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CHAPTER 8. RANDOM VARIABLES

If we have a probabilistic experimental
procedure with a numerical outcome, we say that we have a random
variable. The value of the numerical outcome for a particular
trial of the experiment is called the value of the random
variable for that trial. For example, if our experimental pro-
cedure is to roll two dice,and if we take, as our numerical outcome,
the sum appearing, we have a random variable X whose possible
values are {2,3,...,11,12}. If we roll two dice and take, as our
numerical outcome, the smallest number appearing on either die, we
have a different random variable Y with {1,2,...,6} as possible
values. (In this case, the random variables X and Y are both
associated with the same physical experiment.) We shall usually
use a capital letter to indicate a random variable and a corres-
ponding small letter to indicate specific individual values of
that random wvariable.

The possible values of a random variable X can be thought
of as forming a sample space S,. If we choose a probability
distribution for the sample space SE of the underlying
probabilistic experiment, this distribution on SE determines a
probability distribution on Sx. The probability distribution
on the sample space S is called the probability distribution

X
of the random variable X.

For example, the random variable Y above has
Sy = {1,2,3,4,5,6}, and if we assume the equiprobable distribu-
tion in the underlying sample space Sy of 36 possible throws
of two dice, then the distribution for Y is given in the

following table:
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y J 1 2 3 4 5 6

P (Y = y7 Ill/36 9/36 7/36 5/36 3/36 1/36

Given a random variable X and a distribution for X, we
can think of Sx and the given distribution as forming a proba-
bility space. We sometimes speak of this probability space (and
hence of the given distribution) as a model for the random vari-
able X.

If two random variables 2 and 22 arise from separate
and independent physical experiments, we say that the random

variables are independent. If they arise from the same physical

experiment, but all events describable in terms of values of Zl

(in terms of events in Sz ) are independent (as events in the
1

probability space SE of the underlying experiment) of all

events describable in terms of values of Z2 (in terms of events

in sZ ), we also say that the random variable Z, and Z, are
2

independent. 1In the experiment of rolling one red die and one

blue die, 1let Xl be the number on the red die and X2 be the
number on the blue die. Let X = X, + X, be the sum on both
dice. Then xl and x2 are independent, but X1 and X are
not independent (because, for example, P(x1 =1 aﬁd X =12)

=0 # 1/6° = P(X, = 1)P(X = 12)). Later in this chapter, we shall

at independence of random variables in more detail.

Note. If we are given a sample space sE for a physical

experiment, then any function £ which maps SE into the real
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numbers defines a random variable, and if we call that random
variable X, then Sx must be f(SE), the image of SE under
f. Conversely, if we are given a random variable, we have a
numerical value associated with each possible outcome of the
physical experiment; hence we have a function £ which maps SE
into the real numbers. We thus reach the following more formal

definition of random variable: a random variable is a mapping

from the sample space of a physical experiment into the real

numbers.

For example, consider the sample space SE for rolling
two dice (one red and one blue). This space has thirty-six
points which we can label (1,1),(1,2),...,(6,6). We let
(xl{xz) represent a point in SE‘ Various random variables
can be defined on Spe The function f(xlfxz) =X determines
the random variable xl = number on red die. The function
g(xl.xz)l= X, determines the random variable X, = number on
blue die. The function h(xl,xz) = X; *+ X, determines the ran-
dom variable X = sum appearing on both dice. The function
k(xl,xz) = min(xl,xz) determines the random variable Y =
smallest number on either die. 1In each case, the random variable
is given by a function which maps SE » the sample space of the
underlying physical experiment, into the real numbers.

As soon as we choose a model for the underlying physical
experiment by assigning a probability function to the sample

space Sp , we immediately have a probability distribution for

each random variable on S_. For example, as we have seen, if we

use the equiprobable measure for the case of two dice, this

gives the distribution
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X l 2 3 4 a0 12

P(X = x) I 1/36 2/36 3/36 ... 1/36

for X and the distribution

y | 1 2 3 4 5 6
P(X=y) | 11/36 9/36 7/36 5/36 3/36 1/36

for Y.

Often, in considering a given random vériable X, we will
focus our attention entirely on X and will ignore other possi-
ble random variables for the same physical experiment. As we
have already noted above, we can then think of Sy ¢ the set of
possible values of X, as our sample space and we can think of
each probability distribution forﬁ X as a probability function
on this §ample space. Hence we can think and speak of the
different possible distributions for a random variable X as
possible models for X. Random variables are also sometimes

called variates or random variates.

Continuous random variables. If we have a random vaiiable

X, and if we use a set of models for X in which each of
the possible probability distributions for X gives a
continuous sample space in the sense of Chapter 2, we say that

we have a continuous random variable. Recall that in such a

case, a probability distribution is given by a probability

density function £(x) such that £(x) > 0 and IS f(x)dx = 1.
X
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Furthermore, for any a and b in SX y

P(a < X <b) = éf f(x)dx. Continuous random variables are

of special importance and usefulness in mathematical statistics.
(When we use a set df.models for a given random variable

X in which each of the possible distributions gives a discrete

probability space in the sense of Chapter 2, we say that we have a

discrete random variable. The sum appearing on two dice is a

discrete random variable.)

Examples of continuous random variables.

1. A balanced pointer on a circular dial is spun. It comes
to rest and the clockwise angle the pointer makes with a fixed
reference point on the circle is measured. Let the random vari-

able X be the value of this angle in radians (with 0 < X < 27).

