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CHAPTER 10@. DESCRIPTIVE LEVEL OF SIGNIFICANCE.

Chapters 1 through 9 have been an introduction, with examples,
to the basic ideas and methods of the theory of probability. The

central idea of this theory has been the concept of probability

space, and the usefulness of the theory has rested, in part, on the

empirical stability of relative frequencies. Probability 'spaces

have served as mathematical pictures or models for given physi-
cal situations.
We now turn, in the remaining chapters of this book, to

mathematical statistics. Mathematical statistics has to do with

using observed data to choose the most suitable models we can for
the purpose of describing a physical situation, of making a prediction
about the situation, or of making a practical decision about the
situation. 1In what follows, we shall, for brevity, use the word

"model" to mean probability space. We shall sometimes use the

symbol u for a model. Given a model u, 1if A 1is an event in
the sample space of 1y, the probability assigned to A by u
will usually be written P(A) (as before); but sometimes, for

clarity, it will be written P“(A).

Assume that we have an experiment, and that we have chosen

a probability model for this experiment. Each time we do the
experiment, we get an observed result. We call this observed

result an observation. (For example, if our experiment is a

binomial experiment of n trials, then we choose a model by
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taking a binomial distribution with (i) n trials and (ii) a
particular assigned value for p, the probability of success
in a single trial. When we do the experiment, we get x, the

total number of successes observed. x 1is our observation.)

Given an experiment, an assumed model, and an observation, we

can ask the basic question: how well does the observation confirm

or agree with the chosen model for the experiment? Such gques-

. tions lie at the heart of statistics and its applications. By
asking and answering such questions, we can choose and modify
models, and we can make decisions based on those models.

Example. Consider the experiment of rolling a single die 606
times and observing the number of times X that a six appears. We
choose, as our model,'a binomial distribution with n = 600 and p = %
If we observe X = 102, we would say that this observation agrees
well with the chosen model (because the observed relative frequency,
102/600, 1is close to the prpbability value p = 1/6.) On the other
hand, if we observe X = 130, we would say that this agrees less

well, and if we observe X = 200, we would say that this agrees

hardly at all.

How can a way to measure this confirmation or agreement be
made precise? One natural way is simply to take the assumed model
and calculate the probability of the observation that we have
obtained. This direct approach is not satisfactory because, in
some cases, the probability of every possible observation may be

very small.
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Example (continued). The probability of a given observation X=x,
under our chosen model, is given by b(x;600,1/6). In particular,
if we get X = 130, this observation has probability b(130:600,£).

Using normal approximation, we evaluate thi;lto be approximately

m(Z)-d, whers 2z = 150 - 100 = 3,29 and d = 1 = _};_
/800 pq /600 pq  9.13
From tables for ¢ we get $(3.29) = 0.0018 and hence
. 1, . 0.0018 _
b(130,600,6) —3.13 = 0.0002.

(Note. The correct value is 0.00026.)

If, on ﬁhe other hand, we get X = 100, this observation has
approximate probability ¢(0)-d = 9%%%%2 = 0.04. The observation
X = 100 is more probable than the observation X = 130, and is,
in fact, the most probable observed result of all. Even so, its
probability is only 0.04. THus every observation in this experi-
ment is, taken by itself, highly improbable. (Indeed, recall from
our discussion of binomial distributions in Chapter 5 that the
largest probability value becomes smaller as n increases, and

is proportional to & .) Thus the above approach to our basic

vn
question is not satisfactory because it leads to answers in the

form of probability values that may be small for all observations.

We therefore take a different approach to our problem of
measuring "how well an observation confirms a chosen model". Our

approach is to calculate a quantity which we call the descriptive

"level of significance (abbreviated DLS) of the given observation

under the chosen model. We calculate the DLS in two steps.
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First step. For our chosen model, we find a mathematical
formula s which associates, with every possible observation Q,

a number s(fi) that represents how far away the observation is

from giving us the strongest possible confirmation of our chosen

model. 1In the above example, we might take this formula to be

s(X) = ]X-loo[.m éuch a formula is called a metric. (It is sometimes .
also called a statistic.) In this book, we shall always choose the
metric so that the larger the value of the metric (for a given
observation and model), the farther we think of that observation as
being from giving strongest possible confirmation of the‘model. For
the above example and the above chosen metric, we would get

§(130) = 30 and s(90) = 10. Thus the metric s places the obser-
vation X = 130 at a greatet distance than the observation x = 90,
and hence it ranks X = 90 as éiving better cénfirmation of the {
model p = 1/6 than the observation X = 130 gives. How do we

decide what formula to use as.our metric? We return to this ques-

tion below.

