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CHAPTER 18. REGRESSION AND CORRELATION.

Regression experiments. Consider a probabilistic experiment

which has a value Y as its outcome, Bu; where the experiment
itself, and hence the probabilistic behavior of Y, is affected
by the value assigned to some parameter X which is controlled

by the experimenter, For each trial of the experiment, the

‘parameter is given some chosen fixed value. This chosen value

may vary from trial to trial. For example, the experiment
might be randomly to choose an individual and then to give that
individual a certain standard test, where Y 1is the score
obtained on the test and X is the amount of time allowed to
the individual for taking the test. Such a parameterized

experiment is called a regression experiment. (The reason for:

the term "regression" is explained later in this chapter.)

Regression experiments occur widely and are frequent
objects of statistical study. Typical examples include the
following: |

(a) A seed of a certain plant species is randomly selected
and planted in a soil of standard composition. A special
nutrient is added to the soil and the growth rate of the plant
is observed. Here Y = observed growth rate, and X = concen-
tration in the soil of the special nutrient.

(b) The experimenter makes n rolls of a single die
and observes the sum of the numbers that appear. Here
Y = observed sum, and X = n. ' }

(¢) The electrical condpctivity of a certain metal is

approximately measured at a precisely fixed temperature T.
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Here Y = observed value of conductivity and X = T. '(For a

éiven -T, observed values of Y may vary because of random
experimental errors occur;ing in-the procedure for measuring
conductivity. Near the end of this chapter, we shall also consider
situations where random experimental errors occur in

measurements of X as well as in measurements of Y.)

For each chosen ﬁalue of the parameter X in é regbession
experiment, the observed value Y may be viewed as a random
variable. To simplify our exposition, we shall assume from
now on that for each value of X, Y 1is a continuous random
variable on (-w,w); (This was not the case in (b) above.)

We shall usually take X to be continuously variable on
(-=,=), but sometimes we shdll have X with values on an interval
such as (0,») or on some discrete set of real numbers such
as the non-negative integers. .
In a regression experiment, the parameter X 1is called

the independent variable, and the corresponding random variable

Y 1is called the dependent variable;

Regression models. Given a regression experiment, a

regression model for that experiment is a rule which gives,

for each value x of X, a probability density function g, (¥)
for the corresponding random variable Y. A regression model

may hence be viewed as a family of density functions, one for
each possible value of X. (As usual for density functions,

wWe require, for each x, that gx(y) > 0 and that Jt@gx(y)dy z 1 )

Evidently, a regression model may be viewed as a function g(x,y)

of two variables, where g(x,y) = g,(y). This function is also
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often Written as g(x,y) = g(y[x), and the latter notation is
read as "the probability density for Y at y, given x."

We introduce the following notations. Let

1
fzﬂ (o] ; . .

1 y=u,2
Lt

N(y;u,c) =

Thus N(Y;u,c) is a normal density with mean yu and variance
Let C(y:m) = 1 = .
7(l+(y-m)®)

Then C(y;m) 1is a Cauchy density with median m.

Examples. We consider the following.

(1) glyl=x) Cl(y;3x).. This is a regresslon model where,

for each value x of X in (e-=,®), Y 1is a Cauchy fariable
whose median = 3x.

(2) gly|x) = N(y;xa,z). This is a regression model
where, for each value x of X in {(e®, @), Y 1is a normal
variable with mean x2 and variance 4.

(3) gly|x) = N(y}5x-7,x). This is a regression model
where, for each value x of X in (-»,®), Y is a normal

variable with mean 5x -7 and variance x2.

(4) glylx) = N(y;5x-7,2). This is a regression model
where, for each value x of X in (-=,»), Y 1is a normal

variable with mean 5x -7 and variance 4.

