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INTRODUCTION

In this book, we first describe some of the basic ideas ang

methods of the theory of probability. Probability is part of

applied mathematics. Tt uses mathematics to make mathematical
Pictures or models of happenings in the physical world. These
models are used to help describe things that have happened and to
Predict things that will happen. The models used in Probability
theory are especially interesting, because we are never completely
sure that a pProbability model is an exact picture of what we are
studying in the physical world. The model may differ in varlous
ways from the physical situation that we are describing, How to
choose -a good probability model, and how to use it to make pre-
dictions about physical happenings, are questions that are not
alwayé easy, but they make probability one of the most interesting
and exciting parts of mathematics,

- We shall try, in Chapters | through 9, to give a good under-
standing of some of the basic parts of probability theory. When
one has such an understanding, it is easy to go on and
Study other parts of probability theory as well.

We then turn, in Chapters 10 through 19, to some of the basic

ideas and methods of mathematical'statistics. Mathematical

statistics is also part of applied mathematics. Tt is concerned
with questions of the following kind: given observed data from a
physical situation and given a mathematical model for that situa-

tion, how well do the observed data agree with the given model?
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In statistics, we ask and answer questions of this kind in order
to choose good models and to make practical decisions based on
those models. Usually, our answer about how well our data may
agree with a model will be influenced by a consideration of the
various practical consequences that may follow from various prac~
tical decisions based on correct or incorrect models. As we shall
See, mathematical statistics makes much use of probability theory.

The notion of model is fundamental in our approach to both
probability and statistics. 1In a given physical situation, vari-
ous different models may be possible. Physical evidence may lead
us to believe that some models are better than others, or that

Some single model is best of all. We must at all times remember

the difference between a model and the physical reality that we

want it to be a picture of. A model is something that we set up

in our minds or On paper. Often it is a simplified picture of
reality and leaves out details that are not important to us.

As we work with a model in a given physical situation, we may
make changes in the model from time to time in order to make the
model as useful a piciure of the given reality as we can. The
kind of model that we shail use in probability and statistics is
described in Chapter 2.

The following brief examples suggest some of the ways in
which models are used in probability and statistics. 1In probabil-
ity theory, given an experimental situation, we choose a model,
explore what follows from that model, and make predictions about

future observations. For example, if our experiment is the



repeated tossing of a coin, we may take as our model a
mathematical picture in which heads and tails occur equally
often over the long run and in which the outéome of each toss
is not influenced by the specific outcomes of previous tosses.
Let us call this model u. A typical probability problem would
be to calculate, from the model u, how long (in terms of
tosses) we should expect to wait, on the average, for a run of
10 successive heads to appear.

In statistics, on the other hand, we try to decide from ob-
served data whether a given model is reasonable, or to decide |
which among some given set of models are most reasonable, or to
decide whether any among some given set of models is reasonable. Iq

other words, we try to make inferences about possible models from

observed data. For example, if we toss a bent coin 15 times and
observe a run of 10 heads from the third to the twelfth toss, we
might ask if the model u (given above) is reasonable in the

face of these data.

Inferences about models are the subject of what has come to

be called classical statistics. In this book, Chapters 10 through
18 are largely concerned with topics from classical statistics.
Beginning in the 1940s, statisticians increasingly recognized
that, in practice, statistical problems often arise from a need to
make a practical decision in the face of incomplete information.
They came increasingly to believe that it is sometimes better to
formulate a statistical problem as a problem of making a best
decision rather than as a problem of choosing a best model. This

newer approach to statistics is called statistical decision theory.




We consider it in Chapter 19. As we shall see, it requires that
we develop a means for numerically measuring the good and bad
consequences of different possible decisions.

We suggest some of the ideas of decision theory in the follow-
ing simple (and artificial) example. An art collector is attending
a sale of paintings in a shop. He finds a painting for sale that

is claimed to be an old master. He knows that it may be fake. He

also knows that further study by experts over a period of months
will reveal whether or not it is fake. But if he is to buy it,
he must buy it now. He knows from previous experiencelthat only
about 25% of the paintings offered in this shop as old masters are
in fact genuine. He also knows that there is a special kind of
brushwork that tends to characterize old masters. About 90% of
the genuine 0ld masters sold in the shop have this special
brushwork, But only about 5% of the fakes have it. He examines

- the painting and sees that it does in&eed have this special
brushwork. Should he buy the painting?

There are two possible models to consider. The first, call
it Hy » is the mathematical picture in which we assume that
ﬁhé painting is'genuine, that 90% of such genuine paintings have
the special brushwork, and that 5% of similar fake paintings
have the special brushwork. The second, My ¢ 1is the mathema-
tical picturé in which we assume that the pPainting is fake,
that 5% of such fake paintings have the special brushwork, and
that 90% of similar genuine paintings have the special brush-

work. We have, as data, the observation that the painting has



the special brushwork. Finally, we assume that 25% of the

paintings offered are genuine and that 75% are fake. C(Classical
statistics asks the question:

given the data, which of the two models H, and Hy 1is more
reasonable? Statistical decision theory asks the question:

what is the best decision to make? In this example, the answer
to the latter question will obviously depend upon the rewards

and penalties that may follow from the decision made. If the
price for the painting is very high, this will count against pur-
chase. If the price is low, this will count in favor. If thé
collector views the embarrassment of having bought a fake as
harmful to his reputation and welfare, this will count against
purchase, even if the price is low. If the collector views his
own future regret at having missed an opportunity to buy a
genuine.painting as a serious matter, this will count in favor of
purchase even if the price is high. 1In Chapter 19, we shall re-
turn to this example and see how statistical decision theory takes

these various considerations into explicit account.

While certain practical problems, like the art collector
problem above, cannot be properly treated by classical statis-
tics; while the approach of statistical decision theory may be
more fundamental conceptually than the approach of classical
statistics; and while there are deep connections between
classical statistics and decision theory; it is nevertheless
Simpler and perhaps more instructive to begin with classical

statistics. We therefore put off statistical decision theory

to the final chapter.