It is often useful, in a case like this, to think of the random
variable as continuous (even though, in actual fact, we cannot
measure the angle beyond a certain discrete level of accuracy).
In this case, we would think of the interval [0,27] as the set
Sx of possible values. What would be an appropriate density
function? If the physical circumstances lead us to believe that
no portion of the dial is favored over any other portion of the
same size, we would take the constant function £f(x) = g; on

the interval [0,2m] as the probability density function. Note

that Qf“ f(x)dx = 1 as desired. f 1is called the uniform
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density function on the given interval. More generally, for a

random variable X with SX = the interval [a,b], the constant

is called the uniform density function for the

function bia
given random variable. Footnote. Strictly speaking, in the
exampie of the pointer, we should take the sample space to be
the set of x such that 0 < x < 2m. Adding the point 2 to
give the full interval [0,27] does not affect the value of

any calculated probability, since, in a continuous distribution,

the probability of any individual sample point is zero. ‘
2. A balanced needle is spun on a circular dial of radius

1. When it comes to rest, the line of the needle is extended ;

until it intersects a fixed numerical scale tangent to the circle. \

We take the origin of the scale as the point of tangency. The

random variable Y is defined to be the position of this inter- .

section point on the scale. What;is an appropriate density func-

tion for Y ?

Let the random variable X be the angle indicated in the figure, whe.

X takes values in the interval [-%,1]. We assume for X the
uniform density function £f(x) = % on this interval. Since

- -1 -
P(0 <Y <a) =P(0 <X < tan 1 a) = &;an 2 % dx = % tan"t a ,

we have
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P(0< ¥Y< a) = % tan"l a = 4? gly) dy.

is the unknown density function for Y. Differenti-

where g(y)
ating, we have, by the fundamental theorem of calculus,
1
giy) = m————
T(1+y”)

This density function gives a probability distribution known as

the Cauchy distribution.

3. A random variable with the standard normal curve ¢(x)

taken to be its density function is called a standard normal

variable. A random variable whose density is taken to be
standard normal except for a possible change of origin and a

possible linear change of scale is called a normal variable.

The general form of the density function for a normal variable is
1l ,x-a,z2

S -5{=)
N(x;a,b) = % ) (xba) = b/l'_ e 2 P with b > 0
m

(The appearance of b in i -

the denominator of the coefficient insures that f f(x)dx = 1.)

-0

Normal variables have a major role in mathematical statistics.

A later chapter will be devoted entirely to their study.
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As we have already noted, the distribution of a random
variable serves as a model for the experiment of observing a
value of that random variable in exactly the same way that
probability spaces in general serve as models for experiments.
Indeed, we have already used distributions as models. In the
case of a binomial experiment, for example, the number of
successes x can be viewed as a random variable, and what we

have called binomial distributions are possible distributions

for that random variable. Even when the specific distribution

of a random variable is unknown, we may be able to decide on

some limited set of possible distributions for the random
variable (such as the set of all binomial distributions for

some fixed n, for example). This set of distributions

then becoﬁes our set of possible models. For example, under cer-
tain circumstances, we might take the set of all normal
distributions as our universe (without deciding on particular

values for the parameters a and b in example 3 above).

The median of a random variable. Let a continuous random

variable X be given with a distribution. There must be

some value m such that P(X < m) = P(X >m) = 1/2. We call

this value the median of the given distribution. (In

special cases where the density function is zero over some
central portion of its range, there may be more than one such
value m; then the set of such m forms a finite interval,
and we take the midpoint of this interval to be the median.)
The median of a continuous distribution serves to indicate
the middle or center (in the evident intuitive sense given by

the gefinition of median) of that probability distribution.
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If we have decided (or are assuming) that a certain distribution is
correct for a certain random variable, then we sometimes speak of

the median of that distribution as the median of the random variakble.

When we speak of the median of a random variable, where we have not

specified a probability distribution for that random variable, we
are referring to the median of a hypothetical, unknown, correct

model for the random variable.

In the examples above, the median of the uniform wvariable on
[0,27] is 7m; the median of the uniform variable on [a,b] is 5—%—9 2
the median of the Cauchy distribution is 0; the median of a standard
normal variable is 0; and the median of the normal variable with
the density % ¢(§%5) is a.

Random variables associated with an experimental

procedure. Recall that it is possible for several different random
variables to be associated with a-single experimental

procedure. For example, (1) if our procedure is to roll a red

die and a blue die and if wertake X, = number on red die,

X, = number on blue die, and Y = sum on both dice, we then have

2
three different random variables associated with this procedure.

For another example, (2) if our procedure is to choose a student
at random from a certain class and to measure the student's
height in centimeters and weight in kilograms, then X = height
and Y = weight are two random variables associaﬁed with that
procedure. For a third example, (3) take a random variable X
and let our experimental procedure be to make five successive

independent observations of X. Let xl’xz""'xs be the five
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successive values obtained in a single trial of this larger
procedure. Then xl,...,xs are random variables associated
with this procedure. For a fourth example, (4) let X and Y
be any two given random variables, each with its own experi-
mental procedure. Define a new combined procedure as follows:
first, carry out one trial of the procedure for X, and then

carry out a separate independent trial of the procedure for Y.

Then X and Y can be viewed as two random variables
associated with this single combined procedure.

If we have several random variables associated with an
experimental procedure, then the values of some of the variables
may be linked or related to values of the others. For example
in (1), Y cannot be 11 unless X, is, at the same time,
either 5 or 6. Similarly iﬁ (2), larger values of X will
tend to be associated with larger values of Y. 1In (3), however,

particular values of X, will not be related to particular

values of X, (obtained in the same trial of the full
procedure) . Similarly, in (4) particular values of X will
not be related to particular values of Y (obtained in the
same trial of the combined procedure) .

