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Preface

This seminar attempted to present Witten's new approach
to the Jones polynomial invariants of knots. For various
reasons, including inadequate time, it was not possible to
give anything like a complete presentation. What we aimed to
do was to present the material in as mathematical a manner as
possible at the present time, and this dictated that we should
approach the theory from the Hamiltonian point of view.
Fortunately this aspect has been well studied for many years
by algebraic geometers in relation to the moduli spaces of
vector bundles over algebraic curves. This point of view has
been emphasized in several of the seminars. Héwever in the
two seminars by Graeme Segal use has also been made of the theory
of loop groups and ideas from conformal field theory. These
are clearly alternative ways of developing the theory and these
seminars represent a somewhat uheasy mixture of different versions.

The notes of the seminars are just minor modifications of
what was presented. No serious attempt has been made to inte-
grate them or produce a coherent polished account. These notes
therefore have limited value and are mainly designed for the
audience who attended.

Witten's paper. is such a masterly exposition of the whole
theory, from the point of view of quantum field theory, that
there is little point in attempting an alternative along
similar lines. Our aim has been to emphasize the algebraic

geometric side. The only really new idea.embodied here
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is described in Nigel Hitchin's Seminar. This looks a very
promising and important approach which may eventually lead to a
much' clearer understanding of the Jones-Witten theory and its
relation to branched coverings.

The main problem with Witten's theory, from a mathematical
point of view, is how to justify the path-integral definition.
As briefly mentioned in the sixth seminar a combinatorial
approach seems to be called for. This looks apromising avenue
for exploration.

The first seminar in which I formulate a set of axioms for
topological quantum fields is derived from similar axioms of
Graeme Segal for conformal field theory. It is now clear (from
more recent work of Witten) that topological quantum field
theories are quite numerous, so that the axiomatic framework may
be a useful guide.

The initial notes for all the seminars were taken by Ruth
Lawrence who did a sterling job in transcribing difficult

material.

Michael Atiyah
December 1988.



Seminar 1

Professor Ativah: An introduction to Jones-Witten theory

These seminars will be devoted to the Jones invariants of
knots and links and their relation to quantum field theory as
developed by Witten.

Here, a knot means a classical knot; that is, a closed

non-singular curve in :R3. Such a knot can be pictured by

projecting it onto a plane:

A curve with more than one component is called a link. In the
theories we shall discuss, we ;hall deal with links along with
knots. Sometimes we need to orient links,

Although knots may be presented in the form of a plane
diagram this presentation is highly non-unique. In classifying
knots therefore it is extremely useful to have invariants which
can help to distinguish inequivalent knots.

One of the most useful invariants, discovered around 1930,
was the Alexander polynomial. However, it by no means dis-
tinguishes all knots. In fact, the Alexander polynomials of
two knots which are mirror images of each other, are equal;
whereas there are many knots which differ from their mirrar image.

For a 1link L in three dimensional space, one can consider
it as embedded in S3. The Alexander polynomial is given by
looking at the homology of cyclic coverings of S3\L. This

shows that the Alexander polynomial essentially extends to



(1) other three dimensional manifolds (not just S3);
(ii) other dimensions (not just 3).

Around 1984, Vaughan Jones discovered another polynomial
invariant of 1links. The Jones polynomial can distinguish knots
from their mirror images, and is thus more powerful than the
Alexander polynomial. The interesting question is whether one
can now generalise this polynomial as in (i), (ii) above.

In attempts to understand the Jones polynomial, it has
come to be related to two-dimensional physics in two different
ways:

(a) 2-D statistical mechanics

({b) 2-D conformal field theory.

In this connection, solvable systems and, in particular, the
Yang-Baxter equations play a fundamental role in the constructions.
From the study of these related areas, a whole series of new
polynomials have been found, of which the Jones polynomial is just
the first. These series depend on Lie groups; the Jonés poly-
nomial corresponds to the Lie group G = SU(2).

A purely combinatorial approach to compute these invariants
wés also found (c.f. Kauffman). All this leaves many more
questions than it answers: why are all these areas connected,
and does an intrinsic three-dimensional description exist?

