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Abstract

The (n + k)-dimensional homotopy group of n-sphere is dencted by Tntk(S™). The
determination of the group m,+(S™) is one of fundamental problems in algebraic topol-
ogy, and the group is investigated by decomposing into the p-primary components
»Tntk(S™) for each prime p. In the present work we consider the case that p is an odd
prime, in particular the case p = 3.

For a fixed integer &, the groups m,,,(S™) are isomorphic to each other in the range
n > k+1, and as the limit the k-stem stable homotopy gruop m; = lim, m,4(S") is
obtained. The stable groups #§ are computed for quite large values of k. For example,
its 3-primary component 37§ is determined for & over one hundred.

On the other hand, unstable groups Tnik(S™), (n < k4 1) are not so good es-
tablished. The 3-primary components 3Mn+k(S™) were determined for k < 46 in 1967.
Since then we have less information abount them. In the present paper we shall give
tables of 3, 4(S™) for k < 80.

By virtue of Serre decomposition ,m;,,(S?™) PSP @ i a (S4Y), it s
sufficient to compute ,m,.+(S") only for odd n = 2m — 1, and our main tool is the
double suspension homomorphism E? contained in the double EHP-sequence

- (@Y Ly my(simy s miga( Gty A, (@) S -

Here, Q3™ is a homotopy fibre of the double suspension map S¥™—1 _ 2 g2m+1
and its homotopy groups are verified by use of the following 1JA-sequence:

s By mga(Smty Ly gimety Tia(SH™H) 2y g (SPm1y L, L

The computation of the k-stem Broups 3m,4x(S™) is done by induction on k, from
the results of the stable k-stem groups. Several old methods are renewed by the re-

sults of many researchers including Oka, Dyer-Lashof, Nishida, Selic, Cohen-Moore-
Neisendorfer, Gray and Harper.
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1 Introduction

Denote by m;(S™) the i-th homotopy group of n-sphere S*. The purpose of the
present paper is to determine the p-primary component ,m;(S") of m(S") for odd prime
p, in prticuler p = 3 , from several results on the stable groups 7y = lim w1k (S™).

By Serre (28],{29], m:(S™) is finite except m,(S™) = Z and 7y 1(S?™) & Z @ (finite),
and also we have Serre decomposition
oMira(S7) 2 m(SP1) @ pmia (ST
So, it is sufficient to determine the group ,7;(S") only for odd n = 2m + 1. Usually,

the determination is done for each sequence of the k-stem groups

0

(10 prsru(8%) D prsia(SY) 5 prnaa(ST) T oo B
connected by the double suspensions E?, from the knowledge of the lower stems and
the p-primary stable group ,73.

Our main tool to determine m;(S*™*!) is the following double EHP-sequence :
(L2 - s (@21 25 (827 1) S migp(824) s m (@) Do
where Q2™ is a homotopy fiber of the double suspension map i* : $7"1 — Q2™+,
H and P are double version of Hopf invariant and Whitehead product respectively. We
call here the elements of 7,(Q3™ ") as the invariants for convenience.

Homotopy groups of Q2™ ! may be computed by the following I[JA-sequence which

is exact after loclized at p :
(t.3)m - AN i a( S 2, Tipa (ST L (@)

L5 maga (S By g (S -
where A o E and E o A are p times, and J o H = H, : m;,3(S?™ ) — mip5(S¥P™H) is

the James-Hopf invariant.

Several lemmas for iterated suspensions in Toda[38] are reformed removing dimen-
sional restrictions by use of Moore-type representations, exponential theorems Selic[26],
Neisendorfer[19], and results of Gray(7], Harper{10] and Oka[21].

We shall give tables of ,m,,(S™) for odd n by a symbolic way.

For example, the table of 10- and 11-stem groups for p = 3 are presented as follows,

-1 -



n= 3 5 7
k=10 e — 00— e =<f>
E=11 ® — 0 = o0o=<0o}>

where o and o indicate cyclic groups Z /3 and Z/9 respectively, = indicates isomorphic
double suspension E*, —; does a non-trivial E? which is not isomorphic. The last
term e = < f; > means that 37719(S7) is in stable range and isomorphic to the stable
group 37y generated by the element §;. Similar for o — <oy > . If 3me14(S™) is a
direct sum of many number of cyclic groups then the group in the table is represented
by corresponding symbols e, o or » Z /27 stacked together vertically.

The computation is presented by using the following collection of exact sequences
(1.2),, which is called computation diagram.

7_14%(Q3) T1£(Q3) T3+4(Q3)

\H 7r2+k(83) —Eg—)\ H7r4+k(S5) _E’_) Hﬂ'ﬁ+k(87) —E—;{) [
m(Q3) ’\Pﬂ'2+k(Q§) \P‘/r4+k(Q§)

2 H 2 SN H
w3k(S*) —E‘;)’\ 541 (S?) 2 Tr41{S7) E.)

Computation diagrams are also symbolized. For example, the above cases k = 10,11
are compused as follows.

n = 3 5 7
[15) 73]
N \
k=10 ¢ — o — e=<f>
\
Ay Ay i
N N
k=11 e — 9o = o=<a>

Here, roman symbols indicate appropriately defined invariants, the homomorphism P
or H is erased if it is trivial and remains only the arrow if it is non-trivial.

An unstable version of the stable a-series {a, € ,,7r,sqﬁ1;'r >1}, 9 =20p - 1),

is a typical example. This is, for each r, a collection of elements in (rg — 1)- and

(rg—2)-stem groups and corresponding elements in #Ti(Q3™ ") such that they generates

-~ 92 —



direct summands, with an exception ,my,z 3(S%®~!) = Z/p?, which are closed under
EHP-sequences, as is shown in Gray[7]. The collections are chosen such that they are
compatible with 1JA-sequences. This means that in the computation of ,m;(S*"*1) we
can exclude these collections, by remainning few residue invariants. The collections are
called unstable alpha families.

Besides of the unstable alpha families there are some collections which can exclude
before the computation. An element ¢ € ,m(S?*™+) is called simple if E?{ = 0 and
¢ ¢ ImE®. When m # —1,0 (mod p), this £ is independent of the 1JA-sequence.
So, we can remove ¢ together with the invariants H({) and z € 7 (@™ 1) satisfying
P(z) = £. We call these three elemnts as a simple removable collection.

There are another kind of removable collection including a pair {§, A{ # 0} which
is called as short range removeble collection.

The results of 3-primary k-stem groups mam_14%(S***') are given by symbolized
tables as above, divided into two parts. One is old table for £ < 55 and the other is new
table for 56 < k < 80. The first table revives (38], {39] for k£ < 45 and an anouncement
of K.Maruyama and M.Mimura in 1998 for 45 < k < 55.

The first cruicial point lies in 56-stem groups which contain unstable version of the
relation 338, = 0. This relation holds in $'. Also the 57-stem groups contain the
relation B2€ = 0 which holds in S°.

n= 3 5 7 9 11 13 15
. e—e— ¢ =6 =@ ==
k—56{ e >0 — 0@

k=57 e 30—+ @

The second crucial points concentrate about the 60-stem, 76-stem and further stem
groups in deeply unstable range. These cases there are many invariants of not stable
type, and we have few effective methods which controle them. Our table has some

ambiguities in the 76- and 77-stem groups of deep range.



2 Double Suspension and Lemmas

2.1 EHP sequence

Let QF = (0251, 9" be a homotopy fiber of the canonical inclusion (suspension
map) i : S* — 0.9™*! which induces the suspension & : 7i(S”) = miya(S™*1). Then

we have the following exact sequence (single EHP sequence).
@1 B w8 I (@) B m(s™) B (5T

The Whitehead product w,, = [tns tn] € T2n—1(S™) of the identity class ¢, € T.(S™)
is an image under P', and if n is even then H' (wn) = 2t9,5. This implies the following

Serre’s decomposition [29] for odd prime P
(2.1.2) E + wame : mi(S¥™1) @ miyq (S2™1) =, My (S,

where =, indicates a mod p isomorphism, that is, its kernel and cokernel are finite and

p-torsion free. So, E and ws,,. are mod p injective.

Let 925%™+ = 0(Q5?™+) be the double loop space of S>™*1. We use the notation

ng—l —_ Q(Q232m+1, SZm—l) .

27! is a homotopy fibre of the canonical inclusion (double suspension map)

i%: $?m-1 _, Q282m+1 which induces the double suspension homomorphism
E*=EoE : m(S* 1) — TSP+,

Then we have the following exact sequence, called (double) EHP sequence.

(218) - 2y myy(571) Ey p(Qinety 2y rgime1) By misa(SPHY) Ay

The homomorphisms H and P are double version of Hopf invariant H' and Whitehead
product P/, and we refere m(Q3™1) as the group of invariants.
The following naturalities of H and P hold.
(214) H(a)oé = H(a@oE*%) for ac Tir3(SP™H), € € 1;(S)
(215)  Pl@)o¢ = Plaof) for aem(Q™™), e (S

- 4 —



As is well known the homology ring of 252™*1 is a polynomial algebra H,(2.5*™*1)
= Z[u], u € Hy,,. By the spectral sequence associated to a fibering
Q2gm+l B 82mHl

of contractible total space E, we have
(21.6) H(Q2S¥H 821 = 0 for i < 2pm — 2 and =, Z/p for i =2mp — 2.
The same is true for the homotopy groups, and we have the following mod p stasbility
of homotopy groups of spheres due to Serre [29].
Theorem 2.1 (Serre [29]) The double suspension

E? : (821 — mipa(SPH)
is an isomorphism of p-primary components for i < 2pm — 3 and epimorphism of them
fori=2mp— 3.

Let ¥ = lim,, 7., 4(S*) be the stable k-stem group, then the following group is said

to be in stable ronge.
(2.1.7) Tom-1+6(S™™ 1) =, 75 for k<2(p—1)m-—2.

Let S® = §"Ue¥U---Ue"™ U--- be James' reduced product space [12] of n-
sphere, which is homotopy equivalent to the loop space Q(S™') by the natural H-map
i:87 — Q(S™1), and we may identify them.

Let S = S"U e U--- U ek be the kn-skeleton of 57, and

hp . Q(S2m+l) — Si")" — S:gnn — Q(SZ;Jm—H)

be James’s extension[12] of shrinking map S2™ — S2™/S2™ = S%™. In [34], we see

that the homotopy fibre of , is mod p equivalent to Sf’"l and that there exists a map

T, : (S?™) — 9(5%™1) the homotopy fibre of which is mod p equivalent to 5™,

Then by localized at p, we have the following two fiberings :
(2.1.8) S - (s By (g2mtt) and SPm (5P 5 (S,
and combining these, the following mod p fibering :

(1) s s gt L (st B (s,

__5_



Theorem 2.2 The mod p fibering ( 2.1.9) induces the following IJA-sequence which is
mod p exact.

By miya(SPmY) L m(@imt) Ly Tira(SPmH) 2y oy (S2mty Ly L
Note that the map h, induces James-Hopf invariant H, satisfying
(2.1.10) Hy=J o H : my3(S™H) — m(QF1) — myyp(S%mHY .
The map T}, was re-constructed by Gray [8] such that the map
ap : Q3S2p‘m+1 Y 95211171—1
of (2.1.9) satisfies a homotopy
Gpoi® 2 Qf,: Q%1 __, ¥gmtl __ () gopm—1 ,
for a map f, : $%™~1 5 §%m—1 of degree p. Moreover Harper showed [10]
08, ~ Q(S2f,) : QPSP __, gom-1 _, 3 gaemin
Then we have

Lemma 2.1 The following two compositions are both p times maps:

Ao BE?: ym(SPmt) — pTis2(SPFH) —s pmi(S7Pm1) |

B0 A ymyy(SPPmH) pT(STN) — (S
Note that the following naturalities hold.
(2111) I{aoE*) = I(a)o¢ for a € my5 (S, ¢ € mi(SY)
Jaof) = Ja)oB%  foraem(@™), £ec (s
Alao EB*) = Ale)oEt for a € my 5 (S, ¢ e mi(S*)
Hy@oBE) = Hy@)oBf fora € my(S*™), £ € ny(Y)

The following exponent, theorem was established by Cohen-Moore-Neisendorfer [3]
Neisendorfer [19] for p = 3, and Selic [26] for m = 1.

b

— 6 —



Theorem 2.3 P (pm(S*™)) =0

"This theorem is based on the fact that for a suitable H-structure on 9252™*! the
p-th power p? : Q28?1 5 282+ of the product p is deformed to a map ry, :

0252m+l 5 G%m-1 that is,
(2'1.12) #p ~ ,’:2 O : (Q2s2m+l} S2m—1) — (Q2s2rn+1, S2m——1)
It follows

Lemma 2.2 ,m(Q2™") is elementary, i. e., p(m(Q3™ 1)) = 0.

By Theorem 2.1, E? : ,m(S*™1) = ,miya(S%#™+) is bijective for i < 2p’m — 3.

From the exactness of IJA-sequence it follows

Proposition 2.1 For i < 2p*m — 3, we have the following split ezact sequence.

0 — 77 gpmis @ Zfp — (@3 1) — Tor(nf 5y 10, B/p) — 0.

We refere the above case as metae-stable range.

2.2 Homotopy groups of 3
Consider the mod p fibering (2.1.8) of the case m =1 :
(2.2.1) S2 ., — 52 2 s

Let fo: 52 — CP,, = S?UetU---Ue** U-.. be an extension of the identity of
5?. Since CP,, is an Eilenberg-MacLane space of type (Z,2), a homotopy fibre 5'2;
of fo is & 2-connective fibering over 2. S’Z — 05? for a 3-connective fibre S? of S°.

The restriction f, over S7 of f., is a 2-connective fibering :
RN JELN o)

Since S% = 15%*+! is 2-connected, the fibering (2.2.1) is lifted to the following mod p
fibering :

(2:2.2) §2, s 5L, I g7,

_7_



Since H*(S%,) is a divided polynomial algebra and H* (CP) is a polynomial alge-
bra, the relations fy,(e**) = k! - e?* hold in cohomology classes.

In particular, the map of 2(p — 1)-skeleton fo-1: 80, = CP,_; = S-1/g1
becomes a p-equiavalence. fp—1 induces S*-bundle map

—

f;: H S}?“l ’_)' S2P—1
which is also a p-equivalence. Then we have a p-equivalence

(2.2.3) g:571_ 5"3:; such that deg(f,10§) =1 (mod p)

From the fibering (2.2.2) we have the following mod p fibering
(2.2.4) §w-1 8, 088 by gt

Proposition 2.2 The mod p fibering (2.2.4) induces the following mod p ezact se-
quence.

S —A—-) 7!','(52?‘1) —G—) wi+1(§) E) 7('.;+1(Szp+1) —A—) 7'_1:_1(32;:—1) '—G"-) s

This exact sequence is equivalent to the 1JA sequence of Theorem 2.2 of the case

m = 1. In fact, @} is homotopy equivalent to 0352, but the relations with the compo-
sition are a llitle better than (2.1.11).

(2.2.5) Glaot) = G(a)oEt forac T(S?P71), € € m;(S7)
HaoBf) = Hia)oBt foraemu(S), ¢e (s
AlaoB%) = Afa)ot for o € m1 (S, € € mi(ST)

Let 8, : Q28%+! 3 %1 Lo the inclusion of the homotopy fibre of the map 7 :
S 5083 . I [27] Selic showed that 8, is homotopic to the map 7, of (2.1.12).
Then the Lemma 2.1 holds for the A of Proposition 2.2.

(22.6) A(B%)=p-¢ and E*(An)=p-
Let K' = S;‘:_l Uy €% be the mapping cone of the composition
§=pp10g:8%1 S"E_‘l — 82

- 8 —



Since CP, = CP,_; U €% is a mapping cone of S'-bundle map $*~! — CP,_1, the
map fp-1:S52_; — CP,_, is extended to a map

F:K' =8 ,U e — CP,=CP,  Ue”

such that the top cells are carried by deg = 1 (mod p). Since 2? = p'(x) for z €
H%*(X;7Z/p), it holds

(2.2.7) p'(e") = ("F = €™

for the orientations e? and e of the bottom and top cells of X = CP,, respectively.

