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CHAPTER 12. MODELS AND ESTIMATION

As we have seen, probability is the study of certain models

(for experimental situations) and of how to make predictions

based on those models. Statistics is the study of how to choose

useful models and of how to make predictions and decisions in an
experimental situation when we are not sure what model for the
situation is correct. Recall that a model for an experimental
situation is a probability space,:that is to say, a sample
space (set of possible outcomes) together with a probability
function (assignment.of probability values) on that sample

space. An observation is a result obtained in one,

or several, actual trials of the experiment.
The crucial concept connecting models and observations is the
descriptive level of significance (DLS). The DLS, as we have

seen, depends on a model, an observation, and a chosen metric.

(If u 1is a model, w is an observation, and s is a metric
(for the model u), then we shall sometimes use the notation
DLS, (wiu) for the value of the DLS of the observation
given the model u and the metric s.) Once the metric is
chosen, the DLS gives us a measure of how "reasonable" the
given observation is, if we assume that the given model is
correct. We shall use the DLS in two major systematic ways:
first, to decide, for a given fixed model, what observations
are reasonable under that model, and second, to decide, for a

given fixed observation, what models make that observation a

reasonable one. We consider these two ways further in Chapters

14 and 15.
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In the present chapter, we present some further concepts
having to do with observations, models, and the DLS. Many of
the statistical techniques that we shall later study depend
upon these concepts. The presentation in this chapter will
appear somewhat abstract, however, and, in order to gain full
understanding, the reader may find it helpful to
return again to this chapter after studying some of the speci-
fic techniques described later.

Universe of models. In a statistical problem, we consi=-

der various possible models. Hence, we usually ask

the following question at the outset: what is the range of
possible models to be considered? Sometimes this range is
very broad. At other times it may be clear from the
experimental situation that the correct model must come

from a limited class of models (such as binomial distributions
or Poisson distributions). When, at the beginning of a prob-
lem, we decide on the appropriate set of possible models to

be considered, we call this set the universe of models for

the problem.

Example A. A polyhedral die is a flat-sided solid

that can come to rest, when thrown, on any one of its sides.
(Such a die could have the shape of a pyramid or prism, for
instance.) Assume that an irreqular 1l sided polyhedral die
has its sides marked 0, 1, ..., 10. This die is thrown once
and we observe the number upon which the die comes to rest.
What is an appropriate universe of models for this experiment?
Unless we have further physical knowledge, including knowledge

of the distribution of mass in the interior of the die,
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we must take the set of all probability spaces with
11l points as our universe of models.

Example B . A thumbtack is tossed 10 times, and we ob-

serve the number of times that the tack comes to rest on its
side. What is an appropriate universe of models? As in

the previous example, each model must be a probability space
with 11 points. However, we also know from the nature of the
experiment (provided the tack is tossed from a sufficient
height and in a sufficiently irregular way) that the experi-
ment is binomial and that the correct model must be a

binomial distribution. Hence we can say that the universe of
models is the set of all binomial distributions with 10 trials.
To choose a particular model in the universe, we need only fix
the value of p, the probability of success in a single trial.

Example C . We have two groups of 10 rats each. All 20

rats are of similar age, weight, and genetic type. The first
group (the "control" group) is fed a standard diet for a cer-
tain period. The second group (the "experimental" group) 1is
fed a special supplemented diet for the same period. At the
end of the period, all 20 rats are exposed to a certain
bacterium. We then observe the number of rats in each group
that develop signs of infection. What is an appropriate
universe of models for this experiment? Assume that we know,
from past experience, that observing the control

group can be viewed as a binomial experiment of 10 trials with
the number of rats showing infection as the number of

successes. We let P, be the probability of success for a
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single trial. Similarly, assume that we know, from past

experience, that observing the experimental group

can be viewed as a second binomial experiment of 10 trials
(independent of the first binomial experiment). Let Py be
the probability of success for a single trial in this second

binomial experiment. The entire experiment can then be

called a double binomial experiment of 10 trials and 10 trials

with single success probabilities Py and Py- The universe

of models will be the set of all pairs-of binomial distribu=~
tions of 10 trials each. We choose a particular model in the

universe by fixing values for Py and Py- Then the probabil-

ity of getting X, successes in the control group and Xq

successes in the experimental group is given by the formula

10-x b < 10-x
Ldey e, 2

(
-

. 10, ¥y
D(xl.xz) = (xl)pl (l-pl)

