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Hugh Robinson

Abstract. If two model structures M1,M2 on the same underlying category satisfy
simply stated conditions, then it is possible to obtain a third model structure whose
weak equivalences are just those morphisms which are weak equivalences in both M1

and M2. We show how this can be used to construct new model structures on some
categories of complexes and double complexes.

The aim of this paper is to prove the simple but surprising Theorem 1 and to
give some examples of the model structures which it allows us to produce.

Theorem 1. LetM be a category. Let C0, C2, W
′ be respectively the cofibrations,

acyclic cofibrations and weak equivalences of a model structure onM and let C1, C3,
W ′′ be the cofibrations, acyclic cofibrations and weak equivalences of another model
structure on M. If C0 ⊇ C1 ⊇ C2 ⊇ C3, then there is a model structure on M with
cofibrations C0, acyclic cofibrations C3 and weak equivalences W =W ′ ∩W ′′.

The theorem gives us a model structure whose weak equivalences are the inter-
section of two given classes of weak equivalences for which model structures are
known. We will give an example of its application where the two classes are the
horizontal and vertical quasi-isomorphisms in a category of double complexes.

We will also use the theorem to show that the category of positively-graded
complexes of modules over a Frobenius ring has a model structure whose cofibra-
tions are the levelwise injections and whose fibrations are the levelwise surjections.
The construction allows us to characterise the weak equivalences in this structure
as the intersection of two more familiar classes of weak equivalences: the quasi-
isomorphisms and the levelwise stable equivalences.

The paper is divided into three sections, being the proof of Theorem 1 followed
by the two separate applications. All three sections can be read independently
given the statement of Theorem 1 above.

Composite model structures

In this section we prove Theorem 1. The proof is short and elementary, but it is
not required reading for the rest of the paper. We begin by presenting our preferred
axiomatisation for model structures and showing that it is equivalent to standard
ones (see e.g. [Hirschhorn] or [Hovey 1998]; the only difference is that there is no
need for us to require any completeness condition on the underlying category) and
to some other criteria which we will find useful.

Typeset by AMS-TEX

1



2 HUGH ROBINSON

Definition. A pair (c, f) of morphisms in a category M has the lifting property
(or c has the left lifting property (l.l.p.) with respect to f or f has the right lifting
property (r.l.p.) with respect to c) if whenever x, y are morphisms ofM such that
fy = xc, there exists z such that fz = x and y = zc.

A pair (C,F) of subcategories, or collections of morphisms, of a categoryM has
the lifting property (or C has the l.l.p. with respect to F or F has the r.l.p. with
respect to C) if every c ∈ C has the left lifting property with respect to every f ∈ F .

Notation. Given a collection of morphisms Z of a category M, we write ρ(Z)
(resp. λ(Z)) for the collection of all morphisms which have the right (resp. left)
lifting property with respect to every z ∈ Z.

It is easily verified that ρ(Z) and λ(Z) are subcategories ofM which contain all
objects and are closed under retracts, and that ρ and λ form a Galois correspon-
dence.

Definition. A weak factorisation system (w.f.s.) on a categoryM is a pair (C,F)
of subcategories of M such that (i) C = λ(F) and F = ρ(C), and (ii) every mor-
phism in M factorises as fc, f ∈ F , c ∈ C.

Obviously, a w.f.s. is uniquely determined by specifying either one of C or F .

Definition. A model structure on a category M is a pair
[

(C,Fw), (Cw,F)
]

of
w.f.s. such that (i) the inclusion holds C ⊃ Cw (and hence Fw ⊂ F) and (ii) the
collection W = FwCw of morphisms of the form fc, f ∈ Fw, c ∈ Cw satisfies the
condition

W is a subcategory which is closed under retracts and two-out-of-three. (W )

W is called the subcategory of weak equivalences of the model structure.

Proposition. Let (C,Fw), (Cw,F) be w.f.s. on a categoryM, andW a subcategory
of M. The following are equivalent:

(1)
[

(C,Fw), (Cw,F)
]

is a model structure with weak equivalences W;
(2) W satisfies axiom (W), C ∩W = Cw and F ∩W = Fw;
(3) W satisfies axiom (W), C ∩W = Cw and W ⊇ Fw;
(4) W satisfies axiom (W), W ⊇ Cw and F ∩W = Fw;
(5) (C,W ,F) satisfies the usual model-category axioms of factorisation, lifting,

retraction and two-out-of-three.

(1⇒ 2) W satisfies axiom (W) by assumption: we must check C ∩W = Cw, and
the other condition will hold by duality. By definition W ⊇ Cw, and by assumption
C ⊇ Cw. Conversely, if c ∈ C ∩ W , write c = fw, f ∈ Fw, w ∈ Cw. Then the
lifting property for (c, f) gives z such that zc = w and fz = id. Consequently c is
a retract of w ∈ Cw and hence c ∈ Cw.

