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CHAPTER 13. CONTINGENCY TABLES

When members of a given set can be classified in several

different ways, a common form of statistical problem arises
if a sample of members is drawn from the given set. For
example, we might begin with the set of U.S. adult males who
were alive in 1964, take one classification to be developed

lung cancer/did not develop lung cancer, and take a second

classification to be heavy smoker since 1964/not a heavy

smoker since 1964. ‘In such a case, we might be interested in

whether or not the two classifications appear from the sample

to be associated in some way, where association means that
individuals in some caﬁegory in one classification have a
greater tendency to be in a certain category in the other
classificatidn._ For example, we would say that the above two

classifications appeared (from the sample) to be associated

if individuals in the lung cancer category in the first

classification seemed to have a greater tendency also to

occur in the heavy smoker category in the second classifica-

tion. To put it in another way, we would be asking, "Is

whether or not a person develops lung cancer associated with

whether or not the person is a heavy smoker?" (In

problems of this kind, the given set from which the sample

is taken is sometimes called the population.)

A classification may have two categories (for example,

has red hair/does not have red hair) or it may have more than
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two categories. For example, the classification scored 90 or

above/scored below 90 but above 80/scored 80 or below has

three categories. 1In a 2-category classification, we sometimes
choose one of the classes and call it the attribute or

characteristic of the classification. Thus in the example

above, we might speak of the attribute heavy smoker since 1964

and of the attribute developed lung cancer.

In what follows, we shall be largely concerned with
cases where there are two classifications, and for the most
part, we shall only consider cases where each of the two

classifications is 2-category. When we say that two attributes

are associated, we shall allow the association to be either

positive or negative. (For example, we may find a negative

association between the attribute heavy smoking and the

attribute freedom from cancer.)

Tables. When there are two attributes in question (when
we have two classifications, and each is 2-category), the
observed data can be presented in a single 2 x 2 table. For
example, we might have the following data on a random sample of
10,000 U.S. males who were living in 1964. (The specific data

are fictitious.)

Cancer Non=Cancer

Heavy smoker 50 950

Not heavy smoker 10 8990
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Such a table is called a contingency table. 1In working with

a contingency table, we begin by forming the sum of each row

(these sums are called the right-hand margin) and the sum of

each column (these sums are called the bottom margin). Each

margin has, as its sum, the total number of individuals

observed. If we write in margins for the above table, we get

50 950 | 1,000

¢ o8 000

60 9,940 -10,000

The basic statistical question in considering a
contingency table from a given sample is the followiﬁg: if ”
the table by itself appears to suggest a possible association,
can this apparent association be reasonably explained by
asserting that there is no association in the underlying
population and that what we see in the table is a random
fluctuation (in the sampling process), or must we conclude that the
observed fluctuation would be highly unlikely and that some
amount of association really exists in the underlying popu-
lation? 1In analyzing a contingency table, our approach to

this question will be the following. First, we shall assume

that no association exists. Second, we shall then calculate

a DLS for the given observation (that is to say, for the

given table) on the assumption that no association exists.
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If the DLS is small, this will suggest to us that some

association does in fact exist.

To find a DLS, we must assume a model and a metric, or
else a composite model and a well-defined metric; and this

model (or composite model) must represent non-association.

We shall now see that there are three basically different
types of experimental procedure for drawing a sample from a
population and forming a‘contingenéy table. Corresponding
to these three types of procedure, we shall see that there
are three differept kinds of model for non-association.
Ultimately, however, we shall find that the same
calculations for finding the DLS are used for each of the

three types. We initially limit our consideration to 2x2 tables.

Type c: Multinomial procedures; multinomial models for

non-association. Let us call the two attributes A and B.

Let A and A be the two categories of one classification,
and let B and B be the two categories of the other classifi-

cation.

Experimental procedure: Individuals are drawn at random

(with replacement) from the given population without regard to the
attributes they possess, and for each individual the occurrence or

non-occurrence of A and B is recorded.

Models for the procedure: The four possible combinations of
attributes for an individual must occur with-certain probabilities
P(A & B), P(A & B), P(A & B), and P(A & B). ‘Any set of values
Py/Py/P3:Py for these probabilities, subject to the condition that

P{*tPy*tP3tp, = 1, constitutes a model for the experimental procedure.
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The probability of an observed table will be given by the

multinomial formula with these probabilities. For example, if

P(A & B) = 0.1, P(A & B) =0.2, P(A & B) = 0.3, and
P(A & B) = 0.4, then the particular observation
B B
A a b
A c d

will occur with probability

n!

aibleral (0.1)2(0.2)%(0.3)%(0.0)¢ ,

where n=a + b + ¢ + 4.

Remark. In practice, the sample will usually be drawn

without replacement. It is almost always the case that the

underlying population is so large that the difference, in
theoretical results, between drawing with replacement and

drawing without replacement is negligible,

{see-the-axercises at-the-end-ef this—ehapter.} It is easier and

simpler, in theoretical calculations, to assume that drawing occurs

with replacement. Hence we shall make this assumption. This

remark applies to procedures of type B and type Yy (to be described
below) as well as to procedures of type 0.

Models for non-association: For which models, under this

procedure, can we say that A and B are not associated? We

take non-association to mean that the events A occurs and

B occurs (for an individual) are independent (that is to say,
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P(A & B) = P,Pg where p, =-P(A) = P(A & B) + P(A & B), and
pyg = P(B) = P(A & B) + P(A & B)). (In the example above,
Pp = 0.1 + 0.2 = 0.3 and P = 0.1 + 0.3 = 0.4, so that
P(A & B) = 0.1 # 0.12 = paPg + ana independence does EEE.hOld')

If independence holds, and hence the attributes are non-associated,
we can calculate the probability of each of the four possible

combinations of attributes from the two values Pa and pB.' For

example, if we know that Pa 0.3 and Pg = 0.4, and if we assume

independence, we have

P(A & B) (0.3)(0.4) = 0.12,
P(A & B) = (0.3)(0.6) = 0.18,
P(A & B) (0.7) (0.4) = 0,28,
P(A & B) (0.7)(0.6) = 0.42.

It follows that, for this model of non-association, the occurrence

of the particular observation

B E
A a b
c d

E n

will have a probability given by tﬁe multinomial formula

sTErerar (0.12)%(0.18)°(0.28)¢ (0. 42) ¢

where n = a+bt+ec+d, More generally, given a model (pA, pB) for non-
association (for a type a procedure), the probability of a particular

table can be written:
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P[i‘%} - a!b?c!:!d! (e(a & B)*(PMA & B)P(@Es 8)°(E s §)°

b+d

n! at+b - p )c+d (1 - pB) )

_ a+c
= Fiblcidar Pa (1 A (pp)

Note that the models for non-association form a composite model

within the larger universe of all models for our type o procedure.

Type A: Imposing one margin:double binomial procedures;

double binomial models for non-association.

Experimental procedure: Instead of drawing n individuals

at random without regard to attributes A and B, we can specify
that we will draw n, individuals at random with replacement from
among those with attribute A, and n, individuals at random from among
those who do not have A, where the numbers ny and n,  are

fixed ahead of time. We do thié and observe, in each of the two
samples, the number of individuals with attribute B. Our obser-
vation is presented in the form of a contingency table with n

1
and n, as the right-hand margin.

B

B
A a b nl
| e d n,

Models for the procedure. The probabiiity of an observed table

will be given by the double binomial formula. For example, if p, =

P(B|A) = 0.2 is the probability for B among individuals with A, and

Py, = P(B[K) = 0.4 1is the probability for B among individuals with

A, then the above observation will occur with probability

-

By >
(0.2)3(0.8)P (0.4)%(0.6) 9,
a C
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Note that the margin (n;,n,) is imposed.ahead of time by
our experimental procedure. In the smoking and cancer case,
this form of model would correspond to an experimental proce-
dure of taking nl==1000heavy smokers and n2==9000 individuals who are
not heavy smokers, and seeing how many in each group have
developed cancer. Alternatively, this form of model woﬁld also
hold for a procedure of taking n, = 60 individuals who have
developed cancer and n, =9940 who have not, and seeing how many in
each group are heavy smokers. (Welwould then take cancer to be

A and heavy smoker to be B.)

