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CHAPTER 15. CONFIDENCE REGIONS

In hypothesis testing, we begin with a fixed model and then use

an observation to confirm or reject that model, It often happens,
however, that we have no single model in mind to begin with, and that
we would like to use the observation to help find a model that is

likely to be close to the true one, or to help find a set of

models that is likely to include the true model. In Chapter 12, we saw

how estimation methods can be used to help indicate a single model.

The present chapter describes an important and commonly used way of

indicating a set of models. It is called the method of confidence

regions. It forms (along with hypothesis testing and estimation) a
third major area of classical mathematical statistics. The

method of confidence regions is simple and easy to understand, and is
closely related, in its concepts, to hypothesis testing.

In Chapter 14, we took a fixed model and asked which observa-

tions would give us, under that model, a DLS > o. The set of such

observations was called the acceptance region determined by the given

model at critical level o. If our actual observation fell in the
acceptance region, then we accepted the hypothesis that the given
model was correct. If not (that is, if the actual observation fell

in the critical region), then we rejected that hypothesis. Note that

the acceptance region was a set of possible observations.

Now, in the present chapter, we take a fixed observation and

we ask what models would give us, for that observation, a ILS > a.

The set of such models is called the confidence region determined by

the glven observation at critical level a., Note that the confidence

region is a set of possible models,

169



170

464

Example. Consider a binomial experiment of 100
trials. We carry out the experiment and get X = 45 successes as
our observation. Let o = 0.05. What is the confidence region de-
termined by this observation?' The copfidence region will be an
interval of values of p. The endpoints of this interval will be
those values of p for which the observation X = 45 has ILS = 0.05.
We' find these endpoints as follows, (We use normal approximation,
but otherwise our calculation 1s exact).

For a given value of p, the DLS of X = 45 1is obtained by

normal approximation as

LS = 1-2A(z), where
. & | 45-100p| -%
P(i-D

For this DLS to be 0,05, we must have (as we know from normal tables)

z = 1,96, Hence we must solve the equation

’45'100'!3[ 'é’ s 1‘96
PL+=P

We consider two cases, In the case p < 0.45, we have 45-100p > O.

Hence we have

45-100p-% = 1.96/T00p(I-p) .
Squaring, we obtain the quadratic equation

10.38p°-9.28p+1.98 = O
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Solving, we find, as the solution below 0.45, p = 0,351, In the

case p > 0.45, we have 100p-45 > 0. Hence we have

100p-45-% = 1,96 /IOOp(1-p).

Squaring, we obtain the quadratic equation
10,38p°-9,48p+2.07 = O,

Solving, we get, as the solution above 0.45, p = 0.552. Thus, our

desired confidence region is

0,351 < p € 0.5652 .

Relation between acceptance region and confidence region. Fix a

critical level a, Note that!'an observation w 1lies in the accept-

ence region determined by a model © if the DLS of w under u

is > a. Note also that a model ¢ 1lies in the confidence region de-

termined by an observation w if the DLS of « under 1 is > a.
Thus we immedlately see that for fixed critical level a, the accept-

ance region for H contains « 1if and only if the confidence region

for w contains yu.

For the example of 100 Bernoulli trials, we saw in Chapter 13 that
the acceptance region for the model P = % is the interval 24 < X < 43.
Above, we have seen that the confidence region for the observation
X = 45 1is the interval 0,351 < p < 0.552, This is in accord with
the above principle relating acceptance regions and confidence regionsg §
for X= 45 1is not in the acceptance region for P = %, and p = %

is not in the confidence region for = 45,
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Terminology. In the example above, the models were values of

p. The confidence region was an interval of values of p. 1In such a

parametric case, the confldence region is called a confidence

interval. The endpoints of the interval are called confidence limits.

For a confidence region, the quantity vy = l-a is called the

confidence level.

In the example above, the confidence level is ¥ = 1-0,05 = 0,95,
Usually, confidence levels are taken at 0.95 or 0.99; We then
speak, for example, of a 0.95 confidence region. (In the same
way, observations in an dcceptance region may lie in én iqterval. We

may then speak of such an interval as an acceptance. interval and of

numbers giving endpoints for it as acceptance limits.)

We emphasize again that an acceptance region is a set of possib!

observations, while a confidence region is a set of possible models.

Meaning of the confidence level Y. Let u be the true (but

unknown) model for an experiment. Let o = 0.05. Then

Yy = 1-o = 0.95. Repeat the experiment many times. Then approxi-
mately o(= 0.05 = 5%) of all the observations obtained will fall
outside the acceptance region for u. (This was the meaning for
the critical level «.) Hence approximately vy (= 0.95 = 95%) of
all observations will lie in the acceptance region. Take a
confidence region for each observation. By the above principle, -
relating accepténce regions and confidence regions, approximately

y(= 0.95 = 95%) of these observations will have u in their
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confidence regions. Thus we have the following. If we make many

independent repetitions of the process of getting an observation

and calculating a confidence region, then in approximately

y(= 0.95) of these cases, .the resulting confidence region will

include the true model. Similarly for other values of o and vy

(such as o = 0.01 and vy = 0.99). Note that as o becomes
small, both the acceptance region and thg confidence region
increase in size.

It 1s sometimes tempting to say, "the probability is 0.95
that the true model . 1lies in this confidence interval." This is
incorrect, since the true model y 1s fixed and céﬁnot vary aé the
experiment. is repeated, To be correct, we musﬁ_say that "the proba-

bility is 0,95 that a confidence interval obtained in this way will
include the true model."
Tables. Confidence intervals for binomial experiments

have been tabulated. These tables are often given in graphical

form by figures such as the following.
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0.552

Figure 15.1

(o condhdemer
lLu-e..l = |Ql§)

0.351

Here observations are given on the horizontal axis (as values of %)
and models are given on the vertical axis (as values of p). The
two curves give the upper and lower confidence limits for n = 100.

Other curves for other values of n could also be given in the same

figure.

Example. Consider, as a second example, a Poisson experiment

where a single trial is made. A model is given by a value

for the parameter m in the Poisson formula. An observation is
given by X, the number observed in the single trial of the experi-

ment. Since the value of m 1is also, as we noted in Chapter 7, the
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average value that we expect to observe in many repetitions of a

Poisson experiment, we take m to be our theoretically expected

result, and then, to get the DLS, we use the metric [X-m
How would we calculate the DLS for the observation X = O

under the model m = 2? Here |X-m| = 2. The observations that

lie at least as far as this from m are the values X =0 and

X > 4. From tables, we get the DLS = P(X =0 or X > 4) = 0.278.
Now let us take a =-0.05, What is thé acceptance region for

m = 2? From tables, we get (as above) that the DOLS for x = 5 is

0.053, and that the DLS for X = 6 is 0.017. Hence the acceptance

region for m = 2 1s the set of integers x, 0 <X < 5.

What is a confidencg region, again with o = 0.05 (and hence
confidence level vy = 0.95),  for the observation X = 0 ? From
tabies we get that with m =5, the DLS of x = 0 is 0.039, while
with m = 4.5, the DLS,of X = 0 is 0.051. Interpolating, we
estimate that for m = 4.54, the DLS of X = 0 is 0.050. Hence

we have as our confidence interwval

0 <m < 4,54,

In the same way we can verify, for example, that the acceptance
region for m = 5 18 the set of integers x with 1 < x < 9, and

that the confidence region for X =5 is 1.97 < m < 12.3.

