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Chapter 17. NORMAL DISTRIBUTIONS.

Random variables were introduced in Chapter 8 and normal
distributions were defined. If the random variables Xl’ X2, Sost oo
Xn represent n successive and independent observations of a given

random variable X, then the sample mean was defined to be the new

random variable

- _ 1
X - = g X, .
We proved in Chapter 8 that
E- = EX
and
=1 ‘
Ve = an Vx -

We also stated the Central Limit Theorem which asserts that for a

random variable X possessing both mean and variance, the distribu-
tion of X become more and more nearly normal as n increases.
Two further random variables can be associated with the
above observation procedure. We define
s?2 =L (x. - 72
» i
4.
and

52 = é 52 §
n

S2 is called the sum of squares and 52 is called the sample

variance. We also define

s = /s?
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which is called the sample standard deviation. 1In an appendix to

this chapter, we show that

S2 b4
and hence that
_ n=-1
E 2 = —E—-VX P

For the case where X is normal, we can also show that

_ 2{n-1) 2
Vg = 5 (Vy) ’
n

which suggests that as n increases, the distribution for the random

variable s2 becomes more and more closely concentrated about the

expected value E%l VX. Hence, in statistical applications, we can
expect to use X as an estimate for EX and H?T 52 as an estimate
ftor VX

The random variables x and s2 are known as sampling variables

because they are defined in terms of the sample Xl, o b % § Xn. Sampling
variables such as x and 52 are important because they are convenient
to use in defining various statistical metrics. The distributions

of these sampling variables and metrics are called sampling distrib-

utions. Sampling distributions depend upon the distribution of the
original random variable X. The results above, however, together
with the Central Limit Theorem, show that when strong enough
assumptions are made about the universe of models U, it is possible
to reach conclusions about a sampling distribution even when the

distribution of X 1is not fully known.
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Much of the great early work in classical statistics can be
described in the following way:
(a) Certain useful sampling variables are defined.
(b) A universe of models is assumed.
(c) A metric is defined using the sampling variables.
(d) The metric is shown to be well defined for certain
appropriate composite models.
(e) A sampling distribution for the metric is calculated.
(f) This sampling distribution is used for bLS calculations
and hence for hypothesis testing and confidence regions.
The special art of classical statisticians lay in the elegant ways

in which they accomplished (¢), (d), and {e).
Adding independent random variables. If we are given

random variables X and Y, we can define a single experi-

mental procedure yielding X and Y as independent random
variables. (See ' f S e Chapter ®.) We can
then define 2Z = X + Y as a new random variable associated

with this procedure. 2 1is called the sum of the independent

variables X and Y. The distribution for 2% 1is then

determined by (and can be found from) the distributions for X
and Y. For example, if X and Y take values on the non-
negative integers and p?, p?, pﬁ are the probability func-

tions for X, Y, and 2, then for each n,
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Similarly, if X, Y, and Z are continuous random variables
on the interval (=-«,«}) and fX, fY, fZ are the density

functions for X, ¥, and 2, then it is easy to show that

for each =z,

£2(z) = f £X(6) £F (z-t) dt.

(This follows from the assumption of independence together with

result (1) in the proofs at the end of Chapter 8, when we make the

change of variables z = z and y = z-x.) We shall look further at

these operations in Chapter . 19,

Using the integral formula above, we can show by direct
integration that the sum of two independent normal variables
must be a normal variable. Using the formula for discrete
variables given, we can also show that the sum of two Poisson
variables-is a Poisson variable. In both cases, it is
immediate from the facts given in Chapter 8, that the mean of
the sum is the sum of the means and that the variance of the
sum is the sum of the variances. A similar conclusion holds
for the wvariable 2 = X - Y, where X and Y are
independent normal variables. 1In this case, 2 must also be
normal. Since 2 =X -Y =X + (-Y), we have
E, = Egy + Ey = E, - E, and V, = Ve + V_y = Vg + Vy. Thus,
for example, if X is normal with mean 4 .and standard
deviation 3, and Y 1is normal with mean 5 and standard
deviation 4, then 2 = X - Y must be normal with mean -1
and standard deviation 5. (Here VX = 32 = 9, VY = 4° = 16,
and hence V, =9 + 16 = 25 giving o, = V25 = 5.)
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In general, the sum of two independent binomial variables
is not binomial, except in the special case where the individ-
ual success probability p 1is the same for the two given
variables. Then (as is intuitively obvious) the sum is also
a binomial variable with the same p and with a number of
trials equal to the sum of the numbers of tviels for the

two given variables separately.

