CHAPTER 1. TWO FACTS ABOUT THE PHYSICAL WORLD.

Consider the following situation in the physical worid, We
have an experiment that wWe can carry out. The experiment is of

& kind such that: (1) each time it is done, the outcome is un-
certain; and (ii) it can be repeated over and over again under the
Same general experimental conditions. Here are some examples

of such experiments.
(1) Stop a person on the street whom you have not met

before, and ask the month of his or her birth. Here: (i) you
are not sure which of the twelve possible outcomes of the ex-
periment will occur; (ii) you can repeat the experiment many

times (if you are in a large enough city).
(2) Toss a coin into the air and see which side is facing

up after it falls. (In what follows we shall refer to the two
faces of a coin as heads and tails,) There are two outcomes,
and we can repeat the experiment as often as we like.

(3) Toss a thumbtack into the air so that it falls on a

flat surface, and sSee whether it lands on its back with the
pPoint straight Up, Or on its side with the point touching the
surface.

(4) Roll a die and see which of the numbers 1, 2, 9.4, 5, 6

appears on the top of the die.
We are now going to describe some facts about what happens
when we repeat such an experiment many times. Fach time we re-

peat an experiment, we call it a trial of the experiment. T,et



us first define some special words that we shall use. If we
have an experiment (such as asking about birth-months), and if
there is an outcome that we are interested in (say the outcome
July), and if we repeat the experiment n times and look at
the results, and if the outcome we are interested in occurs x
times in those n trials of the experiment, then we say that

the outcome has occurred with relative frequency % in those

n  trials. In other words, the relative frequency of an out-

come in a series of trials is the proportion of those trials
in which that outcome has been observed to occur. For example,
if we repeat the birthday experiment 10 times and get the

following answers: March, November, July, April, October,

July, August, May, March, February; then the outcome July has

occurred with relative frequency f% = 0.2 1in those 10 trials,

and the outcome January has occurred with relative frequency 0.
Sometimes we are interested in a set of possible outcomes
instead of a single outcome. For example, in the birthday experi-

ment, we might be interested in the set of outcomes {June, July,

-August}. Such a set of possible outcomes is called an event. We

get the relative frequency of an event in a given series of trials

by looking at all the outcomes that are in the event. 1In the re-

sults given above, we see that the event {June, July, Auqust}

has occurred with relative frequency f% = 0.3 in those 10 trials.
What happens to relative frequencies when we repeat an

experiment many times? Here are some results from an experi-

ment. We toss a thumbtack and see whether or not it lands on

~its side.



First we toss it 10 times and find that it lands on its
side in 7 of those 10 trials. Thus we have a relative

frequency of 0.7

Next, we continue tossing until we have a total of 100
trials., We observe that it falls on its side in 61 of those

trials for a relative frequency of 0.61.

Next, we continue on to 1000 trials, and observe that it
falls on its side in 582 trials for a relative frequency of
0.582.

Next we continue on to 10,000 trials and observe 5024 -
for a relative frequency of about 0.592,

Finally, we continue on to 100,000 trials and get 58995
for a relative frequency of about 0.590.

You will note that the figures for the relative frequency,
0T 0.61,.0.582, 0.592, 0.590, cluster more and more closely
together as we carry out more and more trials. This clustering

of relative frequency figures is an observed fact, quite apart

from any mathematical or physical theory.

You will nearly always observe this clustering when an
experiment is repeated many times. As a generai rule, for a fixed
Outcome (or event) in an experiment, you will find that after about
1000 trials, the values of the relative frequency remain
clustered in an interval of length 0.06 or less; that after
10,000 trials,lthey remain clustered in an interval of length
0.02 or less; and that after 100,000 trials they remain

clustered in an interval of length 0.006 or less,
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Evidence from many such experiments leads to the following
general statement and approximate formula over the range of

lo). Let A be an

normally obéervable values of n (n < 10
event for an experiment, and consider repeated trials of the

experiment. In nearly every sequence of trials, one will find

that for every n, all of the values of the relative frequency

(of A) beyond the nth trial are clustered in an interval of

length 2.7//A or less. (In fact, for smaller values of n

such as n < 105, the clustering is stronger than indicated

by the formula 2.7//n, and a formula such as 2//8 would
appear to be satisfactory. On the other hand, the formula

