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CHAPTER 11. CHI-SQUARE APPROXIMATION.

The chi-square curves. In Chapter 6, we saw how area under

the standard normal curve can be used to get approximate probabili-
ties for a binomial distribution. We were then able, in Chapter 14,
to use the standard normal curve to get approximate values for the
descriptive level of significance with a binomial model. We now
see how certain other curves can be used, in a similar way, to get
approximate values for the descriptive level of significance with

a multinomial model and the' CS metric.

These curves are called the chi-square curves. For each positive

integer d, there is a corresponding standard curve called the chi-

square curve with d degrees of freedom. This curve has the equa-

B-J8

thd(u) = Adu e

tion

where the constant A. is chosen so that the total area under the

d
d
R O
2 (5‘5).
curve wd is 1. (In fact, for d odd, Ad = : and
- VT o(d-1)!
for d4d even, Ad ='7T_£___') The curves are shown in the
28 14 4
2 (2 1)

following figures for 4 = 1,2,3,5,10, and 20.
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(Footnote. Several of these curves are familiar in physics.

The curve @2 is a curve for exponential decay (from an initial
value of 0.5, where u measures time, and the half-life is

u = 2 log 2). The curve y, is Maxwell's distribution for the

translational kinetic energy of particles in a gas at a given
temperature in three-dimensional space. Here u measures kinetic
energy in units of %kT (for T = absolute temperature and k =
Boltzmann's constant). More generally, wd gives the Maxwellian

distribution for kinetic energy of a system with d physical de-

: ; : ; i
grees of freedom, where u measures kinetic energy in units of EkTD

Tablé;. Areas under the chi-square curves are given in tables.
Usually, these tables give areas determined by various values of u
for each 4 < 30. For 4 > 30, the chi-square curve by can be
approximated by the standard normal curve in a way that we describe
later in this chapter. The guantity usually given in tables is
what we shall call Cd(uo). This is the area lying to the right

of a vertical line at u, r as shown in Figure 11.3

}



Figure 11.3

Tables for this area are sometimes given in inverse form (for rea-

sons that we shall see in Chapter 14), where, instead of giving
the . value of Cd for certain chosen values of u, the table

gives values of u for certain chosen values of the area Cq-
For example, a table for wz might be given in the form:

-y, -

C2)]0.95]0.9 {0.8 |0.7 |0.6 |0.5 [0.4 |0.3 [0.2 [0.1 ]|0.05
u [0.10{0.21]0.850,71[1,02|1.39[1.83]2.81(3.22|8.51[5.99
I7 we wish to know 02(3), we can get an approximate value by
locating the value 3 between 2.41 and 3.22 and then finding

the value which .falls at a corresponding place between 0.3 and

0.2. By this process of linear interpolation in the above table,

. _ 3 - 2.41  _ -
we find C,(3) % 0.3 0.1 353547 = 0-23. Tables of chi

square areas for d < 30 are given, in inverse form, at the end

of this chapter.

Expectation and variance. Let X be a random variable whose

distribution is given by f(x) = Wa(x), the chi-square curve with
d degrees of freedom. It is possible to show (see the Aprendix

to this chapter) that E, = d and V, = 2d. Hence the standardized

X X
form of such a chi-square variable is given by %E%
2d
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Chi-square approximation. We first state the basic fact

without proof. Let a multinomial experiment with ¢ categories

be given, and let a fixed model for this experiment be assumed.

2

If an observation is obtained, and if the value X, ©f the Cs

metric is got for this observation, then the value of

the descriptive level of significance P(x2 > Xg) is approximately

2

" given by the area Cd(xo), where d = c¢-1.

Example. Take the Boston-Montreal example in Chapter 10. Our
model was a multinomial experiment of 3 categories, with n = 10
and fixed probabilities Py = 0x5; P, = 0e3s Py = 0.2. For the

observed result (5,1,4), we saw in Chapter 10 that Xg = 3.33.

To get an approximate value using chi-square curves, we use the

curve with 3 - 1 = 2 degrees of freedom, and we get

P(x° > 3.33) = C5(3.33) = 0,19 .

As we saw in Chapter 10, the exact value for this descriptive level
of significance is 0.21.
Accuracy. The chi-square curves give an accuracy to two deci-

mal places if the expected number in each category (called

EjsEpre.. Eg in Chapter 10, where E; = np;s E; = npyre..) s

> 10. If E,,Ey,... are each > 5, we get close to two-decimal
accuracy when ¢ > 5, and even if some values of E,,E,,... are
smaller than 5, and ¢ < 5, the curves give close to two-decimal
accuracy for values of u = xg which come at the right hand end
of the curve (that is, which give small descriptive levels.)

In the example of Chapter 10, where El = 5, E2 3, E3 = 2, the

-
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observation (3,2,5) gives Xg = 5.63; we thus have, for
P(XZ > Xi)' the exact value 0.06, while the chi-square curve
with 2 degrees of freedom also gives the value 0.06. With the
‘observation (4,4,2), however, where Xi = 0.53, the exact value

for P(X2 > Xi) is 0.92, while the chi-square curve gives the

value 0.77. _
Example. A die is rolled 100 times, and the number of occur-

rences of each of the six different individual outcomes is recorded.
We get the follow1ng observatlon- l2 ones, 15 twos, 28 threes,

15 fours, 18 fives, 12 sixes. Assume the equiprobable model,

What 1s the descriptive level of significance of this observation?