Second step. Given a metric s and a specific observation

wy r we apply s to the observation to get s(mo), the corres- {

ponding observed value of the metric. We then ask: if we were to {

do the experiment again, in identical circumstances, and make

another observation, what is the probability (under our chosen

model) of getting a new observation that is at least as far from

agreement with the model (as measured by the metric) as the obser-

vation we actually first got? Denoting our chosen model as 1y, we

can express this probability as
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PM{S(Q) 2 slw,))

where the event being described is the set of all observations -

such that s(Q) > s(wo). In the expression "P(s(Q) z-s(wo))" we

use the capital letter "Q" to indicate the entity which varies.
This is, in effect, the same notational convention as was adopted
for numerical observations in Chapter 9 where we used capital

letters to represent random variables. The probability

PU{S(Q) > s(mo)) ia called the descriptive level of significance
(abbreviated DLS) of the given observation wg - under the chosen

s (It is also sometimes known as the nominal level or cumulative

level of significance and sometimes as the p-value.) The value of
the DLS depends, of course, upon the metric s that we have

decided to use.

Example. Consider the observation of 130 sixes in 600 rolls

of a die. Using the model p = % and the metric |x - 100/, we
get s(w ) = 130 - 100| = 30. Our descriptive level of signifi-
cance is then given by P (s () > sluw))) = P(|X = 100]| ¥ 30): Iks

value can be obtained from tables for the binomial distribution or

by normal approximation. Normal approximation gives:

From tables, A(3.23) = 0.4994; hence

P(|X - 100] > 30) = 1 - 0.9988 = 0.0012,

(Note. The correct value is 0.0013.)

11
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Thus our descriptive level of significance is approximately

0.0012. This means that, on the basis of our assumed model,

the probability is only 0.0012 of getting a result as far as

this from X = 100. (X = 100 represents strongest possible

That is to say, we can expect only about 0.12%

confirmation.)
of allrobservations to be as far as this from X = 100.

How about an observation of 90 sixes? This gives s(wo) = 10,
and by a similar calculation we have

P(s(Q) > s(wo))= P(|x - 100] > 10) & 1 - Normal Areazz =1 - 2A(z),

. _ 10 - 1/2 _
where z2 = 513 = 1.04.

Then A(1.04) = 0.3508, and

P(|x - 100| > 10) & 1 - 0.7016 = 0.30.

Thus we can expect about 30% of all results to lie as far as this
from X = 100. [Footnote. The normal curve is symmetric. Why

can it be used, as above, to get approximate values for a binomial

‘distribution which is centered at 100 and ranges to 0 on the left

but to 600 oh the right (and hence is highly non-symmetric in its
extent)? (We could have asked this question about some of oﬁr pre-
vious examples of normal approximation to binomial distributions.)
The answer is that in a certain region (about the value np), in

which virtually all of the probability occurs, the binomial distri-

bution is nearly symmetric, and the normal curve is an excellent

‘approximation to it. Outside this region, both the normal and

binomial values are so close to zero that the asymmetry of the
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binomial distribution in total extent does not matter. (The condi-

tions np/qg > 9 and ng/p > 9 for normal approximation guarantee

the existence of the symmetric region and the closeness to zero
outside it.)]

The DLS will be a fundamental concept in our future work. It
is our basic measure of how well an observation agrees with a model.
While the metric used can tell us, by itself, which of two observa-
tions disagrees more ﬁith a chosen model, the DLS is a probability
value and measures the agreement in probability terms. The reader
should note and remember that the more an observation disagrees
with a model, then.tﬁe largéf the value of the metric will be; but
the smaller the value of the DLS will be. Smaller values of the
metric represent more agreement. Smaller values of the DLS 'repre-=

sent more disagreement.

Finding a metric. The first step, that of finding a metric

for a chosen model, can sometimes (but not always) be done

in two parts, as follows.