Joint distributions. We now consider the case of two

random variables X and Y (associated with

some experimental procedure) . (The case

of three or more variables will be similar.) How can we give
a probability model for such a pair of random variables? We
can do this by letting Syy be the set of all possible pairs

(x,y) of simultaneous values for X and Y, and then giving
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a probability distribution on the set Sy,. In the discrete

case, we have a probability function p which assigns a

probability wvalue p(x,y) to each pair (x,y) in SXY' In the

continuous case, we have a dgnsity function h(x,y) on SXY'

is called a joint probability function. h is called a joint

P
density function. As in any probability space, we must have

) - j _ o
(x:y)ESXY p(x:y) =1 and s h(x,y)dx dy 1. (Note. This is

XY
our first mention and use of a continuous probability space in

more than 1 dimension.)

Example. Let lexz be the set of all pairs

(1,1)(1,2),...,(6,6) of values for a roll of two dice. Then
the usual model (for fair dice) is got by taking the joint

Cq s . 1
probability function to be: p = =— for all (x,,x,).

Probabilities are calculated. from a joint distribution in
the same way as from the distribution for a single random
variable. That is to say, we treat SxY as a sample space.

If event R 1is a subset of SXY , then

P(R) = i P
(XJ'Y) in R (X,Y)

or P(R) = JJ h(x,y)dx dy.
R

Independence. As we have-noted earlier in this chapter, if we ar

given two random variables X and Y associated with a single
experimental procedure, then we say that X and Y are

independent in some given model (joint distribution) if every
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event (in S..) definable in terms of X-values alone is indepenceni
of every event definable in terms of Y-values alone. The followina
facts are immediate consequences of this definition.

Let X and Y be given discrete raﬁdom variables
associated with a single experimental procedure. Let P, and
p. be the individual distributions for X and Y respective-
ly, and let p . . be the joint distribution. Then X and Y
are independent if and only if p(x,y) = pxpy for all =x. ¥-
Similarly, for continuoﬁs random variables X and Y, let £(x)
and g(y) be the individual density functions, and let hix,y)
be the joint density function. Then X and Y are independent

if and only if h(x,y) = £(x)g(y) for all x, y. (These facts

follow directly from the multiplication law for independent events.)

Functions of random variables. Given an experimental pro-

cedure and given several random variables associated with that

procedure, then any chidsen function of the given random

variables may be used to define a new random variable also

associated with that procedure. The distribution of the new

random variable will be determined by the joint distribution for

the given random variables.

For example, in the case of_two dice, if X, and X, are

given, then we can choose the function f(xl'xz) = xl + X, and
define a new random variable Y = X, + Xy- The joint distribution for
X and X, then determines the distribution for Y. Similarly,

1
we can form other random variables such as 2Xl, Xlxz, Xi, etc.

The distribution for W = Xi, for example, would be given by
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w 1 4 9 16 25 36
p, | 1/6 1/6 1/6 1/6 1/6 1/6

- L

= 3¢ for all

if we assume the joint probability function p
(%5 r%5)

(xl,xz).

Expectation. Given a random variable X and a particular

distribution for X, we can define the following quantity (where

S, is the set of possible values of X):

X
E._ = Z Xp {(for diZerote X%])-
X xGSx b4
EX = [ xf (x)dx (for continuous X).
S
X

This quantity is called the expectation or mean of the distri-~

bution for X. It is also sometimes abbreviated as E(X) or as My
If we have decided (or are assuming) that a certain distribution
is correct for a certain random variable, then we sometimes speak

of the expectation of that distribution as the expectation of the

random variable. When we speak of the expectation of a random

variable, where we have not specified a distribution for that

random variable, we are referring to the expectation of a hypothetical
unknown, correct model for the random variable. As part of the

above definition, we require in the infinite discrete case that

the infinite series be absolutely convergent, and in the continuous
case that the integral be absolutely convergent. This requirement

is necessary in order to obtain useful facts and laws about Ey.

as we shall see in a later chapter.
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Example. Let X be the number on a single die. Assume
X has the distribution of a fair die. What is Ey ? From the

definition we get

Pistributiens for random variables do not always have expectation:
This @ccurs in infinite discrete cases when the sgries defining Fiy
is divergent or conditionally convergent, and in continuous
cases when the integral defining Ey is divergent or condition-
ally convergent.

Examplesg. You play a game in which your opponent tosses a

coin until he gets heads. If he gets heads for the first time

on his nth roll, you pay him 2" dollars. Let X = your loss.:
§ - = 2.1 A L "
What is E, ? Here, EX-prx’22+44+88+...—

3

l+1+ 1+ ... and is not defined. Let Y have the Cauchy

distribution. Then

By = r’ E X2
—o 1 (14y2)

and again this is undefined since the integral is not absolutely

L
convergent (since lim [ __x_ézi = «),
L+ T(1l+y)

Example. Let X have the normal distribution f(x) = N(x;a,b).

It is easy to show that the integral J xf (x)dx is absolutely

convergent. It follows, from the symmetry of f(x) about x = a,

that EX = a.
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In what follows, we shall usually assume that all random
variables under consideration have means. Certain well-known
and useful laws of probability and statistics can be proved for

such variables. If a random variable does not have a mean, then

it may fail to obey these laws.

Algebraic laws for Ex. We shall now present some basic facts

about expectation. Proofs for these facts will be given at the end

of the chapter.

(I) Let a be a constant, let X be a random variable, and

let Y be the new random variable defined by Y = aX. Then

EY = aEX .

