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CHAPTER 2. PROBABILITY SPACES.

Consider the experiment of rolling a single die. We make a

mathematical picture of this experiment as follows. First, we
decide ¢on what to think of as possible basic outcomes'of the
experiment. In this case, we take six possible outcomes which
we represent by the numbers 1,2,3,4,5,6. We next form the set
of all these outcomes. In this case, it will be the set

{1,2,3,4,5,6}. We call this set the sample space of the experdi=-

ment, and the members of the set (which we have taken as the
possible basic outcomes of the experiment) are sometimes called

the points (or sample points) of the sample space. As we noted

in Chapter 1, a set of possible basic outcomes of an experiment
is called an event. Thus, im our mathematical picture, the
events are represented by the subsets of the sample space, and
we shall speék of these subsets themselves as events. An event
in a sample space can be described by listing its members. For
example, we might speak of the event {1,3,5}. It is often
possible to describé an évent in other ways also. For example,
the phrase "result is odd" describes the same set of outcomes,
{1,3,5}. similarly, "result is less than 3" describes the set
{12},

We shall sometimesruse capital letters to stand for events
.in a sample space. ‘Let A Dbe some given event for an experi-
ment and a chosen sample space. If, in a given trial of the
experiment, the basic outcome which occurs is in the event A,

we say that the event A has occurred on that trial. For
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example, if we roll a die and get the number 1, then we can say
that the event {1,3,5} has occurred. Note that the event
{1,2} has also occurred.. A single basic outcome may lie in
many different events, and whenever that outcome occurs, we can
also say that all those events have occurred.

Let us look at a particular basic outcome, say the outcome
l. If we repeat many times the experiment of rolling the die,
we expect, by the strong stability of relative frequencies, that
values of the relative frequency for this outcome will cluster
more and more closely about some fixed value. Similarly for the
other five outcomes. If we actually carry out the experiment
many times, we find that each of the six basic outcomes has
relative fréquency close to %.‘ (Indeed, the physical symmetry
of the die, and our own past-experiencé with this kind of
physical symmetry, suggest to us ahead of time that the six
outcomes will‘occur about equally often.) For these reasons,
we take each point in the sample space and assign to it a
numerical value representing the relative frequency that we
expect for that point when the experiment is repeated many
times. This means, in our present example, that we assign the
value d to each point in the sample space. We call these

6
values probability values, and the assignment of values to

points in the sample space is called a probability function.

Once we have a probability function, we can then also give a
numerical value to each event in the sample space by simply
adding up the probability values of all the outcomes in that

event. We call this the probability of the event. If A is
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an event, P(A) will stand for the probability of the event.

Thus

P(A) = the sum of the probability values for outcomes in A.

P({1,2}) = é + % = %-, and

In our example, P(less than 3)
P(odd) = P({1,3,5}) =#+ 2+ £ =3% . Since the probability
values of the basic outcomes represent the expected relative
frequencies of those outcomes, it follows that the probability
of an event represents the relative frequency that we expect for
that event. Thus we expect the event {1,2} to occur about one-
third of the time and the event {1,3,5} to occur about halrf the
time. In this way, a probability function‘on the points of the
sample space gives us a probability value for each event in the

sample space. (This assignment of probability values to events

is sometimes called a probability measure on the sample space.)

A sample space, together with a probability function (and hence

a probability measure) on that space is called a probability
Space.

Note that when we choose a probability function, we always
choose it so that the sum of the probability values for all points
in the sample space is 1, (We dé this because we know that on
each trial, at least one of the basic outcomes must occur; this
means that the event consisting of the entire Sample space must
occur with relative frequency 1.)

The probability space (that is to say, the sample space with

its probability function) forms a mathematical picture or model of
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the experiment. This chosen model corresponds to the actual

experiment in the following way.

