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CHAPTER 6. NORMAL APPROXIMATION.

If we toss a coin 1000 times, take heads to be success, and
ask how many successes occur, we have a binomial experiment. We
can then use the binomial formula to get the probability of exact-

ly 450 successes as

(lOOO ( )lOOO

Suppose now that we want the probability of getting between
450 and 550 successes (inclusive)._ This will be given by the

expression:

e - e it et et
J—

1000y (1,1000 _ 1000 1000 1000, ,1 1000 100 10
Cis )('g) (451)@ (549)@ + (o) (3)
Without a computer or programmable calculator, it would be

difficult for us to evaluate this expreséiou directly. There

is a fundamental fact of probability theory, however, which

enables us to get a numerical answer easily and quickly.

Let us return to Figures 5.2 and 5.3 (in Chapter 5) for the
binomial distribution b(x;n,p). Recall that, as n increases,
the graph of Figure 5.2 flattens, with the height of its

highest bar proportional to 4%%, while the graph of Figurs 5.3 be-

comes sharper, with the height of its highest bar proportional

to #T . This leads us to look for some intermediate kind of grapn
where, by choosing the horizontal scale pProperly, we can make the
nhelght of the highest bar remain nearly constant as n increases,

while the probability of each bar continues to be given by its-
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total area. For example, if we take a horizontal scale so that
individual bars have width =#%., We can expect the neight of the

highest bar to remain nearly constant, since the area of the

highest bar is nearly proportional to {%- (and approximately equal

to + See@ Chapter 5), while the width of the graph as a whole

1
v2mpgn

will range from 0 to Yyn along its horizontal axis.

It turns out that we get our most useful result if we take
the horizontal scale so that individual bars have width 4%
where a = L (that is to say, each bar has width 1/vnpq),
vPq :
and if we then move the origin - of the horizontal scale to

X = np, the approximate position of the highest bar. We cail
this a type C graph. The horizontal scale is then given by

z = £BB We find that, as n increases, the over-all shape
vnpgq
of the graph is more and more closely given by a certain fixed

bell-shaped curve. The curve is called the standard normal curve

or standard Gausszan curve. This fact is callegd the approxima-

tion to the binomial distribution by the normal curve, or, more

briefly, the normal approximation. (It is also sometimes called

the DeMoivre-Laplace limit theorem. It is a special case of a

more general result to be given in Chapter 16, the central limit

theorem.) We can use a table of values for areas under the normal
curve to solve problems about binomial distributions (just as we

can use trigonometric tables to solve problems about trlangles)

f}/mhé_gtandard normal curve is given by the equation
» 2% :

Yy = —é—e 2 -/ The curve is symmetric about the y-axis, and has

Y2m

the _shape ihdicated in Figure 6.1.
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Figure 6.1.

The curve is never zero, but outside the interval =3 < z < 3,
Y < 0.005, and outside the interval -5 22 <5, y< 0.000002.
For z=1, y % 0.24, and for z = 2, Y % 0.05. The total

area under the curve is exactly 1 (because one can show, by

1 7
calculus, that —— e dz = 1.)
=0 Y27
. ; ,22
& zq and Z, are two values of z, then Normal Areaz
= . ] 1
will stand for the numerical area of the region shaded in the
_ ) z
figure. (In the notation of calculus, Normal Areaz2
1
- z2
¢ 1 =% . -
= — e dz.) If one is given values of
zy v 2r
e - — z

-
&

zl and 22 » one can find a value for Normal Area 2

from published tables or on a programmable calculator.

Usually, such tables give A(z) = Normal Areag where 2z 1is posi-

z
tive. Hence, for example, if we want Normal Areaz2 with z,

1
negative and z, positive, we use the symmetry of the curve and
, # -2 2
take Normal AreaO L Normal Areao2 = A{-zl) + A(zz)- Sometimes,

' instead of A(z), tables give the quantity ¢(z) which measures

the entire area to the left of 2z under the curve. Then

z
Normal Areaz2 = @(zz) - ¢(zl). Of course, for z > 0,
1 ; - -
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0(z) = A(z) + % , and for z < 0, o(z) = % -~ A(-2). A table

for A(z) is given at the end of this chapter.

We can also use the symbol "«" and write Normal Aredfm*=l

for the total area under the curve. Then A(s) = 1/2, and

®(z) = Normal Areazm.