Some good references in this area are:

V.F.R. Jones, Ann. Math. 126 (1987) 335-388.

W.B.R. Lickorish, Bull. IMS. 20 (1988) 558-538.

Witten's theory

The breakthrough in understanding some of these connections

came in Swansea on July 26th, 1988 at 8 p.m. over dinner:



There are still major Problems unsolved in order to provide
a suitable mathematical backing to Witten's theory: however,
the whole théory fits together with existing ones szo nicely

that it is impossible to believe that these problems will not
be resolved soon.

Witten's theory is an intrinsic 3-dimensional theory and
does not require a knot projection for its foundation. More-
over it extends to knots in general 3-manifolds not just s3.
On the other hand, unlike the Alexander polynomial, it does
not extend to higher-dimensions. It is specific to 3 dimensions.

The theory uses Lie groups in a natural way: the way
Physicists use non-abelian groups in gauge theory and quantum
field theory. The quantum field theory Witten uses has natural
physical antecedents but it still lacks a rigorous mathematical

formulation.

Jones' theory produces a polynomial (or finite Laurent

series)
_ n
f(t) = Zant

for a link. In Witten's version it is the value f (exp Z££

that is computed for integer values of k.

Topological guantum field theories

Witten's construction produces a whole theory - just as
homology theory is more than just .the computation of Betti
numbers. Witten's theory is really the theory of topological
quantum field theories.

We will now try to define what a topological quantum field
theory in dimension d + 1 means. Here d refers to space

dimensions; and 1 rafers to time dimension. The main element



is a functor Z , called the partition function of the QFT

In the Witten-Jones theory 4 = 2
Let Zd be a closed oriented d-dimensional manifold.
The theory assigns to I , a complex vector space of finite

dimension, 2Z(I). This satisfies various axioms:

(O) NATURALITY. This means that an isomorphism £ : £ - [°
induces an isomorphism 2zZ(£f) : Z(I) -+ 2(I') and these compose

in the obvious way, l.e. Z(flfz) = Z(fl)Z(fz) .

(1) DUALITY. If I* denotes I with the opposite orienta-

tion then Z(I*) = 2(IZ)* +the dual space.

(2) MULTIPLICATIVITY. If Zl u ZZ is the disjoint union of
Zy and 22 then Z(Zluzz) = Z(Zl) 2 Z(Zz).

Taking £, = 22 = ¢ 4in (2) it follows that 2Z(¢) is idempotent
so that 2(¢) = 0O or Z(¢) =C . The first case would imply
by (2} that 2Z(IL) = 0 for all I. Discarding this trivial
case we then have (3) 2Z(¢) = €

Note that property (2) involves a tensor product rather
than a direct sum. The significance of this will be discussed
later.
The theory also assigns to a (d 4l)-dimensional compact
oriented manifold Y , a vector Z(Y) € Z(9Y¥) ; this distinguished

element is called the vacuum state corresponding to Y .

(d+ 1) — dimensional Y

™y

e A= dimensiona l 131’



We require 2Z(Y) to satisfy a naturality axiom as in
Axiom (0Q) .

Notés (i) If Y is a closed (d+l)-dimensicnal manifold so
that 3Y = ¢, then 2(Y) ¢ 2(§) =¢C , i.e. Z2(Y) is a

complex number, Thus, to each closed (d +1)-dimensional

oriented manifold, Z associates a numerical invariant.

To start with, we will consider the Witten theory without
links: i.e. as a theory on (d+4l)-dimensional manifolds.
Obviously, looking at S3 without links isn't very interesting!

However, the theory of three dimensional manifolds, without

links, is roughly like the theory of links in s3

(ii) If 3Y has 2 components as indicated (so that Y is

a cobordism between Zl and 22)

ouTt
—

Then:

2(3Y)

Z2(Z,) @ &(L))*

= Hom(Z(Zl),Z(Zz)) .

Thus Y specifies a special vector in 2(3Y) , and thus a

linear map from the vector space of 21 to the vector space
of 22 .