Chosen mathematical model

Ssample space : B

point in sample space >
("outcome")

subset of sample space  —
("event")

probability wvalue of point &——>

probability value of subset_e-—-;
(= sum of probability
values of points in the

subset)

Physical experiment

experiment
basic outcome

set of basic outcomes
{("event")

relative frequency of basic
outcome for many repetitions
of experiment

relative frequency of event
for many repetitions of

experiment

Note that we use the words "outcome" and "event” in talking about

a probability space as well as in talking about the underlying

experiment. Note also that, in general, many different models

can be chosen for any single given physical experiment. Models

for the same experiment can differ because of different choices

of probability function. Models for the same experiment can

also differ because of different choices of sample space. We

discuss this further below.

When we form such a probebility model, we cannot always be

sure that 1t fits the experiment exactly, because we cannot be sure

that we have chosen the best probability function. Consider, for
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example, the experiment of tossing a thumbtack described in
Chapter 1. For this experiment, the sample space has two points
which we call s (for on side) and b (for on back). To get a
probability function, we must use our past experience with the
experiment. The results described in Chapter 1 for a particular
given thumbtack suggest that we take, for that thumbtack, a
probability value of about 0.59 for 8 and a value of about
0.41 for E."We cannot be sufe that fhesé values are exactly
right. We can only say that they are correct to two decimal
places on the basis of our experience.

In certain cases, because of symmetry, and because of our
experience with symmetry in physical experiments, we can assign
a probability function without carrying out repetitions of the
experiment. This is the case with the die, where we can see ahead
of time that each basic outcome should get probability wvalue %.
It is also the case with the coin-tossing experiment. For the
coin, there are two points in the sample space, and symmetry
shows us that each point should get probability value %, (The

correctness of the wvalue % (to several decimal places) is also

shown by the data given in Chépter 1 for repeated tosses of a
coin.)

The fourth example given in Chapter 1 was the birth-month
experiment. In this case, there are twelve points in the sample
space. We do not know, ahead of time, what probability function
to use. If we try the experiment many times, or if we look up

government records of birthdays, we will find that about the same
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proportion of people is born in each of the twelve months. This
suggests that we assign the wvalue f? to each of the twelve out-
comes. (We could seek an even more accurate model by directly
using the proportions occurring in government records or by argu-
ing from these records that about the same number of persons are

born each day in the year and taking the value §E§i§§ for

January, f%%%%% for February, and so forth.)

If we let x stand for a point in the sample space S
of a model, and if we let Py stand for the probability value
assigned to x in that model, then we can describe the model
itself by means of a two-line table where the first line lists
the points x and the second line gives the corresponding
probability values Py-

For example, the model_described above for the experiment
of rolling a single die can be given by the table

X [ 1 2 3 4 5 6

P, 1/6 1/6 1/6 1/6 1/6 . 1/6

In experimenting with a given die, we might find that the
observed relative frequencies did not agree with our chosen
model. In that case, we would be led to consider other models
hased on the data actually observed. For example, if we ob-
served that outcomes 2, 3, and 6 each occurred about one-—
tenth of the time, that 1 and 4 each occurred about two-
tenths of the time, and that 5 occurred about three-tenths of

the time, we might adopt the model
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instead of the model with equal probability values given by the
previous table. (In this case, our past experience with -
physical symmetry would also lead us to conclude that the die
was not physically symmetrical in its shape or make-up. Such
a die is said to be loaded. If the model with equal probability
values is appropriate, we say that the die is fair.)

In talking about events (fér some given experiment and
sample space) we shall use the standard notations of set theory.
If A and B are events, we use A U B for the union of A

and B, and A N B for the intersection of A and B. To say

that A U B occurs is the same as to say that either A or B
or both occur. To say thét A N B occurs is the same as to say
that both A and B occur. We use S for the sample space, #
for the empty set, and A fgr the event which consists of those
points in S . which are not in AaA. 1If every outcome in A is also

in B, we say that A is a subset of B, and we write ACB. Thus,

inthe case of the die, if A is {1,3,5} and B is {1,2}, then

UB = {1,2,3,5)}
B = {1}
(1,2,3,4,5,6}
(2,4,6)
{3,4,5,6}

W = v > =
] I N o
]

We always take P(@) = 0, and, as we have noted before, we always

have P(S) = 1,

-
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We now state some simple mathematical facts about probability
spaces. Although they are simple, these facts are also very use-
ful.

