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Lec. I: Realizing Integral Homology Classes

. :
Let us denote by 2, ( ) the singular bordism homology theory

associated to the Thom spectrum M . We recall that for a space X
the elements of QE (X) are represented by pairs (M,f) where M is a
closed manifold whose stable normal bundle has been given a complex
structure and £: M =+ X is a map. Théée pairs are subject to a
certain equivalence relation called "cobordism," and the resulting
equivalence classes form the elements of QE (X), the element corre-
sponding to (M,f) being denoted by [M,f].

In the special case X = po;nt, the resulting equivalence classes,
denoted simply by [M], as the ﬁap is completely.determined, form a
ring under cartesian product, called the complex cobordism ring and

denoted by QE. This ring was computed by Milnor, based on the

fundamental work of Thom, who showed: [5]

Thom (Milnor-Thom) : QE X 72[{M21}], i=1, 2,...

Later on we may need a more explicit description of QE but for the

moment this will suffice.

There is a natural transformation of homology theories
- ‘
Qp (X)) > Hy(X; )

called the Thom homomorphism, which is defined by
u o [My£} = £.[Mte Hy(X:; Z)

where [M,fle QE (X) and [M]e H,(M; Z ) is the fundamental class
of M.



The classical problem of "representing” an integral homoloay

class

ue  Hy (X; Z)
by a weakly complex manifold is easily seen to be equivalent to the
requirement that

ve Im{u: QE (X) »~ H . (X; /Z) 1.
In the past the:study of so representing homology classes has been
done "locally," i.e., one class at a time. The problem that we will
be concerned with today is the‘corresponding "globalization." That
is we will seek necessary and sufficient conditions for the Thom
homomorphism

Wi 9y (X) > Hy(X: Z )
to be surjective.

The solution ﬁ& this problem that I will speak of is part of a

joint study with P. E. Conner of the complex bordism homology theory
and its applications.

Let us hote that QE (X} becomes~anuﬂg-m@dule by -setting

N1+ DM, £] = [NxM, fop ] € QU (x)

P
NxM ¥ M £ ox.

The result that we will establish is the following:



Thom: Let X be a finite cw-complex. Then the Thom homomorphism

U QE (X) » H, (X;i &)

is onto iff the projective dimension of QE (X) as a module over

QE is 0 or 1.

The restriction that X be a finite complex may be relaxed. Just
how far is not clear. By working in a suitable stable category
such as Boardman's it would seem that one need only require that X
be a (-1)-connected cw-spectrum.

For the proof of the theorem we shall require several prelimi-
nary results which we turn to now.

Thm 1 (Dold-Serre-Thom): ILet X be a finite complex, then the

map
U
Le o Qg (X) > He (X5 2)
is an epimorphism mod the class of finite groups, and the induced
map
v U
e U, (X) > H, (X Q)
GEEQQ* * N * S cl
is an isomorphism.
-Proof: The first assertion is an easy consequence of Serre's

mod ;? theory, while the second follows from the first and

elementary considerations of the Dold spéctral sequerice relating

U
, (X) to H (X; Z). O



An important consequence of Thm 1 that we shall need presently is:
Cory 2: Let X be a finite complex and ueH,(X; Z). Then
there exists a non-zero integer n and a bordism class
oe QE (X) | u (a) = n.u.
We shall also need the following technical result:

Prop 3: Let A be a finite complex. Then the following conditions

are equivalent:

(1) H, (A; Z) is a freej%ﬁgimodule

(2) QY (a) is a free QY-module
(3) QE (A) is a projective Qg-module.

If any of the above three conditions holds then the Thom homomorphism

u s QE (A) + Hy(a; Z)

is surjective.

Proof: There are numerous ways to prove this. The following

arrangement of the proof was suggested to me by Nils Andreas Baas

of irhus.

Let us introduce the Dold spectral sequence

Y =30V (a)

U
E =H A; Q).
P,9 p ( q)



It follows quite easily from Thm 1 that the differentials in this
spectral sequence are torsion valued, i.e. tensorized with dQ the
spectral sequence is trivial. As QE is a free 'ZZ:—module,we
find that (1) implies the collapse of this spectral sequence and

hence the edge map, which is the Thom homomorphism

w:o QY @) - H,(a; Z)

is seen to be onto. Moreover

He(; Z)®, 0 =52, =85, =8 oY (a)

is a free Qg—module, and a simple argument shows that QE (A) must
therefore also be a free OY-module. Thus (1) =>(2).

The implication (2) =¥(3) is trivial and so it will suffice to
establish that (3)==2(1). So we assume that QE (A) is a projective

Qg—module. Then it is a direct summand in a free Qg—module and hence

Zeu o) (a)
*

is seen to be a free Zz—module, i.e., a free graded abelian group.
Now suppose contrary to our desire that Hy(A; Z) is not a free

#Z.-module. Then we may choose a torsion element ueH, (A; 2Z) of

minimal dimension. Book-keeping considerations in the Dold spectral

sequence show that uaEi o 1s an infinite cycle,and a%it can never be
14

a boundary we find

0

lal # 0c8y o = Z@ oo QY (A)
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is a non-zero torsion element which is impossible. Thus H,(A; Z)
is a free Z-module as desired. [

Remark: One may give a completely algebraic proof that (3)=(2).
That is a positively graded projective Qg-module is always a free

QE—module;

The final preliminary result that we shall need is a representa-

bility property for QE (). This result is of the type that allows
one to form"resolutions" of spaces in a suitdble sense relative to
the homology theory QE( ). The precise result that we need is the
following.

Thm 4: Let X be a finite complex. Then there exists a finite
complex A and a map
.(j?: A+ZtX
where Zt denotes the t-fold suspension functor, such that
(1) Hy (A; Z) 1is a free 7 -module, and

(2) Pr 2y &) > o] (%% is-ento.

We will not present the proof of Thm 4 but only remark it® follows
from the preceeding proposition, the fact that H*(gg; Z) is a free
jzl—module and some Spanier-Whitehead duality arguments. [1,82]

(see also Lecture I of J. F. Adams Vol: 99 of the Springer lecture

notes).
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Proof of Main Thm: Clearly there are two parts to the proof.