By the naturality of p! for 7, the above equation holds also for X = K' = S8} ; U, e,
Let

(2.2.8) G:8% -— 3

be the adjoint of s0g: S~ — $2_, — Q8% and let K = S Ug e2?*! be the mapping
cone of G. Then we have a map SK’ — K of degree 1 on the bottom cells e3 and top

cells e?*1. By the naturality of p' it follows
(2.2.9) pl(e}) = e in H'(K;Z[p), K =5"Uge™"".

The homotopy class {G} of G' belongs to m,(S?) = m,,(gg) =2, Z/p. Theorem 2.2
shows that the order of a{G} is p for some integer o = 1 (mod p). Now, we change
the map § in (2.2.3) by its a times, then the homotopy classes {G} and {io g} are of
order p preserving the properties (2.2.3) to (2.2.9). We denote the class by

(2.2.10) o1(3) = {G} € mp(S*) =, Z/p.

Since the class {iog} € map—1(S2) = ma,—1(S2,) is order p, the map iog : S7~1 — SZ

can be extended to a map
g: (Y 57— (_3;2,,5,2,—1)-

Lemma 2.3 The degree of § on top cells is —1 modulo p.



Proof. Consider the following commutative diagram

: Ge - ut A .
Tap—1(S*71) T mp 1(S2) G my, (ST

[ I
mop-1(S%71) T myi(SEy) IS m, i (CP,y)
o[ o] o]=
Tap (Y72, §%-1) _ﬂ.., map(52,2_,) -—fp—> 72(CP,, CP,_,)
Let a be the degree of f';:l* ©gs, then @ = 1 (mod p) by (2.2.3). Let z be the

degree of g,. The commutativity of the above diagram implies p x & = & x p!. Thus

z=af(p— 1} = -1 (mod p). O

In the mod p exact sequence of Proposition 2.2, we can replace w4+1(33) by isomor-
phic m;4(S3) for i +1 # 3. Then the homomorpisms G and fl; are replaced by G and
H, respectively, given by the following maps :

g1, g2 by oo
The shrinking map 7 : Y2 — §% = ¥Y2/52%~1 jnduces an epimorphism

Tap(SP) — Y2, S¥| = Z/p.

Then 7*(atz,) =[] = 7*(19p) if and on ffa = 1 (mod p). Lemma 2.3 shows § ~ —r :

Y? — S?%_ and we have the following homotopy commutative diagram

SQP‘I _'_) Y2P .._’r__) SZP

(2.2.11) |- 3| |

R .y
Theorem 2.4 The following sequence is mod P exact fori+1#£3 :
s ‘EZ% 7Fi+2(52p+1) —A—) Tl','(Szp_l) *i) 1r,-+1(S3) —Hg) 1fi+1(82p+1) _A‘)‘ St

where G is given by G)=ai(3) o E(¢) for ¢e pmi(S%71)
and the Hopf invariant H, satisfies

Hy{ai(3),ptap, E() 1 = —E2(§) Jfor £em(S* ) withp -£=0.



Proof. The adjoint of g represents a4(3), the first relation follows. For a coextension
£ € mip1(Y?) of €, the adjoint of 7.(£) belongs to {c:(3),pt, £(£)}1 and the adjoint of
m.(€) is E*(£). Then the last relation follows from the commutativity of (2.2.11). O

The following lemma will be applied to investigate the homomorphism A in Theo-

rem 2.4.
Lemma 2.4 If B*(£) =0 for £ € ,m(S* 1) then £ is an image of A.

Proof. Since E(G(£)) = E(04(3)) o E*(¢) = 0, it follows from (2.1.2) that G(£) = 0.

By the exactness of the sequence of Theorem 2.4 the lemma follows. 0

2.3 Representation of invariants

In [38], we used the following representations of invariants in m(Q3™ 1),

We denote an invariant ¢ € ,m;(Q3™ ") by the symbol
(2:3.1) - z=Qm()

if there exists an element &' € 7, 2(S%™1) such that z = I({’) and the stable class
£ = E>=(¢') is not divisible by p.

Also, we denote an invariant y € ,m(Q5™ ") by the symbol
pTilld2

(2.3.2) y=Q" (n)

if the stable class n = E~(J(y)) is non-trivial.

Both invaiants Q™(¢) and @ (1) are said to be of stable type. Remark that these
invariants are not fixed only by the stable classes £ or . @™(£) depends on the choice
of the elements ¢'. Q" (17) has the indeterminacy Ker(£> o J).

On the other hand we use a reperesentation of invariants given by Moore{17].

It follows from (2.1.6) that we can choose a map



(2.3.3) Gm 1 Y2, im—t

such that following diagram is homotopy commutative up to non-zero mod p coefficients
of i¥ and 4% .

S2pm—3 £ 3 Y2pm—2 ™ N S2ym.—2

(2.3.4) l,—z lym‘ iia

02 52pm—1 ) Qgrn—l y Q3G2pm+1

By considering the corresponding diagram of homotopy groups we have

Lemma 2.5 If E?: m(S%m3) pTi2(S*™)  and  BY: iy (SPme3)
pTira(S*™¥3)  are epic, then gm. : pi(Y7™2) — Lr(Q2™Y) s also epic.
We refere an image g,..(7) € (@3 ) of y € (Y ?*r™=2) 0 be Moore represented, or

simply, M-represented by 7.

Denote the adjoint of §: Y2 — Q53 by
(2.3.5) Gr: Y =Sy et _, g8

This map Gy will be used instead of g; : Y22 Q} of (2.3.3).

An image of Gi.(7) € mya(S®) of v € T2 (YH) is called to be purely M-
represented by -.

2.4 Primary computations
For the sake of simplicity, we omit the symbol of the p-component as folllows.
@A) m(S) =, (P, m(S%) =, m(5F) and Q") = pm(QF™)

We apply the exactness of EHP-sequence (2.1.3).
The computation of unstable groups is done by induction on % for each k-stem

BTOUPS Mom114+k(S?™+1) by using the following diagram called computing diagram.



2 2 2
tarn(S?) 2 man(S%) D men(ST) > meak(S) oo

NP NP NP NP
T34(QF) a1 (Q3) Ta4x(Q3) we44(Q7)
=N { NH NH NH
T34 (S%) 2, Tk (S°) Zy mrea(S7) Lo mo+k(S?) =,
NP P NP NP

Tak(Q3) w54 (Q3) m11(Q3)

We shall compute k-stem unstable groups mnx(S™) for k& < pg — 2, where g =

2(p—1).
First we quote the results of the stable group.

(2.4.2) T =<a >2ZLfp for 1<r<p-1

rg—~1 7

75 =0 otherwise for 0<k<pg-—2.

Here the element oy is the stable class of a;(3) € m,(S%), and for r > 1, o, i8

defined inductively by
(2.4.3) a, = {o, pr,0,1} mod ayomf ),

The invariant of these range are all stable type and computed by Proposition 2.1.
In the computation diagram, we remove trivial group m:(Q3™~') = 0 and replace non-
trivial group of invariants by its generator.

For the case k=g — 1 = 2p — 3, the diagram becomes

Q(r)
NoH
ar2(5%) = mera(S°) 5 Tare(ST) Ty,

where E? are isomorphic since H(amiq(S7™1) = 0 and P(mamsq(Q3™H) = 0 for
m > 1.
Define ay(n) € mg4n-1(S™) by

ay(n) = E"3ay(3) for n>3.
Then 7,4 2m{S*™+!) is generated by c;(2m + 1) for m > 1.



Next unstable groups appear for k = 2¢—2and k =2¢ — 1 and the diagram is

Q' (o)
NEH
Tag+1(S?) £2+ T2q+3(S%) iz—) Taq+5(S7) —E—z-) e
F\P
Q'(e) Q1)
NE Rl

2 2 2
ma(S%) T mea(5%) Er me(sT) B

By Theorem 2.4, 03(3) = {a1(3), piap, Eas(2p — 1)} € Tag+2(S*) corresponds to
(al) Also the stable class of a5(3) is ay. 1t follows that E? of the bottom line are

isomorphic and that H(my514(S%)) = 0. Then P # 0 and M2g+3(S°) = 0, which is also
a consequence of m§,_, = 0.

If p > 3, we can continue this sort of discussions, before new stable generator
B € pr3 _, appears.

Define a.(n) € Tnyrg—1(S™) for n > 3 and 1 < r < p inductively by
. (3) = {1(3), prap, @,—1(2p)} and a,(n) = E"3q,(3).
Then we have
Theorem 2.5 The non-trivial unstable k-stem groups for k < pqg—2 are the followings.
PTemtrg(S*™H) =< 0, (2m + 1) > Zlp for 1<r<p-1 and 1< m,

pTapm—1(S*" ) =< P(Q™Y(v)) > Z/p for 1<m<p,
PT2mirg—1(S*™H) =< P(Qm+l(a,~m_1)) >2Zfp 1<r<p and 1<m<r—1.

Next consider lower dimensional homotopy of Moore spece Y™ = §m e+ which

i5 a mapping coue of a map fp: 8™ — 5™ of degree p : odd prime. Let
(24.4) s __{P_) g _‘_> yr+l _*, gl _fi) gt _‘_} yn+2 ...

be cofibering sequence. Since the map G : §% — §3 represents the generator a,(3) ¢

m2p(S*) of order p, there exists an extension of G over Y2#+! -

(2.4.5) G:Y"" 3 8% suchthat G =Toi.



Consider the composition f,0G : Y2+ — §% — §%. 5% is an H-space and Y*! is
a co-H-space. Then f, 0 G is homotopic to p times of G which is homotopic zero since

p times of the identity of Y?*! is the same. So, we have a coextension A of G:
A: YY" V% suchthat moA=SG:Y?? 5 StandwoAoi=S5G.
We denote suspensions of A and their classes by

(2.4.6) A(n): Y™ —¥Y" and on) €[V, V"]

for n > 4, ¢ = 2(p — 1), and call thern Adams maps and Adams classes respectively.

The r fold composition of a(n) = a’(n) is defined inductively by
a'(n)=a (n+qgoalm) e[Y,Y"] for n>4dandr>1,
and the r-th member «.(n) of a-series is defined by
a,(n) =ioa (n)om € Tayag—1(S") for n>4dandr>1,

where i and 7 denote, by the same symbol, the classes of i : S*+k~1 5 Y™tk and

7 :Y™ = S respectively. Here, we must add the definition of o, (3), » > 1 by
o, (3) = G.(a o).

Since the class a”~!(n-+¢)on represents a coextension S*™° — Y™ of a,_;(n+g-1),

we have forn > 3
(24.7) a,(n) = {o1(n), Pimig-1, ta(n+g—1)}  mod a1(7) © Mayrg—1(S"F*71).
This is compatible with the definition (2.4.3) and we have

(2.4.8) o, = E®a,(n)emhy_y  for n>3.

Let [Y, Y]y = lim,[Y™*, Y] be the stable self homotopy groups of Moore spectrum
Y = {Y"*'} which is computed by the following two exact sequecnes :

f . ‘t * f *,
7 2y af = m(Y) = w2 oy,

S M i ~* fp
M1 (Y) 5 7 (Y) = [Y, Y = m(Y) - m(Y),



where 77 = [8, 8], and m,(Y) = [S, Y], for the sphere spectrum S = {37},

Since f,. and f, are p times we have the following split exact seqeunces :

(2.4.9) 0 — 7 ® Z/p 2 m(Y) ™ Tor(r$_,,Z/p) — 0,

0 — me_1(Y) 5 [Y, Y} =5 m(Y) —s 0.

Since the identity class 1y € [Y, Y], is of order p, m(Y) and [Y, Y], are Z/p-
modules.

For0 <r <p, n5_, =<a, > and a, = na’i, then it follows from (2.4.10)
o (YY) =<da"i> and o (Y) =< a’i >
where § =iom € [Y,Y],.

Proposition 2.3 [Y,Y]y =< 1y > Zfp [Y,Y]_1=<6>=Z/p.
For0<r <y,
Y, Y=< o >=Z/p, Y, Y], 1 =< b0, 0" > Zip®Z/p,
Y, Y],g2 =< 0crd > Z/p .
The other groups [Y, Y]y, are trivial Jork <pg-3.

Since Y™ is (n — 2)-connected we have
(2.4.10) E®:[Y™* V" > [Y,Y), for n>k43.

We shall use the following convension.

If a stable class £ € [Y, Y}, is an image of E>, then {(n) € [Y™** Y] indicates an
element satisfying E>(¢(n)) = ¢.

Similarly, for { € 7§, £(n) € m,4(S™) satisfies E>(£(n)) = €.

This notation £(n) is not necessarily unique, but we can choose {£(n)} such that

E(¢(n)) = €(n + 1) whenever they exist. Sometimes, instead of ¢ (n) we use simply ¢,
EinS*orfiny™



3 Iterated Suspension and Lemmas

3.1 Homology of iterated suspension fibre
The 2k-fold iterated suspension
B¥ ;i (ST 1) — oo Grm—142k)
is equivalent to the homomorphism induced by the canonical inclusion

'i2k . S2m—1 y Q2k32m—-1+2k'

We give a homotopy fibre of i2* as the path space
grkn -1 Q(Q2k52m 142k SZm l)

The fibering Q"' — §2m-1 —y 2 G2m~142 induces the following exact sequence
including E?* :

P(”" ?rzyﬁ—l B gm 142k HUW
T

2k {28)
(3.1.1) _E__) om— 142k H (sz 1 S nime G

i+2k+1

where we write simply 77 = m;(5") .

From the triple ((2k12hg2m—1+3k+2k (2 GIm—1+2k GIm-1) we have a fibering
(31.2) %Zl“‘] _’_) Q;’Z:._% ____) Q2kQ2m—l+2k
Then the following sequence is exact

(3.13) - D m@) S m(Q gz;r_zh) T Qo)

a 1y e
— m (@) =

It is well known [4] that mod p homology ring H,(£2"S"*") is a free commutative
algebra over Z/p and the injection of Q"S™*" into the infinite loop space Q(S") =

lim, Q°(S™**) induces an injective homomorphism of rings. Dyer-Lashof operation,
modified in [20],

Q7 : Hy(SS™") — Hipjf((US™), q=2(p-1)



is defined such that it is compatible with the homology suspension and 7 (z) = «? for
z of degree 2j.

Starting from H.(S*™*') = A(u), we have H,(Q5¥+) — Z/p[u} and
H.(225+1) = A(u, Qmu, QF™y, - - - ) ® Z/p[AQ™u, AQP™Q™y, - - /]

for each fundamental class « and homology Bockstein A, and then

H*(Q3S2m+1) — Z/p[’ll,, Qmu, Ame—-lAQmu’ meQmu’ AQp(}nn—l)me-lAQmu .. ]
OA(AQ™u, QI AQ™u, AQPmQ™u, QPEm-NQrm—IAQmy, .. ).

Furthemore, we have for k < pm,

H (P P41y — 7 fol, @, Q™+, - . Q™ AQEIAQ™y, - 1)
QAAQ™u, AQ™ 1y, - - . , AQ"‘*’"”‘L’,, Q’""_lAQ"‘u, <)

The mod p homology of the homotopy fibre
%;:a-l — Q(Q2ks2m+2k-1, S2m—1)

of the 2&-fold iterated suspension 2% ; §2m~1 _y ()2 g2m+2k~1 5 computed by the Wang

exact sequence associated with the fibering
Q2k52m+2k—1 : 3 g;;n~1 3 S?m——l i

Then ¢ induces a surjection of H, with the kernel (u). Thus H,(Q37**') has the
induced ring structure and the following results hold.