Part one (of finding a metric). We identify an observation

which we call the theoretically expected result (abbreviated
TER). This corresponds to a hypothetical observation in which all

observed relative freguencies agree exactly with probability

values of the chosen model. For example, in the experiment of

600 rolls of a die, with the model p =1/6, the TER will be

100. In general, in a binomial experiment, the TER will be

np. There may be several different but reasonable ways of defin-
ing a TER in a given problem. These can then lead to different

metrics. In the special case where we are observing the value of

13
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a random variable X (as in the cage of a binomial experiment), we

shall usually take the TER to be EX‘ (Note that we allow non-

integer values for a TER, even when the experiment itself has only

integer outcomes. Thus, for n = 500 and p =1/6, the TER is

500 - o 83.33 to twn decimal placeas.)

6

Part two (of finding a metric). We find a simple mathematical

formula which will measure how far, in some sense, any given
observation is from the TER. This formula is our metric. For
example, in the case of 600 rolls of a die with p = 1/6, the TER

is 100, and it is natural to take s(X; = |X-100| as our metric.

In what follows, we will often be able to find a metrié in
this way: by first finding a TER; and by then getting a formula
to measure distance of any observation from the TER. We shall
also (in later chapters) see examples where a metric cannot be
found in this way, but where other direct and simple arguments
lead to a metric.

Choosing between metrics. Several different metrics may be

possible, and seem natural, in a given situation. For example,
in the case of rolling a die 600 times and observing the number

of sixes occurring, we could have also used the metric

|

which gives a direct measurement of the difference between observed

X
sl(X) = ‘*—— -

|+

600

and predicted relative frequencies. It is easy to see that the
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metric sq will give exactly the same DLS as the metric s for
. X
any observation x_ (because IE%H - %l = Igé% - %| if and only

if |X-100] > ]xo-loof). If two metrics for a chosen model always

give the same DLS values (as in the example just given) the metrics

are sald to be equivalent metrics for the chosen model.

Unfortunately, it is possible to have two different avail-
able metrics (for a given situation and model) both of which seem
natural but which ‘are not equivalent. For example, in the case

of 600 rolls of a die with the model p = 1/6, consider the metric

X-100 '
=59~ ¢+ for x > 100;

32 (X) =

100-;
—Eﬁﬁi , for x i 100.

(This gives distance as the difference in number of successes

divided by the maximum possible difference in the same direction.)
- - 30

When X 130, we get S, = 300

1 :

Ié% = 0.1l. Notice that s and s, are basically

(130) = 0.06, and when X = 90,
we get s,(90) =

different (and non-equivalent) in that s makes 90 <closer than

130 to 100, while 52 makes 90 farther than 130 from 100.

In particular, under s, , the DLS of the observation X, = 90
z
will be P(X <90) + P(X > 150) ~ Normal Areaz2 =1 - a(-z)) -A(z,),
= = 2,
. ~10 + 1/2 - _ _ 50 + 1/2 _
where Zl = T = 1.04 and 22 = W = 5.42. Thus

the DLS = 1 - 0.3508 - 0.5000 = 0.15. We saw abowve that the DLS

of the observation X, = 90 under the metric s(X) = |x-100] is

04,305

15
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It is not always clear what the best metric to choose is. The
choice will often depend on experience and on mathematical simpli-
city. From now on, in the case of a binomial experiment, we shall
use the metric |[x-np| (the metric s above). In later chapters,

we shall consider, in a more systematic and theoretical way, the

question of how to choose a metric and the question of what metric

is most useful in a given situation.

Multinomial experiments. If we view an experiment as having

only two outcomes, which we call success and failure, and if we
make n independent trials of the experiment and ask how many

successes occur, then the resulting larger experiment is called a

binomial experiment. We have studied binomial experiﬁents in
previous chapters. |

Let us now look at an individual experiment whiéh we view as
having ¢ distinct outcomes, where ¢ is some number > 2. If
we make n inaependent trials of this experiment and ask how many
times each of the outcomes occurs, we call the resulting larger

experiment a multinomial experiment. ¢ is called the number of

classes or categories in the given multinomial experiment.

Example. When Boston plays Montreal at hockey, there are
three possible outcomes for Boston: win, lose, or tie. If we
assume that probabilities for win, lose,and tie remain fixed
throughout the season, and if we assume that successive games be-
tween these opponents are independent trials, then the larger
experiment of looking at 10 games between Boston and Montreal and
asking how many wins, losses,-and ties occur is a multinomial

experiment with three categories. An observation for this experi-



304

ment will list the number of wins, the number of losses, and the
number of ties in the 10 games observed.