First we will show that if

W: o QY (X) > He(X; Z)
*
is onto then

hom. dim U QF (X) < 1.
*

Let us recall that the Thom homomorphism
8]
M Qp () H,( : Z)
is stable. For the Thom homomorphism is induced by the morphism

of spectra

U: MU > K(Z)
of the Thom-Milnor spectrum to the integral Filenberag-Mac Lane

spectrum that defines the Thom class of MU. Thus for any integer

s$20 we learn that

b QY (25%) - H, (25%; )

is onto. ;

Next let us apply Thm 4 to choose a finite complex A and a map
‘f: A *'ZtX
for some non-negative integer t, such that
(1) H, (A; Z) is a free Z-module, and
(2) ﬁf*: QE (a) ~ QE (th) is onto.
Clearly we may replace ‘j’ by an inclusion, and thus we obtain the

following commutative diagram:

*we are of course writting hom-dim. Q QE (X) for the homo&oqical

dimension, i.e., projective dimension, of 2, (X) as
a module over QE .

*»



U

A* ~
o« 0y (z¥x) 3"92 (a) « 09 (zFx/a « o

Wy ACFY Wy /a

H, %% 20 ¥n, a5 2) TRt ) —

the short exactness of- the top row resulting from the long exact

sequence of the pair (Zt X, A) and the fact that

U
P, 08 ) » 0l sty
is onto. Now recall that
al (st

T 5 x) »H, (3t x;2)

is onto, and hence the composite .
ue o 0¥ ) -, b % 2)
is clearly onto. Commutativity of the left hand sguare therefore
yields that
€ B, ;2 »n, V% 72)
is certainly onto. Therefore the long homology exact sequence of

the pair (Zt X, A) becomes short exact and we may therefore decorate

the diagram above to



(zt x) « ol @) «BY (z* x/a) < o

¥ ¥ ¥

o <« H, =t x; Z) « Hy (B;7Z) < ﬁ* (z* X, &)+ o

Now recall that A was chosen so that H, (A; Z) is/was a free
Z -module. As H, (ZtX/A;ZE) is a #Z-submodule, we must have that
ﬁ;(ztx/A;ZZ) is a free' 7Z-module also. Therefore by Prop 3

QE (ZtX/A) is a free.QE‘—module and hence
o« %x) « a¥ @) « ol tx/a) « o
is a free resolution of Qg (ZtX). Thus

hom. daim. ,u oY (atx) < 1.
*

as desired.

Let us now consider the converse implication. We will suppose

that X is a finite complex with
hom. dim. QU QE (X) < 1.
*

We wish to conclude that the Thom homomorphism

u: 9 (x) > H, (x; Z)

is onto. As the Thom homomorphism is stable, clearly it will suffice
to show that is onto for some suspension of X. So by applying Thm 4

we may choose a finite complex A, a non-negative integer t , and may be

Q: A->ZtX,
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which as before we may replace, up to homotopy, by an inclusion,

such that
(1) H,(A:Z) is a free Z -nodule, and
(2) @y & &) » & (%% is onto.

We may then introduce the commutative diagram

o « oY (%0 QU () *¥ ztx/a) < o
Wy mA WX/A
|-—H* (zx; Z) '+"H*(A;7Z) 2‘*ﬁ*(ZtX/A;/Z)*-—~
J s

Now let us recall the following elementary property of homologi-
cal dimension: Suppose A is a ring with 1 and M is a A-module
of homological dimension at most 11 Then whenever P is a projective
and

f: P+ M
an epimorphism, ker f is also a projective A-module.

Let us consider how this applies to the present situation.
According to our choice of A, H, (A; Z) is a free 7Z.-module and
hence by Prop 3 QEV(A) is a free Qg—module. By hypothesis the
homological dimension of QE (X) is at most 1 and hence the exactness
of the top row in *the above diagram shows that QE (ZtX/A) is a
projective Qg—module and hence by Prop 3 we learn:that H*(ZtX/A;ZZ)

is free abelian.



=0

Now suppose contrary to our desire that

: ) (%% =+ H, (x:72)

ux°
is not onto. Choose ue H,(X;Z) with ug¢ Im My

we assert that

j xuFoe ﬁ* (z%%/2:72).

For suppose to the contrary that j,(u) = o. Then
u=1i,(v)
for some ve H*(A;ZZ). However by Prop 3
v o= LiA (@)
U

for some oae Q, (A) and then

u =i, u,@ = uy Pelo)
and ue Im W, contrary to our choice of u.
X

Thus
J L uFoE ﬁ*(ZtX/A;ZZ).

Next recall that according to Cory 2 there is a non-zero integer n

and a class ae QE (X) such that

Since ¥, is onto

a = Cg*(e)

and hence

nou = py $e(B) = i, u,(8).
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Therefore
n.je(u) = jyu(nu) = F,.i, m,(B)) =o
by exactness. Therefore

. "
je(u) # o e B, (s%x/a; Z)
is a non-zero torsion class which is impossible. Hence

U

uge: 8y %% »u, % 2

is onto as desired and the result now follows by stability. J
In the time remaining let us examine .an .application of our main
result to the study of involutions as closed weakly complex manifolds.
(See e.g. the work of Conner-Floyd

Let us denote by 635 the bordism algebra of arbitrary involu-
tions or closed weakly complex manifolds. There is also the
bordism algebra QE(“{ P(») )} of free involutions on weakly complex
manifolds, and as the notation indicates, this may be identified with
the complex bordism of “{ P(~)). There is also a relati e module
ME + of involutions on compact U-manifolds with boundary, where the
involution is free on the boundary.

Conner and Floyd have established the existance of the fundamen-
tal exact sequence

o>y @) My > ¥ (RP(=)) +o

and by analysis of the fixed point set have shown

v
My 2 ol (au).
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Now H, (BU; ZZ) is well known to be torsion free and so by

Prop 3 we obtain that ME is a free Qg—module. It is equally

well known that

"

H (RP(=); Z) 2357, i oda
otherwise
and that the natural inclusion
WRP(2j+1) » IRP () !
represents the non-zero elementLof‘H2j+1(“2 P(w); Z).

As  IRP(23j+1) is a closed weakly complex manifold it

follows that

b 0 (IR P(e)) » H, (IR p(w); Z)

is onto
hom-dim U ﬁf (IR P(»)) < 1.
*
The long exact sequence above yields the exact sequences
L
o) - QE - 85’3 - 85{ >
o + 8y » M + W (RP(=)) o
=U . . U

The last of these shows &), to be a projective Q4-module.
Hence the first show EDE to be a projective Qg—module.

However at the end,Cory 2 we remarked that projective posi-

tively graded QE modules are free and hence we have shown:
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Thm 5: © % is a free oU-module. OJ
Next time we will return to consider some additional

consequences of the representability property described in

Prop 4.