We have a multinomial experiment with § categories and

= 100. For our model, we have Pp =Py = ...=pPg=%. The
theoretically expected result is El'= E2 = ,., = E5 = lOO-%-z 15,7,
We therefore get, as the value of our CS metric,
2 @2 -16.7)% (15-15.7)% (28 - 15.7)2 @ 18,7 )%, (18 - 15.7)°
o 1B, 1 L8 LB, 7 ST 19,7
+ @2 - 16, 7’)

= = 1.32 + 0.17 + 7.65 + 0,17 + 0.10 + 1.22 = 10,75

(This is a case where fractional values appear in the theoretical-
ly expected result even though they cannot occur in an actual
observation.) Using a table for the chi-square curve with

6 = 1 = 5 degrees of freedom, we get the descriptive level of

significance for this observation: P(X2 > 10.73) % C5(10.73) = 0.06.

Thus, if the assumed model is correct, we would expect an obser-
vation as extreme as this only about 6% of the time. Note that in
this example the expected values were > 10 (they were all = 16.7),

hence we can be sure of two~decimal-place accuracy in our result.
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Finite models. If we have a basic experiment and take a

model whose sample space is finite, and if we do n independent
trials of the basic experiment and observe the number of times

that each sample point occurs in these trials, then our over-all

procedure is a multinomial experiment. Wé-can calculate the DLS
(under the CS metric) for our observation and assumed model by
the above method. If the DLS is lérge, we may say that the
observation "agrees with" or "fits" the assumed model. If the
DLS is small, we may say that the observation "casts doubt” on
the assumed model. If the DLS is very small, it may lead us to
reject our assumed model as a useful picture of the experiment.

(We lock at this matter further in Chapter 14.)

Pooling. 1In using chi-square approximation to calculate the
DLS, we may find that for some sample pointi{@n the underlying samplé
space of a single trialL the expected number of occurrehces EX = np,
is small. Since a small value for E will reduce the accuracy of

chi-square approximation, we may wish to take those points for which

EX is small and group them, for the purposes of our over-all

multinomial model, with other points as a single category (or
perhaps as several éategdries} for which the expected number of
occurrences is not small. (Usually, if we wish to be certain
of two-decimal place accuracy, we take "small" to mean less

than 4 or 5.)

For example, if we have 50 trials and a model with six sample
points {(for each trial) as given in the first two columns of the
following table, then the values Ex are as given in the third

column. In order to get more accurate chi-square approximation,
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we group the first and second points'together as a single category
and the fifth and sixth points together as a single category. We
now have a new form of multinomial experiment and model with 4
categories and can proceed with chi-square approximation as before.
We speak of the new form of the experiment and model as pooled, be-
cause we have grouped together several of the categories in the

original experiment and model.

FaN A
2 pX EX OX E e
1 0.02 1 2
10 6
2 0.18 9 4 _
3 0.30 15 21 15 21
4 0.30 15 14 15 14
5 0.19 9.5 0
: 3.0 9
6 0.01 0.5 9
N

The column under E gives the expected number of occurrences for

each category in the pooled experiment. Let the column under O(
© . A

give the original observation. Then the column under 0 gives the

corresponding observation for the pooled multinomial experiment.

We obtain

22 1621002 | (21152 | (14-15)2 | (9-10)2
o 10 15 15 10
= 4.17;
_ 2 2,
and pLS = P(x* > x2) ¥ ¢ (4.17) = 0.25.
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Chi-square approximation thus gives us the DLS value for the

new pooled multinomial model. This value may be less useful than

the DLS value for the original multinomial model, since informa-
tion is lost when we pool. For example, in the Boston-Montreal
example with the observation (5,1,4), 1if we pooled the losses

and ties we would get

a A
X 2 Ex Ox E 0]
win 0.5 5 5 5 5
lose 0.3 . 3 1

5 5
tie 0.2 2 4

with xi = 0 and DLS = P(x2 > 0) = 1. This DLS for the

poocled experzhent tells us much less than the value 0.19 obtained
by chi-square épproximation for the unpooled experiment, even
though the approximated DLS did not have two-decimal-place
accuracy. (Recall that the exact value of the DLS in this
unpooled case was 0.21.) It is possible to show, when pooling

is used in this way (in circumstances in which chi-square
approximation can be applied), that the DLS (under the CS metric)
after pooling is always bigger than, or approximately as big as,
the DLS of the same observafion‘before pooling. This tells us

that if an observation has a small DLS after oooling, its DLS

for the original unpooled experiment must also be small. Thus

pooling is useful because it helps us to identify certain
observations (but not necessarily all observations) for which
the unpooled DLS is small. (If we actually make one of these

observations, it will therefore cast doubt on the assumed model.)
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It should be emphasized that the voocling of categories is
carried out solely on the basis of the expected numbers of
occurrences under the chosen model. The observed numbers of
occurrences should be disregarded in pooling. Otherwise, as
we shall see in Chapter 14, the DLS may fail to have the desired
meaning.

Infinite discrete models. If we have a basic experiment

and take a model whose sample space is infinite and whose

probability function assigns a positive probability wvalue to

each sample point (a Poisson distribution would be such a model) ,
then, as we saw in Chapter 2, we say that we have an infinite
discrete modei. If we do n independent trials of the basic
experiment and observe the number of times that each sample

‘'point occurs in those trials, then we can use a generalized CS

metric, in much the same way as we used the CS metric for a

multinomial experiment, by forming an infinite éumjof the
(0-E) 2
E

refer to this generalized metric as a CS metric.

terms for the individual sample points. We shall also

Example. We know that the number of almonds in a certain
brand of chocolate bar averages 5, and we assume, as a model,
that the number of almonds per bar follows a Poisson distribu-
tion with m = 5. We examine 40 bars and get the following

multiple observation:

O
I

X = number of almonds 0[1]2 3' 4[5'6!748'9
[3]3]2]o]

observed number with x almonds 01]5]11]15

47
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We can evaluate the CS metric for this model and this multiple

observation by constructing the following table, where the second
column is obtained from the Poisson table with m = 5, the third
column gives the theoretically expected result, the fourth column

gives the observation, and the last ,column gives the corresponding

term for the CS metric.

