I. Homotopy

Definition 1.1. Two maps \(f_i : X \to Y, i = 0,1 \), are called homotopic if there exists a map \(F : X \times I \to Y \) such that \(F(x,i) = f_i(x) \) for \(i = 0,1 \) and all \(x \in X \). Here \(I = [0,1] \).

Denote this relation by \(f_0 \sim f_1 \).

Proposition 1.2. \(\sim \) is an equivalence relation between maps \(X \to Y \).

Proposition 1.3. \(\sim \) is preserved under composition.

Definition 1.4. \(b : I \to X \) is a path from \(b(0) \) to \(b(1) \). \(X \) is path-connected if

Proposition 1.5. Every path-connected space is connected. There is a compact, connected subset of \(\mathbb{R}^2 \) which is not path-connected.

Proposition 1.6. \(\mathbb{R}^n \), \(S^n \), and \(I^n \) are path-connected if \(n \geq 0 \) except for \(S^0 \).

Definition 1.7. \(f : X \to Y \) is a homotopy equivalence if \(\exists \) \(g : Y \to X \) such that \(gf \sim id_X \) and \(fg \sim id_Y \). \(g \) is called a homotopy inverse to \(f \).

Proposition 1.8. A homotopy inverse to a homotopy equivalence is a homotopy equivalence. The composition of two homotopy equivalences is a homotopy equivalence.

Definition 1.9. \(X \) and \(Y \) are of the same homotopy type if \(\exists \) a homotopy equivalence \(f : X \to Y \).

Proposition 1.10. Being of the same homotopy type is an equivalence relation.

Proposition 1.11. \(\exists \) \(X \) and \(Y \) of the same homotopy type but \(X \) and \(Y \) are not homeomorphic.
Definition 1.12. X is **contractible** if X is of the same homotopy type as a one point space P.

Proposition 1.13. \mathbb{R}^n and I^n are contractible if $n \geq 0$.

Proposition 1.14. X is contractible if and only if all maps $X \to X$ are homotopic.

Definition 1.15. $f: (X,A) \to (Y,B)$ if $f: X \to Y$ and $f(A) \subseteq B$. Define the notion of homotopy between maps of pairs.

Proposition 1.16. \(\simeq \) is an equivalence relation.

II. The Fundamental Group

Construction 2.1. If $x \in X$, let $c_x: I \to X$ be the path defined by $c_x(t) = x$ for all $t \in I$. If b is a path, let $b^{-1}(t) = b(1-t)$ for all $t \in I$. If b and d are paths in X such that $b(1) = d(0)$, define $b \ast d$ by $b \ast d(t) = b(2t)$ for $0 \leq t \leq \frac{1}{2}$ and $d(2t-1)$ for $\frac{1}{2} \leq t \leq 1$. Let $[b]$ denote the homotopy class of all paths in X which are homotopic to b, considered as maps $b: (I,\{0\},\{1\}) \to (X,\{b(0)\},\{b(1)\})$.

Proposition 2.2. If b is a path in X, then $[b \ast b^{-1}] = [c_b(0)]$ and $[b^{-1} \ast b] = [c_b(1)]$.

Proposition 2.3. If b, d, and e are paths in X such that $b(1) = d(0)$ and $d(1) = e(0)$, then $[(b \ast d) \ast e] = [b \ast (d \ast e)]$.

Proposition 2.4. If $[b] = [b']$ and $[d] = [d']$ and $b(1) = d(0)$, then $[b \ast d] = [b' \ast d']$.

Definition 2.5. A path b in X is a **loop** at $x_0 \in X$ if $b(0) = b(1) = x_0$. $[b]$ denotes the homotopy class of loops homotopic to b.

Theorem 2.6. The homotopy classes of loops at $x_0 \in X$
form a group with the product \([b_1] \ast [b_2] = [b_1 \ast b_2]\). This group is called the fundamental group or first homotopy group of \(X\) with \(x_0\) as base point and is denoted by \(\pi_1(X,x_0)\).

