67 .

CHAPTER 3. ELEMENTARY COMBINATORIAL METHODS

In Chapter 2 on probability spaces, we saw that when the equi-

prdbéble probability function is used (for reasons of physical
symmetry‘or for other reasons), the pfobability of an event A ' in
a probgbilitf space S is the ratio of the number of sample points
in A to the number of sample points in S. Since sample points
correspond to the ways in which the experiment can have an

outcome, we now look at methods for counting the number of

ways in which an experiment can have an outcome, and for count-
ing from aﬁong these ways the number of ways in which a given

event can occur, These methods are called combinatorial methods.

Example 1. Three books, which we call A, B, and C, are
Placed on a shelf, This is done in a "random way" so that the
different possible a}rangements 6f books are equally likely,. )
What is the‘probabiiity that books A and B are next to each
other?

We can solve this problem by first listing all possible
arrangements.' We get ABC, ACB, BCA, BAC, CAB, CBA. There are
six arrangements. We then note that in four of these arrange-
ments, A and B are next to each other: ABC, BAC, CAB, CBA.

Thus the desired probability'is g-= %. '

Note. It is common, in describing experiments with finitely
many outcomes, to use the word "random" to mean that the physical‘
clrcumstances of the experiment are such that the equiprobable
probability function can be used. Thus the above example couid

have been stated, "three books are arranged on a shelf in random
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order," Similarly, the experiment of rolling a fair die could be
described briefly: "a number is chosen at random from the:

set {132:314:516.}0"

We now outline several basic combinatorial methods,

.

Method I. Making a list of all possible cases. This is

| how we approached Example 1, It is sometimes the only method
avallable, It has, however, two disadvantages. First, there
may be too many cases for this to be practicable., (iIf the above
example had used 8 books instead of i there would be more than
40,000 cases (arrangements of books on the shelf.)) Secchd, there
may be no obvious way to be sure that our list includes all the
cases. These disadvantages suggest that we seek more systematic

combinatorial methods.

Method IT. Tree diagrams, In counting the numbér of ways

- in which an outcome can occur, 1t is often useful to analyze a
problem by describing or inventing & process which (i) has the
same outcomes, and (i1) occurs as a Sequence of steps in time
(though the pPhysical experiment itself may not occur as thlS
sequence of steps). Recall Example 1 above, One way of analyzing
this into steps in time is as follows. Choose three empty posi-
tions on the shelf for the 3 books. Call them, from left to
right, positions 1, 2, and 3. Then do the following sfeps.

Step 1. Choose one of the three books and place it in.
position 1. |

Step 2. Choose one of thé two remaining books and place it

in position 2,
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Step 3. Place the remaining book in position 3,
The ways in which these steps can be carried out are given in

the following diagram,

¢

Step 1  Step 2 Step 3

™MMaure 4,1

Because of its branchings as we go through the steps from left

to right, this diagram is called a tree diagram. The number of

cases 1s the number of branches or paths through the tree. In

'the above diagram there are six paths. A tree diagram is more
systematic than a mere listing of cases, and it has the added
advantage of making sure that we cover all possible cases,

In Example 1 we can also use a tres diagram to count the
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number of ways in which the books can be placed so that A and

B are next to each other. We get:

‘Here there are four paths.

The idea of a tree diagram is fundamental in many combina-
torial problems, even though the actual dlagram may be too large
and complex to draw, (Recall that for 8 books we would get more

than 40,000 branches,)
Method III. The multiplication principle. If we can

analyze a problem by finding or inventing a process which occurs

as a sequence of steps, which we call step 1, step é, «sss Step k,

and 1f step 1 always occurs in exactly r, __ways, step 2 in exactly

ways, ..., Step k in exactly rk ways, then the number of

=
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ways in which the entire process can occur is given by the

product rlxrgx...r . This is called the multiplication

principle. For example in Figure 4.1, step 1 always occurs
in 3 ways, step 2 always occurs in 2 ways, and step 3 élways
occurs in 1 way. Hence the entire process can occur in
3¢2:1 = 6 ways.,

Exemple 2. I wish to travel from Boston o Few York City
by way of Hartford. There are 3 routes from Boston to_Hartfofd
and 5 routes from Hartford to New York. How many routes are
there for the entire trip? Here the multiplication principle
glves the immediate answer 3.5 = 15,

Note that there are problems which can be.solved by tree
diagrams but for which the mnlt;plication principle does not
apply. Figure 4,2 gives an {1lustration of this. Here, step 2
. Sometimes occurs in 2 ways and soﬁetimés in only 1 way, so that
the basic condition for the multiplicatioﬁ Principle does not
hold. |

The multiplication principle is the most common and useful
of combinatorial methods. It tells us immediately, for example,
that the number of ways of Placing 8 books on a shelf must be
exactly 8.Te6.5°4.3+2.1 = 40,320. Here, the idea of a tree
diagram éhbws us what factors to use. We do not actually

draw the diagram; instead, we merely calculate the product.