Example D. We observe the number of fire alarms in a

given town each week. What is the appropriate universe of

models? Here there are three alternatives. Pirst, ( DI) ¥t
we believe that the conditions of randomness and independence
for a Poisson experiment hold, we can take the set of

all Poisson distributions as our universe of models (for

what happens each week). Or, second, (D2 ) if we believe that
results are independent from week to week, but that within a
given week fires may not occur entirely independently of one
another (for example, there might be an arsonist who, when he
occasionally sets fires, always makes sure to set several

fires during the same day), then we may take the set of all
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probability spaces with the infinite sample space {0,1,2,...}
as our universe of models (for what happens each week). Or,
finally, ( D3) we may believe that results from week to week

are not independent (for example, the likelihood of fires might
vary with the season of the year or with a level of public vigi-
lance that is, in turn, influenced by the recent frequency of
fires.) 1In this case, we may decide to look at models that are
stochastic processes, with sample points that represent the
experience of an entire year. Our universe of models in this

case would be an appropriate class of stochastic processes.

Parametric and non-parametric universes. In Example

B above, we can select a model from the universe by giving a
value of p. In Example C , we can select a model by giving
values of pl and p,. In Example D, , we can select a model
by giving a value for m, the parameter occurring in the
Poisson -formula. In each of these cases we say that the

universe is parametric because we can select a model from

the universe by giving a value for a single parameter (p in

B ., m in Dl ) or by simultaneously giving values for several
parameters (p1 and Py in C ). In Dy and D3, we say

that the universe is non-parametric because there is no natural

parameter (or simple set of parameters) that can be used in
this way. In A, we could use the 11 values of the probability
function itself as parameters, and say that the universe is

parametric, but this is somewhat clumsy, and we might prefer to

speak of the universe as non-parametric.
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It is often possible, in the case of parametric universes,

to give a simple diagram for the entire universe of models by
giving a geometric picture for the corresponding possible
parameter values. For example, in B , we can picture the

universe of models itself as the interval [0,1] of possible

values for p.

Each model in the universe corresponds to a single point in

this interval. In C , we can picture the universe of models

as the square region of points whose coordinates are possible

values for Py and Py-

Each model in the universe corresponds to a single point

in this square. In D, we can picture the universe of
models by giving the half-line (positive axis) of possible

values for the parameter m.




368

Each model in the universe corresponds to a single point on
this positive axis.
A variety of special techniques have been developed

for statistical problems where the universe is parametric.

These are called parametric methods. Much basic work in

statistics (work now viewed as classical ) has been done

in the area of parametric methods. Most, but not all, of

our later work in this text is in ﬁhis area. When we work
with parametric methods, geometric universe-diagrams
like thosé described above are often useful.

A number of special techniques have also been developed
for problems where the universe is non-parametric. These are

called non-parametric (or sometimes distribution-free)

methods. 1In Chapter 16, we shall look at several non-parametric

methods.

Universes and metrics. If we have an experiment and model,

and wish to calculate the DLS of an observation, we need to
choose a metric. How we choose a metric can be affected by the
choice that we make of a universe of possible models for the
experiment. We see this in the following example.

A multiple choice test has 100 questions. Each question has
five possible answers. A student gets the correct answer for 28
of the questions. If we assume that the student has chosen each
answer by making a random choice among the five possible answers,

what is the DLS of the observed result (of 28 correct answers)?
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We can approach this problem in two different ways.