Theorem 2.7. Let \(f: \langle X,x_0 \rangle \to \langle Y,y_0 \rangle\). Define \(f_\#: \pi_1(X,x_0) \to \pi_1(Y,y_0)\) by \(f_\#([b]) = [fb]\). Then \(f_\#\) is a homomorphism.

Theorem 2.8. \((id_X)_\# = id\). If \(f: \langle X,x_0 \rangle \to \langle Y,y_0 \rangle\) and \(g: \langle Y,y_0 \rangle \to \langle Z,z_0 \rangle\), then \(g_\# f_\# = (gf)_\#\).

Theorem 2.9. If \(f_0 \simeq f_1: \langle X,x_0 \rangle \to \langle Y,y_0 \rangle\), then \((f_0)_\# = (f_1)_\#\).

Definition 2.10. \(f: \langle X,x_0 \rangle \to \langle Y,y_0 \rangle\) is a homotopy equivalence relative to the base point if \(\exists g: \langle Y,y_0 \rangle \to \langle X,x_0 \rangle\) such that \(gf \simeq id_{\langle X,x_0 \rangle}\) and \(fg \simeq id_{\langle Y,y_0 \rangle}\).

Proposition 2.11. If \(f\) is a homotopy equivalence relative to the base point, then \(f_\#\) is an isomorphism.

Corollary 2.12. \(\pi_1(\mathbb{R}^n,0) = \{1\}\) and \(\pi_1(I^n,0) = \{1\}\) if \(n \geq 2\).

Theorem 2.13. \(\pi_1(X \times Y, (x_0,y_0)) \cong \pi_1(X,x_0) \times \pi_1(Y,y_0)\).

Proposition 2.14. Let \(U \subset X\) be the path component of \(x_0\) in \(X\) and let \(j: \langle U,x_0 \rangle \to \langle X,x_0 \rangle\) be the inclusion map. Then \(j_\#: \pi_1(U,x_0) \to \pi_1(X,x_0)\) is an isomorphism.

Theorem 2.15. Let \(j: I \to S^1\) be defined by \(j(t) = e^{2\pi it}\), and let \(s_0 = j(0) = 1\). Define \(j_\#: \pi_1(S^1,s_0) \to \pi_1(X,x_0)\) by \(j_\#([b]) = [bj]\). Then \(j_\#\) is a bijection.

Construction 2.16. Let \(b\) be a path in \(X\). Define \(b_\#: \pi_1(X,b(0)) \to \pi_1(X,b(1))\) by \(b_\#(q) = [b^{-1}] \ast q \ast [b]\).

Proposition 2.17. \(b_\#\) is a homomorphism. If \(d\) is a path
such that \(d(0) = b(1) \), then \(d \ast b = (b \ast d) \ast. \) If \([b] = [b']\),
then \(b \ast = b' \ast. \) \((c_x)\ast \) is the identity.

Theorem 2.18. \(b \ast \) is an isomorphism.

Lemma 2.19. Let \(h_0 \sim h_1 : X \to Y \). Then \(\exists b \), a path in \(Y \),
such that \(b \ast h_0 = h_1 \ast. \)

Proposition 2.20. Let \(f : X \to Y \) be a homotopy equivalence. Then \(f \ast : \pi_1(X, x_0) \to \pi_1(Y, f(x_0)) \) is an
isomorphism. (Compare 2.11.)

Definition 2.21. \(X \) is simply connected (or 1-connected)
if \(X \) is path connected and \(\pi_1(X, x_0) = \{1\} \) for some \(x_0 \in X \).

Proposition 2.22. If \(X \) is simply connected, then
\(\pi_1(X, x_0) = \{1\} \) for all \(x_0 \in X \).

Proposition 2.23. Every contractible space is simply
connected.

Theorem 2.24. Let \(b \) be a path from \(x_0 \) to \(x_1 \). Then \(b \ast : \pi_1(X, x_0) \to \pi_1(X, x_1) \) is independent of the choice of \(b \)
if and only if \(\pi_1(X, x_0) \) is abelian.