Multinomial formula. Just as the binomial formula -serves to

calculate probability values for results of a binomial experiment,

under a chosen model which assigns a prébability value p to

success, there is a multinomial formula which gives probability

values for the various possible results of a multinomial experi-
ment under a chosen model which assigns probability values
Pyre+-sP, to the different categories. This formula takes the
following form (and can be derived in the same way that the
binomial formula was derived). We give it for the case

¢ = 3. Let n = the number of trials. We call the three possible
Outcomes o, , 9, + and o0;. Let Py » P, + and p; be the
respective probabilities that outcomes Q; 7 8 + 23 occur in a
single trial.. (Of course, we mﬁst have Py + P, + Py = l.) Let
X1 7 X5 X3 be the observed number of respective occurrences of
23 when n trials are carried out. (Of course, we
must have X, + x2 + X3 = n.) Then the probability PCXl = x; and

X, = X, and X3 = x3) is given by the formula

I Xl 22 x3 ! xl X2 X
M(Xy X0/ XaiPqsPnsD,) = ax Py P, Py, = n ppp3,
LA RGP e e gl By x1'!x2!x3! 1 2 P3 X 1%y Xy 1 72 P3

where we use the notation from Chapter 3 for the multinomial

coefficient. In general, where ¢ is the number of categories,

this multinomial formula takes the form:

17
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m(xl:xesa--:Xcipllng'-oipC) =‘

X b'e x
n! 4 2 c
=== == D Pr  «..D (where n = X + ;4: + X}
Al.xez...xct 1 2 2 1 c
= X
X X
= 2 ¢
= P P ... P .
lex2J--och 1 2 C

When ¢ = 2, this reduces to the binomial formula. Indeed, a
multinomial experiment with two categories is obviously equiva-
lent to a binomial experiment, if we call one category success
and the other failure. (Since the number of trials is given,
knowing the number of successes is the same as knowing both the
number of successes and the number of failures.) It is thus
immediate that b(x;n,p) = m(x,n-x;p,1-p).

The fact that the probabilities for the possible observations
in a multinomial experiment total to 1 1is asserted in the

multinomial theorem stated in Chapter 3.

Example. When Boston plays Montreal, assume that the probabil-
ities of win, lose.and tie are 0.5, 0:3; and 0.2. What is the
probability that in 10 games, Boston wins 3, loses 4, and ties 3?
We get
h

—_
.

WA

n(3, 4 30.5,0.3,0.2) = 3;3 (0.5)°(0.3)4(0.2)3 = 0.0

Wnat 1s the probability that in 10 games, Boston wins 5, loses 3,

and ties 2?2 We get

5%—'-7.- (0.5)°(0.3)3(0.2)° = 0.085,
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Descriptive level of significance in multinomial experiments.

To find a descriptive level of significance in a multinomial experi-
ment, we apply the two general steps described above. We illustrate
with the multinomial experiment for Boston and Montreal in the
example given, taking the model Py = 0.5, P, = 0.3, and."p3 S 02
Assume that we have, in fact, observed 5 wins, 1 loss, and 4 ties.
What is a descriptive level of significance for this observation?

First step (finding a metric).

Part one. We find the theoretically expected result. In the

general multinomial experiment, it will be Xl = El' X2 = Ez,..

where E, = EXi = npy, E, = EXQ = 0Py, ... . In our example, the
theoretically expected result is 5 wins, 3 losses, 2 ties. {As with a

binomial experiment, we allow non-integer values in the TER for a multi-
nomial experiment even though the experiment itself has only
integer outcomes. If we took the model p, = 0.5, p, = 0.35, and
Py = 0.15 for'the Boston-Montreal 10 game experiment, for example,
the TER would be 5 wins, 3.5 losses, and 1.5 ties.)
Part two. We choose a metric. The formula most commonly
used in probability theory for a metric for multinomial experiments

is the chi-sguare metric, which we shall also call the CS metric.
2

This metric is usually abbreviated as x“. The formula is
2 2 2
2(x .5 = (xl E,) . (X5 E;) . . (xc - E.) _
X 17 1Xg 3 3 o 3 .
1 2 C
In our example we have,
2 2 2
o . (5 = 5) (L -~ 3) (4 = 2)° _ 4 d =
x (5,1,4) = S % 3 + 3 = ¥ 24 o= 3.0,

19
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If the observed result had been 3 wins, 2 losses, and 5 ties, we

would have got

3-52, @2-3n% (5-2

$*13,2,5) = . - . =5+ = 5.63.