The first fact is that

P(A) = 1-P(A)
The second fact is that 1f A N B = ¢, then

P(A U B) = P(A) + P(B)

(When A NB=g, we say that A and B are disjoint, or

mutually exclusive, events.)

The third fact is that for any events A and B,
P(A UB) = P(A) + P(B) - P(A N B).

The truth of these facts is immediate and obvious when we recall
that the probability of an e;ent is the sum of the probability
values of the basic outcomes in that event. For example if we
take P(A) + P(B), then each value for an outcome in A N B
gets counted twice. By subtracting P(A N B), we get each value
counted once, and we have the third fact above:
P(AUB) = P(A) + P(B) - P(AN B)., (Note that the second fact
is a special case of this third fact.)

We illustrate these facts with some examples from the experi-
ment of rolling a single die. We take the probability space wﬁére
each probability value is 1/6. Let A = {1,3,5} and

B = {1,2}. Then A = {2,4,6}, and "P(A) = 1 - P(A)" asserts

that =1 - %, which is true; and "P(A U B) = P(4) + P(B) - P(A N B)"

asserts that %-; % + % - % » which is also true. The threse

general facts given above are sometimes called laws of probability.
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As we have seen, a probability Space serves as a model for
an experiment and is made up of a sample space and a probability
function. What are some of the uses of such a model? One of
the main uses is to calculate the pfobability of some event we
are interested in. Then, provided that the model is a good
model, we will know the approximate relative frequency with
which we can expect that event to occur. (We sometimes say that
we know how- likely the event is.)

Here is an example of such a probability calculation. The
experiment consists of stopping three people on the street in
turn and asking each one the month of his or her Birth. Whaf is the
probability that at least two of the three people stopped have the
same birth-month? The sample space must have 12 x 12 x 12 = 1728
basic ocutcomes. (Try listing all the possibilities to see why
this is true.) The probability function is chosen so that each
point gets the same probability value: T%?g . (Reasons for this
choice will be given in Chapter 4.) Let A be the event:

at least two of the three people have the same birth-month. To

get our answer, P(A), we must find out how many points of the sample
space are in the event A. At first, this appears to be a

long and complex problem, but the laws of probability

come to our rescue as follows. A is the event: all three people

have different birth-months. It is quite easy to get P(&), be-

cause there are easily seen to be (12)(11)(10) = 1320 basic

outcomes in A, Thus P(K) must be %%%g = ;% . Using the law

P(A) =1 - P(A), we get P(A) = 1 - %g = %% = 0.24 (to two decimal

places), and we have our answer. We can expect the event

A  to occur about'one-fourth of the time,
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The same method can be used if we change the experiment and
stop five people (instead of three) to ask for their birth-months.
What is the probability, in this new experiment, of the event 3B

that at least two of the five people have the same birth-month?

= (12) (11) (10) (9) (8) 55. 89
W =1 - =1 = = 1= =22 _ &2 _
e have P(B)=1-P(B) =1 5 1 144 iag = 0.62.

: 12
Thus we find, to our surprise, that we can expect the event B

to occur over 60% of the time.
In most of the above examples, we have used the probability

function which assigns the same probability value to each basic
outcome, This assignment is called the equiprobable

probability function. When we use this function (for

reasons of physical symmetry, or for other reasons) the probability

of an event A must be the same as the ratio of the number of

points in A to the number of points in S, Calculating this

ratio is not always easy, especially when the sample space has
a large number of points., The probability laws are often help-
ful in such calculations.

There are also situations, as we shall see in Chapter 4,
where we have only limited information about an experiment and
do not know a probability function to begin with. Instead, we
only know probabilities for some of the events. It is often
possible in such cases to go on and calculate probabilities of
other events by using laws of probability.