(3.1.4) H*(Qg"“l) = Z/p[u, Avy, vy, Aw, - - 1 ® (Au, vy, Avy, - - - )

for ue Hopm_a,v € Hyprp 9, 1,715 € Hypp 5 and we Hapap g1,
(3-1~5) H*(ngl—l) - Z/p[u(h Uy, - - U1, AIU, o '] ® (Auﬂa Au: Upyr--, A'Uk—h o ')

for w; € Hzp,n_2+,;q, (0 <i<k-— 1) and v € ngzm_zp_l .



Let
Pl Ho(X) — Huoig(X)

be the dual Steenrod operation mod p. Then we have Nishida’s relation [20] between
@’ and pix. In particular,

(3‘1.6) piQs-{—I = SQS, @1AQS+1 — (3 + 1)AQ3 + QsA (‘S > O)
1 e = ("0 V)er ey

(3.1.8) PPAQ™T = —(3(” —171) B 1) AQ* +AQ gl + (5(” p‘ _1)1_ 1) QA

Applying (3.1.6) we have

PHAQQ™) = (pmAQF™T 4+ QP A)Q U = QP AQ Y,

pl(QmH’ll,) = (m +i— 1)Qm+i—1u’
P HAQ™ u) (m+HAQ™ ! + @™ Ay = (m + 1) AQ™H1y,

By the naturality of p!, the same relations hold for the correponding elements

w; = i (Q™ " u) € Hamp214g(Qor 3 Z/p) (0248 <k)
and v= i*(QPQOu) € H2p2m—2(Q%m_]; Z/p)

Then we have the following theorem.
Theorem 3.1 (1) For degree < 2p*m — 207 — 4 and up € Hopmez, ¥ € Hoprm_2,
H(QF Y Z{p) = L[pluo, AplAv, v] ® A(Aug, 9, Av, Av).
(2)  For degree < 2p*m — 2p— 3 and #; € Hapm 244 (0 < i < k- 1),
Hy( g;e"—l; Z/p) = Z/plug, w1, - -~ s Ur—1] ® A(Aug, Auy, -+, Aug_1),

where the following relations hold for 0<i<k—1:

plug = (m+i— Dupq, piAw = (m+1i)Au .



3.2 Simple unstable elements
In the exact couple associated to EHP-sequences, the first differential is
dy=HoP:m(QF*) — (@3 Y).

Suppose that the d;-image d;(z) of an element z ¢ 7i13(Q3™ ) is non-trivial and let
£ = P(z) € miy3(S**1). Then we have

(3.2.1) EX6)=0 and ¢¢ImE>

Such an element ¢ is called as a simple unstable element.

In the case m # 0,1 (mod p), we say this element £ removable in the sense that
the collection {z,{ = P(z), H () + 0} can be removed in the computation of unstable
groups, since the cancellation of this collection is independent both of EHP-sequence
and IJA-sequence.

The above differential d; is induced by the inclusion
d: QP —y Qi
of the homotopy fibre of i : Q2™ — Q21 Consider the map
D G
of (2.3.3). We choose g,, such that its induced map g, of mod p homology carries the

orientation of the top cell to the class ug of Theore 3.1. Consider Gmyp : YERAD=2

37! similarly, and let

Qggm.+1 . Y2p(m+1)—5 — Y-2pm.+q—3 —_— Q3ng+1 (q — 2(p . 1))

be the map adjoint to Jmy1-

Since g,,, is mod p equivalence up to degree < 4pm — 5, then there exists a map

hm . Y2pm+q~3 3 szm—2



for m > 1 such that the following diagram is homotopy commutatrive.
Y’me+q—~3 hm 3 Y2pm~2
(3.2.2) lﬂgymﬂ lgm
Q3 ngﬂ 4, ngq
Let

K(m,2) = Y¥"-2 Uy, CYmie?

be the mapping cone of the map h,,,. Then g,, can be extended to amapg,, : K(m,2) —»

2m—

2m=1"and we obtain the following homotopy commutative diagram.
y 2pm-2 ¢ s K(m,?2) - y YZpmtg—2
(3.2.3) lgm lﬁm lﬂﬁgmu
gm—l £ ) Qim-—l i Q2ng+1
where 7' shrinks the subcomplex Y 2™ 2 of K(m,2).

These mMaps gm, gm+1 and 7, are unigue up to homotopy. The map 7,,, is also mod

p equivalence up to degree < 4pm — 5. When m > 1, the homotopy class
T = [m] € Y2295, y?m-2] o [ye1 YOS

is uniquely determined. Then we have the following theorem.

Theorem 3.2 Form > 1 the map R, : Y2973 5 Y22 represents

T = ((m + 1)da — m - ad)(2pm — 2) € [yZmta—3 yim=2]

This follows from the homology structure of Q2™ given in Theorem 3.1 (2). For

the details see Proposotion 4.5 of [37]. Desuspensions of 7., are denoted as follows:
(3.2.4) 9 = (m+1Déa—m-ad)(2pm -2 1), o= 70

In the case m = 1 we replace Q1 by the 3-connective fibre S3 of S8 since Q2 ~ 0353,
The space Q} is also replaced by the 3-connective fibre 2255 of 22S°. Then Q(ngg, §)
is homotopy equivalent to Q3 = Q(0225%, $%), and we have a fibering

Q-4 Lo,



The mod p cohomology structure of S5 is verified from the fibering
S5 —3 S5 —3 K(Z,5)

and

H*(K(Z,5); Z/p) = Au, p'u, p*u, pPply, - - - ) ® Z/p[Ap'u, ApPu, ApPp'u, -]

for the fundamental class u € H and the cohomology Bockstein A.

By Adem relation we have
pl(golu) = 2p%u and pl(Aplu) = Aplu.

Let wy € H?”“(gg; Z(p) be the cohomology suspension of p'u € H?3, then by Serre
spectral seqeuence we have

H*(S%; Z/p) = Z/plws, plws, prws, -] @ MAws, Ap'ws, ApPuws, - - *)
for * < p(2p + 2) with Aplws = 2" Aws, and further, for ws € H *(ngg; Z/p),
(3.2.5) H*(QS% Z/p) = Z/plws, p'ws] @ A(Aaws, Aplws) for +< 2.
with  Aplwy = 2p' Aw,.
Similarly,

H*(QS% Z/p) = Z/plws] ® A(Aws) for *< 2?2,

Let Gy : Y2+ 4 3 be a lift of Gy :Y?H 4 63 then G, is a mod P equiavalence
for dimension < 4p + 1. Approximating d : Q- 5 through g, and G, , we have a
map hy : Y229 5 Y+ guch that the following diagram homotopy commutes :

yore By pnn ¥ &
(3.2.6) E la |a
B s F i, g5

where K = Y+ |y Qy2Ha jg 5 mapping cone of &; and G, is a mod P equivalence up
to dimmension < 4p + 1.

Then similar to Theorem 3.2 the following theorem holds for the class 71 of hy.



Theorem 3.3 The map by : YP~2 — Y?+! represents
i1 = (20a — ad)(2p + 1) € [Y¥2, Y#H],
As an application of Theorems 3.2 and 3.3 to the simple unstable elements, we have

Proposition 3.1 (1) Let m > 1. If an element © € miys( Jm+1) is M-represented
by E3y for an element v € m(Y*P™0=8) then di(z) = HP(z) € (@) is M-
represented by

hm*('y) =Nn07 € m(}ﬂpm—z) )

(2) Let m = 1. If an element = € mi(Q3) is M-represented by v € (Y72, then
P(z) € n;(S?) is purely M-represented by

’:1*(’)’) =1 0y € m(Y¥).

For a stable element £ € #f, we denote by £(n) an element in 7,,4(S") satisfying

E*(¢(n)) = £&. We define unstableness u(€) of a sthie element ¢ € 73 by
(3.2.7) u(€) = Min{n|3{(n) : E=({(n)) =£}-
Using the notations Q™ (£) and @™ (€) of section 3.2, we have the following lemmas.

Lemma 3.1  Ifu(f) < 2p(m +1) =5 for { € 7} then

Q™ (£)) = PH(Q™(E)) = (m + 1)@ (r§) -
When m = 1 the above holds for £ of u(£) < 4p — 3.
Lemma 3.2 Ifu(f) <2p(m+1)—5 and p¢ =0 for £ € 7 then

G(@(©) = PH@™ (&) =m - Q" (eaf).

When m = 1 the above holds for £ of u(¢) < 4p —3.
Lemma 3.3  Ifu(f) <2p(m+1)—5, pf =0 and axf =0 for £ € 1} then

~=m-f-1

a(@" €)= PH@ @) =qQ™() for ne(m+1){o,p,&} —mip,ai, €}

When m = 1 the above holds for £ of u(§) < 4p—3.



3.3 Lemmas for p times and A

Consider the cofibering of the mapping cone K (m,2) =Y%m-2y, Cy?mte3.
(3.3.1) Y#m? Ly K(m,2) 2 yormie?

Let 15 : K(m,2) — K(m,2) be the identity of K{m,2).

Theorem 3.4 The p timesp-1g : K (m,2) = K(m,?2) of the identity 1g is homotopic
to the composition

i'oa(2pm—2)on' : K(m,2) —s YIm+e? _, yimp—2 _, K(m,2).

This theorem is essentially proved by Gray|[7]. Since [Y™,Y"] = Z/p, p times of
identity of Y™ is homotopic to zero. This gives a homotopy

p-ly~iofon

for some f : Y¥mte-2 _ y2m-2 4, homotopy equivalence between the mapping
cone of two maps. The mapping cone of p- 1y is the smash product Y2 A K (m,2). The
mapping cone of ' o f o 7’ contains the mapping cone of f as subcomplex. Chnsidering
' operations in Y2 A K (m,2) by Cartan formula, one obtains the " in the mapping

cone of f and the theorem is proved.

Let
R YR Y23 and  K'(m, 2) = Y2Pm-3 Up:, CY2pmte—4
be desuspensions of /,, and K (m,2) and consider the suspension
E: 7 y(K'(m,2)) — m(K(m,2)).
Ifz€ImE thenp.-z = (p- 1K).(z). So, as a corollary of Theorem 3.4 we have

Proposition 3.2 Asuume that an element Y € m(K(m, 2)) is a suspension image then
there holds the equality

2(7) = i (a(Zpm — 2) o 7. ().



Applying this to the commutative diagram

Tars(SPHY) =, Rers(ST™Y) —= iy (SPHR)

lH 15(” lH

(3.3.2) 7@ B (@) I maa(@F)
lp lp(ﬂ lp

m(SPY) T (ST s (S

we have the following two lemmas which generalize Theorems 5.3, 5.4 of (38].

Lemma 3.4 Assume that an element & of w1 2(Q3™ ) is M-represented by E*(y) with

. ..(7) = 0 then there ezists an element £ € 7;(S™1) such that
p-£=P(y) end B¢ =P(z)
for an element y € m(Q3™ ") M-represented by a(2pm — 2) o E?y.

Proof. By the notations of (3.2.3), © = 22¢,n1.(E?y). By the assumption there exists
a coextension J € m:(K (m, 2)) of z such that #,(§) = E*y and 7 is a suspension image.
Proposition 3.2 implies

p(7) = i.(a(2pm —~ 2) 0 B*7).
Put T = 3,,.(7) and y = gm«(a(2pm — 2) o E%) for the maps of (3.2.3). The commu-
tativity of (3.2.3) implies

(3.3.3) p(T) =i(y) and j.(F)==.
Then the lemma follows from the commutativity of (3.3.2). O

Lemma 3.5 Assume that the Hopf invariant H(£) of an element £ € mey5(S*™*?) is
M-represented by E*(y) with hl,.(y) = 0, then there erists an element 1 € Tiy3 (S¥m+)
such thot

p-{=E’

and H(n) is M-represented by a(2pm — 2) o E*(y).



Proof. Put z = H(£) € m;y2(Q2™*), then (3.3. 3) holds for y = g,n.(a(2pm — 2) o E%y)
and T € m(Q3™7). Since

i@ - HOE) = @) - HE) =z -z =0,

there exists 2 € m;(Q}™ ") satisfying T = H®(£) +i.(z). By Lemma 2.2 pz =0. Then
1(y) =p(T) = HM(pf) and P(y) = PO (i.(y)) = PO I (4)(pf) = 0. By the exactness
of EHP-sequence, there exists 5’ € mir3(S*™+1) such that H(n') = y. Then

HO(pf — B*') = i(y) ~ 6. H(7') = i.(y) — i.(y) = 0

and p¢ — E*y' = E*y for some nq € Tia(S*™1). By putting 5 = ' + E?q the lemma
is established. ]

Next we consider the homomorphism
A pmiga(SPY) pmi(SF™ 1)
This homomorphism is induced by the map 3, in the following fibre sequence of (2.1.9).
Q4S2pm+l E) Q2S2pm——1 N ng—-l — 93('52}1"1-!-1) &) Q(Sme—l)
By Lemma 2.1, the restriciton of the first 9, on 5™ is & map of degree p. Then by

taking path spaces we have a map 3p 1 QT -5 QP™ 1 which induces a homomor-

phism A : m_(QF™ %) Ti_1(@7™ ) such that the following diagram commutes.
m(SH ) Ty ey (SPT) EY (@Y B, s
(3.3.4) l"’ lA 13 l"’
m(STm8) oy ma(Smiy B, o gimesy P m(§7m=3)
Since the maps g,,,, ; : K(pm — 1,2) - Q¥ and g,,,_, : YPlm-)-2 _, Qirm-2

are mod p equivalence up to degree 4p(pm — 1) — 5, there exists a map D' such that
the diagram

K(pm —1,2) 2, yrlem—1)-2
(3.3.5) lﬁ,,,,_, lgm_l

2pm—3 By 2pm—3
n — @



is homotopy commutative.
Since the restricition of D' on the subcomplex Y?2(F"~1-2 ig 4 mapping of degree

p, it is null homotopic. So we can take D' such as
D'=Don': K(pm —1,2) — Y¥rm--ta _, yorlm-1-2,
Proposition 3.3 The above map D : Y2?PPm-D=2re _ yo¥rlem=1=2 represents
a(2p(pm — 1) - 2)
up to non-zero coefficient.
This lemma is Lemma 9.2 of [38]. One may prove this by use of Theorem 3.1(1).

Lemma 3.6 If Hopf invariant H({) € T t(QF™ Y of £ € mira(SP™HY) is M-repre-
sented by E2y for an element y € miy (Y2P™~D4) satisfying

hpm-14(7) = 0.
Then H(A(L)) is M-represented by
a(2p(pm — 1) — 2) oy
up to non-zere coefficient.

The following case is a special cse of the abovve lemma but it frequently ocuurs.

Lemma 3.7 For ¢ € 7i,4(S?™*Y), v € 75 and § € nf, there hold the following

relations up to non-zero coeffieients.
(1) HE) =Qm(y) implies H(AE)=Q" (ar) = HP@()) -
2)  HE=Q"(y) ond A(f)=P@ (7)) implies

H(E 0b(i+4)) = Qm(10) ond A(£05(3)) = P@ (7))

Proof. (1) follows from Lemma 3.6 by considering the injection image of 5™ C Y™+,

(2) follows from the naturalities with respect to H, A and P. O



3.4 Short range unstable elements

We consider the second differential
dg : Kerd1 — Cokerd1 .
More precisely we consider an element ¢ € m;(S%™*1) satisfying the following condition.

(3.4.1) EY¢)#0, E*¢)=0 and ¢¢ImE®.

This is equivalent to

(34.2) H{) #0 and Ez(f) =P(z) #0 for some =z ¢ 71'£+2(Q§m+3) .

Such a set of elements {¢, F2¢ } is called as two stage unstable elements or secondary
unstable elements.