Method IV. The addition principle. In counting the number

of ways in which an event can dccur, it is sometimes helpful to
break the event into several disjoint sets and then to do a

' Separate calculation for each of these sets. The total number of
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ways for the event £o ocour will then be the sum of the numbers
of ways for each of the disjoint sets. We call this the addition
principle.

Example 3. 1In Massachusetts, 35 basic symbols are uéedlon
license plates, the 10 digits and the 25 letters of the alphabet
other than 0. How many different plates can be forﬁed using 3
or fewer symbols? To solve this problem, we consider three
Separate casés: The l-symbol plates, the 2-symbol plates, and
the 3-symbol plates. In each case we appiy the multiplication
principle. .This gives:

(i) 35 plates for the l-symbol case;
(i1) 35-35 = 1225 plates for the 2-symbol case;

(1ii) 35.35.35 = 42,875-plates for the 3-symbol case.
Hence, by the addition principle, we have 35 + 1225 + 42;875 =
= 44,135 plates of 3 symbols or less.

Method V. Standard versions of the multiplication principle.

Certain special versions of the multiplication principle occur
often, and it is useful to develop and learn standard formulas
for these versions. we give some of these below.

Standard formula 1. Permutations. It is eVLdent, from the

example of 8 books on a shelf given above, that the number of ways

of arranging n books in order on a shelf must be
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n(n-1) (n-2) ... 3.2.1 ,

This product is called n factorial, and is usually abbreviated
nl . The number of arrangements of n objects in order is often

called the number of permutations of n _ objects, We thus havg

the formula:
the number of permutations of n objects = n!

Note that the quantity ni! increases extfaérdinarily rapidly
with n. Thus

51 = 120
10t = 3,628,800

20t = 2.4 x 1018
301 = 2.7 x 1032
508 = 3.0 x 1064

(The number of ways of arranging 50 books on a shelf, for example,
éxceeds the number of atoms in the visible universe,)

Note. It is useful in mathematics to take a product with
no factors to be 1. Hence we take Of = p 1

Standard formula 2. Ordered samples without replacement.

Assume that we are given 10 different books. In how many ways can
we select and arrange 4 out of the 10 books on a shelf. We analyze
in steps as follows. Choose 4 positions on the shelf.

Step 1. Choose 1 of the 10 books for the first positdon.



74

Step 2. Choose one of the 9 remaining books for the second
position.
Step 3. Choose one of the 8 rémaining for the third position.

Step 4. Choose one of the 7 remaining for the fourth position.
Step & ‘ .

" Applying the multiplication principle, we get 10.9.8.7 = 5040 ways
of seleefing and arranging the books. Note that the product on
the left can be more briefly indicated as igé » since 10.9-8-7

is. the remaining product after the indicated division. More
generally, if we are given n books, the number of ways.of
selecting and arranging r out of the n books on a shelf will
be

n(n-1) (n-2)...(n-r+1) .

This résﬁlt can be conveniently abbreviated as

!

]n-ria °

This formula is called the number of permutations of n objects

taken 1 _at a time. It is also called the number of ordered

samples of n objects taken r at a time without replacement,

Here "ordered" refers to the fact that when the same r books
appear in two different orders, the& count as two different
arrangements, and "without replacement" refers to the fact that
once a book 1s chosen at a certain step, 1t is not available to
be chosen again at a later step., (It is not "replaced" in the

stock of books from which we are choosing.)
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Standard formula 3. Ordered samples with replacement. How

many four letter blocks can be formed using the first 10 letters

of the alphabet? AJAC, ACAJ, BBDF are examples of such blocks.

As with the bookshelf, we can think-of 4 positions to be fil;ed.'
Any one of 10 lettefs can go into the first position; any one of

10 letters can go into the second position; and so forth. Applying
the multiplication principle, we find that the number of blocks is

4

10" = 10,000. More generally, given n letters, the number of r

letter blocks that can be formed is

g

This formula is sometimes called the number of ordered samples
of n objects taken r at a time with replacement. Here

"with replacement" refers to the fact that if we use a letter
at one step, it remains available for use at a later step.
(It is "replaced" in the original stock of letters from which

we choose,)