This suggests another axiom



(4) ASSOCIATIVITY

>4 z,

In the above situation, we require that the composition of

the maps:
2(Y) : Z(Z;) » Z(I,)
Z2(Y') : 2(L,) + Z(Ly)

is the .distinguished element of Hom(Z(Zl),Z(Z3)) corresponding

to the cobordism Y u Y¥'

Notes (iii) This axiom can also be formulated as follows.
Consider the category C whose objects are closed oriented
d-dimensional manifolds and whose morphisms are oriented
cobordisms. Then Axiom (4) asserts that 2 1is a functor
from C +to the category of finite-dimensional complex vector
spaces. However, this point of view is not totally adequate
because a (d +L)~dimensional manifold Y can be viewed as a
morphism in several ways, depending on a decomposition of 23Y
into 2 parts {*incoming" and "outgoing"). The element 2Z(3Y)
is the same for all these morphisms. For example, a cylinder

L x I can be viewed as having IN/OUT boundaries:

26 and Zl



or ¢ and 25 ) El

as in the the following diagram.

24

¢ | Z:UZL

2*

The element 2(Y¥) then appears in the two equivalent

guises:

Z(ZO) + 2(L,)

= *
c 2(¢) - Z(ZO) 5] Z(Zl)
(iv) The naturality axiom for 2(Y) , when applied to the

cylinder ¥ =1 x I implies a homotopy axiom. More

pPrecisely the naturality of 2Z(I) implies that the group
Diff+(z) of orientation preserving diffeomorphisms of [
acts on the vector space 2Z(I) . The naturality of 2 (IxI)

implies that the identity component of Diff+(2) acts trivially

on 2zZ(L) . Thus the discrete group T (I) of components of

Diff+(z) acts on Z(gr) .



(v) The associativity axiom implies that the endcamorphism
of 2(Z) defined by the cylinder [ x I is an idempotent
and more generally that it acts as the identity on the sub-
space ZO(Z) c Z2(Z) spanned by the "vacuum states" Z2(Y)

as ¥ runs over all manifolds with 3Y¥ = [ . Only these
subspaces contribute to the invariants of closed manifolds so

it is reasonable to consider a further axiocm:

(5) COMPLETENESS

The vacuum states span Z(I). As we have just noted

*this implies that 2Z(IxXI) is the identity.

(vi) If ¥Y* is Y with orientation reversed then we have

two vacuum states
Z2(Y) e z(3Y)
Z(Y*) e 2(3Y)* .

For a general QFT there may be no general relation between
these two vectors. However, there is an important class

of theories, including the Witten-Jones theory in which
there is such a relation. For this we need to assume that
the vector spaces 2(I) have natural identifications with
their duals. One possibility is to assume that 2 (Z) is a
complex (finite-dimensional) Hilbert space so that there is

a natural anti-linear isomorphism
zZ{(r) + zZ()* .

If ¥ = Zi ] 22 this isomorphism just asscciates to a linear

transformation



T 3 Z(Zl) - 2(82)

its adjoint T*, We shall therefore use this notation in
genéfél. Note that, for L = ¢, T* is then the complex

conjugate of T . We can now impose, as a further axiom,

(6) CONJUGATION

For any oriented (d+1)-dimensional manifold
Z(Y*) = Z2(Y)*

Suppose Y 1is a closed (d+l)-dimensional manifold. We

can cut Y into two parts by a d-dimensional slice =I:

with ayl = 3Y, =L = Yl nyY,. The slice [ gives dis-

2
tinguished vectors:

vy o= 2(Y)) e 2(5)

vy = 2(Y¥y) e Z(I*)

L ®

The natural inner product between elements Z{(Z) and

Z2(L*) = 2(Z)* gives:

wievy> =_Z..t-Y'J"""" € C[:

jcLef
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the invariant of vy . This mechanism gives a method of
calculation of the invariants of closed 3-manifolds, by suit=-
ably cutting up the manifold,

Physicists refer to <V1|V2> as a vacuum-to-vacuum
expectation value: Vis Vo are the vacuum states on g
corresponding to Yl' Yz .