The following diagram is commutative.

m;(S2m+) £, T 42(S?™+3) — Tipa(QE™F3)

(3.4.3) lg lﬂm l=

_ ; N P
mi3(Qam ) 2 mi3(QY) —— T2 (@57 3)

Next, concerning the results (3.1.5) we have the following homotopy commutative
diagram :

yam? L, K(m,2) &t yamie-s
(3.4.4) lgm 15,., lnggmH
ng—l i . Q2m~1 ¢ d Qanm+3

>, . 2 N _
where A1 is coextension of A{Z) | : Y2rm+r—6 _y y2pmizp—a.

Proposition 3.4 Assume that an invariant z € Tira(Q3™H0) is M-represented by ESy
fory € mi_ (V> +48) and 5%\, () =0, then

ta {ﬂms ﬂr(z-)l-l’ E3'7}l = a(m) .



The complex K (m, 2) = Y272 em+2-5  e?rm++22~4 contains a mapping cone

2pm+2p—5 __ o2pm—3 2pm+-2p—5
C(nH—l)a =35 Ue

of (m + 1)en(2pm — 3) as subcomplex. Moreover the restriction of Fni1 oD S2tp—S

is homotopic to a map
T . olpm4dp—6 2puet+2p—5
h: SFRTET — O e
which is a coextension of (m + 2)a;(2pm + 2p — 6). Then as a corollary of Proposition

3.4 we have

Lemma 3.8 Assume m # —1,—2 (mod p) and that an invaerient ¢ € Tiaa(QEmF?) is
M-represented by E%(i,y) for v € mi_s(S¥™+77?) and 0a(2m +4p — 9) 0oy = 0, then

there exists an element £ € m(S*™ ) such thot
H(¢) € I{a1(2pm — 1), as(2pm + 2p — 4), E®4} and E*(¢) = P(z)

up to non-zero coefficient.

2pmt2p—5

mil)a V€ have

Similarly, concerning K(m,2)/

Lemma 3.9 Assume m # 0,—1 (mod p) aend that an inveriant @ € Tiya( Q™3 s
M-represented by E°y for v € mi_s(Y?™4~%) and 7],(,‘21 o« =0, then there erists an

element £ € mip((ST™F1) such that
Hy(§) = JH(E) € {eu(2pm + 1), aa(2pm + 2p = 2), B°m7}

up to non-zero coefficient.

Let B; be a generator of 75 _, = Z/p. f, is given by a long bracket
B = o, 01, ,a1}

consists of p number of o and it is detected by the secondary operation of Adem

relation

Pt =0.



In unstable case 51(n) € Tnypq-2(S") of E=B(n) = f; is defined for n >2p—1,
which is stable for n > 2p + 1 and Bri{2p — 1) is of order p2.

We quote from (38] the following two lemmas (Theorems 10.3, 10.8) on a little

longer series of unstable elements.

Lemma 3.10 Let I > 1 and m = pl. Then there exists an element v(2m + 1) of
Topm1pg—2(S2™ 1) such that

B(v@m+1)) =1(Qn(B1)) end E**Dy(2m +1) = P(I{ay(2mp + pq - 1))
up to non-zero coefficient, where v(2m + 2p — 1) = E?~2y(Im + 1).

Let § € [Yntre-1 Gn] and f§ € Tntpe-1{Y ™) be an extension and a coextension of

1 respectively for large n. Let
Cg=38"uetri-lyertrs gng Cz=8"Ue" yertr

be mapping cones of 3 and ﬁ respectively. Then 3, is also characterized by the following
property.

(3.4.5) P*#0 on Cz and Cs.

We have the other generator §, of wf’;p +1)q—2 = Z/p, which is detected by the
secondary operation associated to Adem relation

pppp+l — 602p+l + p21) ,wpl .

Lemma 3.11 Assume that m = pn for an integer n # p— 2 (mod p) and n > 1.
Then there exists an element v;(2m + 1) € Tapm-+(2p+1)q—2(S2™+) such that

Hui(2m+1) =0 () and v (2m 4+ 2p + 3) = P(Q™+rH1 (B1))

up to non-zero coefficient, where v(2m + 2p + 3) = E%®+2y(2m + 1).



3.5 Lemmas for qa; times
For m > 1 consider a sphere-bundle over sphere
g2m+1 __-__) Bpn(a) P, g2m+t2p-1

having the characteristic class a;(2m + 1). We consider the boundary homomorphism

,, in the homotopy exact sequence associated with the sphere-bundle
o Tt (B(@) 25w (S22 1Y 22y (82 2 my(B(e)) B -
then we have
Proposition 3.5 8,(E*y) =ay(2m+1)o By for € m_ (S 1),
Oka[21] constructed maps
(3.5.1) f:8*Bn(a)) — Bmyi(a)  for m2>1

which induces isomorphisms of H;( ) for i < 4m + 2p. Let @B,,() be a homotopy
fibre of the adjoint of f, then we have a fibering

(3.5.2) QBum(@) — Bu(a) == *Bnyi(a),
and the following EHP-sequence for B,,(a) -
(35.3) - D mis(Bmas(@)) - m(QBum(@)) - mi(Bula))
s Tisa(Brra(@) 5 -

Furethermore we have the following commutative and exact diagram.
(3.5.4)

T2(Bm(@)  —E mia(SPY) 2y 1y (S2H) s miya(Bi(a)

B? lE’ BE? lE’

Tira(Bmi1()) o Tira(SImHPHL) s i3 (S F3) S i+3(Bmi1(a))
|= J=
Te(@Bum(@)) 2 maa (@) 2 m(@™) — m(QBn(@))
1® lp 17 lp

Tirt(Bm(@)) T mepy(SPmHY) Doy ()t m(Bo(e)




Consider the following composition :
T 00 01 : miya(S™PIT) oy (QEmH2P Yy T Q™) — My (SR
The following theorem is due to Okaf21].
Theorem 3.5 Up to non-zero coefficients the relation
JOI(E*y) = By(2p(m + 1) +1) 0 By,
holds for any vy € m;(S%m+e-1y,

The boundary homomorphism 8, : 7., (Q2™*1) 7:(Q3™ ) is induced by a

map dy, : QQ%’“”"”I — @EmHL Approximate the map by Morre spaces, then we have
a commutative diagram

Y2P(m+11)—3 Py ) }/2})(":-1—1)—2
(355) 1009m+p lgm+1

— d,
QQ;’"+2P 1 = Q§m+1

for m > 1, where B satisfies
(3.5.6) Byt = f1(2p(m + 1) — 2).
Applyng this to (3.5.4) we have the following lemmas.

Lemma 3.12 Assume that Hopf invariant H (€) of an element ¢ ¢ iy g(SImH2pH1)

is M-represented by Ev for v € (Y20 0)-3) It an > 1 then the Hopf invarient
H(8x(£)) is M-represented by By o7.

If the invariants are stabel type the lemma is applied as follows.
(3.5.7) H{) =Q™*(y) implies H(8.(8)) = Q™ (B1).
Lemma 3.13 Let z ¢ 7rg+1(Q§'"+2”"1) is M-represented by Ey and y € m(Q3t) 4s

represented by Buyy. If m > 1 then P(y) = 8o P(z).



4 Unstable Alpha families

4.1 Alpha type invariants

First, recall the relation of Yamamoto[45] in the algebra [Y, Y], = 3 4[Y, Y], over
Z /p of stable self homotopy of Moore space.

(4.1.1) 2ada = o’§ + 6a®
From this relation and 64 = 0 we have
(4.1.2) a*dat =t - o e+ (1 — t)ot M = s - ada™ T + (1 - s)da’t
a*datd = dotda® =t - o 1dad
Next, we recall e-invariant of Adams(1]

e, — Q7.

In particular,

Theorem 4.1 Let r = ap” for an integer a # 0 (mod p).

(1) e(a,) = —1/p (mod1).
(2) e(ns,_y) C Z(1/p"*") /2.
(3) e{p,a,_1,00} = b/p*! for some b # 0 (mod p).

From (1) and (2) of of the above theorem, it follows that if r # 0 (mod p) then
o, = ra’i =i'm.(a")

is not divisible by p, and §a"§ # 0 by (2.4.10).
By (4.1.2) 6078 = r - & '3ad. Then o ~'dad # 0 for r Z 0 (mod p) and thus

(4.1.3) «’dad #£0 forall s>0.
Consequently Yamamoto[45] obtained

Proposition 4.1 The subalgebra of [Y, Y], generated by o and 8 has an additive base
{1y, 8,0*,0*8, o* ', 000y k = 1,2,---} .



The results (4.1.3) implies the following

Proposition 4.2 There exists an element @, ¢ w5,y uniguely modulo p - w1, Such
r—1

i)y, am=mira™?), idnw=o""ab = dada? #0 and

a, € {P: Qp_j, 00} = {al,a,_-],p}.

that ic, = (a

Proof. We know that a,_joy = 0 since o; and hence 001 = Q,_104 are J-images.
Then m(0”'6ai) = a,_101 = 0. By the exactness of the sequence (2.4.9), there exists
@, satisfying id, = " 6ai = (0" “)ay. Then id7 = o™ 608 = dada™1 # 0.
Since o”'{ is a coextension of a,_y, i, = (@ 14)ay belongs to i{p, Qy—1,04}. Since
Keri, = p#5,_,, &, belongs to {p, a,_s, a1 }. Dually we have the others. 0

(2) and (3) of Theorem 4.1 show that the order of &, is a multiple of p**1.

Next, consider unstable version. a(n) € [Y™7, V"], ¢ = 2(p—1) is defined in (2.4.7)
for n > 4 and d(n) € [Y™~,Y™] for n > 3. They are connected by Ea(n) = a(n+ 1)
E*a(n) = o, Ed(n) = 6(n+ 1) and E*4(n) = 4.

Unstable versions of products are also defined naturally. For example, do(n) =
d(n+g) o a(n), ad(n) = afn — 1) 0 §(n) and so on.

H

Lemma 4.1 The reletion (4.1.1) holds for dimension n > 6, that is,
2000 (n) = (e?§ + 6a®)(n).
Thus the relations in (4.1.2) hold for unstable case of dimension n > 6.

The proof is seen in Proposition 4.2 of [38).

For r > 0, we define an invariant

A,(2m - 1) € 7|'2pm+rq—3(Q§m~1)

to be M-represented by

(4.1.4) "i(2pm — 2) : SHTATIT3 y ylrmira-2 _, ypme2 (Imy (2mo1y



In the case r = 0, Ag(2m — 1) = I{tapm—1) # O for the identity class typm-—1 €
Tapm—1(S¥™1). We denote this element by

(4.1.5) w = I{t2pm—1) = Ap(2m — 1) € Tapm_3(Q5" ).
In the case r > 0, J(A.(2m — 1)) = E*(ma"i)(2pm + 1), that is,
(4.1.6) J(A,(2m 1)) = a,(2pm 4+ 1) £ 0 in Fomarg(S7).
Proposition 4.3 The invariants A.(2m — 1) are non-trivial for r > 0.
We define also another invariant
0 (2m — 1) € Topmirg—a(Q3™ ") for r>0
10 be M-represented by

(4.1.7) o liay(2pm — 2) 1 SmETITE oy GPmHrTDa=3 _y yAme2 (I Fme).

4.2 Simple unstable alpha families

By Proposition 3.1, dy-image of A,_;(2m + 1) is M-represented by

Thm © (@ 18) = ((m + 1)da — mad) (@) = (m + 1)0a” — mada™™"  on y2rm—2,
Since da"i = (ra 6o+ (1 — r)a7d)i = ra"dai and ada™'i = (r — 1)a"dai,
m 0 (7Y ioy) = (m + 1) i = (m+r)a” oy on VP2,

Thus we have
Proposition 4.4 d;(4, 1(2m + 1)) = HP(A,_s(2m + 1)) = (n +r)e.(2m — 1).
We denote P-image of the invariant A,_,,_1(2m+ 1) by
(42.1)  o(2m 4 1) = P(Arma1(2m + 1)) € Tamirg1(S™H) for 1<m <.

In meta-stable range, a,(2m — 1} # 0 since J(a.(2m — 1}) = ia,(2pm — 1) is not
divisible by p. Then a(2m+ 1) is a simple unstable element when m+r # 0 (mod p).

In order to estimate the non-triviality of a,(2m — 1), we prepare the following



Lemma 4.2 Assume that elements £ € m;(S*™ ) and 5 € w;(S*) satisfy
pE=0, pp=0 and E*fon)=0,
then {ptam 1, B2, E*n} and {E%, E*5,pti1a} are E®-images.

Proof. Let C, = §*U ei*! be a mapping cone of 7 and £ : S2C, - $?™H e an
extension of E2¢ : §7+2 5 g2m+1

Let p# ~ % o p,, : Q282 H _y (252 H b the deformation of (2.1.12).
For the adjoint Q3¢ of € we have

o ~itor, o Q2E: C, — Q252mH __, 2g2m+1

Let g =1y 0 ¢ : C; — 51 then the adjoint of i2 o g is E%g.
The map p? 0 Q3¢ is the adjoint of
s2c, £, g2mi1 é S2gm+1 S8 22 SImtl e, gimi1

where e is the evaluation and f, = e0 S2pP o 2 : §2mH _y Gim+l g 5 map of degree p.
E'g = fyof and f, o€ : §2C, — §¥mH1 _y gamt1 represents —u* {plama1, B2, B}
for % @ mja(SPmH) — [Y743,92mH1] Thyg E*{9} € —{ptamt1, B, E*p},. The
indeterminacy of the bracket is p - m;, 5(S2™+1) 4 E*mi11(S%). Since p(mjq3(5m+1)) ¢
E*(75,1(S*')) by Lemma 2.2, the above bracket is an E-image.

The second bracket {E?*¢, By, Pti+2} is represented by the composition Eopt:
8343 5 §%C, — §?™+1 where i is a coextension of ptive- The H({E*¢, B, pi;y0})
is a p-times and zero by Theorem 2.3. [}

Proposition 4.5 The invariants a.(2m — 1) are non-trivial for r > 0 .

Proof.  J(a.(2m —1)) = E¥((ra"Yiay)(2pm — 2)) = ar_1ou(2pm + 1) .

If o, _1c1(2pm + 1) # O then a,{2m — 1) #0.

So, we may assume that a,_jc (2pm + 1) = 0. Since the homomorphism J in
(2.1.9) is induced by a map j : Q™! — Q35%m+ 4nd J © 9m is homotopic to i o 7 :
Y22y §%m=2 |, 3S%mtl we see that J (a.(2m — 1)) = 0.



Then under the homomorphism 7 of (2.1.9), a.(2m — 1) is the image of an element
& in {p, a,_y,1}(Zpm+1). By Lemma 4.2, & is an E*-image of &(2pm — 1) satisfying
E=(&,.(2pm — 1)) = &,

If 0,(2m—1) = I(@) = 0 then E?a = E*A(£) = pt for some . But this contradicts
to non-divisibility of &,. Thus a,(2m — 1) # 0. 0

The results of Theorem 2.5 is extended as follows.

Theorem 4.2 Assume that r # 0 (mod p).

(1) For m > 1, a,(2m+ 1) generates direct summand of Tamirg(S*™*1) isomorphic
to Z/p. F20{2m + 1) = a,(2m +3) and Hy(0,(3)) = v 1(2p+1) if r > L.

(2) For 1 < m < r, at(2m + 1) generates a direct summand of Tapyrq—1(S*™)

isomorphic to Z/p. H(e(2m+ 1)) =7 - @y_m(2m — 1).

Proof. (1) follows from that «, of r # 0 is no divisible by p. (2) follows from Proposi-
tions 4.4 and 4.5. O

The computing diagram for the above result is presented as follows.

n= 3 5 7 2r—5 2r—-3 2r—1 stable
Qr_1 Ar -3 Gr—3 O3 Gg a1
“NEORNUEH "NH NOH “H NCH
k=rqg—2 a}(3) ai(5) ai(7) --- oi(2r—5) oal(2r=3) «ai(2r-1)
NP AP NP P P
Ar Aa A A, Ay Ay
NOH
E=rg—1 a.(3)= a,(5)= o.(T) = -+ = a,(2r—5) = o, (2r-3) =a,(2r-1) = a,

4.3 Unstable alpha families

Here we consider (rq — 1)-stem and (rg — 2)-stem groups of the case r =0 mod p.