Approximation in the binomial case. In the case of a binomial

experiment, where X 1is the observed number of successes, it

is sometimes convenlient to express the observation in the form %,

the observed relative frequency of successes, The observation then

lies in the interval 0 < < 1. Each model p 1is also given by a

A=

number in the interval 0 P £ 1. The fact that observations and
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models can both be pictured as lying in the interval from O to 1

can be a source of confusion when we consider acceptance regions and

confidence regions for binomial experiments. An added source of

confusion is that for any given value r between O and 1 and

for any o > 0, acceptance limits (for values of é) for a binomial

experiment with the model p = r and the confidence limits from the

observation % = r are usually very nearly the same. This is a

special feature of the binomial distribution. (Note that in the
Poisson example above, the confidence limits from x = 5 and acceptance

limits with m = 5 were gquite different.)

‘Thus, in our first example above, we found confidence limits
for the model p from the observation % = 0.45 +to be 0.351
and 0.552. If ﬁe now‘gét acceptance limits for the observation
X  from the model p‘=;0.45, we obtain, by normal abproximation,

0.347 and- 0.553. Since n = 100, the acceptance region consists of

values of % from 0.35 to 0.55.) Note that the limits are
not the same, although they are very close. The mathematical
procedures in the two cases are distinct. In both cases (for

a = OlOS, for example) we start with the equation

x-np| -2 _
P - 2%

which can be rewritten as

X 1
'H’p"’éﬁ
1=

ﬁ: = 1,96,
n
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For acceptance limits, we fix p and solve for X (or %9. This
amounts to solving certain linear equations. For confidence limits,
we fix X and solve for p. This amounts (as we saw above) to
solving certain quadratic.equations.

" It is oftenconvenient, however, to use a simpler approximating
formula in both cases, We take the last formula above and drop %E

(which becomes small as n becomes large). This gives us

R N e )

Thus, for acceptance limits, we have

X
ngtl.%@

For confidence limits, we take the further approximating step of !
using the observed wvalue % to approximate p under the square root
sign, Letting 6 = %, we have, for confidence limits,

l-p

p-=4% + 1.96 = :

Note the similarity of the last two formulas., For p = 0.45 and

for §= 0.45, they give identical limits: 0.352 and 0.548.
(If we ask for acceptance limits to be observable values, we get
0.36 and 0.54. The change from the previously found limits
0.35 and 0.55 1is caused by the omission of the correction

term for bar width.)
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This coincidence, which 1s special for the binomial case, can

cause confusion. It is important to keep in mind that we

are working, conceptually, with two separate sets: the universe of
possible models and the set of possible observations. They willl be
clearly different, as sets, in almost all situatiﬁns other than
binomial experiments.

Example. Out of 100@randomly selected cars, 100 are' observed
to be white. Find approximate confidence limits for the percentage
of white cars in the population from which the sample is taken.

X

Here == 0.1. Using the simpler formula and letting

p = 0.1, we have, as confidence limits

_ F.
= 0,17t 0,019 .

Thus the confidence limits for the percentage of white cars are

8.1% and 11.9%.

Confidence regions and hypothesis tésts. If we are given a model

as null hypothesis, an observation, and a critical level o, we

can use the observation to carry out a hypothesis test on the model.
If the model 1s rejected, the hypothesis test procedure, by itself,
does not tell us how far away from the null hypothesis the correct
model may lle. On the other hand, 1f we also use the observation

to construct a confidence region, then this confidence region does
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give an indication of where, in the universe of models, the true
model may lie. Construction of a confidence region thus gives

more Information than a simple hypothesis test. This is. not sur-
prising, since a hypothesis test only considers the relation of

the obser&ation to the null hypothesis, while the confidence region
takes into account the relation of the observation to all models

in the universe. Although they are mof% useful, confidence regions
are, 1ln general, more difficult to construct than the acceptance
region for a hypothesis test. Deéign of a hypothesis test requires
only that we have a metric for the null hypothesis, while construc-

tion of a confidence region requires that we have a form of metric

that can be applied to each model in the universe. In some cases, there
may be no evident way to choose a metric for models other than
the null hypothesis. Here a hypothesis test may be the only

possible approach. This is the case, for example, with contingency

tables of type o, and with other uses of the CS-metric to test

goodness-of-fit.

The case of composite models also presénts difficulties for
making confidence regions.” In special cases, as we shall see in
Chapter 16, it may be possible to think of the entire universe as
a set of non-overlapping composite models and to find a form of
metric that is well-defined for each of these composite
models. Construction of a confidence region in this case then
takes the form of the construction of a certain collectinn of

these composite models.
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Constructing confidence regions. A confidence region can be

constructed from an observation as soon as we decide on (i) a uni-
verse of models, (ii) a form of metric that can be applied to each
model in the universe, and (iii) a confidence level. In many

cases, the choices of universe and metric will be natural and evi-
dent. Construction of the region then follows directly as soon as

we choose a confidence level. We look at a further example.

Example . Each year, dog licenses in a certain town are

numbered consecutively beginning with 1. A single dog is chosen

at random and observed to have license number 42. Find 95%
confidence limits for the total number N of licenses that have
been issued in that year. This problem can be solved as follows.

The possible values of N are {42,43,...}. Each value of N

gives a model in which the possible observations {1,2,...,N} are
equiprobable. Consider an observation X = X, and the model given by
No' Then s((x) = NO- X 1is a useful metric to measure the distance

of % from giving strongest confirmation of the model. Under the

model No + the DLS of X = X will then be the probability that
X £ x, for another observation X, and this probability will be
X
ﬁg . Hence, if x==xo==42 and Y = 0.95, we seek those NO such
o

that the DLS of X is > 0.05. We thus have
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Solvi i i ali
ving this lnequality, we get No < 840. Therefore the desired

confidence limits are 42 and 839.

APPENDIX TO CHAPTER 15.

To illustrate the logical process of constructing a confidence
region, we give a further and more subtle example:

Example. Consider the one-sided universe given in the
binomial example in Chapter 14 for a one-sided test. In that
example (concerning sterilization of bandages),the universe con-
sisted of values of p such that 1/3 <P <1l. To get confi-
dence intervals, the metric given there for the model p=1/3
must be extended to other models in the universe. One way of
doing this is to let

_f |x-np| when %-32(,
s(x;p). =
n

n
]§ - np| when X <3

(In the example in Chapter 14, we have n = 169, )

This form of metric puts all observations to the left of % at the
same distance from np as % itself. It follows, as can be

checked, that for observations above %, the upper confidence liﬁit
is the same as in the two-sided case, and that for pbservations below

%, the upper confidence limit has the same value as it would for an

n

observation ~ %. The lower confidence limit is never less than 30
and, for sufficiently large observations, it is larger than the lower

confidence limit for the same observation in the two-sided case.
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Take, for example, the observation X = 45 1in a binomial experi-

ment with 100 trials. In the;Ewo-sided case, with the universe

182

0 <p <1, the 0.95 confidence limits are 0.351 and 0.552 as we
saw earlier in this section. In the one-sided case, with the
universe = 4 p £ 1, the upper limit is 0.552 and the lower

3
limit is 0.366. (The reader may check that the DLS of x = 45

for the model p = 0.366 is 0.05 under the one-sided metric
s(x;p) defined above.) In this example, other choices of metric
are also possible. '

In each case, the 0.95 confidence intervals constructed have
the desired property that, when construction of an interval is
repeated for.many successive observations, thé constructed inter-

val includes the tiue model about 95% of the time. The reader

- should note, in the example, that in going from the two-sided to

the one-sided case, the shorter intervals for large observations
exactly compensate for the larger upper confidence limit for
small observations in such a way as to preserve the 95% confi-
dence for all models p > 1/3. 1In that example, the individual
confidence intervals may be viewed as altered (from the two-
sided case) by the additional information that p must be

> 1/3.