Standard formula 4. Unordered samples without replacement

(combinations). Assume that from a personal library

of 10 differenf'books, I wish to choose a subset of four books
to take with me on a trip. In how many different ways can I
choose such a subset? We solve this problem by first asking

a different question: In how many ways can I choose four books
and place them on a shelf, Let us call this number y. (By
standard formula 2 above we know that y = —575) Now each sub-
Set can appear on the shelf in 4! different orders, (By
standard formula 1,) Hence, if % 1is the number of

different subsets (the number we are looking for), we have
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y=x41 , Thus x = %T = }?2, = 210. More generally, the

number of ways of choosing a subset of r books from a set

°of n books must be
nt

r:Zn-rJl

This formula is often glven the special abbreviation

nt - n
r:in-ri: r/*

) is called the binomial coefficient n over r

P
(for reasons that we see below),

n
This abbreviation (

The above formula is alsc sometimes called the number of

combinations of n objects taken r at a time, or the number of

unordered samples of bo objects taken r at a time without replace-

ment.

Standard formula 5. Unordered samples with replacement.

Theée are three candidates, A, B, and C, +to be President
of a small club. In the election 4 votes are cast, and a
final tally is made of the number of votes received by each
candidate. Such a tally can be given in the form of an
ordered triple of non-negative integers. For example, Cdowd LN
States that A and C have each received one vote and that

B has received 2 votes, while (2,2,0) states that A and B
have each received 2 votes while C has received no votes.
How many different final tallies are possible in an election
with 3 candidates in which 4 votes are cast? We can list the
pPossible tallies (Method I) and we get:- (4,0,0), (3,1,0),
(3,0,1), «(2,2,0), (2,1,1); {240.2), (Ledel) ; 412,15,
(1,1,2), (1,0,3), <(0,4,0), (0,3,1), (0,3,2), (051,39,
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(0,0,4). There are thus 15 tallies. We can obtain a formula
for this result bf thinking of each tally as a block of four
letters formed from the 3 letters A, B, C where the number of
occurrences of each letter in the block is the same as the num-
ber of votes for that candidate in the tally. Thus (1,2,1)

can be thought of as ABBC, and (0,1,3) can be thought of as
BCCC. We then take four stars (*) to represent the positions
of the four letters, a bar (|) to represent the division
between A's and B's, and a bar to represent the division
between B's and C's. Then each possible block corresponas to
a different way of placing the 4 stars and 2 bars in order. For
example the block AABB corresponds to #%|#*%*| and the block
AAAC corresponds to ***||*, Thus each different block (and
hence each aifferent<tally) ¢orresponds to a different set of
positions available for the stars and the bars. By standard
formula 4, thé number of éossibilities must be (g) = 4?é!.= 15,

agreeing with the result given by our Method T listing. More

generally, if we ask how many different final tallies are
possible in an election with n candidates in which r votes

are cast, we obtain the formula

-

r+n-1

(r+n-1)!
r!(n=-1)!

r

This formula is sometimes called the number of unordered samples

of n objects taken r at a time with replacement. This

concept has the same relation to the concept of ordered sample
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with replacement (formula 3) that the concept of combination
(formula 4) has to the concept of permutation (formula 2). The
phrase "unordered samples"” is used because we can think of the
selection process as follows (using the above example): from an
unlimited supply of Aa's, B's, and C's, choose a set §f four.
letters all at once. This set is the unordered sample (here
n=23 and r = 4). The number of occurrences of eacﬁ letter
corresponds to the number of votes for that letter in a tally.
We can count the number of distinct pdssible such sets by
arranging each set in a block, as above, with A's preceding
B's and B's preceding‘ C's, and then counting the number of
distinct possible blocks. As we have seen, this number is given

by the formula above.

Note. It is clear, from the -above discussion, that the
'aboﬁe result can be briefly restated. as follows. Let n ‘and
r be given. ;Consider ordered- n-tuples of non-negative
integers where the sum of the integers in each n-tuple is r.

The number of such n-tuples is (r+§-l).

Remark. The word- "sample" has been used in two different ways.

In Chapter 2, we ﬁsed "sample space" to mean the set iepresenting



79

the basic outcomes of an experiment. Here in Chapter 4, we have

used it to mean a possible subset or arrangement in a combinatorial

Problem. The two uses are unrelated, and should not be confused by

the reader.

Some further examples. The student should keep in mind that

the multiplication principle (Method IIT) and tree diagrams (Method
II) are more fundamental than the standard formulas (Method V).

- If one cannot think of a standard formula to apply to a given

pfoblem, one should go back to the multiplication principie, and,
if this fails, one shoﬁld use a tree diagram. Finally, if a

tree diagraﬁ falls, one should resort to a listing of possible
casés-fMethod I). We now look at further examples where we shall
Ssee that it is sometimes helpful to use a combination of different

formulas and methods in the same problem.