| (0,-E)?
X Py |Bx™@Px | O%% | — 8 —
x
0 0.007 D 3 0 0.3
1 0.034 1.4 1 8 T
2 0.084 3.4 5 0.8
3 0.140 5.6 i, 5+2
4 8.175 7 15 .2 25 §
5 0.175 7 3 2.3
6 0.146 5.8 3 1.4
7 0.104 4.2 2 1s2
8 0.065 2.6 0 2.6
9 0.036 1.4 0 1.4
10 0.018 0.7 0 0.7
I sum==‘! sum = : ) sum =
: :}0.014 :}o.s : :}'o.s

Thus the value of the metric for this observation is

Xi =0.3+0.1++0.8+5.2+...=25.7, (Note that the term in
the last column for each sample pbint x for which Ox =0 |1is
just the value of E, for that point.)

Given an experiment and model, and given a multiple observa-
tion, this metric determines a DLS value (according to the basic

definition of DLS). This DLS value can be approximated by poolina

sample points in order to form an approoriate finite space and then

applying chi-square approximation to the multinomial experiment and

model that result from this pooling. (We do not prove this here.)
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Example (continued). We pool the categories at the two ends
of the distribution, by combining them to form single categories
for which the expected value is > 5. This gives the following

table with six categories:

A A 2

x 2 0 [ %

i =4 Byl 6 0.2

31| 5.6 |11 | 5.2

4 7 15 9.1

‘ 517 3| 2.3
6| 5.8 3 1,4

271 9.5 ] 2| 5.9

The last column of this table gives the individual terms for Xg &

Summing the last column, we get Xg = 24,1, Using the chi-square

curve with 6 = 1 = 5 degrees of freedom, we get our descriptive

level of significance: P(xz'i 24.1) < 0.001. Thus our multiple

observation suggests very strongly that our original model is not
a good one.

The fact that the model above was a Poisson distribution
does ‘not have special importance. Any infinite discrete distri-
bution could have been our model, and we could have found the
DLS for a multiple observation under that model in the same way,
using pooling, the CS metric, and chi-square approximation. A
DLS found in this way is said, in statistics, to measure the

goodness-of-fit of the multiple observation to the chosen model.
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Continuous models. If we have a basic experiment and a

continuous probability space as model, and if we perform n

independent trials of the experiment, then we can calculate a DLS in

é similar way. We take the séﬁple space of the model (usually

an interval of real numbers) and divide it into a finite number
of subsets (usually a finite number of subintervals). We treat
each subset as a category and then view n repeated indepen-
dent trials of our basic experiment as a multinomial experiment

of n trials with those categories. (We are, in effect, pooling

ali-the points.in each subset of the continuous probability
épace to form a point in a new finite probability space.) We
then get the DLS, for the given multiple observation, in the
usual way. This DLS is said to measufe the goodness-of-fit of
the multiple ébservation to the chosen continuous probability
space.

_Example. An experiment yields as its outcome a real num-
bef. In 20 trials, we observe the following values to one
decimal place accuracy: =-1.0, 1.2, 1.9, 0.4, 1.0, =-2.0, =2.1,
1.2, =3.8, desdy =1.0, Q.4, 2,5, =2,8, =0:5; 1.5, 1.8; 3.7; 0.2,
1.7. Assume, as model, a continuous probability space with the
standard normal curve as its probability density function. To
find the goodness-of-fit of the observation to the chosen model
(in terms of a DLS value), we can nroceed as follows. As
before, in the case of pooling for a discrete probability space,
we choose the subsets of the given continuous probability space

so that the expected number of observations in each subset will
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be >4 or 5. We therefore take the four intervals
(=w,-0.68), (-0.68,0), (0,0.68), and (0.68,=). From the
table of normal curve areas, we know that each of these inter-
vals has, under the assumed model, probability of about 1/4
of occurring on a single trial. Hence we can view the entire
experiment of 20 trials as a multinomial experiment of four
categories with n = 20 and P; =P, =P3 =p, = 1/4. We

can now make the following table.

Subset E o i (2 i
E
- (=»,-0.68) 5 6 1/5

(-0.68,0) 5 1 16/5

(0,0.68) 5 3 4/5

(0.68,x) 5 10 25/5

]

Summing the last column, we get xg = 9.2. Using the chi-square
curve with 4 - 1 = 3 degrees of freedom, we get our DLS:

CP(Xx° > 9.2) ~ 0.03.
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The set of all models of a given kind. In the previous ex-

ample with the chocolate almond bars, we were given the specific
Poisson model with m = 5. We then observed 40 bars, and we

found the DLS of this observation on the basis of this given model.
What if we were not given the specific value m = 5, but were ié-
stead merely asked to find how well the observation confirms that

some Poisson model (from the set of all Poisson models) holds?

To get a DLS, we need a model U and a metric s. Let us begin

with the metric s. As we shall now see, the metric can be described

without reference to a particular chosen model. Our metric s

is simply the following. We take the observed data and fit a

Poisson distribution to it in the usual way by letting m (the
parameter in the Poisson distribution) be the average of the ob-
served values. We then calculate the familiar CS metric for the

observed data from this fitted model. We now define the value of

the metric s to be the value obtained for this CS metric.

Example. In the case of the chocolate bars, we observed
an average number of almonds per bar = 3.8. Hence the fitted
Poisson distribution has m = 3.8. Thus the value of the
CS metric for these data from this fitted model would be
obtained from the following table by summing the last column.
This is then the value that we take as the value for our new

metric s. (The Py column in this table is obtained from the

-m_x
Polisson formula eXIm with m = 3.8.)
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We thus obtain s = 0.9 + 1.7 + ... = 13.9.
, Now, if we choose a model 1y, we can, in the usual way,

define a DLS (under this model) for the metric s. (u can be any

model whatever for an experiment with the sample space {0,1,2,...