Lec II. Bordism Resolutions, Generators for Bordism

Modules and Related Topics

Last time we discussed when the Thom homomorphism

Wro0Y (X) > Hy (X5 Z)

was surjective. A cornerstone of our discussion was a
certain representability property for the complex bordism
homology theory. By iterating.this representability
property one may form "resolutions" in the sense of the

following:

Def: Let X be a finite complex. A partial U-bordism

resolution of X consists of

t

g=2,CRrCAC ... Cn vIX
such that
U . . . U
(1) Qg (Ai,Ai_l) 1s a projective {,-module
for i = o, 1,...,k-1, and
U : U .
(2) Qg (Ai,Ai_l) -+ Q4 (Ak,Ai_l) is an

epimorphism for i = o, 1,...,k.
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As each of the triples (Ak, Ai, Ai_l) yield a short

exact bordism exact sequence
U U . U
o +Q*(Ak,Ai_l) < Q*(Ai,Ai_l) < Q*(Ak,Ai) <~ o0

these may be pasted together to yield the long exact sequence

2l (ztx)
ol
U . U ‘ U
o+ Q, (Ak,A_l) “ Q. (AO,A_l) * ia. * 0, (Ai,Ai_l) < ...
U
« 0, (Ak' By _q) * o.
Note that each of the modules
U .
' (Aif Aiel) : i=9o0, 1,..., k-1
are projective Qg—modules. Only the last module
U
Bu (Bys By )
need not be projective. If it is, we call g = Al... AKmZtX

a bordism resolution. However as we may construct such par-
tial resolutions of arbitrary length, i.e., with k as large
as we wish, it follows from the following Proposition that
by choosing k large enough we may make an actual bordism
resolution of X. Note that the above sequence is then an

actual projective resolution of QE(ZtX).
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Prop 1: [1; §2], [7]. Let X be a finite complex. Then
QE (X) is a finitely generated Qg—module of finite pro-

jective dimension. %=

The proof of this result depends on Milnor's theorem

that
U 2. 4
Qp o M1, M7 1,...1
and hence is a coherent ring [7]. Elementary properties of

coherence suffice to prove the proposition by induction on

the number of cells.

It is perhaps of interest to note that the corresponding
result is false for QEO ( ) bordism and er( ) bordism.
For one knows that QEO(WlP(Z)) may be identified with the
Wall algebra W, whose Qio—module structure may be read off
from Wall's work and one finds that it is not a finitely
generated Qio-module. In the case of framed bordism, i.e.,
stable homotopy theory one knows that if er(x) has finite
projective dimension then it is actually a free module over
aff (pt) = Trf . 8o for example ©I¥(RP(2)) has infinite

£

. . . . i
projective dimension as an @, -module.

Let us suppose now that
6=a,CacCha C...Can:"x

is an actual bordism resolution of X. Regarding it as a
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filtered space we may form its homology exact couple. After
‘a suitable reindexing we obtain: ..

Thm 2: Let X be'a finite complex. Then there exists a
natural first gquadrant homology spectral sequence

{EY <x»>, a© <x>} such that
BT <x> =3H,(X; Z)

2
B, <X> = Tor el Zz , 9y ).
! o e;

Outline of Proof: We note that E2 <X> is by definition the

homology of the chain complex

0« Hy(Byr By) “ovn <Hy(Ay, By )% oo <H, (B, By ) « o

suitably reindexed. As each
ol (A,, A, ): i=o0, 1,...k
L A T R roorees
is a projective QE - module it follows from lasé%ime that
H*(Ai,Ai_l; Z): i=o0,1,...,k

is a free Z -module. Thus the Dold spectral segquences for

(Ai,Ai_l) collapse and the edge map

u U
[S IR /Z@QE Q* (Ai'Al"l) o H* (AilAl_lr Z) .

’ 1= 0,...,k



is isomorphic. Thus g2

plex

Silg=

<X> is the homology of the chain com-

WU U U
@50 (A, ,A_l)<—...2&nt£sz* (Ai,Ai_l)+...l@QEQ* (BpAr_1) * ©

and as
oty (A A 1)<y (Bg,A )<

ey (B A,

U

U
)€ ¥y (By By )0

. . . . t
is actually a projective resolution of QE ( 27X) the result

follows form the definition of .the .functor Tor. [}

Note that the edge homomorphism

Z R QEQE (X) = H, (X; Z)

v
u

is the "reduced" Thom homomorphism. ‘Thus the results of last

time may be conveniently rephrased in terms of this spectral

sequence.

this respect.

Thm 3: &Let X be a finite complex and n>o.

following conditions are
. U
(1) hom. dim. QEQ* (X)
(2) Tor Y (Z, Y
n,*
(3) Tor QE ( Z., QE
*

<

(X))

(X))

equivalent:

n.

The following technical result is fundamental in

Then the
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The proof of these results is not difficult but due to
being rather long and technical arguments is omitted. [1;84].

Note that this improves by a factor of 1 results to be expected

on general hpmological grounds.

Notice that the results of last time fall neatly under the

case n.= 1., Namely

Cory 4: Let X be a finite complex. Then the following

conditions are equivalent:

(1) ¥ (x) » H, (X; Z) is into;

(2) Z & QU QE (X) >~ H, (X; Z) is an isomorphism;
*

U

(3) hom. dim (U £, (X) < 1.
®

(4) Tor @y (Z, 8% (X))= o

(5) Tor 9 (Z, 8 (X)=o: § > 1. -]

Having constructed the spectral sequence of Thm 2, it is
important to inguire into .some: examples wherqwit is non-trivial.
As a start in this.direction .we note : |

Thm 5: Let n.be a positiverinteger:.and let X be either

(1) a large skeletan“eanQZZ_z, n)
2) IR p(2Mx...x IRp(2M).

Then

hom. dim qU QE (X) >n
. 2
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and hence
U

0
g2 <> = Tor 3* (7Z, 9% (X)) # o: § < n-1.
Je¥*

The proof is not hard and uses either

(1) some properties of the Steenrod algebra.

(2) some computations of Conner and Floyd to study the

annihilator ideal of
. U
(1) 1ie nn<K(z22, nj)

(2) ye o (RP() x..xRe(2™))
to obtain the desired conclusion. [1;851, [21, [3].

These examples show that it .is possible for {E'< »>,a%< >}

to be non-trivial but .of .themselves are not conclusive. Before

going on to Produce such an .example let us note one more conse-

quence of (2) and . (3).