1/vn gives too small an interval.) A more accurate formula, for all

n, appears to be % vIog log n/v/n. In later examples we shall use
2/¥/% when n < 10° and 2.7//R when 10° < n < 10%0,
This fact about the physical world has been observed over

and over again by scientists. It is called the strong stabil-~

ity of relative frequencies. It is also sometimes called the

strong empirical law of large numbers or the strong square-root-

of-n law.
Here 1is another example. A coin is tossed 100,000 times.
The observed relative frequencies of the outcome heads are as

follows:

at 10 trials, G5 P
at 100 trials, 0.54 ,
at 1000 trials, 0.501 ,
at 10,000 trials, 0.498 ,
at 100,000 trials, 0.499
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The strong stability of-relative frequencies is a fact
which surprises some people. Whether it surprises one or not,
it is a fact about the physical world which one can verify for
oneself by chooéing somelexperiment (like rolling a die) and
repeating it sufficiently often. In the next section we shall
describe the mathematics of probability theory, and we shall
see that much of the practical usefulness of this mathematics
is based upon the strong stability of relative frequencies.

Let us look in more detail at the thumbtack trials re-
ported above. We can break these figures down in a way whiéh
shows another, somewhat different, fact about the stability of
relative frequencies.

We analyze the first 1000 trials in groups of 100, the
first 10,000 trials in groups of 1000, and all 100,000 trials

in groups of 10,000. The figures are as follows:

groggssggeloo groagssé%elooo grougg g%dE0,000
in first 1000 in first 10,000 in all 100,000

61 582 5824

67 574 5002

62 584 | 5846

59 571 5870

66 _ 573 5914

58 590 5965

7 584 5851

63 575 5906

56 614 5934

56 577 5883
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Note that in the ten different sequences of 100 trials, we
get various relative frequencies lying between 0.560 and 0.570;
that in the ten different sequences of 1000 trials, we get
relative frequencies lying between. 0.571 and 0.614; and that
in the ten different sequences of 10,000 trials, we get. relative
frequencies lying between 0.582 and 0.601. These results again
clearly show how, for a given experiment, observed relative
frequencies tend to cluster together.

For another example, we have the following data for 10,000

tosses of a coin.

heads heads
groups of 100 groups of 1000
in first 1000 in first 10,000
54 501
46 485
55 509
53 536
46 485
54 488
41 500
48 497
51 494
53 484

Here, in ten different sequences of 100 trials, the relative
frequencies lie between 0.41 and 0.55 for an interval of length
0.14, and in ten different sequences of 1000 trials, the rela-
tive frequencies lie between 0.484 and 0.536 for an interval of

length 0.052.
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This new and different fact about the stability of relative

frequencies can be stated as follows. TIf repeated blocks (of

trials) of length n are observed and if the relative frequency

for each block is obtained, then nearly all of these relative

frequency values will fall in an interval of length 2//7.

Note that the formula 2//n is again used. [Footnote. In this
case (unlike the previous case of a single, long, increasing
sequence of trials), empirical evidence shows that the formula
2//n  applies equally well for all values of n.] In the above
example, where we observed the interval 0.14 for ten groups of
trials of length 100, the formula 2/va = 2//I00 gives the
enclosing interval 0.2; and where we observed 0.052 for ten
groups of trials of length 1000, the formula gives 0.063.

This second fact about the physical world has been observed
over and over again by scientists. It is called the weak

stability of relative frequencies. It is also sometimes called

the weak empirical law of large numbers or the weak square-root-

of-n law. We see that the appearance of similar formulas (2/vn,
2.7/yM) in the statements above of both strong and weak empiri-
cal stability is, ﬁo some extent, a convenient accident.

Remark. Probability theory (to be introduced in Chapter 2)
‘has other important uses besides the study of experiments that
can be repeated many times. For example, probability can be
used to describe how strongly a person holds a certain belief.
We shall later (Chapter 19) consider such other uses, but, for
now, we limit ourselves to the kind of repeatable experiment
described above. As we shall see, most of the other uses are

closely related to the uses which we are considering now.
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Predicting variation. The formula 2//n is often useful

in Eredicting the amount of variation that can be expected to
occur in a-final quantity that is a sum of smaller quantities in
a probabilistic experiment. Consider the following two examples.

First example. Every week night, 200 trucks leave the down-

town area of a city to travel to other cities. There are only
two routes for trucks out of the city. One route, quick and easy,
is across a toll bridge which charges $10 per truck. The other
route, across a free bridge, is considerably slower and less
convenient. It is the custom for each truck driver, as he sets
out, to toss a coin. If the coin comes up heads, he takes the
toll bridge. If the coin comes up tails, he takes the free
bridge. The average total of truck tolls per week night is, as
one would expect, 100($10) = $1000. What amount of variation
would one expect to see in the totals of truck tolls received
each nigﬁt? Here, the weak square-root-of-n law tells us that
nearly all the relative frequencies of choosing the toll bridge
should lie in an interval of length 2//200. Hence the numbers
of trucks crossing the toll bridge per week night should nearly

always lie in an interval of length £ 200 = 29 around

v200

the average value of 100. Hence the totals of money received
from trucks each week night should nearly always lie in an

interval of length $290 around $1000.