We use this curve in the following way. Suppose fhat we have
a binomial experiment with n ;rials and with probability of suc-
cess p. We wish to get the probability that the number of suc-
cesses falls between x; and X, (inclusive). (In the example
Just abofe, n =‘1000, P =%, x, = 450, and Xy = 550:)_ With a
bar graph of type A (see‘Chaﬁfer 5), this probaﬁility would be
the total area of the bars lying between Xy - % and X, ¥+ %.

Hence, to apply the normal approximation (using a graph of type C),

we first find

X ~%t-np
Zl = =
. J  npq
and ' : o o
u,._x_é_._.’.__é_ pr— R_ _P_. =
22 = .
/' npq :

F
The value of Normal Area . then gives us the desired answer.

) Applying this to the example above, we get

z = 350 - % - 500 _ -3.19

SR -

2=550+%'500 g3'19
/250
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rrom a table for A(z), we get
3.19 &
Normal Area = 2-°A(3.19) = 2(0.4993) = 0.9985.

=3.19

We thus see that if we toss a coin 1000 times, it is virtually cer-
tain that the number of heads will be between 450 and 550 .

For a second example, take the binomial experiment of tossing
a coln 100 times. What 1s: the probability that we get between

45 and 55 heads (ihclusive)? Using the normal approximation, we get

2. = 25 =¥ -50 . 5.1,
4 /5
z, = 55 + % - 50 - 1.0 .
125
1.1
Therefore the probability is gziven by Normal Area_l 1 Prom tables

we £ind this to be 2 - A(1.1) = 2(0.3643) = 0.729.

Notice how these two examples aéree with the observed weak
stability of.relative frequencies described in Chapter 1. The
second example tells us that in tossing a coin 100 times, there
is a 0.73 chance that the observed relative frequency of heads
will lie between 0.45 and 0.55; and the first example tells us
that in tossing a coin 1000 times, the observed relative frequency
is almost certain to lie between 0.45 and 0.55. We further discuss
the agreement of normal approximation with weak stability at the

end of this chapter.

How-adcurate is the normal approximation? -In both of the
above examples, the approxigate value turns out to be exact to
the number of‘significant figures shown. As a rule, the approxi-
mation will be accurate to two decimal places whenever n :is

large enough to make both %? and %? > 9. (As before g = 1l-p.)
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Thus for coin tossing, we get two decimal place accuracy when
n =9, and for rolling a die to get sixes, we get two decimal
Place accuracy when n > 45.

As a further example, consider the following. A die is
rolled 50 times. What is the Probability of getting at least
5 sixes? We have n = 50, p = 1/6, and g = 5/6. Hence

np = 50/6 = 8.33. We can use normal approximation with two

decimal place accuracy since %? =10 > 9 and %? = 250 > 9.
z
We seek Normal Areaz2 where
1 5 w % - 8.33
21 = = = 1.45 .
y A
50 (g) (g)
50 + % - 8.33
We could take 2, = = 16.00, but since our event

A1, ,5
50(3)(39 )
Puts no upper limit on x, we take Z, = ® . (The result is the

same, since A(l6) = A(w) = 0.5 to many decimal places.) We

now have, for our result,

Normal Area’; ,. = A(1.45) + A(=) = 0.43 + 0.5
= 0.93,

as the probability of getting at least 5 sixes in 50 rolls of
one die.

For still another example, consider the following. A
coin is to be tossed’ n times. How large should n be so
that with p?obability 0.95, the observed relative frequency
of heads will lié between 0.49 and 0.51? We first observe

from the table of normal area values that Normal Areafz = 0.95

when =z = 1,96.
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Hence, using symmetry, we seek an n such that

where p = q = 1/2, and § = 0.51. Substituting for x, P

and q, we get

0.5ln + 0.5 - 0.5n _ 1.96

1
3 /n

Squaring, and then solving the resulting quadratic

equation, we get n = 9504. (Note that

1
X =3 - np
; 2 ; X 5
setting =-1.96 with = = 0.49 gives the same
/apq a

quadratic equation.)