Models for non-association: We now take non—-association to

mean that the probability of getting B is the same for an indivi-
dual with A as for an individual with A, that is, to mean that
pl==P(B]A)==p2==P(Bl§). If we assume that this non-association hold;,
we can calculate the probability of the occurrence of a particular
table from Pp = P; = P,- For example, if the common probability

for B for each of the two samples is assumed to be 0.3, the

. n
probability of the observation —§+§—Z-ﬁl will be given by the
. T2

double binomial formula

(:1)(0.3)a(o.7)b (:2) (0.3)%(0.7)¢

More generally, given a model Py for non-association in a type R

procedure, the probability of a particular table can be written:

n n
1 2 a+e b+d
SIS R Nl
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Note that the models for non-association form a composite model

within the.larger universe of all models for our type B procedure.

Th;s composite model is the set of all models with Py ='P,-
Example C in Chapter 12 was a double binomial experiment.

The observation Xl = 0, X, = 3 in that experiment can be given

as the contingency table

B B
A 0 10 | 10
Iy 3 7 | 10

where attribute A is getting standard diet, A is getting

supplemented diet, attribute B is showing signs of infection,

and B is not showing signs of infection. The models for

non-association for this type B experiment form the composite model

that was denoted M in Chapter 12.

TYpe Y@ Imposing both margins hypergeometric procedures:

the hypergeometric formula for non-association.

Experimental procedure: 1In this case, as with type B8,

we draw n, individuals with A and n, with A (with replacement]j,
where n, and n, are fixed ahead of time. Then,

however, our experimental procedure-is to divide the entire éample

of nl+n2 = n 1ndividuals into two groups of sizes m, and m,,

where m, and m, are fixed ahead of time and m1+m2 = n, and

where the group of size my is made up of those my individuals

who have attribute B _most strongly . (This procedure assumes
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that we can compare any two individuals as to the degree to
which they have attribute B.) Finally, in our contingency table,

we take being a member of this group of size m, as a new

(and redefined) attribute B. Our observation is presented in the
form of a contingency table with ny and n, as right-hand margin

and with my and m, as bottom margin.

alb Qﬁk.
¢ {dLns
o B B

Models for the procedure. We let Yl be a continuous random

variable which measures the degree to which an individual has

attribute B when that individual "is drawn at random from the
population of all individuals with attribute A. Similarly, let Y,
measure the degree to which an individual has attribute B when

drawn at random from the population of all individuals with attribute
A A model is a pair of functions (gl, gz) where 97 is a probabil-
ity density for Yl,and 9, is a probability density for Yz. Given

a model (g;, g,) what is the probability of observing the above
table? The result is more complex than in the type o and type 8
cases, and is obtained in an exercise below.

Models for non-association. We now take non-association to

mean that the probability distribution for Yl is the same as for

s Hence a model for non-association is a pair (gl, g2) of

5°
probability densities where 97 is identical with 9y- Note that
the models for non-association form a composite model within the
larger universe of all models for our type y procedure. Consider

the table
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In the special case of a model for non-association (a model(gl, gz)

with 9, = g2) the probablllty of observing this table can be
obtained by the following argument. We assume that the nqy ipdd=
viduals with A are drawn first, and we identify them, in the order
drawn, with the integers: 1, 2, ..., n, . The n, individuals with
A are then drawn, and we identify them, in the order drawn, with
the integers: nl+l, nl+2, .++s Dy¥n,. Because the distribution

for Yl in the A group is identical with the distribution for Y2
in the A group, and because nl+n2 = n, it follows that if the
experimental procedure for forming the table were repeated many

times, we would expect each subset of size mq from {1, 2, ...,

Ny, nl+l, ...; nl+n2} to occur about equally often as the set of

positions for the observed m, group. The total number of ways of
n, + n n

choosing a set of positions for the m, group is [ - 2] = [ ].
oy el

How many of these ways yield a individuals in the A & B cell of
the table and ¢ individuals in the A & B cell? Since there are

ny st call, wmd () es o X theinedividuals e
(a} ways to get e 1ndividuals for thelsecond, the answer is

n n
¢ Ly 2

. & ). Hence the probability of getting the observed table, if

we assume non-association, is

RN M)y

(which can also be written

R R
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This formula is called the hypergecometric formula, and we abbreviate

it as

hia;n, ny my) .

It is easy to show that h@yn, gy =h@yn,mg Y (See the

Exercises.)

Thus, for example, if we assume some model for non-association,

then the probability of getting the table g %0 must be

[10}[10} 10-9-8
oltlz)  TIET 2
- 20-19-18 19
20 3.5-1
3

Note, as a special feature of non-association in a type vy procedure, -
that this probability does not depend upon the particular model of
nOn-associatioﬁ that we use. It only depends upon the values
occurring in the observed table. .
Note also that the margin (ni, nz) and the margin (ml, m2)

are both imposed ahead of time by our experimental procedure.

In the smoking and cancer case, this form of model would
correspond, for example, to a procedure of deciding on the

values Dy, Ny, My and m, ahead of time, then randomly

taking ny individuals who have developed cancer and n,

who have not, and finally dividing the entire sample into two
groups where the first group is made up of those my

individuals in the entire sample who are the m, heaviest

smokers. (Thus, in our final table, attribute A is developing

cancer and attribute B is being one of the my heaviest

smokers. )
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Finding the DLS. In order to get a DLS, we shall proceed as

follows. 1In the type o case, we shall consider the set of models for

non-association as a single composite model, and we shall look for

a well-defined metric. In the type B case, we shall do the same.

In the type y case, we have seen that the probability of a table

does not depend on the particular model used for non-association.
Hence every metric will be well-defined on the composite model for
non—aséociation. In the type Y case, we need only find some
intuitively suitable metric. 1In thé type o case, we shall find

a well-defined metric by a conceptual procedure much like that
described in Chapter 11 (and discussed further in Chapter 12)

for the composite model of all Poisson distributions. In particﬁlar,
we shall use the observed table itself to indigate a particular
model in the composite model, and we shall then use the CS-metric
to give a distance-value for how far the observed table is from
the TER of the indicated model. "In the type B case, we shall
proceed similarly. In both cases, the metric so obtained will
prove to be well-defined on the composite model provided that

the entries in the TER table are sufficiently large. In the

type vy case, we shall apply the CS-metric after first
identifying an appropriate TER. Finally, in each of the three
cases, we shall calculate a DLS by methods to be described

below. We now give all these procedures in more detail.

Using the observation to indicate the model in type g

and type B. In order to get a specific model of non-associa-

tion for the multinomial case (type &), two values must be

given: and Pp- The estimate is obvious and simple, we

Pa
take Pa and Py to be the observed relative frequencies:
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. By
pA:H_
™

g =7 -

(We shall see in an exercise that this is in fact the maximum-

likelihood estimate.)

In the double binomial case (type B ), we must give a value

for Pg = P; = Py- If we use the observation to estimate this

value, we have:

|

PB=n v

(We saw in Chapter 12 (Exercise 12-2) that this is the maximum-
likelihood estimate.)

In the hypergeometric case (type yY) we have seen that the
probability of a given table is independent of the particular

model for non-association used. Hence no estimate is needed.