Example 4. Five cards are taken from a shuffled bridge
deck. What is the probability of finding three cards of one
denomination (or "kind") (for instance, 3  Jjacks) and of
having the remaining two cards be of another kind (for instance,
2 eights)? A set of five cards is called a poker hand. A

poker hand with three of one kind and two of another is called
a. full house. We therefore seek the probability of a full

house when a poker hand of five cards is taken at random from a

bridge deck.

As our probability space, we use the set of all possible poker

hands (that is, of all possible five card subsets of a deck of
52 cards), and we use the equiprobable assignment of probability



80

values., The number of points in the probability space is
22 = 2,598,960, by standard formula 4. The number of full house
hands can be got by the following analysis into steps.

Step 1. Select one of the 13 possible kinds for the group

of three cards.

Step 2. Select three of the four possible cards of that

kind to go into the hand,
tep 3. Select one of the 12 remaining kinds for the group

of two cards,
Step 4. Select two of the four cards of this latter kind

to go into the hand.

Applying the multiplication principle and using the standard for-
mula for Steps 2 and 4, we get that the number of full houses is:

4 4
v () =()
37k

Hence the desired probability is 72,598,050 = 0.0014,

13-4212.6 = 3744

Example 5, If we take a poker hanﬁ as in Example 4, what
1s the probabilitj of having two cards of one kind, two cards of
2 second kind, and the remaining card of a third kind? Such a
hand 1s called +wo Eairs. Here we can analyze into steps as

follows,
Step 1. Select two of the 13 possible kinds for the two

pairs,

Step 2. Select two of the four possible cards of the

higher kind.
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Step 3. Select two of the four possible cards of the lower
Step 2, Select a single card of one of the remaining 11

Applying the multiplication principle and using the appropriate

standard formulas, we get that the number of hands which are

two pairs is:

(13) (li-) (4) 11(4)= 78 « 6 « 6 ¢ 11°4 = 123,552,
2 2 2 1

Hence the desired probability is - .t22:552 = 0,048
¥ . 7 K

(The reader should note that the probability of one pair -
2 cards of one kind and 3 cards of three other kinds - is much
- higher, We get the number of such hands to be

() 60y o

1,008,260 _ 45

hence the Probability is . =
7

It is sometimes possible to analyze a given problem in an
unexpected way that permits the use of a standard fdrmula. The
reader will find that ability to make such an analysis improves
with practice. The following is an illustration,

Example 6. Three 5oxes are placed in a row on a table. For
each of four identical marbles (in turn), a box is chosen at random
andrthe marble is plaéed in that box. How many differenﬁ final

arrangements of marbles in boxes are possible? We analyze as follows.
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Call the boxes A, B, C. Then the choice of a box for each
marble can be thought of as a vote for that box, and the
choices for all‘four marbles make a tally of four votes for
those three boxes. Hence standard forﬁula 5 épplies and the

number of arrangements is

4 + 3 -1 6
4 4

= 15 o

More generally, in combinatorial work, a real or imaginary rovw
of boxes of this kind is called a row of gells. Thus the number

of different ways in which r identical objects can be placed in

n cells is F+n-1 .

r

Choosing a sample space. In Chapter 2, we noted that in the

same given probability problem, there maf be several different ways
to choose the sample space. We see another example of this in the
case of poker hands. We may think of each hand as a 5-card subset
of the 52-card deck. This gives a sample space with

(8 = 2,598,960 poinks, N used Lifw fn Examples 4 and 5

above.) Or we may think of each hand as five cards dealt in a cer-

tain order. This gives a sample space with

32l
47!

used the latter space in Example 4, the event full house would have

= 52 ¢ 51 ¢+ 50 + 49 + 48 = 311,875,200 points. If we had

been correspondingly larger. There would have been 449,280 Eull
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house hands, giving a probability value 31§4 7§Bgo = 00,0014,
L3 2 .
which i1s the same final value as before,

Binomial coefficients. There are several simple facts

about binomial coefficients ‘that are often helpful in comﬁinatorial
work. They include the following:

(a) Pascal's triangle. In the following diagram, values

of n give the rows and values of r give the diagonals. The
value of (3) appears at the intersection of row n and diagonal

r.