The reader will find it helpful to memorize normal areas
for certain simple values of z, and 2, (just as it is help-
ful in geometry and calculus to memorize values of trigonometric

functions for certain simple angles). 1In particular,

NYIN

' 1
Normal Area = .683 = approximately

=
35
- we

approximately

Normal Area 2 = 954

n
O
\O

and : Normal Area 997 = approximately

2
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We conclude by observing that the normal approximation can be
used to find values for the binomial formula itself. For example,

if we wish to find a2 value for

b(12;25,0.4) = ($2)(0.4)%%(0.6)23 ,

we can proceed as follows. We are iooking for the area of one
particular bar in the graph of the binomial distribution for

. 1
n=25 and p = 0.4. This will be the area lying between 12 - 3

z
and 12 + %. Thus we want Normal Areaz2 where
1
zl=12-é-10 —0.612;
O' O.C
and z, = 12 + 3 - 20 s 18208
: o -
1.020 . '
Using tables we obtain Normal Area 1o = 0-116. (The exact
value, of 1b(12;25,0.4), to three figures, is 0.3114,)
22
It is common to abbreviate the function L e 2 as v (z).
_ v2r
The area of a single bar for b(x;n,p) (in a type C graph) can
also be found as v (z) - d, where d = - is the width of the
npq

bar, ¢(z) is the height of the bar as approximated by the stan-
dard normal curve, and z = xR is the horizontal value at the
Y npq

center of the bar. Values of ¢ are easily obtained on an elec-
tronic calculator. A table for ¢ (z) is given at the end of this

chapter. For the example of b(12;25,0.4) just above, we get
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z = 12 = 10 = 0.816, and from tables for ¢, we get
v25(0.4) {0.6)
v(0.816) = 0.2855. As d= L = 0.408, we have
¥25(0.4) (0.8)

¢(a) = d= (0.2855) (0.408) = 0.1l1s, the same approximate value
as before. -

Note on proof.. Normal approximation can be proved by taking

the binomial formula, putting Stirling's formula in place of the
factorials in the binomial coefficient and simplifying. The proof
is straightforward, elementary, and similar to the proof given in

Chapter 5 that the height of the highest bar in a type A graph is
1
v2npgn

. We do not give details here.

approximately

Further illustration of normal approximation.

The following figures give graphs .for three binomial distribu-
tions. The first figure gives the distribution for n = 4 and
p = 1/3, the second for n =9 and P = 1/3, and the third for
n=18 and p = 1/3. In each case, graphs of type A, type B , and
type C are given. .On each type C graph, the standard normal
curve is also drawn. The type A graphs illustrate how the form of
the distribution itself changes with increasing n. The type B

graphs, where the major portion” of the area is confined to a
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smaller and smaller part of the interval from 0 to 1 around the
value 1/3 (= p), show how the calculated distributions agree with
the observed stability of relative frequencies described in Chapter
1. The type C graphs, where the silhouette of the graph guickly

approaches the standard normal curve, illustrate normal approxima-

tion.

In each case, tables are given showing the calculated values
from which the graphs are made. Note that with every graph, the
probability of an observation falling in a certain interval of x
values is given by the total area of the corresponding bars in the
graph. Indeed, in each graph, the width of the ba;s is defiﬁed
ahead of time (1 for type A, -1/n for type B , and 1//npg for
type C ), and then the height of the bars is adjusted to make
bar area = probability (and h;nce Ehe total graphical area = 1).

» Normal approximation simply says that the areas for the type
c graph can be approximated by using areas under the standard
normal curve, and that this approximation becomes more and more
accurate as n increases. The term 1/2 occurs in the calcula-
tion of end-points for normal approximation because we are really
approximating the total area of certain bars in the type C
graph, and one-half of a bar at each end will be outside the interval
of 2z values that corresponds to the interval of X values for
which we seek a probability.

For caée 2 (n=9) and case 3 (n = 18), ¢the bars in the
type B graphs have been drawn as single lines because of limited

space.



| CASE 1; n =4, p=1/3, g= 2/3.
— P (x) . BAR WIDTH = 1
BAR HEIGHT = P(x) = (I)p¥q"™¥
2 - TYPE A _ e = (i)(%)x(§)4'x
[ : e 2 -
[} 1 2 3 o
nP (x)
TYPE B _
T = BAR WIDTH = .25
’_ . - BAR HEIGHT = n<P(x) = 4P (x)
l_ cp—
1w = ——— = 1.06
D_ J 1 . . nr o ) __740-13;--32_
, | Jg.5.2
AMpaR (x) '
0 (2) IXPE C BAR WIDTH = —
. a5g
T.5 T 1 _ 7 ‘BAR HEIGHT = /npq - P(x)
<+ -3 -2 L:i e 1 b 3 L ] J"" ' = 0.94 P(x)
TABLE . LEE e . z = XZ0p _ 1‘.05(}{-%)
/== a B < Vnpq
% P (x) x/n | nP(x)| z '‘Wpaetx)! o(z)
— . . 2
) N -2 /2
0 .20 0 .80 (-1.41| .19 | .15 e
1 .40 «25 1.60 | -.35 .38 .38 L
2 .30 | .50 1.20 ¢ .71 .28 .31
3 <10 .75 A0 1 1.71 .09 .08
4 .01 |1.0 .04 | 2.83 .01 <01 . .
Figure 6.2
e
4