Cory 6: Let X be a finite complex with QE (X) of projective

dimension at most 2. Then there is a natural exact sequence

U QU‘ U
o > ZR®,UR, (X) > He (X3 Z)»Tor* (Z,0, (X)) » o.
% r

Hence QE (X) is generated as an QE - module by classes of
degree at most dim X.
Proof: According to Thm 3

U
Ei e <X> = Tor;z** (Z, QY (X)) = o: 3

Iv
[\

r
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Thus the exact sequence. The second assertion follows from the

injective nature

Z Qe (x) »u, (x:22),
*

the fact that the target.madule.vanishes in degree > dim X,
and that the domain module .may be interperted in a standard
manner as a set of generators for QE (x). [J

Before going further it makes sense. to inquire whether in-
deed there are any .examples-of finite complexes X with QE (X)
of projective dimensions.exactly'z so that we have some non-
trivial examples .of Cory 6. ...

The answer .is yes.and.the~method of..constructing a flock
of such examples leads .to a.whole .cavalcade of new and in many

cases unanswered questions.

To construct these examples .let new§$g ZZz denote the

non-zero element in the stable l-stem. Then for k - large

the composite

Sk+l n Sk 3 Sk

is null homotopic. Hence we may form a coextension

k+2 k

?{: S + S \Jz Ek+l

It may be shown by explicit computation that
[Sk+2

W= [@P@ . oo



.2

-22-

where
k . U k k+1
Op = [87,1i] € Qk (s U, e ).
Let W be the mapping cone of § . Then one finds
U AN ) U
fe o 2@/, [CPOD o D ee, 113
and
H, wW; zZ2) = i i=k
o P Z) = Zy 2 L=
Z . i = k+3
0 : otherwise

The projective dimension of &E (W) .is exactly 2 and the generator
is Hk+3 (Ww; Z) is not representable while twice it is.

Applying the reasoning.of Cory 6 we find that regardless
of the homological dimensionwofLQE (X) the collapse of the

spectral sequence (2) implies that

Z& U QE (X) + H, (X;7Z2)
*

is monic and hence that as_anuﬂg - module, QE (X) is generated
by classes of degree .at most.dim X. ..Thus if we find a finite
complex V for which it.isyéééprSSible.to choose generators
for QE (V) of .dimension.at .most.dim.V, we will also have found
a finite complex V for which the spectral sequence (2) is

non-trivial. It is now time to reveal how to construct such a

complex.
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sws = 22324 be the element of order 3. As before

Let o 3

1

we may obtain a coextension

&1: Sk+4 . SkkJ3 ek+l

of 1° This in turn may be extended to a map
v k4 K+5 k k+1
0 : S \J3 e -+ 5 \Jé e

(for {p, @ pl=o according to Toda [11]), (which should be
familiar to readers of Adams.J(X) IV paper). Let V(1) denote
the mapping cone of 31. (The..rationale for the notation will

be explained next time.) Now. it may be shown that [9].

He v 2 el/, (©R@D). op.
Let B, Eﬂio = -ZLG denote .the ‘element of order 3. By

explicit computation we construct a.map [9] [12]

E : Sk+l6 g Sk\J ek S ek+5-\1 ek+G

1 3 &, 3
such that
sk+l6 El Q{ \% ek . kH;\J ek+6
e d1 3
p L
k+ G
S

commutes. We thus receive the bordism class
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Sk+16

s¥*18, B0 = w10, e Howan.

The characteristic numbers of the manifold M16 may be com-
puted by use of the RR.theorem and one finds that [Ml6] £ Q?G
is an acceptable generator for the ring QE gZZ[ [M2], [M4],...].

Now let V(l%) denote the mapping cone of él' Thus we have

the cofibration

gk+16 V(1) - v(l%)

By u ]

from which we obtain the exact triangle

g9 ("8 S 4V wvan

1*
2\ / 3

U, onlyy
45 v ag)

We note that

6

Twd, = ker By, = {IM] i | MM °] op=o)

e

k+16

B

i.e. Tod 4 A([Ml6] ck), the k+16 - fold suspension

of the anihilator ideal of the class

[Sk+16 16

B U
Byl = M) ope Q¢ (VD).

'

As the structure of the module 5E(V(l)) is known

(it was written down above) we find

A([M16]0k) = G, lce2@n.
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From the epimorphism

U

QY 1

(v(13)) » 116 A([Ml6]0k) s 5

we therefore find that QE (V(l%)) contains an indeComposable

class of dimension 18 corresponding to S [C P(2)]. But the

cell structure of V(i%) is

v(1%) =K U K L M5, GKFE k17

2 ™, 2, é;
which shows that dim V(13) = 17<18. Thus indeed QU V(1)
must contain a generator of dimension in excess of dim
V(l%)) and hence the spectral sequence {Er<v(1%?> ,dr<V(l%)>}

is non-trivial. Note that .as

hom. dim 0@ (v(1l)) = 3
: QU 2

this is in a sense the .simplest..example of .this phenomenon.
The previous results .and..examples suggest that the
following might .make .an .interesting problem: Give an
a priori estimate of the highest dimension an indecomposable
class occurs in QE (X) in terms of "other" invariants of X.
In this connectioﬁ let me mention in closing a recent
result proved jointly with P.E. Conner. |

Thm 7: Let X be a finite complex of dimension d with

QE (X) of projective dimension. at most 3. Then QE (X) is

generated as an QE—module by classes of dimension at most

24+1.
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The proof is not difficult but makes use of the rela-
tion between QE( ) and connective k, ( ) theory which is
analogous to that discussed for homology. The details are

not hard but will be deferred to another occasion. (See the

appendix to this lecture).

Appendix to Lecture II: The Relation of Cobordism to K-

Theories
There are two varieties of K-theory that will enter into
our discussion. First .of all there is the classical 77 5
graded K-theory denoteduby,K*( ) which in its Z -graded
form is the homology theory associated to the spectrum
pu=4{...,BU, U, BU, U ...}

There is second of all the-homology theory associated to

the connective bu - spectrum

bu = {BU, U ...,BU(Zp...%), U( 2ntl.. «),...}

whose associated homology theory is denoted by k,( ), and
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called little K-theory. There are morphisms of ring spectra

oy
ny P
\\ 4
S BU
T~
where 3 is the standard K-theory orientatién of MU,

n 1its connective analog, and A is a sort of localization

map. We recall

ke (pt)

I
p
A(\_—-'

[o1}
(0]
(o]

ct
Il
[\

Ry (pt) = Z It, 741

N/ ACEY AU
is the usual inclusion and
n: QY > ZItl : nmZ®] = camtd
where Td denotes the Todd genus
The relation between complex bordism and K-theory dis-
covered by Conner and Floyd may be put as follows.

Thm 1: Let X be a finite complex. Then the natural

map
LA, TR U el 0 >R, ()

is an isomorphism.
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Outline of Proof: We shall need a few preliminary steps.
Prop A: If A is a finite complex with torsion-free
homology then the natural map
T: Zie, £71 Qy () »

is an isomorphism.