(3 ⇒ 1) We must show that W = FwCw; from the assumptions it is clear that
W ⊇ FwCw. Conversely, for any w ∈ W write w = fc, where f ∈ Fw, c ∈ C. Then
f ∈ W , so by two-out-of-three we have c ∈ W . Then c ∈ C ∩W = Cw, so w = fc is
the required factorisation.

(1&2⇒ 5) From (2), the factorisation and lifting in our definition cöıncide with
the required ones. Retraction holds for C (resp. Cw, F , Fw) because it is of the
form λ(Fw) (resp. λ(F), ρ(Cw), ρ(C).) Axiom (W) provides the rest.

(5⇒ 2) and (2⇒ 3) are easy, and (4) is dual to (3).
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Theorem 1 (restated). Suppose
[

(C0,F0), (C2,F2)
]

and
[

(C1,F1), (C3,F3)
]

are
model structures on M with weak equivalences W ′, W ′′ respectively. If C0 ⊇ C1 ⊇
C2 ⊇ C3, then

[

(C0,F0), (C3,F3)
]

is a model structure with weak equivalences W =
W ′ ∩W ′′.

Proof W =W ′ ∩W ′′ certainly satisfies the closure property (W) since W ′ and W ′′

do. Using characterisation (2) of model structures,

C0 ∩W = C0 ∩W
′ ∩W ′′ = C2 ∩W

′′ ⊆ C1 ∩W
′′ = C3,

but C2 ⊇ C3 and W ′′ ⊇ C3 so C0 ∩ W = C3. An analogous argument shows that
F3 ∩W = F0, so the result follows.

We will call
[

(C0,F0), (C3,F3)
]

the composite of the other two model structures.

It has
[

(C0,F0), (C2,F2)
]

as a Bousfield localization and
[

(C1,F1), (C3,F3)
]

as a
Bousfield colocalization, and it is cofibrantly (resp. fibrantly) generated if both of
these are. As a corollary, we have:

Corollary. The relation ≥m defined by

(C,F) ≥m (C′,F ′) iff
[

(C,F), (C′,F ′)
]

is a model structure

is a partial order on w.f.s. on M, which is refined by (i.e., is compatible with and
has fewer comparable pairs than) the inclusion order (C,F) ≥i (C

′,F ′) iff C ⊇ C′.

In general this refinement is strict.

Double complexes

In this section we will demonstrate the application of Theorem 1 to prove:

Theorem 2. Let A be a Grothendieck category with generator U . There is a
cofibrantly generated model structure on Ch(Ch(A)) whose weak equivalences are
precisely those maps which are both a horizontal and a vertical quasi-isomorphism.

The method is to apply a construction of Hovey for producing model structures
on Ch(A′) for a Grothendieck category A′, which delivers the quasi-isomorphisms
as weak equivalences while giving us flexibility in choosing the cofibrations. We do
this in two different ways, taking A′ once to be the horizontal complexes on A and
once the vertical ones, and apply Theorem 1 to combine the two resulting model
structures.

The relevant theorem is:

Theorem. Suppose M is a set of monomorphisms whose codomains F generate
A′ and satisfy (i)M contains every 0 →֒ F , and (ii) whenever X• ∈ Ch(A′) is lev-
elwise M-flasque, X• acyclic implies A′(F,X•) acyclic. Then the DiM generate
the acyclic cofibrations, and the DiM together with the Si−1F →֒ DiF all the cofi-
brations, of a model structure whose weak equivalences are the quasi-isomorphisms.
([Hovey 2001], Theorem 1.7)

Let Sn, Dn be the usual sphere and disk functors, that is,

SnA = · · · → 0→ A→ 0→ · · · ; DnA = · · · → 0→ A
∼=
→ A→ 0→ · · ·
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ambiguously denoting the functors either from A to horizontal complexes, or from
vertical complexes to double complexes. Let S̄m, D̄m denote the sphere and disk
functors either from A to vertical complexes or from horizontal complexes to double
complexes: clearly Sn, Dn commute with S̄m, D̄m. Then we generate our first
model structure by takingM = {0 →֒ DnU} in the above theorem. The conditions
of the theorem are satisfied since DnU is a projective complex: writing C1 for
the resulting set of generating cofibrations and C3 for the set of generating acyclic
cofibrations, we get

C1 = {S̄m−1DnU →֒ D̄mDnU} ∪C3, C3 = {0 →֒ D̄mDnU}.

For the second model structure, take M = {0 →֒ D̄mU, S̄m−1 →֒ D̄mU}. Again
the theorem applies, and writing C0 for the generating cofibrations and C2 for the
generating acyclic cofibrations, the result is

C0 = {Sn−1D̄mU →֒ DnD̄mU} ∪C2, C2 = {0 →֒ DnD̄mU,DnS̄m−1 →֒ DnD̄mU}.

Evidently C0 ⊃ C1 = C2 ⊃ C3 so Theorem 1 will apply to the two cofibrantly
generated model structures. Thus C0 generates the cofibrations, and C3 the acyclic
cofibrations, of a model structure satisfying the conditions of Theorem 2.