Proposition 4.5 of this case is
(4.3.1) HP(A, _m_1(2m+1)) = H(a;(2m +1)) = 0.
It follows from Lemmas 3.5, 3.6



Lemma 4.3 Let r =0 (mod p) and m > 1.

(1) There exists an element o".(2m — 1) € Mam—34rg(S*™ 1) such that
B (2m—1)=af(2m+1) end p- o (2m—1)=a}(2m—1).

(2) IfH(E) = A, 1(2m+1) for an element £ of Tam424rq(S*™H3) then there exists

an element ' of Mo y,q(S*™+!) such that
H(E) - Ar—m(zm - 1) and Ezf' =pt.

Let r = ap*™) for ¢ # 0 (mod p). Then o, is divisible by p""). Denote by ot an
element satisfying p*ol” = a, for 1 < s <v(r).

Gray[6] gave unstable elements o) (2m + 25 + 1) which converge to o'”.

We consider an element o;*)(2m — 1) of Tam—3+4rg(:S*™ 1), if it exists, to be satisfy
(43.2) E*o;®(2m—1)=aj@m+25—1) and p'a’®(2m— 1) =al(2m-1).
Now, we quote the following results of Gray[7].

Lemma 4.4 Let r = ap” for a # 0 (mod p), v = v(r), then there exists an element
aW(er-w-1)¢ Topr—2—3(S* 1) such that

EZVa:(")(?I' — 2 - 1) =y = P[(LZpr—l) c ."-2”_3(521-—1) .

Moreover, H{ar™(2r — 2v — 1)) = Q¥ Yaj,) for a generator o, of InJ N1 1

For convenience of discussion we propose

Assertion A In Lemma 4.4 we can take &,y instead of o), up to non-zero coefficient.

For r < p(p—1) we see that Pw;sq_, has a si‘ngle generator, hence Assertion A holds.
For the case r = p(p—1), ;x5,_, has another generator ;47" Since Q¥ 2 g, gr 1)
= HP(Q* ), we can replace o +1 in Lemma 4.4 by &,1. The next not alpha type
generator of ;x5 _, is a; 37 2F,. Thus Assertion A holds for r < p® + 1, and so on.

We do not know any counter example for Assertion A.



The following theorem show the relations betwen Grays element in [7] and our
invariants in EHP-sequence. Reall (4.2.1) : o}(2m + 1) = P(A,_(ms1)(2m + 1)).

Theorem 4.3 Let 7 = ap” for a 2 0 (mod p) and v = v(r) > 0. There are elements
a:(’)(2m +1) € Tom—t4rg(ST™) for s<v ond s<m<r—s
and ol (2m + 1) € Tomyrg($2™Y)  for s<v and s<m
satisfying the following properiies up to non-zero coeffieients.
(0) a:(o')(2m +1)=0a.(2m+1) and AV@2m +1) = a.(2m +1).
O p-a??@m+1)=a"""2m+1)  and B om+1) = o 2m + 3)
for 1<s<v and s<m<r—5.
(2) p-@m+1)= o VOem+1) and E2f?(2m +1) = ol (2m + 3)
for 1<s<v and s<m.
(3) H(aﬁ"‘)(Zm +1))=A,_n2m—-1) for 1<m<r+1,
P(Arpa(2m+1)) = E2"a:(")(2m +1) for v+1<m<r.
(4) The orders of ar(2m+1) and o) (2m+1) are both p*+l.
(5) If Assertion A holds for r, in particular if r < p7, then
H@W@em+1) =a,_n(@m—1) for s=Min(r,m+1)andl <m<r—v.

Proof. If the element £ € Mam24-5(S¥"1?) of Lemma 4.3(2) exists, then we get succes-
sively £,¢',- -+, £ and the last element £07~1 € my,,,(S%) satisfies B2 2¢(m-1) =
p™1¢ and H(ED) = A, (1) = H(,(3)). Thus £~1 is of order p, and the order
of ¢ is p™*1. It follows from Theorem 4.1 that m < v. This shows that if m > v such

an element £ does not exist, and
(4.3.3) a,(2m+1)=P(A,_ma(Zm+1))#0 for m>v.

Next the above results implies that for larger values of m, o7 (2m + 1) is of order
p*tlif it exists. Lemma 4.4 and Lemma 4.3 show the existence of a:(")(2m + 1) for
r—v > m > v. If (4.3.3) holds for m = v then there exists aﬂ"’(?v + 1) of order
p"*! which contradicts to Theorem 2.3. Thus P(A,_,_y{2v + 1)) = 0. This means the
existence of o) (2v + 3) with H(a?(2v + 3)) = A,_,_1(2v + 1). Then the existence
of o™V (2m + 1)) for 1 < m < v + 1 follows.



Consequently (1) to (4) are established. (5) follows from Lemma 4.4. ]

We define by A7™*" a subgroup of ,m;(S?™+!) generated by of” or E%a’®. Thus

(434) 40t = <a¥@m+1)> for s=Min(v,m)

At = <a¥0m+1) > fors= Min(v,r —m,m) and m<r —v
A2 — 0 otherwise.

Also we define by AQ?™! a subgroup of m:(Q3™ 1) generated by A,_m(2m — 1) or
@r-m(2m — 1) € ImP. Thus

(4.3.5) AQITT = <A m(@m—1)> for 1<m<r
AQIS = <o n(2m— 1})> for 1<m<r—vw
AQ™1 = 0 othersise.

We call subsystem of computing diagram consists of A"+ and AQ* 1 the system

of unstable alpha families.

Proposition 4.6 The homamorphz‘sms E* H and P in EHP-sequence are closed on

unstable alpha fomilies up to a k-stem groups fork < pZ+ig_2

The computing diagram of unstable alpha family of the case v(r) = 1 is as follows.

n= 3 5 T 2r—5 2r—3 2r —1 stable
Qp_y Qy Qy_3 a3 Qg (01)
Ne Nm N&# NH N
k=rqg—2 al(3) =0}'(5) =al'(T) +--- = o' (2r—5) - o} (2r —3) —o (2r — 1)
NP NP NP NP
Ay Ay A A, A Ag
NE N&#

k=rg-1 a.(3) 2a(5)=cd(I)="---= @, (2r—5) = ol(2r—3) =a!(2r—1) Z o,

In this case the invariant a; = a,(2r — 3) is out of the unstable alpha family.
i v(r) = 2, then a, and a;, are out of the family.



4.4 Removability and Residue

We have seen that the unstable alpha families are close with respect to the EHFP-

sequence. However, the EHP-sequence on these systems is not necessarily exact.

Proposition 4.7 The exactness of EHP-sequence on unstble alpha families breaks on
the following two points:

(1) The invariants a,(2m + 1) for r — v(r) < m < r are not H-images of unstable
alpha families. We must exclude them.

(2) The unstable elements of(2r — 2s — 1) for s = 0 (mod p) and s < ¥(r) is a

kernel of A and generates not alpha type invariont.

We shall excluding unstable alpha farilies and make a computing diagram mod A.

In that case above two sort of elements must be added as residue elements.

On the other hand, compatibility of the unstable alpha families with respect to
T1JA-sequence, especially the homomorphism A : m;yp(S?™H) = 7 (S?™71) have to
be checked.

Consider the case r % 0 (mod p) of Theorem 4.2. Since E* : Agf;ﬁ;iq_2 -
Al = Lfp is isomorphic and A o E* = p-, we have A(A1) = 0. Then
1JA-sequence produces two invariants A,.(2m — 1) and e,(2m — 1).

For the generator o (2pm — 1) and a}(2pm + 1) of the (rq — 2)-stem groups satisfy
H{a2(2pm — 1)) = a’_,.(2pm — 3) and H(o}(2pm + 1)) = a_,,_,(2pm — 1). By the
definition of o} we have e}_,, = @ oa,_,_;. Then it follows from Lemma 3.7 that
Al (2pm + 1)) = & (2pm — 1) mod KerH = ImE?. This shows that Delta cancells
the generators of the (kg — 2)-stem groups.

For the case = 0 (mod p), the results are similar but rather easier by using higher
order generators.

There is an exceptional case that E? : A% 0, , — A g (e =0,-1) s
injective but CokerE? = Z/p. In this case correspondent A are both epic, and produce

one invariant for each.



5 Old Table of 3-primary Groups

5.1 3-primary Groups, stable to unstable

The results of 3-primary k-th homotopy groups for k < 45 was given in Toda[37],[38]
and announced for £ < 55 by Maruyama and Mimura in 1998.

We begin to quote from Oka[22] the following list of 3-primary stable homotopy
groups ;7w with generators for k < 62 excluding the alpha type generators a,, o}, af,.

For the notations of generators, we use those given in [22].

(5.1.1)

List of 37 =< generator >, relations up to sign

(V)
2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(7
(18)
(19)
(20)

37";'130 =< B >,
iy =< a1ffy >.
3Ty =< f} >.
33y =< i} >.
37!’:;55 =< ,62 >.
3Thy =< oyl >.
375 =< 0% >,
ags =< P12 >.
3y =< € >,

371'358 =& >,

37F389 =< ayfifr >.
i =< At >,
3Ty =< €3 >,

37gs =< p >,

3Tas =< PP >.
3Ty, =< fie >.
gy =< a1 320, >.
37!"55'0 =< ﬁf >.
s =< 3 >,

3y =< 33 >.

B = {o1, 0,04 }.

ﬁls = {a'ly 31 ﬂ2}

€ = {aa, 04,53}

€] = {Cll, 3, ﬂf,al}.

o€ = f.
€2 = {01,3, 6} = 2{3, Qg €1}-

p= {alv a0y, fl}, PY = (x1€9.

ﬂzﬂ = {C!], Qy, 90}'



From now on we restrict ousell to the computation of 3-primary unstable groups

mod A, and use the notation
= ym(S™/AY,  QF = sm(Q)/AQ} end w} = smi[A}

for the sake of simplicity.
The computation of the 3-primary components of the k-stem groups m;,, for odd
n will be done usually by induction on k£ and n for the following sequence of double

suspensisons E?

' 3 5 2m—1 B omal E? 8§
(5.1.2) LETES =z Mok LS Mom—t14k — 7 Tamirek —7 77" 77 Mg,

where we assume that the stable group =7 and the unstable groups mymti, . for j < k
are already fixed.
Each double suspension E? is verified by using EHP-sequence (2.1.1) of p = 3 which

is rewritten as the following exact sequence :

H 2m—1 2m—1 m-+1 2m—1 Id
(5.1.3) o o 14k R Tom—14k * ’T;m+1+k 5 Qom2ip — -

The computations of the k-stem groups are done by use of the following

Computing Diagram mod A

2 ¥3 2 2 2 2
3 E 5 E T E E 2m~1 E m41 E
Tork —F Tapg > Toup — =70 — T o ’T;m+k —
P P P
1 3 5 . . 2mn—1
Qk QZ—H# Q4+k ) 2m—2-+k
K\ H '\ H '\ H & H
2 2 2 2 2
3 B 5 B 7 B 2m—1 E Zrmet1 E
Maph — 7 Togp — Tqgp —F ¢ —’ Tom—14k 7 Mamyigr
NP NP r
1 3 5 2m—1
Q]-Hc Q3+k Q5+k T T sz 1+k
KH R H R H K H
3 B 5 B® 7 B E'  9m-1 E? a1
Mgk —F Mg —F Mgy —F o % Mopmap T Tomadik —’

2err—

Here the group @51, has to be fiexed in advance by the 1J A-sequence of Theorem

2.2. For k < 107, Q3™~1 , contains extra elements

(5.1.4) w=1IP() € Qs  m€QiT,  02€QunT;



of section 4.5. Let Qi:__i +» be the quotient over the subgroup spanned by (5.1.4).

Then the invariants mod A is obtained by the following exact sequence.

6m+1 6m—1 I H2m—1 Smt1 6m—1
(5-1~5) L Tomt1+k R Tom—11k sz—H—k = Tomth —’ Tom—24k -

In the case m = 1, H : n},, — Q4 is bijective for k # 0. Then the group 3 will
be computed directly by the following sequence

(5.1.6) ---i}ﬂ';k£~+7rg+k—§—nr§%—I-Il)-:;r;i_kiyﬁ?%_gy..,
derived from Theorem 2.4. Remark that the sequence (6.1.6) is exact except the case

k=11

In the computating diagram, many numbers of generators in Q™1 are given as

stable type invariants
Q™) Qi or @) eQimt for tenf

given in (2.4.1) or (2.4.2). We represent such generators by corresponding roman
charactors. The following (5.1.7) is the list of stable type invariants correponding to

the stable generators in (5.1.1).

(6.1.7) Invariants Q™(¢) and Q (¢) for t¢ ng, k<55.

E o] 37 IOE 13 |20 23 126] 29 |30 36 _37_3_8
£ l Loy |ap fJ’l Py Bi | Bl | B2 | caPs | Bl | Bifa €| e
Q) il e |a ab | 0" | ab® [ By | aby [0 | by | € | &
Q| | B AB | B® | AB* | B, | AB, | B* BB, I | B, |

k 39 4042 45| 45 | 46 | 47T [ 49 [50[52] 55
& PP | By | e | ¢ | cuea | BiB Br€' | cufiiBs | B | B3 | B |
Qm(E) || abby | ' |es [ph| x | 0%, | be' | at’b, | & | b2 | b
Q (5) AABZ B Ez X AEg Bz.Bz | BE' A3232 Bs | B% AB%




The fitst differentials
d1 =HoP: ?I',j+3(_Q§m+l) —_— 7T§+3{32m+1) —3 W;(ng_l)

of these stable type invariants are verified by use of Lemmas 3.1, 3.2 and 3.3. The

results depend on the values of m (mod 3) as is seen below.

Proposition 5.1 The image d;(z) = HP(z) € ﬁzj_i, up to sign, of each invariant

2m+1
T € Qgmizsr 15 given as follows.

[k ]|10|11120[21|‘26‘27_i‘-3bl 37 '37\38‘39'4”
z ||b| B || B b B |bh| BB B ¢ | E lEﬂ By
.m—0||ab {)_[a‘.’r'r 0 'abg. o .abbgL 0o |0 _1821 0 ]
m=1]ab | AB |ab’ AB’ abg.ABglabbg ABB, | 0" | B"| 0 | AE,
lm 2001 AB[ 0 [AB? 0 |AB,| 0 |ABB;IO|B'Ie2|AE‘2‘

|k [ 46 [ 47 [47] 48 [52] 53 |
| W%, | B°B; Ibe1BE"b§iB§i
|

33

77!:0\1[1()2(}3] 0 [0 ab2| 0

L]

im=1abb; | AB'B, | b5 | B | ab} | ABZ ]|

‘m=2| 0 |AB'B,| 0 | B® | 0 | AB}

di(z) = 0 for the remainning invariants :

(5.1.8) x = ab, ab?, aby, 1P, €1, abhy, b*, eq, ab, B°, ab3,
(5.1.9) ¢ = AB, AB?, AB,, B3, ABB,, B, AB?B,, B, ABg‘

Proof. If a;£ is not divisible by 3, then for x = @™¥1(£), di(z) = (m+ 1)Q™(a1€) #0
by Lemma 3.1. This is applied to invariants = = b, b2, by, bba, €', b2by, be', b2, where we
note that oy = f}.

Similarly, it follows from Lemma, 3.2 that for X = B, B% By, BBy, F', BE', B we
have d;(X) = +AX if m = 1,2 (mod 3). But in the case m = 0 (mod 3), d;(X) is not
necessarily zero and may be a form Q™(n) for some 7. d;(B) = 0 since 7§, = 0. Then
by the naturality, di(X) = 0 for X = B?, BB,, BE'. Also for the case m =0 (mod 3),
di(E') = 0 since 75; = 0 and d,(B3) = 0 since n§; = 0. The relation dy(B;) = b*
follows from Lemma 3.3 and the relation in (7) of (5.1.1).