Finding the theoretically expected result (for the purpose

of applying the CS-metric). We look at the three types. Recall

from Chapter 10 that a metric fﬁr a given model measures how far
an observation is from giving strongest confirmation of that
model. We saw that one way to construct a metric is to identify
an imaginary observation that we can viéw as giving strongest
confirmation (we called it the TER (theoretically expected
result)) and then to find a férmula which expresses a distance

between the TER and the observation actually obtained.
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For a type o model of non-association, the probability for
an individual to be in the upper-left cell is PpPg- Hence the
expected number of individuals in that cell is PpPgh- Hence,
for our estimated model, the expected number of individuals in

this cell is

n
oo T Dy
pAPBn - ‘n—' e =

Similarly for the other three cells, and we have as our full

TER:

For a type B model of non-association, the'expected number
for the upper-left cell is Pg*Dy - Hence for our estimated model,

the expected number of individuals in this cell is

. 5
PprBl = ¢ - ™ T 4 :

Similarly for the other cells, and we find that our TER is exactly
the same as for type a.
For a type y model of non-association, we shall show in an

exercise that the expected number in the upper-left cell is again

Similarly for the other cells, and we find that our TER is the
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same as for type o and type B. We use the notation:

for the TER which is common to all three procedures. Thus the

TER for each cell is obtained by multiplying the marginal values

corresponding to that cell and then dividing by n. 1In the smoking/

cancer example, this gives, for the upper left cell,

_ 1000 x 60 -

El =TT — = 6,

Similarly for the other cells, and we have our TER

6 |- 994 1000
54 | 8946 |9000
60 9940

S ensan

It is easy to verify that the margins for the TER will always
be the same as for the originally observed table.

Applying the CS-metric. In all three types, we use the

gg-metric to measure distance of our observation from the TER.

The general formula will be:

2 2 2
o _form)” (- (e-Ey)®  (a-my)°

x
° h 2 s Ey




422

In the smoking/cancer example, this gives us

2 _ B P LouB g2
o= B TEr * gor * sonE

= lififsd 1 ¥ -
= 44 ('5+5zp+ggu-+ml ) = 360.7

Note that in this case la-E1|= |b-E2I = c-EBI |a-E,|. For

2 x 2 tables, this is always true, For example, in the general case,

n
K _ - 1™ _ . {a+Db) (a+c
a El = 3 o gy = o = ad-be
and boE, = b - 102 _ 4 _ (24b) (b+d) _
E2 b b atbicra = bec-ad

Hence we can write, as a general formula:
2
Xo = (a"El)e(%’i"" El2- + % + Elz)

We have obtained, for any given observed table .w , a
corresponding value xi. We observe that the value of xg_is the.
same for all three types. We now define a metric as follows. For
any given table g+§ + we take the value of the metric to be the
value xé for that table. In the Appendix to this chapter, we shall
show that for both type o and type B, the value of this metric (ot

(te 2 JﬁLiHJ~|F|&L£$5
a given observation) is well-deflnedi?n the composite model for
non-association provided that the cell values of the TER (from the
given observation) are all > 5. It remains to describe here how
the DLS values of an observation can be found. There are two
different procedures that may be used. We call them the lakge

sample method and the small sample method. We first describe these
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methods as calculations and state their chief properties. That
the methods are correct, and that they indeed have the stated
properties, will be shown in the Appendix.

Calculating the DLS: the large sample method. Consider a

2 x 2 table obtained under a multinomial procedure (type a)
with all four entries > 5. We shall calculate the DLS from
the observed xi value by using the chi-square curve with

one degree of freedom. The use of one degree of freedom can be

made plausible by the following argument. Since the multinomial
experiment has 4 categories, since we have used two independent

algebraic facts from the observation (namely, the values

n m i
= ?% and Pg = ?%) to fix the modgl, and since we have one

Pa
algebraic constraint on the observation (a+b+c+d = n), the number
of degrees of freedom must be 4 - 2 - 1 = 1. For example, if we
assume that the observation in the smoking/cancer example was
obtained under a type o procedure, we use the value 360.7 (obtained
above) in the chi-square table for d = 1. 1In this table, the
chi-square value for 0.00l1 is 10.83, and so we conclude that

the DLS is very much smaller than 0.001l.

Consider next a 2x2 table obtained under a double binomial
procedure (type 8) with all entries of the TER table > 5. We shall
again calculate the DLS from the observed Xg value by using
the chi-square curve with one degree of freedom. Here the use

of one degree of freedom can be made plausible by the follow-

ing argument. Even though we have used only one algebraic

m
fact (pB = ?%) from the observation, the fact that one margin
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is fixed (that is, that the experiment is double'binomial rather
than multinomial) places an additional algebraic constraint on
the observation (a + b = nl). Hence the number of degrees of
freedom must be d = 4 - 1 = 2 = 1. '

Thus the two procedures (for typé a and type B) give
exactly the samé calculations and result in exactly the same

DLS wvalue.

Consider next a 2 x 2 table obtained under a hypergeometric

procedure (type vy) with all entries of the TER table > 5. In the
Appendix below, we shall show that chi-square approximation can

be used in this case also. 1In fact.the.approximation procedure,”
as a calculation, is exactly the same as in the two previous cases,
with the number of degrees d = 1.

The continuity correction. Recall that in the theory of

normal approximation, the term "%" appeared in the formula

1
xrﬁ—np

v npq

o4 =

to take account of the width of bars at the ends of a bar graph

whose area is being approximated by the normal curve. In the

application of chi-square approximation to 2 x 2 contingency
tables of type vy, a similar matter of bar-width arises, and a
corresponding correction is required. The correction takes the

form of inserting the term “%" as follows:

xg = (la-B [ -D% + g+ Tt )
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(If |a - Elf < %, Xi should be taken to be 0.) The correc-

tion is called the continuity correction or the Yates correction.

It 1s only used when a 2 x 2 table is approximated by the chi-

square curve with d = 1. We shall see in the Appendix

thd£ the correction should also be

2 x 2 contin-

2
For large values of Xo

used when we do chi-square approximation for a

gency table of type o or type B .

the correction does not significantly affect the resulting DLS.

. ' 2
(In the smoking/cancer example, it changes the value of X

from 360.7 to 352.6, and the DLS remains approximately 0.)

Thus the formal chi-square approximation calculation of the
DLS is the same for all three types. We speak of this- calcula-

tion as the large sample method.

Remark. "What if, in the case of type o, the values of
Pa and Py Were given ahead of time and not obtained from the
model. How would we get the DLS? The discussion in Chapter 11
suggests that we use chi-square approximation with d = 4 - ] = 3
What if, in the case of type B, the value of Py were given ahead
of time and not obtained from the model. How would we get the
DLS? The discussion in Chapter 11 suggests that we use chi-square
approximation with d = 2. Both suggestions can be shown to be
correct.

Calculating the DLS: small sample method for type Y.

When one or more of the cells of the TER table has its entry < 5, the
chi-square approximation may no longer give two-decimal place

accuracy. Indeed in the case of type a and type B tables, there
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may be no useful metric that is well-defined with respect to the
composite models for non-association. Hence the DLS may not be
well-defined to two decimal places. In the case of type v,
however, every metric.is well-defined and the DLS can be calcu-

- lated directly by getting the probability of each possible
observation that is no closer to the TER than the actual observa-

tion, and by then summing these probabilities. We call this

calculation the small sample method. An example is given in the

illustration below.

Illustration. We assume a type Yy procedure. We now do both

a large sample calculation and a small sample calculation for the

table

29 | 24

5 10

We begin with the large sample calculation. We first add

margins, and then get the TER. We have

=3 24 53 and 26.5 26.5 as the TER.
5 10 15 T2 T8 |
34 | 34 - 68

Calculating xg r Wwe have
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(l29-26.5l-é)2(7% * 7-1-5 T z%-g " ’z%':g)

= 1,37

Pt
0
I

Using the chi-square table on page 350 for d = 1, and interpolating,
we get DLS = 0.25.

(To use a normal table to evaluate Cl (see page 348), we

would take

C,(1.37) =1-2A(/T.37) = 1-2A(1.17) = 1-2(0.3790) = 0,24

This is the more accurate value. With 2 x 2 contingency

tables, the normal table on pages 165-166 gives slightly greater

accuracy, since less interpolation is required.)

- If we omitted the continuity correction, we would have

2, 1. 1 1 L

>
1

= 2.14 .

Using the chi-square table for d

1 and interpolating, we

would then get (incorrectly) DLS = 0.15.

