Z/2Z[w;,ws], one can
easily calculate that

D3w2 = wg’wg + ’U)g,

) Dywy = wiws + wiw3 + wows, ete.

PSEUDO-CODE 4.1. Sketch of CoCoA or Macaulay 2 code:
(1) Setup the polynomial ring R = Z/2Z[x1, v, - - -, T8, Ys] -
(2) Define the Milnor operations on R.

(8) Define the generators {f1, fa, f3, fa} of the ideal J.
(4) Define the Milnor derwations { Dy f;} on these generators, and

the ideals Ji, Js, . . . containing the Dy acting on the generators.
(5) Calculate the Krull dimension and Poincare series for the quo-
tients R/ Jy for k =1,... until the answers stabilize.

CALCULATION 4.2. Results of calculation:

(1) Calculation in Z/2Z](z1,11), - - -, (s, ys)] did not complete in
24 hours.

(2) Calculation in Z/27[(w2(1), ws(1)), .., (wa(8), ws(8))] took less
than 10 seconds on a Pentium III 850mhz computer with Co-
CoA 4.2 to show that Dim(R/Js) = 5. Here J3 is generated
by {g1,--- 91, D191, -, Dagn,. .. , Daga}

REMARK 4.3. Since J3 C J, we conclude that Dim(R/J) < 5.
Hence the 2-rank of (SU(2)®)/ Vg is less than or equal 9. But (SU(2)%)/ Ve
contains an elementary abelian 2-group of rank 9, namely the —1 from
the Weyl group together with the rank 8 from the maximal torus.
Hence the 2-rank of (SU(2)%)/Ve is 9. If NgT for (SU(2)%)/Vg were
split, then its 2-rank would be at least 8 +4 = 12 . Hence it is not
split, and therefore Ng,T is also not split.

REMARK 4.4. Since the ideal
J C ker{ H*(BSO(3)*,F,) — H*(BG,F,)},

this method overestimates K.D.(Image (H*(BSO(3)))) and hence pro-
vides an upper bound for the 2-rank of SU(2)*/V¢.
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5. Exact calculation of 2-rank ((SU(2))*/Vs) using GAP3 and
the Dimacs maximal clique finder

Given the setup of the previous sections, one can dea] with the com-
binatorial problem, neglecting the algebraic context. This turns out to
be computationally feasible even for the example of L.

DEFINITION 5.1. Let X C (Z/2Z)*. Define 2-rank (X) as the
maximum of the ranks of Z/2Z-subspaces totally within X.

REMARK 5.2. 2-rank (X) depends on the embedding of X into
(Z/2Z)* dramatically.

DEFINITION 5.3. Let q(z,y) = 22+zy+y% Then extend coordinate
wise to the quadratic map

Q: (Z/2Z x Z/27)* — (7.]27,)F
by
((a,]_, bl), (0,2, bz), .. )) — (q(al, bl), C]_(CLQ, bg), .. )
(

In particular, given a subset Y C (Z/27)*, one can form Q(Y).

While it is clear that 2-rank (Q7'(Y)) > 2-rank (Y), exact formulas
are not obvious:

COMPUTATIONAL QUESTION: Given the linear subspace Vg of (Z)27)*,
compute the 2-rank of Q~*(Vg) C (Z/2Z x Z/27)*.

Given X C (Z/2Z x Z/27)* one can define a non-directed graph
Gr(X) with one nodé for each point of X and an edge between z and
yif and only if z+y isin X. (I thank Bill Dwyer for this observation.)
Then the computational question can be rephrased:

GRAPH PROBLEM: Find the maximal cliques (complete subgraphs)
in Gr(Q ' (Vg)).

At first glance, this translation is not so promising. The maximal
clique problem classically is a difficult combinatorial problem. Also, one
might feel that important special features of the topological problem
have been ignored. Nonetheless, the baseline clique solver code dfmax.c
published by the Dimacs group [10] when applied to the Eg data finds

the maximal size clique in a computationally practical amount of ma-
chine time.
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(1) Find a basis for the vector space V.

(2) Use GAPS to print out the set Q~1(Vg).

(8) Use a custom ’C’ program to massage this into a graph data

structure suitable for input into the solver, dfmax.c.

(4) Run the executable of dfmax on this data to find the mazimum

size of a clique.

