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ABSTRACT

Let v2(K) denote the ntk cohanotopy group of a complex
K =nd let M®s #*(x) ~> 1P(K) denote the natursl homemor phism
defined by Spanier, In this paper we derive resulds concerning
the structure of +{K) by canputing the kernel and co:ernel
of M® for varicus n in terms of the schomolosy siructure
of ¥, Tor each prime py we determine a range of values of
n ror which n1n gives an isomorphism on the p~prim.cy
components of ¥{K) and {i)s this generalizes the classieal
Hopf theorem, Ve also generalize the Steenrod ¢lasaification
theorem by computing the kernel and cokernel of m® restricted
to the p-primary components for a further range of wvalues of
n in terms of the Steenroed reduced pth powers, In the
second part of thie paper, we introduce cohomotopy groups
with coefficients in an abvelian group Of namely,; let #8{i3 ¢)
denote the set of homotopy classes of maps of X into a space
whoee homolegy is zerec except that its nth homology proup ia
Ge For a fixzed group Gy the properties of (K3 ) are analo-
gous to these of v™(X), Furthermore, if ¢ has no elements
of order 2, then a homemerphiem §1 G = H inducesa unique
nomemoryhism §ut Ty @) s B(Eg 1) ¥inelly, there is a

universal geelficient theorenm which asserts that

< [
0 = 1(E)®C ~> 1y ¢) = Tor(P 1 (m)z) —> o
iz o spli% exact sequence, This reducos the problem of

computing #R(1; &) to that of computing W {i),



1. Introduction.

ue of the central provlems of topology ie the conputae
tion of the set of hanotosny classes of maps of & complex X
into the m-sphere o™, In 1936, sorsuk [6] shoved that if
the dimenpion of L= § £ 2n - S, then this set aduits a
netural sbelisn group structure. In this gase, tals saot
i called the ntb cohemotony group of K and denoted Ly
ﬁn(x)w In 1949y Spanier [22] derived the basie pfbpﬁrtiés
of these¢ groups and expressed the existing theorems on the
structure of vP (k) by means of an exact sequence (225 p.240],
ihese theorems are the Hopf theorem [13), which states that
the natural honomorphism n,m; PH{E) =3 BP(K) (= the n®®
cohomology group of X) 49 en isomorphism for n == & and is
onto im case n = i - 1, and the Steenrod theorem {26])s whioh
computes the kernel of anA1 and the inage of n)y'a. Little

more is known abeout the steucture of 2 {K),

In the Ciret part of this paper, wve shall derive furthepr
results concernine the structure of wn(ﬁj. Firot, v{K) is
findtely generated when ¥ is finite. Geeond, vR(1) and B (x)
Lave the same rank, Third, the lonf result is generalized
oy determining, fer euch unrime Ds & range of values of n Tor
whigh nlﬂ gives an isomorphisn on the p-srimary comsonents
of #*{KX) and #(E). ¥Pinally, the Steenrod reasult 1o

generalized by siving o cocaputation of the kornel and cokernel



o

of M ™ restrieted to the peprimury cousonents for o rance

of values of n where m® fe not an isemorpilem, This

computation is pgiven in terms of the reduged pt‘h‘ povers of
Steenrod [27], In proving these results, we make use of

o cohmnotopy exact couple similar to that of lassey (15 part 113}
and of derre's teclhnique of “isomorphisms module & glass of

groups® [20],

In the segond part of this papers we shall introduce
colanetoyy csroups with ceefficients in an abelian group 67
nanely, let v™(i3 G) denote the set of hasctopy elasgses of
maps of XK inte wn X(Gyn)-mpaces where an X{Gen)=apuce in a
eiuply connected space whose haology is mere exce pt that
its nth hemclegy group is G, (ks @) is shown to be
independent of the choiece of L{Gyn)~spuce, Hotice that if
G = 4= the additive group of integers, then 5% is un
X(2pn)~aspace and v (Kp 2) = m™(L)e Tor o fixed grouy G,
the properties of +(i ¢) are analogous to those of (&),
and the results of vart I are gencralized se a8 to a ply
to ':rn(l-i:; G)e + Turthermore, if ¢ has no clements of order I,
then o kowosorobisn ¢t C —> 3 induces a unique boucmorphism
@-_;;—3 w2 {is G) = ad fof H)e =xeept for this regswriction on
Gy Q‘._i; enjoys many of the same properties as the induced
cououelosy heno crphlon $ut .‘i'in(i;; G) —>» 7%up H)se In
particular, the sequence corresponding to un euset ceefflcient

sequence is exnct (theorem 8,5), and there is a universal



coefficlent thecrem which asserts that

0 =3 SO0 f-a- (X3 G) E& T‘or(wn‘}l{‘ﬂ:},&) - 0

is a split exsct sequence, Yhis theorem reduces the preblem
of computing »*(X3 G} to that of computing T {K)s We conclude
with a section on cohanmotopy operations and a section on
homotopy groups with coefficients in ¢ dual to our cohwmotopy

groups,

In conglusion, I wish to sxuress wy warm appreciaticn te
frefessor N, B, Steenred, under whan e paper wes written,
Tor his kind advice and encouraement, I aloe wish to thunk

frofessor J. C. Moore for sugsesting the idea of general
coefficlients,



In this seotion, we recall the notions and notations
which we need in order to state the main results of part X,

Ve first recull the definition and elementary propertiss
of cohomotopy groups [22]. Let & be o finite dimensional
CW-complex [12], and let L be & subeomplex., Let as (i L
=3 (P,pt.) be 2 continuous map, where 5° denotes the ne-
dimensional sphere and "pt."? denotes sny fixed point of &%,
Let [a] denote the homotopy class of a. The set of all such
homotosy olasses has o natural abelian group structure defined
on it 4f dimension K= ¢ 21 = 2, We call this the no
cchoamotopy group of the (Wepair (X,L) and denote it by
P (EeL)e Amap £ (£,1) —» (£%%') induces & homomorphi sm
2y P, LY) —p (K, L) defined by £/([al) = [afl.

Let w QK) dencte the rth homotopy group of the space
Yo The pr@aa“s of suspension induces a homomorchisn .u:

T (SR) =~ w *1($n+ ) which 1s an isomorphism for » < @ - 1
by the Freudenthal theorem [28], Ve identify these groups
under thiv isomoryhism and denote the result by z(r“n).

the homology theory best suited for our investigations
is the cellular homology theory as deseribed in {12] or {s0],
Ve denote the ptd honology group of (I,1L) with coeffioclents
in G by 1L (E:5L) ¢) and the nth schamology group of {(I,1L) with
coefficients in G by HME, 14 G).

Ve denote the additive group of integers by 4y the group



of integers mod n by L9 and the peprimary coumponent of o
group A by %pg where the peyrimary couponent of 4 is the
subgroup of all elements of 4 whose orders are & pover of
the prime p. (The only exception to this notution is 4y
which denotes the integers mod p.) Let bs L =~p B be a
bhemomorpbism. Ve denote the kernel of'é by Zer §» the image
of ¢ by M ¢ and the cokernel of $ =35/m ) vy Coker b,
A®3B und Tor{i,B) denote the tensor sroduct and the torsion
vroduat respectively [8].

We now reenll the notion of = class which was introdused
by Serre [20]. A glass 15 a non-empty fmuily of mbelian
groups such that (I) 4f 0 ~~> A «~> B =3 O =~> 0 1 an exnot
sequence [11], then A ¢ C ana ¢ e e if and only if D e C.
In the applilcaticne, one of the following axioms is slse
assumeds (II } it 2e C snane C , then A@3 e € ana

zor(4,8) ¢ & o or (1) ar A e € ana 3 is arbitrary, then
4@5 ¢ € ana Tor{A:5) ¢ .

The important ermmoles of glasses are Go == the ¢lass
consioting of the ¢ group alone, CET == the fumily of torsion
SYoupS, (Ep:m»tha Tonily of torsion groups whose peprimory
components ares G, 3F::vtha family of finitely penerated
oroups, C-F == the funily of finite sroups, and CP" == the
fumily of finite groups whowse georlnury components are ¢,

It 18 easlly checksd that (.no ’ e-r. and ep sat;imy axion
(11 Js while 5" Qf y and e Hm‘tiafy axiom {,I.'I ) but net
(Il, Jo

“he notion of class wae introduced by Serre to allew



us to ignore systematieally certain groups. With this in
mind, we make the folloving definitionsy a homomorphd sm
$t A==p 3D isa Cmnmnomo phdom 1f Xer ¢ @5 4t 15 a
Cosngmoruniom 15 Gorer $ e C 5 1% 4o & Ceisomorphion iz
both Ker ¢ and Coker § ¢ C. A

Yor any olass C, 1ot %o denote the largest integer
such that Z(,) ¢ Cfarﬂfca{d@.

THECREM 2,13  {a) S(py 42 finite 1f > 0, (b) gz(r))p -

bpdf r=238(p~-1)=~lgor0c<ecyp

O gtherwise for v ¢ Ep(y » 1 } -2,
(@)O(e_r =200, (d)dep = 2p = % znd (e) v(eo = leo
ixoofs ({a) iv a reoult of Serre [19]. (b} 1o un wnpubiished
rosult of Cartan. (e¢) follows from () (d) follows from
(8) and (v)s It i wellekmown that (1) mwu*l(t:“) = B,

<
hence °(C == 1,
o
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Bin Results of bart I,
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The purpese of this vection is to state our main results
on the structure of cohemotopy grouprs., The following four
sections are devoted tc the proofes of these results,

There iz a natural homomoxrphi sm fng 7 (K L) == u"'(z:.:&}.
M" 15 defined as followvss let a ¢ [a] ¢ o¥ (KaL)s and let
U be & chiossn generator of H'(S%.pt.)s 7Thenm mr([m); == a*{u)
e U (s L) (see zsction 4 ang (225 pe234])s Ve study the
relations between the cohomotony grouns and the cohomologzy
groups using this homomorshism. The ¢lassioal lopnf theorem
[13] stutes that if ¥ is an N~diwensional complex, then ”’N is
an fsomorphism. Our first »esult extends this theoram
modulo slassces,

et (KsL) be o Cw-pair with dimension X = ¥ for this and
the follewing four sestions,

ann

HNONEN Bel: Let e be g class satisfyving gondition (Ilﬁ) of
qectien 2. Iekn > (7 §1)/2 be guoh what ¥ (551) ¢ C gop
EYSry v > n. Ihen @' s a C -lsomoryhien if r >

M ((¥ 4 1)/2y n «»o(e )o omd i a C»enimornmggn for

¥=a soo in gage n —MQ > (W ¢ 1)/2,

THEORTM 3,23 Let O B¢ 2 glass satisfying condition (11,) of
section 2. It n > Mex((w $1)/2 B - °<(‘_') ke guch that
5(5%) ¢ C for every r > n. fhen /" g5 a C ~ssonomnten
Erzn and s a C ~goluorphiem for r==n - 1,

Theorems 5.1 and 5.2 solve problem 32 of {16]).



Ve have as an immediate corollory

CORCLLARY 5.3t let X and L be twe Qu-gemplexes

8i dimensiong
< 204 I zcopectively, and lek ©3 L —> L. Let C Lo a elass

satisfying condition (II,) of sestion £, and izt n >

Bax((3 4 1)/2, (1 4 2)/2). Zhen the following two statensnts
are gquivalents (a) £'s B (R) w3 uT (L) 48 & e-‘ﬂ e
ior r > n and & Caa}g imoyrpiiem for r = n, and (b) f‘;:

) > #7(1) 48 8 C-isomorphism fox r > n znd g Cegpimgy~
diiem for v = n,

sroofs leplage £ by a cellulay approximation £ [12; p,98l,

8y the mapping cylinder construotion [12s per08), we may
sosume ' is an inclusion. Then (a) 1s true if and only if
H{E,L) & e for » > n by the exact eohomology sequence of
% pairs This is true if and only if *(5L) e C for r>n
by Sel. However, this is true if and only Af (b) ic true
by the exact cohomotopy sequence of a palw.

By speelalizing C to partieular olasses, we have the
following four sorollardes,

CCROLIARY 3.41 Let n > (W 4 1)/2 be such thet ¥"(,1) 4s
Linitely memerated (finite) for every v > m. Tuen ¥ (& L)
ie finitely gemerated (finite) for » > na

~roofs This follows impediately from 5,0 by setting (3 =
#+ or QF and noting 2.1 (a).

COROLLARY Ze5: Let n > (¥ $ 1)/2 be such that W (i,1) s

finitely generated for every » > n. Then »* (X,L) and 5" (k1)



have the same rank fer v > n. Furthermore, AL r> (¥ 41)/2

and u & ¥ (L), then there is @ inteper M+ 0 such that
e mom",

ireofs By 3.4, «*(5,1) and uF L) sre finitely generated
for every r > n., low apply Sl with n = 3, (2 = GT’ and
note that d@;—_:: QO Ly el (e)e The conclusion that ’l)rm
a CT ~ioomerphisn for » > n means that % (%0} and 5% (5 1)
have the same yank, Furthermore, 1 for seme u & il {Ks L)
there did not exisnt a fon=zere integer M such that Iu ¢ Im fqr

»
then Goker ")rt L‘IT.
The above 15 a result of Serre {203 p.288).