We next do the small sample calculation. We need only
list those possible observations which have the same imposed
margins as the actual observation and which are no closer to
the TER than the actual observation. We measure
distance by the CS-metric, or we can use, in this case, the
equivalent and simpler metric |a—E1|. For each observation;

we calculate its probability by the hypergeometric formula:
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J (a+bJ[c¥d}

alb| _ a c - ;

P{c]d T Tratb+ctdy h(z,2vbsesd, 246, 24¢)
| s

For |a - E,| = 2.5, we have the tables

29| 24 ok |29 . . | '
B_+Iﬁ and I0] 5 ¢ Their probabilities are h(29;68,53,34.) =

0,08 and h(iﬂ;‘?)s3)3y) = 0.08. When Ia-Ell = 3.5, we have the tables

ég+§%. and %%*2% . Each of these has probability 0.03.

When Ia-Ell = 4.5, we have 31’22 and 22’31 . Each has probability

0.01. The remaining tables, for la-El] 2 5.5, all have probability
= 0.00 (to two decimal places).

Summing these probabilities, we have §§§ = 0.24, This result,
by the Small sample method, agrees (as it should) with the large

sampie result,

Small sample calculation for type a and type B. Let Ml

be the composite model for non-association in a type o case

and let Mo be the composite model for non-association in a
type B case: ' If the TER value for one of the cells of a given
table is < 5, the DLS may not be well-defined for the compo-
site model Ml (in type o) or for the composite model M0

(in type B). Let 8§ (w) be the DLS value obtained by treating

a given observed table w as if it were of tyme y and then

using the small sample method. Using the final theorem from the
Appendix to Chapter 12, we shall see in the Appendix to this

chapter that: (i) if the procedure is of type o then the DLS
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of w for each individual model in Ml is ﬁearly as small as, or
smaller than, §(w); and (ii) if the procedure is of type B, then
the DLS of w for each individual model in MO is nearly as small
as, or smaller than, §(w). Thus in the type o and type B cases,
a small value of §(w) tells us that the DLS values for all models
of non-association are small. Hence a small value for 6§ (w) will
cast doubt on the assumption of non-association. In this way,

the small sample method can be used, for procedures of type a and

type B.
r Xx s tables. So far, we have considered 2 x 2 tables,

which arise when we havé two classifications, each of them 2-
category. If one classification is r-category and one is s-
category, we obtain an r x s tablet The theory and procedures
for r‘x § tables are closely similar to the case of 2 x 2
tables. .We briefly describe the similarities and differences

and give an example.

(a) Non-association. The assumption that non-association

holds is similar to before. It states that position in one

classification is independent of position in the other classifi-

cation.

(b) Procedures. The same three types of procedure

occur as before. In type &, we have a multinomial experiment
with rs categories. 1In type 8 (imposing one margin) we have

r independent multinomial experiments, each of s categories.
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In type v (imposing both margins) we assume that the second
classification is based on an attribute whose strength can be
measured on some numerical scale and that this scale is used for
dividing the entire sample into s categories of pre-assigned size
and ascending strength. |

(c) Models. For each type, we take an appropriate universe
of models analogous to the universe used for 2 x 2 procedures. .

(d) Composite models. In each type, a composite model

for. non-association can be defined in a form exactly analogous
to the compasite model previously described for 2 x 2 tables. In
the case of type. vy, we find, as before, that a single probability
formula (for the probability of a given table) holds fof all
models in the composite model. This prdbabilify formula is a
generalization of the hypergeometric formula.

(e)~ Métrics. As before, Qe use a CS-metric for all three
types. The TER indicated by a given observation is obtained for
all three types by the same general rule as for the 2 x 2 case:

for each cell, multiply the two corresponding marginal values and

then divide by n (where n is the total count). When r > 2 or

s > 2, it is no longer true that |a - Elf = |[b - Ezl = ...
Hence the full formula for the CS-metric must be used.

(£) Large sample calculation. This is done as before,

except that the number of degrees of freedom used is d = (r-1l) (s-1).
(See the Appendix.) There is no continuity correction if either

r or s is > 2. When each Ei > 5, the DLS value is well-defined

(to two decimal places) over all models of non-association.
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(g) Small sample calculation. A form of hypergeometric

formula can be used, but the calculation may be lengthy and require
a computer or programmable calculator. As before, the computation

gives an exact DLS value for type y and an upper bound. to the

DLS values (over all models of ﬂén-associaticn) for types o and 8.

Example. Two strains of rats are to be compared as to

blood type. 32 rats of strain I and 36 rats of strain II are

tested. The rats are later classified as blood type A/blood

type B/blood type C. The results yield the following 2 x 3

contingency table

A B ¢
I |5 16 | 11 | 32
i & | 11| 21| 36

9 27 | 32 ioéé.‘

where we have added the margins. The TER for the upper left cell is

El < 202 = 4,24, Similarly for the other cells, and we get

4,24 | 12,71 | 15.06
4,76 | 14.29 | 16.94

as TER.

Calculating x2 we get
2 2 : 2
_ (0.76 3.29 (4. 06 + (0. 76) 3,29 4,06
o ;11'1'&':!_ '(12'7%— 15, 06 T.75 '(TH"Z%— N '(T"9'21_o.

= 3.93

X

Using chi-squarr approximation with 4 = (3-1)(2-1) = 2, we get

OLS = 0.15
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In a case like the above, where two populations are being
compared with respect to some classification, we sometimes express
our basic assumption of non-aséociation by saying that the

two poﬁulations are homogeneous with respect to the given classi-

fication. In the above example, if we assume that the two strains
homogeneous, then we can conclude from the DLS that an observation
as non-homogeneous as the one obtained will only occur about 15%

of the time,

All the tables above are based on two classifications.
Such tables are called tWwo-way contingency tables. If three X
classifications (for example, smoking/cancer/age) were used, we
would have a three-way table. A three-way table is most naturally
displayed in three-dimensional form. The theory and procedure are

similar to before, except that the calculation of degrees of free-

dom must take appropriate account of both the number of facts

from the observation used to indicate a model and of the

number of marginal constraints imposed. Thus, in a 2 x 2 x 2
table under type &, we have 8 cells and use 3 facts from the

observation. Hence, for chi-square approximation, we would

use d = 8 - 3 - 1 = 4., We consider this further in the Appendix.

Remark. Analysis of an observed contigency table shows us

how likely we are to get an observation with this much apparent
association, when we assume non-association. It is important to
keep in mind what the analysis, as given above, does not show us.
1% does not indicate an amount of association that may exist, nor

does it indicate the mathematical nature or form of this associa-
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tion. (We return to this in Chapter 15 and Chapter 17.)
We must also be cautious in interpreting a contingency
table with a very small DLS. In the 2 x 2 case, a small DLS tells us

that an association exists. It does not, however, give us any infor-

mation as to a causal relationship between the two attributes.
Either might cause the other, or indeed, both might be caused by
some third (and not obvious) attribute. Further detailed
scientific study is often required to settle gquestions of this kind.

Before such study we could not be sure, for example, whether, on

the one hand, smoking caused cancer or, on the other hand, both

were caused by some third environmental or genetic factor.

(In fact, in the case of smoking and cancer, such further study
‘has occurred. Study of tissue changes in animals exposed to

tobacco smoke indicates that a direct causal relationship does

indeed exist.)
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EXERCISES FOR CHAPTER 13

In a sample of 1000 Frenchmen, 59 percent own television

and of these 29 percent buy books. Of those without

television 22 percent buy books.

(a) Which type of procedure appears to have been followed
to obtain this data.

(b) Find an approximate DLS under the assumption of no

association.

An anthropologist studying ethnic types in the British

Isles obtained the following observations in a certain

dighrice: |

19 men had a'long' head and red hair;

46 men had a 'long' head but did not have red hair;

8 men had a 'short' head 2ud red, hazr. o, DEad g

73 men had a 'short' head but did not have red hair.

(a) Which type of procedure appears to have been followed
to obtain this data.

(b) Find an approximate DLS under the assumption of no

association.