(II) Let X and Y be random variables (not necessarily
independent) associated with some given experimental procedure. ILet

Z be the new random variable defined by Z = X + Y. Then

EZ = Ex + EY .

(ITII) Let X and Y be random variables associated with some

given experimental procedure. Assume that X and Y are independent.

‘Let Z be the new random variable defined by Z = XY. Then

(IV) Let X be a given random variable and let k(x) be some

given function. We define the new random variable Y = k(X). Then

EY = Z k(x)p (discrete case)
pe
XES
X
= J k(x) £ (x)dx. (continuous case)
S

X
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Note that (I) is a special case of (IV). Note also that (II) does

not require the assumption of independence.

Example. Fact (II) is especially powerful and useful.
Consider an experiment where two decks of cards are shuffled
and then laid.out face up in parallel. We say that a match
occurs at a given position if the same card appears in that
position in each deck. Let X = total number of matches.

What is E_, ? Define xl,xz,...,xsz by

X
: th o
1 if match occurs at k position
Xk= i
. ' th § e
0 if no match at k position
Then, for each k, P(Xk =1) = gi . Hence
P S - S 2
Exk legs + 0+35 = g3 . But x—x1+'x2+...+x52. By
(11) BB E omax o H. Wl sas b oke 82 0, A AfsepE
£ X Xl st 52 52 !

solution to this problem (avoiding (II)) would require calculat-
ing the distribution for X. This calculation is much longer

than the above calculation of Ex' using (II).

Usefulness and significance of expectation. The expecta-

tion of a random variable (under a chosen model) has an obvious
intuitive meaning: it represents the average value of the
random variable in the long run if we assume that observed
relative frequencies will agree exactly with probabilities in
the chosen model. The expectation therefore serves to locate

or represent "typical values"of the random variable. The median
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of a continuous random variable (defined in Chapter 15) also
serves this latter purpose. The median has the advantage that
it always exists, while the expectation may not exist. As we
shall see below and in later chapters, however, the expectation
is more useful for certain theoretical and computational pur-
poses, because of the algebraic laws which it obeys.
The expectation is also useful for analyzing bets and gambling
games. Consider a gambling game where, on a single play, a bettor

wins w or loses %. In Chapter 1, we saw that the average winnings

per play, after n plays is given by
wE - 2(1 - fn)

where fn is the relative frequency of wins in those n plays. We

now define a random variable X, for a single play of the game,

as follows:

w, if bettor wins;
X = ;
-2, if better loses .

If we take a probability model in which p is the probability of

winning and g = 1-p is the probability of losing, then we have

E, =wp + (-2)g = wp - 2(1 - p) .

X

If this probability model is a good model, then for successive
independent plays of the game, we can expect fn to become close
to p as n increases. Hence we can expect the average winnings

per play to become close to Ex.

Expectation can also be used for more complicated bets where

the size of payoffs to the bettor (both positive and negative)
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may vary depending upon the particular outcome of the game. (Herc
a negative payoff means a loss.) If we define a random variable
X by

X = payoff on a single play ,

then Eg again provides an estimate of expected average winnings

per play. It thus provides a numerical measure of how favorable

(or unfavorable) a given bet may happen to be.

Examples. In the casino game of chuck-a-luck, the bettor

chooses an integer k from the set {1, ..., 6}. The casino then
rolls three dice. Let |
x = number of dice upon which k appears.
Then x can be 0, 1, 2, or 3. If x = 0, the bettor loses 1 dollar.
If x > 0, the bettor wins x dollars. What should the bettor exp(
as average winnings per play? Let
X = payoff on a single play.

The binomial formula yields:

Pix =0 = (DB =FH
2

1)

P (x D@ =55

2
P(x =2) = G)(F) (D = 37%

3

3.1

(3) (@ 316
1

P(x = 3)

125 75 5 1
Therefore, EX = ’1(§I€’ + I(ETE) + 2(515) + 3(§Ig)

-=125 + 75 + 30 + 3 _

17 _
316 € = mg ~ =12

"
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for an expected loss of almost 8 cents per play.

In the game of North American roulette, on the other hand,

a bet on a single number wins 35 dollars (if the bettor's chosen

number appears) and loses 1 dollar (if the chosen number does not

appear). Let
X = payoff on a single play.
From the description of the game in Chapter 1, we see that the

probability distribution for X is given by:

b 4 , 35 -1

p, | 1/38  37/38

Hence we have

e 13 a5y = - 2 -

Thus the expected ioss per play at chuck-a-luck is about 50%
greater than at North American roulette. (The reader may verify
that it is about three times as great as the expected loss per
play at European roulette.) At first glance, chuck-a-luck some-
times appears to bettors to be a fair or even favorable game.
For this reason, it has occurred widely and in various guises
as a sucker bet.

Variance. Given a random variable X and a particular

distribution for X, we can also define the following quantity:

2 o5
Vy = z,(x'“x) Py (for discrete X);
X€Eo
X
Vx = L (X-Ux)zf(x)dx. (for continuous X).

X
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This quantity is called the variance of the distribution for X.
The quantity /V; is called the standard deviation of the distriku-
tion for X, and is written as Oy Hence the variance of X is
sometimes written as oi. If we have decided (or are assuming)
that a certain distribution is correct for a certain random
variable, then we sometimes speak of the variance of that distrib-

ution as the variance of the random variable. When we speak of

the variance of a random variable, where we have not specified

a distribution for that random variable, we are referring to the
variance of a hypothetical, unknown correct model for the random
variable. (The question of absolute convergence does not arise

for Vx, since the terms of the series (for the infinite discrete

case) and the values of the integrand (for the continuous case)

are always positive.)

Example. Let X be the number appearing on a single die.