Consider a regression model g(y|x) where, for all values

of X, Y has both expectation and variance. We can then define

E(Y|x) = I v &ly|x) dy .
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For each fixed value x of X, E(Y|x) is called the

expectation of Y 5i§en x. Evidently E(Y[x) is a function

of x. The equation y = E(Y|x) 1is called the regression of

T on X, and the curve in the XY plane which it defines

is called the regression curve of Y en X (for the given

model). In example (2), the regression of Y on X is

Y = xz' in (3) and (4), it is y = 5x =7. A model is said to

be a linear regression model if its regression is linear.

Thus (3)-and (4) are linear regression models, but (2) is

not. (Strictly speaking, (1) is not a linear regression model,
since E(Y|x) is not defined.)

Similarly, we can define the variance of Y given x as

<o
Y(T|x) = I (y-E(Y[x))zg(y[x)dY .
- -
If the density for Y in a given regression model is normal

for every value of X, we say that the model itself is a2 normal

regression model. Thus (2), (3), and (4) are all normal

regression models.
Finally, for a given regression model, if V(Y|{x) remains

constant as x varies, we say that the model is homoscedastic.

Examples (2) and (4) are homoscedastic. Otherwise (as in (3))

Wwe say that a model is heteroscedastic.

In what follows, we shall confine ourselves to regression
models which are normal, linear, and homoscedastic., We shall

refer to such models as simple normal linear regression models

or, more briefly, as SNLR models.
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Prevalence of SNLR models. If, in a given parametrized

experiment, we haée reason to expect that the mean of Y

changes linearly with the assigned value for X, we may wish to assume
a2 linear regression model. If, in addition, for each value for X5 the
variation in Y about its mean value appears to be the result

of a number ofrsmall and largely independent influences, we

may, by the Central Limit Theorem, wish to assume a normal

model., Finally, if we believe that the physical sources of

this variation in Y about its mean are largely independent

- of the specific value assigned to X, we may wish to assume a
homoscedastic regression model. This combination of circum-

stances arises frequently in nature and in statistical practice,

and observed data are often found to agree well with some SNLR
model. For this reason, SNLR models are widely used by
statisticians.

Sometimes a 5i#en regression experiment proves to be
non-linear. In such cases, statisticians may seek an algebraic
transformation of X which will yield a linear regression.

Such a‘transformation leaves the assumptions of normality and
homoscedasticity unaffected, since these assumptions apply only

to the behavior of Y.

Bivariate experiments and bivariate models. If a probability

experiment yields values for two random variables X and Y,

it is called a bivariate experiment; The experiment of choosing

an individual at random and measuring that person's height
(in cm.) and weight (in kg.) is a bivariate experiment with

X = height and Y = weight. If X and Y are continuous randcm
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variables, a bivariate model. is usually given by a joint

probability density h(x,y) as described in Chapter 16.

A bivariate experiment can be used as a regression experi-
ment in the following way: To find an experimental value of
Y for some given value xo of X, we simply conduct successive
independent trials of the bivariate experiment,lyielding
(xl,yl),(xz,yz),..; until we find a value X; which is equal
to Xy or very close to XO' We then use Yy aS the value
of lY observed for X = Xqg- | , N
Similarly, a bivariate model can be transformed into a
regression model as follows. If Xq is fixed, then as vy

varies, h(xo,y) measures the relative likelihood of observing

y (for the given x,). Hence

h(xy,y)

I h(xo,y)dy

gives a probability density for Y. Then gl(ylx) is the

desired regression model. When g(y|x) is obtained from

h{x,y) in this way, it is sometimes called the conditional

density obtained from h(x,y) for Y ~given x. Note that

Lix) = I hi(x,y)dy

will be the probability density for the random variable X

when we consider X by itself as a single random variable.

When f(x) 1is obtained in this way, it is sometimes called

the marginal density of X for the given bivariate model

h(x,y). Since
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glyfx) = Ei%¢%l s We also have
f(x

f(x) gly|x) .

hi(x,y)

This equation shows us how to go back from a regression model
g(y|x) to a bivariate model h(x,y), profided that we know

the density f(x) for X.

If we begin with a bivariate model h(x,y), if we then form

gly|x) as aboée, and if we then find .