Proof: One has that the.Dold-Atiyah-Hirzebruch spectral

~d
sequences for QE (A) and K, (A).both collapse while j; in-

duces an isomorphism of the terms E2. The result easily

follows. .,

Prop B: If X is a.finite complex then there exists a
finite complex A, an integer.t, .and a map
f: A > Zt X

such that

(1) H, (A;Z ) is free abelian

(2) K, (&) -~ K, (%) is onto
f*,

Proof: The proof is.similar to the analagous repre-

sentability property for QE ( ) and is skipped. ,,

To prove the theorem we. proceed in two parts. We first
Lo

show that TS is always onto. To this end we let X be a

finite complex and we use Prop B to choose

f: A > ZtX

so that
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(1) H,(A; ) is free .abelian
(2) K, (&) » X, (£®x) is onto.
f*

From the commutative diagram

oy (a) » ¥ (ztx)

¥ i
Ke (B) + K, (I7X)

we obtain in view of (2) and Prop A the diagram

zit, tThe ol @ - zie, e el oty
* *
P d = Lol

K, (A) —3 & 2¥x)—> o

and hence
Ldg =
¥ ZIt, t7& vy ™0 >k,
*

is onto and the result follows from stability.

>

Finally we must show that Ti is always monic. This we

do by induction on hom. dim. qU QE (X), the case where the
*

projective dimension is O being taken care of by Prop A. We

thus suppose that hom. dim qU QE (X) = n>0 and that the re-
*

sult is already established for n-1.

bility property of QE ( ) we choose

Using the representa-
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g: B -~ 7%
such that
(1) H,(B; Z) is free abelian

(2) QE (B) -~ QE (£°X) is onto.
I

we thus obtain a short exact sequence

o« ) %x)y « o} (8) « ¥ (z%x/B) +« o

that shows hom. dim U #] (2°%/B) = n~1. Consider the
*

diagram
V]

; < 9 i} i
o« Zib,t l]%UQE(Z_SX)*-Z*[t;t l]@QUQE(BV—/'Z[t,t l]QQU?EE(ZSX/B)
* * *

¥ Eﬁinductive)

N ' Y
onto ¥ 2y L S g
< 9y h, '
K, (25%) € Tk, (B) < R, (25%x/B——
*
Now note:
3* and El are onto.

Therefore by commutativity of the left hand square g, is

onto. Hence 3, = o and the diagram has become
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ov ZIt, 711 Luaj (25%) < Zie, £ 118 ual ()« Z 1, £ 71 ® o} (z%x/B) <o
% * %
n : n v
onto ¥ r, oY, oYL,

0 &— K, (I°%) €— &, (B) é——— K, (3°X)B)é—0

and thus the five lemma and stabhility shows that

T 20,7 gl () > K ()

is iso. This completes the inductive step and as hom. dim

QUQE (X) <o for a finite complex [l; §2] the result follows.[]
*

The relation between &, ( ) and little K-theory k,( )
follows more the pattern of the relation between bordism and
homology. First by forming the k, ( ) exact couple of a

bordism resolution and suitably reindexing we obtain:
Thm 2: Let X be-.a .finite' complex. Then there exists a
natural first quadrant homoalogy spectral sequence

{(EY(x]1, a¥[x]} with

E [X] = ki (X)

U
2 [x] = Tor® (Z1t1, ¥ ().

p,g P,q
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The edge map

B2 [X] * k,(X)
O, %

™

coinciding with . k%

By analogy with the situation for hom. dim 1 and homology
we obtain [1; §10]:

Thm 3: Let X be a finite complex. Then

™)

o ;Zi[tlégngﬂg (X) —> k, (X)
is an isomorphism iff

hom. dim .U 07(X) < 2. .
*

The proof of Thm 3 is similar to its homology analog.
The theorem of Conner-Floyd. (Thm.l) enters to establish cer-
tain key technical results, .viz..[l; §10]:

Thm 4: Let X be.a finite eemplex and n> o. Then the
following conditions .are equivalent

(1) hom. dim. QUQE(X) < n+l.
x ¥

QU U o

(2) Tor *x (Z [t], (X)) =o
QU -, U

(3) Tor ¥ (ZItl, (X)) =o: 3 2n.
]

Thus we obtain:

Cory 5: Suppose that X is a finite complex with hom.

dim. QUQE (X) < 3. Then there is a natural exact sequence
*



*

P

(ZIt], 9F (X)) > o.

Proof: This results from the spectral sequence of Thm 2 upon

noting that

Ei*[x]=o 3> 1

according to Thm 4. []

We are now prepared to outline a proof of the theorem stated
at the end of lecture.II dealing.with the dimension of gene-

rator of complex bordism modules. We recall the precise result

is:

Thm Let X be a finite.complex.of dimension d with QE (X)
of projective dimension at .most.3 over QE. Then QE (X) is
generated by classes-of.degree.at.most 24d+1.

Outline of Proof:. Let-us:-first observe that according to

the co bordism version of Thm 1 the map

* *
Qy. (¥ > K (¥)

is seen to be surjective for.all finite complexes Y whenever

* <2. From the commutative diagram

5k ()

Q* (Y) N4 A.

U "
ENQK*(Y)
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and the fact that A is an isomorphism for * <2 we there-

fore learn that

n: (Y)+k*(y)

is onto for & <2.

Now it is possible to embed.. X.in S2d+l. Letting
y ¢ g2d+1 be a finite complex that is a deformation retract of
82d+l -X we obtain the commutative dla ram

sz‘j (x> B 5 0 *1: (Y)
T

K, (X) 25 21y

elo e

where D is the Spanier-Whitehead duality isomorphism.

learn that

(%) QY (X) ~ k, (X) is onto: * > 2d-1.

Thus we

Suppose now to the contrary that ueﬂg (X) is an in-

decomposable class with j}2d+1l. Then

u#oelzZ ®QUQE (X)1.
Ly % Jj

and as Hj(x; Z) = o it follows that u must be killed in

the spectral sequence
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Er <X> ::::;) H* (X: 722.)
B2 <x> = Toer"I (Z, 9% (%)
p-q p-q % TH '

Now according to Thm 3 of Lec. 2

U
Q*q (7Z., 22(X)) = o: p>2

I4

Tor
and hence the only possible way that

u € E2 <X>

0,]
can die in the spectral sequence is for there to be a

with

Consider now the exact sequence of QE - modules

o~ ZIt]l » ZItl » Z =~ o

Applying the functer -® QU QE (X) and Thm 4 above we obtain
*

the exact sequence

U
U U g U, oy
o *Tor, , % (Z, % (X)> Tor; *H(ZIt], ) » ...