Remark. The confidence region that we construct from a
given observation under a given form of metric will depend upon
the metric. What makes one metric preferable to another for
the purposes of constructing confidence regions? We consider

this further in our general discussion of metrics in Chapter 20.
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EXERCISES FOR CHAPTER 15

In a sample of 20 students drawn from a large population, 16 recalled
recently-learned material better immediately after sleeping 8 hours
than after 8 hours awake. Set 80% confidence limits on the popula-
tion proportion p who would have performed better after sleeping 8
hours, had all been tested.

A random sample of 50 families from Cambridge, Massachusetts, showed

10 families with incomes over $10,000 during 1969. Set a 90% confi-
dence interval on p, the percent of families with incomes over

$10,000.
Among 211 cardiac invalids in a series hating heart operations, the

operative mortality was 18%. Set 95% confidence limits on the opera-
tive mortality for this operation on this kind of patient.

Consider a binomial experimeﬁt with n = 100. Consider the model
P = 0.6 and the observation X = 70.

a. Find the DLS of this observation under this model.

b. Find :he acceptance region determined by the model p = 0.6
when “he critical level o = 0.01.

& F1nd the confidence interval determined by the observatlon
= 70 when the confidence level is 0.99.

Consider a Poisson experiment where a single observation is made.
Consider the model m = 4 and the observation X = 8.

a. Find the DLS of this observation under this model. (See
Exercise -12.)

b. Find the acceptance region determined by the model when
o = 0.05s.

¢. Find the confidence interval determined by the observation
when confidence level is 0.95.

Consider the following test of a vaccine for the common cold. One
group of 100 people is given the vaccine. Another group of equal
size is given a placebo. If, after a mild winter, the results were

vaccine placebo
Caught cold 10 - 20
Cold free 90 80
100 100

Use the observation to test for associatioy}with critical level
a = 0.05.

183 .



184



CHAPTER 16. NONPARAMETRIC METHODS.

In the previous two chapters, we studied the forms of

statistical analysis known as hypothesis testing and constructing

confidence regions. These forms of analysis can be applied to a

variety of new situations, provided that we can do the following:

(a) define the experiment that we will conduct and the nature of the

observation that we will obtain ; (b) identify (for the case of a

hypothesis test) the model (or composite model) that we wish to

test; (c) identify (for the case of a confidence region) the
universe of models that we will use; (d) decide on a form of
metric to measure distance of a given observation from highest
confirmation of a given model.

The choice of a metric (d) is, perhaps,'the key step and
determines both the ease and the usefulness of the resulting
analysis. Many metrics have been studied bv statisticians, and,
in a given situation, there mav be several different and
familiar metrics that can be applied. It is
often possible for the beginner to discover an appro-
priate, useful, and natural metric by thinking carefully about
the given circumstances. Several examples of this will follow.
In each case, we shall be led to what is, in fact, a familiar
and important metric in mathematical statistics.

When we look at a possible candidate metric (for a given
problem) and seek to- explore its usefulness, it is helpful to
ask the following gquestions: (a) How do we calculate DLS values
for the metric? Is the calculation simple? Are there approxi-

mations that can be used? Are there other useful short-cuts in
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the computation? (b) Is it obvious from the method of
calculating the DLS that there are composite models for which

the metric is well-defined? (This often happens as we shall
see.) (c) Does the metric measure distance in a way that seems
appropriate to the practical circumstances of our problem and

to the purposes of our work? (We approach this in a more

Precise way in Chapter 20.) (d) Does the metric lead us to
powerful enough hypothesis tests? (To put it another way,

does the metric make good use of the information contained

in the observation?)

In this chapter we shall look at several examples of a
search for a metric. 1In each case, the universe of models will
be nonparametric. Hence, these examples will also serve as an

introduction to the general subject of nonparametric methods.

The median of an observation. If we observe n independent

values of a random variable and rank the observed values in order
of size, and if we then take the middle value (if n is odd) or
the average of the two middle values (if n is even), this re-

sult is called the median of the observation. This concept of

median of a set of observed values should not be confused with

the concept median of a random variable (described in Chapter 8).

The two concepts are distinct: one is got from an observation;

the other is got from a model (that is, from a distribution
(density function)).

The median metric. Let a continuous random variable X have

a given fixed distribution. Let m be the median of the random
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variable X. We observe n independent values X "Xn of X. We

ll 2!‘
call this set of values the observation Q. We seek a metric for
Observations of this kind under the given model. One possibility

that suggests itself is the following. Let My be the median of

the observation @, and take s1(Q) = [mQ - m| as the metric.
If the assumed model is corrent and if n 1is large, we would (by
the stability of relative frequencies) expect m, to be close to
m. Hence sl(Q) would seem a natural choice of metric. To
calculate a DLS value for a given observation f2 requires, how-
ever, that we know the mathematical form of the density of X.
For example, if the density is narrow (has small variance), we

will get smaller DLS values for a given value of Sl(Q) than if the

density is more spread out (has large variance).

What if we do not know the exact form of the density but
only know the value of the median m ? Can we find a useful
metric where calculation of DLS values will only use the value of

m and will not require further information about the density

function? Consideration of specific examples will lead us to

such a metric. Let X be a random variable with median

m 4.6. We take an observation of five values and get 2.4,
7.2, 3.0, 2.9, and 6.5. We then take a second observation
of five values and get 5.5, 9.4, 6.1, 7.2, and 6.5.

Which of these two observations Seems closer to what we would
expect from a distribution with median 4.6 ? Clearly the first
Observation does, since, in the first observation, roughly equal

numbers of the observed values occur above and below the

assumed median, while in the second observation, all the observed
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values occur above the assumed median. With 4.6 as the assumed
median, the second observation would appear to be less likely.
We can make these ideas more precise by regarding each observed

value as the result of a Bernoulli trial with falls above 4.6 as

success and falls below 4.6 as failure. The probability p of

success for each trial must be p = P(4.6 < X) = P(m < X) = 1/2
by the definition of median. Hence the first observation gives
2 successes in 5 Bernoulli trials(with p = 1/2), while the
second observation gives the less likely event of 5 successes
in 5 Bernoulli trials (with p = 1/2). Note that these results
depend only on the median value 4.6 and do not use any further
information about the distribution of X.

This leads us to define the following metric. A random
variable X with median m is given. Then for each observation
g = (Xl,...,xn) obtained as above, we let N, be the number

of observed values in { which fall above m. We define our

metric to be

and we call this metric the median metric. Values of the DLS

can now be obtained by noting that NQ must have the binomial
distribution for n trials with p = 1/2. (Indeed, if we think

of N as the result of a binomial experiment, SM(Q) is the

Q
usual binomial metric.) Thus, in the specific examples just
above, the DLS of the first observation is the DLS of 2
successes in 5 trials (and this DLS = 1), while the DLS of

the second observation is the DLS of 5 successes in 5 +trials

(and this DLS = 2/32 = 1/16 = 0.06). Values of the DLS can
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hence be obtained by direct calculation of the binomial
distribution with p = 1/2, or by normal approximation to
this binomial distribution.