It is also possible to show, as we shall see in Chapter 19,

:® that if X is normal, then, for every constant a,

aX is normal. It follows that any linear combination of

independent normal variables must itself be normal.

The Central Limit Theorem. The Central Limit Theorem was stated

in Chapter 8 as a statement about the distribution of x.

The Central Limit Theorem also holds in a more general
form for sums of independent random variables Xl + X2 + ... ¥+ Xn
where the variables xl’XZ"" need not have the same distri-
butions, but must have variances of about the same size. From
an intuitive point of view, this general theorem says that the
combined effect (as a random variable) of a large number of

independent small effects must have a distribution that is

approximately normal.

The proof of the Central Limit Theorem requires special analytic

techniques to be indicated in Chapter | (9.

Common occurrence of the normal distribution. The normal

distribution appears frequently in applications of probability
and statistics. Many random variables encountered in physical
experiments prove to be approximately normal. (This is

usually the case, for example, when the given random variable
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is the vaiue of a single direct observational measurement of
Some physical quantity such as length or temperature.) The
Central Limit Theorem in its general form provides a conceptual
explanation for the common occurrence of the normal distribu-
tion. If the observed value of a given random variable can be
viewed as the combined effect of a large number of small
independent factors, then the theorem tells us that the

distribution should be normal. Thus certain random variables

encountered in biology, such as height of a randomly chosen
adult in some given human population, can be expected to be
normal, because they can be viewed as the result of a large
number of independent (and individually small) genetic and
environmental factors. Similarly, the error in making a physi-
cal measurement can be expected (as a random variable) to be
normal, if it can be viewed as the combined effect of a number
of smaller, independent effects.

In statistical analysis, considerations of this kind often
permit us to assume that our universe of models is a collection
of normal distributions. When we make this assumption, certain
stronger statistical methods become available to us, as we

shall see below.

Standardized variables. Recall from Chapter 8 that if a

random variable X has mean py and variance 02, then the new

variable Y defined by
X-y

Y = =L

)

is called the standardized form of X. Evidently, EY = 0 and

Vy = 1. If we know from assumption (or by the Central Limit
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Theorem) that a variable X is normal, and if Y is the

standardized form of X, then Y will have the standard

normal curve as its density function, and tables of standard

normal areas can be used to find probabilities for Y and hence for X.
An example of a standardized variable occurs in connection with

normal approximation. Let X be the number of successes in

a binomial experiment with n trials and success probability
p. Then Ex = np, and VX = npg as we saw in Chapter 16.

Hence the standardized form of X is

X-np
Yynpq

and this is the expression (with an added correction for bar
width) that we used in normal approximation. Similarly, in
normal approximation to the Poisson distribution, the

standardized form L was used.

vym

Statistical methods for normal distributions. We illus-

trate some of these in the examples that follow.

Let the random variable X be the height in inches
of a student chosen at random from a given population of students.
Assume that 100 independent observations of the random variable X
are made, yielding xl = 70, Xz ® 12.85 weny X100= 68.4. Assume

further that from these observations we calculate x = 70.5 and

2

s 9.0. What does this information tell us about the true

distribution of X? (We would know the true distribution exactly if
we knew the heights of all students in the underlying population

from which the random selection is made.)
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There are several different approaches to this question, de-
pending upon: (i) the information we assume to begin with about the
true distribution (in other words, the universe of models that we
assume); and (ii) whether we use a hypothesis test or a confidence
region. We call the mean of the true distribution u and the |
variance 02.

Example 1. We assume that the true distribution is normal

with known variance but unknown mean. In particular, let us

assume that we know, from studies of other similar situations,

that 02 = 4. Thus we are taking, as our universe of models,

all normal distributions with 02 = 4, We can now use our ob-
served data as follows.

Hypothesis test: Take the hypothesis u = 71. X must be
normal, since X is a linear combination ofle, 5 i Xn' and each of
Xyr oeer Xq is normal. x has variance = %r and hence standard
deviation = d//ﬁ. Hence the quantity

x-u

o//n
is normal with mean = 0 and standard deviation = 1. Thus if we
take lx-ul as our metric, we can calculate a DLS by using the

o/v¥n
standard normal distribution. In particular, we get

| x5ul . 170.5-711 _ 8.5 _,
ol 2/10 0.2
Thus the DLS = 1 - 2A(2.5) = 0.012, and our observation leads us

to reject the hypothesis pu = 71 at critical level 0.05.
Confidence region: Assume 95% confidence level. Then we want

those values of u for which the DLS > 0.05. This means (again
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X~ H is standard normal) that

— o/vn

Ix-ul nuse be <1.96 (as 1 - 2A(1.96) = 0.05). Putting in
o/vn

the particular observed value of x = 70.5

ot 62 = 4, we get

using the fact that for each 1y,

and the assumed wvalue

’705515 ul < 1.96

[70.5 - u| < 0.39 = 0.4.