(a) In the first way, we take the universe of possible
models to be the set of all binomial distributions with 0 <p =<1
and n = 100. We take X, the number of successes, to be
the number of correct answers. We seek the DLS of the cbservation
¥ = 28 under the particular model p = 0.2. Using the usual
metric for a binomial experiment and model, we get
|x =np| = |28-20| = 8. Then DLS = b(lx—zof >8) =P(X > 28 or
X<12) ¥ 1 - 2A(7.5) = 0.06 by normal approximation.

(b) In the second way, we take the universe to be the set

of all binomial distributions with 0.2 < p <1 and n = 100.

X 1is again the number of correct answers, and we again seek

the DLS of the observation X = 28 under the

chosen model p = 0.2. 1In this case we have, by assumption,

ruled out as impossible any binomial model with p < 0.2. It

follows that any observation < 20 must be viewed as strongly

agreeing with (or confirming) the model p = 0.2, because it

agrees with that model more strongly than with any other possible

model. We therefore adopt the metric

|x-20| for X > 20,

S(X) = %(|x—2o|+(x-20)) =
0 for x < 20.

If we now calculate the DLS, we get DLS = P(s(X) > s(28)) =

P(s(X) > 8) = P(X>28) ¥ 3 - a(7.5) = 0.03.
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We thus see that the DLS value with the second and more
restricted universe (b) is only half as large as the DLS obtained
in (a).

What would lead us to choose universe (a) as opposed to uni-
verse (b) (or vice-versa)? We would choose (a) if we wanted to
allow for the possibility that a student making a deliberate
effort (and not doing the test in a random way) might, as a re-
sult, do worse rather than better. This could occur, for example,
if the questions on the test were composed so that they invited
certain wrong answers from students with limited knowledge. We
would also choose (a) if we thought that there were students who
might purposely seek to get a low score. On the other hand, we
would choose (b) if we believed that every student who worked in
a non-random way would, on the average, do at least as well as a
student who made purely random choices.

The above example is somewhat artificial. In a real situa-
tion, we might believe that universe (b) was likely to apply,
but that there was some slight possibility of one of the addi-

tional models (with p < 0.2) from (a). We might then seek to

find a metric with effects (in terms of DLS values) part way
between the effects of (a) and the effects of (b). We will dis-
cuss these matters further in Chapters 14 and 20. Our example
above illustrates how our choice of universe can affect our
choice of metric and hence can affect the DLS values we get.

Two further examples of this kind were given in Exercises 10-15

and 10~16 above.
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Estimation. Sometimes in a statistical problem, after

we have settled on a universe of models, we make an observation
and seek to find the single model in that universe which
"best explains" the observation that we got. The problem of

finding such a "best" model is called the estimation problem

in statistics, and the model that we find is called our
estimate of the correct model. Iﬁ the case of a parametric
universe, we need only find values of the parameter (or para-
meters) in order to find a model. When we do this in a

particular case, we say that we have estimated the parameter

(or parameters).

Example. A thumbtack is tossed 10 times and we observe

that it lands on its side 7 times. Here (Example B above) it

is natural to take our universe to be the one-parameter
family of all binomial distributions of 10 trials. Further-
more, there is an obvious solution to the estimation problem:

we take p = 7/10. The binomial distribution with n = 10

and p = 0.7 is our estimate.



372

In more complex examples, there may be no such single
obvious choice of an estimate. How can we go about finding
an estimate in such examples? There are several
distinct and systematic ways of approaching the estimation

problem. One method (the DLS method) can be applied if we

have a metric for every model in the universe. We then take,
as our estimate, the model which gives the highest DLS value
to the given observation. A second method (the maximum-

likelihood method) is to find that model which gives the

highest probability to the given observation. This model is

called the maximum=-likelihood estimate (or maximum-likelihood

model) for the given observation. These two methods often

give the same estimate. There may, of course, be statistical
problems where we obtain under the maximum-likelihood method
(or the DLS method), instead of a single best model, a set of
models all of which maximize the likelihood (or the DLS). We
shall usually assume that we are working with problems where
a single best model exists for each observation, except that