Assume X has the distribution of a fair die. What is Vg ¥

From the definition we get

V., = ) (x-ux)sz = ] (x-3.5)2px

X
= -i% = 2.92.
Hence we have Og = /%% = 1.71.
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A random variable must have a mean in order toO have a

variance, but it is possible for a random variable to have a

mean without having a variance. This occurs when the series OT

integral defining Vy is divergent even though the series Or

integral defining Ey is absolutely convergent. In what

" follows we shall usually assume tﬁét aiidrandom variables

under consideration have both means and variances. We shall see
ﬁelow and in a later chapter that certain uséful and important
laws of probability and statistics can pe proved for random
variables that possess variances. If a random variable does not

possess a variance, it may fail to obey these laws.

Algebraic laws for Vx. We now present some basic facts

about variance. proofs for these facts will be given at the end

of the chapter.

(v) Let a pbe a constant, let X be a random variable, and let

Y be the new random variable def{ned py ¥ = aX. Then

(vi) For any random variable Y, let Z = Yz. Then we also

write E, as E ,- For any random random variable ¥ we can prove
Y

2
v, = E o 2 = E - (E,) .
x (XEX) x2 X

(VII) Let ¥ and Y be random variables associated with some

given experimental procedure. Assume that X and Y are independent.

Let Z be the new random variable defined by 2 = X + Y. Then
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(VIII) Let a be a constant, let X be a random variable,

and .let Y be the new random variable defined by Y = X + a. Then

Fact (VI) is often useful in calculating variance. For

example, in the case of a single fair die, we have the simple

i

calculation E , (1+4+9+16+25+36)% = 9176, ahA héfica W have
2X g 7)2 35

xTE2" =% @ =13

X

Let X be a given random variable with a given distribution.
Assume that X possesses both mean and variance. We can then
define the new random variable

L o g
Y-T_.
X

Y is called the standardized form' of X and is sometimes written

as Sx. Applying (I) and (II), we have

=1 -

and applying (V) and (VIII), we have

1

—_— 1 i
Vg = 2 V(x—ux) 2 Ve = 1.
X X

The distribution for Y must have the same shape as the distributicn

for X, except for a linear change of scale which results in E, = 0

and VY = 1.

Usefulness and importance of variance. The variance of a

random variable (under a chosen model) has an obvious intuitive
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meaning: it is the mean of the squared deviation of the
variable from its mean, and hence serves to measure the spread
of the values of the random variable. Other natural measures

of spread also exist such as the interquartile range for (the

distribution of) a continuous random variable. {(The inter-

quartile range of X is gq' - q" where P (X > q') = 1/4 and
P(X > gq") = 3/4.) As we have alreadf noted, the variance_is

especially useful in both theory and computation because of
the algebraic laws which it obeys.

Further and more specific significance for the variance
is given in the following elementary theorem, which connects

the standard deviation to the probability of certain devia-

tions from the mean. The theorem holds for all random variables, X

which possess both mean and variances, and is known as Chebychev's

inequalitv. It is formulated in terms of the standardized
X=Uy .
variable .
o
X
Theorem. For any distribution for a random variable X for which
both Ex = My and Vx = sz exist and for any t > 0,
| X1y |
X 1
P[—-———_>_t] <
°% 2
(or, equivalently,
P(IX - uo|> toy,) < = .)
- x!= 7x’ =2

We prove the result for the case where X is a discrete random

variable. We abbreviate Hy @s and oy as 0. Beginning with the
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definition of V, and some chosen t > 0, we have

X
Vg = 02 = 7 (x - u)sz el )) (x - u)sz
xeSx Ix—u]ito s
& ) (tﬁ)sz = tzczP(lX - Ul > to)
|x-u|>to

Dividing through by 02, we have

| v

1> 2p()x - 1| > to)

or P(|X = uf > to) < l/t2 .

This completes the proof.(The ¢reod for & tallinmis clwdnn varithie f sdiilar, @i |
fa-pHa dx o place o § T (1-p? Px ¢y
Examples. (a) What are the mean and variance of X where
X has, as its distribution; the binomial distribution for n {
trials with individual success probability p ? We consider

first a single trial with probability p. Let Y be the num-

ber of successes in a single trial. Then

L]

EY l.p + O.q = p °

Also, E 2 = lp + 0°gq=p.
¥

Hence, by (VI), we have
2
V¢y =P -pP =p(l -p) = pq.

Using laws (II) and (VII), we immediately have

Ex=np

V, = npqg .
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Then

(The normal approximation theorem of Chapter 6 tells us that the
distribution for Z approaches the form of a standarq normal curve
as n » «,)

'(b) What are the mean and variance of X where X has as its

distribution the Poisson distribution with parameter value m? Then

= he -m_Xx © -m_x
E, = | xp(xim) = § X2 =7 21
X x=0 o *! i x!
® =m X=1 © =m X
e 'm - e 'm _
"l DT R St

To get V, , we use (vi) and first calculate E 5+ We have

X

P o= E x%e ¥ - E x2e MpX
x2 ¢ X i X

- E xe-mmx E (x+1) e Pm**tL

-m © -m x
0 X! 0
= m(m+l] = m® + m.
Therefore V, = m2 +m - m2 = m, and Oy = vym. (Again we know

X
from normal approximation (see Chapter 7) that the distribution

of the standardized variable Y = A-m approaches the form of a
m

standard normal curve as m = «.)
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(c) What are the mean and variance of X when X is a
continuous random variable with X > 0 and the exponential density

function £ (x) = me—mx, for some m > 0. Then

Evaluating by integration by parts, we obtain

EX = 1/m.