Definition 2.25. An \(H\)-space is a pair \((H, e) \), where \(H \) is
a space, \(e \in H \), and we are given a map \(m : H \times H \to H \) such
that \(m(\cdot, e) \sim m(e, \cdot) \sim \text{id}(H, e) \).

Example 2.26. A topological group is an \(H\)-space.

Theorem 2.27. Let \((H, e) \) be an \(H\)-space. Then \(\pi_1(H, e) \) is
abelian.

III. **Covering Spaces**

Definition 3.1. A space \(X \) is called **locally pathwise
connected** if for every \(x \in X \) and every open set \(U \) with \(x \in U \),
there exists a pathwise connected open set \(V \) such that \(x \in V \)
C U.

Definition 3.2. Let \(f: Y \to X \) and let \(U \) be an open set of \(X \). Then \(U \) is evenly covered by \(f \) if there is an indexing set \(J \) and for every \(j \in J \), an open set \(U_j \subseteq Y \) such that

(i) \(\bigcup_{j \in J} U_j = f^{-1}(U) \),
(ii) if \(j \neq k \), \(U_j \cap U_k = \emptyset \),
(iii) \(f|_{U_j}: U_j \to U \) is a homeomorphism for \(j \in J \).

Definition 3.3. A map \(\pi: \tilde{X} \to X \) is a covering of \(X \) if

(i) \(\pi \) is onto,
(ii) \(\tilde{X} \) is pathwise connected and locally pathwise connected,
(iii) for every \(x \in X \), \(\exists \) an open \(U \) which is evenly covered by \(\pi \) and \(x \in U \).

Proposition 3.4. The following are covering spaces.

(i) \(\text{id}_X: X \to X \), if \(X \) is pathwise connected and locally pathwise connected,
(ii) \(\pi: \mathbb{R}^1 \to S^1 \) given by \(\pi(r) = e^{2\pi ir} \),
(iii) \(\pi_n: S^1 \to S^1 \) given by \(\pi_n(e^{ir}) = e^{inr} \), for \(n \neq 0 \) an integer,
(iv) \(\pi: S^n \to \mathbb{R}P^n = \{ \text{pairs of antipodal points of } S^n \} \) with the quotient topology (\(\mathbb{R}P^n \) is called real \(n \)-dimensional projective space).

Notation. l.c. stands for pathwise connected and locally pathwise connected.

Proposition 3.5. Let \(U \subseteq X \) be evenly covered by \(f: Y \to X \) and let \(Y \) be l.c. Then \(U \) is locally pathwise connected.

Proposition 3.6. Let \(\pi: \tilde{X} \to X \) be a covering. Then \(\tilde{X} \) is l.c.
Proposition 3.7. Let \(U \subset X \) be evenly covered by \(f: Y \to X \). Let \(Z \) be connected and let \(g: Z \to U \). Let \(y \in Y \), \(z \in Z \) be such that \(f(y) = g(z) \). Then \(\exists g': Z \to Y \) such that \(g'(z) = y \) and \(fg' = g \).

Proposition 3.8. Let \(\pi: X^\wedge \to X \) be a covering. Let \(b \) be a path in \(X \) and let \(x^\wedge \in X^\wedge \) be such that \(\pi(x^\wedge) = b(0) \). Then \(\exists \) path \(b^\wedge \) in \(X^\wedge \) such that \(x^\wedge = b^\wedge(0) \) and \(\pi b^\wedge = b \).

Proposition 3.9. Let \(\pi: X^\wedge \to X \) be a covering. Let \(Z \) be pathwise connected and let \(g_i: Z \to X^\wedge \) be maps such that \(\pi g_0 = \pi g_1 \) and \(g_0(z) = g_1(z) \) for some \(z \in Z \). Then \(g_0 = g_1 \).

Proposition 3.10. Let \(\pi: X^\wedge \to X \) be a covering, let \(g: I^2 \to X \) be a map, and let \(x^\wedge \in X^\wedge \) be such that \(\pi(x^\wedge) = g(0,0) \). Then \(\exists \) \(g^\wedge: I^2 \to X^\wedge \) such that \(g^\wedge(0,0) = x^\wedge \) and \(\pi g^\wedge = g \).