(I
+
18] AVe]
1

The CS metric thus places the second result (3,2,5) at a greater
distance from the expected result (5,3,2) than it places the
first result (5,1,4) from the expected result. Note that it is
not obvious ahead of time how to decide which of two observations
is farther from the expected result. The CS metric decides this for
us. A different choice of metric might have given a different
answer. We use the CS metric because it is simple, mathematically
convenient, and, as we shall see, pragtically and intuitively use-
ful. In particular, we shall find, in Chapter 10, that it is
easy, in most cases, to calculate values for the DLS under this
metric by a simple approximation method.

Second step (calculating the DLS). In our example, if the

observation is 5 wins, 1 loss, and 4 ties, we want P(xz(ﬂ) > Xszo))
where xz(wo) = 3.33 as shown above. We shall usually abbreviate

the expression “P(xz(Q) > xz(wo))“ as "P(x2 > xg)." ‘Here xg stands
for the value of the CS metric for the observation actually obtained.

Thus, in the example just given, xg = x2(5,1,4) = 3.33, and

"x2 = xg" stands for the event which consists of all triples

{Xl’XZ’XB) such that Xz(xl’xz’XB) > 3.33. The direct calculation

2 2

of P(x~ > XO) can be carried out on a computer {(or, in simple

cases,on a programmable calculator). We do it in the
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following way. We list all possible observations (there are 66

of them). For each possible observation we calculate the value of
xz. We then take the observations for which x2 $ 3.33. For sach
of these, we calculate its probability by the multinomial formula.

Finally, we sum these probabilities.

In the present example, this gives

Thus the probability is 0.21 of getting a result which is as
extreme as, or more extreme than, the observation (5,1,4).
That is to say, the probability is 0.21 of getting a result whose
Cs-value is > the CS-value of the observation (5,1,4).
For two more examples with the same Boston-Montreal model,
consider the outcome (3,2,5) and the outcome (4,4,2). In the
2

first case, we get Xg = 5.63 (as noted above), and

P(x2 > xg) = 0.06. In the second case we get xg = 0.53, and

2 2)

Xg 0.92. Thus the first of these observations is much

vl
<
|v

more unexpected than the second. This may have been clear to
begin with, but the CS metric and the descriptive level of
significance give us a precise measure of this unexpectedness.
(Note, again, that the smaller the descriptive level of signifi-
cance, the more unexpected or surprising or extreme thé Observation
will be for the chosen model.)
In the examples just above, we have used lengthy exact

calculations to find the value of the DSL under the CS metric. 1In
the next chapter, we shall see that a simple approximation method

exists for getting easy and accurate values for the DLS under the

21
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the CS metric.

As noted above, if we take a multinomial experi-
ment of 2 categories and label one category success and the
other category failure, we have a binomial experiment. The
usual binomial metric for this binomial ekperiment gives the
same DLS values as the CS metric does when we view the experi-
ment as a multinomial experiment. To show this, compare
the binomial metric, which gives |X-np|, with the
CS metric which gives

i 2

(x-np)? | ((n=%) - nq)?

np ng

The latter reduces, by elementary algebra, to

(X-ng)2
npgq

r

and this expression is evidently equivalent, as a metric, to |[¥-np].

See Exercise 10-18 below.

Note. 1In the example of rolling a die, an observation
consisted of a single number X, the number of successes in 600
trlals. In the experiment of looking at 10 hockey games, a single

observation consisted of a triple of numbers. The theoretically

expected result also consisted of a triple of numbers, and the

metric was a formula which was applied to the triple of numbers
of the observation to give some kind of combined measure of how
far this triple might lie from the theoretically expected triple.
Typically in statistics, we work with observations which take the

form of pairs, triples, quadruples, or-n-tuples of numbers.
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Three comments. We conclude with three comments on topics

that will be considered further in later chapters.

(1) More on choosing a metric. In Chapter 20 we shall see

that, given a model, a best metric (in a sense to be defined) can
be found, provided: (a) that we have a practical decision to be
made on the basis of the observation; and (b) that we agree on

(i) the collection of all models to be considered as

possible alternatives to the given model,

(ii) the degree of belief (in a sense to be defined)

that we have, before any observation is made, in each of the
possible alternative models, and

(1ii) the eventual cost (in a sense to be defined), for
each pair of possible models My and Hoy s of basing our
decision on the assumption of Hy when, in rea;ity, Uo is
correct. We shall see that any two such best metrics are equiv-
alent in that they give the same DLS values.