To get Vx » we first calculate E 5+ We have

X
G')_z_
E 5 = f x“me™™ ax.
X 0
Evaluating, we obtain
2
E., == .
X2 m2
2 2 1 1 1
Hence V, = E - (E,)" = -—_— = = and o, = = .
X x2 X ;? m2 m2 ' X m
. X - =
(In this case the standardized variable Y = 1 has the density
m

function g(y) = e ¥ for all values of m > 0.)

(d) what are the mean and variance of X, where X is a

normal variable with
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. : - 2
Carrying out the integrals, we can show that Ey = a and Vx = b".

(It is not difficult to show that the standardized variable

X-2  then has the standard normal curve as its density function.)

2=

Comment. We shall see in Chapter 17 that it is often
reasonable to assume that a given random variable is normal.
In that case, the relationship between mean and variance
given by Chebychev's inequality can be stated in a much
stronger form, for we can show, from tables for the standard

normal curve, that for a normal variable X:

0.32 for t =1,
P(|X-ny| > to,) 4 0.05 for t = 2,
0.003 for t = 3,

(Here Chebychev's inequality only gives the values i 0425,
and 0.11 respectively.)

Sample mean. Let X be a random variable given by some

experimental procedure. We define a new and larger procedure as

follows: make n successive and independent observations of X.

We then consider the new random variables Xl, csey xn' where Xi =
the ith observed value in this new and larger procedure. We define

a new random variable, associated with this larger procedure, as

follows.
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En is called the sample mean for n independent trials of the

original random variable X. The sample mean is traditionally

denoted by

x =X
n

We shall commonly use this traditional notation. 1In this notation,
the subscript "n" is always assumed to exist even though we do not
bother to write it. The notation x is one of the few exceptions,
in traditional statistics notation, to the rule that a random
variable is always denoted by a capital letter.

Evidently, the distribution of x will depend on the distribution
of X. What can be said about the mean and variance of X? We show

the following.

Theorem., -; = By :

_

"
=] L
<

Proof. For any random variable Y, we introduce the alternative .

notations
E(Y) = Ey
and v(Y) = Vo -
We can now write
oo w WIS = E(xl + see + Xn)
X n

E(X; + .2« + X ) by (I),

Sl S

(E(Xl) + ...+ E(Xn)) by (II),
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1

EE = E(x) = - (nE(X)), since E(X) = E(Xl) = e =

=Ext
Similarly, we have
_ xl oo X

Vi = V(x) = V( - )

=L v, + ...+ %) by V)
n2 1l * n !

_ 1
= ;7 (V(xl) + ... + V(Xn)) by (VII),
. . - -
= ;5 (nV (X)), since V(X)) = V(Xl) = ...
_ 1
-Hvx °

E(Xn

= V(X

The weak law of large fiumbers. The above results for E; and

V;, in conjunction with Chebychev's inequality, show us that if

a random variable possesses both mean and variance, then the
probability distribution for x becomes more and more narrowly
concentrated about the value Ex as n is increased. This result
is known as the weak law of large numbers. It can be étated as

follows.

Theerem. Let X be a random variable which possesses both
mean and variance. Let u = EX' Then for any ¢ > 0, no matter

how small,

lim P(]x - u| <¢) =1 .

n-»c

Proof. Chebychev's inequality asserts that for any random

variable Y and any t > 0,
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2
P(lY = uy| 2t op) < 1/t

Applying this to ¥ = %x and noting from the previous theorem that

Hy = BEx = By = U
and
2
O, = 0= = — 0, ,
Y e X
we have
to
p(lx - u| > =5 < 1/¢2 .
/n
Hence
to
P(lX - u| <« =% > 1 - 1/¢2 .
/n
For any given € > 0, take t = %;E . Then
X
_ o
P(IX-U]<E)31-T.
’ R € n
Hence
lim P(|x - u| < e) =1 .
n—+wo©

Central Limit Theorem for x. We have presented the weak

law of large numbers because of its easy, direct proof and its
simple, intuitive content. There is, however, a stronger and
deeper result which gives more information about the distribution
of x and which which we shall normally use. This result is a
generalization of the De Moivre-Laplace (normal approximation)

theorem for Bernoulli trials and is a special case of an even

more general result known as the Central Limit Theorem. (The
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more general result will be considered in a later chapter.)

Central Limit Theorem for x. If a random- variable X possesses

both mean p and variance 02, then, as we take larger and larger

values of n, the distribution of x becomes more and more nearly

3 . 2
normal with mean 1 and variance ¢“ /n.

(If we apply the Cenfral Limit Theorem for x to the random variable

for a single Bernoulli trial,

1 , with probability p,

o {0 » with probability g = 1 - p,
we get the previously studied De Moivre-Laplace normal approximation
theorem.) '

We shall not give a proof for the Central Limit Theorem for
X (though the proof is not difficult), and we shall not discuss
the rate at which the distribution for x approaches a normal
distribution (though this information is important in applications).
We shall, however, make various applications of the Central Limit
Theorem for x and shall usually assume, for such applications, that
when n > 50, the approximation yields two-decimal=-place accuracy
for probabilities of the form P(a < x < b). (In fact, we can often
get two-decimal accuracy when n > 10, as we have seen in the special
case of the De Moivre-Laplace Theorem with p = g = 1/2. The rate
of approach to normality depends upon how symmetrical the distribu-
tion for X is, about the value Ex. If the distribution for EX is

sufficiently asymmetrical, the rate can be much slower than n > 50.)
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The Central Limit Theorem for x holds no matter what shape
the original distribution of X has, provided that X has mean and
variance. If X does not have mean and variance, then both the
Central Limit Theorem for x and the weak law of large numbers may
fail for X. For example, if X is a continuous random wvariable
with the Cauchy distribution, then the distribution for x can be
shown to be identical (for all n) with the original distribution
for.X. There is thus no change in the shape of the distribution
for x as n increases, and hence there is no progressively narrower
concentration of the distribution for x about any value.

