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CHAPTER 4. CONDITIONAL PROBABILITY.

Let us look again at the experiment of rolling a single
Symmetrical and homogeneous die. we have seen Ehat a good
Probability model for this experiment is a probability space
which has six points (which we call 1,2,3,4,5,6) and a
'probability value of % for each point. Now take A to be
the event that anp odd number occurs (the event {1,3,5}), and

take B to be the event that a number greater than 3 occurs

(the event {4,5,6}). we wish to ask the following question.

If we repeat the experiment manv times and then look only at

those trials where the event B occurs, in what Proportion of

those trials does the event A  also occur? The answer to this

question is obvious. For B td occur, we must get a 4, 5,

or 6, and we expect each equally often. of these, only 5 ig
also in the event A, hence the answér to our question must be
%. We can ask the Same question for any two events,; A and B,
in any probébility space. To gét the answer, we form the quo~
tient (or Proportion) between the expected relative frequency of

A and B both occurring and the expected relative frequency of

B occurring. That is to say, we form the quotient:

P(AnN B)

(For the die eéxample, this quotient would be = % .)  We give

lﬂk{OiF‘

this quotient s special name. We call it the conditional vrobva-

011lity of the event A, given that the event B occurs, or, mersa

briefly, the conditional probability of A given B, We use the

notation P(A | B) for this quantity. We thus have as a definition:
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B

P(A'.B)=ng .

(This definition is only used when P(B) # 0.)
For example, with a die, what is the conditional pProbability

of having an odd number, given that we have a number greater

than 1 2 We get the_answer as follows:

hY

P(odd and > 1) g- 5
P(O;‘,d,}.'l)z P> I) =g=-5-.

We can also, if we wish, ask fof the conditional’probability

-of having a number greater than 1 given that we have an odd

number. We get:

| P(odd and > 1)

_ 2
A

OV [ [TV

Each qf these conditional probabilities has a definite:and clear
mesning. The first, P(odd|> 1) =2, says that if we Look
only at outcomes > 1 s then, from among those, we expect an
odd number to occur two-fifths of the time, . The second,
P(> 1] 0dd) = §f, says that if we look only at odd outcomes,
then, from among those, Wwe expect a number greater than 1 to
occur two-thirds of the time,

Conditional probabilities are important because, in many
pProbability problems, we begin with information about eonditione®

probabilitieé. We then use these conditional Probabilities to

calculate other probability values that we are interested in,
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The equation .
P(a|3) = 202

can also be written

P(A N B) = B(B)P(4] B)

This last equation is sometimes called the miltiplication law

of probability. If we know the values of P(B) and P(A]B) ,

we can use this law to find a value for P(A n B) .
Here is an examplé. We have two jars, Jaf I and Jar II. Jar I

has 1 red ball and 2 white balls in it. Jar II has 2 red balls and

1 white ball in it. We carry_out the followlng experiment. We

mix up the balls in Jar T, close our eyes, and take a ball

from Jar I . We then transfer this ball to Jar IT » mix up the

four balls now in Jar II » close our ‘eyes, and draw a ball from

Jar II . We form a sample space for this experiment by taking,

as our four basic outcomes:

transfer red and draw red,

transfer red and draw white,

transfer white and dray red,

transfer white and draw white.

What probabilify function should we use? We note that certain
probabilities and certain conditional probabilities are immediat ely

glven., In particular,
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=

P(transfer fed)'=

becausé we are taking from a jar with 2 white angd 1l red; ang

_ P(draw red | transfer red) = %

because, after transferring red, we will be drawing from a jar

with 1 white and 3 red. Similarly we sce that

P(transfer white) = §-,

P(draw white | transfer red) =

-

?

OF [ s T

P(draw red | transfer white) =

P(draw white | transfer white) = % .

We can now use the multiplication law to get our basic Probability
vaiues.' Ve get:

P

P(transfer red and draw red)= P(transfer red)P(draw red |

transfer red)
o B 1
.3' % EE »

P(transfer red and draw white) = %—% = -1% P
P(transfer white and draw red) = %ﬂ~% = %. 5

P(transfer white and draw white) = £ 3 z .