14

ceo > ZB ] (X o.
' *
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The zero on the left results from the case n = 2 of Thm 4.

Hence the element

ve Tor QE (& % (X))
2rj—l A
determines a non-zero element : Note that
U m, has
we Tor, . %x (L &1, QE (x)). dggree 2
1,35-3
and hence
the con-
necting

morphism is
of bi degree
(-1, -2).

The exact sequence of Cory 5 U
Q

V]
*
o > ZIEI® Uy (0 5k, > Tor) | (Z [t], 85(X)> o
then shows that w determines a non-zero element
e k. X
we 3,2( )

that is not in the image .of. %.« As j>2d+l,j—2>2d—l and this

is contrary to (*) and hence u cannot exist yielding the re-

sult. [:]
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Lec. III Detecting Homotopy ‘Elements by Realdizina Bordism

Modules

Our objective :in this and the next lecture will be to
explain how our- investigations into realizing bordism
modules by spaces~hasuledutbuthedrediscovery of an old infinite
family in the stable homotopy .of spheres and the discovery

of a new family. The .new.family that we have found consists

of classes of order p

S g =
[¥e] & Mol (ep-1)-2eF £ = 1. 2,0..

where p is a prime 'strictly.ureater than 3. As of the pre-

sent moment I am unable to .determine what, if any, are the
corresponding elements for p.= 3. The elements [Wt] all lie
in the cokernel of the J-homomorrhism. Upon observing that

2p (tp-1) -2t = 2(p-1) (tp+t-1)-2

and consulting Todas tables, it is natural to conjecture

that appropriately constructed, the elements [Tt] generalize

the elements

Byrev-r B : B e

S
t 2 (p-1) (tp+t-1)-2

constructed by Toda. This is certainly true for Bl.as the

p-component of s is cyclic of order p with generator
2(p-1)p=-2

i y
either Bl or [ l]'
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I believe that my method of construction shows that
[\yt'l‘l] [ {\Ptr L, Olflr quj]_}

S
E T

where o 2p-3 is the element of Hopf invariant one and

1

the five fold Toda bracket has been .defined in some suitable

way; Now Gershenson has shown

Bopp {Bs Pr By, pl,us} : s+l<p

so unless I have misinterperted my construction a suitable
permutation formula for 5-fold.brackets will he needed to
show {[Wt]} generalizes {B£} in the precise sense.

I leave these questions to.the experts whose aid will

be greatly appreciated.

to the stable stems let .me now back track and describe the bor-
dism problem that led .up-.to.all this. Rather than try to ex-
plain the motivation of this .problem, which lies deeply in

the study of numerouseﬁamples;<let me simply pose it in its
own right. We will need some' preliminary facts and notation

concerning the cobordism ring QE .
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RecollectionS'on'QE : As we have remarked before/Milnor

has shown that [ 5]

\ o) ~ 7 1iM%), 1., PR,

for suitable manifolds {M }. What constitutes a suitable

manifold? Milnor tells us. We must examine the character-

istic number

s_(c) "]

where S (c) is a certain polynomial in the Chern classes
which yields the primitive element of Hzn(BU;j/’). The
criterion of Milnor is that [Mzn] is a possible choice for

a generator (is an indecomposable element) of dimension

2n iff
on +1 if n # pl—l any prime p
s, (c) M) =

rp if n = pl—l : P a prime.

There is a special choice of a generator in the dimensions

2pl—2, p a prime, called "Milnor manifolds" by Conner-Floyd

i
and denoted by [v2P _2]. The manifold V2p_2 may be, and

will be chosen to befP (p-1). The manifold p ¢ Qg will

for technical reasons often be denoted by V© .
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Problem: Let p be a prime and n a non-negative integer.

Does there exist a finite complex V(n) such that

: n
¥ wm a ol e, PP, v T2,

as QE - modules, ie does there exist a class

v e 89 (V(n))

such that 52 (V(n)) is the.cvelic Qg - module aenerated

by v subject to the relations

n

2p=2y |y 2y

A(v) = (p, [v

(A(v) = annihilator ideal of v.

An additional-problem that has the ulterior motive of
constructing the spaces V(n) by induction may be phrased as
follows:

What is the image of
ST wm)y » 2.

ie. which classes .og¢ 52 (V(n)) may be represented in the

m m

form $°¢ = [S

, £] for some map f: S - ZSV(n) of a sphere

into a high suspension of vy(n)?
As we will be concerned almost exclusively with stable

phenomena we will introduce such simple minded notations as

SO\J el
P
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to denote a complex

SNg/ peN+l : N large

The notation extends to more than one cell.

Let us begin with what is eclearly obvious. Namely we

may choose

o 1
Vv = S e
(o) LJp.

Let us therefore proceed to the second of our questions
which concerns which of the classes in BE(V( 0)) are stably
spherical i.e., in the image.of framed.

It is at this point that it.is .convenient to divide the
case p = 2 from the case p> 2. .The former is filled with
special problems, and.while.the.complete answer is known it
will be convenient to concentrate our attention on the case
p>2.

Henceforth p>2 even if we forget to so qualify our
statements.

It will be of greét.usewt@;us to have available a

"direct" description of a homotopy -class

AV 82972

> MU
. 2p-2 . . s
that  represents V , that is, satisfies

vi = [v?P7?] e 43 (MU) .
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To this end (ignoring the motivation for all this) let

denote the element of Hopf invariant 1 mod P.

Consider the mappings

MU <« s° < s?P~3 . g

i ey p

2p-3

where
o)

i: 8% =g-=Mu

is the unit of the ring spectrum MU. Recall that a framed

manifold of positive dimension always bounds a U-manifold

and hence the composite

Since oy is of order p
lep N oo

Thus there is defined a Toda bracket

. . 2p-2
{i, a3, P} : s > MU.
The result that we require is:
Thm 1: With the above notations
. : 2p~2 .
{i, oy p} : s<P > MU
2p-2, _ S
represents [v ] = [CP(p-11 ¢ Ty (MU)

*
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Outline of Proof: Let us recall that we may introduce

a spectrum ¥H£§ by constructing the cofibration*
F

; § - %U & mU/S.
The elements of m, (MU/S) may be viewed as equivalence classes
of compact U-manifolds with a computable framing on their
boundaries. The resultino bordism group Qg'frhas been studied
by Conner and Floyd.
Now we claim thét,the following constitutes a correct

description of an element in {i, al,p} . (Details to the reader.)

Choose a (U,fr) manifold [W] with

24161 = [o;].