Thus u = 70.5 * 0.4 are confidence limits and 70.1 <€ W2 T8

is our desired confidence region.

Example 2. We assume that the true distribution is pot-

necessarily-normal, with known variance but unknown mean. Here the

method of Example 1 works exactly as before, provided that n is

large enough so that, by the Central Limit Theorem,

the distribution of X must be approximately normal. It follows

X ~ Y nmust have a standard normal distribu-
a/v/n

tion. The calculations for hypothesis tests and for confidence

that for each yu ,

regions are thus identical with the calculations in Example 1
and yield the same numerical results.
Example 3. We assume that the true distribution is not-

necessarilyv-normal with unknown variance and unknown mean. Here

we can proceed exactly as in Example 2, provided that n is

also large enough to ensure that EQT s? is a good estimate of

the unknown true variance 02.— (It is possible to obtain a formula for

v This formula, which is rather complicated, shows that V 5 gets

27
S S
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small as n increases.) We then simply replace ¢ by
A s, or, equivalently, -Z by S— . The calculations in
n-1 vn vn-1

the particular example above go as follows.

Hypothesis test: Take the hypothesis 1y = 71. Then

1x-u] |70.5 - 71
=l— = = 1.66. Thus the DLS = 1 - 2A 1.66) = 0.10,
s/vn-1 3//99 ( :

and the observation leads us to accept the hypothesis u = 71 at
critical level 0.05.

Confidence region:

x-u| _ ]70.5 - u| . 1.96
s/vn-1 3//99 B

[70.5 = u| < 0.59

Thus u = 70.5 + 0.6 are confidence limits, and

69.9 < u < 71.1

is the desired confidence region.

The basic formula from which we calculate all three of
the above examples, and for both hypothesis tests and confidence

regions, can be written (for critical level 0.05) as follows:

lﬁ:ﬁl = 1.96 when o is known;
o/vn

and lﬁ:ﬁl— = 1.96 when ¢ 1is unknown.

s/vn=1
(Here, as usual, we define o = ch and s = #sz )
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For Examples 2 and 3, n must be large enough to ensure

that the Central Limit Theorem, and the desired approximation of
2 by —2- s?, both hold.
n-=1
The following case remains to be considered.

Examgle 4. We assume that the true distribution is normal

with unknown variance and unknown mean. When n is large enough

to ensure the desired approximations, this is simply a special
case of Example 3, and the same formulas can be used. What if
n is small? For example, what if we measure only five students
énd get Xl = 72, Xz = 71.5, X3 = 68, X4 = 71, X5 = 72.2? Then
%X = 70.9 and s? = 2.3. Can we carry out a hypothesis test or
find a confidence region? We can do so as follows. We take our
universe of models to be the set of all normal distributions.
Within this universe, we define, for each value of 1y, the
composite model MU as follows: Mu is the set of all normal
distributions with mean u. It can now be proved that for any

given yu, the metric X~ M js well-defined on Mu' We do not
s/vn=-1

give the proof here. (It uses the methods of Chapters 12 and 19.) We

call this metric Student's metric. The DLS of an observation

(using Student's metric) can be obtained by using a certain

standard density function known as the t-distribution with n-1

degrees of freedom. Like the chi-square curves, the t-distribu-

tion curves form a family of density functions,
with a different curve fd(t) for each
integer value d > 0, where d 1is called the number of degrees

of freedom. The t-distribution curves are symmetrical, have

mean = 0, and are rather similar in general shape to the standard
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normal curve. As d increases, the curve fd(t) approaches more
and more closely to the standard normal curve. Values for area
under the t-curves are given in tables similar to the tables

previously given for the chi-square curves, except that in the

table given below, the area associated with a value t 1is the
area lying under the curve between -t and t. Areas are given
in the top line, and t=-values corresponding to those areas are

given in the body of the table.