It 1s sometimes helpful in problems like this to make a table:
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draw

transfer

1
W 3

This table shows the sample space and the pProbability function.
Each cell in the table is a point in the sample Space, and the
number appearing in that cell is the corresponding value of the
pProbability function.

Once we have the probability function, we can g0 on and
calculate any other probabilities we wish., For example, we

can get:

- .

P('dzia.w red) = x+ %- =15 .

-

Or, if we want the conditional pProbability of transfer red

given draw red , we can get:

' b 5
P(transfer red] draw red) = _g_ - ,; .
12

(This tells us that if we look at all trials where red is drawn,
we expect to find that red has also been transferred in about
three-sevenths of those trials.)

If one understands the idea of conditional probability, one is
well on one's way to a2 good understanding of much of probabll;ty

theory. Here are two more examples to help Strengthen the reader's

understanding.
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Example 1. A special deck of eight cards is formed by taking
the four aueens and four kings from a regular deck. This Special
deck is shuffled and two cards are drawn from it. Pind the

following conditional probabilities:

P(two queens drawn | at least one queen drawn),

and P(two gueens drawn | at least one black queen drawm),

prefer, we can think of the two cards as being drawn one after

Our basic sample space has {8) gl

the other rather than at the samé time. This would gibe us a
sample space of 7:8 = 5§ points. Thus, as we have noted in
connection with poker hands im Chapter 3, we have two distinct
choices of sample space available in forming our model. Not
surprisingly, either choice leads to the same numerical answers to
our original problem.) As Probability function;'we use the

equiprobable function, which gives each point the probability value

L
28°
Now, by counting basic_outéggéé, we get
P(two queens) = é% = f&
and ° P(at least one queen) = %% = %% .
Therefore

P(two queens | at least one queen) = é% = f% =0.27.
1z
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(Note that the event two queens and at least one aqueen is the

Same as the event two queens.)

Similarly, again counting basic outcomes, we get

5

P(qu_ggeens and at least one black queen) = 35 "
and P(at least one black queen) = %% .
Hence we get
) 5 .
P(two queens | at least one black gqueen) = §§:= f% = 0.39.

(Students are often surprised that the two condltlonal pProbabilities

calculated in this problem are dlfferent, but one can see from

the definition of conditional probability that the two conditional
probabilities.describe quite different situations. For the first,
we look at all cases.where at least one gqueen occurs and see in
what proportion of these we have two queens. For the second, we
look at all cases where at least one black queen occurs, and see in
what proportion of these we have two queens. It is evident that

P(two gueens | at least cne red gueen) is also equal to 0.37.

Consider the following intuitive argument: "Because

P (two gqueens | at _least one black queen) and P(two gueens | at

—a

least one red queen) are both equal to '0.37, and because every

queen is either black or red, we must have P (two_queens | at least

one gqueen) also equal to 0.37." Qur analysis and calculation show

that this argument is false.)
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Example 2, In a certain country, every day is either sunny

Or rainy. The probability that a day 1is sunny is %, and the

conditional probability that a day is sunny given that the pre=-

vious day was sunny is %u What is the conditional probability
that a day is rainy, given that the pPrevious day was rainy?

To apply pProbability theory, we must (as always) fix an experi-
ment and form a probability space. We fix as our experiment:

observe the weather on two successive days. Our sample space then

has four points:

sunny then sunny,

sunny then rainy,

" rainy then sunny,

rainy then rainy,

We can get the probability function for this sample space as

follows. we write the sample space as a table:

second day
S R
S % y
first day
: : R z: w

where x,y,z, and w are-the unknown probability values, From

the statement of the problem we know that
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P(first day sunny) = % = X+y ,

P(second day sunny) = % = X+z,

P(second day sunny | first day sunny) = % = E%? ;

remark below.) Eliminating x+y between the first and third

Al N

= 3 , and x = %—-% . It follows

equations, we get 7

Wil K

that y = & and z = %. We then have w = + because

6
X+ y+2+w must = 1.

We now have our probability  function and can calculate the

answer desired: i

1
P(second day rainy | first day rainy) = = = -%;-= % 3
3

Remark. . How does the information that "the probability
that a day is sunny is 2/3" permit us to conclude that