We can modify this story in many different ways. For
example, we can put extra conditions on the cobordisms, e.g.
by considering framed cobordisms. We can also change the
ground ring from @ ’ (the ring over whichphysinistsusually
work) to an arbitrary commutative ring. For example, we may
consider the theory with ground ring %. Also we could
consider "super-symmetric" theories in which Z(Z) has a
mod 2 grading. In all these cases the axioms have to be

modified appropriately,

Some examples

How do we know that theories satisfying the above axioms
actually exist? The examples below all have physical back-

grounds,

Here lives the Donaldson/Floer theory. This was recently
explained by Witten in terms of topological QFT. In the
Floer theory, closed three manifolds give rise to Abelian groups,
rather than vector Spaces as in the above discussion.
Donaldson theory assigns integers to four manifolds, rather
than complex numbers. Thus this theory is essentially a
theory with base ring 2%, rather than . The Donaldson
invariants of closed 4-manifolds M and M* are unrelated so

there is no axiom (6).
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(i1) 4 = 2
This is the dimension in which the Witten/Jones theory

resides. Recall that Witten produces the values of the

Jones polynomial at values eZWi/k . This is a theory over

sane algebraic number field very much smaller than @

(1ii) 4 =1
There are two theories in this dimension

(a) Conformal field theory. Topological QFTs are sO called

because the whole structure is set up without reference to a
metric, depending only on the topological structures involved.
In a similar way, one may consider quantum field theories on
Riemann surfaces which depend on the metric only to the
extent that they depend on a complex structure on the Riemann
surface (a finite number of parameters only is required).

Such quantum field theories are called conformal field

theories (CFT). However, the formalism used for such theories
is very similar to that used in the 4 = 2 Jones/Witten theory,
and hence it is included in this list. The vector spaces are
however not finite dimensional. In a CFT we have actions of

l.
Diff+s . (See the seminars by G. Segal).

(b) Gromov/Floer theory. This is similar to Donaldson/Floer

theory except that we are working in one dimension. Whereas
the base objects in Donaldson/Floer theory are instantons and
ASD connections, the basic objects in Gromov/Floer theories -
are holamorphic maps of curves into complex manifolds. This

is connected with the physical theory of g-models.
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(iv) d =20
Here we are just considering discrete points. To a
singie point, we associate a vector space V ., To a collection

of n points, we associate von . We then have the classical

action of the symmetric group Sn . Moreover V itself is
usually viewed as a representation of some Lie group e.g.
U(n) . Thus 4 = 0 encaupasses much of classical representa-

tion theory.

One can also combine two of these cases. For example,
combining 4 = 3,1 is related to four dimensional manifolds
Y containing a two dimensional surface X . The boundaries
of these spaces give a link in a three dimensional manifold.
Cambining ¢ = 2,0 leads to the general Witten-Jones theory
of links L in a three dimensional manifold Y. Their bound-
aries give a set of points in 3Y = L. In the case where I
is a 2-sphere with a number of points upon it, we obtain an
action of the discrete group of components of the diffeomorphism
group. This group is the braid group Bn . and hence
representations of the braid group are very much in evidence in

this theory.

{c) Witten~-Jones theory

This is defined on a three manifold Y containing a link

L . Put:
3Y = L

oL

{Pl'-.o,Pn} .
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Assumé.everything here 1s oriented and framed. Then we

have associated with (y,L) the vector:
TZ(Y,L) € z(aY,3L)

in the vector space associated with the boundaries (3Y,aL) .
In particular, if 3Y = ¢, then Z(Y¥,L) € € is an invariant

of the theory, associated to a link in ¥

In this theory, we must fix a compact Lie group G , and
an integer k , the level. When we have no links, and are
only considering closed manifolds, this is all the data that
we require. Given a link, L , with components Ll,...,Ln',
we must assign to each component an irreducible representaiton
Ai of G: this specifies the 4 = 0 theory that we are
"coupling" to the d = 2 theory. If we reverse the orientation
of a point the representation of G 1s replaced by its dual.

If we are not considering closed manifolds, then, to each
point in 3L, we must also assign a representation of G.
For example, a knot in a closed manifold needs just one represent-
ation and Lie group in order to obtain invariants. The Jones
polynamial corresponds to the Lie group SU(2) and the standard
representation.