Proposition 3.11. Let \(\pi: X^\wedge \to X \) be a covering. Then \(\pi_\#: \pi_1(X^\wedge, x^\wedge) \to \pi_1(X, \pi(x^\wedge)) \) is one to one.

IV. Classification of Coverings with Base Point

Definition 4.1. \(\pi: (X^\wedge, x^\wedge) \to (X, x) \) is a covering with base point if \(\pi: X^\wedge \to X \) is a covering.

Definition 4.2. Two coverings \(\pi_1: (X^\wedge_1, x^\wedge_1) \to (X, x) \) are homeomorphic if \(\exists \) a homeomorphism \(h: (X^\wedge_1, x^\wedge_1) \to (X^\wedge_2, x^\wedge_2) \) such that \(\pi_2 h = \pi_1 \).

Proposition 4.3. Being homeomorphic is an equivalence relation on the set of coverings with base point.

Proposition 4.4. Let \(\pi_1 \) and \(\pi_2 \) be homeomorphic coverings. Then \((\pi_1)_\#(\pi_1(X^\wedge_1, x^\wedge_1)) = (\pi_2)_\#(\pi_1(X^\wedge_2, x^\wedge_2)) \subseteq \pi_1(X, x) \).
Proposition 4.5. Let π be a covering and let $g: (Z, z) \to (X, x)$ be a map such that $\text{Im } g_# \subseteq \text{Im } \pi_#$. Let b and d be paths in Z such that $b(0) = d(0) = z$ and $b(1) = d(1) = z'$. Let b^* and d^* be the unique paths in X^* such that $\pi b^* = gb$, $\pi d^* = gd$, and $b^*(0) = d^*(0) = x^*$. Then $b^*(1) = d^*(1)$.

Proposition 4.6. Let π be a covering, let Z be 1.c., and let $g: (Z, z) \to (X, x)$ be a map such that $\text{Im } g_# \subseteq \text{Im } \pi_#$. Then $\exists! g^*: (Z, z) \to (X^*, x^*)$ such that $\pi g^* = g$.

Proposition 4.7. Two coverings π_1 and π_2 are homoeomorphic if and only if $\text{Im } (\pi_1)_# = \text{Im } (\pi_2)_#$.

Definition 4.8. X is semi-locally 1-connected if for every $x \in X$ there is an open set U, $x \in U$, such that $\pi_1(U, x) \to \pi_1(X, x)$ is the trivial homomorphism.

Definition 4.9. Let $G \subseteq \pi_1(X, x)$ be a subgroup. Two paths b and d are G-homotopic if $b(0) = d(0) = x$, $b(1) = d(1)$, and $[b * d^{-1}] \in G$.

Proposition 4.10. G-homotopy is an equivalence relation on paths in X which start at x.

Construction 4.11. Let X_G denote the set of G-homotopy classes of paths in X which start at x. Let $\mathfrak{K}: X_G \to X$ be defined by $\mathfrak{K}(\langle b \rangle) = b(1)$. Let $V \subseteq X$ be open and path connected. Let b be a path in X such that $b(0) = x$ and $b(1) \in V$. Define $U(b, V) \subseteq X_G$ to consist of the G-homotopy classes of paths of the form $b * d$ where $d(0) = b(1)$ and $d(t) \in V$. Take the $U(b, V)$ as a subbase for the open sets of X_G.

Theorem 4.12. Let X be 1.c. and semi-locally 1-connected. Then the homeomorphism classes of coverings of (X, x) are in one to one correspondence (i.e. \exists a bijection)
with the subgroups of $\pi_1(X,x)$.

V. Classification of Coverings and Their Translations.

Definition 5.1. Two coverings $\pi_i : X^i \to X$, $i = 1, 2$, are homeomorphic if there is a homeomorphism $h : X^1 \to X^2$ such that $\pi_2 h = \pi_1$.