E(Y|x) = J yglylx)dy, we call E(Y|x)

o
the conditional expectation of Y iven x for the bivariate

model hi(x,y).

de can also geo from a bivariate model h(x,y) for the
random variables X and Y to a regression model in which

X 1s the dependent variable and Y is the independent

variable., For this, we use

«©
£ix|y) = h—;’(‘-;-}’- , where g(y) = [ B(x,y) dx .

de then have the conditional expectation

(
E(X]y) = J x f(x|y)dx .

To suymmarize: 1if we begin with a bivariate model B{%,¥),
we can find regression models gly|x) and f(xl|y), as well

as marginal densities f(#) and g(y), such that
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hix,y) = f(x)g(y|x) = gly)fix]y) .

Furthermore, the conditional expectations E(Y[x) and E(X|y)
provide the regression eqﬁations y = E(Y|x) and x = E(f[y)
for these regression models.

The transition from bivariate model to regression model
is important becéuse, as we shall see, we frequently begin with
a bivariate experiement, then proceed to view it as a regression

experiment, and then seek a good regression model for it. We

discuss this further below.

Example. If we begin with the SNLR model for Y on X:
o

gly[x) = N(y;x,1)

and then assume, in addition, that the parameter X 1is a

random variable which follows the normal distribution
flx) = Hix3041);

we obtain the bivariate model

1 -é (2x2-2xy+y2)
hix,y) = Flxlglyl|x) = z=e .

WYe can now go from this bivariate model to a marginal densitv for Y.

Ne obtain ‘

gly) = f h(x,y)dx = N(y; 0, v2),
“ @

as the reader may verify. . Finally, as a regression model for

X and Y, we obtain
fiely) = B oy dy, )
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| We shall see, later in this chapter, that it is always true

that if X is normal and Y on X has an SNLR model, then
Y is normal and X on Y has an SNLR model. Note also in
this example that the regression curve for ¥ on X (given
by the equation y = x) is distinct from the regression curve
for X on Y (given by the equation Y = 2x). This is true

in general for regressions obtained from a continuous bivariate

density.

Regression analysis; If we have data from a regression

experiment, then a mathematical procedure for finding a regression
model that agrees well with these observed data is called a

regression analysis; If Y. is dependent and X is independent,

we speak of this as a regression analysis for Y on X. We

shall now study certain forms of regression analysis for the
case of SNLR models. The purpose in carrying out a regression
analysis is té learn as much as we can about the way in which
the dependent variable Y in a regression experiment depends
upon the independent variable X. 1In each case,our hope is
that this knowledge will give us an ability to make future
predictions of values of Y from values of X and that it
will lead us to a better understanding of the mechanism and
natural laws which underlie the dependence of Y on X.

Independent trials. When we carry out a regression experiment,
we choose a particular succession of values xi, -« Xp for the inde-
pendent variable and observe corresponding values Yy, ..., Y for
the dependent variable. In using a regression model g(y|x) as a
mathematical picture of such an experimental procedure, we make
two further assumptions about the relationship of the model to the
experiment. These assumptions are as follows. (a) Given a specific
value for xj;, the probabilistic behavior of Yj is described by the
density function g(y|xj) and is not affected by the values chosen
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£OT X143 vuey Xjs1s Xj+1s +-+s Xp- (b) For each choice of

X1s «-e3 Xp, tﬁe variables Yi, ..., Yp are independent (in the
sénse of independent random variables as defined in Chapters 16 anc
17). When we use a regression model to describe a regression
experiment, we refer to assumptions (a) and (b) together as the

assumption of independence of trials.