T A g
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CASE 2; n =9, p=1/3, q = 2/3 133 R
P(x) '
i BAR WIDTH = 1
0.5 + TYPE A BAR HEIGHT = P (x)
B = ¢9y,1,x%x,2, 9-x
| = (x') (3) (3-)
~=E_. __h_'—L=
(-] 4 i 3 o 5 6 > & q X
‘ nE:(x)
% L
S BAR WIDTH = + = .11
TYPE B n .
BAR HEIGHT = n¢P(x) = 9P(x)
1.k .
' 4
A x/n
°o 4 U ,
/Apg B (x) BAR WIDTH = —— = ¢.71
0.5 L5 (zy ~ EEC i
3 e T BAR HEIGHT = vnpg - P (x)
m z o e B
4 5 2 4 o 31 2 3 4 _
. z = E0R = o, 71 (x-3)
TABLE /npg
A 2
A e B c o(z) = 2 ¢"27/2
- - M—.\ -~ . — G, 5 - /i_:r?
~ x P ¢x) x/n | n:P(x) [ z YnpgP(x)| v(z) |
0 { .03 0 .27 1-2.13 n4 .04
i .12 J11 1.08 [=1.42) .17 .15
2 | .23 w22 2.07 | -.71] .32 s 4
3 .27 .93 2.43 of .38 .40
4 .20 .44 1.80 711 28 .31 -
5 .10 .55 .90 | 1.421 .11 .15 Pi 6.3
6 .03 .56 27 1 2.131 64 .04 oL ©.
7 .01 .77 .09 | 2.84| .01 D3
8 .00 .88 00 - .00 .00
a .00 .99 .00 - .00 .00
Y
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f CASE 3; n =18, p = 1/3, g = 2/3 -
P (x)
BAR WIDTH = 1
B BAR HEIGHT = P(x)
3T TYPE 3 = (18)( ) % 18-x
e s R N N s T S _ X
1 a 3 ] Fa & ? § ? w “ 72 3 o " s 1 ? S
BAR WIDTH = & = 0.055
_TYPE B BAR HEIGHT = n<P(x) = 18P(x)
x/n
. 1 - R = S
/npg P(x) TYPE G BAR WIDTH = —=— = 0.50
.v(2) mpq
e} BAR HEIGHT = /npq * B(x) = 2B (x)
m Z
- -3 -z -1 o‘ 1 z 3 4 5 [
z = ZIR = 5, 5(x-6)
TABLE J/npq
A B c sl
X P (x) x/n [n<P(x) z  Inpg.P(x)] v(z2) . 27 )
0 .00 0 0 |-3.00 .00 .00
| .01 |.055 .18 |-2.50 02 <02
S .03 .11 .54 {-2.00 .06 .05
3 .07 |.165 1.26 {-1.50 .14 .13 -
4 :13 .22 0 2.34 {-1.00 .26 .24
5 .18 }.275 3.24 | -.05 .36 .35
6 .20 |.33 3.60 0 .40 .40 3 g 4
7 .17 }.385 3.06 .50 .34 .35 Agure O
8 12 1.44 2.16 | 1.00 .24 .24
9 .06 |.495 1.08 | 1.50 .12 .13
10 .03 |[.s55 .54 | 2.00 .06 .05
11 .01 |.605 .18 | 2.50 .02 02
12 .00 }.66 .00 | 3.00 .00
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Note on stability of relative frequencies. Normal approxima-

tion gives us a theoretical verification of the approximate formula

2/{n stated in Chapter 1 for the weak stability of relative fre-
quencies. If an event has pProbability p, then, in n independent
trials, by normal approximation, the observed number of occurrences

must have approximate probability 0.95 of lying between X, and

X, (inclusive), if Xy and X, are chosen so that, as nearly as
possible,
X = % - np X, + % = np
= - 1.96, and = 1.96 .
Ynpg ynpg

Dividing numerators and denominators by n to get relative fre-

quencies, we have

: x
Therefore, ~ p = 1.96 + T
- x -
2 _ = /'EE - L
and = P =1.96 = 5

Subtracting to find the length of the interval of relative fre-

bl
quencies between ;% and ;% r We get

X X
?? _ ?% < 2(1.96) /_EE - % i
(e}
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Now pg is maximum when p = %, and in that case /pg = %.