P(first day sunny) = 2/3 and P (second day sunny) = 2/3 in

our experiment? The answer to this question is not obvious

and, in effect, makes use of additional information about how
the experiment is carried out. If we say that "the probability
that a day is sunny is 2/3", we are referring to a different
experiment, the experiment of observing a single day. Moreover,
because we know that the result on a single day may be related
in some way to the result on immediately preceding days, it
follows that if we wish to repeat this experiment of observing

a single day and to do so under “the same general experimental

(See
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conditions", we must do so on rather widely spaced days chosen
by some random procedure. (Such procedures are described in
ChapterA@]) We would then expect the relative frequency of
sunny days to be about 2/3. In the same way, rEPEtlthHS of
the experiment of observzng on two successive days would have
to be carried out on rather widely spaced and randomly chosen
occasions‘to assure that results of one trial (of the two-
Successive-day observation) did not influence results of the
next. But this would mean that the first ‘days of those
repeated two-successive-day triais would themselves be widely
spaced and randomly chosen. Henée we would expect

P(first day sunny) also to be 2/3. Similarly for

P(second day sunny). _

Remark. Do we have enough information to calculate the

conditional Probability that a day is sunny given that the two
Preceding days are sunny? Hor the conditional Probability P(*hird

day sunny | “irst two days sunny) we must take, as our experiment,

observe three successive days, This gives us & sample space with 8

points, We are not glven enough information to fing the Drobability
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function on this space, or to find the conditional probability

asked for. To see this, imagine, for example, a country where ther

i3 a2 constantly repeating'six-day cycle of weather as follows
«+.SSSSRRSSSSRR... .

One can show tha% this country fits all the information given in

the problem and that P(third day sunny | first two days sunny) = %

Next, imagine a country where there is a constantly repeating

twelve-day cycle of weather as follows

...SSSSSSSRRSRRSSSSSSSRRSRR;.. .
One can again show that this country fits all the information

given in the problem, but that P(third day sunny|first two

days sunny) = g--

(Remark. In the above situation of observing weather from day
to day, we can also think of a single comprehenszve experiment in
which we observe the weather from day to day for an indefinite
period into the future. A basic outcome for this larger experiment
can then be taken to be an indefinitely long sequence of specific

daily results. Such an experiment is called a time-series. For a

mathematical model, we would take a sample spacé in which each point
is a different possible infinite Sequence of S's and R's. Such

a2 sample space would be similar, mathematically, to the sample space
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for Brownian motion mentioned in Chapter 2. To define a probability
Mmeasure on this sample space requires more advanced mathematical
~Concepts than we use here. As indicated in connection with the
three~-day e#periment, a variety of probability measures are possible

satisfying the two-day conditions initially stated for Example 2

Independent events.

Sometimes, when we are given two events A and B in a
p¥obability sSpace, we find that P(A) and _;(A[B) have the same
value. If this happens, we say that the event A is independent
of the event B. We use the word "independent" because the
Probability of A is unaffected by information about the occur-
rence of B on the same trial. For example, in rolling a die,
P(> 4) and P(> 4!ggg) both have the value %. Hence we say

that the event greater than fou}-is indepéndent of the event odd.

For independent events the multiplication law takes the simple form

P(A N B) = P(B)P(A) = P(A)P(B) (the multiplication

law for two independent events.)

If P(A) = P(A[B), then it must also be the case that
P(B) = P(B|A), because, by the general multiplication law,
P(A N B) = P(A)P(B|A) = é(B)P(AjB). Thus if A is independent
of B, it follows that B is also independent of A. We hence
say, more briefly, that A and B are independent events. It
is also immediate that if A and B are .independent, so are A

and B, A and B, and X and B, since it follows directly
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from P(A) = P(A[B) that p(a) = P(A[B), P(R) = P(A|R),
and P(A) = P(A|B), as is easily shown. For example, for

any events A and B,
P(A) = P(a"B) + P(ANB) = P(A|B)P(B) + ?(A|B)P(B).
If we assume P(A) = P(A|B), we have

P(A) = P(A)P(B) + P(A[B)P(E),

P(RA)(1-P(B)) = P(A[B)P (),

P(A)P(B) = P(A|B)P (),

P(A) = P(A|B).