In carrying out a regression analysis of a regression
experiment, we shall always seek a regression model for which
independence of trials holds. .If we go from o.. bivariate experi-
ment to a regression experiment, we will evidently have indepen-
dence of trials, if trials of the bivariate experiment are
independent. It often occurs in practice, however, that the
successive trials of the bivariate experiment are not independent.
In particular, the successive values of the independent variable
X obtained in the bivariate experiment may represent some non-
independent stochastic process. Under these circumstances, it is
still possible for the derived regression experiment to have a
regression model for which independence of trials holds, but we
cannot be sure that this is so without further careful study.
This difficulty is evident when we use bivariate historical data
in a regression analysis. For example in economics, if we wish
to do a regression analysis for Y = average per capita income on
X = gross national product, “the tvue relation between Y and X
may be one in which the current year's value of Y is influenced
not only by the current year's value of X, but by the values of
X for recent years as well, and it may also be the case that for
a given sequence of such X values, the corresponding Y values
are not independent as random variables. Both parts of the
assumption of independence of trials may thus fail. In spite
of this failure, regression analysis is often carried out on
such historical data. Evidently, the result of such an analysis
will have limited predictive value and must be used with caution.

Estimating a regression model. The most common form of

.

regression analysis is to go from observed data to the corre-

sponding maximum-likelihood estimate for an SNLR model. Assume
that we are given observed data in the form (xl,yl),...,(xn,yn),

where (xi,yi) are the values of X and Y obtained on the
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ith trial of our given experiment. (In case the original
experiment is bivariate, it is customary to treat all the
observed values of X és if they were chosen parameter values
for the regression experiment and hence to use all the data.)
We take the universe U of possible regression models to
be the set of all SNLR models. We formulate our maximum-
likelihocd'problem as follb*s. Assume that the successive
values XyreoosXy of the independent variable X are fixed.
What model in U gives the maximum likelihood (with those
specified xl,...,xn) for the values Yiseses¥p which were
actually observed for Y, |

The SNLR model which we seek must have the form
N(y;a +bx,c) for some values a,b,c. Evidently, by our

independent trials assumption, the likelihood of our enti:e

observation can be expressed as

L(yl,...,yn;a,b,c) =N(yl;a+bxl,c)N(yz;a+bx2,c)...N(yn;a+bxn,c)

1 (¥y=-2 -bxi)z
'Eg 2

c

1
=——2—e
(Zﬂ)n/ ch
Maximizing L 1is the same as maximizing L' = log L, where

L' = -%103 2T -« nlogc - } Elz (yi-a-b'xi)e. To maximize L'
c .

We take partial derivatives with respect to a, b, and ¢
and set these partial deriviatives = 0.

This gives:
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aL' 1 Y -

Ta—- '_"? ; (Yi-a-bxi} - O,

al'’ 1 -0
Er - ? § (yi-a -bxi)xi - 0’

L' n 1 2

——— D o ™= e (Y- -a-bx-) = OI
3c c :5;_ A i

The first two equations become

Y; =na =-blx; =0
and
2
o ! -
e R | = _ 1
If we introduce the notations X = £]x;, 7 = ﬁzyi’

- p 2 o 1 .
x° = H}:xi’ and X7 = H{ X;¥;s these two equat:.onsl become
and

Sclving for a and b, we have

¥ X
-_— 2

LA IS S 155,
1 % ;2' - 22
£ x°

and

b = - i = Xy - E? 5
1 X ;2‘ _ 22
 x2|

250



b

540

where the quantitiés on the right can be directly calculated

. 1
from the data. The third equation (for %%— = 0) now gives

c2 . % g (yi -3 - bxi)z
in terms of a and b,

Note from the equation a + Xb = ¥ ﬁhat the estimated
regression line. ¥ = a + bx must go through the point
(%,7). Given this fact, the second equation Xa + ;2b‘= Xy
then determines the slope b and intercept a of the
regression line. The final equation gives c2 as the average
squared deviation of the data from this regression line.

Example. Assume that we have data from three trials:
(L,0), (2,3), (3,3). (Usually, in a regression analysis; we

will have data from a considerably larger number of trials.)

#de then calculate:

Z=23(1+24+3) =2
F=504+34+3) =2
¥ = 20+6+9) =5
?:%{1..-4«,9):%‘1.

Applying the formulas for a and b, we get

14
5 _7(2) - 2(5) - _2/3 - o1
- %&_4 - T273 ¢
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5 - 2(2) 1
= = 373 = 3/2
=4 /3

Thus the regression for Y on X given by the maximum-likelihood

SNLR model is
y:-l+%X.