From the relations in (13) of (5.1.1) and Lemma 3.3, it follows di(Ey) = Q™(n) for

n=(m+1){01,3,¢} — mf3, 01,6} = ((m + 1) — 2m)es = (1 — m)e,.
Thus the results for E; are obtained.
For m = 0 (mod 3), we have similatly d,(F;) = Q™ (n) for n = {ay, 3,¢;}. Asuume
that 7 # 0, then 5 = +£57; by (15) of (5.1.1). By (13) of (5.5.1)
o1 = {ay, 01,3}, = —mme2 = @ {3, 01,61} = 36, = ey =0

which contradicts to ayn = +, 420, # 0. Thus d, (E2) =Q™(n) =0.
dy = 0 for the elements z in (5.1.8) and (5.1.9) is proved without difficulties. [

Next consider the short range unstable elements {H(¢) = = #0, E* = P(y) # 0}.
Assume that stable elements v and & satisfy

(5.1.10) 0 € {ou, 04,7}
From Lemmas 3.8 and 3.9 we have the following propositions.

Proposition 5.2 Let m = 0 (mod 3). For the elements in (5-1.10) let z = Q™*2(v)
and y = Q™(J) then there exists an element £ € mi(S?™+Y) such that

H()=y and E%* = P(z).

Proposition 5.3 Let m =1 (mod 3). For the elements in (5.1.10) let X = 6’"“(7_)
and Y = Q(5). Assume that the relation di(X) = HP(X) = 0 is obteined as

in Lemma 3.9, for ezample by o computation in steble range. Then there ervists an
element £ € m,(S*™*1) such that

H{) =Y und E* = P(X).

The elements v, § in (5.1.10) and the related invariants are listed as follows.

7 [las [enfr [asff [ | B [ &1 [enfufa | B e
S B B | B |BBl € || BB | Bre B2

(5.1.11) zlla| ab ab® | aby | 8% | e; | abb, b | ph
o y || o] & | 0 [y [ |pa| &2 be' | b
X AB | AB? AB, | B3 ABB, | Bt
Y B* | B? BB, | E' B’B, | BE




5.2 Computation diagram mod A of lower stems

In order to compute groups 77, , succesively, we use computing diagrams mod A,
omitting the symbols E?, H and P, replacing Q7 by its generators. We also replace

72,1 by a collection of symbols which indicate direct sumunands such as
(5.2.1) e =7/3, o=Z/Y and >=Zf2T.

The symbol = at E? means bijective such as

(5.2.2) * =, o=o0 and Pp=¢b.

The synbol — at E? means not bijective and non-trivial such as

(5.2.3) e 0, 0>, 0—e b—3o o—0 and > >,

where the first two are injective, the next two are surjective and the last two are p

times.

First observe the 10-stem groups 3m, 10(S™) :
E? E? -
371'13(33) — 371'15(35) — 37{'17(.57),

This is represented as

® —> 0 —r e,

The equality A o B? = p- of Lemina 2.1 implies that
Q=< b>2Zf3 and Q},=0.

This is the only case we know that (5.1.5) cannot be applied.

Then computing diagram mod A up to 27-stem is presented as follows.



Theorem 5.1 The k-stem groups mod A 7™ 1 Jor k < 27 and odd n are computed as

follows.

n= 3 5 7 9 11 13 15
EN
k=10 e =90 =<f >
k=11
k=12
b
k=13 \c=-=o=<alﬁl>
k=14
k=15
ab
k=16 e
AB b
k=17 \o
\B
k=18
E=19
ab
k=20 \0:O=O=.=< 12>
AB b
k=21 K“.\ Ne = . A(u(5)) = P(B)
B a
E=22 (o{ w=1I(P(i)) #0
b i
A 0 2
=23 o=0_0=0=0=0=<a‘.1ﬂ1>
BZ
'R‘\ abK‘\
AB b
k=25
ab? B
k=2 \-,\ Neze=e=e=<f>
AB? T2
k=27 ’\0
’\Bz
n= 3 5 7 9 11 13 15



All invariants of Q¥ for n > 2 are in metastable range, and generators are
obtained by Theorem 2.2 or Proposition 2.1 as is shown in the above diagram.

The generators of Q! = 3, are verified by (5.1.6) from the the resulis of A.

Since E? : %, — w7, are isomorpisms of e for k = 13,20, 23, then from AoE = p-
it follows A = 0 : w7, — 72, So, the generators of 73, = Q] and =}, = Q},; are
obtained by Theorem 2.4 as is shown in the diagram.

E? =0: 73, — 7, for k= 21,24. It follows from Theorem 4.3 that A : 77, —
g, are surjective hence isomorphic. Thus we have no more generators of n3,,.

By the exactness of EHP-sequence, the only possibility of the case k = 16 is
HP(b) = ab. By composing f, it follows from the naturality that HP(b*) = ab?
for the case k = 26. The cases k = 17 and k = 27 are similar.

For the stable generators a1/, fi, 15; and f, by the exactness of EHP-sequence,
we see the only possibilities for the cases & = 13,20,23,26. The cases £ = 21 and

k = 24 are also uniquely determined from 7§ = 0.

In the above computation we need only the exactness of EHP-sequence and the in-
formations on invariants. However, the computaions in the sequel have some ambiguity
and we need several lemumas of section 3 in order to determine the exact sequences.

So, we shall divide our computing diagram into three parts, simple unstable el-
ements, short range unstable elements and remaining part containing long unstable
series which may converge to a stable class.

For example, the computation diagram in Proposition 5.1 is divided into the fol-
lowing three parts (1), (2) and (3).

(1) Removable simple unstable elements.

(n, k)= (3,16) (3,17) (3,26) (3,27)
ab AB ah?  AB?
[ ] [ ] L] L J
b B b? B?
Here the symbol < is omitted. Each collection consists of {z, P(z) € #}t,,, HP(z) # 0}
for a pair {z,d;(z)} listed in Proposition 5.1, m = 1 (mod 3).



(2) Removable short range unstable elements.

N = 3 5 7 9 i1 13 15
AB b
k=21 eio0 = @
B a
B? ab
k=24 e —eioe
AB b

(3) Remaining parts.

n= 3 5 7 9 11 13 15
a
k=10 \o:o=<ﬁ1>
b
~
k:13 .:.:.:<a1ﬂ]>
ab
k=120 \o:o=o=o=<ﬁ12>
B2
N 2
k=23 e=e=e=e=e=e=<aF>
B
k=26 \o=o=o:.=<ﬁ2>

In (2), the symbols _are also deleted for the sake of simplicity.

The symbols e < e at k-stem groups between n = 2m — 1 and n = 2m + 1 indicate
that the homomorphism

Ampmtl  — aiml o Where m=0 (mod p),

cancells two cyclic groups of order P correponding to two e .

For the case k = 21, A # 0 follows from Lemma 3.7. By the naturality, we have
A # 0 for the case k = 24 composing «; from the right.

From this diagram we have the following results on the Hopf invariants of origins
of stable classes:

(5-2.4) H(Bi(5) = 1(as(9) and  Hy(8x(9)) = J(H(62(9))) = Bu(25).



5.3 3-primary k-stem Groups for 28 <k <35

We consider the computing diagram mod A for 28 < k < 35. In this case, the

invariants are stable type except w = IP(%) € Q% -

Theorem 5.2 The mod A k-stem groups 7=, for 28 < k < 35, n : odd, are obtained
as the direct sum of the following three parts.

(1) Removable simple unstable elements.

(n, k)= (9,28) (9,29) (3,32) (3,33)
ah AB (I,b2 ABz
L] * [

®
B b B,

(2) Removable short range unstable elements.

7= 3 5 7 9 11 13 15 17 19
AB? PP
k=31 ei>0 ==
B? ab
B? ab?
E=34 e =0t 0
AB? b?

n = 3 5 7 9 11 13 15 17
w
N
k=29 e =—e—9=—0o=e¢=¢e=<a;fh>
ab?
. N ;
k=30 .=.=O=O:o=.:.=<ﬁl>

b AB b
.’\
k:33{ e =92 —@e=90=90—3 0@
B’\

[15) a
Let v be a generator of mi3, 35 = Z/9 then up to non-zero coefficient,

H(v)=b, 3v=afi(13) and Av=048}(11)+ P(B).



Proof. The first two of (1) follows from Proposition 5.1. Let € = a(3) o aufa(6),
then H{ = ab,. E*¢ =0 and P(b,) = ¢ follows from a1(5) o @1(8) = 0. By Theorem
2.4, H(—£) = AB; for £ € {041,3,04/2} in S3. In S5, £ € mps = —on{a;,3,0,) =
—aif] =0. Thus P(B,) = ¢ mod oy 42

(2) is proved by composing 3; from the right to (2) of k = 21,24.

(3). The results of & = 29 and k = 30 are unique solutions. For the case k = 33 we
should make the following general statement. O

Lemma 5.1 Let { > 1. Then the follJmings hold up to non-zero coefficients.

(1) There exists elements v(6l + 1) € ¥l satisfying,

H(u(6l +1)) = Q*() =b, and v(6l+3)= P(Q**(a,)) = P(a)

where v(6l + 3) = E*u(6l + 1). Thus v(6l + 3) is of order 3 and E*u(6l+3)=0.
Furthermore we have

A(w(l+1) = P@ ()= P(B) mod B3
(2) Ift#2 (mod 3) then the order of v(6l+1) s 3 .

(3) Ifl=2 (mod 3) and E*= : Moy — Toy +10 %8 surjective, then the order of v(614+1)
59 and

A{v(6l + 1)) = P(B) + E*/,

where v’ is an element of mysr,5(S%3) satisfying B = 3u(6l +1).

Proof. Since B = {ay,a4, 1}, (1) follows from Proposition 5.2 the existence of £ =
v(6l + 1) with H(¢) = b and E%(¢) = P(a). By Lemma 3.7,(1) and Lemma 3.2
HA®w(6l +1)) =" (c1p1) = AB = HP(B), and the last statemnt follows.

In the case (2), az = aa(6l + 1) = H(a31+3(61 +3)). Then P(a3) = 0 and E? -
Tyaii10 = Mooy IS injective. Thus 3u(6l+1) =

In the case(3), a, is out of alpha invariants and P(as) £ 0. ais M-represented
by ai an ey is M-represented by o?. Then by Lemma 3.4 P(a,) = 3u(6l + 1). Thus
v(6I+1) is of order 9. Let A(v(6l + 1)) = P(B) + E*v'. By Lemma 2.1, Ju(6l+1) =
E*Av(6l + 1) = E*P(B) + E%' = B, O



5.4 3-primary k-stem Groups for 36 <k < 45

In the result of the 33-stem groups, we see a long series of unstable elements
(5.4.1) 33 (3) 5; /3 (5) "E:; a1 B3 (7) E; alﬂf(g) E; Oflﬁf(u) *I‘;‘; 0153(13) E‘z’ 0

where a;33(3) = a1(3) 0 §3(13) for a generator §3(13) of 713 with stable limit 37. Then

we have not stable type invariants
ab® = I{y 53 (6m — 1)) and AB® with J(AB®) = a,B3(6m + 1)

form =1 and m = 2.
In the computing diagram mod A-for 36 < k < 45, invariants of not stable type are
w € Q%4 and the above ab®, AB°.

Theorem 5.3 The mod A k-stem groups mjy,, for 36 <k < 45, n: odd, are oblained
as the direct sum of the following three parts.

(1) Removable simple unstable elements

(m, k)= (3,36) (3,37) (9,38) (9,39) (15,40) (15,41) (3,42) (3,43)
ab®  AB3 ab®  AB? ab AB abby ABB,
® L ] L ] L ]

L4 L LJ [ ]

b B? b B? b B bb, BBy
(n,k) = (3,43) (3,44) (9,44) (9,45)
b4 B4 (ng AB'Z
[ ] L ® L
¢ B bz Bg

(2) Removable short range unstable elements

n= 3 5 7 9 11 13 15 17 19 21 23
Bz
k=36 0:022.
AB b
B ab
k=40 ¢ 0%—’20
43
AB® b
k=41 .é?,.Bz



k=43 0570=-ab
k=45 4B (——éo ®
ot L 3 —_
° B a
(3) Remaining part
n= 3 5 7 9 11 13 15 17 19 21 23
abg
k=36 \.:.:.:.:czozozez<ﬂlﬂ2>
ABz bg
k=37 \0(—"\.=0=0:l=0=.=Q:<E'>
B, B
N
=38 *® =0 =0 =@ =<¢ >
bby
k:39 y\.=.:.=.:.:.:.:.:.:.:<alﬁlﬂ2>
BB,
ab?
K\
k=42 .:.:.:.:0:.:0=<62>
w b
BN

0—}\0=0=0=0=0=o:o=o:<<p>

Proof. (1) From the relations d; (8*) = ab? and d, (B?) = AB?in (1) of Theorem 5.2, we
have d, (") = ab® and d,(B3) = AB® by composing f from the right. The remaining
relations on d, follow from Proposition 5.1.

(2) The short range unstable elements in k = 36,43, 45 are established by Propo-
sitions 5.2,5.3. The removability of the collections in k — 43,45 follows from Lemma
3.7,(1) and one in k = 36 from Lemma 3.7,(2).

Ink =40, d,(AB;) = d1(A1)oB2 = ayof, is represented by 028 = —{c1,00,3}8 =
a{a, 3,60} = o143 in §°. Thus di1(AB;) = ab®. The other 3 simple unstable elements

in k = 40, 41 are established by Proposition 5.1 and naturality. The removability follows
from Lemma, 2.4.



(3) dy(B;) = AB follows from Proposition 5.1. Then the results of (3) are uniquely
determined by the exactness of EHP-sequence. The removability in k=37 follows from
Lemma 2.4. (}

1t follows from (3) of the theorem

(5.4.2) we)=17, ule)=15, ule)=11, u(p)=29,
(5.4.3) u(B1B2) =5, u(arf1fe) =3, w(B}) = 3 and u(3p) = u(oue) = 7.

Here we refer to applications of 4, of Oka.
In Theorem 5.1 apply 8, to the short range unstable elements in the 21-stem groups,

then we obtain those in the 24-stem groups :
Pla) = B*(v), Hw)=b == P(AB) = E*0.(v)), H(8x(v)) = B.

We see similar situations from the k-stem groups to the (k + 3)-stem groups for
I = 31 and k = 33. However, for elements of 77, we cannot apply Lemmas 3.12, 3.13
since the case m = 0 is excluded. In the case m = 0, the map f) in (3.5.5) does not

exist, but Theorem 3.5 still holds. So we prepare the following

Lemma 5.2 Assume that Hopf invariant H{(¢) of an element £ € miya(S™1) is M-
represented by <y for v € miy 1()"2"2 ~2). Then up to non-zero coefficient there holds
TH(@u()) = Hp(0a(8)) = By 0 B,
where B, : Y — St s an extension of Bi(2p +1).
Proof. 9, is induced by dg : 2521 — 5% and H, is induced by h, : 5% — Q§»+.
Then H,J, is induced by h, o Qd, : Q252+ — Q5%+, whose restriction on Sl 4
homotopic to zero. Thus h, o {)d, induces a map
B gp—l — Q(stzpﬂ’ Szp—l) —y 252

Let B, : Y2 — $%*1 be adjoint to A’ o gop y : Y72 — QFF 1 5 Q25?1 then
Theorem 3.5 shows that 4;]S% 1 = ;(2p + 1). Then the lemma follows. O

For example, apply the lemma to €'(7) € 77,5, with H(€/(7)) = by and put §3(3) =
O.(€'(7)) and B{(5) = E*(01(3)). Then we have

(5.4.4) BEH(5) = au(5) 0 €(8) = S1(5) 0 F7(15) + P(ABy).