This is possible because the sequence
T

U U,fr * fr
o > Q. > @, > 8, 17 ™o
is exact when n>o. (Of course the classical -

Thom construction is used to identify wi with Q£r.)
Then
3% (PIW]) = ploy] = o
and hence
p[wWl=F,[C]

for some closed U-manifold C. Then

*

See: Conner and Floyd, The Relation of Cobordism Theories
to K-Theories Springer Lecture Notes No. (1966) .
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[c]l e {i, “1; p} .

Now a simple characteristic number check shows that a class
[C] Qgp_z has F, [C] = p[W] iff [C] = p[A] + P (p-1)]

U,fr

as p sz_z is part of the indetermina~v of {i,ul,p} we

may safely conclude that
[C] = [CP (p-1)]
yielding the desired conclusion,[:]
We 'may now obtain:

Cory 2: Suppose that X is a finite complex and

v e ﬁfr (X) is a class such that pv = o ¢ Bfr (X). Then

*
{agr P, ¥} ﬁfr(X) is defined and

o, {ag, p, v} = [CR(E-1)1e,(ve & X,

Proof: That F, {o;, p, v} consists of a single class

in BE (X) is easily checked by observing that F, maps the
indeterminacy of {al, p,Y} to zero.

The morphism of homology theories
O, ﬁfr ( ) =~ 52 ()

is induced by the natural map
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Thus we have

Oy {al’ p, Yyl = 1 °{u1j Py v} By a standard

Toda bracket

(i, aps P} 24(y) identity

[ P(p-1)1 o, ()

TR

as required. (O}

In particular, if we let
Y € ﬁo(v(o))

be the canonical class we may conclude that there exists a

map
SZp-Z > V(o)
such that
2p-2 _ U
[s™% %, Q1 = [CP(p-1)]y ¢ 52p_2 (V(o)).
Now recall that as p is odd Toda has shown that
one may also
= {a,, p v}: 8?P-2 4 y(o)  Just compute
E Mooy (V1))
afil"5ee its
is of order p. p-component

Therefore we may obtain an extension

3: 52p=2 U, 2073 | v oy

of EP . Upon observing. that.

* ; VU -
Here ¢, afr( ) 52 ( ) 1is the natural forgetful
functor that views a framed manifold as a U~manifold.
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SZp— 2p-3 2p-2

we may form the iteration

t-1r
3, : s2t (P Ly w2t Dy 5 . L 4.

Let <9t denote the composite

G?L: SZE{p_l inclusion of bottom sphere
o : —
g2t (p-1) V (o) _ﬂi§-7 V(o).

The following is then clear:
Thm_3: (57, 81 = (gre-11%ve H), () o))

and hence the classes [([:P(p--l)]t Yy : t=o0,1,... , all lie

in the image of 0,: L™ (V(0)) > HY (vV(o)). (T

Remark: It may be shown by a more delicate argument

that Thm 3 exhausts the list of framed bordism classes on

V(o).

We now arrive at .our first-application to the stable
homotopy groups of spheres. -Let

o 1

S >~ V(o) - 8
i gq

be the natural cofibration.
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Thm 4: The compositescgq&‘: t=1, 2,... represent

: s :
non-zero elements of order p in ﬂ2t(p—l)~l ie,

_ s
@ - @yl = [0 # 08 myy gy

Proof: Suppose to the contrary that
[a o0, 1 = o¢ my

From the exact sequence

fr (o)

5% (p-1) (s

fr T
P Saepeyy (VO > By 8

* 9y

we therefore find

(@) = 1.18,]

s
for some [ € t] € ﬂ2t(p—l) .

But from the commutative diagram

Because a fr o Y fr
framed mani- QZt(p—l) (87) = QZt(p-l) (V(o))
fold of posi-
tive dimension) O = ‘o, v oo,
bounds a
U-manifold U o u

Bt -y 5 ot (p-1) (V0D
we learn

contrary to Thm 3 yielding the results. [}
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Remarks: (1) [@,] dt of Toda

t

(2) @E = At of Adams.

The next lecture will show how these results yield V(1) and

lead naturally to the classes [Wt] discussed earlier.

Lec. 4 Detecting Homotopy FElements by Realizing Bordism

Modules
Let us briefly recall the.results of last time., We
were concerned with the following problem:

Let p be a prime .and-n:. a.non-negative integer. Does

there exist a finite complex V(n) such that

4% (v (n)) v QY (p, VEPT2, L, veP 21y as Ql-modules?

Last time we found a solution for p>2 and n = o, 1.
You recall that
o)
V(o) = S E
(o) Yo

and that there was a map
S? . g%P 2, V (o)

of order p in stable homotopy such that

2P=2)y

2p-2
[s°P7%, 1 = [v
We went on to give applications to the stable homology of

spheres. Our objective today is to return to the original

problem.
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Thm 1: Let

P - s2P72 y (o) + V(o)

be the extension of 3? . Let W be the mapping cone oft@.

Then

2

8 o~ 2l 1v?P 2], w2y as QV-modules

e

Proof: Consider the exact QE () triangle of the

cofibration
szP‘zv(o)i—:» V(0) wm=DW.
We have .
QE (82p_2V(o) i’-‘-—) QE(V(O) )
U
&y
Now note
ey (s*P 2y (o)) Y/ (p) 2P72
and
P, sP72, o yP2yy

Since QE/(p) has no'.zero divisors, “§, is monic so the above

exact triangle becomes o+QE/(p) . Szpﬁ27+ﬂg/(p)+ QE(W)+ o

S
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and thus we find

BE (W) ~ 52/(p, A P required. U]

Thus W is a space satisfying the conditions of V(l)

and hence we will write V(1) for W in the sequel. That is

Cory 2: The mapping cone of

& s?P"2y(6) + V(o)
may be taken as V(1) for p>2. E]

Remarks: For the prime 2 the analog of the space V(1)
does not exist. However instead there are some rather
strange 2-primary spaces connected with the Hopf maps.

Motivated by our construction of V(1) from V(o) and the
applications to stable homotopy.obtained in the process we

will now investigate the image. of the natural map
dirwan -8 wa).

Unlike the situation for .V(o) .it does not seem possible to
proceed via simple minded Toda.bracket éonstructions.

Higher order brackets seem.to be .needed. Rather than proceed
in this way we will investigate.this problem by means of

the Adams spectral sequence. - To motivate the reason for doing

this, if such is needed, let me explain that the construction
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of our spaces V(n) has an analogous formulation strictly in

terms of cohomology. So let me turn to this now.