Proposition 5.2. Being homeomorphic is an equivalence relation on the set of coverings of X.

Definition 5.3. Two subgroups H, K of a group G are conjugate if there is a $g \in G$ such that $K = g^{-1}Hg$.

Proposition 5.4. Being conjugate is an equivalence relation on the set of subgroups of G.

Proposition 5.5. Let π be a covering and let $x^i \in X^i$ be such that $\pi(x^i) = x$, $i = 1, 2$. Then $\pi_#(\pi_1(x^1, x^1))$ and $\pi_#(\pi_1(x^2, x^2))$ are conjugate in $\pi_1(X,x)$.

Proposition 5.6. Let π be a covering, let $x^1 \in X^1$, and let $G \subset \pi_1(X, \pi(x^1))$ be conjugate with $\text{Im } \pi_#$. Then $\exists x^1 \in X^1$ such that $\pi_#(\pi_1(x^1, x^1)) = G$.

Theorem 5.7. Let π_1 be coverings and let $x^1 \in X^i, i$ be such that $\pi_1(x^1) = \pi_2(x^2)$. Then π_1 and π_2 are homeomorphic if and only if $\text{Im } (\pi_1)_#$ and $\text{Im } (\pi_2)_#$ are conjugate in $\pi_1(X, \pi_1(x^1))$.

Theorem 5.8. The homeomorphism classes of coverings of a 1.c. and semi-locally 1-connected space X are in one to one correspondence with the conjugacy classes of subgroups of $\pi_1(X,x)$.

Definition 5.9. A translation of a covering π is a homeomorphism $h : X^1 \to X^1$ such that $\pi h = \pi$. Let $T(\pi)$ denote
the set of translations of π.

Proposition 5.10. $T(\pi)$ is a group under composition of translations.

Definition 5.11. Let $H \leq G$ be a subgroup of G. The elements $g \in G$ such that $g^{-1}Hg = H$ form a subgroup $N(H)$, the normalizer of H in G.

Proposition 5.12. H is normal in $N(H)$.

Construction 5.13. Let π be a covering and let $H = \pi_H(\pi_1(X^\infty, x^\infty))$. Define a function $t: N(H) \to T(\pi)$ as follows. Let $q \in N(H)$. Choose a path b^∞ in X^∞ such that $b^\infty(0) = x^\infty$ and $[\pi b^\infty] = q$. $t(q)$ is the unique translation such that $t(q)(x^\infty) = b^\infty(1)$.

Theorem 5.14. t is well defined, t is a homomorphism onto $T(\pi)$, and $\ker t = H$.

Corollary 5.15. $N(H)/H$ is isomorphic to $T(\pi)$.

VI. Some Fundamental Groups.

Definition 6.1. A covering π is called universal if X^∞ is simply connected.

Corollary 6.2. Let π be a universal covering. Then $\pi_1(X, x)$ is isomorphic to $T(\pi)$.

Proposition 6.3. Example 3.4 (ii) is a universal covering.

Theorem 6.4. $\pi_1(S^1, s)$ is isomorphic to the additive group of integers, \mathbb{Z}, for any $s \in S^1$.

Example 6.5. Describe the covering space corresponding to each subgroup of $\pi_1(S^1, s)$.

Definition 6.6. $T^n = S^1 \times \ldots \times S^1, n$ times, is the
n-dimensional torus.

Theorem 6.7. $\pi_1(T^n,t) \cong Z \oplus \ldots \oplus Z$, n times.

Theorem 6.8. Let X be 1.c. and semi-locally 1-connected, let A, $B \subset X$ be open subsets which are 1.c. and simply-connected, and let $A \cap B$ be pathwise connected and $A \cup B = X$. Then X is simply-connected.

Theorem 6.9. S^n is simply-connected for all $n > 1$.

Theorem 6.10. Example 3.4 (iv) is a universal covering and hence $\pi_1(\mathbb{R}P^n,p)$ is isomorphic to $2/22$ if $n > 1$.