5.5 3-primary k-stem Groups for 46 <k <55

For 46 < k < 55, the invariants in the computing diagram mod A are all stable type.

Theorem 5.4 The mod A k-stem groups my, for 46 < k < 55, n: odd, are obtained
as the direct sum of the following three parts.

(1) Removable simple unstable elements

(k)= (3,49) (15,50) (15,51) (3,52) (3,53) (21,52) (21,53)

AEy  ab? AB?  ob?b, AB*B, ab AB
[ L J L ] ® [ L ] ®
E, b B? b2b, BB, b B
(n: k) = (33 53) (3’ 54) (9, 54) (9’55) (91 55)
b B abb, ABB, bt
. ° ® . )
be' BE' bb, BB, e
(2) Removable short range unstable elemenis
n= 3 5 7 9 11 13 15 17 19 21 23
B? ab?
k=46 e = et
A AB? p?
BB, bb
k=47 3 (——‘20 = e
BBz Cl.bz
Bt ¢ B2 ab
k=148 o0 =@ ® = 0o
E » AB b
k=49 P S
, B, B3
BB
k =50 .2 = Oa@ [
ABB,bb,
BFE’ bt
k=51 ®* —eioe
Bt ¢
BB
k=52 e = o 2—6‘20
AB; by
AEg [ E b3
k=53 ei>e e =—ei e
E?2 E, B B,
AB? p»?
k=55 e =ei>e
B? ab



(3) Remaining part

n = 3 5 7 9 11 13 15 17 19 21 stable
abbz
k=46 ,\o:Q:Q:O:.:i:G:O:':<ﬁ%ﬁ2>
b4
N '
k=47 e—e—e=a=e=e=e=8 =0 =<[>
b2b, AB; by
N r\."""“."‘.
k=4g{ 0-'"':.:Q:::\;’.;.;.;’{—'.:<a1[3§[)’2>
bef By B
k=50 K\.——.:.:Q:._—_..:.:l:’:.:(ﬁ?)
ph
~ 2
k=52 se—e—e=9s=892=9e=9®e=98=@e=<[f;>
€1
R\
k=233 * = & = @ = @
" ab?
4 ,
L =55 s—e—e=—s=—e=e=e=9e¢=e=0=<mf>

Proof. (1) The first relation dy(F3y) = AE, cannot establish by Proposition 5.1 or
Lemma 3.2 because u(FE;) = 11 and Ej is not M-representable. Fixcept this all the
other simple unstable elements are established by Proposition 5.1.

(2) Except the cases k = 49,50, 51, short range ubstable elements and their remov-
ability are established by Propositions 5.2, 5.3 and Lemma 2.4.

The case k = 50 is established from the case & = 24 of Theorem 5.1 by composing
B, from the right.

Consider the case k = 51. Let 7 be the element in k = 48 such that H(n) = ¢
and E%p = P(B®). By Lemma 5.2 £ = 8,(y) satisfy H({) = BE' and E* = ay(5) 0
En. Then ES¢ = a,(8) o E'p = oy(8) o E*P(B%) = 0, and E* = 0 by (2.1.2). K
E? = 0 then £ = +P(ph). But HP(ph) is purely M-represented by i,on9(7) =
i. % (a1(5)0(8)) € i E*7] 44 = 0. Thus E* # 0, E* =0 and E*( = £P(B*). The
removability follows from one in k = 41 of Theorem 5.3 (2).

The case k = 49 is remained.



(3) Let & = a1 (7) 0 p(10) € 7], 45. Since & = E(an(6) 0 (9)), it follows from (2.1.2)
and k=48 of (2) that £ € E®xf, 3 = 0. Thus g3(5) € {a1(5), 1(8), ¢(11)} is defined.
Then $33(5) gives an origin of the stable class B3 = {c1,01,¢}. The other origins of
stable classes of (2) are obviously established.

Long range unstable elements in k = 53 is a unique solution.

Consequently only the case k = 49 is remained as follows in question where the
sequence {c;0702(2m + 1)} is removed.

n= 3 5 7 9 11 13 15 17 19 21
AEg €y €1 AB2 b2
N ™~ N AN &N
k=49 . o8 = o 0o e =0 =9 = o
N N N e N
Ey, E B B, B

The above groups and E? are unique solutions. The removability follows from
Lemma 2.4 and Lemma 3.7. U

Note that the long range unstable elements in k& = 49 is given by Lemnma 3.11.
Also we see there an example of Proposition 3.4 for z = B3 € 73,49 such that
O(B®) = i,(e1). Proposition 3.4 states that €1 € {773,"??),33}. Since 7y, = Bhnys in

stable range, €1 € {1, 11, B>} holds for m = 0 (mod 3). Thus we have

Lemma 5.3 If m =0 (mod 3), there ezists v € Tamias Satisfying
H(v)=e and E*(v)=P(B®).
We denote the long range unstable elements in k — 49 and k = 53 as follows.

(5:5.1) vi(13) € w3,y with H(n(13)) =8 and P(B) = E%u,(13) = v,(19),

(6:5.2)  u(9) €ndysy with H(wa(9)=er and P(ab®) = E®v,(9) = 1,(15).
By Theorem 2.2, these elements induce the following not stable type invariants.

(553) wi=w(5) = I(vs(17)) € Q%50 and Uy = Uy(5) € @ re0r J(U1) = 01(19),

(5:54) w2 = us(3) = I(vs(11)) € @3, 5y and U, = U2(3) € Q1000 J(Uz) = 115(13).



(3) Let £ = a1 (7) 0 p(10) € 7], 45 Since £ = E(a;(6) 0 9(9)), it follows from (2.1.2)
and k=48 of (2) that £ € B, ,, = 0. Thus 33(5) € {01(5), 21(8), #(11)} is defined.
Then §2(5) gives an origin of the stable class 37 = {cu, .} The other origins of
stable classes of (2) are obviously established.

Long range unstable elements in k = 53 is a unique solution.

Consequently only the case k = 49 is remained as follows in question where the

sequence {a;8;F2(2m + 1)} is removed.

n= 3 5 7 9 11 13 15 17 19 21
AEg €9 €1 ABg bg
~N NN AN
k =49 ® o9 = @ LI — 0= @& = @
~ N ~ N N
E, I B B B

The above groups and E? are unique solutions. The removavility follows from
Lemima 2.4 and Lemma 3.7. 0
Note that the long range unstable elements in k£ = 49 is given by Lemma 3.11.

Also we see there an example of Proposition 3.4 for z = B? € nJ,,, such that
8(B®) = i.(e1). Proposition 3.4 states that e; € {7]3,17,(42),33}. Since 7, = Mmyz in
stable range, €; € {fm; mi1, B2} holds for m = 0 (mod 3). Thus we have

Lemma 5.3 If m =0 (mod 3), there exists v € npmiss satisfying
H(v)=e and E*(v)=P(B%.
We denote the long range unstable elements in k¥ = 49 and k = 53 as follows.

(5.5.1) n(13) € n3, 5 with H(vi(13)) =1 and P(B)= E*v(13) =u(19),

(5.5.2) va(9) € mhyss with H(va(9)) =er ond P(ab’) = E°vsy(9) = v2(15).
By Theorem 2.2, these elements induce the following not stable type invariants.

(5.5.3) w1 = w(5) = I(v:(17)) € Q% 59 and Uy = Us(5) € Q3 ep, J(U1) = 11(19),

(5.5.4) 1y =u(3) = I(v2(11)) € Q%5 and Uy = Ux(3) € Q3 ,40, J(Ua) = v2(13).



5.6 Table of 3-primary k-stem Groups for k < 55

Summerizing the results, we have the following table of 37,44 (S™) for odd n and k < b5,

7= 357911131517192123252729

k=3 e =< >

k:ﬁ ®

E=1T * =0 =<0 >

k=10 * 0 e=<f0 >

k=11  e—so=o0=<a}>

k=13 e=e=e=<mfb >

k=14 e @ ®

k=15 e=r =0 =0 =<0y >

k=16 .

k=17 .

k=18 e e o o

k=19 *t=0—=es=e0e=90=(0y5 >

k=920 s=e=e=e=<f>

E=21 » e—ue

k=22 ® 30 30 —30 e

_ ¢ 3o=0=o0=o=o0o=<qg,t >

k*Z?’{ .:.:.:.=.=.=<afﬁf>

k=94 e=e e

. ® e=90—0=—9 =< >

"’26{0000_.. A

k=27{ .:.=o=.=o=¢=.=<a7>
.

k=128 .

_ =0 =e=0—e=0=<q >

k=29 { . 18y

- == =0=0=—@¢ =< 3>

]“"‘30{ ® ® ® ® [ L ] [ ] ﬁl

_ Q:':.=.=.=.=.='—<a>

k“31{ [ [ = ’

k=32 °

i . .

I.,_33{ e=90 =00 =#9 0 e

. *e=e o
"'_34{ ® =0 > D> —3> 3> —30 e



k=35

k=36 {
k=37
k=38 {
k=39 {
k=40 {
k=41
k=42 {
k=43 {
k=44
k=45 {
k=46 {
k=47 {
k=48
k=49 {
k=50 {
k=51{
k=52 {
k=153 {
k=54 {
k=55{
71 =

.~_30~)[>:D=D:D:D=>=D=<QJ9’>

e=—a=es—e=—e=0o=e=0=<[F10h >
e—=e o

'Y .:.:’:.:.:.———.=<E'>

e o—0—8 =0 =< € >
L * ® ® L ] L ® ® L]
e—e—0—=90=0—=0=0—0=@=0=<0~C >
L]
se=—s=e—e—eo=e=e=e0=8=e0=<ahf >
.:.:‘:.:.:.:.:.=.=.=<ﬁ;>
L] ® [ J
[ [ ] [
° e—e—o0e—0e=0—@¢=—@=<¢€ >
® ® L L] L L ] * L [ *
p=e=0—s—6—6=0—0=—e=0=0—=<(~1; >
L]
[ ] L] [ B J
] [ ]
Q—)O:0=O=0:0:O=0:0:<(’0>
] ®e—@
o:O:O:.=O=O:.=.=l:.:.:<ﬂ%ﬂ2>
*e=0 L ]
® )0 230 ~30 30 -0 —30 —30 —0 0 —He
® 40 =0=Q=0=0=0 [e] 0:0=o=0:<a32>
L L —N ]
a—e—0—@—@8—0—=20 .=.=0=.=<ﬂ16'>
L} ® L] L J ® ]
e—es—s=—e=s—es=es=es=e—e=0=90=<a1510 >
L 4 L ] *¢e=9 ® [ B=— B R—N ]
e -0 — 0 =0 —0 =0 —=0=©8 0=C=Q=Or—"=</315>
[ =1 L | ]
® L] L L] ® ] L] [ L] [ [ ]
P —0 =90 —0 —@=—0—=—0—0—8—0==0=0=<~013 >
e =0 * L ]
.=0:0::0:—-“0:!:.:‘:0:.:.:.:.:([3%)
L] [ B=—N ] * [ ]
® [ ] ® [ J=— B=— B | [ ]
® [ I— ] L ]
L] L ]
[ ] L] L] L ] *® L J L [ ] *® L] [ J [ ] [ 4
=0 — 0 —0—0=0—0 =0 =0 =0—0=0=0=0=< 4 >
L 4 ® * =@
H 2
0=‘=.=0=0=0=0:.=.=0=0=0=0=0=<0!1ﬂ2>
3 5 7 9 11 13 15 17 19 21 23 25 27 29



6 New Tables of 3-primary Groups
6.1 Stable elements and Stable type invariants

For the results of the stable k-stem groups for 55 < & < 81, we quote from Oka[22],
Nakamura[18], Tangora[33] and Ravenel[25].

(6.1.1)

Listof smi =< generator >, relations up to sign
(1) 375 =< Pg >
(2) 3Tgs =< B3 >
(3) 3Te =< A >, A= {B, 1,0}
(4) 3 =< G168} >, 103 = {0, 3,7}
(8) 3ty =< f5 >.
(6) 35 =< fi >, p=A{a, 0,2}, 3p=onipS.
(7) sy =< ff >, B =B = e
(8) 3T =< Ty 2 >, iy = {a, 0,055}

We use notations of invariant similar to (5.1.7).

(6.1.2) Invariants Q™) and @ (¢) for Eeny, 55 <k<8l

k 62_[ 65 [68&72 74'75‘ i E
& [ BB} | cnBrfl | HiA ﬂs |aufBif; | B3
Q&) || b5 | abby ? x | b
Q™ (¢ )i BB} | ABB} | BZB2 _JF | AB’B} | B}




6.2 3-primary k-stem Groups for 56 < k < 61

First remark that all invariants in Q= for 55 < k < 61, odd n > 1, and Q} =
3m31(S?) of k < 59 are fixed by the previous results.

Theorem 6.1 The mod A k-stem groups w7, (1 : odd) for 56 < k < 61 are obtained
as the direct sum of the following three parts.

(1)  Removable simple elements (with steble type invariants)

(n,k)y= (15,56) (15,67) (3,58) (3,59) (9,61)
(sz 1482 (Lb% AB% A32

L] *® @

[ ] [ ]
by B b B2 B,

(2) Removable short range elements (with stable type invariants)

n= 3 5 7T 9 11 13 15 17T 19 21 23 25 27
k= 57 AB?B, b%b, AB b
= ® e = @ e 0 = @
B%g abb, B a
L — 58 B3 be' B3 ab?
=9 e 0= #® & — @8 .
BE Bt 'AB2 "W
ABB, bby
k =59 e~ 0o = @
BBz (I.b2
k 60 B3Bz (_’lbbz B4 (E: BZ (I.b
T— = @ ® ® ® = @ =
ABEB, b2, B 5 *TB%
BzE' b5 €2 €y
k=61 s =00 e 0 = o
B5 be! E1 33

(3) Remaining parts

n= 3 85 7T 9 11 13 15 17 19 21 23 25 27

N N N
b5 AE2 €a e b3
k=57 ’\o ~—)\ ) \—) "
Ey Ey



n= 3 5 7 9 11 13 15 17 19 21 23 925 297
b%b,
N

k=59 ¢ = & = @

N
U uy ’Lf{ ph
NN
k =60 o‘\ cé\—a oﬁ\
U2 U] w ABQ bz
k=61 \.\(;\OZO:.ZQR\
ab? B2B, abb, B; ab? B

Proof. We start to establish the 58-stem groups. Since u(f7) = 5 the simple element
of (n,k) = (3,58) in (1) is removable. Two blocks in % = 58 of (2) are fixed since no
other invariant which may vanishes any element of these blocks. The stable group w5,
is trivial. Thus the 58-stem groups are the direct sum of the corresponding groups in
(1) and (2).

Similarly the groups of the 56-stem and 57-stem groups in (1) and (2) can be

removed. In order to fix the 56- and 57-stem groups it remains to fix those in (3) from
stable results 7, = 75, = 0.

From the results of the 58-stem group, P(Ez) # 0 and P(E,) # 0. By Proposition
5.1 HP(Ey) = 0 at (n,k) = (7,57). It follows then that 7} 57 i of order 9. But this

groups is cyclic by Lemma 3.2 since ie; — i{p, 1,1} = @ 0ioe;. Thus the 57-stem
groups are fixed.

By Lemma 2.4, the group 3y is generated by an element
v(3) € {1(3), pus, F2(6)}y  with H(u(3)) = B2,
We denote v(n) = E™3y(3).
Since H(f1(5)) = @ = I(a;(5)), we have H (B3}B2(5)) = ab®b,. Then
T =<v(5), 8P >= Z/3 & Z/3.

Apply Lemma 3.8 to the relation ¢ € {o1, a1, €1} of (5.1.1),(14), then we have an
element £(7) € n; such that

HET) =ph=(p(17)) and P(es) = B%(7) = £(9).