Example. Assume that a random variable has median 4.0. 50
values, are observed and 15 of them lie above 4.0. What is the
DLS of this observation under the median metric? It is enough to
find the DLS for 15 successes in a binomial experiment with 50
trials and p = 1/2. Using normal approximation, we have:

E,E=P([NQ— 25] > 10) = 1 - 2a(z), |

where z = Mz 2.69

v 50/4

Using a normal table, we get DLS = 0.007.

Composite models and the median metric. Since DLS calcula-

tions for the median metric depend only on the value of the median

of the assumed distribution for X, we can view the set of all
distributions with the same median as a composite model, and we
see that the median metric is well defined for this composite

model. 1Indeed, we can view the universe of all continuous

distributions as formed of non-overlapping composite models -

one composite model for each possible median value. Then we
have that the median metric for each composite model is well

defined with respect to that composite model. Thus we can use

the median metric to conduct a hypothesis test as follows.

Example. A random variable X is given. We observe 10

independent values of X and get -5.6, =-5.5, 7.4, 25.6,
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-12.9, 12.5, =-7.6, =-11.5, =17.7, =0.6. Test the hypothesis
that the median of X is =12.0, using significance level

0.05.

Solution. Call the given observation w. 8 of the 10 observed

values fall above -12.0. Hence Nw = 8. Hence the DLS will be

_ o gl 10 45, _ 56 _
P(N,=0,1,2,8,9, or 10) = 2(=[5 *+ =g + —15) = =5 = 0-11 ,

2 2 2 2

and we continue to accept the hypothesis.

Confidence intervals and the median metric. Because

the median metric is defined for all models and observa-

tions, and because it is well defined on each composite

-model given by a value for

gﬁe median, we cah use it to form confidence regions, where

each confidencé-region is given in the form of a set of composite
models = that is to say, in the form of an interval

of possible values of the median. Given an observation w , we
simply give, as our confidence interval, those values of m

for which the DLS of w 1is sufficiently high. Thus, taking

the observation w in the last example above, we get a 95%
confidence interval for the median as follows. We seek those
values of m for which the DLS of w is > 0.05. When will

the DLS be > 0.05 ? We saw above that Nw = 8 gives DLS = 0.11.

We can also show that NuJ = 9 would give DLS = 11/512 = 0.02.

N, = 2 gives the same DLS as = 8, and N =1 gives the
same DLS as Nw = 9. Hence the confidence interval from w will

be formed of those values of m which give values of Nw ranging
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between 2 and 8. But it is evident that for Nm to range between
2 and 8, values of m must range between the second and ninth larg-
est of the observed values. In our example, these values are ~12.9
and 12.5, hence the interval (-12.9,12.5) 1is the desired 953%
confidence interval for m. (Note that if the number n of
observed values is too small, we may not be able to get a finite
confidence interval. When n = 5, for example, all values of

m lie in the 95% confidence region, since the DLS values for

Nw = 0 and for Nm = 5 are both 0.06.)

Remark. If we are using the median metric for a hypothesis
test for a fixed value of m, how do we treat an individual observed
value which happens exactly to equal m? Do we consider it as
falling above m or below m ? One rule (which we do not
justify here) is ;s follows: if there is a single such value
in ® s count it in the way that tends to confirm m. If there
are several such values, count the first on the confirming side,

the second on the disconfirming side, and continue to alternate.

A count on the confirming side is a count which reduces the value

of SM(w) = {Nw - %|. If Nm = %  the choice is arbitrary.
If there are many such values, it may be that the level of
accuracy of the observations is not sufficiently high for the

purposes of the test or that the assumption of continuous distribu-

tions is incorrect. (Remember that we are assuming a continuous
random variable. According to such a model, the probability of
observing any preassigned value of X must be extremely small

since for any given interval {a,b],

b
P(a < X < b) = f £(x) dx.)
a
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Remark. The median metric is most useful when the universe
of models is the set of all continuous distributions. If a smaller
universe is assumed, it may be possible to get other metrics
which are better in that they give more powerful hypothesis
tests and smaller confidence regions (for the same confidence level
and the same observed data). In Chapter 17 we shall see that this
is the case when we take the universe to be the set of all normal
distributions. For that parametric universe, we will find a

metric ( Student's metric ) which is also well defined with res-

pect to (the composite model given by) each possible value of

the median but which gives more powerful tests and smaller confi-
dence regions than the median metric. (For the data in the
example above, Student's metric gives [-11.04,7.86] as a 95%
confidence interval in place of [-12.9,12.5].) DLS calculations
for this metric (in this normal universe) are easy to carry out
as we shall éee. We cannot use Student's metric in the larger
universe of all continuous distributions, since this metric will
no longer be well defined on the desired composite models and,
since, for non-normal models, the DLS calculation for Student's
metric would be much more difficult.

The fact that reducing the size of the universe may give us
better metrics does not come as a surprise. As we noted in Chap-
ter 15 in connection with "one~sided" parametric universes, the
knowledge (or assumption) that we are in a smaller universe

serves as additional information,and we can expect this informa-

tion to make our statistical analysis more discriminating.
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The Wilcoxon-Mann-Whitney metric. Consider two continuous

random variables X and Y with unknown distributions. A
common form of statistical problem is the following: from
observed data, decide whether X and Y have the same

distribution. This problem often arises in biological science,

for example, when X is a quantity (such as blood level of a
certain substance) to be observed in an individual selected at
random from a population that has been treated in some way,
and Y is the same quantity to be observed from an untreated

( control ) population. We then ask whether the distribution
for X (the treated group) is the same as the distribution for
Y (the control group). (We considered the same problem in our
study of contingency tables of type Y in Chapter 13. 1In that
study, we classified the entire sample into two categories
according to size of X and Y values, and we then used the
CS-metric. In our present study, we shall introduce a new
metric which leads to a more powerful and discriminating

statistical analysis.

We observe m independent values of X (xl,...,xm} and
n independent values of Y (yl,...,yn). Let w Dbe the
observation (xl,...,xm;yl,...,yn). A model for our experiment
will be a pair of distributions, the first a distribution for X
and the second distribution for Y. Let us now take the

composite model MO to consist of all models (pairs of contin-

uous distributions) in which the two distributions are identical.

Can we find a metric that is well-defined on MO and will mea-
sure how far any observation « is from giving strongest

confirmation of MO ?

193



194

488

We discover such a metric by asking ourselves: what sort

of observation would tend to disconfirm the assumption of iden-

tical distributions? The simplest answer is: an observation in

which the observed Y-values tend to f;ll above the observed

- X-values or else tend to fall below the observed X-values. How

can we measure this tendency? One way is to look at the
individual observed X and Y cases in all possible pairs
(xi,yj) and see in how many cases yj - Xy is > 0

and in how many cases yj - %y is < 0. (We assume for

the moment that the X values are all distinct from the Y
values, so that we never get x, = yj.) There are mn such:
pairs, and if X and Y have the same distribution, we would
expect the number of positive differences to be roughly equal to
the number of negative differences. Let Um be the number of

positive differences among the mn pairs from the observation
mn

w. Then we expect Uw to be close to %T . This suggests that
we take IUQ - %? as our metric. This metric will be useful
if we can show that resulting values of the DLS do not depend
upon the specific form oé the common distribution for X and VY
(that is to say, if we can show that the metric is well defined

on the composite model MO of all identical pairs of continuous

distributions.) We shall show this below. We call this metric
the Wilcoxon-Mann-Whitney metric. ( WMW metric ). (Wilcoxon