Second example. Every week night, 20,000 cars leave the

downtown area of the same city to travel to the suburbs. The
only routes available to cars are the same two routes as for

trucks: a free bridge and a toll bridge. The toll bridge
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charges 10¢ per car. Like the truck drivers, the car drivers
choose their routes by tossing a coin. The average total of

car tolls, per week night is, as one would expect, 10,000($0.10) =
'$1000. Whét amount of variation would one eXpect to see in the
totals of car tolls received each night? As before, we use the
weak square-root-of-n law. PRelative frequencies of choosing

the toll bridge should lie in an interval of length 2/Y20,000.
Hence the number of cars crossing the toll bridge per week

night should nearly always lie in an interval of length

—— 20,000 = 283 around the average value of 10,000. Hence

v¥20,000

the totals of money received from cars each week night should near-
ly always lie in an interval of length $28.30 around $1000. We
see that the total of car tolls is more stable than the total

of truck tolls, because it depends upon a larger number of trials

of an individual experiment.
The above examples, with decisions by coin tossing, are some~

what artificial. We shall look at more realistic versions of

these examples in Chapter 7.

Further analysis of stability. In the discussion above, we

have stated two facts about the stability of relative frequencies.

Both facts use the formula 2//h (for n < 10°). e now look more

carefully at the statements of these two facts, and we introduce

some further terminology.

The first fact can be given as follows. When an experiment

is repeated’ N times under the same general conditions (in
which the outcome of each trial does not appear to be influenced

by the specific outcomes of previous trials--we sometimes speak
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of this as "doing N successive independent trials of the

experiment”), when a particular event A is chosen ahead of
time, and when, for each m X N, we calculate the relative fre-
quency fm of A in the first m +trials, then we nearly always
find that for each n < N, the set of values fm r D <m <N,
all lie in some interval of length 2.7//n or less. Except for
the words "nearly always", this is a precise statement of the
strong stability law. We shall usually think of N as taken to
be quite large. _

The second fact about stability can be stated as follows.
For each n, if we repeatedly carry out blocks of n indepen-
dent trials of the experiment and observe the relative frequency
of A in each block, then nearly all of the observed relative
frequencies lie in an interval of length 2/+/m. Again, except
for the words "nearly all", this is a precise statement of the
weak stability law. The following empirical connection between
weak and strong stability can also be observed and can be stated
as part of the weak law. If A 1is the limiting value to which
the relative frequencies converge (under the strong law), then
the particular interval (XA - 1//m,A + 1//A) may be used (for
each n) as the interval of length 2//n for the weak law.

In the discussion above about tossing a thumbtack and toss-
ing a coin, we used the observed data to illustrate both strong
and weak stability. (In the case of strong stability, we had

N = 100,000.) A somewhat stronger version of the weak stability

law will be given in Chapter 6.
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What more precise meanings can be given to the words "nearly
always" and "nearly all" in these laws? If we fix n, and make
extensive observations of blocks of n independent trials for
the weak law, we find empirically that "nearly all" means "at
least 95%", provided that n > 9. If we make extensive observa-
tions for the strong law by looking at many different individual
long sequences of independent trials, we find empirically that
"nearly always" means "for more than 99% of those observed long

5

sequences" when the sequences have N ~ 10 total trials, and

"for more than 95% of those observed long sequences" when the

10

sequences have N =~ 10 total trials.

Theoretical note. The laws of weak and strong stability are

empirical laws. That is to say, they are facts about nature that
one can observe directly, quite apart from any mathematical
theory. Once we have set up a mathematical theory of Probability,
however, we can attempt to deduce these laws from the assumptions
of our theory. We then find that it is possible to deduce the
weak stability law. It becomes a special case of a more general

theorem known as the weak law of large numbers. (The special case

will be deduced in Chapter 6, the general theorem in Chapter 16.)
With regard to the strong stability law, the reader with a
knowledge of limits will note that the strong law implies that,
if we imagine a series of trials to be carried out without end,
then, nearly always, the observed sequence of relative frequen-
cies will aéproach a limiting value in the strict mathematical
sense of limit. [Footndte. A proof can be given whicﬁ is subtle

but correct. It uses the Cauchy criterion for convergence of a
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sequence.] The statement that this infinite Sequence of
observed values almost always approaches a limit can also be
deduced from the assumptions of probability theory. It is a
special case of a more general theorem known as the strong law

of large numbers. The specific empirical statement of the

strong stability law, given above, using the approximate formu-

la 2.7// (for n < 1010), however, has not yet been deduced from

theory.