VII. Higher Homotopy Groups.

Definition 7.1. Y^X denotes the function space of continuous maps $f: X \rightarrow Y$ with the compact-open topology. If $B \subset Y$ and $A \subset X$, then (Y, B, X, A) is Y^X is the subspace of functions such that $f(A) \subset B$.

Theorem 7.2. Define $\alpha: Z^X \times Y \rightarrow (Z^Y)^X$ by $[[\alpha(f)](x)](y) = f(x, y)$. If Y is locally compact and Hausdorff, then α is a bijection.

Definition 7.3. $\langle X, x_0 \rangle^{(1, 0)}$ is the space of paths on X starting at x_0. $\langle X, x_0 \rangle^{(1, 0)}$ is the space of loops on X at x_0 and denoted by $\Omega(X, x_0)$. Define $\Omega^n(X, x_0) = \Omega(\Omega^{n-1}(X, x_0), x_{n-1})$, where x_{n-1} is the constant loop at x_{n-2}.

Definition 7.4. $\pi_n(X, x_0) = \pi_1(\Omega^{n-1}(X, x_0), x_{n-1})$.

Theorem 7.5. $\Omega(X, x_0)$ is an H-space.

Corollary 7.6. $\pi_n(X, x_0)$ is abelian if $n > 1$.

Construction 7.7. Let $f: \langle X, x_0 \rangle \rightarrow \langle Y, y_0 \rangle$. Define $f_1: \Omega(X, x_0) \rightarrow \Omega(Y, y_0)$ by $f_1(b) = fb$. Define $f_n: \langle \Omega^n(X, x_0), x_n \rangle \rightarrow \langle \Omega^n(Y, y_0), y_n \rangle$ by induction. Define $f_\# : \pi_n(X, x_0) \rightarrow$
\[\pi_n(\langle Y, y_0 \rangle) \text{ by } (f_{n-1})# : \pi_1(\Omega^{n-1}(\langle X, x_0 \rangle, x_{n-1})) \rightarrow \pi_1(\Omega^{n-1}(\langle Y, y_0 \rangle, y_{n-1})). \]

Theorem 7.8. \(\text{id}_# \) is the identity. If \(f : \langle X, x_0 \rangle \rightarrow \langle Y, y_0 \rangle \) and \(g : \langle Y, y_0 \rangle \rightarrow \langle Z, z_0 \rangle \), then \(g#f# = (gf)#. \)

Proposition 7.9. If \(f \sim g : \langle X, x_0 \rangle \rightarrow \langle Y, y_0 \rangle \), then \(f# = g# \).

Corollary 7.10. If \(\langle X, x_0 \rangle \) is contractible, then \(\pi_n(\langle X, x_0 \rangle) = 0 \) for \(n > 1 \).

Theorem 7.11. \(\pi_n(\langle X, x_0 \rangle) \cong \pi_{n-1}(\Omega(\langle X, x_0 \rangle, x_1)). \)

Definition 7.12. Let \(I^* \subset I^n \) denote the subspace of all \(n \)-tuples for which at least one coordinate is 0 or 1. \(\pi(I^n, I^*; X, x_0) \) denotes the set of homotopy classes of maps from \(\langle I^n, I^* \rangle \) to \(\langle X, x_0 \rangle \).

Theorem 7.13. There is a natural 1-1 correspondence between \(\pi_n(\langle X, x_0 \rangle) \) and \(\pi(I^n, I^*; X, x_0) \).

VIII. Fibre Spaces.

Definition 8.1. Let \(p : E \rightarrow B. \) \(p \) is a fibre map if for every l.c. space \(X \) the outer triangle in the diagram below can be filled in by the dotted arrow so that the triangles commute:

\[
\begin{array}{ccc}
E & \xrightarrow{g} & X \\
\downarrow & & \downarrow \\
B & & B \\
\end{array}
\]

where \(i_0(x) = (x, 0). \) \((E, p, B) \) is called a fibre space, \(E \) is the total space, \(B \) the base space, and \(p \) the projection. If \(B \) has a base point \(b_0 \), then \(F = p^{-1}(b_0) \) is the fibre.
Proposition 8.2. If B is pathwise connected and $E \neq \emptyset$, then p is onto.