discovered the metric, Mann and Whitney simplified the calcula-
tions for the DLS, and the hypothesis test in which the metric

is most commonly used is called the Mann-Whitney test.)
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To see that the WMW metric is well defined on the
composite model Mo of all identical pairs of continuous
distributions, we need only note that if the entire set
of mtn observed values is ranked in order of size, and if the
distribution for X 1is identical with the distribution for Y,

then the various possible sets of positions of the Y wvalues in

this ordering are equally likely (since there is no reason for one
set of positions to occur in preference to another.) For example,
if m=2 and n= 2, there are (g) = 6 possible sets of
positions: XXYY, XYXY, YXXY, XYYX, YXY¥X, YY¥XX:; and each

has probability 1/6 of occurring. More generally, there are
(m;nj possible sets of positions for the Y values in the

rank ordering of the m+n observed values. Note that each set

of positions (for possible Y values) gives a corresponding

value of U. For example, with XYXY. U = 3 since

yi - x> 0 for three of the mn = 4. pairs of X and Y
values. We can now calculate the DLS of an observed U by

1lst1ng all sets of positions and then finding the number v

of sets of positions for which the value of |UQ - %?l is >

the observed value |UQ = %? . The DLS is then v/(m;n).

Example. Two values (3.7,1.4) of the variable X and
three values (1.6,4.2,3.9) of the variable Y are observed.
If we assume identical distributions for X and Y, what is

the DLS of this observation under the WMW metric? Here m = 2,

_ = - Iy _ - =
n=3 U =35 and luw 5 | [5-3] 2. There are
(g) = 10 possible sets of positions for the Y values.
Tabulating these, with their corresponding values of U and
m — — -
!UQ - 5| = Jug=3|, we get:
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Positions (f) Uq |Ug=3|
XXYYY 6 3
XYXYY 5 2
YXXYY 4 1
XYYXY 4 1
YXYXY 3 0
YYXXY 2 i
XYYYX 3 0
YXYYX 2 1
YYXYX 1 2
YYYXX 0 3
4 of these sets of positions give [U,-3| > |U, -3| = 2. Hence,

the DLS of w is 4/10 = 0.4.

In applications, the values of m and n are usually
someﬁhat larger than in the above example, and calculation of
the exact DLS by the enumeration of all cases, as above, can be
lengthy. Tables exist which give, for various pairs of values of m
and n, and for various critical values o (such as a = 0.05
and « = 0.01), corresponding values for ]Um - %? at which
the DLS goes below a. Such tables are not necessary, however,
for two-decimal-place accuracy, because when. m = l1 or n=1

and when m = 2 or n = 2, the enumeration of possible cases

is easy, and when m > 3, n >3, and m+ n > 10, the
standard normal curve can be used to get two-decimal place

accuracy in a way that we describe below. The remaining cases
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(m >3, n>3 m+n<9) are not difficult to treat

by enumeration.

Calculation of values of the metric U, - %?f for a
given observation w can be simplified as follows (as discovered
by Mann and Whitney). The entire set of m + n observed values
is arranged in order of size. Each value is assigned a rank
number (with the smallest value getting rank 1.) The sum of
the rank numbers for the Y values is then calculated. We call
the result the rank sum Tw for Y. It is easy to show by a

simple inductive proof that Tw = Uw-+91%;il . It follows that

lu - %?] = |T -Ei%;ll - %?[. It is usually simpler to calcu-
w w
late Tm first, and then obtain Us from T, The proof of the

identity Tw = Uw-PEi%;ll is as follows. Observe that when all

nin+l)
2 r
the identity holds. Aany other ordering can be obtained from

Y values precede all X values, Uw = 0 and Tw== so
this ordering by successively interchanging pairs of adjacent X
and Y wvalues. But each such interchange either increases both
Tw and Uw by 1 or decreases both Tm and Uw by 1. Hence the
identity must continue to hold as the interchanges are made.

Hence the identity holds for all orderings.

Normal approximation for the WMW metric. When m and n

are sufficiently large (see above), the standard normal curve
can be used to find approximate values of the DLS for the wMw
metric as follows.

mn

DLStw ) = P(lug- 3F| > |u - B}

l - ZA(C) ’

197



492

mn
- - 12

where r = R

L
J 13 mn (m+n+1)

[Since the distribution for Uw is symmetrical, values of the
DLS for a one-sided version of the WMW metric can be found by
taking the same ¢ and finding DLS = % - A(zg).] We shall
derive the formula for ¢ in Chapter 19. As with other
metrics, much of the usefulness of the WMW metric comes from
the fact that, for sufficiently large observations, DLS values
can be conveniently approximated by the use of a known distri-

bution (in the WMW case, the standard normal distribution) after

a suitable change of scale.

The Mann-Whitney test. The hypothesis test which assumes

the compgsite model MO (consisting of all identical pairs of

continuous distributions for the random variables X and Y)

and which uses the WMW metric is called the Mann-Whitney test.
Example. Six college-bound students in a certain high
school take a vocabulary review tutorial, and three do not.
Scores of the group of six on a verbal aptitude test are:
585, 590, 609, 614, 622, and 625. Scores of the other three
are: 576, 600, 606. Use the Mann-Whitney test at critical
level 0.05 to decide whether the tutored students did signifi-
cantly differently.
Solution. We let X = an untutored score and Y = a
tutored score. Our null hypothesis is that X and Y have
the same distribution. Our first decision is whether to apply

the test as a one-sided test or as a two-sided test. If the
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six students had been chosen for tutoring in a random way,

then we could argue that the two groups were the same (had the
same distribution as random variables) except for the effects
of tutoring. We could then argue that tutoring could only act
to improve scores and that we should apply a one-sided test.

On the other hand, in the absence of random selection, it is
possible that a process of self-selection for tutoring migﬁt
lead to a tutored group that was, even after tutoring,

inferior to the untutored group. This suggests that we should
use a two-sided test, and we do so. The ordering of the entire
sample observed is XYYXXYYYY. This gives the value Um = i4.
(Or we could calculate Tw = 35 and then get

UuJ = 35 = §§Z-= 14.) Hence the WMW metric has the value

|u -9| = |14-9] = 5. Enumerating cases, we get
w
DLS(w ) = P(U. < U ) = 2t2+4+6+8 = 22 o 0.26. Hence, we
13 Q — "w 9 84
(3)
continue to accept the null hypothesis. (Normal approximation

would give

r = 114-9] - 1/2 _ 1.16
\/ 18.10

12

and Qgg(wo) =1-2A(C) =1~ 0.75 = 0.25. With

m + n =9, the conditions given for two-decimal

place accuracy of normal approximation are not quite satisfied.)
Remark. Other simple metrics also suggest themselves for

the comparison of two random variables X and Y. One such

metric would be Imé - mgf where m§ and mg are the medians
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of the observations obtained for X and Y respectively.

Another such metric would be |y-x| where X is the observed

X+t ...+ X _
and y is the observed average

average

+ s b
¥q Ya
n
with alternatives to the median metric) they are no longer well-

m

The difficulty with these metrics is that (as

defined on the composite model Mo' If, however, we go to a
more restricted universe, such as the universe of all pairs of
normal distributions with a certain fixed preassigned value of
variance then a metric such as |y-x| becomes useful. It proves
to be well-defined on‘the composite model of identical pairs in
this smaller universe, and it gives more powerful tests and

smaller confidence intervals. We study this further in Chapter 17.