CUHOLLARY 8488 et n > (¥ $1)/2 41 be sueh that ;.fﬁ‘m’m
=0 for syery r > n.  Then +*(X,L) =0 for r > n, M" 18 sn
Lsomorchiam, and m""' 15 an ep
eoofs ot C = Co, and use 3.1. Note that Cp ~dscmorpint an
means regular isomorphiam,

oxchd ooy

Lot §t A == B be n homemorphism, Ve denote NAP:
= Bp by b(p)e

COROLLARY Se'%s Let n > (W § 1)/2 be sush that 5° (BL) e Cp
r )
Iy * > n. Ih g 8 serphign for
for every » > fi. Then m (») &%55?3;‘ an for v »
BT 4 1)/ n - 2p ¢ 5) and ”l{;‘u) 43 on gnimor
L a=~2p 43> (&4§21)m

sroofs Set C e ep, and use .1, lote that $ 1s & Q,,-:.m»
morvhimm fmplies thet *(v) ie an {samorphism,.
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Ve now extend corollarics de6 and 3,7,

Let ﬂq?‘: i«-‘;n“’a(:c-‘i,n) e BRI, Lg 4n) dencte the Steemrod
square (26, A4 B (T Zp zz) - 3‘( L) 1o o % homomoryhiam
defined in section & {oee [225 p, 2581)s The Tolloving
theorem 1z a slight extension of o rosult of Steenrod {26} and
Spanier [2l3 ».240],

IIEOEN 23408 et n > (m $r)/e 2 be pugh 3& i imw) =
ior svery v > n. Shen rr”{z"‘,z;) = C for r > n, ﬂ] is aa
dsomorphism, and ghe %@ uencs '

n-1 H

%
% (%, 1) 1;» 2 (%, 1) w—)f H iy &p) ~p P~ (k1)

M -
— 1‘{2;‘.3&} =3 ¢ 1s exact,

Let @ t B (% L) ~> ’Iﬁgﬁ 2(-».1:5 4,) denote the first
“teenrod reduced p'd power [27), m s 5F i’“ﬁ ¢ Gn) ==>
wr(;,.gf&)? is o homomorphimm defined in seetion 7. in seetion

7 we prove '

THEQREM 3,93 et n> (¥ § 1) be such that r{&.’z&) e Cl

SISTY * > ne  Fhen 4, (p) is sn isomornhism fox r >

Hax((W ¢ 1)/2, n ~ 2p + 3) and the sequencen
] r

¢ | Nep)
{HpL) o=p .Hr* “""( 3 7 WA ) 1:% s (::,L} - 0K, ;‘a)x}

.¢“l

L “p) 20 > Max((i 4 1)/2, n - 4p 4 5) an

n-Yp +§

i
Geps
(K1), y <3 H‘”“‘“?Jff’(zsc,:1'.)p 25

i_:ﬁ_‘_n-ép+5>(M+h)/2+lare§_x_a_.g_§.

17_1'.1-4};)-*5 Hn-Zp{-S(K,L‘ Zp)



Yor a range of values of vy note that 3.9 eonyuben the

kernel mnd the cokernel of n12p) in terme of the cohomelogy

eroups of (K1) and the first roduced ptl
del and 3,9

bover., Theorems
particlly sbh@-problam 33 of (164

11
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4, The ohomotopy Ixact Couple.

The proofs of our main theovems as well as subsequent
resulte in part Il ere based on o cohamotopy exsot couple
of the pair (K,L) similar to the cne studied by lassey
(158 part 171]. Since 1t differs Teom ianasey's cohomotopy
szact coupley, we deseride it in detail,

Let (K1) be a Gl-padr with dimension X = N, Let 2 be
the least integer > (W ¢ 1)/21 1. es 2 i5 the least integer
n for which (1, L) has a natural group structure, Let »®
denote the union of I with the s~dimensional skeleten of X,
ur exact gouple is baged an the exact schemotopy sequence
of the triple (K,I‘Ig,l’iﬁ"l):

J 3 3 2
TUGES) > AULESY) wp ey > 2P (18) Dy o (8 1)

1 A
~p ¥ (28,554 5 r"ﬂ("" E®) w3 44ep where § and J are

the homonoryhiama imiucad by the inclusions (1°,x%°1) e

(::,I_ﬁ"}') and (x,x° } 3 (K, 17) respectively and A\ is the

coboundary operator of the trinle (i &5, x8~ l) {see (225 p.u2e]
or gection 9 for the definition of A ang the proof of
exactness ),

“or notational convenience, we met AT*Y — (K 5%} ang
cre® ., (1%, 55%1) gop F2 8 Also log g¥e8; T A¥eBel

2 B

T8y aTse-l o ' %, ana A, 3 0708 oy 4T1les be the

appronriste J, 1, cr O for » 2 %+« In order to extend the

above seguence to an exact sejuenco extending indefinitely
in both direotions, we set g ¥ _ Ker j98, ™8 o por
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r<amly 4% =g for r < 2, Az-" >y gt=lee — ATPE 4o
be the lnclusicn, =and the remaining homomorvhisme i, J:; and
A to ve zero. The indices on the homomorphiswms £, J, and
A are determined by their domains, and thus we omit them
whenever possible,

The grouns snd homorchisme defined abave Tit together
in & lsttice as in figure 1. any path in fi‘ma L wiich
soves downward snd to the richt in a aigezag pattern trocen
oul an exact soyuence. Thais follows inmeciately from the
exuct sequencs of the triple (%,%%,1:%1) and ouw definitions,

Ve now gomoute some of the groupe of the cohomotoyy

cxaet couple, The Tollowing groune are cbviously O for n > 1z
CI?' r”’m’ GZ:%BL‘Q 3’ szz*m’ 3 Arau *ﬂl‘,’ly :m‘{‘l. cr, z‘%b fat e ,j : :“r’ kAl s 41

-3 &F Bl is an isomorphism for nm 2 % and is onto for me= 1,

Thie fellows because Gr*l'rm —p GTOET oy pTeTemel —p

e - ) ‘ 7‘?1

géﬂr*m i.“\ exaat {_}nd fcx; m & 1§ 01‘51‘ 8 il 0. Henoce ‘h;rﬁ'r l«v‘
7 y y

2 AT = 0P (5,1,

Tefine a homomorrhd sn ('J : v (4 "'1) e

I

¢ {Eals 7 (5% pta)) as follaws, “he cellular homology and
cohomelogy theory is based on w, (BB, k5 1) a5 the group of
cheins in dimension s {12), lence 0° (KoLg w (5 pte ) =
Hﬁm{vu(l&i‘?”l)m (5%s0te ) )y where Hom(A,B) denotes the

greups of all hememorphisms from A to B, Let (b) e wg (K% X",
[al e »* (2%, "2 J» then define ‘}l([aj)({h}} = [ab} & » gdr,pg‘)

It ic shown in {88 pe825) anad in [24] that V¥ has the followe
ing properties for r 3 z and s L N



+
sea=p AT 8
+4
‘&;?Q a=})

¥4

3
PRI Y &r, S

A

* 9 5 Q’yﬂi' g1 ey

LI L.

Figure 1,

L L]

¥

reemed AT S

A W

1
e

R -
LR Lanar o luﬂ‘ 1’3 o

19

, '
N T

ovs

<
“e

Tigure

i
—3 oTssdl
1
e

i :

# .
e 7 N -i;., e

[}
1 Bel _fi

dan

B
,.9;, &1“5‘1. G*l %'..
43

b &ﬁ*lgﬂ m&...

4

““*sao

EB o

*8e

A +
RSl 5 4041, 042
i b Y
o 1,0FLe 544

b

.Al“*l, (=)

""”;‘qso

"‘}iia

%Aoo

...*—

14



1) q} is an isomorphism,

2) ¥ is nntural with respect to celiulsr maps f3 (¥ L)
—p (EtpL%), and

5) the fellowiug diagram is commutatives

iA ,
7 (K% K81 - e LT Pl A

R4 5
g® {Kp g my {g* ,nt.}} m-a» (ua‘% {1, L3 ‘“J*l(" ril 2Bbe ) )s
where 9 O ety (u s0be )} —> GS‘M (s 1g L (s° sDte s 18
the coboundary homemorpalem, and < 43 *“fI{“.L@ r (u 2Dte})
w—p R (B 7 + "r* ehte }) do tha nomegorskism induged
by suspending the coefficients. Lnder cur assw tspsions an
¢ and & S, is an ivomorphilem on the coefficients, and
We may w'fite the cammtetive diagran as

A
ﬂr(:awwﬂ*l) i__y 1{!“%1(2«8'}1’3?

A by
C® (Ko Ls E(B,;‘,)) =l Gs'}l(l’«;}m z‘.(ﬁ_w) (see section 2 for the
definiton of &(5-1’} Yo

We now deseribe the Tirst derlved cchomotopy exact couple
(sve {18 purt Il for the precise definitions and the yroof
that thie fo an oxact couple). Define #¢¥e8 o y(oTe®)

r4l, 094l AY,S 128 TN
4..8?.‘(i A )/Im(ir’ﬁ A -1 ,$§-) )l W= m J

N . ! e “ £ ™ ] . —
—p aT29%L 14 Gerined by §EPE"l, gTe8, g Teeel

i

ld"”st '.?r’[i
b - - [} s

—p 'arbb is defined h;f i.».sﬂ(jrsﬂ l) l, and A . !u!'ﬂﬂ
g 4 L L r Y} - - . ~

el 'Arw" 2 1s defined vy A 's, These groups and homoe

morphism £it together in o lattice ase in $is cure D



From the

*

emarks above, the fellowing zroups are
obviously © form > 1gFr s, ‘G’ﬁim’ ® ‘a’;?*m' % ”fima m«-l’
and *Gi‘"*“%“. Also 9.&1‘“’1 1 g ev2 g, e o (KaL) for
r 2 2. Turibermore, 1R & 1B (x,1 3 ”(aw'} for r 2 u ¢ 1
by the sbove identifications and definition of G5eS,

Under these idemtificaticns, "%y TG L) ~» ¥ (50
is defined geemetrically as follows, Let [a] ¢ v (K, L)
Ve may sssume that ag {X0) > (8%, pi.) 1o such that
a .‘.3:'-1) ol 1; - (3 sytt )e

then {at] 1z an r-sochain of (¥, 1) which is o gocycle. Itn

-
¥

== pt, Restriat & to a map "2(.“

eoi:omology olass is ‘ir‘*r([u,} }e Ve denote the homomorphism
g7 F by h]r. It is easily checked that this gives the same
delinition us given in seectlion 3,

We reonll for raference lntar the definition eof a
cohomology operation € of type (n.qp Si)e € is a function
e }.;-n(l;s.l.g A4) = 84K, B)y defined for every CWe-palr (X,L)e

uch that 4T ©3 (L L) —» (K% L'), then £ © = of™s (I8 &)
e UM {KpLp B)s A theorem of Serre [21; pe.220] states thad
the cohemelogy operations of o siven type (n.q8 A L) are in
1-1 gorrespondence with the clements of H¥(A,np B) =
Iq(i".’hm)g :3), where H{A,n) is an Lilenberg-iclane complex
(see [21] for detalls), This theorem holds if & is ouly
deflned for every Cv-pair (K,7) with dimension E L N end

| }:f: g '} le

et f3 (Ip1L) =~» (L' L') be o cellular mapy 1. e. £z
C x™®, Then £ induges hememerphisme oy of (:—.;'ﬂghw*}‘f}

13 .nl)

—3 o (1 and £y 7 (K1) > 2P(15E%) vhich commte
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with i; J, and I\ when » 2 2 and 2y wheore 2' = least integer
> {dimension X' § 1)/2. Hence f induees a homomorphism of
the conomotony exact couple of (L%, L') dato the colionctopy
exact counle of (i, L)y and henca o homomerphism £ of Lhae
fizet devived cchiomotopy exact ceuples, Thus e commutes
vith 110 g% oy agPHesdS L A 1o a cokionology
oraration beecause any 4two cellular approximations fl and fﬁ
to an arbitrery wap 78 (L) =3 (L', 0.1} induce the some
hovamorphiem g on YOYP® opa vaFPlest (.. {123 p.28] for

the definition and properties of cellulur approximations),



i8

5. Zzoof of the Hopf Theorem yed (°,

In this seotion we give the proofs of theorems 3.1
and Je2
sxoof of S.1p The proof is baced on figure 3, a portion of
the firoet derived cohomotopy exuct couple. In order to prove
that n]r .:I,a a C =igomorphiem, it suffices t¢ shovw tlgaxt T ¥
e C forr> ‘:m((:-r $ 1)/2 n X0 } because 1ATT «-i} 7:’"(12;1.)
:-!-; 1 (%, L) weiﬁ ';‘&rﬂ'“r'}l is exacts Again by exactness
{and the fact that 'Ar'r:w 0e( )y 1t suffices %o prove that
=4 (2, 14 2i3)) & Co aees B(E, 14 Z(yep)) & C for z>
Max((N¥ ¢ 1)/2 n *Kp )o Vownm=r<n=~(n = oo ) = Ao,
nence Z(yy & Co eues By e C by definition of (.
Singce Z(s) is finitely generated by 2,1 (a)s we may use the
universal coeffioient theorem for cohamology (2.5 of the
appendix)y i, 8. 0 3 ﬁ’*“(h,‘:)@Z(ﬁ) -:;h u"*”g:;,m iz;(m)
-E—)- Tcr(zf"}gﬁ(@, L).z(ﬂ)} —~»0ls exact, Z(sy) & C for s £n -
henee }5*5(:;,1.; 3{%3}) ' e for s £ n = r by progerties (I)
and (IJE) of classes, Tor s > n = ¥, W*Q(K,L} e C ana
3}1*-}!%%1(“ L) e e‘by hypothesis, and again by the universal
cocificient theorem, E"’*“(Eﬁ:,L; Z(B)) e Ctoradsn-~ Te

This ocompletes the nroof,

Zroof of 2423 This proof is very similor to that of H.1.
Acain we need to show that Hr*l(i‘.,m 8(1)) Pl -
.iiﬁ(%m ﬁ(l@vr)’ c G for r 2 n. Ve use the zbove universal
coefficient thecrem, iinece zzr*ﬂ(l;. L) & (?, for 8 2 1 and
Z{S) (A C for s £ Hen< Y~ (u *XE ) = “e ¢ by conditions

{7I,) and (I) on classes the result is proven.
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G. :IITOCf _g_f; m 5!8.