(The last step fails only if P (B) = 0, but in that case
P(A[B) 1is not defined.) It immediately follows that corres-
poﬁding forms of the multiplication law also hoid if A and
B are independent: P(aNE) = P(a)p(E); P(ANB) = P(R)P(B):

and P(ANB) = P(R)P(B).
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events. We theg say that a set of n events is independent if each
of the pairs formed by taking two of the given events, or by taking

one of the given events and any intersection of two or more of the

remaining events, is a pair of independent events. A corresponding

simple form of multiplication law for n independent events

helds: if Al""'An are independent, then

P(Al N Bey B wau 0 An) = P(Al)P(Az) o P(An);

2
as well as P(Al N A2 2 N An) = P(AI)P(AZ) vee P(An);
P(Al N Az A .., N An-l N An) = P(AI)P(AZ) oo P(An_l)P(An); o

Returning to the case of rolling a die, we now See that if we
roll a die 5 times and use the multiplication law for 5 independent

events, we get, for example, the folldwing. The probability

that 6 does not appear on any roll must be g g- £ 5— 5— = (65')5 ’

and the probability that 6 avpears on the first ang fourth rolT

but not on the other rolls nmst be 6' i 6" g— z" 6' = (6) (5-) .

The above definitions of independence are formal and precise.
It is usually enough, however, in applying probability theory, to
say that a set of events is independent if, for each event, the
probability of ﬁhat event is unaffected by information about the
Occurrence or non-occurrence of the other events. As in the case
of rolling a die 5 times, it is often intuitively obvious, from

the physical_situation, that independence must hold. When we can
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assume independence in this way, we can then use the simple form
©f the multiplication law as above. Thus the formal definition
of independence helps us to define, and make prec1se, appropriate
probablllty spaces for what were called in Chapter 1 "repeated
independent trials of an experiment"”.

Remark. In Example 2 above, our basic experiment was to
observe two successive days of weather. How could we, practic#l-
ly, - do a succession of independent trials of this two-day
experiment? As each day's weather is influenced by the weather
on previous days, we have already noted that we would have to
choose the time of the next trial in such a way as to be reason-
ably sure that the influence of pre#ious trial outcomes was
negligibly small. 1In particular, we. would have to allow enough
time between trials. 1If (as‘;n the case of some exactly repeat- -
ing cycle of weather) this did not suffice, we would have to use
Some random physical procedure to choose the successive days of

observation. (We consider this further in Chapter(é})

Remark. The discussion above shows why, in the birth-month ex-
amples in Chapter 2, we used the equlprobable probability function.

If we stop three people n the street and ask their onir IoRsmenths

Hence we can use the simple multiplication rule to calculate

the probability of each point in the sample space, We get; for

each point, =1 ‘T = If%g .
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Bayes' Theorem. If we look back at the example of the jars

above, we see that we obtained the unknown conditional pProbability

P(transfer red|draw red) by a method that can be described as
follows: (1) we make a table to represent points of the sample
Space; (2) to get values for the table, we apply the multiplication
rule to certain known Probabilities and conditional Probabilities;
(3) we then use these values to get the unknown conditional
Probability that we want. This general, and usually very sSimple,
method for getting an unknown conditional probability from known
Probabilities and conditional probabilities is sometimes called

Bayes' Theorem. By custom, it is most often called Bayes' Theorem

when it is used to obtain an unknown conditional probability P (a|B)
in which A refers to & part of the experiment that, in any given
. Physical tria}, occurs at an earlief E;gé than the part referred to
by B. (For example, transfer red occurs at an earlier time than
gggﬁ red in any trial of the jar experiment.) 1In Example 2 above,

if we calculate P(rain on first day | rain on second day) =

;%; - %§% = 1/2, we would say that we have made the calculation

by Bayes' Theorem.