In an investigation of how women held a baby against them
as:compared with how they held an inanimate object, the
following counts were obtained: |

When handed a baby, 49 women placed it first against the
left side of their chest and 7 placed it against the right.
When handed a large parcel 33 women placed it first againsf

the left side of their chest and 31 placed it against the right.
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{(a) Which type of procedure appears to have been followed

to obtain this data.

(b) Find an approximate DLS under the assumption of no

association.

13-4. A random sample of 1000 males between 16 and 24 years old
is taken. The sample is divided into younger and older
halves. The sample is divided into the quarter (250) who
have been least employed during the past six months and
the three quarters who have been more employed. 200 of
the least employed are in the younger half.

You may assume that the same probability formula
(assuming no association) holds for this procedure as for
a type Y procedure. (See 13-5.) Use the large sample
method to estimate the DLS of this observation on the

assumption of no association.

13-5. Consider the observation procedure described in 13-4.
(a) Define a set of possible models for this procedure.
(b) Define the subset of models which represent non-

association.

(c) Show that the probability of an observed table,
assuming non-association, is given by the hyper-
geometric formula. (Hint: The proof is similar to

the proof on page 416.)

13-6. The following contingency table is obtained by a procedure
in which both margins are fixed. Do both a large sample

and a small sample calculation of the DLS for this table,

138



436

assuming no association.

10 5 |

5 10

13-7. Under the assumption of no association, find an upper
bound on the DLS for a double binomial experiment of 10
trials and 10 trials in which the observation (0,3} is

obtained.

13-8. Two vaccines for mumps (A,B) were compared
with a placebo in a clinical trial; the numbers of
children uninfected, mildly infected and severly

infected in the following 24-month period were as

follows:
Placebo A B
Uninfected 100 l46 149
Mild 71 32 28
Severe 29 17 16

Find a DLS for this observation, assuming that

neither vaccine acts any differently than the placebo.

13-9. In 13-8, consider only the two vaccines. Find a DLS

assuming that both vaccines act in the same way.
13-10. Show that R(a; n, n;, my) = h(a; n, mys nq).
13-11. A pharmaceutical company has tested a new food supplement

for the possibility that it may prevent colds. The test
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was carried out as follows. 14 individuals were selected
initially. 7 of these 14 were then randomly selected to

form an experimental group while the remaining 7 served

as a control group. The experimental group were given the

supplément for one year, and the control group were not.
During the course of the year, one member of the experimental
group had a cold and 6 members of the control group had
colds. What can you say about the DLS of these daté,

assuming that the supplement has no effect on whether or

not an individual gets a cold.
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CHAPTER 14. HYPQOTHESIS TESTING

If we carry out an experimental procedure and make an
observation; if we assume that a certain fixed model holds:; and
if we choose some metric to measure how far the observatioh
is from giving strongest confirmation of the model, then, as we

have seen above, we can calculate a descriptive level of signifi-

cance (DLS). This DLS gives us an indication of how good our
model is. A large DLS tends to confirm the model, while a small
DLS suggests that the model may not be correct.

Sometimes, 1n statistics, we find that we have to make a decisiqn_
as to whether or not a certain model 1s correct on the basis of an
Observation, and that we may then have to take some action on the basis
of éhat decision. This action_may take the form (to give only a few
-examples) of_rejecting a2 shipment of goods as defective, of prohibit-
ing the sale of a- certain drug as harmful, of chooslng a certain
direction for further research, or of asserting and puBlishing a
certain conclusion in a scientific paper.

In the present chapter, we shall limit ourselves to situa-

tions where we make a two-way decision of either keeping or

- discarding a proposed model. Decisions with more than two options

can also arise in statistics; we treat them furthef in Chapter 20.

(For example, a three-way decision might be: keep model/ get more

data/discard model.)
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The most common method for making a two-way decision about a
model 1s to establish, ahead of time, a certain cut-off value a

for the DLS. This value is called the critical level of signifiéance.

Then 1if the observed DLS falls above a we keep the model, while if

if falls at or below a, we discard the model as incorrect, (If
an observation has IDLS £ a, we say that the observation is statis-

tically significant.) The method is obvious, simple, and useful,

How do we choose a value for a? This will depend upon the actions
that we may take as a result of our decision, and upon the later
consequences of those actions (where the decision proves to be good

or bad). We discuss this further below. The values most commonly

used in practice are d = 0.05 and a = 0.01l.

Example. A certain experiment can result in success or failure

We call the probability of success p., If we conduct a sequence of

independent repetitions of this experiment, we have a sequence of

1

Bernoulli trials. We take as our assumed model p = 7 We take

our critical level of significance to be a = 0.05. We then carry

out 100 trials and observe 45 successes., Does this lead us to

keep the model or to discard it as incorrect?

we calculate the DLS using the standard binomial metric | X-np] .

Normal approximation gives us:

DLS = 1-2A(z), where

X-np|l-% _ 45-33.3-0.5

z = =

= 2,38
- > /T

Hence IDLS = 1-2(0.4913) = 0.017. As this falls below a, we decide

we would decide to keep the model.

to discard the model p = %u Note that if we had taken a = 0.01,

~j= -

4 .

o

hd et ®
L. , R

To answer this question,

.
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Some terminology. 1In a decision making procedure like ‘the above,

the model which we assume at the start 1is called the hypothesis or

the null hypothesis., Let A be the observed LS. If X > &, we

say that we accept or continue to accept the hypothesis, while if

A < a, we say that we reject the hypothesis, The entire procedure
of choosing «, obtaining an observation, choosing a metric,

calculating X\, and making a decision is called a test or hypothesis

test. Hypothesis testing is one of the most important and widely

used methods in mathematical statistics.

Example (continued) . When we have a hypothesis to be tested and a
test procedure, then certain observations will lead us to accept
the hypothesis and certain other observations will lead us to reject

the hypothesis, The set of observations which lead to rejection of

the hypothesis is called the critical region or rejection region of

the test. The set of observations which lead to acceptance of the

hypothesis is called the acceptance region of the test. 1In the

case of the example above, with p = % as null hypothesis, with

@ = 0.05, with |[X-np| as metric, and with n = 100 trials for our

observation, we get the critical region by noting that

1-2A(1.96) = 0.05 and setting

1.96 = [X-np|-%

Y npq

Solving for X, we get X = 43,07 and X = 23.,55. Therefore the

critical region consists of values of X such that

X<£2 or x> 44,
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and the acceptance region 1s

24 ¢ X ¢ 43,

Remark. Note that even.after we have fixed the hypothesis to be

tested, we have a great deal of freedom in the way in which we design

a test. In particular, the following aspects of the test remain to

be determined: (1) the kind of observation to be made and the

experimental procedure to be used in making it (for example, size and
randomization of sample); (ii) the value of the critical level .a;
(1i1) the metric to be used to get the DLS; (iv) possible
use of approximations in calculating the DLS. In addition, 1t may be
appropriate to use a composite model in a statisticai test. Our de-
clsion will then be a declision as to whether the true model falls in
the composite model or'not. For such é test, we usually use a
metric-that is well-defined (giveé a common DLS value) over all
models in the composite model. The composite model itself is then
called the null hypothesis for our test. Much ingenuity, art, and
theory can go into determining these various aspects of a hypothesis
test.

As an illustration of the various choices that can occﬁr
with (iii), consider the case of a binomial experiﬁenﬁ énd the
hypothesis p = % . An observation is obtained for five succes-
sive runs of 100 trials each. We get 30, 44, 29, 38, 42 as
the numbers of successes in the five runs. The theoretically
expected result (TER) for a single run is 33.3. vVarious
different metrics are possible. We could use |A - 33.3| where

A = 36.6 1is the average of the. five observed num=-

bers, or we could use |M=- 33.3| where M = 38 is the median
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(middle) value of the observed numbers. Which choice is better? It
is possible to show (for reasons to be given below) that the first
metric is better in this case. It is also easier to calculate
the DLS with the first metric; ease of calculation can be an
important part of designing a test.