Remark. Perhaps the most important thing for a beginner in
probability theory to remember, when he or she works on a broblem,

is that one must have in mind a single, definite experiment, a

single, definite sample space, and a single, definite probability
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function (even though one may not be sure, ahead of time, of all
the probability values.) Many of the difficulties that trouble a
beginner in probability arise because one has‘confused two
different experiments, two different sample spaces, or two

different probability functions in the same problem. Before one

starts on a problem,. one should alwavs ask oneself: what is the

experiment, what is the sample space, and what is the probability

function?
Perhaps the second most important thing for a beginner in
probability theory to do is to keep separate in his or her mind

the experiment (the physical procedure) from the model (the

sample space and probability function) chosen to give a mathe-
matical picture of the experiment. As we get more data about an
experiment, we may decide to change our model. We illustrated
this above in the case of a loaded die. Indeed, there may be no
single obvious model to begin with when we study an experiment.

(This is the case, for example, with tossing a thumb tack.) We

shall later see that much of the subject of mathematical

statistics has to do with the problem of choosing a best model,

or else a set of good models, for a given experimental situation.

Usually, when we calculate a probability P(A) for an
event A 1in a given experiment, we do.so from a particular
model (probability space) that we have chosen for that experiment.
If we used a different model, we might have to give a different
value for that probability. Let u and u' be two different
models for an experiment, and let A be an event for that experi-

ment. We shall occasionally use notations such as "PH(A)" or
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"Pu,(A)" in which we indicate the model that is being used to
give the probability of A.

In setting up a model for a given experiment, several
different choices of sample space may be possible. Which we
choose will depend upon mathematical convenience and upon the
aspects of the experiment that are oflinterest to us. For
example, if we roll a die on a table, we are ordinarily inter-
ested only in the number appearing, and in this case we take
the sample space 1{1,2,3,4,5,6}. We might, however, be inter-
esﬁed as well in the position upon the table at which the die
comes to rest. If so, we would construct a more complex
sample space (where each point corresponds to a particular
position on the table together with a particular value on the
die.) The sample space we choose is part of the model we
decide to use. When we use probability theory to study an
experiment, We.must choose an appropriate sample space (for
our purposes) and then stay with that choice throughout the
study.

Odds. Probability statements are sometimes given in the

form of true odds against an event. If we say that the true

odds against the event A are 3 to 2, and if we are talking
about an experiment that can be repeated under the same
general conditions, then we are stating that we expect the
event, on the average, to occur two times for every three
times that it fails to occur. In other words, we expect a
relative frequency of 2/5, and we have in mind a model where

P(A) = 2/5. True odds are usually given in terms of whole
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numbers. If the true odds against an event are m to n, we

sometimes say that the true odds in favor of the event are n

to m. 1In general, to say that the true odds against A are

m to n is to say that P(A) = E%H’ Thus, if P(A) = p is
given, the true odds against A «can be stated as m to n,
where m and n are whole numbers such that the value 525

is equal, or approximately equal, to p.

In Chapter 1, we considered bets in which a bettor stands
to lose the amount & if a certain event does not occur and to
win the amount w if the event does occur. Whole numbers m

and n such that §-= % are called betting odds for this bet.

In Chapter 1, we said that a bet is fair if ﬁ%f = the limiting
relative frequency for the event. Hence, for a probability
model which accurately reflects observed relative frequencies,
true odds against an event are just betting odds that give a
fair bet on the event. Betting odds are sometimes used in
connection with experiments that cannot be repeated ("the odds
are 3 to 1l against there being life on Mars") in order to des-
cribe how strongly a person holds a certain belief. We later
return (in Chapter 20) to the topic of non-repeatable experi-
ments and degrees of belief.