Stochastic processes. 1In Example 2 above, let S, be the

event sunny on the first day and let 82 be the event sunny on the

second day. Note that the events Sl and 52 are not independent

(since P(S,) = 2/3 and p(szlsl) = 3/4.) When an outcome of an
eéxperiment can be viewed as a succession (finite or infinite) of
events in time which occur with certain probabilities and condi-
tional Probabilities (and where independence may or may not

hold), the Probability space for the experiment is sometimes



120

called a stochastic Rrocess. The probability Space in Example 2

(observing the weather Oon two successive days) is an example of
a stochastic process. A probability space for the larger time-
series experiment of observing the succession of sunny and rainy
days for an indefinitely long period would also be a stochastic
Process, as would a pProbability space for Brownian motion paths
as described in Chapter 2. The word "stochastic" is from a
Greek word meaning "guess", and the word "process" indicates

development through time.

Conceptual and philosophical note. - In choosing a particu-

lar Probability function for a given experiment, we have
explained and justified our choice by saying that we seek for
each sample point a probability value that is the limiting
value of the relative frequency for. that Qutcome when the
experiment is repeated many times. 1In fact, the conceptual
situation is more subtle and complicated than this. For

example, in the case of poker hands in Chapter 3, we assigned

a4 probability value of

1 -
3,598, 9€0 0.0000004

to each possible (unordered) hand. Did this mean that we had
conducted a huge number of trials and had in fact observed that
each different hand occurred about 0.0000004 of the time?-
Clearly, it could not mean this. 1Instead, the conceptual situ-
ation is as follows. We begin with a major assumption: that

there is a probability space for the experiment. Once we assume
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this, we then go on to assume certain further mathematical facts
about this sﬁace on the basis of empirical observations. Final-
ly, from these mathematical facts, we deduce that the Probability
space has a certain unique probability function. For example, in
the case of poker hands, we begin with the assumption that there
is a probability function on the sample space of all POssible
poker hands. It is convenient here first to take our underlying
sample space to be the space of all ordered pPoker hands (there
are 52+51°50:49-48 = 311,875,200 points in this space), and to
think of any given hand as being dealt in order from a shuffled
deck. We now make the following empirical comments. (1) Physi-
cal symmetry and observed relative frequencies Ssuggest that the
Probability of getting a pazticu%ar card as the ;5555 card dealt
should be 1/52. (2) Given that a certain card has already
appeared as the first card Physical symmetry and observed rela-
tive frequenc1es Suggest that the conditional probability of then
getting a particular card as the second card dealt should be
1/78L: (3 Similarly, the conditional probability of each possi-
ble third card, given the first two cards, should be 1/50,

and the corresponding conditional probabilities for the fourth
and fifth cards should be 1/49 and 1/48. But now, with

these conditional pProbabilities, the general multiplication law

enables us immediately to deduce that the pProbability of getting

five specified cards in order must be

1, 1.1, 1 1 _ 1 : i
32'30°35°35° 48 T 52:51-50-49-45° Finally, going to unordered

hands, we see that the probability of a specified unordered hand
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5-4.3-2.1 _ .
must be 52:51.50-49-4g ~ 0.-0000004, since that unordered hand

€an appear as an ordered hand in 5! ways. This is the same

probability function that we chose before, but now we have de-
duced it from empirical knowledge and observation about the
dealing of poker hands (rather than base it on an unwarranted

claim that we have observed each hand to occur 0.0000004 of

the time.
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EXERCISES FOR CHAPTER 4. -

A jar contains w white balls and r red balls.
Two balls are drawn at random, one after the other,
without replacement. éind the following: |

(a) P(second ball red|(first ball white):

(b) P(second ball red) ;

(¢) P(first ball red|second ball red).

Suppose P(aA) = 0.3, P(B) = 0.2, and
P(AUB) = 0.4. Find the following

(a) P(anB);

(b) P(A[B);

(e) P(B|a).

Successive cards are dealt, face up, from a
bridge deck. What is the probability that the first
Spade occurs at the fifth card?