This theorem and the concepts of cost and degree of belief

upon which it rests will not be available to us until Chapter 20.
In the meantime, we will usually‘ﬁot have, in any given situation,
an obvious metric which is uniquely determined by that situation.
In each such case, the choice of metric that we make will seem,
to some extent, arbitrary. As we shall éee, the collection of

alternative models which we allow will play a major role in our

choice of metric, and we will also be influenced, in that choice,
by intuitive considerations having to do with cost of making

mistakes and strength of belief in various alternative models.

23
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These intuitive considerations are later made precise in Chapter 20.

(2) Sets of models. 1In each example above, we have had a

single fixed model, have chosen a metric, and have used the
metric to calculate a DLS for a given observation. In the next
féw chapters we shall also see examples ﬁhere we beéin not with
a single fixed model, but with a fixed set of models (a subset
of the collection of all possible alternative models), and where
we seek to find a useful metric that leads, for any given
observation, to an appropriate DLS value that is the same for
all models in that fixed set. Such a useful and remarkable
metric will thus enable us, by this common DLS value, to measure
the extent to which the observation confirms the general conclu-
sion that there is some (unspecified) member of this fixed set
with which the observation agrees. (For example, in Chapter 10,
we shall see, for certain experiments, how to measure the extent
to which observed data confirm the general conclusion that there
is some (unspecified) member of the set of all Poisson distribu-
tions with which the observation agrees; that is to say, the
extent to which the data may confirm that the expefiment is a
Poisson experiment.)

(3) The fundamental metric (a technical comment). In the

discussion and examples above, we have introduced the concept of
metric in order to describe how well a given observation con-
firms a chosen model. We have then used the metric (which

gives distance as a real number) to calculate a DLS for the
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given observation and chosen model. Clearly, however, the only
information needed in order to determine a DLS value is informa-
tion as to the relative strength with which different observa-
tions confirm the chosen model, because the DLS only depends on
knowing which observations do not confirm the model more strongly
than the given observation. It is therefore enough, in order to

get DLS values, to have a certain relation defined among possible

observations. We write the relation as 2& , and we read
"ml zh w," as "wl confirms the chosen model 1y at least as

strongly as wy"
If we have such a relation, it must satisfy the following
formal laws (in order to be intuitively acceptable) :

(1) For any observations Wy and w, , either

wg zu w, or w gu wy
(2) For any observations Wy o s and Wy if
b
Wy Zy w, and W, ZU Wy then wy Zu wg-
A relation which satisfies (1) and (2) is called a pre-ordering.
Given a pre-ordering Zu + We can then define the notation
a > >
wy >L w, to mean that w, Z, Wy holds but that wy, T, w) does
not hold, and we can read “ml >u m2" as "ml confirms

more strongly than Wy

It is immediate that we can define an appropriate DLS, of

a given observation Wy from this relation as
DLS of. w_under u =p (4 > Q).
o} B g
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*
We can also, if we wish, define a natural metric 8 from Zu

as follows. For each observation Wy We define

*
Su(wb) = PU(Q (IR

This metric measures the distance of w, (from giving strongest

confirmation of u) as the probability of finding an observation

' *
that gives stronger confirmation. We call su the fundamental
metric for the given relation ku , and we see that since
P (w 2 Q) +P (@ » ) =1, the DLS and the fundamental metric
B "o T u O —=
are related in a very simple way:

DILS of w wunder u =1 = s*(w )
—_— o) u' o

Of course, any given metric s for a chosen u defines

a relation tu by:

wp Xy Wy = s(w) < s

u 2)?

and the relation Zu , 1in turn, defines a fundamental metric
s:. It is possible to prove the following theorem relating the
various concepts above.

Theorem. Two metrics (for a chosen model yu) are equiva-
lent if and only if they determine the same relation tu ., and

they determine the same relation tu if and only if they

determine (and are equivalent to) the same fundamental metric.
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[The proof for discrete models is immediate. For continuous
models, one must assume continuity of the probability density
function of the model.]