For the case of Eg, dfmaz on a 850 mhz Pentium 3 requires about
5 minutes to find the maximal clique.

LEMMA 5.5. For the particular subspace V, C (Z/2Z)® arising from
W (Es), the number of points in Q~(V,) is 3° + 3% + (16 — 2)3* =

1+ 1134 4 6561 = 7698.

CALCULATION 5.6. For the particular subspace Vy C (Z/2Z) aris-
ing from W (Eg), the mazimum sized cliques in Cq-1(v,)) have 32 nodes.
That is 2-rank (Q~3(V,) = 5.

COROLLARY 5.7. For any W-clone X of Es, BNx(Tx) is h.e. to
the fiberwise 2-completion of BNg,(Tg,).

For the other exceptional Lie groups the results are similar:

CALCULATION 5.8.

Weyl W(Ce(E)) Z(Ce(E))| Q7' (Vg)) | 2-rank 2-rank
Group Q7 '(Ve) | Co(E)
W(Cs) Z2Z2) | Z]2Z. 10 2 3
W(DI(4) | (z/2Z)* |(Z/2Z)* |28 2 4
W (Fy) (Z/2Z)" [(Z]22 | %2 2 5
W(adi(E))| (ZJ2Z) | (Z/2Z)° | 2944 5 8
Wik  [(Z22)F | (Z/2Z) |769%8 |5 9
W (Spin(12))(Z/2Z)° | (Z]2Z)" | 244 2 6

REMARK 5.9. These methods of computation could be avoided if
the symbolic algebra programs had effective routines for the calcula-
tion of the lattice of elementary abelian subgroups of a finite group.
Magma has such a routine, but it is not adequate to treat the group of
cardinality 2% that would arise for W (Ej).




LAB NOTES ON Eg 17

6. H*(BEs,F;) is not Cohen-Macaulay.

The best behaved cohomology of classifying spaces are the polyno-
mial algebras. These arise for many of the classical groups, as well as

for BG,, BDI(4), and BF,. In a heirarchy of tractable algebra types,
one has

(1) polynomial algebras
(2) complete intersections
(3) Gorentein rings

(4) Cohen-Macaulay rings

In this hierarchy, membership in class n implies membership in
class n +14, for ¢ > 0. For example, H *(BSpin(n),F;) is polynomial
for n < 10, but Quillen [21] demonstrated that H *(BSpin(n),F,) is
a complete intersection, since it has the form H *(BSO(n), F2) modulo
an ideal J generated by a regular sequence, tensored with an extra
polynomial algebra of rank one. Here J is generated by Steenrod op-
erations on the second Steifel-Whitney class w,. The Cohen-Macaulay
property is weaker, requiring only a set parameters over which the
algebra is a free module. Benson and Greenlees have shown that if
H*(BG,F;) is Cohen-Macaulay and G is connected, then H* is also
Gorenstein and its Poincare series has special properties, [4]. In this
section, we’ll show that the cohomology algebras of BE, B(adj(Fr)),
BEg, and their clones, fail to have the Cohen-Macaulay property.

I thank Lucho Avramov for showing me the result below in the fi-
nite group case. Versions of the theorem hold for compact Lie groups, *
2-compact groups, and noetherian connected graded commutative alge-
bras with an unstable action of the Steenrod algebra. The proof below
relies on the unstable algebra case.

LEMMA 6.1. Let G be a compact Lie group or 2-compact group and
i : &5 — G an elementary abelian 2-subgroup. Then pe = ker(Bi*) is a
prime ideal of R = H*(BG,F,) and has K.D.(R/pp) = 2-rank (E). E
is mazimal among the elementary abelian 2-subgroups of G if and only
if PE is a minimal prime ideal of R.

LEMMA 6.2. Let R be a connected graded commutative Fy-algebra
with an unstable action of the Steenrod algebra A,. Then each homo-
geneous prime ideal q of R contains @ mazimal homogeneous prime
ideal p closed under the action of the Steenrod algebra, i.e. a mazi-
mal invariant homogeneous prime ideal. In particular, each minimal
homogeneous prime ideal vy is “invariant”.
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THEOREM 6.3. Let G be a compact Lie group or 2-compact group
and E and E' be elementary abelian 2-subgroups of G such that each
is mazimal and 2-rank (F') # 2-rank (E). Then H*(BG,F,) is not a
Cohen-Macaulay commutative ring.