in the case of universes of two or more parameters, we shall

sometimes use an observation to determine a value for only one

of those parameters. In that case, our estimate is the set of

models with that parameter value.
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In parametric universes, maximum-likelihood models can
often bé found by the maximum-minimum technigues of calculus.
Example. In a binomial experiment with 10 trials, 7
Successes are observed. What is the maximum-likelihood model
for this observation? The probability of an observation x

is (i?)px(l - p)lO-x' We abbreviate this probability as

L(x;p) the likelihood of x under model p. We seek that

value of p which makes L(7,p) a maximum. Hence we find

10 7

Sump = &) rpfa-p3-p

2
ap 3(1 - p)°]

and set this equal to 0. Solving for p, we get

0.

7(1 - p) - 3p
0.7.

P

Example. We show that our previous method of fitting a
Poisson distribution to an observation amounts to choosing

the maximum-likelihood model in the universe of all Poisson

distributions. Let Xpo Xgr o ceey X be specific independent

observations (for a Poisson experiment) in the order obtained.

probability of getting these particular values in this order,

given a Poisson model with parameter m, must be

L{xl,...,xn;m) = p(xl;m)p(xz;m) o p(xn;m)
-nm xl * * xn
- e m
f !
Xl. xn

The
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We find the value of m which maximizes I by differentiating

L and setting the derivative = 0. We get:

d - y »
a‘a _,(xl,...,xn,m) =
Zaotoa ot X.o+...+x -1
—ne MMy 1 T4+ nm(xl+...+x ym 1 L
n
=0
] !
xq ! x !
This gives -nm + (xl+...+xn) = 0
X + ... + x
or m = ; s 4 » as stated.

Maximum-likelihood methods have a special role, as we
shall later see, in statistical theory.

Note. A method of estimation is sometimes called an
estimator.. More abstractly, an estimator can be viewed as a
mapping from the set of possible observations to a chosen universe
of models, where the estimate given by each observation is ob-

tained by solving a2 maximization problem of some given kind.

Composite models. Let us return to Example C above.

An experimenter, who conducts this double binomial experi-
ment, will be interested in whether or not, and how, the
difference in diets affects the susceptibility of the rats
to infection. As experimenters, we have as our first gues-
tion: does the differencein diets appear to have any effect
at all? We can restate this question as: is Py = p2? To

Put it in geometric terms, does the point representing the
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correct model fall on the diagonal marked in the figure?

il
o}
o

diagonal p
1
w

e R

0 1

As experimenters, we may wish to think of models
with points on this diagonal as models of a special
kind. We might even sometimes use the word
"model" to indicate the set of all models of this kind. For
example, as we make observations, we might ask how well our observa-
tions agree with the "model" that the difference in diet has no
affect. In this case, we would not care about the particular
numerical ﬁalues of Py and Py but only about whether
Py = Pp-

When there is a subset (of the universe of models) in
which we have such aspecial interest (like the diagonal set
P, = Py above) , we shall refer to this subset as a

composite model. We shall see that in certain circumstances

it is possible to think of, and work with, a composite model
almost as if it were a single model. We shall sometimes use
a single symbol to stand for a composite model. In further
discussion of Example C , we shall use M, to refer to

the composite model made up of all models for C with

pl = pz'
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As a second example of a composite model, consider
Example D above (fire alarms). If we believe that the results
are independent from week to week,but we are not sure ahead of
time that the experiment is Poisson, we will take all possible

probability spaces with sample space {0,1,2,...} as our universe of

models (D, ). We may, of course, then wish to ask whether our

2
observations lead us to believe that the experiment is Poisson.

(We might even say "lead us to believe that the experiment fits

the model of being Poisson". 1In Chapter 1l.we saw how to use chi-
sSquare methods to answer this question). In such a case we

are treating the set of all Poisson distributions as a compo-
site model within our larger universe of all possible
probability spaces on {0, 1, 2, ...}.