From a cdnceptual point of view, metrics, as introduced
earlier in this chapter, ﬁay be viewed as a convenient way of
introducing, describing, and working with a pre-ordering ’Zu
of observations from which DLS values can be calculated. Theré
are also other ways of directly defining and describing such a

pre-ordering. One choice, for example, would be to define

Wy zu Wy = PH(Q = wy) > PU(Q = w,). This is the same pre-ordering

as we would get by using the metric s(w) =1 - PH(Q w).

27
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approximation should be used wherever appropriate.
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EXERCISES FOR CHAPTER 10.

Note. (1) In the following exercises, normal

(2) Finding

a DLS requires that we have a chosen model yu. In some of the

exercises below, this model will be indicated only indirectly

by the wording used. Exercise(@—Z, for example, suggests that

we use a binomial model with p = 0.4 and n = 100. (3) In

the case of binomial models, unless otherwise indicated, the

metric

10-1.

K
3]

Le

10-3.

s(X) = |X-np| should be used.

A fair coin is tossed 1000times. 490 heads are
obtained. What is the DLS of this observation?

A thumbtack has probabilityA 0.4 of landing on
its back when tossed. In 100 tosses, we observe that
it lands on its back 50 times. What is the DLS of
this observation? |

A bridge player played 12 bridge hands and got no
aces in 8 of them.

(a) Assuming good shuffling, find the DLS of his
observation. (As normal approximation does not apply,
a direct calcﬁlation, using a calculator, must be made.
Is it reasonable for the plaver to complain of poor
shuffling?

(b) What number of heads in 100 tosses of a fair

coin would give approximately the same DLS?
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" The analysis of professional hockey games .given
in Chapter 7 suggested a simplified binomial model in
which the probability of a tie game is 70.158.
Assumihg this model, find the DLS of an observation

of 132 ties in 720 games.

A fair die is rolled 600 times and 130 sixes are
observed. - What is the DLS of this observation if we

use the metric

for X > np

s (X)
mp=X for X < np?
np
(This was the metric called s, in the text above.)
Let A be the event that either ‘0 or i §
occurs when a single digit is taken from a table of
random digits. In a given table, you‘examine a
sequence of 100 digits and find that the event A
occurs 12 times.
(a) Find the DLS of this observation using the
usual metric for a binomial model.
{ (b) Find the DLS of this observation using the
metric given in Exercise 10-5.

For a series of ten games between the Boston and

Montreal hockey teams, assume that Baston has

probabilities 0.4, 0.5, and 0.1 of winning,

losing, and tying respectively. Assume further that

29
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the result is independent from game to game. Give

the value of the CS metric for each of the following
observations, and use these values to arrange the
observations in order from most confirming to least
confirming:

(3 wins, 3 losses, 4 ties), (5 wins, 5 losses, 0 ties),
(4 wins, 4 losses, 2 ties), (6 wins, 1 loss, 3 ties).

A fair die is rolled 60 times. Let (xl,xz,...,xs)
indicate the observation of obtaining X; Qnes, x,
twos, ..., Xe sixes, where Xt Xy + oLl 4 Xs = 60.
Give the value of the 'CS metric for each of the follow-
ing observations, and use these values to arrange the
observations in order from most confirming to least
confirming: (9,10,11,9,12,9) (7,14,9,10,9,11),
(8,9,10,12,10,11).

In 100 times at bat,‘a baseball player gets 25
single-base hits and 5 extra-base hits. Assume that
his probability of getting a single-base hit is 0.2
and of getting an extra-base hit is 0.1. Find the
value of the CS metric for his performance.

In a multinomial experiment of 3 categories with
n= 3, we take_the model Py = 1725 Py = 1/3,

Py = 1/6. Using the CS metric, find by direct calcu-
lation the DLS of each of the following observations:
(L,0,2¥, (1:1;1), (0,2,1), and (0,0,3). (Hint. Make

a table with three columns; list observations in the
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first column, CS-values in the second, and probabilities
in the third.)

10-11. Use random digits to simulate 25 trials of the
multinomial experiment in Exercise 10-10.‘What relative
frequency do you observe for outcomes with CS-values at
least as great as the CS-value for the outcome (0,2,1)?

(Use the table made for Exercise 10-10.) (Suggestion.

Use lines 37 through 39 on page 233. Let digits 1, 2,
3 represent the first category, 4, 5 the second
category, and 6 the third. Ignore 7, 8, 9, 10.)