To get a theoretical statement that has been proved for all

n, the formula 2.7//f must be modified to 4vIog log n/Vn

where log means natural logarithm.

Note that the factor qug‘(log n) grows extremely

slowly. It only reaches the value 2 at about n = 10%0,
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[Footnote. A reader already familiar with advanced probability.

theory will note that the statements usually given

and for the stroﬁg law of large num-
bers, while elegant, are noﬁ-constructive in that they refer to
the completed totality of an infinite sequence of trials. An
example of such a statement is the assertion that, almost always,

lim fn = 1/2 where fn is the relative frequency of heads at

n-+w

the nth toss in a single, infinite sequence of tosses of a
coin. This statement only has meaning'if we conceive of the
entire sequence as completed. Such statements cannot be tested
against observation. It is only by examining and analyzing the
constructive content of the proofs of these statements, that

one finds (as above) versions of the theorems that can be

tested against observation. Analysis of proofs for their con-
structive content is an important concern of mathematical logic.
The usual non-constructive statements of these laws have the
advantages of intellectual economy and of clarity and
simplicity for further theoretical use. They have the disadvan-
tages of having no direct operational meaning and of omitting
information implicit in their proofs.]

The reasons for using the words "strong" and "weak" in
connection with the stability laws are indicated by the follow-
ing remark. VThe empirical fact of strong stability with the
formula 2//n logically implies (as is easily verified) the

empirical fact of weak stability, provided that, in the statement
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of weak stability, we alter the formula 2//A to 4//A. on
the other hand, there is no simple argument to show that
eémpirical weak stability directly implies some form of
empirical strong stability. (Indeed, as we have already noted
above,

strong stability with the formula 2//& becomes
incorrect for n > 105, while weak stability
remains true.)

Examples. Figure 1.1 is a record of N = 100 tosses of a
coin. For each n, the irregular curve gives fn' the relative
frequency of heads in the first n trials. The value of 2//4
is given, for each n, by the distance between the two smooth
curves. The two places where the relative frequency curve falls
below-the lower smooth curve are not violations of strong
stability, since strong stability only requires that all later
frequencies cluster in some interval of length 2//n (not
necessarily the specific interval symmetrical about 0.5 given by
the two smooth curves.)

Figure 1.2 is a record of 5 blocks of 35 tosses each of a
coin. The same smooth curves are drawn as'before. If we look
at some particular value of n (for example n = 35), this

figure illustrates weak stability. If we were to record more

blocks of 35 tosses, we would eventually find relative frequen
cies falling outside (both above and below) the smooth curves
at various values of n, but, for each value of n > 9, nmore

tHan 95% of the blocks (like all five of the curves at n = 35

in the figure), would fall between the two smooth curves.
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Sources of data. _The results stated earlier in this chapter
for 100,000 tosses of a thumbtack do not come from an actual
experiment with a thumbtack, but are taken from a different
physical experiment which was used to simulate the experiment of
tossing a thumbtack. (See Chapter 8.) The same is true for the
results given above for tossing a coin. . [Footnote. The observed

coin tossing data are taken from Chapter I of An Introduction to

Probability Theory and its Applications, ﬁolume 1, by William

Feller (3rd edition, 1968, John Wiley and Sons.) Other aspects
of these data are described and discussed in Chapter III of that
book, and a graph of the data is given on page 87 of that book. .
We consider certain further features of such data in Chapter 8

below. ]

The law of averages. The profits of gambling casinos are

based upon the stability of relative frequencies. Assume that a
gambler in a casino is playing a particular game (say roulette
[Footnote. The game of roulette is outlined in the exercises
below.]) and that on each successive play of the game, the
gambler bets the same amount of money, &, on the event A. On
any play, if A occurs, the gambler wins w dollars, and if A
does not occur, the gambler loses the & dollars that were bet.
(In roulette, if A is the occurrence of a certain number and
if 2 =1, then w = 35.) Let x be the number of times the
gambler wins in the first n plays. Then, after n plays, the
gambler has won wx = &(n-x) dollars. (Here, a negative quan-
tity represents a loss to the gambler.) Thus, after n plays,

the gambler's average winnings per play will be
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I

1 X _ - X
H(wx—i(n-x)) wo (1 n)

wfn - (1 - fn)

where fn is the relative frequency of wins in the first n
plays. The gambler will be ahead after n plays if

wfn - R(l-fn) > 0; that is to say, if

2
fn > ey i

(Thus, in the case of roulette, the gambler will be ahead if
1

fn>m=%')