Tt is perhaps relevant to state the contra-positive of this:

PROPOSITION 6.4. Let G be a compact Lie group or 2-compact
group and E and E' be elementary abelian 2-subgroups of G such that
each is mazimal and 2-rank (E') # 2-rank (E). Then H*(BG,T,) is

not a Cohen-Macaulay commutative ring.

REMARK 6.5. This contra-positive applies to H*(BSpin(n),[Fy) as
well as to the classical polynomial algebra cases. That is, in these cases
the maximal elementary abelian 2-subgroups have the same rank, even
if not conjugate.

REMARK 6.6. One can not in general proceed directly from the
non-C.M. behavior of H*(BNg(T),Fy) to results about H*(BG,Fy).
However, the following result of Larry Smith [23] allows some of the
work of this note to give evidence:

THEOREM 6.7. Let R* be unstable noetherian connected commu-
tative algebra over the Steenrod algebra A,. Let E be an elementary
abelian p-group. If R* is C.M., then for each f € Homa,(R*, H*(BE, ),
the component of the Lannes T-function Ty(R*) is C.M. Therefore,
if G is a 2-compact group, and ¢ : BE — BG a morphism, then
if H*(BG,Fy) is C.M., the centralizer Cg(E) has H*(BCq(E),Fy) .
Here BCg(E) = Mapynpi(BE, BG)y.

It follows that if H*(BCg(E),Fs) is not C.M. for some E, then
H*(BG,F,) is not C.M. Here is the result of the analysis of the central-
izers in the case of 2-compact groups of exceptional type (here A(Z/27Z)
is a diagonally embedded Z/27Z)

CALCULATION 6.8.

Weyl Cea(V) mazximal elem. H*(BCg(E),Fy)
Group 2-subgroup ranks | Structure
W(G5) SU((2*/A(7/27) |3 polynomial
W (DI(4)) SU(2)Y/A(Z/2Z) |4 polynomial
W (Fy) SU()YH/AZ]2Z) | 5 polynomial
W (adj(Er)) SU2)"/Va 7, 8 Non C.M.
W (Es) SU2)%/V, 8, 0 Non C.M.
W (Spin(12)) SU(2)° [V, 6 C. M.
| not polynomial
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PROOF OF THEOREM. From the above lemma, the prime ideals
e and pp are each minimal prime ideals of R, but K.D.(R/p E) #
K.D.(R/pg). But in a C.M. local ring, for each minimal prime ideal

q, K.D.(R/q) = K.D.(R), by Cor.2.1.4, page 59, [6]. Hence R is not
C.M. s

PROOF OF GROUP LEMMA In the Lie case, these are consequences
of the Quillen Stratification Theorem, [22]. But one can give an argu-
ment suitable for either environment. Since H* (BE,F,) is a polynomial
algebra on rank(E) variables, ker(Bi*) is prime. Since H *(BE,T,) is
a f.g. H*(BG,F;) module, image(i*) = H*(BG,TF;)/ ker(Bi*) has di-
mension the rank of £. Suppose now that p is not a minimal prime
ideal. Let q C pg be a minimal prime ideal. Then q is closed under the
Steenrod algebra action, since it is a minimal prime ideal. Consider
the algebra S = H*(BG,F;)/q. This is a noetherian integral domain
with an unstable Steenrod algebra structure. By Adams-Wilkerson, [2]
there is an embedding S — H*(BE',F,) where K.D.(S) = 2-rank (E").
Hence, by composition, there is ¢ : H*(BG,F,) — H*(BE',F,) a map
respecting the Steenrod algebra structure. By Lannes, [18] in the 2-
compact case, this corresponds to BE' — BG. By Dwyer-Zabrodsky
[15] and others, in the compact Lie case, this determines a conjugacy
class of embeddings £/ — G. In the 2-compact group case the mor-
phisms are maps of classifying spaces, so that case is covered also. But
2-rank (E') > 2-rank (E), so this contradicts F being a maximal ele-

mentary abelian 2-subgroup in G. Hence pg is a minimal prime ideal
of R.