A bag contains 3 white marbles and 4 red ones.
In succession, three persons each draw a marble
without replacing it in the bag. The first person

who draws a white marble wins. They continue drawing,

‘in turn, until someocne wins. What are the respective

Probabilities of winning for the persoﬁ drawing first,
for the person drawing second, and for the person draw-
ing third?

A commuter uses either a tunnel or a bridge to
get home. He chooses the tunnel with probability
1/3 and the oridge with probability 2/3. If he

goes by tunnel, he gets home by 6 PM 75 percent of the
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time. If he goes by bridge (which is easier driving
for him) he gets home by 6PM 6nly 70 percent of the
time. On a certain night, he gets home afte; 6 PM.
What is the probability that he used the bridge?

_ What 4y the -
Assume that boys and girls have an equal ?.-.,b.g‘m-,_\ Mot a

probability of being born., If a family aaving 4 %““”1 Wil douw
‘t_—_\—// Ulildven hug epaptr,
children is known to have at least 1 boy, what is Kmmjogi?
the Probability that it hﬁs exactly 2 boys? What
additional assumption are you making?
Three drivers, Arthur, Ben, and Charlie, share
the driving of a taxi. Arthur drives it 40 percent
of the time, and Ben and Charlie each 30 percent.
The probability that Arthur has an accident on a day
that he is driving is 0.02, For Ben and Charlie, the
probabilities are 0.03 and 0.02. The owner of the
taxi_learns that an accident has occurred. What is
the probability that the accident occurred on a day
that Arthur was driving? On a day that Ben was driv-
ing?. On a day that Charlie was driving?
In a freshman class, 10 percent of the students
fail mathematics, 12 percent fail physics, and 4 per-
cent fail both mathematics and Physics. A student is
selected at random from the class. Are the events

student failed mathematics and student failed physics

independent?
Two dice are rolled. Let us assume, for the pur-

Pose of our analysis, that one die is colored red and
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that the other is blue. In a single roll of the two
dice, let u = number on red die, v = number on blue
die, and w=u + v. Assume that each of the 36

possible outcomes (u,v) is equally probable.

(a) Make a table showing the values of Plw=1),
Plw=2), ... , P(w = 12)
. (b) 'Show that when the two dice are repeatedly

rolled, P (six appears before seven and for the first

‘ 25 ¥=1
time on roll x) = (33 3¢ + 2and P(seven appears

before six and for the first time on roll

25 Y1 ¢ . . .
Y) = (37) 3¢ (This result was used in Exercise

6.
2-9.)

(¢) PFind P(six appears before seven) and

P(seven appears before Six). (This was Exercise 2-9,)

(d) Make a table showing P(seven appears before

w) for w = 4,5,6,8,9,10.

The game of craps is described in Exercise 1-5.
Exercise 4-9 above now Puts us in a position to calecy-
late the pfobability of pass in a game of craps (and
hence to verify the value of A giéen in Exercise 1-5).
We proceed as follows. Calculate the following
probabilities and conditional Probabilities:

(a) P(pass occurs on first roll):

(b) P(don't pass occurs on first roll):;

(¢) P(first roll gives point w) for w =

4,5,6,8,9,10;
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(d) P(pass occurs after first rolllpoint is w)

for w=4,5,6,8,9,10 (see Exercise 4-9a);

(e) P (pass occurs but not on first roll) (see 4=9¢c) ;

(£) P(pass occurs).

The game of roulette is described in Exercises
1-4 and 2-1. 1In North American roulette, which of the
following pairs of events are independent?

(a) red; even.

(b) odd; > 19.

(e)  {0,20}; > 1s.

Consider the experiment of rolling a single die
twice. Let u = number appearing on first roll and
V = number appearing on seéond roll. Let w =y + v
= total on the two rolls. _Which of the following
pairs of events are independent and which are

dependent?

]
w

(a) u v = 5,

(B) w=9;: w> 7,

(e) w=9; u=3,

(d) w=7; v=1.