Examples. Contingency tables can be used in hypothesis tests. For

example, consider two attributes A and B under a multinomial pro-

"cedure (type: &), and take as our hypothesis the composite mddel that

the attributes are not associated. Fix a = 0.05. If we obtain the

table
29 -| 24

51 10

then we get DLS = 0.14. (This example was calculated in Chapter 13.) .

—

Hence we continue to accept the hypothesis that the attributes are not

associated.

' On the other hand, the table for smoking/cancer was

50 | 950

10 | 8990

Here we saw DLS < 0.001, so that we would reject the

hypothesis of non-association when « = 0.05 (and also when

a = 0.01 or o= 0.001).

Goodness-of-fit can also be the subject of hypothesis

tests. In the example on page 333 on goodness-of-fit of a
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given set of observations to the standard normal curve, we would
reject the standard normal curve as model in a test at critical
level 0.05, but would continue to accept in a test at level
0.01. Similarly, in the example on page 337 on the goodness-of-
fit of a given set of observations to some (unspecified) |
Poisson distribution, we would reject the composite model of all
Poisson distributions in a test at level 0.05 but would
continue to accept at level 0.01l.

Meaning of the critical level o. Note that a hypothesis

test does not treat the options of accepting and of rejecting
in a symmetrical way. In effect, the test is biased in favor
of the hypothesis, for we only reject when we get strong and
convincing evidence that the model is wrong. IWhen the evidence
is uncertain, we continue to éccept.
If we carry out a hypothesis test, we can reach a wrong con-
clusion in one of two different ways:
I. We can reject the null hypothesis when
the null hypothesis is in fact true,.

II., We can accept the null hypothesis when the
null hypothesis is in fact false,

The critical level of significance o gives direct inform-

ation about mistakes of type I. It tells us that if we repeat

our entire test many times, and if the null hypothesis is in

fact true, then we will make the type I mistake of rejecting our

hypothesis about o of the time. & says nothing directly about

how often mistakes of type II will occur when the null hypothesis
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is false. Thus when a = 0.05, if the hypothesis is actually
trgg, we can expect to make the mistake (of rejecting it) abouyt
55 of the time if we keep repeating the entire test procedure.
The smaller the critical level a, the more cautious we are
being about rejecting the null hypothesis if it is true, and

the more convincing is the evidence that we require for rejection.

The power of a test. What about a mistake of type II?

What is the chance of accepting the null hypothesis when it is
in fact false? We first restate the question as a question

about the opposite event.

What is the chance of correctly rejecting the null hypothesis when

it is in fact false? This question cannot be answered unless we

pick some other model ui which we take as the true model and

which we then use to talculate p = the probability that we will

correctly reject the original hypothesis when our test is carried

out. This probability p 1is called the power of the test with

respect to the alternative model M- If we assume that Hy is

true, then B8 = l-p 1is the probability of making a mistake of
type II.
Example. Assume again that we have Bernoulli trials with the

3‘
trials and use critical level a = 0.05. Now assume that the null

null hypothesis that p = L Our test, as before, is to observe 100

it
hypothesis is false and that the true modellls p = %. What is the

power of our test with respect to the model p = % ? We need to

calculate the probability (under p = %) of rejecting p = % '

147



445

that is to say of obtaining an observation that falls in the

critical region of the given test for p = %. Recall from the
example at the beginning of this section that we reject p = % if

the observed X is > 44 or < 23. We thus get our desired power
by finding the probability of the event (X < 23 or X > 44) for
the alternate model p = %. Using normal approximation, we get

this probability to be 0.903. Thus p = 0.903 for Hy -

The power function. Let Ho be the model chosen as null

hypothesis for some given test. Let U be any possible model
(either My Or some alternative model to uo). Define

p(u) to be the probability of rejecting Hg given that yu is
true. Then for any alternative model Hy o p(ul) must be the

.power of the test ﬁith respect to the altqrnative model My (we
called this value p above), while for Hg + p(u,) must be ~

the'ciitical level o of the test. (It may be less

than o if the observation can take on only separated discrete

values. In the example above, p(uo) = the probability of the

. Using normal

W=

event (X< 23 or X > 44) for the model p =
approximation, we get p(uo) = 0.034 < oo = 0.05.) The function
p, defined in this way for all possible models pu (in the

universe of models), is called the power function of the given

hypothesis test. 1In the case of the parametric example above,
the possible models correspond to possible values of p and can
be represented as points in the interval from 0 to 1. Hence
in this case the power function can be graphed. Its graphhis

given by the solid curve in Figure 14.1.
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Figure 14.1

The power function can help decicie what procedure to use for testing
a given null hypothesis. For two tests with the same critical level,
we will be inclined to use the test with the greater power function,
(In the graph above,. we have also drawn the power function for a test

based on n = 20 trials and critical level « ='0,05, As we would

expect, the test Qith n = 100 is more powerful for all alternative
models), We cannot always compare two tests in this way. It may
happen that one test is more powerful for certain of the alternative
models but that the other test is more powerful for the other alter-
native models. If a test with the same critical level « 1is more

powerful for all alternative models, we say simply that it is a more

powerful test. In our earlier illustration above of different metrics

for five successive binomial runs of 100 trials each, the metric based

on the average figure is superior to the metric based on the

median figure because it yields a more powerful test.
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Choosing the critical level of significance. While the critical

level a gives the probability of a mistake of type I and does

not éay anything about the probability of a mistake of type II,
changing the value.of ¢ will also affect the probability of typé

II mistakes, For example, 1f we ralse the value of a for a given
test, this can raise the entire power function. The best choice of «
in a particular situation will depend upon the relative size of the
penalties that we will suffer 1f we make a type I or a type II
mistake, If the type I mistake 1s especially serious, we will be
cautious and ﬁake, a¢ small, If a type II mistake is serious, this
may lead us to a somewhat larger a, For example, if the null hypothesis
is that a certain food additive is harmful, we will take a very small
so that we will treat the additive as harmless (reject the hypothesis)
only if we get very convincing evidence. On the other hand, if our
null hypothesis is that an additive is harmless, we may wish to use a
somewhat larger value of &; this means that weaker evidence can lead
us to treat the additive as harmful (reject the hypothesis), Other
features of test procedures are closely related to the choice of a,
In particular, the advantages of a larger sample for an observation

must be weighed against the cost in time and money of using a larger
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sample, and these must be balanced against the penalties for making
mistakes of type I and type II, In mathematical statistics as

developed prior to 1950 ( classical methematical statistics ), con-

siderations of cost and penalty were not usually made part of the
mathematical formulation of a statistical problem. They were left
as part of the art of a statistician rather than as part of the

science. Since 1950 the approach known as statistical decision

theory has attempted to make these considerations of cost and
penalty a basic part of the mathematical formulation of statistical
problems. Today, most statisticians accept and use many of the
methods of decision theory, although certain aspects remain
controversial. We shall consider "statistical decision theory

in Chapter 20. Until Chapter 20, the approach of our text will

be primarily that of classical-mathematical statistics.

As noted before, the most commonly used values of -a are 0.05
and 0.01l. These values are arbitrary, but they are important because
they are sc widely used. If we learn that someone has rejected a cer-
tain hypothesis on the basis of observed data, we can be almost cer-
tain that a value of o < 0.05 has been used. We shall return to
the choice of o in Chapter 20.

Designing tests: two-sided tests vs. one-sided tests. We

begin with an example. Assume that at a certain hospital the rate

of pos£—operative surgical infection is known to be %. That ig to

say, the probability of a patient remaining free from infection is
1

P = 3 Let us next assume that a new and more intensive procedure

for sterilizing surgical bandages is introduced. (This new procedure,
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for example, might take the form of repeating the old sterilization
procedure several times.) We now wish to test whe£her or not the new
sterilization procedure for bandages gives a significant improvement
in the infection rate. We take as our null ‘hypothesis that P = %
(no improvement occurs), and we choose q = 0,05, We observe 100
patients with the new bandages, and we find that X of them remain
free from infection. How do we decide, from X, whether or not to
reject the null hypothesis?
We begin by deciding on a universe of models for our test.