The first part of 3.8 is Just corollary %.6. Ghe first
open problems are then to determine the kernel of /)1“"1' and
the image of m ne2 from the cchamology struceture of the pair
{(#sL})e This is nechisved ky the exaot sequence of 3.8, In
order to prove J.8; we first prove an unpublished result of
Adem (see [155 p.263]).

These yesulte lead us to the next problaem, namely, to
determine the kernsl of m me from the cohemology structure
of the palr (I,L). This requires a study of secondary oper-
ations and partial results have been obtained by Adem{1].

Pefine o homomorphism A &(5) o Z(ﬁ*l) by )S(‘O() ==
d\Yg where « & Z(ﬁ} and X is the non-~zere element of z(lr
Stnce 2 § = 0 and composition iz bilinesr in ths stuble range,

Al2Z, 1) = 0. Xence A induces & homomorphism Avg Z(g)/

(“-') & 2z
4{s)
—p g{ﬁ*l).

JUNOAEM Ge1s (Adem), In the first derived cohemotopy exact
sides &= AT (0L 3)) ~> TREL 2, 0) 1

the Steenmrod square, 5g°, defined with respect fo the

homemorphism A*,

=roofs d is a cohomology operation (see section 4), and

hence d ocorresponds to an clement of Iir*“"(z(a)grs 2(3'}13)

> ﬂom(z(a)/zz( )?Z(a-}l)) (see [10s part II} for the culoulae
a8

tion of Hr*si(z{a), rs Z{S{l)”' Ve now show in a special



2l

ease that 4 corresponds to the chove homomorphism A\ ' under
these isomorpidams, and then the theorenm follows from theorem
7.4 of [103 part 111].

Let (K1) = (Hyxg)s where 1= 5% U &1%, tne ce1r oF42
bﬁin[; ﬁtﬁ&@h@d tO Sr by 'bhe 93479 LSRRRN o] ¢ Blm:ﬁwt x Qi' :rril(;;r)‘

This is the space considered by Steenrod in [26]. Then
obvigusly, ﬂr(&,xﬁg ‘:‘;(s)) ] 3(3) and iiﬁgii"&,xaa Z(G.}“) s

Z(s 1) and hence this special case contains all possible
cchomology operations of type (rsries .‘u(g}z.z(s +1)). Je are
tec show that the operation d sbhove corresponds to the homo-
morphime A% Let u & HF(M,xgs &(gy)e and compute d(u)

(see section 4 for the definition of 4 — 'irﬂ"r%ﬂl?Ar’”*ﬁ)*
Tet ut = [a) & o™ (SF,x,) « O (oxga b(s)) ® B(g) Do &
representative cocycle of the echomology class u. as (S%,x,)
> (87" pts)s ixtend a to a map a's (HE7) —> ('_21-3‘;"%1,‘5”"9)@
vhere f;‘:';g"'ﬁ'}l 15 the upper henisphere of S"'“'}l and 8% s

the e:m&i‘hor of 5’?”8%1. Let hg (:_jrms-}l’:}r«-ﬂ} e (3:“8%}',}3“@.)
be the canomical map of degree 1 pulling 8™° to the base
volnte Then Ar,rfs([u“ = [hati ¢ wr”a‘&l(iif.sr ) =

cr%g(iipxas ;.‘.( = %1)) vz z.,:ia $1) by definition. The cobomclogy
elass of [ba'] is d(u) by definition {[ha'} is obviously o
cocyele and there are no codboundariecs). lowever, [ha'] e
L—'—',,':_;._( funl X} & 2{3%1} (see {28})y and d corresponds to ) ' as
stuted,

Theorem 5.8 now Tollows as a corollery to theorem §,1,



w0
o

Exgof of 5,8t The preof is based on figure 4, & portion of
the fivst derived cohamotopy exact couple,

LR L]

}

sear=p () ==3p aea

= 8%

g s A1 ;
PG L) > D) e B By 2) e 0 —

.; 1§ n=1, n"‘lnnl *

oo —> ?fﬁ‘l(x;la}’nﬁ-} l{n"}”(i:.z.) o [ e

i i

: :
Figure 4,

T P

— T (¥ Lj Zy) is an isomorphism by
exactness, Furthermore, 'i““l’n'am'g'n'z = Sq,a by Gal
bocause the ng defined with respect to the homomorphism

)\ 2 ?;(0) ol &(l) iz the usual 8@12: &1‘“"2(35.14) — };P{K,L; 22)..
fhe exact sequence of 5,8 fellows immediately from figure 4
with A defined vy A = 33" 10273 mleny=1



7+ Exoof of Theorem et

The first part of 3.9 is just corollary 25,7, 7The first
open problems are than to determine the kernel of m ?;?p*ﬁ
and the image of n) ?Z?’*E’ from the cohamelogy structure of
the pair (K;L)s This and more is achieved by the exact
sequences of 5.9. In order to prove 3.9, we first prove a
result, analogous to theorem 6,1, which introduces the reduced
: pth rovers into the first derived cohomotopy exact couple,

These results lead us te the next croblem, nanely, to
dotermine the kernel of m ?ﬁl’ 13 from the cohomology ctructure
of the valr (i,L)e This requires a further study of secondary
operations. OSome results on sceondary {and bigher order )
operatlons have been obiained by the author and will appear
at a later dats,

LA 7.1 In the first derived cohamotopy exact gouple,

e 2RLS & is = torsiom group for e > 1. Jurthemmors,

(49,8 (aTHet8) oy (rtlerdendy 4o o foomormnien
(v) P gy ——

for g s < 2p - 2,

2oofs The following exact sequence is part of the first

derived cohiemotony exact couple; u° +“'1(1§., Ip 2’.(3_”3

0 7 §
NA_; ,ﬁr'}l,r-}a _‘L ‘&rt}-l,r-}s«l _i} ;ﬁ""'(ze:,m Z(sal))' By

(s ] "’B-‘ ‘1 o o
2ol (Z&)g Z(a‘_l) e Q—r for @ % Zs hence ﬁ.} a}ﬂ (IWI&} #(B*l})
e Crfor o 2 8. alse, WY Lo o G, therefors by
induotion, WIHLITISL o O eon o5 2, Stailertly, 2

{s~-1}
e CP for 2 € 8 < 2p - 2 by 2,1 (b); hence



(g, 14 Z(ga1)) ¢ Cp ana 5% (x, 14 Z(g-1)) & Cp for
2409 <2 =2 Therefore ¢ (n)8 (%Ar*llrfa}p .l (|$ri1h'r*5“1)

»

is an isomorphism for 2 £8< 2 «~ 2, This completes the

proof, -

Let » > (W $ 1)/2, Refering to Tigure 5, we define
ds BF(5,1) ~=> B0 1y Gopas) )y
by d(u) . tif.iji'rizléﬁg{132{?%,1‘*2&3”33"1‘.’('J.ﬂfg}j’r*z}“l?., Ax‘.r{u)'

b D e g €2 .
ey Efr*“‘y (X, Ly 2 }

ok

vhere py eateTil o rdlrfl )p 18 the matural projectien
onto the peprimary component (@ is naturslly defined because
'Ar*l”r{'l is a torsiom group [14; p.5]).
THECHEM Y.2:  In the first derived gohomotopy exact couple,
the homomorphiem ds U (k,1) -~ w*¥P-2( o a.) is &
multivie £ of ¢’ » Where g % ¢ (mod v).
2r0efs Refer to figure 5, Singe all the homomorphisme in the
definltion of d are natural with rospect to cellular maps
f2 (L) =p (£9,39), d 18 alge natursl with respect to such
maps and hence with respeet to all maps {as in section 4)e
Thue d 18 a cohnmoléw eperation and d gorresponds to an
element of W' "'gp"?'{z,r; 53.}) . Z, (see the caleulations of
Gartan {7]), Therefore d = BP' , and 1t suffices to
exiibit o complex X for which d # 0 for then B # ¢ (uod p).
Let (¥, L) = {I»:f,xc Jo where == 5° U @”'}Qwa; the cell
e ¥2p~2 being attached to ¥ by a non-sers element of
Wr+2p~;‘itsr)p == E’Sp=. M has the sroperty that G"(u} # Qg
wvhere u is a generator of H"'(R-E,xo} {this is a result of



25

s 8

. :
v .
4 TLR 2 OR 2 13'2
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Borel and Serre [5; p.428]), Assume d = 0 for this ceampll ax,
<

Sinee 1 (H,xoy,(}) =0 unlese s=por s=1r § 2p -
2 Do o O

THTHL | riep xgs Zegoigy)s and d(u) = 21 ATIT(g)

for u ¢ Hr(fi%xg). Let u generate Hr(l-:é.xgj = % ‘ATT(u)

2

is an element of finite order, hence ithere is an iuteger

D = 1 {wod p) such that r!Ar'rgu) = AT T (y) e AT (14,
Sinece 4 = @ *Ag””“:{m} = Qs and by exactness, Iy = nﬁ?giaj s
where a3 (Myx5) > (¥4pts)e a|s"s (S”',xoj w—p {F,0t.)

is o map of degree 1, and hence &*{u“) == Dy where u' io a
generator of ¥ (s7,pt, }o Thus ¢ DG' {u) = G)l () =
@'am‘*{u')) = 8*( P'(ur}) = 0 vecause » = 1 (mod p) ana

G" (u') =0 in 5%, This is a contradiotion, and hence d # ¢,
This completes the proof,

Using a more computational proof similar to the propf
of theorem Goly it can be shown that B = 1 (med p.
However, to prove theorem 3,9, it is not necessary to knpw
B = 1 (mea P} because Im (FG" )= Im 0), and ey (fid:")
= Kor 6" a8 leonw as l3 # 0 (mod p)e Using tide remark,

we now preve 3,9,

fxoof of 549¢ The proof is based en figure 6, a portion of

the first derived cohomotopy exauct couple., “The groups marked
CP are in that olass by argumente given in 7.1, oy hypothesis,
r +4p = 6> ny and hence 1;"*41*"5{3;,1.; &(app)) © CP . It
follows that A7 PH0=3 o Op o o Hleriip-c | Qp as in
figure 6, Hence {!Ar’r)p o lir'l'gp':"’(i-:.m Z{&ip-ﬁ))p =
il +2p“3(.’:{.]}; Z,) under the isemorphism
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&

,1:{-, r+2p~3( " *g. rip-q =1

PR (.Jl('pli‘) -1 Fltrthermora.
T (PP AN (g apTelmely (7). Sintlar

ramarks for AT ana ortlerdl e Ll figure 6 we

obtain the exugt sequence
A!‘-*I. r-l ':} a0 g i

T s an L) (51, L5 (2) 2 (kL)

e (%) {.Aril.r-l-l)p Using theorem 7.2 and the above

isamorphisms, we cbtain the exact cequance of 3,0 with

defined by pi = 15503 ",.J{.r-}ea-lt(.i?;z)’-!%’op-s)«z.

}4

Hﬁ'ap 6(1:‘.;113 Z ) = (K..L) For r=n « 4p ¢ 5, we have
only the atatemmf. on the cokarnel of m z(‘p}.