For the experiment in Exercise 4-12, calculate
the following conditional probabilities:

(a) P(u=4 | v > 4);
4);

]
w
£

[

(b) P(u
3)-

]
'S
(]

[}

(c) Pl(w
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4=14. For the experiment of Exercise 4=-12, consider the

three events w=7, v =13, and uy = 4,

(a) sShow that each of the three pairs formed
from these three events is independent.

(b) Show that the three events together do not

form an independent set.

4=15. Show that the following analogues to the laws of
probability hold for conditional probability:
(a) P(a|c) + P(E|c) = 1;
(b) P(AUB|C) = P(a|C) + P(B|C) - P(ANB|C) ;
(e) P(anB|c) = P(B|C)P(a|BNC). '
4-16. Assume that S = A) VA,V ... UA , and that
A; N Aj = g for all i < j < n. Show that:

(@) B= U (anB);
. i€n

(b) P(B) = [ P(A;)P(B[A)).
i<n

(¢) Replace the assumption that S = Ay U ..U A

with the assumption that ¢ = Al U... U An. Show that

L P@)P(B|a;)
P(B’c) = i<n *

ién P(Ai)
4-17. Assume that A, B, and C form an independent set
of three events.
(a) Use Exercise 4-15 to conclude that
P (ANBNC) = P(A)P(B) (1-P(C|ANB))
= P(A)P(B)P(C|ANB)

= P(A)P(B)P(T).
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| (b) Conclude that independence holds for the set
of events {A,B,C}.
(c) Use (b) to conclude tiaat the following sets
of three events are independent: {A,B,C} ana {(%,B,7).
(a) Assume that P(ANB) = P(A)P(B). Sho& that A

and B are independent.

(b) Show that the set {a,B,C} may not be
independent, even though P (anBng) = P(A)P(B)P(C).
(gigg. Take the equiprobable measure on |
s =1{1,2,3,4,5,6,7,8}. Let A = {1,2,3,4},
B={1,56,7}, and C = {1,2,6,7}.)

Three small boxes are given. Each boi has two
drawers. In the first box, both drawers contain gold
coins. In the seconé-box[ one drawer contains a gold coin
and one contains a silver coin. In the third box, both
drawers contain silver coins. One of the three boxes
is chosen at random, and then one of its two drawers
is opened at random. It contains a silver coin, What
is the conditional probability that the other drawer
in the same box contains a gold coiné (This is a well=-
known example. The following argument is plausible but
incorrect: "the other drawer in the same box must con-
tain either a gold or a silver coin; because the
probability of initially choosing the silver-gold box
is equal to the probability of choosing the silver-
silver box, the desired c0nditipnal probability must be

1/2." Reference to the intended intuitive meaning of
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conditional probability, as described on page 102, will
show the reader why this argument and conclusion are
incofrect.)

A student is studying for an examination on two
chapters of her textbook. Each chapter consists of
five sections. She has time to study eight of the ten
sections she is responsible for. She knows that the
examination will consist of three questions on three
different sections, with two sections from one chapter

and one section from the other. She decides to assume

-that the examiner will toss a coin to decide which

chapter to take the two sections from and that the
sections from each chapter will then be chosen at

random.

(a) If the student wishes to maximize the
Probability of getting all three questions rlght how
should she divide her studying between the two chapters?
What is this probability?

(b) if she wishes to maximize the probability of
getting at least two questions right, how should she
divide her studying between the two chépters? What is
this probability?

Detective Hawkshaw decides to use a probability
space to help analyze a murder case. In this Probability
space, he assxgns certain probabilities as follows. The
probabllltj that the butler is guilty is 0.05. 1f the

butler is innocent, the probability that he is seen near
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the crime is 0.02. 1If the butler is guilty, the
Probability that he is seen near the crime is 0.5.
(a) Hawkshaw then discovers that the butler was
Seen near the crime. He calculates- a new Probability
that the butler is.guilty. what is its value? (Hint.

Let B = putler guilty and V = butler was seen.

Find P(B|V) wusing values for P(B), P(V|B), and
P(V|B).) ‘

(b) After discovering that the butler was seen
near the crime, Hawkshaw then searches the butler's room
and finds a gun. He assumes that the probability of
finding a gun is 0.04 -1f the butler is inn&cent and
0.25‘ if the butler is guilty.‘ He now calculates a
Still newer probabiliéy that the butler is guilty.