In a parametric universe of two or more parameters, compo-
site models also occur when we specify the values of some but
not all of the parameters. In Example C the set of all
models with Py, = 1/2 1is such a composite model.

If we have a given composite model M and an observation

w, we can ask the maximum-likelihood question: what model

in the composite model M gives the highest probability to

the observation w? Such a model is called the maximum-
likelihood model in M for the given observation. (Thus we
are temporarily taking the composite model to be the entire
universe for the purposes of finding a maximum-likelihood esti-
mate.) In Example C , what is the maximum-likelihood model in
M for the observation xl = 0, X, = 3?2 Taking Mo itself

o]

as a parametric universe, with p = P; = P, as parameter, we

have

L(xlrxz:p) = D(xl,xz) = (
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Setting gﬁ L(0,3;p) = 0, we obtain p = 0.15. More generally,
the maximum-likelihood estimate for observation (xl,xz) with a

control group of ny rats and an experimental group of Ny rats
xl+x2

will be p = See exercise 12-2.

n;+n,
Remark. In order to get a maximum-likelihood model in a
parametric universe, we need only find certain parameter

values. These values are usually called the maximum-likeli-

hood estimates of the parameters (from the given observation).

Thus, xl =0, x2 = 3 gives 0.15 as the maximum-likelihood

estimate for p in the composite model Mb.

DLS for composite models. It is helpful, as we shall see,

to be able to use the idea of DLS with composite models. We
must proceed carefully, however. Given a universe of models
(say the universe of double binomial models in Example 2 4
given a composite model M (say the composite model Mo in

C) .+ given an observation (say xl = 0 and X2 = 3), and given
a metric, the DLS of the given observation may be large for

some of the models in M and small for other models in M.

2 2

(For example, under the natural metric (Xl—10pl) + (Yz-lOpz) 4

2
model P =P, = 0.1 in Mo but a very small DLS for the model

the observation Xl = 0, X, = 3 would have a large DLS for the

Py =P, = 0.9 in MO.) In such a case, there does not seem to
be a single value of the DLS that we can associate with the
composite model M.

The best solution to this difficulty is to find, if we
can, a reasonable new metric under which, for any given obser-
vation, each nodel in M gives nearly the same DLS value to

that observation (that is to say, a metric such that
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all models in M will give nearly the same DLS values to the

same observations.) Surprisingly, such remarkable

metrics can often be found and are highly useful in applica-

tions. 1If a metric has this special property for a composite

model, we say that is well-defined for that composite model.
(In Chapter 11, in the example of the chocolate bars, we found
such a well-defined metric (we called it s) for the composite

model of all Poisson distributions.) Thus a well-defined metric

serves to measure confirmation of a composite

model rather than, as in the cases of the metrics given in
Chapter 10,to measure confirmation of a single given model.

The definition of well-defined metric

Well-defined metrics.

can be given somewhat more formally as follows. Let U be a

given universe of models and M be a given composite model.

We use the symbol . to refer to individual models in U.

Let w be the particular observation obtained. Let s(Q,u)

give a family of metrics on M. That is to say: for each p in M,

s(Q,u) defines a metric for the model u. Then, as in Chapter 10,
the DLS of an observation w for each u in M is defined as DLSs(u:u)

We say that s is well-defined on M if, for

Pu(s(n,u) > s{w)).

each observation w, it is the case that for every choice of My

and My in M,

DLSS(w:ul) 3 DLSs(w;uz)
u)

(Of course, for a given y in M, if wy # wy, We may have DLSS(ml,

DLS® (wy,u) . )

#
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Usually, in the cases we consider, the formula/s(Q,u) will
not explicitly mention u, and hence will have metric values
which depend only on 2. In this case, we shall often speak of
s(Q2,u) as a metric rather than as a family of metrics and write
it as s(Q) rather than as s(Q,u).