We have an additional piece of information which occurs as a
special feature of the problem: we know from the heory
. of inféction that the new bandages will not decrease the value of D3

thushthe only possible alternative models to the null hypothesis

p = % are models with p > %. This 1s our universe of models.

Our situation is sald to be one-sided because the alternative models
all lie on one side of the null hypothesis in our parametric uni-
verse. The situation in the earlier example, where alternative

models could have either p < % or p > %, 1s called two-sided.

What if we now observe X = 15? In the two-sided situation as
we saw above, any observation £ 23 will lead us to reject the null
hypothesis. Here, however, in the one-sided situation, we cannot re-
Ject the null hypothesis, for even though the observation X = 15 is
highly unlikely under the null hypothesis, 1t is even more unlikely

under any alternative model in the universe. If and when we observe
X =15, we must interpret this observation merely as an unlikely

random occurrence rather than as evidence agalnst the null hypothesis.
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(Indeed, if the unlikely observation X = 15 occurs, we can view
it as c0nf;rming the null hypothesis because it is less unlikely
under the null hypothesis than under any other model in the
universe.) ‘

How do we formulate an appropriate test procgdure? Since only
values of X_> 33,3 can cast doubt on the hypothesis p - %, we
seek a critical region lying entirely to the right of 33.3 having
total probability £ 0.05. Normal approximation shows us that under
the null hypothesis, P(X > 42) £ 0.05, but P(X > 41) > 0.05. Hence
we take x > 42 as our critical region, and we reject the null hypo-
thesis if we get X > 42. If the null hypothesis is in fact true,
this test will 1éad us into an érror of type I with probability

£ 0.05. We call this test a one-sided test. Recall from our earlier

example that the corresponding two-sided test has X £2% BF X & 4y

as 1its criticél region, 'Thus, for example, the observation X = 43
leads us to reject the null hypothesis D e %, under the one-sided
test but not under the two-sided test. This can be explained intui-
tively, in part, by saying that in the one-sided case we have more
information to start with about the possible models that can occur,
and that we hence need less additional information in order to reject
the hypothesis,

Another and more precise way to look at the difference between
one-sided and two-sided tests is simply to note that we are using a
different metric to calculate the DLS in the two situations. In

the two-sided case above, we use the metric
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s(X) = |x-npl;

in the one-sided case, we use themmgtric

X -np when X > np;

s(X) = 5(|X-np| + (X-np)) =

N =

o when X

[ oS

np.

This is one of several choices of metric that

can be used in the present example. How to choose the best metric fof
a one-sided universe is. not always obvious. We shall return to this
mattér in Chébter 20 when we consider the general queétion of finding
natural metrics in statistical problemé. Note that s(X) = X |
could also be used as a metric for the one-sided test above, since
we could intuitively argue that X = 0, though highly unlikely,
1s the most strongly confirming obsérvation of all (when it occurs)
because it is so much more unlikely under any model (in the uni-
verse) other than the null hypothesis. (Both one-sided metrics give the
same DLS values for X > np and hence produce the same critical
region for o = 0.05.)
One-sided and two-sided tests also arise in connection with

2 x 2 contingency tables., We might, for exampie, have no previous
information about the rate of infection in our hospital, and we -might
observe 34 patients with new bandages and 34 patients with old ban-

dages. This might glve us the following table
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No

infection Infection
New bandages { 29 5
0ld bandages / 24 10

We take our null hypothesis to be that there is no difference
between new and old bandages, that is to say, that there is no

association in the table. We take our critical level to be

0.10. In an example in Chapter 13, by a large-sample calcula-
tion, we saw that this table has DLS = 0.14. However, this DLS
was based on the ggfmetric.r In our present example, this metric
treats observations that associate more infection with old
bandages and observations that associate more infection with new
bandages on the same basis. Because, under the theory of
infection, we know that more infection cannot be associated with

new bandages, we use instead a one-sided metric (for the same

reasons as given in the previous discussion above). We take
X2 if a > El ’
s(f) =
0 if a < E1 ’

where a is the count obserﬁed in the upper left cell in

observed table §, and X2 is the value of the CS-metric for

.
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It is possible to show, from the definitionsin Chapter 13, that
the one-sided DLS of a contingéncy table is exactly one half its
two-sided DLS. Thus, for the table given above, we get

DLS = %(0.14)

0.07, and, since our test has critical level
0.10, we reject the null hypothesis. We conclude that the new

bandages are significantly better.

Comment. One-sided tests should be used, if at all, with
special care. When we limit a parametric universe to some subset
of parameter values, we may be ignoring a slight possibility that
one of the other parameter values in reality occurs. BAn extreme
observation on the nonsignificant side (of the one-sided test)
may well, in practice, lead_us actively to explore the possibility
that one of the parameter Qalues omitted for the one-sided test
has in fact occurred. For example, in the case above of 100
trials of patients with new bandages, if we actually observe
x =5 (95 infected patients) we will not, in practice, view this
as confirming p = 1/3, but rather as suggesting that some un-
known and unexpected source of infection (which we had ruled out
in our one-sided universe) has entered the picture. The
distinction between two-sided and one-sided tests is thus a
somewhat arbitrary and artificial one. Often, what is‘needed is
an appropriate metric that gives DLS values somewhere between
the values from a one-sided universe and the values from

symmetrical treatment of a two-sided universe. We come back to

this question in Chapter 20.
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Footnote. In the case of the roulette wheel data given in
Exercise 10-18, the distinction . between the DLS value in part
(a) and the DLS value in part (b) can be described as a distinc-
tion between a one-sided situation and a two-sided situation.
The DLS value obtained in (b) (for goodness-of-fit to a given
Poisson distribution) can be shown to be approximately the same
as the DLS value that would be obtained using the metric
Igg(ﬂ)-mol where CS(R) 1is the CS-metric from ﬂa) and mg is
taken so that 037(m0) = 1/2. Situation (b) can be described as
two-sided, because the metric measures how far CS (%) wvaries on
either side of m, Situation (a) can be described as one-sided,
because the CS-metric measures how far CS(Q) lies above 0.

As we would expect from the symmetry of the chi-sgtare curves
for large d (where d = degrees of freedom),‘%t is the case,
when the DLS in (a) is < 1/2, that the DLS in (a) is approxi-

mately one half the DLS in (b).

Designing tests: randomization. A famous example of

hypothesis testing in statistics is due to R. A. Fisher. In this

example ( the lady tasting tea ), a woman claims that she can

tell from tasting a cup of mixed tea and milk which of two
different methods of pouring the tea has been used (milk

poured first/milk poured last). The null hypothesis is taken to be

that she cannot in fact discriminate. The procedure is to give her
elght cups, four poured one way and four the other. She is told that

there are four of each kind, and is asked to identify which four have

milk first and which four have milk last, It 1is easy to see that

the proper test for a = 0.05 1is to require that she correctly
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identify all eight. (We assume that the woman always identifies
four cups of each kind. There are (2) = 70 possible identifi-
cations that she can make. Under the null hypothesis, these are
equally likely. The probability of getting all cups correct is
therefore %%. The probability of making one mistake (inter-
changing one cup of each kind) is %%. Since %%—> .05 and

%% < 0.5, we must require that all cups be identified correctiy
in order to have o = 0.05. Mcre formally, if R 1is the number

of cups identified correctly, we can view the test as a one-

sided test and take

as our metric. The DLS for R =8 is then 1/70 0.01, while

the DLS for R =6 1is 17/70 = 0.24.

Several difficulties now present themselves, The first is that
the woman's Jjudgments may be affected by the order in which the ex-
amples of the two preparations are given to her., (It could con-
celvably be the case, for example, that the woman's taste is always
affected by the first cup so that she thinks that the next three cups
are identical with the first cup.) We can take care of this difficulty

by using a random digit table to randomize the order in which the

cups are given to her, This randomization becomes an integral part

of the entire test procedure, If we repeat the test, we use a new
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randomization, This means that if we repeat the entire test many

times, each order will occur equally often. If the null hypothesis

is true, then, no matter how the woman is influenced by the order of
the cups, she will, on the average, get all eight answers correct
about %%- of the time. Making this randomization part of our ex-
periment serves to protect the calculated DLS values from

any accidental ways in which the order of the samples might affect
the woman's statements.