Now in honestly-run gambling games, repeated plays occur
under the same general conditions. Hence by the strong
stability of ;elative frequencies, we expect the values of fn
to become and remain more and more closely clustered about some
limiting value A as n increases. If ) > E%I r it follows

that (nearly always) the gambler's average winnings per play

will eventually become and remain positive. We hence say that

the bet is a favorable one for the gambler if X > ;%T . If
A < Q%f » it follows that (nearly always) the average winnings
per play will become and remain negative. We hence say that the
bet is unfavorable if A < E%f - In the special case where

T w+f ' We say that the bet is fair. For repeated bets on a

single number at roulette, it is a matter of empirical fact (in
the game as played in North America) that with a carefully bal-

anced and operated roulette wheel )\ =~ 1/38. (In Europe, roulette
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wheels have 37 rather than 38 compartments, and )\ =~ g;.) Thus

these roulette bets are unfavorable for our bettor, and we can

éxpect the bettor's average winnings per game eventually to be-

come and remain negative.

How long will it take for losses to occur? The stability
laws give ﬁs ways to answer this question. We consider, first,
strong stability. Permanent loss will occur as soon as fn
becomes and remains below G%I' That is to say, permanent loss
will occur as soon as fn becomes and remains within the dis-
tance G%E = A of the limiting value . In thg case of bets

on a single number at roulette,

2 _1 1 2
WL -} =35 - 35 = g5 ~ 0.0015.

Now the interval given by the strong stability law must always
include ). 'Hence, to be sure that fn becomes and remains

within 0.0015 of A, we must, by the strong stability law,

have

2.7//0 < 0.0015.

This gives n > a3 % 3.2 x 106. Hence we expect that perma-

= (0.0015)
nent loss will be inevitable after 3,200,000 plays of the game.

[Footnote. We set 2.7//f < 0.0015 rather than 1.35/7% < 0.0015,
because the strong stability law, as stated above, only
guarantees that the relative frequency will remain within some

interval of length 2.7//n. It does not imply that this interval
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must be the interval symmetric about 3.

In the present range of values, the
formula 2.7//n gives a valid but crude estimate. In fast; on

the basis of observation, permanent losses appear to occur sooner

than this.]

The strong stability of relative frequencies, as it applies
to such betting situations, is popularly'referred to as the law
of averages. We have made several special assumptions in our
discussion. First, we have assumed that each bet is the same
size. Second, we have assumed that each bet is on the same event.
The assumption that the size of the bet is constant is important.
If the bettor is allowed to vary the size of the bet, without
restriction, from play to play, then it is no longer possible to
conclude, from the strong stability of relative frequencies, that
losses are iﬁevitahle. The total available resources of the
gambler (and of the casino) may become an important factor in the
situation, and we must take account, in our analysis, of the
possibility that the gambler (or the casind) can be ruined (that
is to say, bankruptedi as a result of a single large bet. We
consider this further in Chapter 8. 1In order to assure that the
law of averages will apply (and hence that an inevitable profit
will occur), casinos normally place a bound on the size of indivi-
dual bets. (It is not hard to show that the analysis for a con-
stant size bet can also be carried through for bets of varying
but bounded size.) The placing of a maximum bound rules out, for

example, the system sometimes known as "doubling" or "martingale",
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in which, on each bet, the gambler bets an amount that will, if
he or she wins, recoup the total of all losses so far.

The assumption that each bet is on the same event turns out
to be less critical. If the gambler Systematically changes his or
her bet from event to event on successive plays, then, so long as
each bet is unfavorable and so long as there is a maximum bound on
bet size, eventual losses will be inevitable and will occur at or
before the time predicted by the strong stability law. This con-
clusion (that changing theAevent will not help the bettor) rests
On certain empirical facts about the irregularity of observed re-
Sults in repeated Plays. These facts go somewhat deeper than the
simple statement of the strong stability law. We do not discuss
these facts here.

Provided that there is no collusion among bettors (to get
around the maximum bound on bet size), a casino can view each
bet placed as a bet on a separate play of the game against that
bettor. Hence, against bettors who are betting the same amount
of money on individual numbers at roulette, a casino will be
assured of a continuing profit as soon as 3,200,000 bets have
~been placed. [Footnote. From observation, as noted before,
pProfits appear to be certain after many fewer bets have been
made. It should also be noted that certain other standard casino

games, such as chuck-a-luck (to be described in Chapter 8),

give the casino a bigger advantage than does roulette. ]

So far wé have considered the implications of strong
stability for the bettor and the casino. Weak stability.can also
be used to give information. We again assume bets of constant

Size. Weak stability tells us, for any single value of n > 9,
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that fn is almost certain to lie in the interval

(A=1//R,X+1//0). Hence, for a given n such that 1/vf < = -,

the gambler is almost certain to have a net loss. This implies

i1
R — A
w+ L

In the case of roulette, we have

1

n > 03; = j;)Z ,
36 38

or, approximately, n > 450,000. The difference between this
weak law analysis and the Previous strong law analysis is that
the weak law tells us that the bettor is almost certain to be
behind  for a given n > 450,000, while the strong law analysis
tells us that the bettor is almost certain to become and remain
behind after n ~ 3,200,000.