We would, of course, expect the DLS value we get to depend upon
which model we use. It is a surprising and profound theoretical

fact (which we do not prove here) that (i) under any two Poisson

models (and for a sufficiently large number n of independent

trials) the DLS values (under the metric s) for the same

observation are approximately the same. Thus if we use the

5 or the model m = 3.8

model m = 10 or the model m
with the above observed data, the above metric s always gives
us approximately the same DLS value (which turns out to be

about 0.02.)
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It is also a theoretical fact that (ii) an_approximate

value for this DLS can be found by following the usual techniques

for chi-square approximation (with pooling of sample points in the

fitted distribution as may be necessary), except that the number

of degrees of freedom must be smaller by 1 than before.

(Footnote. In (i), ";ufficiently large n" can be taken to

mean "when n is large enough so that the usual conditions for
accuracy of a chi-square approximation apply.")

Example (continued). As before, we take those points x for
which Ex is smaller than 4 or 5 and pool them with other,

points. We get:

A ) (0-E) 2
X E o] £
<1 4.3 1 2.5
= g 6.5 5 0.4
3 8.2 | 11 1.0
4 7.8 | 15 8.7
5 5.9 3 1.4
> 6 7.4 5 0.7

The last column of this table gives the individual terms for a
value of xi for this new finite experiment and model. Summing
the final column, we get xi = 12.7. The finite multinomial
experiment represented by the table above has six categories.

We would normally use a chi-square curve with 6 - 1 = 5 degrees
of freedom for approximating the DLS of an observation for such
én experiment. Fact (ii) above, however, tells us that we must |
subtract 1 further degree of freedom. Hence we use the curve
with 6 - 1 -1 = 4 degrees of freedom. From the table for this
curve, using Xg = 12.7, weé obtain the DLS value 0.02. The DLS

value obtained in this way has a meaning similar to the meaning
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that we have previously given DLS values. This DLS holds (and is
small) for all Poisson models. Hence it strongly suggests that
the observation does not confirm the possibility that any Poisson
model holds.

The above procedure, for calculating the common DLS of an
observation for the set of all Poisson models (under the metric s),
is siﬁple and easy to use. Analogous procedures can also be used
.with certain other sets of models and certain other metrics
(analogous to s) for which analogous versions of facts (i) and

(ii) above hold. We shall sometimes refer to such a procedure as

using the observation to indicate a model in a CS-metric-DLS

calculation. We shall give further consideration to the concepts

and theory behind such pProcedures in the Appendix to this chapter.
Scme of these‘concepts were suggested in comment (2) at the end of
Chapter 10. We also comment further in the Appendix on the subtrac~
tion of further degrees of freedom in the chi-square approximation.
This reduction corresponds to the intuitive fact that in allowing
the observation to help indicate the model that it will be tested
against, we have in a sense favored the observation; hence, in
calculating a DLS, we must make up for this favoring by judging more

severely. The reduction in degrees of freedom gives smaller

DLS valuesréhd-hence makes a severer judgment.

The reader should note that the metric s above has a
different purpose than the particular metrics introduced in
Chapter 10. The metrics in Chapter 10 were designed to measure

confirmation of a single given model. The metric s above
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is designed to measure confirmation of a certain set of models
(the set of all Poisson distributions). It is a metric of the

kind described in comment (2) at the end of Chapter 10.

Example. Here is a second example of a DLS calculation of

the above kind. We examine 40 chocolate almond bars of a different

brand and get the data:

x = number of almonds '0 L 2 3 4 8§ 6 uy
Ox = observed number with x almonds |8 2 15 6 2 2 0 ...

How well does this observation confirm that some Poisson model holds?

Here the observed average of almonds per bar is 1.88, and, taking a

[}

Poisson distribution with m 1.88 as our indicated model, we get

the following table:

" n A—A 2
5 D B 5 (OAE)
= E
0 0.153 6.1 6 0.0
1 0.288 31«5 9 0.5
2 0.270 10.8 15 L6
3 0.168 6.7 6 0.1
> 4 0.121 4.9 4 0.2
Summing the final column, we get xg = 2.4. Using the chi-square

curve with 5 - 1 - 1 = 3 degrees of freedom, we get DLS = 0.49.
Thus our observation of the second brand of bar suggests that it

may well follow a Poisson distribution.

Normal approximation. For d > 30, the standard normal

curve can be used to give areas under the chi-square curves as

follows

'\J (v}
Cd(u) ~ Normal Areaz

o]
|
o™

f

where =z
2
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Thus Cg(u) = %- - A for u>d, cgu) = -é— + A1ETWY ge
vY2d y/2d

u < d.

{This approximation gives 2 decimal-place accuracy except for
30 < d 2 350 and values of u in the interval d + /3, where.the
approximation may only be good to within 0.037)
Assume, fof ekample, that we have obtained data
from an experiment which we believe. to be Poisson. Assume further

that we have fitted a Poisson distribution to the observed data

by using the observed average. Finally, assume that we have

C = 40 categories and that we get xg = 50.3. What is the des-

criptive level of significance? In this case we need

d=c¢c- 2 =40 - 2 = 38. Thus we need Normal Area: for

z = 0.3 = 38 = 1l.41. Then, from tables, we have

Y76

DLS = P(x° > y

Remark. It is useful to memorize several simple facts about
the chi-square curves and their tables: (1) For the chi-square
curve with d degrees of freedom, Cd(u) will be approximately
0.50 when u = 4. (A better, but still not exact, position is

u=d4d - %.)(Z)Cd(u) will be approximately 0.15 when
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u=d+ v2d , and it will be approximately 0.025 when
u =d + 2/2d. These approximations are useful for all values of

d but are good to only one decimal place when d < 3. Note that
for 4d > 30, these facts follow from the normal approximation

given above with z =0, 1, and 2.