Example. Consider the composite model M from Example
C above. Let Kl= 0 and X,= 3 be our given observation.
(No rats in the control group show signs of infection, but 3
rats in the experimental group do so.) Let us try the function
s(Q,u) = £1(X.X,) = [Xl—le and see if it gives us a metric
that is well-defined on MO. In the following table we give the
DLS, under f., of the observation (0,3) for each of the nine

i3
models p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

p DLS, for X, =0, X, =3
0.06
0.2 0.16
0.3 0.21
023
0.5 0.24
023
0.21
0.16
0.9 0.06

We see that the DLS varijes Significantly from model to model

within MO and hence that the metric fl is not well-defined

on MO. (Note. 1In each case, the DLS is calculated by using

the double binomial formula D(xl,x ) of Example C and finding

2
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% D{is;9) o)
0<i,j<10
11-3153
We see from the table that fl also fails to be a reasonable
metric (for MO) for the following intuitive reason. The
observation Xl= 0, X2 = 3 suggests that the model p = 0.1

is more appropriate than, say, the model p = 0.5, since
the observation seems intuitively closer to the TER for
0.1 than for 0.5; yet the metric [Xl-le gives a smaller
DLS for p = 0.1 +than for p = 0.5.

Can we find a metric that is well-defined for the model

M_? We now look at the metric

Q
(x,-%,) 2
(xl+x2) = 35 (x1+x2)

The following table gives the DLS for X, =0 and Xo =3

calculated'from this metric.

P DLS
0.1 0.05
0.2 0.09
F 0.08
0.4 0.06
0.5 0.05
0.06
0.08
0.09
0.05

We see that this metric is more nearly well-defined

than the previous one (and, indeed, is nearly well-defined

to two decimal places.) (Mote. To form this table, calculate
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X D(is4) )
0<i,j<lo
f2(1,3)3f2(0,3)
How was the formula for the metric f2 obtained? It is,
in fact, the metric that we get if we (i) view the observation
as an observation of four categories with @ = (Xl,lO—xl,Xz,lo—Xz),

(ii) use the observation to indicate a model in MO by taking
X1+X
the maximum likelihood estimate p = = and (iii) use

the indicated model to form a CS metric for a four-category
observation (with expected result given by the indicated model) .

Thus, from (iii), we get

(x,-10p)%  ((10-x)-10(1-p))%  (x,-10p)%  ((10-x,)-10(1-p))*

o 10(1-p) =1  ° 10(1-p)

and this simplifies directly to the formula given above for fz.

In addition to being well-defined, a metric must, of course,
embody a notion of distance that is appropriate for our statis-
tical purposes. In the metric f2 above, the numerator (X1'Xz’2
helps to provide this. Appropriateness of metrics is discussed,

in a general setting, in Chapter 20.

Ease of calculation. 1In searching for a well-defined

metric for a given composite model, it is important to get
a metric for which the approximate common DLS value can be
easily calculated. The metric f2 above is highly satisfac-

tory in this regard. In Chapter 13, we shall see that probabilit:

- -
-}
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for £, follow the chi-square curve with 1 degree

of freedom. Hence the approximate common DLS value can be got

by setting

DLS(Xl,XZ) = Cl(fz(Xl,Xz})

where Cl gives area under the chi-square curve with 1
degree of freedom. (This approximation improves as n
increases.) For our example with n = 10, xl = p, and

X, = 3, we have f2(0,3) = 3.53 and we get C1(3.53)

= 0.06 as the approximate common value for the DLS. (This
agrees well with our table of exact DLS values.) Thus we
can say that under our well-defined metric f2, we expect

an observation as "far" as the observation X, =0, X, = 3

only about 6 percent of the time. Thus the observation Xl =0,
X, = 3 throws serious doubt on the composite model MO, and
suggests that the given difference in diet does make a difference
in susceptibility to infection.