Proposition 8.3. Let $E = F \times B$ and let p be the projection onto the second factor. Then (E, p, B) is a fibre space.

Proposition 8.4. A covering space (X^π, π, X) is a fibre space.

Theorem 8.5. Let $A, B \subseteq Y$. Let $E(Y; A, B) \subseteq Y^I$ be the subspace of those maps such that $f(0) \in A$ and $f(1) \in B$. Define $p: E(Y; A, B) \to A \times B$ by $p(f) = (f(0), f(1))$. Then p is a fibre map.

Corollary 8.6. $p: (X, x_0)^{(I, 0)} \to X$ by $p(f) = f(1)$ is a fibre space with fibre $\Omega(X, x_0)$.

IX. Exact Sequences.

Definition 9.1. A sequence $\ldots \to A \to B \to C \to \ldots$ of abelian groups and homomorphisms is exact if $\text{Im } f = \text{Ker } g$.

Proposition 9.2. $0 \to A \to 0$ is exact if and only if $A = 0$.

Proposition 9.3. $0 \to A \to B \to 0$ is exact if and only if f is an isomorphism.

Proposition 9.4. $0 \to A \to B \to C \to 0$ is exact if and only if $g^\pi: B/f(A) \to C$ is an isomorphism and f is injective.

"Five Lemma" 9.5. Let

$$
\begin{array}{cccc}
A & B & C & D & E \\
\quad & f & g & h & i \\
\quad & | & | & | & | \\
lp_1 & lp_2 & lp_3 & lp_4 & lp_5
\end{array}
$$
be a commutative diagram with exact rows. If \(p_1, p_2, p_4, \) and \(p_5 \) are isomorphisms, so is \(p_3 \).

X. Relative Homotopy Groups and Exact Sequences.

Definition 10.1. Let \(I^{n-1} \subset I^n \) be the subspace where \(t_n = 0 \). Let \(J^{n-1} \subset I^n \) be the closure of \(I^n - I^{n-1} \). Let \(x_0 \in A \subset X \). For \(n > 2 \), define \(\pi_n(X,A) \) to be the set of homotopy classes of maps from \((I^n, I^{n-1}, J^{n-1}) \to (X,A,x_0) \).

Proposition 10.2. Let \(Z \subset X \) be defined by \(Z = \{ f \mid f(0) = x_0, f(1) \in A \} \). Then \(\pi_n(X,A) \simeq \pi_{n-1}(Z,c) \).

Corollary 10.3. \(\pi_n(X,A) \) is abelian for \(n > 2 \).

Definition 10.4. Let \(f : (X,A,x_0) \to (Y,B,y_0) \). Define \(f^\# : \pi_n(X,A,x_0) \to \pi_n(Y,B,y_0) \) in the usual way.

Theorem 10.5. \(f^\# \) is a homomorphism, \((id)^\# = id \), and \(g^\# f^\# = (gf)^\# \).

Definition 10.6. \(\partial : \pi_n(X,A) \to \pi_{n-1}(A,x_0) \) is defined by \(\partial([f]) = [f[I^{n-1}]] \).

Theorem 10.7. Let \(i : (A,x_0) \to (X,x_0), j : (X,x_0) \to (X,A) \).

Then

... \(\to \pi_n(A,x_0) \to \pi_n(X,x_0) \to \pi_n(X,A) \to \pi_{n-1}(A,x_0) \to ... \)

\(\partial \quad i^\# \quad j^\# \quad \partial \quad i^\# \)

is exact. (This is called the exact sequence of a pair.)

Theorem 10.8. Let \((E,p,B) \) be a fibre space, \(b_0 \in B \), \(p^\# : (E,F) \to (B,b_0) \). Then \(p^\# : \pi_n(E,F) \to \pi_n(B,b_0) \) is an isomorphism for \(n \geq 2 \).