1.96

X x
/n - n n Yn /1.

Thus, if we assume a model which assigns probability p to a
given event, then the probability is at least 0.95 that an
observed relative frequency of the event (in n trials) will

lie in the interval centered at p whose total length is
2

/n

In fact, the above analysis gives us .a better formula
than 2//n for the weak stability of relative frequencies in
the case where we know (or can assume) a specific limiting

value 1A for the relative frequency. For we have, from

above, probability 0.95 that

X X
2 7L 201.96) AN | o A=A
n n — \/IT n

When A = 1/2, this new improved formula, 4V ;L%gil ”

gives the same interval as before, but when A # 1/2, it
gives a smaller interval centered at A. For example, if we
consider bets on a single number at roulette (as in Chapter 1),

if we take X = 1/38, and if we ask for a value of n such
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that, for that n, the observed relative frequency of winning
will nearly always lie within the distance é% - 5%-= 0.0015

of X (this is the interval which gives an average net loss to
a bettor making repeated bets of constant size--see Chapter 1),

then we have

< . 37

38
n

w
Q0| ~J

= 2(0.0015) = 0.003,

or n =~ 46,000.

- - . ..

If we ask the same question using the pPrevious formula 2//m,
we only get £ - 0.003, or n = 450,000.
: vn

Note. The above deduction of the weak stability law
from normal approximation assumes that the conditions for

normal approximation hold. In the case of the improved

formula, this means that both f@% and EL%Fil- must be > 9,
or that n 3_21%311 > %- and n > f?% > Tgx - In the case of

the cruder formula 2//@, it can be shown that it is enough
to take n > 9.

Example. Consider the games of roulette and craps as
described in Chapter 1 (see also Exercises 1-4 and 1-5). What
is the pProbability that after 10,000 plays, a bettor is ahead
at roulette, and what is the probability that after 10,000

plays, a bettor is ahead at craps? In the game of roulette,
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the bettor will be ahead if x, the number of succesées,is
such that xw - (1,000-x)% = %35 - (10,000-x)1 > 0, which

is the same as x > 278. Using normal approximation, we have

P(x > 278) ~ Normal Area> ,
1

_ 277.5 = 263.2
z =
' 100 ,/(—I } (2L
38° '38
1

Therefore P(x 2 278) ~ 3 - A(0.89) = 1 - 0.31 = 0.19. Thus

= 0.89.

where

the bettor has almost one chance in five of being ahead after
10,000 plays of roulette.

In the game of craps, the beétor will Ee ahead if
xw = (10,000-x)2 = x1 - (lO,BOO-x)l > 0, which is the same

as x > 5060. Using normal approximation, ‘we have

P(x > 5000) » Normal Area: +
2

i z, = 500.5 - 4929.3 = 1.42.

100 J(o.493) (0.507)

(Here we have used the result of Exercise 4-10f, that ©P(pass)

at craps = 0.49293.) Therefore P(x > 5000) =~ %_» - A(1.42)

=

= 0.42 = 0.08. Thus the bettor has less than one chance

B =

in ten of Eeing ahead after 10,000 plays of craps.
We see that the gambler at roulette has a better chance

of being ahead at roulette after 10,000 plays than at craps,
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even though the disadvantage, as measured by average loss per
pPlay, is greater for roulette than for craps. The explanation
of this difference is that the bettor at roulette, while having
@ greater chance of being ahead, also has a greater chance of
losing a substantially larger amount of money tﬁén at craps.
This same improved formula, 4,/Ai%$il-, can also be used
for the strong stability of relative frequencies in the range
of normally observed values of n. Empirical evidence shows
that the formula may thus be taken as an iﬁproved formula for
describing the empirical facts of both weak and strong
stability in situations where we know A, the limiting value
of the relative frequency. For example, if we wish to get an
estimate of a value of n such that our roulette hettor's

average winnings per play will become and remain negative

- [ &) |
beyond n, we can set 4 = = 0.0015 and get

n =~ 185,000. As before with the formula 2//m, theoretical

considerations show‘that the added factor \[223—%95—2 is
necessary in the case of strong stability. This correction
factor only makes a difference for extremely large values of
n, 1lying beyond those normally observed.