If a bet is especially unfavorablé, but the unfavorable
nature of the bet is not immediately evident, the bet is some-

times called a sucker bet. Aan example is the following. The

bettor bets even money (& = w) that at least one six will

appear in three rolls of a single die. Observation shows that

A = 0.42 in this case. Since ;%E = 0.5, weak law analysis
) =~ 156

(0.5-0.42)2

tells us that for any given value of n >

plays, the better is almost certain to be behind.

The formula

1
2
(AO-A)

n >
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where ) is the observed limiting frequency of winning and where
Ay = W%I is the limiting relétive frequency for which the bet
would be a fair bet, is a useful one in considering unfavorable

- bets. (In using this formula, we must always take n > 9,

since the weak law requires n > 9.)  For example, in the dice
game knows as craps, the bettor rolls the dice and bets even money
that an event called passing will occur. 1In this case, )\

is observed to be =~ 0.493. (The game of craps is described in

an exercise.) Hence the formula tells us that the bettor is

almost certain to have a loss for any given n such that

- Lo~ B0, G50

(0.5-0.493)2
In Chapter 6, we shall develop a stronger, but Still empiri-

cally correct, weak stability formula. The stronger formula says
- : 1-2 A
that, for values of n 1larger than both 9(_T_) and 9{T:T)'

the bettor is almost certain to be behind for anv given value (0%

n such that

2
_ 4 (A-2°) .

(AO—A)

This improved formula gives n > 46,000 for bets on a single

number at roulette, n > 152 for the sucker bet with a die des-

cribed above, and n > 20,000, as before, for craps. (For

!

1/2, the improved formula reduces to the previous formula.)

!

A

The bettor's eventual average loss per play at craps is

L(1=A) = wi = 1(0.507) - 1(0.493) = 0.014,
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while the eventual average loss per play at roulette is

W

1634 - 35(55) = = = 0.053.

38 38
The reader will note an apparent paradox. Although the disadvan-
tage at roulette, as measured by this average loss, is almost four
times as great as at craps, the losses at craps will occur twice
as soon as the losses at roulette, as meaéured by the values of n
calculated above from the weak law. In Chapter 6, we shall fur-
ther explore this'interesting feature of the law of averages,
namely that in some cases a game with smaller average loss may
lead to earlier certain loss for the bettor. We shall there veri-
fy, for example, that if we consider a large number of bettors who
have eéch made 10,000 successive bets (0f the same amount on a
single numbe;) at roﬁlette and a large number of bettors who have_
each made 10,000 successive bets (of the same amount on passing)
at craps, we can expect about 16% of the roulette bettors to have
come out ahead, but only about 8% of the craps bettors to have
come out ahead. The explanation of this puzzling result is that
although there are fewer losers at roulette, those who have lost
will have lost much more, on the average, than the losers at
craps.

Comment. In Chapters 2, 3, and 4 on probability spaces and
combinatorial methods, we shall learn, among other things, how
to calculate the limits of certain relative frequencies on the
basis of certain other empirical facts. For example, we shall

calculate that the limiting observed relative frequency for
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winning the sucker bet above is 0.42, assuming that the limiting
Observed relative frequency for each number on a die is 1/6.
Extensive compilations of empirically observed relative frequen-
cies for a variety of experiments and events also exist. One

such is The World Book of 0Odds, by Neft, Cohen, and Deutsch

(Grosset and Dunlap, New York, 1978.) [Footnote. 1In this refer-
ence, relative frequencies are given in the form of Erue odds.
The true odds against an event are the ratio that w should
have to & in order for a bet on that event to be fair. Thus
true odds of m to n express a relative frequency of E%H']
In Chapter 8 , we shall return to the subject of bets. We shali-
consider more complex forms of bet and learn to calculate
expected winnings or losses in a less crude and more informative
way. In Chapter 19, we shall consider bets in non-repeatable
experimental situations.

The weak stability law in physics. The weak stability law

plays an important role in physics, where it is used to provide
a connection between apparently random microscopic events such
as molecular positions, speeds, and collisions, and such stable
macroscopic quantities as density, temperature, and pressure.
For this purpose, a special form of the weak square-root-of-n

law will be developed and described in Chapter 7.