Se Cohomotopy Sroups with goefficients in g,

In this seotion we define our generalized cohomotopy
groups and state their elementary properties, In waking the
definition gertain arbitrary ohoiges are necessury, and we
rroeve independence of these choices undey certuin restrictions
on Ge We also state oup main results on generalized cohiomo-
topy zroups; the proofs are given in the following five
seotions,

Let (i5%L) be a CWepair with dimension X = ¥ (ve shall
sesune this for the remainder of this puper), Let X be an
(n = 1)econnected space [3p p.183), and let X; & X Let
w{1s L 4r%,) denote the set of homotopy classes of maps
a3 (EsL) > (%o%g)e 3y virtue of the results of Spanier
40d Vnitehead [24], 1 n > (¥ 4 1)/2, then w(i, Ls Xoxg )
has a natural abelion group structure (see seotion ¢), If
2> (¥ ¢ 1)/ where Wt = dimension L', then o map £ (1, L)
=3 (' L'} induces u honomorhion i""""{z w{ity LYy Ko Xpy ) wd
(e Lg Xexy} defined by f?’if’({aj) = [afl. 4alae Af ' > (x +1)/2
where X' is an {(n' - 1)-connseted space, then a map d2 (Faxg )
3 (xﬂ,xﬁﬁ) induces o homomorphienm ¢ w{iis L3 Kexp ) =
(K Ly X%%,%) defined by $x({al) = [fale 1 the sequel,
vhen ve say o structure is natural with respeet to maps
T3 (KpL) = (2% %'} and maps $1 (Koxp) ~=> (R'xn1)y we

assume (X% 1L') and (E',xm') satlsly the some dimensional op



connectedness ascumptions that (1, L) and (X,xo) saticfy,

If X#£ # let '8X denote the reduced suspension of X
=38 p.GLG]s namely, *8X is the space obtained from X X I
by identifying X X {(JZ Vv xx f,ﬁ v Xe X I %o & point Ko
(xg is used to denote the base noint of both X and Voile )
Also @efine *o%% = 13(¢0™"1x) and *9%% = X, If X = 4,
define '8¢ to be a paly of points,

Let G be un abellan group and let n > 1. 4n {(n ¢ 1)

dimensional CV-complex X is said to be an £(Gyn)~space 1f

7y (X} == 0 Hy(X) = 0 for 1 # n, and Hy(X) == Go (This comecept
was intreduced by ivore (183 p.uutls) Hote that 1f X is an
i(Csn)wspuce, then %6X is an X(Csndl J=upace,

™ section 10 we prove

o

LEMEA Qelr  for given O and n, there exists an X{Gyn }=mpaoe,

Let X be an %{0,n)=space, We define the &tﬁ cohomotopy
group of (L) with soefficionts in G to be (i, L de¥g)e and
denote 1t by (i, L3 ) Wien we use the notation +2(i,1s &),
ve assume 1 > (N 4 1}/2 and thus +®(i, L3 G) hes a natural
group structure. As defined, w*(ksLs ) depends on the
choice of X{Gynj}~space. We show below that P (X,74 C) is
naturally independent of thisc choice when ¢ has no clements
of order 2, Lowevers; if we do not change coefficients during
@ discussion, it suffioces to choose a fixed X(0;t)-space ¥
and use 'S%"Y 4o the Z{Cen)~spaoe for each n 2 t > L. Ve

de this in the following paragraph,



Define A wn(E; () el nn%l(ﬁ,ba ¢} as followos lLet
be (bl e PLg c)s Txtend d to amap bl's (K L) —> (Ch1),
where UX denotes the cone on X [2%; p.656] and X == ‘Lﬁn“t“x‘.
et hy (CHX) ~=> (*f“s:x:,::e) be the canonlcal map [193 pe 647
e camposition Wb's (1) —> ('skx,) = (W& tlyx )
reprecents A(,{‘uj}. {This homomorphism is strictly anulogous
to the homomorphism A of seotlon Z Tor ordinary cuhomcbopys
soe [223 p.216)s) Let i3 L > ¥ and Js K ~—3 {ksL) be
inclusions. Then the echomotony soquence of the pair (i, L)
1o defined to be the fellowing sequence of groups snd homow
morphismss

28
4

5" ~ A
vee=d (I L5 G) => Py 0) —> P(Lg &) = ARy o)
—Psess I vection 9 we vrove thut this sequence is exact

forn> (i 4 1)/2, In section 1C we prove

THEOREM 8481 72(R,13 ¢) satisfies all the axiome for coho-
mology of Tilenberg znd Steenrod [1lp p.l3] in those dimensions
where & patural group structure is defined,

Ve now return to the quertion of independence of the
cholce of the W(Gyn)espage. Let X be wn X{Usn)-space, ¥ an
iipn}=opucas There is s natural homamorphism ms
w{KeXos Yeyg) =P Hom(Cyil) definsd by /q({a.j) = Byt L {xg)
w2 Xg&{'ﬁi,yﬁ} =, In section 10 ve yrove

THEOHRM 8438 If n > 3, then m* T{lXgs Ye¥q) ~=> nom(GyX)
io en epimorphism and has a kernel isomorphic fo ?&ct(@,ii@ﬁ;é)

(sce [8] or {113 p.161) for the definiticn and properties of Txt),



Let \D be the Tamily of abelian groups having no elements

of order 2, In seectlion 4 of the appendix we prove
LEMMA 8.4 g ,ﬁ nen Txt(G, UL, ) =
MIA Beds __I£ R 3 s Lhe xtcf.agﬁ@fag) Qe

Lot §: € =3 I be a hoamomorphisn, and let X be an
Z(Gsn)~srace, Y an X(Hyn)}»space, There exists a map {X..xﬁj
—~» (Yyg) cuch that by == §2 W (Kxy) —> H(Yey,) by 8.5,

In Taet, if ¢ ¢ .B‘,! then § iz unique uy to homotopy by 8.0
and 8.4y Turthermore, if ‘Ps H w2 J, 4 in an Z{Jyn j=space,
and e Salse, then ¥ § # (L) (Hemy) —> (Ze3)e

low et X and X' be two different X{Gsn)-spaces, iet ¢ ¢ 2,
oand let §3 C -~> ¢ be the identity homomorphism, Then there
exist mape $: (Xxg) =3 (L% x, ') and §'t (X%x,!) ~> (K,xc}
inducing ¢ such that §'4 and §§' are homotopic to the identity
maps. Furthernore, $ und ¢' wre unique up to homotopy,
lience ¢ and 4% induce wnique isegmorphisms j#t (K, L }{.xo)

—p (s Lg E‘.xﬁ‘*) ane Q';.;s w{ie Lp i‘ii’.’pxa') e R TR .A..IO]
vhich are inveraes of each other. Hence the set of groups
ivr(".f;.l.a }I,x(;)} for all X(Cyn)-spnces L form a troasitive
syotem of grouvs [1x3 p.17], and we have shown thet +*{i,%Ls ©)
is independent of the choloe of X(0yn)=space, In case G

tﬁg Q;_; iz an loomorphiom (see lemus D,4), but it is unot

& unique isomerphism. In this case, we assume a fixed X{Gy2)«
space during any given dloouscsion.

Ap a further corollary of the above disoussion, if G ¢ .ﬁ‘;
then a homomorphism ¢3 G —» M induces a unique homomorphism

bpt (K03 G) ~> P(K, L3 H), This is natural in the sense



that if & G —>» N, ‘-P: He®» Jand ¢ and H ¢ oﬁp then

{+¢)fﬁ A '71‘ .‘#:ﬁ'

We nov state our main results on cohamotopy groups with

coefficiente in G. Let ¢' and G ¢ )y ené let

Q wnp GV wmd G =P G" «=» 0 be an exact coelficient seguence, .
n cection 1l we define o hemomorphism Sff,i.: w* (Ko Tog G} -
-rrr*l(i‘:,.‘ia; GY) for r 3 2z, vhere & is the least integer >

(0 4 1)/2 48 in seetion 4, Tefine the sequence corresyonding
to this exnct coefficlent sequence to be the following sequence

of groups and homomorphlomses

b Iy
ver=d (5L 6') 5 Pirs 6) Y Pz ov) b

-frr'“(:::. Ly G¥) ==Dy5..¢ In geotion 11 ve prove

THEOREM 8+5: iox r > 2z, the sequence gorresponding to an

exact goeffiolent gequence 1s exucts Ihis sequence is

natursl with resoect to maps f1 (I L) —» (L L'), and if

GYy Gy G Ly und H caD' s Ehen 1%t is natueal with respect te

4 homomorphlsm of one exict coeilicient seyuence into anothers

¥
0 =d G? w3 & ~=p G wed O

] eu
A .;ew 4

O == Ut o=dp | wed [ >

The above is a generalization of an exact sequence of

Moore {183 p.552].



Define a function v (ILL) X ¢ —» +F (KL G) by
{lals 181} = [ga)y wheve [g] ¢ m (fx,) =G {a) ¢ v (K1)
and X is an ;-Zéi'r,r}nspuce; By D60 thids is o bilinear function
Tor ¢ > us ond hence it induces a homemorphlms of3 #F{(1,54) @ ¢
smssciis 'n'r(l';;.ll; G)e In secticn 12 we define a homomorpiion
p: W (Ke T G) ~=» i’oxv-{_xrr'i’l(ﬁ;,lhhﬁ) and prove the following

universal goefficient theorems:

THEOREM 8463 Let C be a finitely generated abelisn group.
Ihen the sequence

o B
(%) 6 = P (50)006 ~> +F(H,1 0) ~» Tor(«T{51),0) =3 0

15 gunet for r > z. This sequence is natwezl with rospect to

mups Tt (ML) == (K% 0f), and 1 G e then it is natursl
with pespeet to homomorphisme $t ¢ ~—> . Surthermore, if

(L) 48 g fintte Cu-palr ond ¢ & /2" Lhen the exact scquenge

(%) 2nldds {4s o0 I ol g o dircet swmand of +* (K14 G)).

TURONTM 8,98 Let 6 ¢ Jy and let (1) be s finite Gy-pair.
faen the scquenve () is exuet for r » @, ihils peguence is
iz gatursl with respeot to maps 3 {IGL) = (1%, 1%) and
homemorphicmy é3 G~ 11,

n section 1Y we give an exanple to show that if O is
not finitely generaled and (X,L) is not Tinite, then the
sequence (*) is not necessarily exsct.

Theoram 8,6 generalizes an exact sequence of Serre

(204 p.284]); Serrets sequence is 8.6 for the case (K L) == (bn,};at.}



b

and G = a gyelic group. He notes that his seguence does not
oplit vhen C == Goe

Theorems 8,C and 8,7, bveside giving a further analogy
between cohomotopy groups with wrbitrary coefiicients aud
cohiomology groupe with arbitrary coefficients, reduce the
problen of ealeuluting > (3,13 ¢) to the‘ standard problem of
calouinting w.rr{i;, L}s Because of this, theorems 8.6 and 8.7

are two of our main results,

Let X be an X(Uyn)enpace, As in the case of hemotopy
groups of spheres, anh(x) is independent of n wvhen 8 ¢ n ~ 1
(183 pa.561). Ve denote this group by G(s) {see seotion 2).
for any class C sy let D(Qw) denote the largest inteper such
thav G(a} e C for 0 < 8 ¢ b(e_(é.s»). n section 9 we define
o natural homgasorpinien n,?z P (el G) ~> EE{, 18 G)
anzlogous to ”)r for ordinary cohomotory. In section 15 we

prove

THEQREM 8.8:¢ lLet e be a glnss satisfying gondition (II;)
of section 2, and lei ¢ be finitely generated, Let n >

(¥ § 1)/2 be such that ¥(1,70 ¢) ¢ C for every r > n.
Then A]?s T (L Lf G) ~> BN (K, 1§ G) is & C—ia%orpg;_.m if
v > Max((¥ 4 1)/2 n - Lo(0)); 2nd i8 8 C-gpimorphien for
r==n »o(e_{a}) in case n - o(c_{a) > {0 4 1)/2,

Theorems 2,1 ond 2,6 give information on o(c{{}} Tor

various e and Gy and we may draw consgguences of 8.8 similar



to 3.2 343y 3.4, and 3,5, Purthermore, the result of Adem
(theorem 6.,1) carries over to general coefficients and there
is a theorem analogous to 3.8, Also, for the case § = cp?
there is a theorem analogous to 3.0, Rather than considering
these in detail, let us note that any result on the structure
of v (K,L) gives o result on the structure of »*(K,1s G)

by 8.6 or 8,%,



9« Group Strugture and the Zxact Sequence of a raix.

e =

In this section, we veview some known results on the
existence of & group structure on w(i L) XXg)e Ve then
rrove the exactness of the cohomotopy sequence of o pelir and
thue show that the cohomotopy exuot counle of part I can be
ceneralized; some of our main results are based on tuls
generalized cchomotopy exnct coulle,

I .x # Py let 54 denote bthe suspension of X (24l nemely,
GA is the space obtuined from X X I by identifying X X {0} and
% % §1% to suints, Alse define SFX = 5(5¥"}x) and 6% = x,

If X == g, define ¢ to be a pair of points. (lote the
difference between 5K and 'GX defined in seetion 8.,) As in
{24, suspensicu induces o Tunesion S w(is Ls )i»xg} w—gp

w{ 8K, 8Ls 8%, Sxg)e (Since 8x, iz contractible to its midpoint,
xox §13 + which we again denote by Kge w(BKeSLE 3k 8x,) ®
{8l 8Lp Blexy)e We shall do this throughout im order to
preserve the base peint,) 84 is naturel with respect to maps

L3 (HpL) == (Kt L) and maps é: {ﬁgxb) . (x'.xﬂ').

THROREM 9418 I X i3 an (n ~ 1l)~connected space and (ML)

is @ Gi~palr yith dimension ¥ £ in - 2, then 94 is a

-

i-l

gorrespondencs.

Zroof: This is un immediate comsequence of corellary 7.2
of [24].