A Cohomology Problem: Let us denote by p an odd prime

and by A* (p) the mod p steenrod algebra. According to
Milnor the dual algebra A, (p) has a particularly simple des-

cription that runs as follows.

deg A, = 2pt-1
deg ﬁj = 2p]—2
A*(P) ; Ep\ol >\]_I"'] ® Zp[ull 112,-..] With diagonal

x o x ol .
Voup T Tjo Mgy ® ouy

and

<]
>
>
|
™
Iy
o]
I—l-
>

k—kk®l+

These formulas show that

E [Xoreee, X 1C A, (p)
is both a subalgebra and a left.sub comodule. Thus its
dual will be a left .quotient.module of A*(p) that is in

addition a coalgebra over A*(p).

Problem: Does there exist a finite complex W(n) such

that
N, (W(n); Z,) NE[ Aoy.-n, ALl

as a left A*-comodule?
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Remark: It is possible to give a direct description
- %* i
of H (W(n);ZZb) as an A (p)-module. Namely let QisAzp l(p)

be the primitive element (ie, the dual of ﬁki). Then

ﬁ*(W(n);Zzp) ~ a"/a% (g o0 +aT et et

“n+l’
The following result is easily proved by means of the Adams
spectral sequence.

Thm 3: Let p be a prime and .n a non-negative integer.
Then if one of the spaces V(n), W(n) exists so does the other

and they may be assumed to be Spanier-Whitehead duals of

each other. &

Remarks: (1°) This cohomology problem seems no more
tractable than the corresponding .bordism problem. But it did
suggest the use of the .Adams.spectral .sequence.

(2°) Note that the proposed homology for W(n) is a
ring. Thus it makes .good.senseuto. ask .if we can choose W(n)
and/or V(n) to be a ring spectrum. In this connection note

(a) W(o), V(o) are ring.spectra: Toda-{gsgember

(b) W(l), V(1), are.ring.spectra iff p>3: Smith, Toda.
The proof of (b) is "hard" hometopy theory. It was suggested

by the existence of V(2) iff p>3 and one possible method of

its construction.
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After this semi~digression let us return to the main
stream of the study. Suffice it to say that by use of the

Adams spectral sequence we can prove [9].

Thm 4: Let p be an odd prime.. Then there exists

2
v: s2P 2 4 y(1)

such that
2 2 '
2p° - - U
(P 7%,y1 = P 2y e WY wa.
The element [Y] € 7S 5 (V(1) has order p. s
2p~ -2
Again reasoning by-analogy~with the previous lectures

program we inquire into the possibility of extending

2
UE: s?P -2 V(1)

to a map
2
3: %P T2 y) » v,

In this connection we have:

Thm 5: Let p be a prime, p>3. Let

2
v: s%P "2 45y

be the map with
2 2
1522 72,01 = v?® 21y e 8Y va)).

Then there exists an extension
2
7: 822 72 y(1) > v
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Outline of Proof: According to Thm 4 we may extend

to a map
2
T o g%P "2 y(o) » v(1)
and so what we must do is show that the composite

2
SZp +2p~-1

2
V(o) == 3 §%P "2y (o) ——= v(1)

2
SZp -2

n
ﬂ? Y
is null homotopic. This is accomplished by using the Adams

spectral sequence to show

]

ﬂ2p2

+2p-4 (Vo) , V(1)) = o: p>3.
For p=3 this group
Moy (V(0), V(1)) # o

and so the argument fails. [}

Alternate Proof: As remarked in our digression on the

cohomology analog the space V{l) regarded as a spectrum is a

ring spectrum for p>3. Let

W:o V(L) o~ V(1) > V(1)

be the ring structure. Then

5 ; :
s?P 72 A v(1) —> V() AV —V (1)

YA L u

is easily seen to be the required extension. U}
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Thus as with a?: SZP_ZV(0)~ >V(o) we may form the

iteration
t-1-
2 b3 2 o7
T, g2t®™-1) (1 211 vy 5 L. Y v,
and we let wt be the composite
2¢ (p°~1) 24 (p2-1)
wt : S + S v(l) > vVv(1).

7 ]

inclusion =

of bottom

sphere

The following is now clear.

Thm 6: Let p be a prime strictly greater than 3 and t

a non-negative integer. Then

2 2
[g2t(p —1),¢t] = v Ht e 87 wan.

2
Hence all the classes [V2p —2]t vy: t=o0,1,... lie in the

image of Bfr(v(l)) > ﬁE (V(1)). BAnd are non-zero.

Now notice that

V(1) = SO\_)pel\J__eZP—l\/peZP

Let

g: v(1) » %P
be the collapse onto the top cell. Introduce the composite

2
wt: Szt(P =1) 4 V() > Szp

by q
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Our main application to stable homotopy theory is then

Thm 7: The elements

S

[Wt]e ﬂ2t(p2—l)—2p : t=1, 2,

are all non-zero and of order p for all primes p>3.

Outline of Proof. Let us denote by V(1/2) the subhcomplex

of V(1) whose cell structure is

v(l1/2) = Sokjpelgj*_ e2p—l

Note that
V(1/2) =2y v(1) —Ly 2P

is a cofibration. Note that

¥ waszn xal/e) v@ el o,y

and that
i, vy=v, i, o0 = 0.
Suppose to the contrary that
[Wt] = 0.
Then
W£= S2+(p2—l) > V(1)
may be compressed to a map

. 2
b sPEETL L vy,
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A moments study of Thm 6 and the bordism of V(1/2) shows that

then we must have

2 - .
[SZt(p —l), ]‘Dt] = [V2p z]tye ?5'[: (V(1/2)).

2
That is, the bordism class [V2p —2]t is spherical on the

space V(1/2). Thus we are led to a study of the possible

spherical bordism classes on V(1/2). Now it turns out that

My e 89 (v(1/2))
is spherical iff

Ml = {ea;, p}
for some element

e QE,fr

With the aid of Adams results on the e invariant and a

C
detailed study of K-theory characteristic numbers for (U, £fr)-

manifolds we succeed in showina that

Yo 01 €Y (w2

are the only spherical classes or V(1/2) which shows that

=]
Vel # 0 € Moy (p21y-2p

as desired. [}
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Closing Remark: It is perhaps worth noting that our

investigation of the characteristic numbers of (U, fr.) mani-
folds contains several results that are perhaps of interest

in their own right. Among them is the following Hattori - Stong

type theorem.

Thm 8: All odd primary.relations among the integral
cohomology Chern numbers of compact almost complex manifolds
with framed boundaries .come from K-theory. That is, the
natural mapping

QE,fr

torsion @l[lle + K, (Mu/s) (R ZZ (1/2]

is a monomorphism onto a ZZ [1/2] direct summand , o
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