(This regression is also known as the least squares regression

6f Y on X because it is fodnd by maximizing L with
respect to a and b, which is the same as minimizing the sum
of squares | (yi'-a-bxi)2.)

X

The maximum likelihood estimate for e is now found from

0
L]

22 3000+1-3/2)%2 4 (3+1-32 4 (341-9/2)2)

%{%4. 1 +%;) = 1/2.

We hence have ¢ = ->-

What if we are given the same data, but wish to find a
maximum-likelihood SNLR model with X as dependent variable

and Y as independent variable? (This assumes that our data

come originally from a bivariate experiment.) Then our
regression will have the form x = a' + b'y and we can find
a' and b' by interchanging x and ¥ 1in the formulas for

a and b. This gives us

2L AR - )
22 =2
-and yo=v
bt = L= XV , where ;2 = %-Eyi.
-7
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From our data, ;2 = %(0-+9-+9) = 6. . Hence we get

_6(a) = 2(5) -
' 2 =51
and
b =

5 = 2(2) 1
X

and the maximum likelihood regression for X on Y is
x=1+ %y.

Similarly for the variance of the SNLR model for X

Y we have

I2 )2

' a % P (xy -ar- b'yi

s} 1-1-0% 4 2-1-32 4 3.1.33

B %-(04-%-4-{:) = %‘-, and ¢’ =% .

The two regression lines are shown, together with the

data, in the following fizure.

=

o

on
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Note how each line corresponds, réther naturally, to the
interpolated line that we would intuitively-draw, from the
data, for the desired dependence; (As we noted in a previous
example, it is generally true that the regression line for

Y on X 1is different from the regression line for X on

Y. This is not surprising, since the regression of Y on

X 1is concerned with a model for the behavior of Y as X
varies, while the regression of X on Y 1is concerned with

a model for the behaﬁior of X as Y wvaries.

Causal relationships. Usually we carry out a regression

analysis in order to find out more about how and why a
dependent variable Y depends upon an independent variable
X. In the case cf”a regression experiment in which the
parameter X 1is ﬁnder odr direct control as successive trials
of the experiment are carried out, we are likely to have good
scientific grounds fﬁr beliéving that changes in the distri-
bution of Y are directly caused by alterations in the chosen
value of X. In the case of a regression experiment obtained
from a bivariate experiment, however, such a causal relationship
may be less obvious. Indeed, if we are not careful, a regressicn
analysis of bivariate data may lead us unwittingly to conclude
that there is a direct causal relationship when, in fact,
none exists. The following example shows one regression for which
a causal relationship exists and another regression for which a
causal relationship does not exist.

- Consider a bivariate experiment in which father-son pairs

are randomly selected from a human population. X 1is defined
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to be the adult.height (in inchesi of the father and Y is
defined to be the adult height (in inches) of the son. We
then consider this bivariate expériment as a regression
experiment with X as independent and Y as dependent
variable. An analysis of data from such an experiment
provided one of the first published examples of a regression
analysis (by Galton in 1903). The analysis was based on British data

and used more than 1000 observed pairs. The estimated

regression
v = 33.73 + .516x

wa§ obtained. This resﬁlt expreéses‘the direct influence,
in the observed population, of father's height on son's height.
Evidently; the causal mechanism is largely genetic.

The same bivariate experiment, however, can also be
considered as a regression experimeﬁt with Y as independent

and X as dependent variable. Using the same data, the

~

equation

x = 32.53 + .512y

iz obtained for the regression of X on Y. Obﬁiously,

this record result cannot be viewed as describing a direct

causal relationship, since the height of a son is determined

at a later time than the height of his father. For this

reason, the regression of X on Y is perhaps of less interest in
this experiment than the regression of Y on X. (On the