Let (3;x0)ﬂ'h denote the function space of maps ag (L)

s (X,x(}} with the compact~cpen tovolosy. The constant



1
(55

map at X, serves as the bace point for this function space,
L ‘(: T [ b ol
n {S}. a function At w (i."x.xﬁ}J’H) —> '}T(nr;.xyu Is 4,,,2;0) is

defined and the Tollowing theorem is proven {23 p.8llt

THEOREM 9.2t A is & 1-) correspondence., IThis correspondence

is patural with respect %o maps £3 (5, L) > {(i*17) and maps
$1 (Gaxy) —~» (Xhhxg'),

As in [24), we now prove the main result on the existence

of o group structure on w{K,Tj XeXg)e

THEORTM 9433 If X iz an (n - l)-comnected space and (K, L)
i & CW-padr with disension ¥ € 2n - 2, then (¥, 1s dekg) 4B
an abelisn pgroun, IJhig pgroup structure is notural with
respect to maps f3 (K, L) > (E',L*) and mops ¢ {hx, ) —>
{2\:‘1% e

ircofs Ly O.1, 5;2: m(Es i Xpxg) =3 vr(SEK,S’?'L; ng.xe) ie

& petural l-l correspondence, ALE0s DY Feils Al '(Fa,((u X,xu f"f‘)
~3 (571, 571 :j*"’.i,xe) is a natural 1-1 correspondence, and
rru((s“:’.i,xo)h“’l‘) is an abelian group, ve define the .»;;rouu
structure on w{i, Ly ;i,xO) using the l-l correspondence A 3 % -
(This addition of homotony elusses is analogous to that

defined in [22}.) This group structure is natural with respeoct
to maps £3 (K L) —> (L1509} and maps ée (xg) —> (L'x,")
because the 1-] corrsspondencec /\ and B# arep 1., @, these

maps induoce hemomorphisms 7 and b e



Yor use later, wve now

LOMiA 9.43  Let (K,1) ke & Q-puir with dimension K = 2

Lot ke {(Hex,) = {(£%,xq*) be guch that ks mo(Xexg) ~>

v (X'y%,') ig an isororphiem for s < r - ) and an epimorphism
I) .£C l SRmNa  —— e mi— m——F s

for s =»r = 1. [log cssume wy(X) = 0. Then kg »{EKsLs Sexg)

—>» w{KsLg X%x,*) s 3 1-1 correspondence.
Lrcofs Ve may assume that ki (Hexg) —> (K'x,') 15 an
inclusion by the mapping oylinder construction, The leamme

is an easy gonsoquence of the deformation obLstruction theory

as desoribed in {53 p.186] because the oadr (X% X) is (r - L}=

connected {53 p.183), The details of the procf are left to

the reader,.

Let pa (Bkpx,) > ('8 Xg) be the canonical map
identifying x5 X I to the point Xnye If X is conuected, then
’6?‘1(‘33‘:) = 0 and yL tisfies the hypotheses of lemma 9,4 with
r = 0Ds I!ence};_l,;;: {3, Ly St_};,xta} w—d w{Ky L 'St}:,};u) is a
l=1 correspendence Tor + 2 0.

Let X be an (n - l)~connected space. ILet dimensiom K
=N 28 ~r tn) -~ 2 and let 8 2 ry Ve define 6:
Tyl { 185%s 3 YO 1) —p o (x, 15 15°"FXox,) to be the following
compositions

-1
A

wr((*ssx,xo)K’L) = 7(sTx,s7L; 'ssx,xe))’i) ('K, 5713 s°%,x

(870" Ly
- S ..
(K, L3 s® I'X,x()) —» m(K,L; 'S rX,xo). A is the

o)
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isomerphism of 9.2y Sy © is the icomerpaiem of 9.1 (8y 1o
an isoworphiom under the above restrigtions on By T Ny and
H)s snd My is the svove isoworphism, Turthermore, ), M
and 'Lsk, are natursl with respoct to naps f3 (7 Lj =—> (K'%WLt)
and maps §3 (Xxg) ~> (X1,x,1), and thus the leomorphiem
& 1o alse maturcl with respest to such maps,

zseiore ccusidering the couwmmotoyy se usnge of o polr,
we prove the Tellowing lemua. et (L,L) be a Cu-palr with
L # fa Lot pi X —> X be defimed by restricticms 1. e.
pl{a) = all for a ¢ X,

LUIMEA GeB2 3 X.K -3 X* is g fibre spoce in the sense of

Qrre (195 p,143), =nd the sdome over the gcnstant nap %Xg

ig {;i.x@)"‘"z‘u 4 map Tr (Ep0) =3 (X' 141} induges g fiure

= . ”' --:n..q’ i ¥ : IC' b ‘ ?E; -\1! - 5 - -
Lis T W 4 ¢ Ak ’ Fd £ 5 s W X b e =,
ppeserving map £: (27 ,p% 2" ) =3 (2% psX")s and & map

$1 {:4.,;%} e (:;',;ra'} induces » fibre preserving map

- - P -
”'u = . | 3 - _ <4 <¥
§ (A 0a 7)) w3 (XtNpt, X"}

szoel:s  The fact that pg X —» 1~ is a fibre gpace iu
cosentialiy o restetement of the homotopy extension thecrem
for Cw-complexcn [lip p.2%ls 1The details of the proof are

straightfemeard and are left to the reader.

Using lemme 9.5 we now give a proof of the exactness of
the cohomotony sequence of the peir (i,1L). (see section &),
This exact sccuence is imnrortant hecause 1t allows us to
obtuin the generalized cohumotopy exact couple below, Lst

L be an X{Gyn)~spnce, then '5°% is un A{Qynis )=space,
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By 95 p3 'S',-.'K — ’3’)’.1' iz a fibre space with fibre
{*Bsx.xo )K'I'. Consider the exagt homotopy seguence of thies
fivre space (the base peint ls the constant map at 103 and

use the isomorphism € defined above:

ar ‘,j 1 N » . b
veemd a (O Rx Y)W g (58] D g (0e%) —>

48 3# fe o @

ver=2 w(EL 3 WITRx,) — w(ky WOTR) —> a(lg 87Tx) —~>

. i Iy
Wr-]_{{'sa-&lxo)i'. ) i TR
r(Eong 187 TH
the hemotopy seqyuence of the fivre space {193 p.44d], '3u ds
induced by the inolusion '): {‘S”}i,xo)a’x‘ —> '.ﬁi'JIEi and

ngo} —F eewn o is the boundary operator in

Py is induced by p. 6 is defined and is an iscmorphism when
Ng2(s-r4n) -2, Purthermore, j'6 =161) ; and 16 = ep,
by the naturality of 6, and it cen be checked thut Ae = ed,
Since t8%°Tx fs an X(Gynie-r)-space, this provee that the
conomotopy cequence of the pair (K,L) is exact in dimensions
> (W ¢ 1)/2, Yaturality of this exact sequence with respect
to mape £3 (L) —>» (K% L') and nape ¢ (X.:.e;ﬁ} ~3 (Xtyx,')
follows lmmediately from the naturality statements of lomma
DD

The results of wvegtion 4 on the cchamotopy exaet couple
now carry over %o our more general situation, et X be an
{n - 1)=connected space, Ve replace Calh in secticn 4 by
'-St:( for t » 0. The exact cohomotopy sequence of a pair



(K L) gives imrediately the exact coliomotopy sequence of a
triple (K L,M) {11; p.25). Hence with the above substitution,
all of the results of section 4 are trues the main identlfi-
cations now being that *c¥*° o ¥°(x, 14 ru-r-}nw'“ Tor

v 2 Hax(n ¢ L, ) and 471 g (1, 15" "5, x,) for

» > dax(n, z)e Again we demote '17*%; n(x,1p ‘sr‘ﬁ.};.xo}

—3 W (K1 (X)) vy n,’ (seo section 4 for explicit details),
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10, Independence of the ghodge of X(Gyn)-space.

In this seetion we give the vroofs of 8elp 8.5 and 8,3
w well us ziving some further properties of rg(z‘.‘, Ly Cle

These further propsriles will be used in seetion 12,

froof of 8,13 let G = §/R, where ¥ is a free abelimn group

on ceneratoprs {3-::,,‘ , @nd T ie the group of relaticns,

i is free sbeliun [}.1; Pel®4]) with basis {‘;Bg e pe Lot
T be the Cu-complex V S » o union of n-ayl..ezrf*w 8°% with
& single point in comton, iy the Durewies theoran, 'z:n(T) Q
H,{(T) = P Tor ench ﬁ £ By attoch an (n 4 1)=cell ¢ to

T by a map representing l'l-lwp) & m(T)e Call the resulting
spage X B construction, ‘ft‘l(;i) == Cly .ﬁi{;;} =0 for 1 < n,

T (%) ® Wy (X) == 6y and Hy(X) =0 for 4 > n $ 1. Horeover,
since any nem~zero (n 4 l)}-cyele in X would iuply o none

trivial relotion among the {3% g g o B* %*1(3&) = Qs

In order to prove 0,5, we first prove

LA 10.1r Let X be an X(Gyn)-ppuce, Then w %1(23.) ® 6@up.

rrois The procf is hased on figure 7, a porticn of the first
derived homotony exact couple of lassey [153 part IXlj.
1%.‘%3_(};) = 0 end hence by exactness vn%lgxaxo} N L B (X8 4g)e
By the universal coefficient theorem (1.1 of the appendix),

(% 25) 5 @32,
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e e0

+

seawnP O ==, e

¥

vee~=P 0w [T wed H(Xg 4y) =—>

+

srom=d vn.l,l(i{.xg) - ﬁﬁﬂ(:f:) RN

i T T

e ST

s wf= O = O

- ey ol

Mgure .

roef of Gs9r the proof is based en figure 5, o portion of
the firet derived generalised cohomotopy exact couples Lot

(i5L) = (2&,:@,3). IF=mn ¢ 1, and let (“i’,ya) be the ceefficient
GDACS,

< nee

[ 2 2

see™=P G mdpy
+ +
By > 141
o= O o PP o ﬁr {Kg?ﬁe! Tfni].(Y'YO}) e ) =Dy ge
IS ¥

WY Baner 4 7{3{)3@’ EQ,YQ) 'fl ﬁn(}:;xgi 'rrn(&’.y())} e

LS
st~ O

Eime 8.

low 11'1(:{.:«:0; ‘rrn(‘f,}:o)} & Hn(.‘{,xﬂ; H) = Ham{G,H) by the universal
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gocificlent theoram (1,1 of the appendix), 5y 10.1 zund the
universal ooef"icient theorem, n”‘&li;i,xg; T, *1(?5',30)}
= ii"""'ﬂ(x,x{;; i@y} = imt(c,0®2,). by exactuess Mis an

epimorphisn with kernel fsomorphlc to 408 o It (G HQ % )

Defore we prove B.2, let we drow seme further cercliaries
of Beda

COROLLARY 10428 I£ ¢ e D, then **(55 ©) is & unitary

left podule over any gubeing of the ring of endomornhisms

oL G

droofs Ly the naturality statements of 0,8, # (i1 C)ie
o unitory left module oveyr n‘(:f{,xa; ;«;,xﬁ} where X 4 an
A{Gen )=opaee {the multiplication is composition). 5y 8.5
and Sedy M5 TlAexgs Xyx ) == Hom(GyG) is an isomorphiam

it Ge .ﬁ', and the eoroliary follows.

COROLLARY 10,38 If G is & f£ield snd G & J, then v™{ils @)
it z yeetor =pace gver C.

iroofs Jamy field is a subring of its ring of additive
endemorphismug nemely, £ £ ¢ aets on & by left multiplication,

The c¢orollary nov follows froam corollary 10,2,

Ve nov complete the proef of 0.2, The results of section
0 show that v(i5 Ly 0) satisfy axions 1 through 4 of Alenberg
wnd Stoenrods

et (%) be o Qi-palr with T # #, Lot (::;‘L,pl‘} Le the
Gdepadir obialned by identifying L to a point Py Let
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coelfTicient theorem (1,1 of the appendix). Gy 10,1 und the
uwniversal coef lefent theoren, i;f‘"&'l(;‘g;,xﬁa; T (Ne3g))

= if”}l(:ﬁ,%; HQ4 ) = j.;f{b(@,iiQZQJ' 3y exactness 0 is an

" oids

epimorphism with kernel loomorphic to tMeR . ‘-”“"f"tw.li'@z;%).

Defore we prove 8,2, let us draw some further corocllaries

[~ S 1
of Ve {4’4‘.

CORQLLAWY 10s2: If 0 & 0y thom (5,04 ©) is & unitary
left module over any subving of tue ring of endomernhisms
$X00L3 1y the naturality statements of 9.3, 7P(k,ILs G) 4s
@ unitory left module over n-(:%:,xo; ;»:,xG) where X fc an

Z{Gen )=upnce {tiie multinlication is conposition). BY By d
and Se8y Mg TF(J(..I.O; XaX, ) =% Hom(GsG) is an isonorvhiam

if G e » and the corollary follows.

COURCLLARY 10.5: I£ © 48 & £ield and ¢ ¢ J, then v™(K 14 ©)
i @& yegtor space gver G. .

Loofr iny field is a subring of its ring of additive
endomorphiomoy nomely, 2 ¢ O acts on G by left muiltiplication,

17},

he gorellary nov follovs Trom corollary 10,2,

Ve now cemplete the proof of 8.8. The results of section
0 show that 2 (1, Ls 0) satisfy axioms 1 through 4 of Jlenberg
and Stecnrod,

Let (E,%L) beo a Od-padr with T £ g, Lat (;-:‘.L, py) be the

Giepadr obtained by identifying L to o point Pre Let



3 (L) —» {“i‘;‘,’pﬁ} be the canenical map,

=Ry e A « }. ad w - -
LA 1G.4: £ w{LL,pL; ;...xﬁ} w3 w{ip L LXg) 8 8 1-1
gorrespondence,

izoofs Ceme as in (225 w.21ble

Iet (K1) be & Cu-~pair, Let M C L be such that X = i is
& supconplex of X, Let &1 (K = 1L = M) = (K L) be the

inclusicn,.

Land

THLOREM 10453 (Excielon Axiem)e 17t #5 (818 G) ~>
7 {E - L = 5 €) 48 an isemorghis for ¢ > e

cxeofs This follows immediantely from 1C.4 o8 in 22 pelinle
Lot £ g1 (K1) —» (X', %*) be homotopic,

THROM 10462 (Homotopy Axiom). £ and PUR o (L' Lty G) ~=p
Wr(ﬁ.' L C‘*} are oy ULl o

rroofs Obvious,

Theorem 8,2 has now been proven, A gorollory to this
thooran 1s the fuct that any theorem derivedle Cran the axioms
for cohomology of Tilenberg and Steenrod waich deen not make
use of the lower dimensional groups holds for sohauotopy groups
with ceerficients in G. in example of this is the Mayer-

Vietoris sequence of o triad [113 p.301.
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11. Zroof of Thoorem 8,5,

This section 1o devoted to the proof that the sequence
corresponding to an exact ccefficient sequence is exact, The

preiiminery results are only steps in tiis proof.