We will close by looking at how QFT ideas really enter
and why the multiplicative axiom has a tensor product in it,

rather than a direct sum.

Start with a closed surface I of genus g . Then

Hl(Z,R) has dimension 2gq. There is a natural skew form on

this, given by:

(a.b)-"J'aAb.
z
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This makes Hl(z,R) into a symplectic manifold. Let

Hl(Z,R) have a standard symplectic basis:
(ql""'qn’Pl""Pn) .

This can be quantised, producing a Hilbert space of the
quantised theory:

H = L%(q)
g++multiplication
p ++differentiation .

Thus taking a Lagrangian subspace of Hl(Z)R), say

<dyre.-qy> , We consider the qy to be position coordinates;

and pl,...pn to be momentum coordinates. Thus we have

Two-dimension =+ Symplectic vector -+ Hilbert space

z space H
Hl(z,R)
disjoint union -+ direct sum + tensor product .
] 2

The multiplicative property comes from moving from the classical
space Hl(z,R) to the quantum space H. One can think of

elenents of Hl(Z,R) as classical fields; and elements of

H as quantum fields.

If we changed the Lagrangian subspace of Hl(z,m) used,

from <Qyre-erdy> to <pjreserPL>y then the Hilbert spaces

obtained are isamorphic:

Lz(p) = Lz(q)
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thae iscmorphism being given by Fourier transforms. If we
use variables p; + iqi instead, then we get another Hilbert
space quantisation. However, it is a basic fact of quantum

theory that the Hilbert spaces H are canonically isomorphic

up to a projective multiplier., That is, the projective

Hilbert space is well defined, depending only on the under-
lying topology of the space L.

At this level, we have infinite dimensional Hilbert spaces.
However, we can also introduce Hl(z,z) which is a lattice
inside Hl(Z,R).

Quantizing the torus
B (2,0(1)) = 5L (z,®) b, 2

is formally equivalent to looking at invariant vectors in H.
In fact we need to enlarge H to find any fixed vectors.
Then we £ind a one dimensional space given by the classical
@-function. Alternatively, for each k, one can consider the
sub-lattice of H'(X,3) of level k . The subspace of
invariant vectors under this smaller lattice gives a finite
dimensional vector space. Actually these statements need to
be refined and the situation will be dealt with more carefully
in the next seminar.

For general non-abelian groups, replace R/Z = U(l) by
any compact Lie group G. Then Hl(ZgR/Z) is generalized to

Hl(Z,G) the space parametrising the classes of representations:

nl(Z) + G

This space is still a symplectic manifold (with singularities).

When this is quantised we obtain the finite dimensional Hilbert
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spaces of the theory. There are now definite advantages in
this quantisation procedure as we have replaced a non-linear

theory by a linear theory:

manifold vector spaces
(family of reps) =+ (functions on space of reps)
non-linear linear

If we view the symplectic manifold Hl(E,G) as a non-
linear "hamology space", then its quantization may be viewed

as a "quantum homology group"”. The quantum character is

exemplified by its multiplicative rather than additive proper-

ties.
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Seminar 2

Graeme Seqgal : The Abelian Theory

uwIn this lecture, we shall discuss how the functional 3z,
discussed in the last seminar, which assigns to each surface

I a finite dimensional vector space, can be realized concretely.
We shall follow the construction in stillmoredetail in the case
where the Lie group, required as part of the data for the medel,

is Abelian. This requires the use of theta functions. In fact

a spin structure on the surface £ is required in order to

assign a unique space . Z(I), and the subtleties of this are

related to theta characteristics.

We shall also touch on how, for a three-manifold M whose

boundary is I, one can assign a vector:

Z(M) e 2(T) .

In fact, we shall only describe how to obtain the distinguished

ray in Z(Z) given by M , and shall not go into how the

normalisation is carried out.

Review of standard theory

Let us begin by reviewihg the basic structure of the
theory. As given data, we start with a compact Lie group G

and an integer k ¢ N , specifying the level, Given this

data, we require

L (2-dimensiocnal surface -- Z2(Z) (finite dimensional
with spin structure) vector space)

M (3-dimensional manifold -+ 2 (M) (vector in 2(Z))
with aM =)

satisfying certain axioms (see last seminar) .
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fhus a closed 3-dimensional manifold M has associated
with it,

Z(M) € 2(p) = €

i.e. a canplex number associated to it.