What is its value? (Hint. Let @G = gun in butler's

room. Proceed as in (a), but using, in place of 008,
the new probability wvalue calculated in (a) for the
initial probability that the butler is guilty. More
formally and rigorously, this amounts to the following.

(1) Verify that P(B|GY) = PQ?QGVY} and that

P(BNG|V) P(B[V)P(G|BOV). (ii) Assume that

P(G[BAV) = P(G|B). The result follows directly from
these formulas.)

Note. In any pProbability space, an event C with
P(C) # 0 can be taken 4S a probability space in its

own right if we define.a probability measure PC on
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this new space by setting Po(A) = P(A|C) for every
subset A of C. (See also Exercise 4-15.) This. new

probability space is called the conditional probability

Space determined-by C. Fact (i) in the above hint is
then just the‘calculation of a conditional probability
in the conditional probability space V, and (ii) is’
the assertion that the events G N B and VNB are
independent in the conditional space B.

Note. Early in the history of probability theory,
ot Qas hoped that probability theory would supply a
mathematical calculus that could be used to quantify
and weigh evidence in courts of law in exactly the
manner indicated in the above example. Although such
calculations have not been-givéﬁ recognized legal
status, some probabilists and statisticians today
believe that calculations of this kind can provide a
useful normative reconstruction of the less formal
Processes of analysis and thought that go on in the
minds of jurors and judges. It should be noted at
this point in our study that Hawkshaw has no apparent
information in the form of observed relative frequen-
Cies upon which to base his choice of an underlying
probability measure and that the meaning of the
pProbabilities which he calculates is therefore not
entirely clear. Indeed, he does not appear to be con-

cerned at all here with experiments that can be
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"repeated under the same general experimental condi-
tions." The use of a probability space and of
probability calculations in such circumstances will be
considered further in Chapter 20. The lack of agreed-
on criteria for assigning these underlying probabili-
ties is perhaps one reason that probability calculus
has not been recognize& as a formal instrument for +he
analysis of evidence.

Note. The calculations in the above exercise are
Bayes' Theorem calculations. 1In (a), the calculation
is done in an underlying given probability space.

In (b) it is done in a certain conditional probability
space. In such a cthulation,-thé initial probability
‘for an event ‘is called an a priori or prior
probability, and the conditionél probability being

calculated using new evidence is called an a posteriori

or posterior probability. For the calculation in (a),
the prior probability is 0.05 and the posterior
probability is the answer to (a). For the calculation
in” (b), the prior‘probabiiity is the answer to (a), and

the posterior probability is the answer to (B}
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Additional Homework Problems
for Cl\&!‘?&'}' .

In the Massachusetts Megabucks Lottery, each entry selects
six distinct integers from the set L = {1s255:4,35.36}. A
sample of 6 integers is then drawn at random, without
replacement, from L.

(a) Define P, to be the probability that a particular

entry has exactly x integers in common with the

random sample. Make a table of values for Py for

the possible values x = 0,1,...,6.

(b) Each entry costs one dollar. Assuming that there is

no payoff for x < 5, what should the payoff be for

X = 6 to make this a fair bet? (Note. In the present

lottery, there is, in fact, a payoff of §40 for X =
and a payoff of $400 for x = 5. We shall later
consider this example in more detail.)

To bet on the Suffolk Downs Twin Trifecta, a bettor selects
(1) an ordered sample (without replacement) of three horses
from the twelve horses about to run in the 8th race and (ii)
an ordered sample (without replacement) of three horses from
the twelve horses running in the 10th race.  The bettor wins
the bet if and only if, after the two races are completed, “
the two ordered samples in the bet coincide, in order, with
the horses who finish 1st, 2nd, and 3rd in the respective
races.

(a) Assume that the bettor makes his or her selections
by choosing the two samples at random. What is the
probability that the bettor wWill win?

(b) The bet costs three dollars. What should the
payoff be to make this a fair bet?