The Central Limit Theorem has profound theoretical and
practical implications. For this reason, and because of its extreme
generality, it. is often viewed as the single most important result
in all of probability theory. We shall present a more general
version of the Central Limit Theorem in a later chapter.and shall
discuss its implications further at that time. For the moment, we
note that the Central Limit Theorem for X gives us a theoretical
counterpart to weak stability of relative fregquencies (discussed
in Chapter 1), that it extends this weak stability idea from
relative frequencies to sample means in general, and that it gives
us a simple and powerful way to calculate relevant probabilities.
We illustrate this in the following example.

Example. We return to the game of chuck-a-luck described

earlier in this chapter. Recall that if Y is the payoff to the

bettor on a single play, then the distribution of Y is given by



Y , -1 1 3
125 75 15 I
Py 216 216 216 216
We have already calculated EY = - f%% = -.079 . We can also
calculate
_ 2. 269 .17 .2 _
and hence we have UY = v¥1.239 = 1.113 . Let us now look at this

situation from the point of view of the casino. Let X = payoff

to casino on a single bet. Then X = -Y, and we immediately have

E, = .079

X
and

Ox = 1.113 .
Let Xl, 400 Xn represent the payoffs to the casino from n different
bets of one dollar each. We assume that Xl' oy Xn may be treated

as independent random variables. We ask the following gquestion:
what is the smallest value of n such that the probability is at
least .99 that the net return to the casino is positive? We can

use the Central Limit Theorem for x to get an immediate answer.

We have

Hence X - .079 is a standardized variable and, by the Central
1.113//n
Limit Theorem, it has a distribution which approaches the standard

normal curve. Note that the net return is positive provided that

x > 0.
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x - .079 , _ __.079 . Thus we seek to have

1.113/vn 1.113//n

We have x > 0 =

P{x - .079 _ .079/5] - .99
1.113/vn 1,133

X - .079 . :

= - - 1is standard normal. From the table for the

1.113/v/n
standard normal curve, we see that this occurs when

where

.079%n _
115 = 2-326

Solving for n, we have

_(2.326) (1.113)
/n = 079

or n = 1074.

Thus chuck-a-luck is virtually certain to provide a positive

return to the casino by the time that 1000 bets have occcurred.
(Note. Wﬁat about bets that are placed by different bettors on
the same roll of the dice? The payoffs to the casino on these
bets are no longer independent as randoﬁ variables. Since the
Central Limit Theorem only appliés to independent random variables,
does this mean that the analysis just given ceases to apply? 1In
fact, it is possible to show that provided the different bets on
the same roll are on different numbers, then a guaranteed (.99
probability) return to the casino must occur at least as soon

as it would occur if all the bets were given by independent random
variables (i.e., it must occur for a value of n no larger than

the value given by the Central Limit Theorem. We omit details.)
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Proofs for facts (I) - (VIII). We give proofs for the case where

the random variables are continuous and are defined on the interval
(->,»), Proofs for bounded continuous variables and for discrete
variables are essentially the same. |

We begin with some simple, though not immediately obvious,
facts about density functions and joint density functions.

(1) Let réndom variables X and Y have the joint dehsity

h(x,y). Then we have, from the fact that P(R) = JJ h(x,y) dx dy:

b e
J h(x,y)dydx

P(a < X<b) = J
= 2w

This shows us that f(x) = { wh(x,y)dy must be the density for the random

variable X . Similarly g ;T = Jw h(x,y)dx 1is the density for Y. (f(x) and

-0

g(y) are sometimes called the marginal probability densities for the joint

probability density h(x,y) .)

(2) Let X and Y have the joint density h(x,y) , and let Z be a new
random variable defined as Z =X +Y . We obtain a density function for Z

as follows (from h(x,y) ):

o+ -
© 2 tAZ-Y

P(z, < x+y < z_+Az) = J h(x,y)dxdy
0o — - ‘0
-an zo-y
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» j h(z -y.y)az dy

zo+Az-y

(since J h(x,y)dx = h(zo-y,y)Az by the definition of definite
Z. =y
0

integral)

-]

~AZJ h(z,-y,y)dy

Hence tne density function for Z is j(z)=J h(z-y,y)dy , by the definition

of density function.

(3) This now gives us the following simple formula for the expectation

of Z=X+Y (in terms of h(x,y) ). By definition, and from (2)‘above, we

have:

E; = J zj(z)dz = J zJ h(z-y,y)dydz

= J f zh(z-y,y)dydz

- -0

z=x+y

yey > We get EZ:J_mJ-m (x+y)h(x,y)dxdy .

(Note that the Jacobian=1 for this change.)

Making the change of variables {

We now prove our basic facts in the following order: (1I), (1v), (T), (xTI),

(vi), (v), (VII) and (VIII).