A 12e2s Iet 6o Sl and et n> (¥ 4 1)/2. Let X be

8 X(Gyn)-space. lLet Y be an (n ~ 1)-gomnected space sug
ot 1 (Yeyy) == ¢ and HAYy,) =0 forn < r < in, Zhen
there 1g » wap ke (Zpxp) = {Yoyg)s unique up to homgtopy,
el Lhat ks Mplfexp) = 0 —> 1 (Yyy,) = G 18 the identity
and kg ?P(IG 0 6) = (i, 1y Yy,) 48 & patural iscmorphism,
£xeoofs Simlilarly to the srgunent of 8,3, there is a map

Et (Gxg) > (%g) such that ks 3 (Kx,) —> B (¥} 18
the ldentity. lence k.: () —» Ho(Ysyy) 1o an iccmore
phiom for v < ing it follows by & theorem of J, U, @,
Whitehead {“3@} that kg T (Rexy) —> Tu{Ys¥y) 48 on loomorphisn
for r < 2n « 1 and an epimeorphiom for r» = 2n « 1, Now apply
lama 9.4,

8t pt T =3 1 be a fibre epace in the sense of Serre,
with fibre ¥ over bo € 3« Let K be a CW-complex, Define a
map pys BX —> B vy p, (a) = pa,

TEINA 11428 pys 5% > 3% 4s 5 fibre space with gibre X,

L map £ K e e induces o fibre prererving mun £1 (Eﬂt,yi'.Bﬁ')
g (EE,;;»J‘;BK), fad a fibre preserving map s {(Gepsil) ~>
(%+p%s3') induges g £ibre preserving map §+ (¥5,py,55) —»
(E‘Koﬁl'wlﬁ'x)-



Zxeofs The proof ie a straight forward application of the

coverdng homectopy theorem for (s ps8)s and the details are
mttﬁdy

Let G' and ¢ ¢ O, andlezowc*-!arcia_m«-ao
be an exaect coefficient Sequence. Let X be an X(G, N1 I=arace,
and let X% be an X" 1041 Ymsrace, Let :k ] (3{,3&0) e (Zi".x,o“)‘
be a map inﬁutziﬁg ‘}‘ o Vo replace ihy a fibre napping ae
follows: aatha f is an inclusion by the mapoing ¢ylinder
construction, | Let ¥ be the space of pathas in X" which end
in X X is contained in Y as o defornation retract (11 Pe 30}
W % —> constant path at X. Define ps ¥ ew» X0 by p(£) = £{0),
P in & £ibre map (193 0479 vith fibre ¥V = the cpace of
paths starting at %o € X' and ending in X, ve may assume

Xy € X C X%, ¥ is our renlacement of _‘f.

Using t.ha| technique of spectrul feguencens, we now prove
the following lemma, Ve may use this technique bec:use the
ordinary aingular. Lawelopy theory and the gubieal singulor
bomology theory of Serre (291 are isoweryhiec [0), The proof

of this lemma {is the enly place we use speotral sequences,
y P

LOIDIA 11432 Ru%(i-") = (G, HI_(E"} = 0 otherwise for r <
2{y $1) -~ 1,
Zxoofs Let E be the space of paths in X" starting at Xph
E is a contractible space. ILet Pye (B, 0%) ~3 (X", X) ve
defined by Pil{f) = £{1)s This 15 & relative fibre space
with fibre 7 = the space of lcope in X* at Xge F is (N - 1)=

connegted because X is Ne-connected, As in {173 p.3301,
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there is a speotral sequence of this relative fibre space
with Eg’ L :E—l'pixﬁ,}{; ’é-iq(F)) ond T g is the graded group
assoclated with H(W,¥F*), From the exact homology seguence
of the pair (%9 X)s

ero™> Hpo(X") —> Hipgp (LX) —> Hﬂ'ﬁ'l{m > Hgy (£7) ~>
HEIE-QI(X“’}:) =P (X} =>..o we see that I'J'_l,g(?;“g:i) wa (3
and ;&IE{J{",;‘{} =z 0 otherwise, lence Eg.q =0 for g < I
except that Eg.}g,@ 2= G and Eg.q =0 for p{ ¥ ¢ 2, Thus
L, (ByF%) = 0 for v < 20 } 2 except that Hpo(591) = 61,
However I is contractible, snd hence by the exuct homology
saquence of the pair (B,7'), Kn.*l(l’?') == 2V and H!_(E-i‘") =
otherwise for » < 2w ¢ 1,

In order te prove the naturality of theorem 8,5, we

first prove the Tollowing lemna,

LG0IA 11e 43 %ﬁm & homomorphiom of ome exact cosfficient
2squence inte ars

¢ " §
0 e GF s ¢ e O 3 O

O => H! ~> ¥ ~> H" «=» 0, Iet 0% G, G u' and H & S5,
Qonstruotion. Then there is o fibre
presorving ma gﬁ- (LopeXh) oz {Ylpﬁm:‘{"ﬁ} which is somotopic
to § on ¥ and to &% en x,

rocfs O J—p go X :\‘:a» X
%ﬁ?.Lf" ;51&,;5-

B is commutative and hence ‘};Ii el AW,

L)




is commtativ

Asoume Y

fr§

extension the

that &, jx»

‘¥
can be extend

oram Lo define o map §‘

= g " and gli.&."’ §

00

@ up te hemotopy by the resulte of seotion 8e

. ' are inclusions, 5 ! X = X, is such that

1. e, 5 is homotonic in J-L"H to & map which

ed to all of X*, namalyg "|Xe Use the henotopy
13 (K" X)) «= (X0 r¥y) such

§’ 1 induces a flobre

reserving mop é t (Yaps V) v (‘&fﬁ. Pk ﬁ} naving the

correct properties,

Ve now y

EX0of of 848
the pair (i,

case wvhen L =4

ebtudn the £3
e honotopy
phism @ of se

Y R o ’!" ‘fl“‘r

b

i V¥

K
'H‘H._r(,?' } =~

(g o) -

This completes the prool,
rove theorem 8,5, the aim of this seetion,

5y 104 and the exact cohomotopy sequence of
ale it suffices to prove this theores for the
/8

ore sypage (b ,};1,}..“ ) with fibre Z.?’"K.

Use the above constructicn and 1l.< to

Conslder
sequence of tids fibre space and use the lsmor-
ction 93

13 ; . p)
{&ngx) ——f FH‘}].-I‘(YK) g}j Wlf‘!'l“r(xﬂxj P

~1

Gr) > (K3 ¢) i}- Flg o) b
LN 3
*Peese O is the boundayry operater in the

homotopy sequ
inclusien %j:
defined and 1
260 41 - W -

F““ of the fibre apace, '§ 4 is induced Ly the
| P o ¥5, ana Pyj 1o induced by p,. © is
B an isemorphism for »r 2 % because

l{-r)-2==2r-2;23-2;_11.




5l

ko ks GV) = w{ip ¥ is the isomorphism of 1l.1 and

Liedy and dua v7(k 0") —> (x5 61) 1s defined by

§ s=1%,"20d "}, Jurthermore, 6% §= by o and g0 =

“Dyp by the maturality of 6. ilso, §40=1k,16d Ly defiui-
tion. lence the sequence corresponding to the exact coefficient
sequende is exact,

Amnap ffg K = Kt mdugu a fibre preserving map §a
(YK'.pI’,--:{"K'} — {'R‘E.m_,x,'x) and hence £ cammutes with
§ 4 beceuse 9 and 6 ave paturel, o commutes with ¢, and
}0# also. Thus f induces a homamorphism of the sequence of
K* into that of X, Also, a homamorphism of one exact
coefficient sequence into another

¥

Q ~> G? '—‘5 G v GV e

I 3 ;sv’, e
O = HY o> i «> H" ~3 0 induces a fibre preserving map
§ : (YK.pl.x ) i (Ynx.pmx'xx) by lemsa 1l.4 when G, G,
GY, H’.l and H ¢ S, Hence §'# conpmutes with S# as well as
vith ¢4 =nd #» Thus a homomorphism of the exact coefficlent
Sequence induces a hememorphism of the sequence corresponding

to that exact coefficient sequence., This completes the proof,




——— . et e ——— —

s
&

1% Zzocf of the Universal Coefficient Theorem. .

This secti

en is devoted to proving that the seqguence

(%) 0 == w’{lﬁ.m@c; —:p- w (KyTg G) f»p ’;‘w{w"‘ﬂ(xgm.e) 3

ie exact under

LEMMA 12,18 o

various hypotheses,

30 (K L)@6 —aaF (X, 1y ¢) g'w with
f3 (GL) —> (£%1), and 4f ¢ ¢ S then 1%
Zespect to homomorpuisms ¢ ¢ ~> . lioreover,

1L G 4 Cinitely generated and fres, Shen < is an iscworphism,

Proofs
X is obviously

The notureiity stotanents are obvious,

I € = ey
an isemorphism because v¥(K, Ly 2) = T {HL)e

loreover, the functors »" (K, L)06 and +*(X,13 G) are additive
(8) on -ﬁ"oy the resulte of section 9, Hence they cammite
with finite dj.:[at sums; and o{ is an isemorphism if G is

finltely gener

ed and free.

i
Zroof of the £iFet part of 5061 Let 0 —> R ~> ¥ > G —> 0

be exaect, where

I is finitely generated and free also,

¥ is a finitely generated free abelian ETOUDe

By 845, the sequence

corresponding tp this coefficient sequence is exact (R and ¥

e
sna=d ¥, Ls |

1
i P

i, ; b ,
R) o> (K14 F) it " (%1s ) B (14 )

) =>epes Hence the Tollowing sequence is

oxaeti 0 —> Xordy —> +F(i1) G) ~> Im‘;# —3 O,

However, Xer J#
By |

exactnesa,

= I §u ® Coker 1, and M 6#-:1';-3: iy by
121, we see that Coker 1# =




Ba

Coker (v (1 L)®R —> (G L)OT) = 4T (K L)®0 and Ker i, «
ger (vt (5, 7)1 > (1, 1)@ 7) — or (15, L)u0)

(see [2] for the elementury properties of Tor needed in this
proof ). Under these isemorpshisms, the inclusicn Ler S

~» 1T (Eslg G) moes over to o & v (LeL)®5 ~> «T (X, 13 Gy
and § , defines B ¢ # (i1 6) ~—> Tor{v™11(1,1)06). ience
the sequence (%) is emact, {*) 1s natural with respect to
maps 3 (L) —> (Lt L') because of 18,1 und the exact
soquence of 8.0 is notural. |\ homomorniism éx 0 w3 I gives
rice to o commutative diagram

2 J
G o> R =3 T =3 G =P 0

b bl

it
O =3 [V o 0¥ wZp 1 = 0y wherae Rg R'% ¥y, and ¥F' arve

finltely generated free asbelian groups. oince Hy 1Y, ¥, ity

|
and G rsﬁ', by Be8 we obtuin o commtative diagyoms

S« 1,
b b 1.4
ceem> v (E s 1) > (g0 nt) <D T (1 1) ...
Hence the induced mep ‘;’ar(f.r'p(fi.,, L)G) > Ter('rrr*l(;-:i,la}.ii)
commutes with ﬁ’. By 12.1s ¢4 commutes with X, This

completes the procf of the first part of 8,5,

SOy
An exact Sequence 0 w3 A =3 I =B =P § splite if

thore exlsts a honomeorphism ki ¢ —=>  such that J& == the
identlty en €. lor abeliun groups, this is ewivalent to

the statement that o = A { 0, the direct sum of A =nd &,



o4

LEMMA 12,23 The exact sequence (%) splits for G =2, p

- b

an odd prime.

3
Proofs By 10,3, a (s 1g zp) is o vector spuce over eip und
heneey -:rr(iiw i ; .zip), an o group, is o direet sum of coples of

4 o Yhis imyolies that (*) splite vhen § == x:.p.,

D

LIGA 18431 I (kL) iz o finite Cuw-pair, then the exact
sequenge (*) splits for O = z?a, » an gdd prime,

rroofy 30!’:?@@23,_11:61')(11!1{; to the copefficlient homomorphism

$s ..aps — Z']E* sending 2 generator inte o generntor, we have

the commutetive diagram (by 12.1)

e - VRN . o
w {;.,,«4;@%}5 — 1?(;.,2.)9&1’
‘&‘o( 1 _ | #ol

 (FeLip Z.8) -—»«-> (i Lip ;4}}). 1®$ 1= onto, and oL and °<1
are monomorphisms, Ve can write wF(ILL) = 2 4 «ee ¢+ Z ¢ ,Z.i‘? @y
ess T z?km}; begause by S.4y 7 (L) is & finltely zenerated
abelian grour. Ve obtain generutors f xj ; of ¥ (i :J)@Zpa
Trom gemerotors of 2 and 4y By for p; =p. It is obvious

that (1@¢)(=¢:§}f # 0 for all j, and henee «(1@@)(3.3} # 0

Tor all 3, ilovwever, if (%) does not s»lit for 4 = }3@% then
some Xy is puch that o(l(xg) i divisible Uy p in »F (&, 1p zpa}.
lenee §;X 2.(353 in divisivle by p in T (¥, L3 ;:p), vut each
element of o (1, Lg Zy) hus order p. Thus O = Q#dl(xj ) =
® (lQ&)(xj) # 0. This is a contradiction.



bE

LEMMA 12,43 (Helemma)}, Given & commutative diagram where

€ .0 0 gach row and eagh column
il 4 | s exact, If the first and
£, g
C = iy == 5y aa]-') Cp ==» 0 and third colwuns and the
+ ﬁlf 14 }ep  middle prow spiit, then
a &
R A‘g& -5 =) =—-=-§ ca wed. 0 gvery row and overy goltmn
Ge .,&, d:.i ,&,, e:: (1‘01.5._'@%‘;3.