Ties in the WMW metric. If, in an observation

(xl,...,xm,yl,...,yn) for the WMW metric, there are an X and

a y. such that Yj = X, , Wwe say that a tie occurs for the

pair (xi,yj). To calculate the metric for an observation

which has some ties, we count each different tie as contributing
1/2 to the value of Um' This is equivalent, in the calculation
of Tw » to assigning to each member of each group of equal
values in the over-all pooled ordering the average of the ranks
of the positions that those members occupy. For example, if
(xl,...,xm) = (2.1,5.2,6.3) and (yl,...,ym) = (§.2,5.2), +hen
the overall pooled ordering is (2.1,5.2,5.2,5.2,6.3), and
corresponding assigned ranks are (1,3,3,3,5). Comparing

(xi,yj) pairs, we get Uw =2+ 1/2 + 1/2 = 3, and adding

ranks, we get Tm = 3 + 3 = 6. Since Ei%;£i = 3, we see that
the relationship Tw = Um + Ei%;il is preserved. It is easy
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to show that this relationship always holds when ties are
counted in this way.
When ties occur, the DLS may be calculated in the usual
ways. If it is calculated by listing all possible sets Q of

positions for the Y values and then seeing what proportion

have [UQ - %? > [Uw 2= %?[, the resulting DLS value is

correct since, for continuous and identically distributed ran-
dom variables, a tie indicates a comparison that would be
settled by more accurate measurement and settled half the time
in one direction and half the time in the other. If the DLS
is calculated by normal approximation, ties can be shown to

lead to values that are somewhat larger than the correct DLS

value. Unless the number of ties is quite large, this difference
is slight. 1In any case, if the approximated DLS falls below the
critical level in a hypothesis test, then the correct DLS must
fall below as well.

Confidence intervals in the WMW metric. Let f(x) be a

density function for a continuous random variable. For each

fixed real number d, we define fd(x) to be the density func-
tion £(x-d). Then fd may be pictured as the density function
f after it has been shifted d units in the positive direction.

(Hence, for example, the median of f and the median of fd

must differ by d.) We say that £ and g have the same shape

if g = fd for some d. We now take, as our universe of models,

the set of all pairs of distributions in which the two distribu-
tions have the same shape. Each pair (f,9) 1in the universe has a
unique value d associated with it, where d is taken so that

g = fd. For each real number d, let M3 be the composite model
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consisting of all pairs of the form (f,fd). Then Mo is the
composite model consisting of all pairs in which the two distri-
butions are identical. Let {8 be an observation

. d .
(Xl""’xm’Yl""’Yn)' Define w to be the obserwvation

SWMW(QJ be the WMW metric.

Finally, for each d, define the metric ngW(Q) by the equa-

(xl+df"°r%n+delf--olYn)- Let

tion:

WMW WMW

ST (g) = "W (gd

) .

The metric Sd:I is well-defined on My - since it yields the

same DLS wvalue for § under (f,fd) in Md that SWMW vields
for ﬂd under (£,£f) in Mo » and we have already seen that
s"™MA e well-defined on Mo'

Given an observation w and a confidence level vy, we
can now get a confidence interval for values of d as follows.
The confidence interval will be those values of d such that
W yields a DLS > a under the metric ngW (where o = 1l-v).
This rather abstract statement can be put in more concrete
terms as follows. We ask the question: to what positions can
we shift the X values so that the Y values and X values
will then give DLS > o under the WMW metric? The largest and
smallest shifts will be the confidence limits on d.

Example. Consider the data given above on tutored and
untutored verbal aptitude scores. Take as universe all pairs
of distributions such that the two distributions in that pair have
fhe same shape. We find a 95% confidence interval for d, the {
difference in position of the distributions for X and for Y, as
follows. Recall that we observed
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¥ : 585,590,609,614,622,625,

X : 576,600,606.

If we shift the X wvalues to the left, we find that for a shift

of d = -16, we get,

X : 560,584,590.

For slightly larger (negative) shifts, we have Uy = 17 which

gives DLS = éL = 0.048, and for slightly smaller (negative)
shifts we get U, = 16 with DLS = g% = 0.10. Hence the lower

confidence limit for d is -16. Similarly, in a shift to the

right we get, for a shift of 46,

X : 622,646,652.

Again, slightly larger (positive) shifts give DLS = 0.048,
while smaller shifts give DLS = 0.10. Hence the upper confi-
dence limit is 46. Therefore, the 95% confidence interval on
d, the difference in position between the distribution for X
and the distribution for Y, is [-6,46].

Power of the Mann-Whitney test. Consider the case of an

observation with m = n = 4 where the entire ordering has the
form XXXYXYYY. It is easy to calculate that the DLS of this
observation under the WMW metric is 0.06. This observation

can also be analyzed as a type v contingency table with
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assigned margins (4,4) and (4,4), if we classify the entire
sample into a top half and a bottom half with respect to X or Y

values. We would have

1 ‘ 3

A small saﬁple (hypergeometric) calculation gives the DLS of
this table to be 0.49. Thus the WMW metric, which takes into
account details of the relative ordering of all the individual
observed values gives a much more discriminating result than

the contingency table which merely counts the number of values

of each kind in the upper and lower halves of the entire ordefing.
If we use each of these metrics in a hypothesis test, it follows
that the WMW metric gives a more powerful test. The contingency .
table test, on thé other hand, requires less information and is |
easier to carry out. Note that for the ordering

XXXXYYYY, the information used by the two metrics is equivalent.

Not surprisingly, each then gives the same DLS (= 0.03).

Inventing a metric. It may be helpful for a student, in

approaching a new problem, to define an appropriate universe of
models and then to seek to define a new metric that will be
especially suited to the problem. Often, the student will find
that the method which he or she.develops in this way will
already have been studied and used by other statisticians. The
exercise of seeking to define a new metric can add to the
student's own insight and understanding of the given problem.
In seeking to define a metric, we look for: (a) a metric that

represents the circumstances of the problem in a reasonable and
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intuitive way; and (b) a metric for which DLS values are easy

to calculate (either exactly or approximately). 1In the para-
graphs which follow, we will explore several new statistical
situations. We will see how each situation leads us to a

natural and useful metric. In each case, the metric will

turn out to be a metric which is already familiar to statisticians.

The Kruskal-Wallis metric. We used the WMW metric to mea-

sure how well an observation (xl,...,xm,yl,...,yn), that
included a group of independent values for X and a group of
independent values for Y, confirmed that two random variables
X and Y had the same distribution. We now turn to the case
of k random variables and ask how well an observation that

includes a group of independent values for each of the random

variables confirms that all k variables have the same distri-

bution. We use the case k = 3 to illustrate, and we call the

random variables X, Y, and Z.