Proof of LI). This crucial result follows from the last formula in (3) above,

and from the formulas in (1) for f(x) and g(y). We have:
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Exey = E7 = I J_m (x+y)h(x,y)dxdy

j}ﬁm h{x,y)dydx + J:yrm h(x,y)dxdy

u

L]

= J xf(x)dx+j yg(y)dy = EX + EY

- 00

Proof of (Tv). We consider the special case where k(x) is a strictly in-

creasing (and therefore one-one) function. The more general proof is essen-
“tially the same but has added technical features to take care of the case
where k is not one-one. We assume that Y=k(X) and that X has density

f(x) . Let g(y) be the density for Y .. Then
Ey = J ya(yddy = [ yi9(y;)ay; (i=...,-2,-1,0,1,2,...)
Let X and CAX, be a decomposition corresponding to the Y; and Ayi .
That is to say, yi=k(xi) s AY=Yi407Y5 5 and Axe=x. o-X. . Then
9(y;)ay; = Plyy =¥ < yytay;) = Plxg < Xoxphax,)=f(x;)ax,
Hence Ey = 7 yig(yi)Ayi % Ik(xi)f(xi)axi
es EY = I k(X)f(X)dx
Proof of (1), Apply (IV) to the special case Y=aX . We have EaX=J axf(x)dx

ajm xf(x)dx=aEx .
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Proof of (III). Result (IV) can also be proved for joint distributions. It
says that if Z=k(X,Y) for some given function k , and if X and Y have

the joint density h(x,y) . then

5 f Jw k(x,y)h{x,y)dxdy . (This is a more general form of
e (3) above.)

2
The proof is similar to the proof for (1v). Applying this fact to the case Z=XY, we ge
Eyy = J J xyh(x,y)dxdy

=0* =00

Now if X and Y are independent, we know that
h(x,y) = f(x)gly) .

Hence Exyy = J J xyf(x)g(y)dxdy = Jm xf(x)de ya(y)dy = EXEY

Proof of (vI). By definition, VX = Jm (x-u)zf(x)dx where ﬁ=EX . From ‘

(v), this immediately gives that V, = E
. X (X-u)z

2 2

Furthermore, (X~u)2=x =2uX+u Hence

V,=E =f ,-2uE +u2 (where we make use of (I) and (II)). Hence
X 2 2 2 X
X==2uX+u X
2,2 2
Vy=E ,=2u™+u"=f -u" . _ ‘
X x2 x2 ‘

Proof of (v). Using (IV) and (VI), we have

V.=E 2=E

o=a E
(aX-u_y)

2 X

ax” 20
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2

s 2. 2
Proof of (vip. By (I)» Vx+Y-E(x+Y)2-(ux+uY) -EX2+2EXY+EYz Hy -2uqu-uY

If X and Y are independent, then, by (III), EXY-uqu=0, and we have the

desired result,

Proof of (VIII). V = E s by {T)

(X+a - ux-a)2 » by (1)
by ®1) .

]
m
[a%]
n
-
><
-
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EXERCISES FOR CHAPTER 8

Four identical light bulbs are temporarily removed from
their sockets and placed in a box. The bulbs are then taken
at random from the box and put back in the sockets. What

is the expected number of bulbs that will be replaced in
their original sockets?

A fair coin is fairly tossed until a head appears. If the
first head appears on an odd-numbered trial, the player
receives 10 cents; otherwise, he pays 15 cents. What is the
expected value of his winnings?

The random variable X takes the values -1,0, and 1 with
probabilities 0.3, 0.2, and_0.5, respectively. Find (a) the
mean U, (b) the variance 02, (c) the standard deviation o.

X is a random variable which takes on values in the interval
[0,1] and which has the density function f(x)=cx for 0 < x < 1.
Find the constant ¢ and the mean and variance of X.

Using the formulas

1 +2+3+ ... +n-= Eiﬁgil
12 & 22 + 32 % ooy B n2 _ n(n+1é(2n+1)
show that the mean and variance of a random variable that
takes the values 1, 2, 3, ..., n, each with probability 1/n,
are
_ n+l 2._n° -1
== G5

A regular tetrahedron is a symmetrical solid with four faces.
The faces are numbered 1, 2, 3, 4, and the tetrahedron is

rolled on the floor. Let the random variable X be the number
on the bottom face after the tetrahedron is rolled. Use the
result of Problem 5 to find the mean, variance, and standard

deviation of X.
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Random variables X and Y are independent and have standard
deviations 7 and 24. Let Z = X-Y. What is the standard

deviation of 2?

Find the median of the continuous random variable X whose

density function is f(x) = me_mx, x > 0, where m is some

given positive real number. (See pages 55-57 in Chapter 1.)

Consider the game of European roulette as described in Problem
1-4, and recall the special treatment given to bets on red

or black. Consider a bet of one dollar on red. Let X be
the bettor's winnings on a single play.

(a) Find Ex
(b) Find VX

{c) Use the Central Limit Theorem to find the smallest value
of n such that the probability is at least 97.5% that the
bettor has a net loss after n successive bets.

Bets on odd ({1,3,5, ..., 35}) or even ({2,4,6, ..., 36}) in
European roulette do not receive the same spec1al treatment
that is glven to bets on red or black. For bets on odd or

on even, 2 = w = 1. Consider a bet on odd and let X “be the

bettors winnings on a single play.

(a), (b), (c) as in Problem 8-9.

Consider a bet on the single number seventeen at European
roulette. Let X be the bettors winnings on a single play.

(a), (b), (c) as in Problem 8-9.

Consider a bet of one dollar on pass in the game of craps.
(See page 29 in Chapter 1 and Exercises 1-5 and 4-10.) -
Let X be the bettors w1nn1ngs on a single bet. Assume that

P(pass) = .493.
(a), (b), (c) as in Problem 8-9.

You are told that for a certain sucker bet, the probability
is 5/6 that the bettor is behind after 100 bets.

(a) How many bets are needed to get a probability of .975
that the bettor is behind?

(b) How many bets to get a probability of .999 that the
bettor is behind? '