‘rocfs Ly hypothesis, there are homomor phiems 92"2'

E 4’13 > Aoy
o™t Gy => Gy und gy i Cp ~> 5y such that ege,™t = 1,
82@8-1 = 1_, cmd :gagg"z’ = 1 on Ay Uge and O, respectively.
lefine g;'!“a Gé = Sy by g;z;'l == riggg'lea“l, then g::,};;{l =

-1 i, =l

ﬁiﬂsdgaz'”leg = 020s8y g - == ezeg”l == 1y and hence the
bottem wow splite., Let fa"l be the other couponent of the
direct sun decqmgzomitian, > P f;{ls Sy =2 *&5 is such that
1 == f3f3”1 { g:{lga on lixe Define d;;."l - gg“lea'“:"QE +

!';;ogﬁlf@“la Gy ==» Ju. Then dgdg—l = d.;gg“leq*‘lg& ¥

[ [
d;fzegqli,aml ::Ig:ﬁwlga % 55Q2Q2*lf5-l ‘o g;{wlg:b ,i, i‘af%"l - 1.
and henee the nilddle coltwm solits. Let f;;l and o{vl be the

othar t:omi,-:omsuﬁa ¢f the direot sum decompositicns of the
second row and the first column, 1. e. fg"lfg = 1 und
al”lel = 1 on 4o uand 4y regpectively. lefine ff": ;:‘«l oo A‘,l
,1 ‘”1 ""1 ‘ P wl u-1 - &l #-1
hy‘ f}‘l R Gl , f|3 dlc Then fl fl b Gl fa ldlf}, = Ol fﬁ f;_zcl

= @& %¢y =0 1, and hence every row and every colun solits.
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LEMMA 12,53 If the exact sequence (*) splits for GY and G%

then it splits for G' 4 G == 0y yhere G' and G" ¢ 2.
angefs O w= GV oD 0 ~p 0" > 0 15 a split exact sequence,
The following is a commtative diagram:

0 0 (¥

i 4 +

0 = F{5LIV6 wx  FELO0 > P (3 L) 06 > 0

=<1 = +=z
0 ~> o (EyLp 07) -3 g (2,1 C) w3 T (LpLd %) ==p 0
$ Py }° 1

Q%AGX‘(?}F”‘&A&.} ) e ‘)m*‘.ror{w”ﬂ(&i’, &)-,G)m-??or(w”*l(ﬁiyl.)pc”)%a
|

b ) |

0 0 e
The rows are exact and split because ®. Tor, and v (el G)
are additive functors when G e b « The columns are axact
by abovey, and the first snd third colwms split by hypothesin,
Hemece by 1244, the middile coluam splite,

The lust part of 8.6 now foliows immediately from 12,5

and 12,56,

In order %o prove 8,7, wve first establish a direct limit
theoren, lLet G ¢ .} s and let { @ % zr,,(% e the diregt
syaten of finitely generated subgroups of G [L1g Ghapt.VIIli.
Then G = air lim ¢, Uote that each ¢™ & S,
g'zrr(fﬁ,’l’:; A )3 (wj )*XE i obviously o direot system of groups
for £ 3 3. Ve define £ 1 diwlim v (KLp G ) —> +*(K L4 G)




Wg({_[l]g]
{[&]3 is the

by [‘]t and 'l'.".‘ 2 U

Since w, == Wﬂ

and € in well

THEOREM 12,061

mmﬂ&g
bt G -~ H,

Eroofs let X

Sinecs K is cem

57

= {ry Jgl(al)s where [a] c v" (K14 ¢™ ),
elesent in dir lim +*(K,L3 ¢~ ) represented
6™ ~> G 1s the canonieal homemorphism.
8

v, ond all 6% & f, (r, )y = (""',6 35;{1?,? )g
defined (note that G ¢ J is necessary here).

If (KoL) s 2 finite Qu-vair, ghen € is an
g * 2 2. Ihis icomorhisn is natural with
£3 (X55) ==» (K% L*) and homemorphisms

an X{C,r)-zpace, and let [a] ¢ 75 (K13 G).
ety a(X) C X is also compact. Thus al{K)
a finite subcomplex X' of X [1%§ p.96).

standard X{G,»)~space constructed in the proof

of B¢le Then & Tinite subeomplex of X must an K(Gﬁ,r}w

space for some
such that (wp
A sinilar ar

is alse a com

are cbvious,

Theorem 8,
sequencs (*),

exactness, & ,

P o Hence a defines a map a's (K, L) =» (}{:*,xe)
jgllar]) = [al. Hence § 1s an epimorphism.

ent shows §‘ ie o moncmorphiem because L X I

t CW-complex, The naturality statements

7 now follows immediately freom the exact

LZ+6s and the fact that direct limits preserve
and Tor [8].

The folloving example shows that the universal coefficient

theorem of 8.6
A Jc et G =

mnd 8.7 does not hold in genersl, even if ¢
G = rationals and let X be an X{Ln)-space,




Then by 8u3, ' (Ks Q) » Hem{QyQ) = Q and ¥(Kp 2) = Hom(Ge2)
= 0, The sequence ("), if exact,; would give here that

0 —> 0®q ~» ¢ —~> Tor{®1(x),q) —~> 0 is exact, However
Tor(an*I{K),Q) = 0y and hence § == 0, This is a contradiction,




13 wool of Ti

meae

.

ieoren 8,8,

RS

Zook of De03

»
) 8

tefer to figure 3 in the proof of 3,1, but

wharc we use the genoralized eohouotopy exuet courle

2 is replaced everywhere by G,

that 8YYL(x, L
r> Max({¥ 4 1
= O(Q{Gh h.em::_e
of O(Q(G:). Bi1

may use the uni

0 =i :r;a"{'”(zt;.}u

Fe

. B
Soedn 1t oulfleee o orove
ﬂ(l}) & C, cass HV(KeLp {}{er)) ¢ C tor

/% 0 - KplG))e sgainn - r<n - (a2 -Kefo))
3 G{l) A C 5 &eod {%n—r} c 6 by definition

1ce i}{a} is Tinitely generated by G.8, wve

Lverenl epelficient theoram for cohomologys ie ©a

~=3p O 18 exogd

l‘.[r‘%g} (I{.t L3 \'}(m )

K g .
)®¢ gy > 148 (5, 1 G(g)) ~> -for(ﬁ“"?‘“‘l"'(z;.m._@(s))
G(B) & Q for o £ n = r; therefore

e C forsgn~r. The proof now differs

from that of 3.1. We have yet to show that lir{ba(f" L G(ﬁ})
e C for o % n‘- r from the assumption that 111'1'“{1;, Ly G}

& Cfor o> n -
|

Eplg G 3 0%) = W(2,05 ¢) ¢ BN(Xaig G%)s and G is ficitely
|

generated, it q:ufficsrm to shov this for

X {

-l

|
The case ¢ == 2

conosider the gace

& p=primery ooy

e

oince (C 4 &’3{3) ®G(g) T W)

o o L or G = ;;aptu
io obvicus as ir the vroof of 3.1. Le niow

G=2 te By 846, (2 have enl
G o iy 8406y pt>($) can have enly
iponent, Hence it suffices teo show that if

G for r > n, then H'(K, 13 2.8) ¢ Q for r>n

B

and all » > ) $

rest of the prc

If t =1,

S
we have changed the notation to simplify the

of ).

then it is obvious by inductionm on s using

the exact sequénce




B (1 Ly r.ps«-l}

60

g 1E (1, Ty ;:ipa) w100, 1 ;-‘.p) eurresponding

to the exact coefiicient sequence 0 —> Z.pa-l — D e

Z.pm%o(see

Ty be the larg

Y
1,5 of the appendix), If ¢ > 1, then let

eat integer r sueh that H"(k Ly Z.9) § C fer

some ¢ with 1 £ q € ¢ and asounme g > Be Then corresponding

to the exact coofficient sequence ¢ > bobrg —> Lt ~>

Z"PQ‘ i 0y we
10 {1, 1 Z,t)

P
have an exagt sequence

> Fo(Ls 4,0) —> wFotl(y, pt=a) by

led of the appendix. Ilowever, 1°0(i;Ls z.x,t} e C and

ot (i, 1 Zt

-t ) & C » henoe IFo{i, L3 :ﬁpq,) e € wiiah is

o contradictions Thus ry < n and BF (K1 zp} cC forz>a

and as remarko

for v > n and

d above, tale tuplies thet W'(Kei4 2.8) ¢ C
mll & > 1, This completes the proof of 8.3,




14, Coliorigtopy

-~
|

arations.

Ve ¢ceonclud

Groupe by defini

Qohonotopy oper
cperations (4],
the classifying

Let A :md|

operation of ty
v {Ey Ly B)y def
n{in - L
or’ = rlay

et n 1

y
i

then

Lol sn X{l.n )

e our discussion of generalized cohoustopy

ing the coneept of o universally defined

ation analegous to universally defined homotopy
Wo alassify these operations and compute
Lroupse

B e .& throughout this scetion., . golignotupy

ve (neqy 4e3) 12 o function 8 {518 A) —»

ined for every Cw-pair (i,L) with 0 g

= 2}y such that 1f £3 {15, 5L) —» (KF,101),

Ul

-
Kt L

13 A) = {15 B)e

£ %q = % and let [b] ¢ wi(Xex s 5), vhere

SDR00

o

I‘:&ix‘&{m - 2' 2(1
Clemyly 6, is
Thus we have a

cohamotony opex

Kilo)) = &

= 2); then define &, ([al) = [va] & v%(iLs B).
cohomotopy operation of type {neqd Asi)a
tunction X3 v*(fx,s 8) —> the set of
ationes of type (n,q8 L)y defined by

THEQHEM 14,13 Ifn ¢ 1 < 2q - 2, then X is a 1-1 corres-
Brocfs Let L |e X Xn8 A) denote the class of the identity
map of (;-::,:«:0 late (Lxyle Let ac [a] e Ky I Ads

0y (KeL) =3 (3

A
LXg)e Them a ' { L) = [a], lence if 8 is a given

colomoO Loy npes

atlon of type (nmeqp Asi)p them o({a])) ==

s(a( L)) = afe( L) = [8{ L)a] = 8,([a)) where [b] = o(L)

o W‘l(:{’xﬂ; JJ}‘

“hus x ias oNnto. S o Sh = gi.}" then




COROLLARY 14,2

o

Iplt) =6 lC) = [B?L] = [b'])s Thue K is

b In {142 -2 then each © is & homo-~

morphism,
froofs Iy l4.l, 6 = @, for some [b) ¢ T{'Q'(KQKG‘ B)e Let

[a] and [a'] ¢
{v] ([a) ¢ [a*

731"(3'\."313 .A.)'. than gb({:a.f ‘&’ L&'.}}
1) = [bal § [vat] == 6. ([=]) ¢ ‘3b(£&’j) 5y 943

R

We now campute vi({Xx,4 B), where X is an X(Asn)-space,

THEORTM 14433

0 =3 Txi (‘{L'z(’

Proots

{a) Lo:

(2) 7*(Haxgs B) = Hom(hyB)y

(o) P (Kuxgs 3) = Wxb(4,8),

(e) »HXpxps b)tﬂ=0 fox a>n 1y snd

(d) 1L 5 is finitely gemerated and ¢ < n, then
1*1_4)@;) > Tor(2(p.q)e3)) —> 7H{Hxs &) ~>

14 '!.‘nr(z{nqqml}..ij}) ~» 0 i an gxact seguence.

Lllowe from 8.3 and 8,4, ) follovs from 5.8
K

and the universal coefficient theorem for cohomolegy because

X has ddmenaio

n+lu .Ifg'i

1n % 1, (e} iz trivial because X hus dimension

Tinitely generated, then B(ﬁ) -+ ;:;(MQB T

Tor{z{a,l),;} Yy theeorem 8.6, Counsider figure 9, & portien

¢f the gemeralized cohamotopy oxact eotiple with O = Uy (L) =

W
al

(Kaxg}o and

'-n%L.