APPENDIX TO CHAPTER 11

This Appendix presents several further theoretical comments.

Theory of chi-square approximation. The paragraphs at the

beéinning of this chapter have given a procedure for using
chi-square curves to get a descriptive level of significance when
a single multinomial model is‘assumed. Why and how does this
pfocedure work? First, we look at the form of the approximation.

Then we look further at chi~square variables and degrees of free’

We return to the Boston-Montreal example considered in Chapter
10 and at the beginning of our description of chi-sguare approxima-
tion. We noted, in Chapter 10, that there are 66 possible observa-
tions for this experiment. (Recall that our model has Py = 0.5,
p, = 0.3, P3 = 0.2). For each of the 66 observations, we can
calculate (i) the value of the CS metric, and (ii) by
the multinomial formula, the probability that the obserwvation

occurs. We can then make a list of the 66 possible observations in
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increasing order of CS value, and for each we can give its
probability. This list would begin as follows (we give the first

seven lines):

" Observation xg P (Observation)
(5,3,2) 0.0 0.085
(4,4,2) 0.53 0.064
(6,2,2) 0.53 | 00371
{6+ 32 1) 0.70 0.071
(4,3,3) 0.70 ' 0.057
(5,4,1) 0.83 0.064
(5,2,3) 0.83 0.057

We could now present this list graphically by taking xi values
on the horizontal axis, probabllity values on the vertical axis,
and plotting a single point for each observation. This graph would

begin:

' . ——— —

Figure 11.4

[ye]

Note the irregular horizontal and vertical spacing of the points,
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We now go on to gilve another, different, and more useful
graphdcal picture of this 1ist. We first break the list into 8
successive groups of approximately equal size (each groﬁp contains 7,
8, or 9 possible observations)., (Note that for m = the total number
of possible observations, we have divided the possible observations
into approximately +m groups, each of which contains approximately
/m observations.) We then list these groups, giving the interval
of CS values for each group and the ‘total probability for each
group. (The interval is taken from the lowest value for each group
to the lowest value for the next group.) Finally, we calculate the
height that a bar would have to have on this interval in order that
ité area would be the total probabllity wvalue for its group.

Thus, in the following table, the final column is the quotient

of the previous two columns.

Groups of possible 5 Interval Total

observations X Interval length probabllity Bar height
First nine [0,2.03) 2.03 0.552 0.27
Next eight [28403,%5:33) 1.30 0.237 0.18
Next eight [3.33,4.80) 1.47 0.120 0.08
Next nine [4.80,6.70) 1.90 0.061 863
Next seven [6.70,10.00) T 30 0.019 0.01
Next eight

Next eight > 10,00 5 0.00
Next nine

Drawing the final bar graph, we get:
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Figure 11.5

If we take the same multinomial probabilities, but let n,

the total number of trials, increase; and if we use approximately
Yym bars with the area of each bar representing the combined
probability of approximatelyr Yym possible observatipns contained
in a correspoﬁding interval of CS values (here, from the note

at the end of the discussion of multinomial coefficients in
Chapter 4, m = (nzz)); then the resulting bar graph will have
an increasing number of bars and will take on an increasingly
smooth shape. It can be proved, by methods similar to those

used in proving the normal approximation for binomial experi-

ments, that this limiting shape is exactly given by the chi-

square curve with 2 degrees of freedom. (This curve is

superimposed on the bar graph in Figure 11.5.) More generally,
it can be proved that for a multinomial experiment with ¢
categories, the graph constructed as above will approach the

exact shape of the chi-square curve with ¢ - 1 degrees of
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freedom, as n increases. It follows from this fact that the
procedure of chi-square approximation described at the beginning
of this chapter will give good approximations to the desired
descriptive levels of significance, since a descriptive level

of significance will be closely approximated by a corresponding
area of the bar.graph, and an area of the bar graph will be
closely approximated bf a corresponding area under the chi-square

curve. In the next paragraphs, we comment further on the proof

of chi-square approximation.

Chi-square variables. Let X be a random variable whose

distribution is given by the standard normal curve. Consider the

new random variable Y = Xz. Let g(y) be the probability density

for Y. Then we have

NY<u)=Pm2<u)

u
[ g(y) dy

- Ay -
P(|X| < /u) = 2J — e dx
/2

2
X
2

o
Differentiating the two integrals with respect to u, we have, by

the fundamental theorem of integral calculus, that

o
1 u-l/Z 5 2 .
vam

g(u) =

Thus the probability density for Y is given by the chi-square

curve with one degree of freedom. Moreover, we can show, bv

integrating, that
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Let X X

17 %o . 37 Xd be independent random variables, each
with a standard normal distribution. Consider the new random

variable 2z = X2 + X2 + oo, + %2 . Using the independence of =

1 2 ) d 1’
xg, § % Wi X§ and using the formula obtained in (2) on pages 236-237
of Chapterjg‘fbr’the probability density of a sum of independent
random variables, we can show that the distribution of 2 is given
by the chi-square curve with d degrees of freedom. Morever, it

follows from rules (II) and (VII) in Chapter 8 that

EZ = d and VZ = 2d

Degrees of freedom. Take the following experiment: do «c

independent binomial experiments, each with n individual trials,

and with probabilities of individual success pl,pz,...,pc. Let

XprXgreeo X, be the resulting observation. Form the metric:
2 2 2
(x, - np,) (%, - np,) (x . - np)
N(xp,o.onyx)) = 1n L . 2 2P s - 2
Pydy np,9, np .