0— 1, ”{/-:::-vé = 2
1— 1 1 /f-/z=3
L— .1 2 1 N =4
3 — Il 3 3 1 ¥ pas
= t— 1 4 ¢ 4 g 4
S— 1 5 [0 o 5 1

® Q L] @ @ ® ®

~ LSS S Sy
]

-

Thus (g)-= 10 appears as marked with a Square. A special
oproperty of this diagram is that each entry is the sum of the
two adjacent entries immediately above i1t, Thus 10 = 4 + &,
This property gives us an easy way to get further réws. The
row for n = 6, for example, is immediately seen to be
1,6,15,20,15,6,1. Pascal's triangle is useful as a way of
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recalling the values of binomial coefficients for small values

of n. The Speclal property can be proved by verifying the

formal identity RY o fO=+) 4 [n- .
r r-1 r

(b) Symmetry. It is immediate, both from the formula and
from Pascalts tfiangle, ﬁhat we always have j

n n

i Ner

52} 52
Thus for example, 5 ]= lup *

(¢) Calculation. It is sometimes helpful to note that

(?) can be obtained by taking the Product of the first
T factors in n! and dividing this product by r! . Thus,

for example, [°)= 5% _ 10 ang 12) _ 2 . 1B,
| \2 21 1 1

(d) Binomial theorem. The following well-known identity
can be proved by mathematical induction, and is known as the

binomial theorem:

(840)P = (g) an+(§) n1 (;) n2 2 +(§) o

This identity is the reason for the name "binomial coefficient."
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(e) Qther identities. Useful identities can be

derived from the binomial theorem. For example, putting

a=1 and b =1, we get

2 - (o) + () s ()

Hence the sum of entries in row n of Pascal’s triangle must
be 21, Returning to the meaning of (:) as given by standard
formula 4, we see from this identity that the total number of
subsets (of all sizes) of a set with n elements mst be 27,
(We could have obtained this latter fact directly by numbering the
objects in the éet_from 1 to n and then analyzing the making
of a subset into the following n steps:

Step 1. Decide whether or not object 1 goes into the
subset, |

Step 2., ' Decide whether or not object 2 goes into the
subset, '

...........l.'.."...‘..l.-..........dl'.lll......'l.

Step n. Decide whether or not object n goes into the

subset,
As each step can be done in two ways, the multiplication principle
gives the result 2% for the total number of pPossible subsets

that can be found in this way. Note that the empty set and the

original set itself are included.among the 20 subsets.)

Standard Formula 6. Multinomial coefficients. We give one

further standard formula that is important and commonly used.
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Assume that we have ten books to place on a shelf. Five of the

books are identical copies of a certain book which we call A.

Three are identical copies of another book; B. And the two remain-

ing are identical copies of a third book, C. How many different

arrangements are possible? We analyze into steps as follows.

Step 1. Choose five positions for the copies of A, and
0
pPlace them, This can be done in B ways.,
Step 2. Choose three of the remaining five positions for

=
the copies of B and place them. This can be done in (3) ways,

Step 3. Place the copies of C in the remaining two
positions, This can be done in one way.

Applying the multiplication principle, we get:

10) (5} 1 . 0t , 5t _ _10 = 2,520
5/\3/] -

More generally, if we want to arrange r objects in a row when
kl of the objects are of one kind and identical, kg are of
a2 second kind and identical, ... , and k ~are of an n®™® king

and ldentical, then this can be done in

4
klikgf:..kn! WL ®4

(where we always have Ry A Ky + g F k, = r), This formula

is sometimes given the special abbreviation;
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rt
kllkzl...kni

kl’kgaoc o:kn

10
Thus 37%2%? becomes _ . This abbreviation is called a
e 5:3,2
multinomial coefficient. ' When n = 2, the multinomial coefficient
© ) is the same as the binomial coefficient [ \ , since
; i 4 4
k¢ + k, = r (and hence —Zs__ = ad

Multinomial coefficients appear in the multinomial theorem (an

identity similar to the binomial theorem):

(al + az + ... + an)r = the sum of all distinct terms of
the form

' kl k2 . n
M(kl,...,kn)al a,” ... an i

where all possible choices of kl'kz""'kn 2 0 occur

such that kl + k2 + e + kn = r, and where the

. b o
coefficient M(kll * s ’k ) iS hs ) °
n
.klrkzrboo]kn

(Note. Using standard formula 5, we immediately see that

r+n -

5 l) different terms in this sum since’

there must be (
(r * g - l} is the number of distinct n-tuples of non—negétive

in#egers (kl""'kn) such that kl + k2 * sew F kn = r.)
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Stirling's formula. In hand calculations with factorlals,

it is often helpful to use the following approximation.

This approximation is known as Stirling's formula, As n in-

Creases, the relative error of this approximation goes to zero,

That is to say, the ratio of the approximate value to the
exact value goes to 1. More Specifically, for all n, this

ratio can be shown to lie between e~1/12n and 1. (Thus, for

n > 10, the approximation is accurate to within 1 percent since
e-l/lZn > 0.99.) As an example, we use Stirling's formula to get

a value for (

& I TR _e7%55%
13 51301 e~1313152/55 3-393939?735

Canceling common factors, we get

M 5% y13 13
7 ——— 6.4 x 10 4
/267

with accuracy to 2 significant figures. As we shall later see,
Stirling's formula has theoretical uses. It is also useful with
electronic calculators, since many calculators cannot directly

get n! for n > 70.

ig). the number of possible bridge hands, as follows:

e
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For 5!, Stirling's formula gives the approximate value
118.02 for a relative error of 1.7 percent from the correct

e-l/lZn

value 120. (Here = 0.983.) For 10!, Stirling's

formula gives the approximate value 3.60 x 106 for a relative
error of 0.8 percent from the correct value 3,628,800.
For 52!, stirling's formula gives the approximate value

67

8.053 ... x 10 for a relative error of 0.2 percent from

the correct value 8.066 ... x L067. (Here e-'l/12n = 0.998.)