t+ - TABLES
Degrees One-
of sample Two-sided probability level ﬁ
freedom sizet -

.50 .80 9 .95 .99

1 2 1.00 3.08 6.31 12.71 31.82

2 3 .82 1.89 2.92 4.30 6.96

3 4 .76 1.64 2.35 3.18 4.54

4 5 74 1.53 2.13 2.78 3.75

5 6 .73 1.48 2.02 2.57 3.36

8 7 - 72 1.44 1.94 2.45 3.14

7 8 i | 1.41 1.89 2.36 3.00

8 9 1 1.40 1.86 2.31 2.90

9 10 .70 1.38 1.83 2.26 2.82

10 11 .70 1.37 1.81 2.23 2.76

15 16 .69 1.34 1.75 2.13 2.60

30 31 .68 1.31 1.70 2.04 2.46

50 51 .68 1.30 1.68 2.01 2.40

100 101 .68 1.29 1.66 1.98 2.37

1000 1001 .67 1.28 -1.65 1.96 2.33

ot <t .67 1.28 1.64 1.96 2.33

t For setting confidence limits on the mean of a single sample.
§ Standard normal distribution.

Thus for 4 degrees of freedom, area 0.95 is given by the t-

value 2.78.

We can now perform hypothesis tests and find confidence

regions as follows.
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Hypothesis test: Take the hypothesis p = 72.5. Using

X =70.9 and s® = 2.3, we get
[R-w| _ ]70.9-72.5] _ 1.6 _ 2.11

s/Vai=T  /33//3 0.76"

From the table, using n-1 = 4 degrees of freedom, we see that
the area for the t-value 2.1 must fall between 0.80 and 0.90,
Hence the DLS of the observation (given by the remaining area)
must lie between 0.1 and 0.2. At the critical level 0.05, we
would continue to accept the hypothesis.

Confidence region: For a 95% confidence region, we want
those values of u which give a DLS > 0.05; in other words, we
" want the values of u whose t-values give an area < 0.95.

For d = 4, area 0.95 occurs at the t-value 2.78. Hence we have

|i_]~|| - 170'9"1-!, = 2.78
s/vn-1 v2.3//4

Thus, |70.9-u| = 2.11 = 2.1

So the confidence region, in this case, is
68v8 < u < 73.0.

The difference of two means. X and Y are two given

random variables. We make n independent observations of X
(represented by the random variables Xl,...,xn) and m

independent observations of Y (represented by the random

variables Yl,...,Ym). A common form of statistical problem is
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the following: to decide, on the basis of such observations,
whether it is reasonable to conclude that X and Y have the
same distribution. (This problem arises frequently in experi-
mental studies, where we seek to determine if a treated group
of subjects is different from a control group.) In Chapter 16,
the WMW-metric gave us a non-parametric approach to problems of
this kind. We now return to this problem, making the additional

assumption that the distributions for X and Y are normal.

'We shall see that the assumption of this additional information

leads us (as we might expect) to more powerful statistical
methods of a parametric nature. We give three examples.
Example 5. We assume as hypothesis that the distributions

for X and Y are the same distribution, that their

common variance 02 is already known, but that their common

mean is unknown. We take, as a composite model, all pairs of
normal distributions where both members of each pair have the
same specified variance 02, and equal means. Then for any
pair of mean pu, x must be normal with mean u and variance
02/n, and y must be normal with mean u and variance oz/m.

Hence the random variable x - y must be normal with mean 0

2 2
, g ;
and variance 5 + %E" Hence the random wvariable

|
al

X

‘/02( %)

then be used as a metric to measure how far an observation is

must be standard normal. This random variable can

S
+

from giving strongest confirmation that X and Y have the

same distribution.
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Example 6. We assume as hypothesis that the distributions

for X and Y are the same normal distribution, but that their

common variance and common mean are both unknown. Then, if n

and m_are sufficiently large, the observation can be used to

estimate the unknown variance 02 as follows. Let Si be the
sum of squares for the observations of X and let Sg be the
sum of squares for the observations of Y. It follows from the
results of Chapter 28 . that

B(si+s3) = B(s)) + E(sD) = (n-1)o?+ (m-1)0% = (ntm-2)02, where

02 is the unknown common variance. Then

2 2
"2 5y * 5,
O’ S ———

n+m-2

can be used as an estimate of 02. Substituting this estimate
for 02 in Example 5, we can complete our analysis, using the
standard normal curve, exactly as in that example.

Example 7. For a final example, we consider the case
where the distributions for X and Y are assumed (as hypothe-

sis) to have the same normal distribution with common mean and

common variance both unknown, and where n and m are not

large. In this case, it can be shown that the random variable

follows the t-distribution with n + m - 2 degrees of freedom.

(See Chapter 18.) Using this random variable as a metric (to measure
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confirmation of the composite null hypothesis that X and Y have

the same mean), we have the t-test for the difference of two means,

one of the most commonly used techniques in classical statistical

parametric analysis.