(Note that this is like the CS metric, except for the appearance

of dyre--rqg " in the denominators.) It follows from normal
approximation and from our discussion above of chi-square variablés
that, as n increases, approximate descriptive levels of significance
for-this experiment and this metric will be given by the chi-square

curve with ¢ degrees of freedom (and will not depend on the values

of Pyr «nes pc).

In this example of ¢ independent binomial experiments, the

observed values XyreeesX, are independent of one another. 1In

the case of chi-square approximation for multinomial experiments
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with ¢ categories, the numbers observed in the different cate-
gories are no longer independent. (For example if ¢ = 3, n = 10,
and X, =7, thgn X, and X5 must both be < 3.) It is now
possible to show, using normal approximafion, that 1f we have a
multinomial experiment with c categories, then we can use chi;square
approximation to get DLS values, provided that: (i) we use np.
rather than np.d; in the denominators of our metric (this results

in the CS metric in place of the metric N above); and (ii) we use,
for our approximation, a chi-square curve with ¢-1 rather than ¢
degrees of freedom.

We illustrate this for the case c = 2. It is an algebraic

identity that the CS metric for a multinomial experiment with 2

categories,

2 .
(xl = npl) % (xg - np2)2
nPl NP,

is identical with the metric
2
C'Xl = npl)
n'pl(l - pl)

femmmat o

for a single binéﬁiai experiment. (We remarked on this in
Chapter 10.) A similar argument, using the fact that

p; + P, * ... + p, =1 in a multinomial experiment of <
categories, shows that a CS metric for ¢ categories gives
the same descriptive levels as the metric N above for an

appropriate set of ¢ - 1 independent binomial experiments.

In this way; the reduction from ¢ to ¢ -1 degrees of
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freedom arises and a proof of chi-square approximation for
multinomial.experiments is obtained.

Wé héve already noted, from our discussion of chi-square
variables above, that the standard normal curve and the chi-square
curve with 1 degree of freedom are closely related. In particular,

for any u > 0, we must have that
c,(w) =1-2a(/2) ,

where A{/a) is area under the standard normal curve between 0 and
/u. Hence values for Cl can be found from a table of values for A.

This is sometimes a convenient way to find values for Cl.

Theoretical note. We now return to the procedure, described

earlier in the chapter, of using the observation to indicate a

model in a CS metric DLS calculation. In that procedure, we used

_Tli.m@*.. B s apendi
onejalgebraic fact about the observation (its average value) in
order to fit the Poisson distribution. We then subtracted one
further degree of freedom in doing chi-square approximation.

This over-all form of procedure (of using the observation to
indicate a single model from a set of all models of a given kind
and then using chi-square approximation) can be applied to certain
other sets of models (besides the set of all Poisson models). We
see an example of this in Exercise 11-16 below. This over-all form
of procedure can also be applied to certain other experiments

(besides experiments involving repeated trials on an infinite

discrete sample space). These other experiments include experiments
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which are like multinomial experiments (repeated trials on a finite
sample space) except that the nature of the experiment may require
that certainadditional(gfggg;aic relationships hold (for all
observations) among the observed values Xl’ X2, vire ot g Xc. We see
examples of this in Chapters 12 and 13.

In each such case, when we use an observation to indicate a
single model from a given set of models and then apply chi-square
approximation, we must adjust the degrees of freedom in the final
chi-square approximation by subtracting one additional degree of

. [tneac
freedom for each separate and independent{%umerlcal fact (about the
- n

specific observation, SEAE YRR ) which is used to help indicate

a single model in the given set of models; and by subtracting one

additional degree of freedom fér'each separate and independent
\|’

[Elgebralc relationship that is required to hold (for all observations)

among Xl’ Xz, — ). We shall later see that for such an over-all
procedure to be valid, the numerical facts abﬁut a specific observa-
bion Xyr Xor one and the algebraic relationships ameng Xl’ X2,

(for all observations) must be expressible by linear equations.

In each case, we shall find that an appropriate version of
chi-square approximation gives a DLS ﬁalue (for some suitable metric
like the metric s above) which is approximateiy the same for all
models in the given set. In later chapters we shall, from time to
time, return to consider the concepts upon which this extraordinarv

result is based, and we shall eventually provide the outline of

a proof for it.
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EXERCISES FOR CHAPTER 11l.

Note. In the following exercises, unless it is stated
otherwiée, chi-square approximation should be used to find DLS
values, ev;n though the full conditions for two-decimal-place
accuracy may not apply. Pooling shéuld be done as necessary.
Keep in mind that pooling is done on the basis of expected

values, not observed values.

11-1. A die is rolled 36 times. 7 ones, 5 twos, 4 threes,

9 fours, 3 fives, and 8 sixes are obtained. Estimate

the DLS of this observation under the model for a fair
die. -

1l=2, In 20 games against Montreal, the Boston hockey team
wins 12, loses 4, and ties 4. Assume, as a model, that
the probability of winhing is 0.4, of losing is 0.4,
and of tying is 0.2, and that the individual outcomes
are independent from game to game. What is the DLS of
the observed result under this model?

11l=3, A baseball piayer gets 25 single-base hits and 5
extra-base hits in 100 times at bat. Given, as a model,
that the probability of a single-base hit is 0.2 in a
time at bat, that the probability of an extra-base hit
is 0.1, and that the individual outcome is independent
from time at bat to time at bat, find the DLS of the
batter's observed performance. (The value of the CS

metric for this example was calculated in Exercise 10-9.)
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(a) On page 259, data were given for occurrences
of different digits in a certain observed sequence of
100 ‘pseudorandom digits. Find the DLS of these data
under the model that the ten digits occur independently
and with equal probabilities.