Proof of Stirling's formula. The formula can be proved by

noting that the value of log (n!) is approximately given by
the area of a certain region under the curve y = log x and by
computing this area by calculus. The proof is elementary but

lengthy. 1In outline, it goes as follows. log k 1is

approximately given by the area'(call-it Ak) under the
curve y = log x between x = k = % and x = k + %. Hence
log (n!) = log 1 + log 2 + ... + logn=10og 2 + ... + log n
is approximately given by the area under y = log ¥ between
.3/2 and x=n + 1/2. Thus .

log (n!) = E_+ Ig;él/z) log x dx,

X

where En is the total error accumulated in replacing 1log k
by Ak for each k < n. Evaluating the integral, we obtain

4 3 3 3
log (n!) = En + (n+%) log (n+%) -n-3-3 19g 5+3.

Next, we can show (using the infinite series for log (1+x))

that
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+ D

1 dr 1 1
(n+§) log (n+§),— (n+§) log n + 5 -
where Dn -0 as n + =, Hence,
- 1 -
log (n!) = (n+§) log n n + Cn + Dn
ﬁhere C._ =E_ + A | log 3 Finall by careful analysis
n n 2 2 g 2 . Y! Y " y r

‘we can show that as n -+ =, Cn -+ % log 27. Hence,

log (n!) = (n+%)log n-n+ % log 27 + Bn where Bn —> 0 as
. B i
n — ® and ni =n""{1/2)n y2r e B % nn+(l/2)e N /27. We can

lén » and this

gives the limit of error stated above for Stirling's formula.

also show, by series methods, that 0 < Bn <

- E—— -
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EXERCISES FOR CHAPTER 3.

Remark. Correct use of elementary cqmbinatorial methods
requires practiced insight. At first, the sfudent will find
that certain common kinds of mistakes occur. In particuiar,
certain outcomes willlhave been counted more than once, and
certain other outcomes, intended to be included, will have
been omitted altogether. Other common mistakes in&lude:
neglecting to subtract the intersection term in applications

of the addition law (see third fact on page 47, and see also

the 1nclus;on/exclu31on prznclple in Exercise 3-15 below);

' using the multiplication principle when the number of ways of
doing a certain step varies from outcome to outcome; and con- °

fusing samples with replacement and samples without replace-

" ment.

3-1. (a) How many distinct blocks of 5 letters can be
formed from the 26 letters of the alphabet when repeti-
tion is allowed?

(b) How many such blocks can be formed if exactly
two of the five letters in each block are vowels? (Take
the vowels ﬁo be A, E, I, 0, and U; repetition is
again allowed.) -

3=2. If four identical apples and three identical pears
are arranged in a row, ana if all distinct arrangements
are equally probable, what is ‘the probability that the
three pears will be includeéd in the first five'positioqs

(reading from left to right)?
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You are dealt a poker hand from a shuffled deck.

You receive two kings, a seven, a nine, and a five. You

discard the seven, nine, and five, and draw three more

cards from the remaining deck. What is the probability
that you get either one or both of the remaining kings?
(@) At State Institute of Technology, freshmen are
required to take the following courses: a choice of one
of three possible year-courses in English, of one of two
possible year-courses in mathematics, of one of three
possible year-courses in physics, of one of two possible
year—courses.in chemistry, and of one of nine possible year

electives in other subjects. Such a program of five - -

Year—-courses is called a standard program. How many
distinct standard programs are possible?

(b) After a major study of its first-year
curriculum, the faculty establishes the following revised
requirements for mathematics, pPhysics, and chemistry dur-
ing the two terms of the freshman yYear. A freshman is
is required to take one of two possible first-term
courses in mathematics (Math A, or Math B, (harder)), one
of three possible first-term courses in physics (Physics
Al’ Physics B1 (harder), or physics Cl (hardest)), and
one of two possible first-term courses in Chemistry
éhem A, or Chem B, (harder)). 1In the second term, a
freshman is required to take one of two possible second-

term courses in mathematics (Math AZ or BZ), one of
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three possible second-term courses in théics (Physics
Az, Bz, or Cz), and onelof two possible second-term
courses in chemistry (Chem A2 or Bz).r A freshman who
is in the Al course in a given subject cannot move.to
the B, or C, course in the same subject in the second
term, and a freshman in Physics Bl cannot move to

Physics C2 in the second term. A freshman must be in

_Math B1 to take Physics Bl or C1 at the same time and in

Math B, to take Physics B, or Cy- A freshman must be in
Physics B, or C, to take Chem B, and must be in Physics
32 or C, to take Chem B,. How many different first-term
Programs are possible in mathematics, physics, and
chemistry? - )

(¢) Under the requirements given in (b) , how many
different programs for the full year are possible in
mathematics, physics, and chemistry?