Let w be the observation (xl,...,xm,yl,...,yn,zl,...,zq)
where (xl,...,xm) are m independent values of X,
(yl,...,yn) are n independent values of Y, and (zl,...,zq)

are g independent values of 2. A model for our experiment
will be a triple of continuous distributions, where the first is
for X, the second is for Y, and the third is for 2. We let
the composite model Mo consist of all models in which the
three distributions are identical. We now define a metric

that generalizes the Mann-Whitney calcula-

tion by ranks. Let N =m + n + g. The entire set of N
observed values is arranged in order of size. Each value is

assigned a rank number. Let Rl' R2, R3 be the sums of the
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ranks for the values of X, Y, and 2Z respectively. (Ties

are treated as in the WMW case.) Then R = Rl+-R2+-R3 = El%;il i

and the average rank in the entire set must be

N+1
=5

vation £ confirms MO especially well if, for

Intuitively, we would be inclined to say that an obser-

each of the three groups of observations, the average of the

ranks appearing in that group is claose to the same value

E%l. Hence we could measure deviation from such confirmation
by the natural formula
' R 2 R 2 R 2
KW _ “L . WEl 2 _ N+l 3 _ N+l
S (Q) _m(m 7] ) +n(n 9 +q(q "2 ) ’

where we have weighted the squared deviation in each group by
the number of values in that group. This metric is called the

Kruskal-Wallis metric. Algebraic simplification leads to the

formula

o

2
3 _ N(N+1)™
o 4

2
R,

+ = &
n

2

R
KW - ik
s (Q) = —
For k random variables with DyrRyree sy independent values

observed in the k groups, the formula becomes

KW R yopeny?
s (Q) = Z ol (where N = Z n.).
i =3 i
It is easy to show that the metric is well-defined on M (by

a similar argument to that used for the WMW metric.)
Given an observation w how hard is it to calculate a

DLS value under this metric? One approach would be to use a
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computer to list all possible rank orderings and then to find

the proportion of these that give values of the metric

> sKw(w ). Another approach is to seek a simple and quick

approximation method. 1In Chapter 19, we shall see that chi-

square curves can be used in the following way when Myreserny

are sufficiently large. Let Hw be the result of multiplying
KW 12

s (w ) by N—(_I\Tm . Then

2

R,

= =2 i
R IRl
and
DLS(w ) % Cd(Hm P where d = k-1.

(Here, by definition, DLS(w ) = Pu(sKW(Q) > sKw(w )) for any

u  in Mo')
Example. Assume that we observe values as follows:
X+: 75,73,67,62
Y : 70,68,53,50

Z : 69,61,58,51.

The corresponding ranks are:

X:12,11,7,6
¥ ¢ 10,8,3,1

Z : 9,5,4,2.
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Therefore Rl = 36, R2 = 22, R3 = 20. Hence

2 2 2 2
KW _ (36) (22) (20)™ _ 12(13}° _
_ 12(38) _ . - ..
Hw = 13037 = 2.92. Finally, C2(2.92) Q.24, and this is
our desired approximate DLS. (By computer, we find the

exact DLS in this case to be 0.252.)
It is easy to show that when k = 2, s KW is equivalent
to the WMW metric. Hence the KW metric is a direct generali=-

zation of the WMW metric.

Matched groups. A common and general technique in

mathematical statistics is the use of matched groups in compar-=

ing random variables. We begin with an example, then give brief
theoretical discussion, and finally introduce three natural and
useful metrics. Matched groups are also sometimes called blocks.
Example. We wish to test whether two different strains of
laboratory rat (strain A and strain B) have the same distribu-
tion of body weights. We realize, however, that within each
strain, typical body weights will vary with an animal's age.
More specifically, within each strain, the probability distri-
bution of body weights at one age may be different in
shape from the probability distribution of weights at another
age. To carry out a statistical comparison, we match animals
according to age, and then, within each age group (or block),
we compare observations of strain A with observations of strain
B. If we did not match according to age in this way, variation
by age within each strain might keep us from seeing differences

between the strains.
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Theoretical discussion. What would it mean in the above

example to say that there was no difference between strain A and
strain B? It would mean that for each age t, the probability
distribution of weights in strain A was identical with the
probability distribution of weights in strain B. Let the random
variable X, be the body weight of a rat in strain A chosen at
random from rats of age t. Let Yt be the same for strain B.
Let ft(x) be the probability density for the random variable
Xt. Similarly, let gt(x) be the density function for Yt'
Hence, to say that there is no difference between A and B

is to say that ft(x) = gt(x) for all values of the parameter
t. If we rewrite ft(x) as f(x,t) and gp(x) as g(x,t),

we can call f and g parameterized densities. We take, as

our universe of models, the set of all pairs of parameterized
densities. As the null hypotheses, we take the composite
model Mo consisting of all identical pairs of parameterized
densities. (Identical means that f(x,t) = g(x,t) for all x
and all t.)

The metrics that we now introduce concern experiments
where we attempt to compare values of Xt and Yt by first
choosing various different parameter values t and then
observing values of Xt and Yt for each of these parameter
values. (Note that the above example considered only one
parameter: age. In general, there may be several different
parameters or other experimental conditions that we will wish

to match at the same time. For the rats, these might include

such factors as age, previous diet, and freedom from disease.)
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The sign metric. Our first metric arises when we make an

observation of independent matched pairs. Assume that we con-

sider pairs of rats where, in each pair, the two rats have the
same age and there is one rat of strain A and one rat of strain

B. Assume that we get the following observation

A l 50 ( 100 ’ 133 | 270 , 780 i 340 | 290
B l 45 f 90 l 120 } 220 l 690 ] 347 i 250

where each column gives weights for a pair of rats of the same

age. A natural metric, in this case, can be defined by assign-
ing a + to each pair where the A value exceeds the B
value and a - to each pair where the B value exceeds the A

value. We get the result
+ + + + -,

Uncer the null hypothesis, the sign from each matched pair can
be viewéd as the result of a Bernoulli trial with + as
success and with p = 1/2. Hence we can use the usual binomial

metric. We define the metric

sT(q) = [o = 5| where o 1is the number of +'s

(I thiscase, o= is v\,ff standard deveaTion )
and n 1is the total number of pairs.i s is called the sign

metric. s+ is well-defined for models in MO , and DLS wvalues

can be calculated in the usual way (either directly from the
binomial distribution with p = 1/2 or by normal approximation).

For the observation in the above example, we get
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sT(w) = [6-3.5] = 2.5.

Hence, DLS(w ) = P(s'(q) > 2.5)

7 7 7 7 1
[(0) + (l) + (6) * (7)];7

= L6 _
= i35 = 0.13.

A tie, for the sign metric, is a pair of equal observations.
A tie is counted as a Bernoulli trial with half a success, and
contributes % to the value of ¢.

The signed-rank metric. oOur second metric also arises when

we make an observation of independent matched pairs. 1In it we
take account not only of the sign but also of the size of the
observed differenées. We proceed as follows in the above
example. First, we calculate the difference between A and B

for each pair. we get
5, 10, 13, 50, 90, -7, 40.

Next, we take the absolute values of these differences. We get
5, 10, 13, 50, 90, 7, 40.

Then we assign ranks to these absolute values in the usual way.

We get
lf 3f 4; 6’ 7; 2; 5.
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These are called the unsigned ranks. Finally, we insert

algebraic signs from the original list of differences. This

gives

lr 3, 4; Gr 7, _2': 5.

These are called the signed ranks. Let TE be the sum of the

positive signed ranks. In the example, we get

+

If n 1is the total number of pairs in the observation, then
the total of the unsigned ranks must be Ei%;£l~. If the null
hypothesis holds, we would expect about half of this total from
positive ranks and half from negative ranks. It is therefore

natural to define the following metric:

SWSR(Q) n(n+l)l'

+
=ITQ_ i

This is called the Wilcoxon signed-rank metric. For the above

example, we get sWSR(m ) = |26-l4| = 12. We can make a com-
puter calculation of the exact DLS for an observation o

under this metric by listing all possible (g™ assignments of
sign to the n ranks and then seeing the proportion of these

WSR SWSR(w )

which give a value of s (R) that is > . Such a

calculation in the above example gives

DLS(w ) = 0.047.
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In Chapter 19, we shall see that when n is sufficiently large,

an approximate value may be obtained as follows

DLS(w ) ¥ 1 - 2A(z), where

[TD - 3n(m+l) | - 172

g = .
J f% n(n+l) (2n+1)

In the above example, this approximation gives

I Ve N L
T /35
/ s 7( 8) (15)

yielding DLS(w ) % 0.052.