10-12. A single observation of a certgin Poisson experi-
ment yields the observation X = 8. Assume the model
m = 4, use the metric s(X) = |X-m|, and find the
DLS of the observation.

10-13. A manufacturer supplies scissors in boxes,
loosely packed. He claims that the average number of
pairs of scissors per box is 100. You open one box
and find 75 pairs of scissors. Assuming a Poisson
distribution model, what is the DLS of your observa-

tion if the manufacturer's claim is correct? (Use the

metric s(X) = [X-m|.)
10-14. A trial is made of a binomial experiment with
n = 100 and fixed but unknown p. The result is
X = 40. For what values of p will the DLS of this

observation be greater than 0.05? (Use normal

approximation.)
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A multiple choice test has 100 gquestions. Each
guestion has 5 possible answers. A student gets the
correqt answer to 33 of the questions. Assume that
the student has chosen all answers at random.

(a) Estimate the DLS of this result using the

usual binomial metric s(X) = |X-np].

(b) Estimate the DLS of this result using the
metric s(X) = %(|X-np| + (X-np)).

Comment. Exercise 9-15 is an example where the
choice of a metric (and hence the view that one takes
of what constitutes confirming or disconfirming evi-
dence) will depend upon what one considers as possible
alternative models. If (as would normally be the
case) the only alternatives are that the student has a
better than 20 percent chance of getting each question
correct, then the metric (b) should be used, since
an observation such as X = 7 would not disconfirm the
assumed model at all in comparison with the other
possible models. On the other hand, if the multiple
choice test is cunningly designed so that a student
with incomplete knowledge will be tempted into wrong
answefs, then the possible alternative models would
include models in which the student has a less than 20
percent chance of getting each guestion right, and

metric {(a) should be used. We discuss this matter
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further in later chapters. Exercise 10-15 should be
compared with Exercise 10-16 below. (In Chapter 20, we
shall see that a metric intermediate between (a) and (b)

can also be used, and may be the best choice of all.)

. 10-16. In an experiment for extra-sensory perception
(ESP},.a card gueséing test is used in which the
probability of a correct response by pure chance (in
the absence of real ESP) is 1/5.

(a) In 50 independent trials, a subject gives
14 correct responses. If you assume the pure chance
model, what is the DLS of this observation?

(b) What is the DLS of 24 correct responses in
50 trials? A

Comment. What metric should be used in this
problem? . One might argue that the only alternative
models are models in which the subject does better
than chance, and hence that the metric of Exercise
9-15b should be used. On the other hand, as investi-
gators sympathetic to the existence of ESP have them-
selﬁes suggested, it is conceivable that a subject

could have ESP powers,but could misinterpret them in

a way that would lead to a worse than pure chance
binomial model. For this reason, the usual binomial
metric s(X) = |X~-np| seems to be the best choice
for this exercise.

10-17. Five repeated observations are made of a binomial
experiment of 2000 trials, and the resﬁlts, 950, 906,

1020, 984, and 1005 are obtained. Assume the model



34

10-18.

320

p = 1/2, and consider the five values as a single
observation (for the larger expefiment of conducting
5 trials of the binomial experiment). What is the
DLS of this observation?

Comment. What metric should be used in Exercise
9-17? The reader will most likely choose to use the
usual binomial metric (s(X) = |[X-np|) for a
binomial model with n = 10,000. This is correct,
since the exercise asserts, as a given fact, that the
original experiment (with n = 2000) is binomial.

If non-binomial models were possible alternatives to
the cho§en model, however, the usual metric might not.
be the best choice. Consider, for example, the five
observed values 1000, 1000, 1000, 1000, 1000. These

are highly confirming under the usual metric (giving

DLS = 1). If it were a possible alternative that the
original 2000 trial experiment was not binomial and
in fact always gave the same observed value, then
these observations would be seen as strongly

disconfirming the binomial model with p = 1/2.

Show that, for a given binomial model u, the
usual binomial metric and the CS metric (for a

multinomial experiment of 2 categories) are equivalent.



10-19.

321

Prove the following statements:

(a) Given a chosen discrete model 1y, two
metrics for u are eguivalent if and only if they
determine the same relation ku.

(b) Given a chosen discréte medel u, two
metrics for u determine the same relation ku if
and only if they determine (and are equivalent to)

the same fundamental metric.
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