Conceptual and philosophical comment. We have seen in

this chapter that normal approximation gives a thedretical
version of the empirically observed weak stability of relative
frequencies. This theoretical version says the following (for

the case p = 1/2). In a binomial experiment of n trials
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(n > 9), the probability is 0.95 that the observed relative
frequency of success will fall in an interval of length o 96
symmetrical about the value 1/2. Our earlier a
empirical statement of weak stability, as made in Chapter 1,
in effect asserted: if we make many repeated ovef-all trials

of a given binomial experiment, then nearly all values of the

relative frequency observed in each over-all trial will fall in
an interval of length 2//f =--where n is the number of
individual Bernoulli trials within the binomial experiment. We
see that the theoretical counterpart to "nearly all" is "with
probability 0.95". Thus the theoretical statement makes an
assertion about n trials of an experiment with success
probability p = 1/2 in terms of. a single trial of another
experiment with success probability 0.95. The philoscphically
minded readér will sense here the possible danger of an

infinite regress; that is to say, of a situation in which we

appear to be theoretically explaining a concept (the concept of
probability) in terms of the same concept itself.

The correct resolution of this apparent difficulty is
straightforward. Our theory only makes statements about models,
that is to say, about probability spaces. Thus all of its
statements must be statements about probabilities of certain
events in those spaces. A separate question, going beyond the
theory, is the gquestion of how we connect the concepts of the
theory with observations in the physical world. We need such

a connection in order: (i) to show that our theory implies some
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empirical fact or law, or (ii) to decide whether a particular
theoretical model is satisfactory or not satisfactory in
describing and predicting observations in the physical world.
The connection between theory and reality is made in a direct
and simple way. If the totality qf our observed information
can be viewed as the result of a single trial of some large

experiment, and if our theory ascribes a probability very close

to 1 to some event (for a trial of that large experiment),
then ﬁe Say that our theory predicts that event. ff we observe
that that event does not in fact occur, then we conclude that
our theory is unsatisfactory.

The question remains: how close is very close? This

depends upon our purposes in“using the theory and upon the
practical circumstances in which we use it. As we shall see,
a large part of the subject of mathematical statistics is con-
cerned with this question. 1In probability theory and the
pPhysical sciences, as a rule of thumb, differences smaller

than 0.01 or 0.001 are often considered to be very close

for the purpose of casting doubt on a theoretical assumption.
.For example, if we have a theoretical model which gives
P =1/2 to a certain binomial experiment, if we wish to
decide whether the model is reasonable or not, and if the
totality of our observed information talls us that in 1000
trials, exactly 425 successes have been observed, we see

that an event does not occur (the event that the observed
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relative frequency falls within the interval [0.426,0.574})
whose probability, by normal approximation, is gréater than
0.999999. .We therefore conclude that our theory is incorrect.
We shall return to guestions and problems of this kind when we
take up the study of mathematical statistics in Chapter 9.

Remark on calculations. Normal approximation, as des-

cribed in this chapter, always uses the correction for bar

width (the constant 1/2 in the numerator of the expressions
5 _

for zy and zZ, when Normal Area_2 is being found). It
k=1
1

is sometimes convenient, for quick calculation when n is

sufficiently large, to omit this correction (see Exercises
6-4 and 6-5 below). The reader should make a general practice
of using the correction in careful work, however, since the
difference x;np is often small (even when n is large) and
the corresponding value of A(z) can be significantly affected
by omission of the correction term. | |

In Chapter 7, we shall study another quite different form
of approximation to the binomial distribution. At that time,
we shall further discuss the matter of when to use normal
approximation and when not. For the moment, if two decimal
Place accuracy is sufficient, the reader should use normal
approximation when (i) it is convenient to do so and (ii) the

condition holds that both %? and %? are > 9.
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EXERCISES FOR CHAPTER 6.

In a binomial experiment, a fair coin is tossed
100 times. Let x = the number of times that heads
appears. Use normal approximation to estimate the
following probabilities:

(a) P(49 < x < 51);

(b) P(55 < x < 65);

(e) P(60 < x);

(d) P(x = 50).