(a) A class of 12 students occupies assigned desks

in a classroom with 18 desks. How many ways are there

-0f assigning individual students to individual desks?

(b) There will be 6 unaséigned desks in the class-
room. How many different sets of 6 unassigned desks are
possible?

(c) Each student in the class may choose one of
five given topics for a term project. In how many

different ways can the students choose their topics?
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(d) In preparing to grade the project reports, the
teacher makes aﬁ over-all tally of the numbers of -
reports on each of the five topics. How many different
tallies are possible? -

(a) An eight-oared racing shell has eight rowing
pPositions in a line from bow to stern. Four positions
have ocars on the starboard side and four have oars on

the port side. a given crew of eight rowers has four

starboard rowers capable of rowing in any of the four

starboard positions and four port rowers capable of row-~
ing in any of the four port positions. The coach
decides to hold a time-trial (timed practice run) for
each different possible arrangement of the eight rowers
(with starboard rowers assigned to starboard positions
and poft rowers assigned to port positions). How many
time-trials must be scheduled?

(b) The coach later discovers that one of the
port rowers is capable of rowing in sfarboard positions
and that two of the starboard rowers are capable of row-
ing in port positions. How many additional time trials
must be scheduled?

(¢) The next year, the coach has five port rowers
and seven starboard rowers out for the eight-ocared crew.
No rower is capable of rowing both starboard and POYE.
The coach again wishes to have a time-trial for each

possible arrangement. How many must be scheduled?
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(a) A hockey coach has 3 goalies, 6 defensemen,
and 12 forwards on his squad. At the beginning of a
game, he must put 1 goalie, 2 defensemen, and 3 forwards
on the ice. How many different groups of six playérs can
he put on the ice?

(b) There are two defense positions (left defense
and right defense) and three forward positions (left
wing, center, and right wing). If each forward is capa—)
ble of playing in any of the three forward positions
and each defenseman is capable of playing in either
defense position, in how many ways cén the coach choose
six starting players and assign the six positions to.
them? ' =

(a) How many distinct ways are there of ordering
the six letters of the word VERMONT?

(b) How many for the nine-letters of the word
SASSAFRAS?

(c) How many for the eleven letters of the word

MISSISSIPPI?

A bridge hand consists of 13 cards drawn at random

without replacement from a bridge deck of 52 cards.

(a) What is the probability that a bridge hand
will consist of all cards of the same suit?

(b) wWhat is the probability that a hand will in-

clude 5 spades, 4 hearts, 2 diamonds, and 2 clubs?
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(¢) What is the probability that a hand will
include 4 spades, 3 hearts, 3 diamonds, and 3 clubs?

(d) What is the probability that there is some
suit with 4 cards and that there are 3 cards from éach
of the remaining suits?

(e) A yarborough at bridge is a hand containing

ne aces and no card higher than nine. It is named for
the Earl of Yarborough who was willing to bet 1000 to
J, pdds against its occurrence. Estimate the true odds
against drawing a yarborough.

a poker hand is drawn at random without replacement
from a bridge deck of 52 cards. Calculate the probabil-
ity of getting: -

(a) Three of a kind. A hand is called a three of

a kind if there are three cards 6f one kind and one card
of each of two other kinds.

(b) Four of a kind. A hand is called a four of ;a

kind if there are four cards of one kind.

(¢) Flush. A hand is called a flush if all five
cards are of the same suit.

(d) Straight. A hand is called a straight if it
contains cards of five different kinds, where the kinds
are five adjacént, successive kinds in the sequence:

ace, two,...,ten, jack, gqueen, king, ace.

(e) Straight flush. A hand is called a straight

flush if it is both a straight and a flush.
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(a) A club contains 5 men and 7 women. Five
members are chosen at random to form a committee. What
is the probability that the committee includes 2 men
and 3 womeﬁ? |

(b) A club contains 'nl men and n, women. Give
a general formula for the probability that a randomly

chosen group of r people will include r, men and

‘T, women (where rl + r2 = r). This formula is called

the hfperéeometric formula. It is considered further
in Chépter 124 |

Let A be the set {1,2,...,m} and let B be the
set {1,2,...,n}. A mapping from A to B is an
assignment which associates with each membBer of A a
unique member of B. The same member of B may be
associated with more than one member of A, Dbut each
member of A has only one member of B associated with
-

(a) For given m and n, how many distinct map-
Pings are there from A to B?