&
Tk

is clear from figure 9 that the

sequence 0 wp AR —p WRL 5 gu(r,y Blpeg)) —> ©

io exact. Howi

Tt {As D (n*].“!l )

vor, taleR o gaid {Xex

of Pladi-q)! ®
s tatsn-1

s a0 wq{x..xoj B}y and




4
tnu“""a"io ""}aat 5
s ¥
'A | . ' f
csamd (0 o {!A'ltn s Hn'l'l(:,’;&x{" ﬁ(n*l*&)) o () By
’A |%’ 'J " 'A * 9.’ }

v Geh=1 e .
o0 e~ ooy !’ - - B (}"‘3:{0’ B(:ﬂ"‘%)) w3 O e

o 4+ =
...*—-

IA :L 'i
see™=P 0 w=d |',!~Lq'ﬂq‘ oy () e o
13494
FARE! "

"'% #q(x'x{}l ‘:3) e 0 P
| Ll
b
-
.
Tlgure 9,
if‘:q.coj ",}{!‘i‘*}l!}} ] 11"““{*‘193(@”%)}@ Combined with the above,

) 2 - o % w |
wals gompleotes the proof,

v



15, G al dometopy Groups,

Ve congiude this paper with a brief discussion of
peneralized hanotory groups,

As one might expect, there is a theory of hemotepy groups
with ceeffiplents in G which is dusl in an intuitive sense
to the theory developed abeve, The results of Spanier snd
Whitehead [25] meke this dunlity preeice, Iy these results,

wve are led

cohomology

of maps ¢f such a spuce inte arditrary spaces,

of [2¢] giv

groups with

in the stad

thera is a ;

stable rang

stable rango.
without cdw

Let G
n> 2«

Bpace,
LEMMA 15.1%

et yo

to consider spaces having only one nen-vanishing

eups in particulor, we consider bomolony classes
The duality

¢ thecrems dual to our theorams on cchometopy
coeflicients in G, These theorems ave uniy valid
le range, However, as in ordinery homotopy theory,
astural group styructure defined outside of the

gy nd many of the theorems extend beyond the

In this section we outline these vesults

ing proofe,

be a finitely generated abvelian group, and let

Ao n-dinensional OWegorplex X is suld to be an
Al g)=auace

Hote that 4

12 7y (X) = 0y HHX) = 0 for 1 # ny and BH(Z) = G.
£ X 38 an X{nyG)-spacey, then '0X i an X(n$4leG)=

fer given G and n, there exists an X(n,0)-spage.

e BCY¥s Let X be an X(n-lyG)-space {n > 3), and




let CX denote the conc on X, .0 € X CK as the base, Ve

define the n gaotopy group of (%,5) with gveiricients in &

'y
-

to be ‘-'r(C}i-o-‘wal ToBeyple and we dencie it by Wy Lip ik Gje

This 1 a group by 9.2, In case B == {;gf@} ’ ﬂ‘{G;,.,x.,i;ﬁG; ?g,yg,yo)

= w{ 'Sl x,8 Yoyy) = ’??n{'}fj G} 1o defined forn > 2, .=

defined, T {¥pip G) devends on the cholee of Zn~1,G)=space,

Je shew below that = o {Leip G} ds naturally indecendent of this

choles when G has no elements of order e llowever, if we

do not change coefficients duriug a discussiony it suliices

to choose a fixed A{tyG)-spnce and use suspensions of it,
Amap €3 (Ye8) ==» (¥*5') induces somonmoryhion

fgv m(LeDp G} —~» m (¥4 8' G)e Lot 1t 5 w> ¥ and §3

¥ =% (Y32} be ineclusicus, Theve i a natural nemomer Liss

d:

boundary hoamomorpilsm,

(“_J; G} ~> 7, y{58 3) analogous to the usual homotopy
n-1

THECIM 1842: fhe hometopy pequence of o pudr (Yl )1 see=—>

i, i 2
(-ﬂl u‘) s ‘IT (18 ‘.rj "“*9‘ ﬂn(Y' B5Y it) e A4 ,‘l(-!lif ﬁw e T

is exacgk. Ihis exact sequence is natural with respoet ie

maps 11 {.{’ .-)) i {.{*’.LE«@).

(¥s2) 15 o Ci-pair, then we can obtain o generalized
homotopy exact couple analeosous to the peneralized cochomotopy
exaet counle,

Let X be an X(ns0)-opace, ¥ an I{nyii)-space, There is
a natural hauomorphism m3 ﬂ'(‘f,ycj _M.xo) P jlona(Cyil) defined
by /ﬂ({a}} =a s 1?(2&;1:03 = () — ﬁ“(&;’,y@) == ls Using the



generalized hemotopy exagt couple, we can prove

THEOHEM 15.3: If n > 3, then " s w{Y.yﬁ; .I\-i,xo) e o {Gy i)
is @n epimorphiem and has s kernel isomorphic to Uxt(Gyeip)e

As in section 3, If G fs finitely generated and G e,
then nw’B‘ #) is naturally independent of the choioe of .
X{n~1,G)~space and & homoemorphimm §: G =3 1 induces = unioue
homomorphiem ¢§z Tpiis g G} => Ty {Ys g 1)a

Let G and ¢ ¢ B, andleta-ma»mmys:':au"-a-*o
be an exset sequence of coefflicients, There iz a natursl

hemomoyphisan 35: trr(Y, 3 GV} —> wr_l(‘k‘,ﬁl G') analogous to
S# of 8.5.

THEORRM 15.4: The homotopy sequence gorresponding to this
exact gcoefficient sequence:

2.
oo™ ‘*}(Yoﬂl G*) 2‘;’?‘3‘ ??r(YnBl o) ﬂ‘) ?-fr(YoBO G") "é)

Teey (Y285 G') —>,., ip exsct. Iuie sequence is patural with
respeet to maps f1 (V) «—3 (T4, 04}, and 1L 04,6, G, by
and ¥ ¢4, then iy is patuvel with respect to homemoruhisms
of ene exact gosffioient sequence into another,

There are hemomorvhims o(3 T (€5 3) DG > vr(’.f.ﬂi G)

and B 3 (¥ ig C) ~> Tor(wr_lw, 5}sC) mnnlogous te those
in Blﬁg

THECHEM 16.5¢ The sequenge 0 —> TV B} G ::(-b (Yo B G) «-Ea»
Tor(ry.y (YsB)sG) > 0 is sxnot. If me(¥sB) &9 Lindiely
generated and G & Jy then this exact sequence splits.
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Zais exsct sequence i natural with respect te maps 3 (VyB)

=5 (¥%3'), and 1 6 ¢.B, then it Ls matural with respect
fo homomorghisms ¢t ¢ —3 H,

If (YyB) is & W-pair, then there is & natural homomorphism
Mpt W {Taiy 3) = Br(Y.Bg G)e Using thds and the geperalized
hemotopy exact couple, we can state and prove & generalized
Hurewics theorem mod C « The details of this aure left to
the reader, It 1s conjectured that the conditicns of (¥}
bedng & Wepair and the connectedness condition en (Y, .)
needed for the hamotopy exact couple procf cen hLe relaned,
and & preoof similas to that In [20] eun be given. lany of
the other results of section 3 also dualize to glve inTormation
on bemolopy groups, In general however, it seems te be
vasiar to work with cohemotopy groups because the tiicony of
cohomology coperations is so well developed, Howaver, the
hometopy exact couple contsins much valuable information on
homotopy groups (see the work of J. He G, Whitehead and the
Tnglish school).
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APFENDIX

1, Besults from Eilenbers and Steenved [11].

The purpese of the first three sections of the appendix

is to discuss the universal coefficient thesrem for colomglogye

THEORTHM l.1s Lek X be g ghain gomplex composed gf free groups.
Jor su axbitrary abelian groun O, the sequences

ot g
0 = H (X)®G > Hr(x; G) = Tor(i, 4({X)sG) —» 0 and

g =
O > MWt (g ()s6) ~> B (ks ) —> Hom(U,(K)sG) —>» 0
8re sxacht and split. These exect sequenges are patural with

£espect teo ohain maps f3 X —> K' and homemorphiems ¢s
G el 1,

fxcofs BSee exerciss G-3 in {113 Chapt. Vl.

TINCAEM 1.28  Let X be's ghain gomplex composed of figitely
generated free groups. lor an arbltrary avelian group Gy
the sequences

4
(%) 0 => F(X)D6 —s 5 (1 6) —» vor(®H(x),6) —> 0 and

0 > Ext(a?*l(z:),a) -5;\ B, (x5 ©) :-a- Hom (3% (K),0) —> 0
are gxact sud split. These exact sequences are natural with
zespeot %o chain maps f3 K 3 1Y and homomorphisme é3

G - I,

sroofs OCeo exercises Pel, Iwd, and G=3 in [113 Chapt. V].

4

Y
Lot 0 w3 GV = @ wuip G 3 ¢ bz an exact coeffioclient
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ssquence, S.,,s El""{};; G} > Hr%'l(i\:; G') is defined in
(115 ».258], Define the sequence correspondinc to this
exact coelficient sequence to be the following sequence of

groups and homomorphismsg

Py oo

THEOREM Le3: Let K be a ghain gomplex gcomposed of free groups,
fhen the sequence corresponding o the sbove exact goclideient
fedquence iy exuob. This exact soquence iz magursl wigh
Leppect to chaln maps £t X —3 ' and howomoryhiums of one
exaet copificlent Sequence inlo ancthers

¢ 4
0w GV v G == % ey 0

Ko $.o0d
0w 5V wmd B oo 1Y oD O,
froofs See exercise C~3 in [11j Chapt. Vi,
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e 4 Hew Universal Coeffigient iheoran,

he sequence () of 1.7 does not hold if ¥ io net finitely
generated. Ve now yrove a similar theoren by ascuming ¢ is

Tinitely generated with ¥ arvitrary.

GHEA Zels XL O 43 finitely generated and free, then < 3
E(K)®6 —> 5F{R) 4) 15 on isomorphism,

2£00i3 <K i¢ obvicusly sn leemorpidss ia case O - Ze Iurther=
wores the fumetors LT {X)®¢ and ¥ (1 ) are sdditive vith
respect to T and thus cammte with finite direcot sums i8le

demee X is an isomorphism 4f G is finitely generated and fpree,

TIBOREM 2,5: Let X bhe & ghain gomplex gomposed of free groups,

L2t G bo finitely genmerated. IThen the sequence {*) of 2,1 is

gxacte Ihis exact sequence is natural) with respegt to chain

g 1 X —> &' and homomoryhimms dt G —> I,
sxoefs  Using Z.1 and 1,3 of the appondix, the proel is

formally the sume as that of theoren Be6 and 1o thus omitted,

CONCLLARY Z4.88 The universal coeffic}*‘@t thegres for coaamol o

I liﬁr(;';,.‘x}u® G Z(% }ir(h:,s’u 3) f—% 'fc‘.‘:r(}ir*l(li“’i)g{}) — ()
holis in the following 8354888

1) simplicial {gr celiul. geliulur) theory for finite complexes and G
arbitrary, or not necessarily finite gomploxcs and O finitely

senorateds
2) pinpular theory for o findtely seneratedsy and
5) Ceels theory for (XA) compact and G arbitrary, or (X,4)

paracompagt and o figige;x zeneratod,
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Zreef: Tiis follows immediately from 1.2 and 2.2 of the
appendix and the faot that direct limits preserve exselness,
@3 and Tor 5_&31
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Je A Counter-example,

This example shows that the exsct sequence of 2,3 of the
appenciz door mot hold in senerul for singular theory or
cellular theory, ITet X be on {(n = 1)-connected Cy=complex
such that En(}:) = |, == the additive group of rationals,
et G =g, By 1,1 ¢f the aopendix, Ef"(:ii &) == Hum{a ) = 0,
and 2 (X3 Q) = Hem(qQ, Q) == 4, jlowevers 2,5 of the arnendix
would give that O > D@, == ( > Turlﬂn -‘l‘l(;,;_);,__&) =
is exnets but ’}Zor(}fl*l(}ﬂg §) == 0, and hence Q == 0, This

is o contradiction,
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4o Zrocf of Lemma 8.4,

*
igoct of B.48 Vor the properties of L%t neecded in this

procfy see [8l. There is n natural homemorphism )&
u,‘m(as_;)@;i,g - Lom{i, 3®%,) defined by [(X{(£®1)1(a) =
T{a)®1, where £ ¢ Hom{A,B) and 1 is the non-zere clement of
Zne We Tirst show that X is an isemorphlsm 4f 4 is free,

et A w—-% 4 1 & I. Then Hom(A, ) == ,a:'-!.:‘a(§ 21,3) 52’ Mm(ﬁigﬁ)
ax'l’:l' 3y and Lem(a, .:'-@ijg) = i;m(f Zys ;;%@ESE) ::Til‘ ﬁm(aiw@z‘?)
m'g' {(2® 4y )1' doreover, the patural homomorphiom ('g' Bi jrd 2,
%%?(5@&2) 1 is an isomorpuiom (see excroise -G in

{113 Chapt. Vv]). lence X is an isemorphiem if 4 4s free,
It 0 =3 R wed I wdp ~P U be exaot, where J and

‘ are free abelian grouvns. oy definition of 7Exs,

Hom(Pp i) — Hom(i,i) = Lxt(0pll) =» 0 is exnot. Thus the

folloving 15 o commutative dlagram with the rows exaots

1ior.a(;-‘.1-.)®é;2 3 fom(, H)@ %, ~=>» xt(G, 1 )D Lo =3 0 =3 0

¥ + + v

.:.om(;lf‘gi?;@;ig) e 1ir-m(;:i,;€£@&gu) i ‘::s:t(e’;,za@%) =P O > J,

!

e firet two and the last two vertical homemorpnlans are
isomorphiomy, and hence by the five-lemma [11; Deldis fy

(Gl )®2Z, = ‘xt(G,;i@‘ég}. Yow by bhypothesis, O w=p ¢ 23 (

"This proof was worked out with the helg of 1L, A, Buchsbaum,
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*

i exaect, where g (2) = 22, Thus xt (Gedl) = Tut(Csil)

v Jd.‘h

~> 0 is exuct {sev [B]), where € " is maltiplioation by

“e lomoe every element of 1xt(Gyil) iz divisible by 2 and

PG H@2,) = Xt (GyH) O %, = 0, This completes the proof,
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