Also applying Lemma 3.4 to aie; = i.{3, 01,61} = i€z we have
3¢(7) = +P(ea).

Thus £(7) is of order 9 and generates the kernel of E* : ng; — mg;. The kernel of
E® : n%, — mi} is generated by an element of order 3 which is mapped to 3£(7) under
E2

Consequently the result in k = 56 of (3) follows from the following lemma.
Lemma 6.1 v(13) = 325:(13) up to sign.

Proof. In the 52-stem groups, we see that 53(9) # f2(9) 0 52(35) but F5(13) = fx(13) 0
32(39). Then, up to sign,

v(10) € {a:(10),p, B2(13)} D {1(10),p, £2(13)} 0 5a(40) 2 B3(10)32(40) = 33 (2(10)..

The difference v(10) — F33:(10) belongs to a;(10) o'mg3. Since m}j = 0 it follows
E(u(13) — B3B2(13)) € an(14) o w7y = 0, and the lemma is proved by (2.1.2). O
Note that up to sign

(6.2.1) Ples) = v(7) £ B12(7).

Next we consider the cases k = 59,60, 61 of (3).

New invariants come from A : 70, — 75, and A : 7, — 75, Since E* o0 A = p-,
the image of first A is < v(5) £ 8352(5) > and the second A is surjective. The kernel
of the first A is < v(7),/830, > an the second one is < f§}¢'(7) >, since H(f}e(5)) =
I(of1€'(9)) = I{3}). Then we have not stable type invariants

Bb, € Qly, BBy, UcQly ond B°E €@y

with b, = IB32(5), J(B°By) = BEAa(7), J(U) = v(7) and J(B*E') = B (7).

The first short range unstable elements in k& = 60,61 of (2) is obtained from those
in & = 50,51 of Theorem 5.5,(2) by composing f; from the right respectively. The
second short range unstable elements ink = 60, 61 of (2) is obtained by Lemma 3.8 and
Lema 5.2 respectively.



Then (3) of k& = 59,60, 61 is established by EHP-sequence which complete the proof
of Theorem.

]
In the above proof we find the following relations.
Proposition 6.1 Up to sign the following relotions hold.
(1) H(v(3)) =B}, H(BiG:(5) = abhy, H(£(T)) = ph,
38(7) = Plea) = v() £ BIBa(7), €(9) = Pler), P(5*) = v(13) = +A36,(13).

(2)  There exists £(7) € x}y such that H(£ (7)) = AE; and
H(Bie(5)) =8, 3¢(T) = Fie(7) = P(En), €(9) = P(Ey).

Apply Lemma 3.5 to H(£(7)) = ph, then Proposition 6.1 (1) shows that H(8}(5)) =
ab?by is M-presented by ai(10) o @(13) € {319, 01 (9), p(12)}.

Similarly, H(£'(7)) = AE; shows that H(f2¢(5)) = ° is M-presented by a(10)od;6,
where q;€; € mee(Y ) is a coextension of ax€x(13) = 3p(13).

These are represented by stable class as follows.

Proposition 6.2 Up to sign the Jollowing relations hold.
(1) 1B = {3,a1,¢} .

2) 107 = {ai, 3,6} e B7 € 43,a1,3, 565} .



6.3 3-primary k-stem Groups for 62 < k < 70

The invariants in Q7,, for 62 < & < 71 are stable type except four invariants
related to simple elements at (n, k) = (3,62), (3,63).

Theorem 6.2 The mod A k-stem groups ni,, (n: odd) for 62 < k < 70 are obtained
as the direct sum of the following three parts.

(1)  Removable simple unstable elements

(n,k)= (3,62) (21,62) (3,63) (21,63) (9,64) (27,64) (9,65) (9,65)
ab®b, ab® AB’B, AB?  abb, ab b®* AB?B,
L] [ ] L ] L L L] L ] [
b3b, b? B*B, B? b2b, b be' B?B,
(n,k)= (27,65) (9,66) (15,66) (15,67) (15,67) (3,68) (15,68) (21,68)
AB B abby, ABB, bt abbl B* abs
» ® L »® L ] * [ ] *
B BE' bbg BBZ ¢ bbg E bz
(n, k)= (3,69) (21,69) (9,70)
ABB? AB, b}
L] L J [ ]
BB B, b2

(2) Removable short range elements

= 3 5 7 9 11 13 15 17 19 21 23 25 27

Bng (I.bbg

* = BB,
AB% b% BE b*
k=63 .(—-’0:::.{_‘.
BB, ph B* ¢
B.82 ab2
k S 64 ® = .XJ ®
B; by
k=65 ABy e B _ ¥
BB% ab% Eg EI 33 Bg
k=66 * =020
ABj b% AB? 2
k=067 s{ e = »
k=68 ’ ab
o AB?B, b*b,
k =69 .(é—‘zﬁ- ES ] bbz
] [¢1
k=170 B be B, _
= L ) *e =0 * = @ ]
Be® T AB'



(3)  Remaining parts

n= 3 5 7 9 11 13 15 17 19 21 23 25 27
ab;\
k=62 * = .:.:.:.:.:.:.:.:.:.:.=...<ﬁlﬁ§>
bb2 €y
N S 2
k=65{ o_o_o-_o_o_o_:;:;:E:_o_.~o_---<alﬂ1ﬂ2>
B2 ab?byph "
N e e —e—e—ece—ec == A>
k=68{ o_:;3;:~o_o_o_o_o_o_ <
B ABy ey ey B AB b
kzﬁg{ ® —0 e o:.:ozo::—'—\)o—}.
NN NONON
E2 E1 B a a

Proof. Since B} = o€’ we may regard that ¥* = ae’ and §° = abe’. All collections
of (1) are of type {z, P(z), HP(z) = taz}, P(z) € m,(S%+3). The collections in the
cases (n,k) = (3,62),(3,63) are obtained from corresponding collections at (n,k) =

(3,52), (3,53) of Theorem 5.4,(1), by composing ;. The other collections in (1) are
also simple and removable by Proposition 5.2.

Except short range collection in k = 66 of (2), the other short range collections in
(2) are all established by Proposition 5.3.

Consider the element £ € n; of (5.4.2). Since H(¢) = BB, we have H (£0f,(43)) =
BB3. Since 73] = 0 by Theorem 6.1, it follows from (5.4.2)

B(€ 0 £(43)) = B1Ba(T) = B1(7) 0 Ba(17) € By(7) 0 n1] = 0.

Thus E?(£ 0 52(43)) = £P(AB2). By Lemma 2.4 A(P(b3)) = £ 0 §2(43), and (2) has
been established.

B1A3(5) and a1 5,3(3) are defined. So, k=62 and k=65 of (3) are completed.



Next observe unstable groups nf, q; and mjy, 5, 7 : odd. From the stable results
7o = w5y = 0, we see that these unstable groups are consist of collections in (1) and (2).
It follows that B2, ab3, ph are H-images and Es, Fy, B, ay, a are mapped injectively
under P.

Also we see that 7,45 =0 for n = 5,7 and 7]}, 59 = 0 for n =5,7,9.

Since HP(1°) = ab® = 0 we have P(V°) € B?nl 45 =0, and b° is an H-image.

Also we see by Lemma 3.9 that

P(AE;) = E* for some 1 and Hy(n) = {on, u, a162}(15) = Brea(15).
In stable range, fie; € 75 =< 7 >, aifr # 0 and ayfBrea = 30yp = 0. Thus
Hy(n) = 0 and P(AE;) € Bl 4 =0.

Then the first extension ® —+ o — e in k == 69 of (3) is established by Lemma 3.7.

Let £ € w13, 45 satisfy H{£) = ph. Since HP(ez) = aez = 3ph = 0, we have E*{ # 0.
By Lemma 3.7 and ¢ € {@;.01, €}, we have P(e;) = E*¢.

By Lemma 3.7 and Proposition 6.2, there exists ' € n{], ¢, satisfying 3¢{ = E%¢'
and H(¢') = ab®by. Thus the order of £ is 9 and E*{ = 0.

A is given by {f,€1,a1}. Since B2(11) 0 €1(37) € )] 4 = O there exists A(11) €
{B2(11),€1(37),1(75)} with E<X(11) = \. Since B¢ =0, A(9) with EZX(9) = A(11)
exists. A\(9) must satisfy H(\(9)) = £B}. Then k = 68 of (3) is established, and we
have P(b®) = 0. Thus k = 69 of (3) is established by Lemma 3.7. 0.

6.4 3-primary k-stem Groups for 71 < k < 80
In the next theorem all invariants are stable type.

Theorem 6.3 The mod A k-stem groups w2, (n: odd) for 71 < k < 75 are obtained
as the direct sum of the following three parts.

(1)  Removable simple unstable elements

(n,k)= (9,71) (15,73) (27,75) (27,75)
AB?  AE, ab*® AB?
® ] ® [ ]

B B B?



(2)  Removable short range unstable elemenis

n= 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
ABB, bb,
E=T1 sie—e
' BBz abz
B* ¢ B2 ob
k=72 [ X2d SN [ 2= Foul)
E B AB b
ABB% bbg €9 (3]
k::73 o=@ el e —o
BB% ab% E, B3
' 3232 abbz
k=174 L RER
ABBEbbz
AB} B BE ¥
— 7K e—e °
L y Al e
(3)  Remaining parts
n= 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 stable
abb? ab’b, ph
k:72{ .:.:._—_.::::;:z:z::.:.:.:.:.:(ﬂfﬂg)
ABZ.Engzbz by
k___73{ b::.:.:.:.:o:.:o:.:.
B5 be! B
k=174 t=e=e=e=e=e=e=e=e=e=<f>
B2 1
k=175 0—-)0:020:0:0:0:0:0:0:0:

0:0=0=0=<p,>

Proof. From the results of k = 70, we see that the H -images of the 71-stem groups are
AB2, ABB, and bb,. Then the stable result 72, = 0 implies that the unstable 71-stem
groups are direct sum of ones in (1) and (2).

Consider the 72-stem groups. Since H (B262) = abb?, the series {8182 (2m +1),m >

1} can be removed. P(ph) = 0 since Ti3471 = 0. Then only possible element which
cancells with ph is by. Thus the 72-stem groups are fixed.

The 73-stem, 74-stem and 75-stem groups are fixed without difficulty. a

Theorem 6.4 The mod A k-stem groups mn ., (n : odd) for 76 < k < 79 have a direct
summands given by the direct sum of the following three parts.



(1)  Removable simple unstable elements

(n, k) = (15,76) (33, 76) (15,77) (15, 77) (33,77) (15,78) (21,78) (3,79) (21,79)(21,79)
ab®b, ab b AB?B, AB  B® abh, AB?B ABB,

® L] L [ ] L) L L L] ® [ ]

B, b b BB, B BE' by BB BB, ¢

(2) Removoble short range unstable elements

7= 2 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
BBg a,bg
k =76 e— 0@
AB; by
AEBy ey FE' b
E=17T eio8 e=—et0
BB% ab% E2 El B3 B2
k=178 e= o>
AB? b% AB? p?
k=179 eiSe =8
B? ab

(3) Remouvable long range unstable elements

n = 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 stable
m
k:78 .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:(ﬂg>
k=79 [ B==a B— B—
B}

Proof. In k = 78, 83(5) = B3(5) 0 B2(57) exists and H(f3(5)) = 0. Then the 78-stem
groups are fixed, and P(I) = 0. Since 75, = 0, { has to be cancelled with Bj. The

others are easily obtained. 0

Now, the following groups * and invariants remain to be fixed.

n= 3 5 7 o 11 13 15 17 19 21 23 25 27
L abb}
BB U} wy, w
k=76 * * * * * * * * *
U3 Uz U1 w €y
ABB?
k=177 * * * * * * * * * * * *
ab?



where not stable type invariants are given as follows :
J(U3) = P(es), J(Us) = P(Ey), ,J(Us)=w,(19), J(U1) = v1(25),
and up = H{vy(17),  ws = I(v1(23)), w = I(P(3)).

First we have HP(w) = u; by Lemma 3.13.

We consider two cases : Case (I) P(U3) =0 and Case (I1) P(U,) # 0.

In the first case, there exists an element £ satisfying H¢ = U; which must be
cancelled by the invariant ab®. Then the groups * in the 77-stem groups are all iso-
morphic to Z/3 and connected by isomorphisms E2. It follows that the invariants
Us, U, U, w, ABB2,b? are mapped injectively by P and there exists an element 7
with H(yn') = B®B}. Applying Lemmas 3.7 and 3.9 to the relation G163 = {, 3,7},
we have the existence of 7 satisfying py = E2(y') = P(ABB3) # 0 up to sign.

In the second case, Lemma 3.9 shows that P(ABB3) = 0 and the existence of an
element » with H() = ABB? whcih must be cancelled by ab.

By the exactness of EHP-sequence we have the following posibilities.

Proposition 6.3 We have the following variations.

n = 3 5 7 9 11 13 15 17 19 21 23 25 97
Case (I)

k__.76{ 0—)2—}8}:‘}::0:0:0:0:.

k=77 u=o'=o=.=o=o=.=.=.=.=.=.
Case (II)

k=76{ ' ==3}=}>:=o=o=o=o.—_.

k=177 S =0 =0 =0 =0e=e=e=6e=e=—0e=o¢

Here = means that the image of E? : nl ., — Tor7q 15 the upper factor, and o is a
group of 9 elements.

Finally, we remark the above result implies that H (3 ,7¢) has two generators, stable

and non-stable type. Also the groups 3 79 has similar two generatiors. Thus we have.

(6.4.1) Tae0 2 Z/3OZ)3 and E*(n3,,4) = 0.



6.5 Table of 3-primary k-stem Groups for 56 < k < 80

The followings are the table of 3-primary k-stem groups mod A .

n= 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 stable
o a—30—3e 'Y

k_~56{ =90 =0—=0—0—0

T ®*—30—@ ® ¢ e—6@

E=5T{ ¢ e %

Ek=58 e o o=@ e=e o

k=59{ ::.:. * 5—=0

[ == J ® ¢ Oo—a0 e—@ @
k=60{ 379 o
k=061 oe=e o o e o=0¢ o s=0—0=¢
P00 —0—0—C—0—P—9—0—8 =0 —0=0—< ﬁlﬁ% >
k=62 { . e—e o ®
* @ [ = ] L]
k=163 { e e
k=104 ® oe—e @ ®
________________ 2
koo { *TUTOTITITIT I T T T memememe =< il >
® P—=0=—0—0 ®
k=66 e=e¢ o o °
o — ® e o=e
k=67 { :
k=68{ 0=0=0=:=0:Q:0:.:o:o:.:.:. —e=< A >
*—30—> 0 ®
_ . *—30— @ 0= E 00 =—0—}O0—}®
k—69{ * »—==e ° ®
k=T0 e o o=¢ s=e o
k=171 ° s s=e
________________ — 2
T B i = it =
e—e—0—0¢—¢
=0 =0 =0 ="0—0=0=="0=0¢6—0
k=73{ e e=e ®» o 9o o—e¢ o
_ E=P =0 "0="0 =0 =0=0—0—=0—=0=0—0—0 =< >
k-—74{ oo o . Bs
k:75{ .——)O:O=0=0=0:(.)§(.):(.):ozo:o_—.o:o:o:o:o:o:o =< I'l’>
® o=@

— 73_



k=76{ 0~+0—):=.=.=0=0=0=0
*e o o L] e=e o [ ]
e o ® 0—=o o
k=77{ P=B=0"0—0 =9 —0=@=9—0—0—¢ ®
® o
- .=.=.=.=.=.=.=.=0:.:.:.:.:.:.:.:.:.:(ﬂ3 >
k_TS{ o=e o o . i
k=79{ : [ ] *P=—0—0=—9 : ® =9
n= 3 5 7 91113 1517 19 21 23 25 27 29 31 33 35 37 stable

The results for £ = 76 and % = 77 are not yet fixed and we show an example. The
variations are seen in Proposition 6.3.
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