More on notation. As is common in mathematics, we can use the

symbol "€" to mean "is a member of". Thus x € A means that
X 1s a member of the set A. We can also use the symbol

to indicate a sum in the following way: given a model, I p
XEA
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will stand for the sum of the probability values for all

outcomes in the event A. Thus the definition of P(A) can

be given as

P(A) = & p
XE€EA

and the requirement that pProbability values total to 1 can be

given as

Z p,.=1.
xXES X ‘

Infinite sample‘spéces. In the examples above, all sample

spaces have a finite number of points. Sample spaces with

infinitely many points are also important and useful. For exam-

Ple, consider the experiment of tossing a coin until a head

appears, and let the outcome be the number of tosses required.
This number can be any positive integer. Hence, it is natural
to take, as model, a probability space with infinitely many
points. If the coin is well-balanced, and if the results of
successive single tosses are "independent" (in a sense to be de-
fined precisely in Chapter 4), then it can be shown from rules to
be given in Chapter 4 that the probability of outcome x is

(1,935, Hence we have, as model, the probability space given in

the following table:
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P, /2 14 1/8  1/16 1/32  1/64 ... 172" ...

Some events now have an infinite number of points, and
calculation of their probabilities requires that we form
corresponding infinite sums. For example,

P(x even) = 1/4 + 1/16 + 1/64 + ... = 1/3
and P(x odd) =1/2 +1/8 + 1/32 + ... = 2/3.

Such infinite sums are usually called infinite series, and ways for

calculating such sums are given in the theory of infinite series.

[Footnote: we do not give this theory here, but only make the
technical remark, for those acquainted with the theory, that in
an infinite probability space like the one above, the series for

any event will be absolutely convergent and hence give a sum

which does not depend upon the order of the terms in the
series.] A probability space is discrete if it has a sample
space in which every point, taken as an event by itself, has

a positive probability. Finite probability spaces are discrete
and so is the infinite probability space given in the example
above.

A different kind of infinite probability space arises in
experiments where, for purposes of a model, we take possible
outcomes to be all points in some ipterval of real numbers (or in
some continuous region of a higher dimensional space such as the

plane). Such probability spaces are said to be continuous. (Older

texts refer to such spaces as "geometrical".) For example, consider

the experi-



55

ment of monitoring telephone calls through a telephone exchange
at a given time of day and measuring the length of time between
the beginning of one call and the beginning of the next. It is
natural to take, as a sample space, the infinite interval of all
non-negative real numbers. Unfortunately, it is no longer
mathematically possible to give a positive probability value to
each point. (Hence the space is not discrete). Instead, we
assign probability values to certain events by introducing a

non-negative function £(x), called the probability density

function. We then calculate the probability of any event of the

form a € x < b, for given a and b in this space,by taking

b

P(a< x<b) = fy £lx) ax.

Thus P(a < x € b) 1is given by the area between x = a and

X = b under the curve for f(x).

In the above example of the Eelephone exchange, a good model

(fér mosEm;;Ehanges) is got by taking f£(x) = me ™ where m

is the average number of calls coming in per unit time. (Here, and
throughout the book, e = 2.718..., the base of the natural

logarithms.) Thus for an exchange averaging two calls every minute,
the probability that the time between two successive calls will be

5 minutes or less is given by

5 272X gy =1 - 710 = §.99995.

0 2e

P(0 S x<5) =/

See Figure 2.1.
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When a continuous probability space is given as an interval
(possibly infinite) of the real line, we obtain probabilities by
using a probability density function as in the above example.
See Figure 2.2. The choice of this function (like the choice of
the values Py in a discrete space) will depend upon'physical

circumstances and past experience with the experiment. Ciearly,

we must have f£f(x) > 0 for all x € S, and we must have

Jg £(x) dx =1 (just as, in a discrete space, we must have P, > 0

and ) p_=1.) (The reader can check, in the telephone example,

XES
that IE me ™ dx = 1.)

In the present text, we shall use infinite discrete

spaces from time to time. We shall use continuous spaces less

often, but certain special examples of continuous spaces will

be important in later sections on mathematical statistics.

Note that in a continuous space, we cannot calculate the

probability for every event, but only for events having the

.formiin interval (or for events which are unions of intervals).
Note also the special and curious feature of a continuous space
that an event which consists of a single point gets probability
zero. (Thus every individual outcome has, as an event, probabil-

ity zero.) This is related to the fact that actually performing
Such an experiment will involve a measurement of some kind, that

this measurement can never be fully precise, and hence that the

measurement can only determine a small interval rather than a

single point.
In more advanced work in probability, still other, more coﬁ-
plex, forms of probability space can arise. For example, in

studies of the path of a microscopically visible particle under

random molecular
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EXERCISES FOR CHAPTER 2.