(b) On page 259, data were given for occurrences
of different digits in a certain observed sequence of
100 random digits. Find the DLS of these data under
the model that the digits are in fact random.

Use random digits to simulate a multinomial experi-
ment with <¢ = 3, n = 50, Py = 05y P, = 0.3, and

P3 = 0.2. Find a DLS for the observation you obtain.

(Suggestion. Use line 40 on page 274. Let 1, 2, 3, 4,

5 represent the first éategory, 6, 7, 8 the second,
and 9, 0 the third.)

In 50 blocks of 5 random digits each, observe the
number of zeros that occur in each block. Make a table
showing the number of blocks with x zeros, for
x=20,1, 2, 3, 4, 5. Treat this as a multinomial
experiment with ¢ =6 and n = 50. Assuming that the
digits are in fact random, find a DLS for your observa-

tion. (Suggestion. Use lines 41 through 46 on page

274.)
For a certain experiment in the cross-breeding of
plants, genetic theory asserts that two kinds of off-

spring, one with physical characteristic A and one
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with physicai characteristic a, will occur with
prébabilities 3/4 and 1/4 respectively. (Note.

This model holds, for example, for the second generation
offspring of two pure-bred parents of kinds A and a,
where characteristic A 1is the dominant form of a
simple Mendelian trait and a 1is the corresponding
recessive form.) The experiment is carried out, and the

following counts are observed:

A a
112 30
(This result is from an experiment by Mendel.) Find the

DLS of this observation under the given theoretical

model.

.For a certain experiment in the cross-breeding of
plants, genetic theory asserts that four kinds of off-
spring, one with phvsical characteristics A and B,
one with A and b, one with a and B, and one with
a and b, will occur with probabilities 9/16, 3/16,
3/16, and 1/16 respectively. (Note. This model
holds, for example, for the second generation offspring
of two pure-bred parents of kinds AB and ab, where
A and B are the dominant forms of two indépendent
simple Mendelian traits, and where a and b are the
corresponding recessive forms. Some of Mendel's

original experiments with garden peas were of this kind.)
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The experiment is carried out, and the following counts
are observed:

AB Ab aB ab

150 62 51 258,
(These data are from an experiment by Mendel.) Find the
DLS of this observation under the given theoretical
model.

Forty blocks of 50 randém digits each are observed

(the first 40 lines on page 231), and the number of
2eros in each block is counted. Let x be the number
of zeros in a block. The observed distribution of x

is found to be:

where n_ is the number of blocks with exactly x

zeros. Take, as a theoretical distribution, the binomial
distribution with n = 50 and p = 0.1. Find the
goodness-of-fit (in terms of a DLS value) of the observed
distribution. (Poisson approximation may be used. Pool
as necessary.)

Each trial of a certain experiment produces a real
number between 0 and 1. (The physical experiment
might be to spin a horizontal pointer, pivoted at its
centef, and to observe, when the pointer cbmes to rest,
the position of the point on a circular scale that
ranges from 0 to 1 in one full tirn«) 1In thi¥ty

trials, the following values are observed
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(to two-decimal-place accuracy):
0.44, 0.31, 0.92, 0.23, 0.13, 0.64, 0.74, 0.15, 0.21,
0.06, 0.28, 0.46, 0‘58, 0.05, 0.47, 0.76, 0.99, 0.34
.5, 0,20, 0.87, 0.28, 0.22, O.17; 0.28; 0.03; 0.30;
G.32; 857 0:50; Q.30 O.é?, 0.42, 0.65, 0.05, 0.26,
0.19, 0.27, 0.42, 0.86, 0.04, 0.06, 0.33, 0.28, 0.24,
0.56, 0.05, 0.00, 0.34, 0.64.
Assume, as model, a continuoﬁs probability space with
the interval 0 < x < 1 as the sample space and with
the constant function £(x) = i as the probability
density function. Find the goodness-of-fit (in terms-
of a DLS value) of the observed data to the assumed
model. (Hint. Use the sub-intervals (0.00, 0.09),
(0.10, 0.19),...,(0.90,0.99), and treat the experiment
as a multinomial experiment with ¢ = 10 and n = 50.)

The first six lines in the table of random digits
on page 272 are examined, and the sizes of the intervals
between successive occurrences of zero are recorded,
where-the size of an interval is the number of non-zero
digits occurring in that interval. We obtain the
following data:
22, 7, 10, 7, 0, 1, 1, 4, 1, 3, 9, 0,2, 7, 3, 22, 4, 1, 3,
3 21y 9; 64 O0x 6 12: 10: B¢ 14, D 12; 15+ 2, L2, 10y
12y L

(a) Give an expression for the probability that an

interval of size x occurs, assuming that the digits

are truly random.
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(b) Find the goodness-of-fit of the observed data
to this model, in terms of an appropriate DLS value.
(Hint. Use a calculator to find the probability values
and the expected values. Pool as necessary.)

Figures for the number of goals per period in 3i.
National Hockey League games played between February 25

and March 2, 1980 were as follows:

Here Ox is the number of periods observed in which the
goal total was x. _

(a) Take the Poisson distribution with m = 2.35
as a given model. Find the DLS of these data under this
given model (as a measure of goodness-of-fit of the
observed distribution to the assumed Poisson distribu-
tion.)

(b} Find a DLS under the assumption that the model
is some (otherwise unspecified) Poisson distribution.
(Use the observation to indicate a specific model by
fitting a Poisson distribution to the data.)

(c) Explain why the DLS value for (b) is smaller
than the value for (a), even though the Poisson
distribution indicated and used in (b) fits the data

better than the Poisson distribution assumed in (a) .
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Take the data on deaths from horse-kicks on page
184.