Final note.  Some readers may feel that our convention of

using "nearly all" to mean "more than 95%" and of using "nearly
always" to mean "more than 95% of the time" is unsatisfactory.
They would argue that, in practical terms, 5% is a far from

negligible fraction. The criticism is not a deep one, however.
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If we use 3//n 'in place of 2/vn, observation shows that
"nearly all", in the statement of weak stability, means "more
than 99.5%". 1If we use 4//n in place of 2/v¥n, "nearly all®
means "more than 99.995%". Similar changes occur for the
Statement of strong stability. In each casé, the discussion
and analysis in the text (for example, the analysis of casino

profit) can be modified to agree with the new meanings for

"nearly all" and "nearly always".
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EXERCISES FOR CHAPTER 1.

Consider the following record of 100 rolls of a
single die:

46363 21262 51531 32555 . 13534 31333 54644
34612 21436 31631 34113 42613 45126 66516
56246 41344 35523 25645 63561 58533,

(a) Find the relative frequency, in these 100 teials,
of each of the following events:

{1}, {2}, {3}, {4}, {5}, {6}, {5,6}, {4,561},

(b) Let fn be the relative frequency of an event
after n trials. For the given trials, find the values
5r £107 fig0 oo f100 for the event {4,5,6} and
make a plot similar to Figure 1.1. Does this plot agree

£ £

of £

with strong stability?

(c) Do the same as (b) for the event {5,6}.

(&) Take the above data as 10 blocks of 10 trials
each. For each block, find the relative frequency for
the event {4,5,6}, and see if these results agree with
weak stability.

(e) Take the above data as 5 blocks of 20 trials
each. Do the same as in (d).

Consider the toll bridge and the free bridge as des-
cribed in the text under "predicting variation". Each
week night, 200,000 pedestrians walk home across these
bridges. Each pedestrian tosses a coin to decide which
bridge to cross. The toll bridge charges each pedestrian

one cent. What average total of pedestrian tolls per
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week night would one expect, and what amount of variation

would one expect to see in the total of pedestrian tolls

received each night?

Assume the strong‘stability law with the formula 2//m.
Show that weak stability must logically follow, provided that
we are allowed to use the formula 4//n (in place of the
formula 2/v/n) in the statement of weak stability.

In North America, the game of roulette is played as
follows. A metal disk (the wheel) is mounted on a vertical
axis. On the circumference,of the wheel are 38 open box-
shaped compartments. The compartments are labeled with the
numbers 0,00,1,2,3,...,36. The compartments 0 and 00 are

colored green. Half of the remaining compartments are red

‘and half are black. Immediately adjacent to the circumfer-

ence of thewheel is a fixed, inward-sloping anpnular surface.
On each play of the game, the wheel is set in rotation and a
small metal ball is set in motion in the opposite direction
on the annular surface. Eventually, the ball comes to rest
in one of the compartments on the turning wheel. Bettors
can bet on various different events for each play of the
game by placing money (or chips representing money) in an
appropriate position on a large diagram on which the possi-
ble bets are indicated. (This diagram is marked on the

surface of the roulette table.) Bets may be placed on

individual numbers, on certain pairs of numbers (with
(£ =1, w=17), on certain sets of three numbers

(£ =1, w=11), of four numbers (£ = 1, w = 8), of six
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numbers (% 1, w=5), of twelve numbers (& =1, w = 2),
and of eighteen numbers (g = 1, w=1). A popular form of
bet is on the set of eighteen red numbers or on the set of
eighteen black numbers.

There are two differences in European roulette. First,

there are only 37 compartments (there is no compartment

labeled 00). Second, bets on red or black are treated in a

special way. If a bettor bets on red and red appears, the
bettor wins (with £ =1, w = 1); 4if black appears, the
bettor loses; but if 0 appears, the bettor does not

immediately lose. Instead, the bet is said to be "in

prison", and the bettor must then wait until red or black

appears on a later play. If red appears first, the origi-
nal wager (L = 1) is released and returned to the bettor
(but with no winnings added). If black appears first, the
bettof loses and the original wager is turned over to the

casino. (We shall learn, in Chapter 16, how to analyze a

bet on red in European roulette.)

There is also a third form of roulette played in
Central America. This roulette differs from North American
roulette in that there are 39 compartments (the additional
compartment is labeled with an eagle.)

There are a variety of popular systems for betting the
colors at roulette. All are variants, in some form, of the

martingale system, which is to bet, successively, the amounts

1,2,4,8,16,..., until a win occurs, and then to start

over. Application of the martingale system is limited by
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whatever bound the casino may place on the size of a bet
(and by the available resources of the bettor). Some of
these systems will be considered further in Chapter 16.