A fair coin is tossed 10 times and comes up heads
X times. Use normal approximation to estimate the
following probabilities: P

(a) P(4 < x<6);

(B) P(4 < x < 10);

(c) P(x = 6).

A thumbtack has probability 0.6 of landing on
its side when it is tossed. It is tossed 10,000 times
and lands on its side x times. Use normal approxi-
mation to estimate the following probabilities:

(a) P(5,950 < x < 6,050);

(B) P(x < 5,900);

(e} P(x = 6000).

A fair coin is tossed 5 times and comes up heads
X times. For each of the following probabilities,

find: (i) the exact value; (ii) the value given by
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normal approximation; and (iii) the value given by a
form of normal approximation in which the correction
for bar width (the constant 1/2 in the numerator)
is omitted.

() P(2 < x < 3).

(b) P(2 < X < 5).

A fair coin is tossed n times and comes up heads
X times.

(a) For n = 100, find: (i) the value for
P(45 < x < 55) given by normal approximation, and
(ii) the value given by a form of normal approximation
in which the correction for bar width (the constant /2
in the numerator) is emitted.

(b) For n = 1000, do the same as (a) for
P(484 < x < 516).

]

(c) For n 10,000, do the same as (a) for
P(4,950 £ % < 5;050).

Note. 1In the following exercises normal approxima-

tion should be used whenever appropriate.

On the average, a certain. basketball player succeeds
in scoring on 80 percent of his free throws. What is the
probability that he score on 85 or more of his next 100
throws? ~What is the pPrebability that he score on
exactly 80 of them? What added assumption about the

Player are you making?
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A fair coin is tossed 1000 times.

(a) What is the most probable number of heads to
appear?

(b) Find a value for the probability that exactly
that number will in fact appear.

In a group of 300 families with 3 children each,
we observe 495 boys. Assume that the probability that

any child is a boy is 1/2 and that being a boy is

independent from birth to birth. What is the probability

of observing 495 or fewer boys? What is the Probability

of observing 420 or fewer boys?

A thumbtack is tossed and either falls on its side

(8) or on its back {B). .Assume P(B) = 1/3.

Estimate the number of tosses necessary so that with
probability 0.95, the observed relative frequency of
B lies within 0.0l of P(B).

Assume that the probability of a male birth is

0.514. What is the probability that there will be

- fewer boys than girls in 1000 births? How many births

must be observed to make the probability of observing

fewer boys than girls less than 0.05?

Neglecting the correction for bar widtﬁ (the con-
stant 1/2 in the numerator), use normal approximation
to get a valué for the number of times that a fair coin
should be tossed in order to ensure, with probability
0.95, that the observed relative frequency of heads is

within 0.001 of the value 0.5.
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Assume that the probability of a car breaking
aown between Boston and Worcester on the Massachusetts
Turnpike is 0.001 and that this probability is the
same for all cars. What is the probability that there
are more than 5 and fewer than 10 breakdowns among the
next 20,000 cars that make the trip?

A biased coin is tossed 100 times. Let x = the
number of times that heads appears.

(2) Assume that p = 0.55, where P 1is the
probability of heads on a single toss. Find the small-
est integer a such that P(|x-55] < a) > 0.95.

éb) Assume that p 1is unknown and that 55 heads
are observed. For what values of P can we say that
the event lx-iOOp] < [55-100p| has probability no
greater than 0.95?

Consider the game described in Exercise 1-6.

(The bettor bets even money that a six will not occur
in six rolls of one die.) What is the probabiiity that
a bettor, making bets of constant size, is ahead after
100 plays? After 1000 plays? After 10,000 plays?

A bettor plays a game in which w ; 0.894, 2 =1,
and the true probability of winning is 1/2. His
average loss_per play, in the long run, will be
1/2(1) - %(0.894) = 0.053. (This is the same as the

average loss per play for bets (with ¢ = l) on a
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single number at roulette.) What is the probability

that a bettor is behind after 10,000 plays?
F
z

[= -] ‘ [~ -] - —
Show that f ¢(z)dz = f i e 2 dz = 1.
-0 = 27

$(z)dz]?. wWrite this as

[}
-0

L] ] ’
L L ¢ (x)¢(y)dx dy, express in polar coordinates,
a0

and evaluate.)