(a) Find the DLS of these data under the assump-
tion that the model is some {otherwise unspecified)-
Poisson distribution.

(b) Assume that the Poisson distribution m = 0.61
has in fact been suggested ahead of time, before you
observe the data, and that ybu then observe the given
data. What is the DLS of the data under this given
model?

(c) Explain why the DLS value found in (b) is
larger. than the DLS value found in (a). In particular,
carefully describe an experiment for which the DLS
value found in (a) is a correct probability Qalue and
an experiment for which the DLS value found in (b) is
a correct probability value.

Take the data on flying-bomb hits on page 185.
Find the BLS of these data under the assumption that
the model is some (otherwise unspecified) Poisson
distributicn.

In a certain telephone exchange, the intervals
between the beginnings of successive telephone calls
are measured to the nearest tenth of a second. Twenty
intervals are observed, and the following measurements
are recorded: 0.1, 0.5, 0.1, 0.9, 1.2, 0.1, 0.3, 0.3,
Di2s 1:0: 0.8, 0.2, 0.6, 0ul, 0.7, 0.6, 0,4, 0.4, 0.7,

0.2. We wish to calculate a DLS for this observation
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on the assumption that the correct model is a continuous
probability space with a probability density function of

mx on the interval 0 < x < o, (See

the form me
pages 54-56.) Assume that the data may be used to indi-
cate a model for a CS metric DLS calculation.

(a) Use these data to indicate a model of the

desired kind. (Hint. Note that the expected average
interval length under the model me ™ will be

[ xme™™ ax = L)

0 m

(b) Use the above data wi?h this indicated model
to get a DLS value by chi-sguare approximation. (Eint.
Pool into four subintervals, each with probability
0.25.)

In a certain country,. each day is either rainy or
sunny. A seqguence of rainy and sunny days is observed
and the sizes of the intervals between successive sunny

days is recorded as in the following table:

Interval size l 0 l 1 | 2 I 3 | 4 , 5 I 6

Number of intervals ’22 | 7 { 5 ' lOf 8 ‘ 7 | L

Here the size of an interval is the number of rainy
days in that interval. We wish to calculate a DLS for
this observation on the assumption that the correﬁt
model is a sequence of iﬁdependent Bernoulli trials
with some (unspecified) value for p, the probability

of a sunny day on a single trial. Assume that the
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average observed interval length may be used to indicate a
model for the purpose of a gg—métric—ggg calculation.
(a) Use the data to indicate a particular
Bernoulli model (that is to say, a particular value of
B} (Hint. See Exercise 9-9.)
(b) Use the above data, with this model, to get a
DLS value by chi-square approximation.
A multinomial experimeﬂt with 6 categories and
n = 60 vyields the observation (6,14,16,4,10,10).
(a} Assume that the model is some unspecified
model from the set of multinomial models (with ¢ = 6
and n = 60) satisfying the special condition that
P, = P, = Py and p; = Pg = Pg- Use the observed average
of X101 Xy X3 to indicate a model, and find a ggg by chi-square

approximation. (See the discussion of degrees of freedom in

the Appendix above.)

(b) Assume that the model is some unspecified

model from the set of multinomial models (with ¢ = 6
and n = 60) satisfying the special condition that
Py = Pysr Py = Py and pg = Pg. Use the observed averages

of Xy Xy and of Xqr X, to indicate a model, and find a DLS

by chi-square approximation. (See the Appendix.)
(c}) In each of the above cases, carefully des-

cribe the metric and the experiment to which the final

DLS value refers.
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(a) In a particular segquence of 380 plays at
roulette, the 38 different pocket-numbers are observed

to occur as shown in the following table:

Pocket-number 0 , 00 1 ‘ 2 3 | 4 5 } 6 ' e |

Occurrences 10| 8 7 |12 6 |lO 4 l 9 '135

30 3L l 32 3.3 34 35 36

10 11 | 13 6 1 8 14

Consider this experiment as“a multinomial experiment
with ¢ = 38 and n = 380. F%nd the DLS of the
observed result assuming that the wheel is fair.

(b) The data in (a) can also 5e given in the form

of the following table:

£ J 4 j 5

6 l 7 | 8 } 9 ]10 |11 .12 113 ‘14 llsl 16| 171

|
|

ng t 1 ‘ 0

where, for each £, Ne is the number of pocket-numbers

occurring exactly £ times. WNote that | n. = 38 and
: 2

L £ = 280,

Assume as a model for the distribution in this table a

Poisson distribution with m = 10. Find, as a DLS

value, the goodness-of-fit of the observed table to the

352 6l6la]7]1]alal2aflol1]o
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Poisson distribution. (Note. The Poisson distribution
is a reasonable model, since observation of the number
of occurrences of any single pocket-number in 380 plays
can be viewed as a binomial experiment with B = 1/38
and n = 380, and since the observed wvalues for
different pocket-numbers are nearly independent (in a
sense which we do not make precise here). The Poisson
model then follows by Poissoh approximation. The
Poisson model cannot be fully justified, however, since
the observation for one pocket-number is not fully

-

independent of the observation of another pocket-number

.in the same sequence of 380 plays.)

Comment. Which DLS value.is correct in Exercise
11-18, the one found in (a) and based on a multinomial
experiment, or the one fouhd in (b) and based on
goodness—of-fit to a Poisson distribution? The two
values come, in reality, from the use of two different
metrics. The better choice of a metric in this case
depends, as we shall later see, on what we conceive to
be the possible alternatives to the assumed underlying
model. In the present case, if we know that the

experiment is necessarily multinomial, then approach

(a) is better. On the other hand, if we suspect that

the operator of the wheel may be secretly contreolling

each outcome, then approach (b) may be better. We shall

consider these matters further in Chapters 12 and 14.