other hand, if we know the son's height but not the father's,

we can use this°regression equation of X on Y to help us
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to make a good guess as to the father's height.)
Regressioﬁtanalyses based on data from bivariate experiments
occasionally become subjects of scientific contﬁoversy because
of doubts as to the nature (or even the existence) of a direct
causal relationship between the independent and dependent
variables. Such controversies can be both subtle and complex.
For eiample, it may be argued that a correct causal interpre-
tation of the influence of X on Y must involve some third
unexamined variable that is directly related to both X and
Y. 1In fact, a third relevant variable does occur in the case
of father-son heights and must be considered if we are fully
to understand the way in which X influences Y. This variable
is the mother's height; Further analysis shows that the causal
influence of the father's height not only includes the father's
direct genetic influence but élso includes a tendency of taller
men to marry  taller women and shorter men to marry shorter
women, so that, in the regression of Y on X, the father's
height acts indirectly through the mother's genetic influence
as well as directly through the father's own genetic influence.
We note two other special features of the father-son
example. First, observe that the regression equation for Y
on X (y = 33.73 + .516x) is of the form y = a + bx with
b < 1. This means that, in the observed population, taller-
than-average fathers tend to have sons who are shorter than
they are, and shorter fathers tend, on the average, to have
taller sons. In the 1903 analysis, this tendency was spoken
of as a "regression" of the son's height from the father's

height towards the population average. We call such a tendency
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a regression effect.

Second, obéer&e that the regression equation for ¥ on
Y (x = 33.53 + .512y) also shows a regression effect.
Taller-than-average sons tend to have had fathers who are
shorter than they are, and shorter sons tend to have had
taller fathers. This regression effect from sons to'fathers
does not contradict the previously described regression effect
from fathers to sons. The previous effect relates to variations
in Y for fixed x, while the present effect relates to
variations in X for fixed y. We shall see later in this
chapter that these two regression effects do not indicate
anything unusual about the father-son experiment and data,
but ﬁre, instead, a typical-mathematical feature
of experiments and data of this general kind. 1In fact, the
word "regression® is now used broadly to describe the forms
of model, experiment, and analysis that we have already called
regression mddels, regression experiments,‘and regression

analyses.

Hypothesis tests and confidence regions for SNLR models.

In previous chapters, we have defined a model to be a pPro=
bability space. In the present chapter, we are using "model,"

in the sense of regression model, to mean a parametrized

family of probability spaces. Once we have chosen a particular
sequence of values for the independent'variable in a regression

experiment, the concepts of metric, hypothesis test, and

confidence region can be used with regression models in much

the same way as before. We do this now for the case of SNLR models.
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Assume that N(y;c+8x,0) 1is a given SNLR model with
fixed «, B, and o, and assume that we have a regression
experiment for which this is the correct model., If we fix
values of XqpeeerXy of X and observe corresponding values
yl,...,yn of Y, we can proceed to calculate a, b, and ¢
as described above.- The quantities ¥, a, b, and ¢ may be

viewed as new random varigbles whose distributions (for the

i 6—'
given fixed X15..09% ) depend upon a, B, and fq. What

can we say about the nature and form of these distributions?
\ )
We first observe that ¥ = % ) ' is a sum of independent
1

normal variables and hence must have a normal distribution with

o/ : _ -
Eg --HE (@ +B8x;) = a + BX
and
' -
V? = o~ /n.
X7 - 2T X.V. - Y.
Similarly, b = XL x(¥) . L ( L z =)
;2 Y ;? _221i n in
1 -
= L(xg - %)y
e md ©
.n{x< «x*)

is a sum of independent normal variables and hence must be
normal. (Note that the x; -are all fixed, so that the %
are the only random variables appearing in this expression.)