(b) An injection from A to B (for the case
where n > m) ié a mapping from A to B in which no
member of B is associated with more than one member
of A. For given m and n, with n > m, how many
distinct injections are there from A to B?

Given r > n, in how many different ways can r

identical objects be placed in n cells so that each

cell is non-empty?
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A bookcase has r shelves. You have n different
books to place in éhe bookcase. Each shelf can hold up
to n books. The books on each shelf are placed as
close to the left end of the shelf as possible. Héw many .
different arrangements of the books can be made?

The addition law of probability states that
P(AUB) = P(A) + P(B) - P(ANB). This law can be general-

ized to n events Al'Az""’An és follows.
P(AjuAu...UA)) = T P(A;) - | P(A.na.)
: 1 gl n i i i<5 kol

+ J P(a.na.na,) - ' P(A.NA.NA NA ) + ...
i<j<e  * %% i<..z.<2. s e ‘

+ (-l)n‘lP(AlnAzn...nAn).

This is the inclusion/exclusion principle. Exercise 2-4

was to show this for‘the case n = 3,

(2) Assuming this law for n = 3, prove that it
holds for n = 4. (This will show how a proof for the
full result, by mathematical induction, can be obtained.)

(b) The inclusion/exclusion principle is especially
useful when it is known that the value of P(Ai) is the
same for all i, that the value of P(AfﬂAj) is the
same for all i < j, that the‘value of P(AfﬁAfﬁAk). is

the same for all i< j < k, ... . Show that in this

case
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1M3,)

2

P(A;UAU...UA ) = nP(a)) }P(A

172

n n=-1
+ (3)P(AlnA2n33) S CLTTTR@ AN LM ).

(¢) A card is drawn from a shuffled bridge deck
and then replaced. This is repeated six times. What is
the probability that all four suits appear during the
8ix draws?

(Hint. Let A, Dbe the event that spades do not appear,

and let .Az, A3, and A4 be the corresponding events

for hearts, clubs, and diamonds. The probability that

we seek is 1 - P(AIUAZUABUA4). Use the formula in (b)
to calculate P(AIUA2UA3UA41 with P(Al) = 36/46,
P(a;M,) = 25/45, P(A;MA,MA;) = 1/4%, ana
P(AlﬂAéﬂA3ﬁA4) = 0.)

(d) Six cards are drawn without replacement from a
shuffled bridge deck. Find the probability that all four
suits appear.

(e) A bridge deck is shuffled and all 52 cards are
laid out in a line face up. A second deck is then
shuffled and its 52 cardé are laid out face up in a line
next_to the first line. We say that a match occurs at
- the itB position if the cards in the 'ith position in
_the two lines are the same. What is the probability
that at least one match occurs? (Hint. Let A; be the

event that a match occurs at the it§ position, and use

(b) to calculate P(A1UA2U...UA52).)
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The four players at a bridge table are known as

North, East, South, and West. A shuffled deck is dealt

to the four players.

(a) What is the probability that each of the'four
piayers receivés all cards of the same suit?

(b) "What is the pProbability that North receives
all cards of the same suit? (This is the same as Exer-
cise 3-9a.)

(c) What is the probability that ét least one
Player receives all cards of the same suit? V(EEQE. Use
the inclusion/exclusion Principle of Exercise 3=13.)

(&) G;ve Plausible guesses, based on your personal
observation as to the frequency with which bridge is
played, as to whether or not the events in (a) and in
{c) havé occurred anywhefe during this century.

(a) What is the probability that a bridge hand has
no aces?

(b) The probability in (a) is obviously the same
as the probability that 39 cards, drawn without replace-
ment, will include all four aces. We now draw 39 cards
with replacement from a repeatedly shuffled bridge-deck.
What is the probability that all four aces appear during
the draws?

(Note. These results are a good illustration of the

different effects of assuming or not assuming replace-

ment.)
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(a) Three cards are drawn, without replacement,
from a shuffled bridge deck. What is the probability
that at least two are of the same suit? (Hint. Consi-

der ordered samples.)

(b) Three cards are drawn, in turn, with replace-~
ment from a shuffled bridge deck. What is the
probability that at least two are of the same suit?

(c) What is the probability, in a poker hand, that
exactly one suit will be missing? (Note. This result
has been used as the basis of a sucker bet, as have the

results in (a) and (b) and in Exercises 3-15 and 3-17.)