Two kinds of -ties can occur in calculating the WSR metric.
First, there may be ties in the rank ordering of the absolute
values of the differences and second, one or more of the abso-
lute values may themselves be zero. Ties of the first kind are
treated as in the WMW metric (by assigning to each member of a
group of tied values the average of the ranks of the positions
occupied by members of the group). Ties of the second kind are
treated by assigning half of their unsigned rank total to TZ.
(This is the logically correct procedure. In practice, statis-
ticians often omit ties of the second kind from consideration
in the entire calculation. The difference in the result is
usually slight.) As with the WMW metric, the existence of ties

leads to DLS values, under the approximation calculation, that

are slightly larger than correct.
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Both the sign metric and the WSR metric may be used to
establish a confidence interval from an observation in exactly

the same way as the WMW metric is used to get a confidence

interval. For this purpose, we take as our universe the set
of all pairs (£f,g9) of parametrized densities such that

f(x,t) = g(x~d,t) for some real number d and all x and t.
The confidence interval is then an interval of values of d.

The Friedman metric. Our third metric arises when we con-

sider an observation of n matched k-tuples of values for k
different (parameterized) random variables and take as null
hypothesis that all k variables have the same parameterized-
density. The metric is a generalization of the sign metric.
We give an example with k = 3 and n = 4. We consider three
different strains of laboratory rat, strain A, strain B, and
strain C. We observe the body weights of the rats in four

matched triples, where, in each triple, all members have the

same age. We get

A: 90 115 235 572
B: 71 95 250 575

c: 58 | 104 | 230 | 560

We now rank the observations within each triple. This gives,

as ranks,
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We then sum the ranks for each strain. This gives Rl = 10,

R2 = 9, and R3 =5 for A, B, and C respectively. In the
general case, the total of all ranks in each k-tuple must be
Ei%;il ; hence the total of all ranks must be Qﬁi%ill i IE

the null hypothesis holds and the random variables have the same
distributions, we expect the sum of the ranks for each random
variable to be approximately the same. Hence, we expect the sum
of the ranks for each random variable to be about Ei%;il .

This suggests the natural metric

2 2
sF(Q) - (Rl - Ei%;ll) $ ... 4 (Rk . El%;ll) .

This is known as the Friedman metric. Algebraic simplification

leads directly to the formula

2 _ 0%k (k+1)?
1T T

As with the other metrics, a DLS value for w can be got by

a computer calculation of the proportion of all assignments of

rank (there are (k!)" of them) that have values of s~ (Q)
at least as great as sF(w ). In the above example we get
sF(w ) = 14 and this gives DLS(w ) = 0.273. We shall see in

Chapter 19 that when k is sufficiently large, an approximate
calculation can be made using chi-square curves as follows.

Let

215



216

510

12 F
Fo = mkeDy S (@)

Then, for an observation w ,
DLS(w ) =~ Cd(FLU )« where d = k-1.
In the above example, this gives

DLS(w ) & C %14) = 0.18.

2(
(The approximation to the exact DLS (0.27) is poor because k is
small.) Ties in the Friedman metric are treated, within each k-

tuple, in the same way as for the WMW metric.

Tables. Computer calculations of exact DLS values in cer-
tain specific cases for the WMW metric, the Kruskal-Wallis
metric, the WSR metric, and the Friedman metric have been made
and tabulated. The results may be found in published collec-
tions of statistical tables. (In the case of the WSR metric,
the guantity usually used in the tables is T = the minimum of
T: and T;, where T; is the absolute value of

the sum of the negative ranks.

Discrete random variables. Statisticians often apply the

metrics described above to discrete random variables, and then

go on to carry out DLS calculations exactly as above. They do

so when they believe that the discrete distributions can be
viewed as approximately continuous without much loss of accuracy
(in the same sense that a binomial distribution, for large enough

n, can be viewed as approximately a normal distribution.)



L= 2.

16-3.

51l

EXERCISES ON CEAPTER 16

In an experiment to test the rainmaking effectiveness of seeding clouds
with iodide crystals, 13 storms were identified. Eight were selected at
random and the clouds seeded. Average recorded rainfall then proved to
be as follows

Treated storms: .06, .13, .15, .28, .41, .62, .83, 1.26
Untreated storms: .02, .09, .21, .28 1.09

State a null hypothesis. Use the WMW metric to calculate an approximate
DLS, and hence decide if you would continue to accept at critical level
0.10.

A group of 29 students take an intelligence test. Before they do so, 14
are chosen at random to take a sample practice test. Results on the
final test, taken by all students, are as follows.

Took sample test: 97, 108, 111, 112, 114, 118, 120, 121, 123, 125,
126, 128, 131, 139

No sample test: 94, 95, 98, 100, 101,-102, 105, 107, 108, 109,
‘ 113; 17, 119, 122, 127.

State a null hypothesis and use the WMW metric to calculate a DLS.
(Remember to decide between one-sided and two-sided approach.)

In a survey of the period for which frozen orange juice was kept on the
freezer shelf in a retail store, three brands were considered and eight
cans of each brand were traced. The following observations (in days of
storage) were obtained.

A B c
27 42 47
24 42 48
34 53 52
32 57 47 -
31 44 59
20 63 63
24 47 47
32 46 69

State a null hypothesis and use the KW metric to calculate a DLS.
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In the data from problem 3, use the Mann-Whitney test to test for a
difference between brand B and brand C.

Fifteen paticnts are used to compare two diuretics. Each patient is
given one drug (chosen at random from the two under test) and then,
after an interval of 6 days, the other. The observations obtained
(litres of urine in 24 hours) were as follows:

Patient Drug A Drug B
1 1.66 2.24
2 2.01 . 2.18
3 1.84 2.40
4 0.62 1.30
5 2:25 2.57
6 1.17 1.87
7 1.20 1.38
8 1.04 1.58
9 2.50 2.79

10 2.39 3.16
11 1.04 1.53
12 1.55 2.19
13 3.90 4.61
14 . Z2.11 2.67
15 1.76 1.56

State a null hypothesis and use the sign metric to get a DLS.

In an experiment validating laboratory technique in a large hospital, 3
technicians made a certain measurement, each technician repeating the
measurement with 5 different instruments. All 15 observations were made
on subsamples from a single sample of material. Results were as follows,

Instruments
1 2 3 4 5
Technician A 5.2 11..7 2.1 4.7 10.6
B 7.9 12.0 6.4 5.1 10.8
C 4.1 6.2 3.8 3.2 9.2

Use the Freidman metric twice: once to test that the technicians do not
differ and once to test that the instruments do not differ.

20 students are divided into 10 matched pairs on the basis of performance
in a previous course. One number of each pair is selected at random and
given TV instruction. The other attends a regular class. Results on the
final are:

81
98

89
93

TV: 35

48 | 49 | S3
Regular: 34

75 | 91 j100

6 | 18
57 9

25 | 37
64 | 61

State a null hypothesis. Calculate a DLS by the sign metric and then by

the WSR metric.