It is easy to show, by the algebraic laws of expectation

and variance, that

and 2
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Similarly, one may show that a = Z; = X(X¥) is normal
-2
with ® =3
Ea = g
and
.
2= "
x© = %
n(cz)
Finally one may show that ——— has a chi-square distri-
o

bution with pe2 degrees of freedom. (See Chapter 18.)
For a given SNLR model with B8 = BO’ and for a given

fixed choice of XlpeoesXy, We introduce the metric

c

.S(UJ.) = )
Wwhere w 1s an observation (yl,;..,yh). Using the methods
of Chapter 18, we can show that this metric is well defined
(for the fixéd choice of xl,;..,xn) on the composite model
consisting of all SNLR models with g = 8o (where a and o

may vary). We can also show that

b=8
s{w) /(n-2)(x7-i2) 0 I/(n-Z)(xj-:'ca)
a _

follows a ¢t distribution with n -2 degrees of freedom.

This enables us to calculate DLS values for our metric and
hence to carry out hypothesis tests for a given _80 or to
construct confidence intervals for 8. In particular, if we
take BO = 0, we have a hypothesis test for the null hypothesis

that Y does not depend on X.
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Other metrics for testing or approximating values of a
and values of ¢ can be defined and used in similar ways.
It is also possible to define a metric which is well-defined
on the set of all SNLR models (considered as a composite model
inlthe universe of all normal, homoscedastic, regression
mocdels) and to use th;s metric to carrf out a hypothesis test
for the composite null hypothesis that the regression is
linear. Further details on these tests and constructions may

be found in more advanced texts on regression methods.

Example. We use the data in the previous example to find

a 95% confidence interval for 8. We had b = 3/2, c2 = 1/2,
n=3, X =2, and ;?,= 14/5._ From our t-table, we find

. that the 95% points for a t-distribution with 1 degree of

freedom occur at t = £12.7. Hence we have

e

% -8
—/

Az

£12.7

o

or

- % s 12.7\/§ = 3+ 14.7.

“hus our confidence interval for the slope B8 of linear
regression is (-13.2,16.2). (The interval is so large because
theinumber of observed data points is so small.)

Example. In the father-son experiment described above,
1078 pairs were observed, and the values %2 - 72 - 7.29 and
¢ = 2.32 were obtained. We find a 95% confidence interval

for 8 as follows. Since the t distribution with 1076



Pk

£

i}

550,

degrees of freedom is extremely close to the standard normal

distribution, we have

-'571‘.53%5 YT11076)7.29 = +1.96,
Hence B = 516 + 2:32(1.96) . 510 g7 gy

v1107617.29 yaie

Multiple regression. Regression experiments and regression

models can be defined in an exactly similar way, when we wish
to relate the dependent variable Y to several independent
parameter variables X,Z,W,... at the sameztime.- Such

experiments and models are said to be multiple regression

experiments and models. (Tﬁe case of a single independent

variable is usually called simple regression.) The derivitions
and calculations for multiple regression are similar to the
case of simple regression described above. (See the Exercises.)
As before, normal linear homoscedastic regression models are
Widely used. As before, the most common form of multiple
regression analysis is a maximum likelihood "least squares"
calculation.,

Multiple regression analysis can be especiélly helpfuﬁ:
in exploring and identifying causal relationships,“since they
give us a way to measure and compare the relative Eimultaneous
effects of different independent variables upon the same
dependent variable. For example, in the father-son height
experiment described earlier, information was also gathered
on mSthers' heights, and these data were used to carry out a

multiple regression analysis. This resulted in the regression

2%
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TP Y= 14,08 4 .409x + L4302,

Whepéf_y-zxséh's height, x = fathen?agheighg,faﬁﬁ z

i

tmotgeq§§ineigh;;” It is instrﬂ;tiyaatéﬁgoﬁpang%saghagnﬁobégryed

regregsion-w@th regressions that one might expect..fozobtain on
.. the-basis of various given sciemtific assumptions.--Regression
N:mcdﬁéarisons of this kind can pﬁevidé:importantfécientific
‘:{nsigq:é and suggest valuable new directions for .ressarch.
gTQ;s‘is especially true-in g¢ases (like:that of.sonsfather-

--mother heights) where the .observed data dre found te fallow

s

‘:somgi&%nearuregression modglxexﬁ%agnﬁinakY;well;. Weconsider

thesé:matters further at ;ne;end-Of,thﬁwprgsent,chan§&r11=
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