A second difficulty might arise if we did not have eight identical
cups to pour the tea and milk into. With limited resources, for
example, we could conceivably find ourselves forced to use a mixture
of paper cups, china cups, and metal cups. Which cups should we use
for which kind of tea? It might be that the woman's Judgment is
affected, either physically or psychologically, by the material of
the cup she is drinking from. She might, for example, always tend
to believe that tea in a metal cup had had the milk poured first.

Can we take care of this difficulty, or must we wait until we can

get eight ldentical cups? Randomization again resolves our diffi-
culty. We use random: digits to assign the two methods of pouring to
the eight cups (four cups for each method), and we make this randomi -

zation an integral part of our entire test procedure, Now, if we

repeat the test, we repeat the randomization anew., As before, this

ensures that in many repetitions of the test, if the null hypothesis

is true, the woman will get all eight identifications correct about

%6 of the time, Again, we have protected the calculated DLS values.
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Is there then any advantage in using identical vessels? Yes,
there is a clear adwantage, but this advantage does not have to do

with the critical level of the test, It has to do, rather, with

the power of the test. The test with identical cups may well be

more powerful because it is less confusing to the woman, That 1s to
say, 1t may make it easier for the woman to demonstrate her ability

if she actually has it (null hypothesis false)., The DLS values

on the other hand, which we have protected by randomization, have only

to do with the case where the woman in fact has no ability

(null hypothesis true).

Fallacies in hypothesis testing. Conceptual and

mathematical errors can occur in hypothesis testing. Such errors
sometimes arise when an investigator has strong subjective beliefs
about the truth or falsity of the null hypothesis aﬂd aliows these
beliefs to affect the experimental and mathematical procedures followed.
Some errors are obvious as errors, These inciude: (2) outright
discarding of data that 1s contrary to the investigator's beliefs;
(b) use of observed data to help formulate a null hypothesis which
is then tested by the use of the same data; (c) selective reporting
of significant results from a larger body of results that includes
many non-significant results. Questions about whether or not such
obvious errors as these have been made can occasionally cause
controversies over the interpretation of statistical data

in particular cases,
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There are other, more subtle errors that can be equally serious
and that often go unrecognized. A typical form of such an error is as
follows. A hypothesis is tested by making successively larger
observations where all the data from one observation are included
in the next larger observation. Thus no data are discarded. The
investigator calculateé the DLS for each successive observation.

If and when the investigatorrfinds a DLS below the chosen critical
value o, the investigator concludes that the null hypothesis is
false and rejects it.

This error can a}ise in a natural way, for example, when an

investigator uses contingency tables to test for the possible effect

of some drug on human subjects. In order to minimize the number of
subjects used, the investigator starts with a small sample and then
includes 1t in successively larger samples while seeking a contin-

gency table with DLS < a,

Such a procedure is,.unfortunately, invalid. 1If, for example,
an investigator makes five successively larger contingency tables,
and tests each for significance at o = 0.05, it is possiblé to
show, (by methods more advanced than those covered in this book)
that if the null hypothesis is really true, then the probability

of getting at least one significant result out of the five can be as

much as 0.14. More generally, it is possible to show that for any
critical level a, no matter how small, it is virtually certain that
if we carry out far enough a single open-ended procedure of going to

larger and larger samples, we will eventually find a significant
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contingency table. This surprising result follows from
theoretical consideration of the fluctuations that can occur as
data are progressively accumulated from a probabilistic experi-
ment.

There is one sétisfactory way of avoiding this error. The
investigator must (1) fix ahead of time the number of successive
samples that will be used, and (1i) make a compensating adjustment
in the size of the a used in the individual samples, For example, if
the number of samples is five, the critical level for each sample must
be 0.015 in order to ensure that the entire procedure of testing five
samples have a critical level of 0.05. (Calculation of this com-
pensating value again requires more ad#anced_theory than is covered
in this book.) |

Errors of this kind are not uncommon in biological and medical
studies. They have been alleged to occur in h&potheses testing

related to extra-sensory perception.

Theoretical note. At the end of Chapter 13, we saw that in

a type o or type B contingency table, DLSt is always
less than or equal to the conditional DLSc calculated by the
small sample method. Thus in a hypothesis test for which non-

association is the null hypothesis, with ¢ = 0.05, we can reject

when DLS_, < 0.05, for we know that if DLS (@) < 0.05, then
gggt(ﬂ;u) must also be < 0.05 for all models u of non-associ-
ation. In this case, we cannot speak of a unique probability for
a type I error. We can only say that for each model in the
composite model, the probability of a type I error, when that

model is the correct model, is < 0.05.
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The small sample method was developed in Chapter 13 for
type Y  tables, and it gives us a hypothesis test for type vy

tables. We have now seen that the inequality DLS, < DLS

allows us to extend the application of this test to type o and
type B8 tables. A test which remains valid when given wider
applicability (as in this case) is said to be robust.

Example. In a double binomial experiment of the kind des-
cribed in Chapter 11, a control group of 4 rats and an experi-
mental group of 4 rats are exposed to infection. All four of
the control group show signs of infection, but none of the
experimental group does. Is this result statistically signifi-

cant at criticzl level o = 0.05? The observed table is

4] o0
0 4 4. 4
The small sample method gives DLS = ——?57_“ = =5 = 0.03,
4

Hence the observation is significant. If the table were

3. 93
2(3)(0) 2
we would get DLSc = = 30 = 0.10, and this table would

not be significant at critical level q = 0.05. (On the other
hand, in a one-sided test this table would be significant,

since its DLS would be exactly O.QS.)
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SOME EXERCISES ON CHAPTER 14

Fred has a die he believes may be loaded in favor

of the side marked "six". He tosses it 4 times and gets
3 "sixes". Using the 5% level of significance, do these
1

results cause you to reject the null hypothesis p = 3 ?

Mr. Williams played 5 hands of bridge one evening
and got no aces 4 times. He complained of poor
shuffling. Assuming good shuffling, the probability p
of getting at least 1 ace, on any 1 deal, is 0.7

(approximately). Are 4 no-ace hands out of 5 hands

enough to reject the null hypothesis p 0.7 at the 5%
level of significance? (Use the binomial formula.)

- A manufacturer of light bulbs says that only 10% of
the frosted bulbs he manufactures have defective frost-
ing, and that these defective bulbs occur at random
during manufacture. A carton of 4 of his bulbs was
purchased and 2 of these had defective frosting. Would
you reject his claim at the 1% level of significance?

In a coffee-tasting experiment a subject tastes
each of 10 pairs of cups of coffee and decides for each
pair which cup contains the instant rather than the
percolated coffee. The experimenter.decides to call a
person a "taster" if he or she decides correctly in at

least 8 out of 10 pairs; otherwise the person is called

a "nontaster". Regarding this operation as a test of
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significance: (a) What is ;he null hypothesis?

(b) What are the alternative hypotheses? (c) What is
the level of signifiéance? (dy If a subject has
probability 0.8 of correctly calling a pair, what is
the chance the subject will be called a "taster"?

In a random sample of 900 cars, 200 are observed
to be station wagons. Test the hypothesis that 15% of
the underlying population aré station wagons. Use
critical level o = 0.01.

Let X be the number of traffic accidents in a
given tdwn in a week. X 1is observed for 20 different

weeks and the following table is obtained:

X 0)| 1 | 2 l 3

Number of weeks with X accidents: 5 | 9 I 5 | L

a. Fit a Poisson distribution to these observations.

b. Assuming that X has a Poisson distribution, use
chi-square approximation to find the DLS of the
observed data. (Note: Please pool observations
with X 2 2. Use only two significant figures in
calculations.)

c. Use the observed data to test, at critical level
a = 0.05, the hypothesis that X has a Poisson

distribution.
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