How does the reduction to 1 degree of freedom arise in
the above use of chi-square approximation? In briefest sum-
mary, it occurs as follows. We begin with 4 degrees of
freedom corresponding to our four categories. Reduction by
one degree occurs because we first view our observation as if
it were an observation from a multinomial experiment with four

categories (and we used three degrees of freedom for such an
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experiment). Reduction by one further degree occurs because
we use the observation to indicate a model (we use a single

X, +X

algebraic fact: p = —%ﬂfn). Reduction by a third degree

occurs because our experiment is not in fact multinomial but
is instead a double binomial experiment (it is like a
multinomial experiment, but with the added constraint that we

must always have, in any observation, the sum of the first

two categories 10, and hence fhe sum of the second two
categories = 10). (In Chapter 13,‘we shall explain and
justify, in a more general and systematic way, uses of chi-
square approximation of this kind. Such uses were also briefly

considered in the Appendix to Chapter 11l.)

Historical note. Statistics emerged as a branch of mathema-

tics in the first third of the twentieth century. Virtually all
of the work done in this classical period was on parametric meth-
ods, and many of the deepest results had to do with finding, in
convenient and useful forms, well-defined metrics for certain
composite models (in various universes of models). We shall see
examples of this in Chapters 17 and 18.

Note on terminology. The usesof the terms "model", "universe",

and "composite model" in this text differ from other more cus-
tomary choices of terminology. What we call models are sometimes
(but not always) called "distributions" and are also sometimes
called "states of nature." What we call universes are sometimes
called "models". (In Example B above, one customary usage would

be to say that we select a binomial "model" (with unspecified
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What we call composite models are sometimes called

pParameter).)
"models", sometimes called "hypotheses" or

and sometimes called "parameter values". (In Example C , if we

define the parameter g = Py

corresponds to the parameter value g = 0.) The »

terminology used in this book has advantages for the purpose

of a uniform and common approach to parametric, non-

parametric, and decision-theoretic methods in statistics.

"composite hypotheses",

= Py then the composite model MO
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EXERCISES FOR CHAPTER 12

12-1. You are given a multinomial experiment with ¢ = 3 and
n = 20. You observe (2,6,12). Let M be the composite
model consisting of all models (pl,pz,p3) with P, = p3.
Find the maximum likelihood estimate in M given by your

observation.

12-2. 1In a double binomial'experiment with ny and n, trials,

you observe X, = a and X2 = b. Let MO be the composite

model with Py = Pp- Find the maximum likelihood estimate

in MO given by the observation.

12-3. 1In Exercise 11-16, average observed interval length
(between successive sunny days) was used to indicate a
Bernoulli-trial model. Show that this procedure gives

us the maximum-likelihood estimate in the composite model

of all Bernoulli-trial models.

Problems 4 through 8 concern certain parametric inverses
of continuous probability distributions for a random variable X.
In each case, given a parametric inverse M and given a finite
set of independent observed values Xyr X0 ooy X, yOU are
asked to make a maximum-likelihood estimate in M. You may do
so as follows. Let f(x;a) be the probability density function in

M corresponding to parameter value a. Use as likelihood function:
Xpia) = £(xy7a) £{x,50) ... £ix ia)

For a given observation Xqr eeen Xy find the value of o which

maximizes L.

104



12-4.

12=5.

12-6.

ld=7.

12-8.
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Consider the universe of all exponential density functions

given by
f(x;m) = me ™ (where m » 0).

Find the maximum-likelihood estimate (for m) given by

(Xl' B W xn).

Consider the universe of all translated Cauchy distributions

given by

1
(1l + (x-m)?)

f(x;m) =

Show that the maximum-likelihood estimate (for m) given

i
by the observation (xl, x2) is > 8

Consider the universe of all normal distributions with

fixed standard deviation bo. Thus f(x;a) = N(x; a, bo).
Find the maximum-likelihood estimate (for a) given by

X )

(xll‘ e r n

Consider the universe of all normal distributions with

fixed mean a,- Then

f(x:b) = N(x; agr b)

Find the maximum-likelihood estimate (for b) given by

(xll'--f Xn).

Consider the two-parameter universe of all normal

distributions. Then

f(x; a,b) = N(x; a,b)
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Find the maximum-likelihood estimate (for the pair of

values (a,b)) given by (xl, 5 xn).
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