1

REMARK 6.9. DISCUSSION OF TABLE 8.6

For G, DI(4), and Fy, the Cg(V) discussed before are of the form
SU(2)F/A(Z/2Z). Tt is easily seen that these have polynomial coho-
mology and thus do not immediately inform us on the C.M. status
of H(BG, IFy). However, various authors have shown that any clone of
one of these with the same Ng(T') must give an equivalent BX. Hence,

indirectly, the cohomology of BG,, BDI (4), and BF} are each polyno-
mial and hence C.M.

For clones of Eg, E7, and Eyg, the quickest path is to reason indi-
rectly. The Lie examples of adj(Es), E;, and Eg are known to have
maximal elementary abelian 2-subgroups of rank (5, 6), (7,8), and (8,9)
respectively. It can be shown that these are represented in the Ce(V)
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centralizers. Hence, the H*(BCg(V),F2) are non-C.M. But these cen-
tralizers in a clone are isomorphic to the centralizers in the Lie case,
since their structure depends only on the action of the Weyl group on
the torus. Hence we reason that for a clone X to one of Eg, adj(E7), or
Eg, one must have that H*(BX,F;) is non-C.M. (because otherwise,
the H*(BCx(V),F3) would be C.M, which it is not).

In principle, one could try to expand the calculation of the earlier
sections to include finding all maximal elementary abelian 2-subgroups
of Cg(V). T have not done so.
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7. Proof of Theorem 1.2

Many Lie groups have the property that W(G) has a non-trivial
center. If the reflection action is irreducible, then the non-trivial cen-
tral element ¢ must act as —1 on the lattice 7,(T%) and as the inversion
on Tg. Obviously, ¢ commutes with all elements of order 2 in the max-
imal torus T¢. The following is similar to Adams, section 2, [1]:

PROPOSITION 7.1. For G a connected 2-compact group, 1 if (Te)" (@ =
{e}, then the central extension

{e} = 2Te = N, o< ¢ >=7/27 — {¢}
is split. Hence N, is an elementary abelian 2-group of rank(G) + 1.

COROLLARY 7.2. Under the above hypotheses, the 2-rank of G is
greater than or equal to rank(G) + 1.

Proof. Let  be any lift of ¢ to N,. It suffices to show that 72 — e.
We do this by showing that 2% € (;75)"(@. Cetainly z? projects to e,
so 22 € T, Let w € W(G) be any element. Then we need to show
that w(z?) = 2? in yTe. But w(z) = «t, for some t, € ;. Hence
w(z?) = w(z)? = zty,rty, == stz zwt, = t-txt,, = 22, since z% and
ty are in T;. That is 22 is fixed by each element of W(QG) and hence
z? = e from the hypothesis.

REMARK 7.3. Adams, [1] makes the slightly stronger statement
that 2% € Z(G).

REMARK 7.4. This applies to Gy, DI(4), Fy, adj(E7), and Eg and
the adjoint forms of {Sp(n), n > 1} and {Spin(4n),n > 1}. The
hypothesis fails for Fg. Indeed, the 2-rank of Fj is only 6. The 2-rank
of the simply connected E; is only 7, see Griess, [16] and Cohen-Seitz,
[7]. In this case there are non-cojugate elementary abelian 2-groups of

rank seven. The author does not know if the cohomology of BE; is
Cohen-Macaulay.
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8. Further Discussion on the structure of H*(BEjs,F;) .

Recall that Vg C Tx is the particular subspace centralized by
8 commuting reflections from W(Es). We've identified Cx (Vi) =~
(SU(2)%)/Vy. Our conjectures concern Nx(Vg):

CONJECTURE 8.1. In any Eg-W-clone,

(1) Nx(Vg) is the semi-direct product of Cx(Vg) by T'g

(2) H*(BX,F3) — H*(BNx(Vg),F2)F¢ is a monomorphism (true
by Euler char. considerations).

(8) H*(BX,F;) — H*(BNx(Vg),Fs)'¢ captures a large part of
H*(BX,F3) up to Quillen ”F”-equilvalences. For example, it
might be an 'F’-monomorphism or surjection.

If this were true, one could calculate the Quillen diagram of Eg from
H*(BCx(Vg),Fs)'e and modulo non-trivial lim-caluclations establish
uniqueness results for g in the context of 2-compact groups.

One of the original motivations for these calculations was to see if
one could obtain estimates good enough to force the conclusion that
the Rothenberg-Steenrod spectral sequence collapses at E,. The above
conjecture might be enough to imply this.
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