Chain complexes on Frobenius rings

In this section we will use Theorem 1 to show:

Theorem 3. Let R be a Frobenius ring. There is a model structure on Ch+(R-mod)
such that the cofibrations are precisely the levelwise injections and the fibrations
are precisely the levelwise surjections. The weak equivalences are precisely those
homology equivalences which are also levelwise stable equivalences.

The Reedy construction on abelian categories. Recall Reedy’s construction
([Reedy]) of a model structure sM on the category sM of simplicial objects over
a model categoryM, such that the weak equivalences in sM are levelwise. In the
case whereM is an abelian category A, the Dold–Kan equivalence ([Dold], [Kan])

sA
N
−→
←−
Γ

Ch+(A)

induces a model structure NsA on Ch+(A) whose weak equivalences are levelwise.
It turns out that:

Proposition. The cofibrations of NsA are precisely the levelwise cofibrations.

Proof Let f• : A• → B• be a map in NsA, Applying Reedy’s criterion for cofibra-
tions, we must for each n ≥ 0 determine whether the latching map Ln → Γ(B•)n
is a cofibration in R-mod, where the nth latching object is

Ln = colim
(

∐

s:[n]→→[n−1]

Γ
(

A•

)

n−1
∐

∐

s:[n]→→[n−2]

Γ
(

B•

)

n−2
−→−→··−→ Γ

(

A•

)

n
∐

∐

s:[n]→→[n−1]

Γ
(

B•

)

n−1

)

= coker
(

⊕

s:[n]→→[n−1]

s′:[n−1]→→[k]

Ak ⊕
⊕

s:[n]→→[n−2]

s′:[n−2]→→[k]

Bk −→
⊕

s′:[n]→→[k]

Ak ⊕
⊕

s:[n]→→[n−1]

s′:[n−1]→→[k]

Bk

)

.
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Here the map
⊕

Bk →
⊕

Bk is given by an alternating sum of those naturally
induced by degeneracies σ : [n − 1] →→ [n − 2]; the map

⊕

Ak →
⊕

Ak is similar
over degeneracies σ : [n] →→ [n − 1] (which reduces to taking an alternating sum
for each fixed k); the map

⊕

Ak →
⊕

Bk is induced by f•; and the remaining
component is zero. All these maps preserve the composite s′′ := s′s : [n]→→ [k] and
consequently the map splits as a direct sum

Ln =
⊕

s′′:[n]→→[k]

coker
(

⊕

[n]→→[n−1]→→[k]

Ak ⊕
⊕

[n]→→[n−2]→→[k]

Bk −→ Ak ⊕
⊕

[n]→→[n−1]→→[k]

Bk

)

= An ⊕
⊕

s′′:[n]→→[k]
k<n

Bk.

The map Ln → Γ(B•)n is just

fn ⊕ id⊕
s′′:[n]→→[k]

k<n

Bk
: An ⊕

⊕

s′′:[n]→→[k]
k<n

Bk −→ Bn ⊕
⊕

s′′:[n]→→[k]
k<n

Bk.

A direct sum of maps is a cofibration iff all summands are (this is easily seen from
the characterization of cofibrations by a lifting property) and all identity maps are
cofibrations, so the nth Reedy cofibration condition is satisfied iff fn is a cofibration
in A.

Thus the model structure on NsA can be stated simply by saying that the
cofibrations and acyclic cofibrations are both levelwise.

The stable structure on modules over a Frobenius ring. Let R be a Frobe-
nius ring. There is a model structure R-mod on the category of R-modules, such
that the cofibrations are the injections, the fibrations are the surjections and the
weak equivalences are the stable equivalences. (See [Hovey 1998] for details.)

Proposition. Then in NsR-mod, the acyclic cofibrations are precisely the level-
wise injections with levelwise projective cokernel.

Proof Given the preceding Proposition, we must prove that a levelwise injection has
projective levelwise cokernel iff it is a levelwise stable equivalence. Hence it suffices
to verify that an injection has projective cokernel iff it is a stable equivalence. For
this, let

A
f
→֒ B

g
→→ C

be exact, and first suppose C is projective: then the sequence is right split, so
it is left split and any left splitting is clearly the required stable inverse to f .
Conversely, suppose ι : B → A is a stable inverse to f . Then ιf − idA factors
through a projective, say ιf = pe + idA. Now e is a map to an injective (since all
projectives are injective) and hence it factors through the injection f , say e = jf .
Then

idA = ιf − pe = ιf − pjf = (ι− pj)f

so f has a left inverse, i.e. the sequence is left split. Hence A ⊕ C ∼= B which by
hypothesis is stably equivalent to A, and so C must be projective.

The composite model structure. For any ring R there is a well-known model
structure on Ch+(R-mod) in which the weak equivalences are the homology equiv-
alences and the cofibrations are the levelwise injections with projective levelwise
cokernel. If R is Frobenius, the cofibrations are precisely the acyclic cofibrations in
NsR-mod, and so Theorem 1 applies. The result is the model structure claimed in
Theorem 3.
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