(a) Give a strong stability analysis (like that in
the text for North American roulette) for bets on a single
number at European roulette. Do the same for Central
American roulette. '(Assume A = 1/37 for European
roulette and )\ ~ 1/39 for Central American roulette.)

(b) Give a weak stability analysis for the same
cases (using the improved formula %%%E%;% as in the text.)

(c) Consider a bet on the odd numbers (2 =1, w = 1).
Compare the eventual average loss per play for bets on odd
with the eventual average loss per play for bets on a
‘'single number.

(d) For bets on odd, carry out a strong stability
analysis for European roulette, for North American roulette,
and for Central American roulette. (Assume )\ ~ 18/37,

A =~ 18/38, and _A ~ 18/39 respectively.)

(e) Do the same as (d) with a weak stability analysis
using the improfed formula. [Footnote. In Chapter 6 we
shall see that of a large number of bettors who have each
made 10,000 successive bets on odd, we would expect about

0.3% of the bettors at European roulette to have come out

ahead and none of the bettors at the other two roulettes

to have come out ahead.)
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The game of craps is played as follows. An individual
known as the shooter makes a series of rolls with two dice.
The game ends when either the event pass or the event ggglé-
pass occurs. These events are defined as follows. Numbers
refer to the sum appearing on the two dice on a single roll.

(1) 7 or 11 on the first roll. Pass occurs and
the game ends.

(ii) 2, 3, or 12 on the first roll. Don't-pass

occurs and the game ends.

(iii) oOne of the six numbers 4, 5, 6, 8, 9, 10
occurs on the first roll. This number is now called
the shooter's point The shooter continues to roll

- until either the point appears again or 7 appears. If
the point appears first, pass occurs and the game ends.
The shooter is said to have made the point. 1If 7

appears first, don't-pass occurs and the game ends.

In a casino, a variety of bets against the casino may
be made by a gambler as a craps game progresses. The
gambler's winnings for each available bet are established
by the rules of the casino. (These rules may vary
substantially from casino to casino.) For example, if the
shooter rolls the point 6 on the first roll of a game, a
gambler may then bet on pass. For this bet with ¢ = 1,
some casinos offer w = 1, some offer w = 1.1, and some
offer w = 1.16.

(a) For bets on making the point 6, X is ébserved

to be = 0.455. Carry out a weak stability analysis,
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using the improved formula, for each of the three casino
pay-off rules described above. What is the eventual
average loss per bet in each case?

(b) For bets on making the point 4, A is observed
to be 0.333. Casinos usually pay w = 1.8 for L= 1.
Carry out a weak law analysis using the improved formula.
What is the eventual average loss per bet?
[Footnote. The pay-off rule adopted by a casino on a
pParticular bet is often stated in the form of odds
offered by the casino. "0dds of m to n" means that
w o= % when £ = 1. 0dds are usually stated in terms of

whole numbers. Thus the pay-off w = 1.8 for making the

point 4 can be described as odds of 9 to 5, and the pay-

off w=1.16 for making the point 6 can be described as

odds of 29 to 25. Often, in connection with craps,
casinos use the word "for" rather than "to" in stating
their pay-off rules. A pay-off of "m for n" then
means the same as odds of m - n to n. Thus, for
example, "3 for 1" is the same as odds of 2 to 1.]

Consider the following sucker bet. The bettor bets
eéven money that a six will not occur in six rolls of one
die. Here, observation shows that A = 0.335.

(a) Apply a weak stability analysis.

(b) We refer to the bettor's opponent in a sucker
bet as the hustler. How many plays of this game (with
£ = 1) does the hustler need in order to be sure (in the

sense of "almost always") of a continuing and permanent

net profit?
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(With many sucker bets, an incorrect but somewhat
pPlausible argument can be used to justify the bet. In
the present case, one might argue: “From stability of
relative frequencies, I expect a six to occur on the
average once in every six rolls. Sométimes it will occur
more than once in six rolls. Sometimes it will not occur
at all. Therefore, I expect it not to occur about half

the time.")

SPECIAL PROJECT I d

Estimate the percentage of Private automobiles in your

community area which are white. Your report should include:

1. Your estimate.

2. A description of Your procedure and calculation.

3. A statement about the reliability of your estimate.

4. A critique of your procedure.

5. A critique of the formulation of the original problem
and a description of the decisions you have made to
clarify it and to make it more precise.

(You are not expected to know or to discover a single right way
to do this project. Make your best common-sense effort to get

what seems to be a good estimate.)