Theorem 10.9. Let \((E,p,B) \) be a fibre space, \(b_0 \in B \), \(e_0 \in
Let \((X^\land, \pi, X) \) be a covering space. Then \(\pi_{\#} : \pi_n(X^\land, X^\land) \to \pi_n(X, \pi(X^\land)) \) is an isomorphism for \(n \leq 2 \).

Corollary 10.11. \(\pi_n(S^1, x_0) = 0 \) if \(n > 1 \).

Corollary 10.12. \(\pi_n(S^n, x_0) \cong \pi_n(\mathbb{R}P^n, (x_0, -x_0)) \), if \(n > 1 \).

11. Polyhedra

Definition 11.1. A simplicial complex \(K \) (of dimension at most 2) is a collection of vertices \(\{V_i\} \), a collection of edges \(\{V_i, V_j\} \), and a collection of triangles \(\{V_i, V_j, V_k\} \) satisfying the following condition: given a set in the collection, then a non-empty subset of it is in the collection.

(Intuitive) Definition 11.2. A topological space \(X \) is a polyhedron if it can be broken up into vertices, edges, and triangles as in definition 11.1. More precisely, if \(X \) is homeomorphic to \(|K| \), the geometric realization of \(K \).

Proposition 11.3. \(I^n \), \(S^n \), and \(R^n \) are polyhedra (if \(n \leq 2 \)).

Definition 11.4. Given a simplicial complex \(K \). An edge path in \(K \) is a sequence of vertices of \(K \), \(w = V_0 \ldots V_k \), such that each successive pair of vertices is an edge or repeats itself. If \(w' = V_k \ldots V_1 \), then \(w \ast w' = V_0 \ldots V_k \), the product of edge-paths. \(w^{-1} = V_k \ldots V_0 \) is the inverse edge-path to \(w \).

Definition 11.5. We define an equivalence relation on
edge-paths with the same beginning and end points as follows. If \(w = v_0 \ldots v_i v_j \ldots v_k \), then \(w \sim w' = v_0 \ldots v_i v_j \ldots v_k \). If \(v_i, v_j, v_k \) is a triangle in \(K \), then \(w = v_0 \ldots v_i v_j v_k \sim w' = v_0 \ldots v_i v_j v_k \). Let \([w]\) denote the equivalence class of \(w \).

Proposition 11.6. Let \(\pi(K,V) \) denote the set of equivalence classes of edge-paths in \(K \) which start and end at \(V \). Then \(\pi(K,V) \) is a group under the operation \([w] * [w'] = [w * w']\). This is called the edge-path group of \(K \).

Theorem 11.7. Let \(X \) be a polyhedron with corresponding simplicial complex \(K \). Then \(\pi(K,V) \cong \pi_1(X,V) \).

Definition 11.8. \(K \) is **connected** if \(|K| \) is path-connected. \(K \) is **simply connected** if \(|K| \) is simply connected.

Proposition 11.9. Given \(K \). Then there exists a simply connected subcomplex \(L \) (having only vertices and edges) of \(K \) which contains all the vertices of \(K \). Such a subcomplex is a maximal tree.

Definition 11.10. Given \(K \) and a subcomplex \(L \). Let \(G = G(K,L) \) be the group generated by \(g_{ij} \), one generator for each edge \(v_i, v_j \) in \(K \) subject to the relations \(g_{ij} = 1 \) if \(v_i, v_j \) is in \(L \) and \(g_{ij}g_{jk} = g_{ik} \) if \(v_i, v_j, v_k \) is in \(K \).

Theorem 11.11. If \(L \) is a maximal tree, then \(\pi(K,V) \cong G(K,L) \).

Corollary 11.12. If \(K \) is a finite simplicial complex, then \(\pi_1(|K|,V) \) is finitely generated and finitely presented.

Corollary 11.13. If \(K \) has no triangles, then \(\pi_1(|K|,V) \) is free.

Proposition 11.14. \(\pi_1 \) of a figure 8 is free on two
generators.

Theorem 11.15. A free group on two generators contains a free group on n generators.