The game of roulette is described in Exercise 1-4.
On a roulette wheel, the red pockets are numbered
1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30,
32, 34, 36. The event even is said to occur if one of
the even numbers from 1 to 36 occurs. Similarly for
odd. Use the equiprobable measure to find the following

probabilities: P({9}), P(red), P(black or 9), P(even),

P(red and even), P(red or even), P(black),

P(black and odd).

A sample space has four points: a, b, ¢, d. Let
My be the probability space obtained by using the
equiprobable measure, and let o be the probability
space obtained by using a measure such that

P({a}) = P({b,c,d}), P({b}) = P({c,d}), and

P({c})

p({d}). Find P ({a,b,c}) and P_ ({a,b,c}).
By Ha

For certain events A and B in a certain
probability space, you are informed that P(a) = 1/2
and P(ANB) = 1/3. What can you conclude about_
P(ANB), about P(AMB), and about P (B)?

Find an expression for P(AUBUC) in terms of
p(a), P(B), P(C), P(ANB), P(ANC), P(BNC), and

P (ANBNC) .
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Four people are chosen and the day of the week
on which each was born is determined.

(a) Using the equiprobable measure as in the
examples in the text, find the probability that at
least two of the four were born on the same day of
the week.

(b) Do the same for chosen groups of 2, 3, 5,
6, 7, and 8 people, and make a figure similar to
Figure 2.3.

(c) Find the probability that-at least two of
the four people have. the same day but no three have
the same day.

(d) Find the probability that at least three
have the same day. -

A hustler offers a bettor even money that in a
group of 35 strangers at least two were born on the
same day of the year. (The bettor loses if this
event occurs.) Use Figure 2.3 to estimate true odds
against the 5ettor winning. If % = 1, what should
w be for the bet to be fair? (Give an approximate
value.)

(a) A hustler offers a better even money that
the bettor cannot roll at least one Six in three
rolls of a die. Use an appropriate probability space
to verify the value of A given on page 28. What are

true odds against rolling at least one six?
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(b) Verify the value of A and find true odds
for the sucker bet described in Exercise 1-6.
Use the probability space given in the text for

the experiment of tossing a coin until a head appears.

(a) Verify the probability given in the text

that the number x of tosses is even.

(b) Find the probability that x is divisible by

(c) Find the probability that either x is even

or divisible by 3 (or both).

(Hint. Use the fact that the sum of the series

a + ar + ar? + ard + v LS I%E' Such a series is
called a geometric series.)

A pair of dice is rolled until either a S8ix appears
Or a seven appears. Use a probability space with the
sample space S = A U B, where A consists of all

ocutcomes of the form: six appears before seven and for

the first time on roll x (x = 1,2,3;,...); and B

consists of all outcomes of the form: seven appears

before six and for the first time on roll Y

(y = 1,2,3,...). 1In Chapter 4, we shall see that an

appropriate probability value for each outcome in A is

25\%71 5 4 tn . lue
3¢ 3¢ ¢ an that an appropriate value for each
=1
. . 25\Y"* 6 L
outcome in B is (?E} 3 Use the hint in

Exercise 2-8 to find P(A) and P(B) in this probabil-

]

ity space, and to verify that P(S) 1.



66

Let the sample space S consist of all real
numbers in the interval 2 € x € S. We form a

continuous probability space Hy by using the

probability density function fl(x) = 1/3. We then
form a different probability space M, by using the
probability density function fz(x) = %%.
(a) Verify that Pul(S) = 1 and P“Z{S) = 1.
(b) Find Pu (2 < x<4) and Pu (2 < x<4),

i 8 2
At the busiest time of day, the telephone

exchange in a certain small town handles an average
of 3 new calls per minute.

(a) Use a continuous probability space of the
form given in the text to find the probability that
the time between the-beginnings of two successive
calls is less than one minute,

(b) What is the probability that the time is

more than two minutes?