To canpute Z(M) for a closed manifold M, one cuts
the manifold M up, by a surface I, into (say) the open

parts M,, M,, each with:

M, 3

Then, loocking at the left-hand half of the diagram, there
is a distinguished vector Z(Ml) in 2Z(L) specified by My

with BMl =1I.
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-S8imilarly, looking at the right-hand half of thae diagram,
there is a distinguished vector Z(Mz) in:

o &(Z) = z(L)*

since aMz = I with opposite orientation, and one of the axioms
for 2 states that the vector spacesassociated to a surface
with its two opposite orientations are dual.

The natural contraction gives:
<z(Ml),Z(M2)> = Z(M) .

This enables 2Z(M) to be evaluated by cutting up the manifold
M .

Construction of 2

Z(M) is constructed in Witten's original Paper (W] by
using path integrals. Although this is not a mathematically
rigorous'definition, it is nevertheless instructive to investi-
gate this method.

Let A = {G-connections in a trivial G-bundle on M}.

If G 1is simply connected, the triviality condition is

superfluous, Define the gauge group:

Q
I

{automorphisms of a trivial G-bundle}

Map(MIG) -

One can now consider the moduli space A/G

On A , one defines the Chern-Simons action as follows.

If A ¢ A, let:

S (a) =IlEJ tr(A da + 2/3 a3) .
M
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In the above expression, A is a l-form on M , with

values in the Lie algebra:
A 3 Ql(Mlg) L)

If g is a matrix algebra, A 4is a matrix valued l-form and
so AdA + 2/3 A3 is a matrix valued 3-form. The trace in
the above expression for S(A) is then the natural matrix
trace, and tr(AdA + 2/3 A3) is an ordinary 3-form which can

be integrated over M

In general, for a general Lie algebra g, one replaces:

tr AdA by <A&,dA>

tr A3

by %<A,(A,Al> .
We then define

Z(M) = j ekS(A)dA
A/G

If M=IL xR , a connection A on M can be thought
of as a path in the space of connections on I, for by
choosing the appropriate gauge, one can assume that the com-
ponent of A in the R-direction vanishes

The action Lagrangian has only first order time derivatives
and thus the associated Hamiltonian vanishes. This is a situ-
ation with which one is unfamiliar in physics.

Let us now define, in a 2-dimensional context,

>
[}

{connections on g} = 91(259)

Q
]

Map(Z,G) .
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A connecticn A ¢ A is transformad by an alemant g ¢ G

according to:

(g ,A) - qu-l - dg-g-l

An infinitesimal gauge transformation is specified by an

element:
£ € Map(I;g) = Lie(G)

and its action on A is given by:
(&,A) » [£,A] - dg = -d,€

where dl is the covariant derivative with respect to the
connection A .

The space A/G here is the classical phase space, and
not the classical configuration space. The dynamics of the
system is completely determined by the symplectic structure
on A/G , since the Hamiltonian vanishes. The Hilbert
space we wish to associate to the.surface [ is the quantisa-
tion of this classical phase space.

On any symplectic manifold in » the symplectic structure
provides, for any Lagrangian submanifold Y» < x2n with local
parameters ql,...,qn ¢+ & conjugate set of functions

Pire««/Pp

on a small region of X , so that ql""’qn'Pl""'pn provide

a local coordinate system for X . Then the l-form:

L p.dq,
{ A7

can be integrated along paths: this corresponds to the Chern-

Simons action.
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The symplectic structure (for level k) on A is defined
by:

S(Al'Az) = katr(AlAz)

for Al,A2 e A . We could in principle try to quantise this
infinite dimensional space A, obtaining a vast Hilbert space
H and then select out the subspace (of an enlargement of G)
invariant under G .

The alternative is to attempt to quantize the symplectic

quotient A/ G ., Let

Pg : A+ R

be the Hamiltonian function corresponding to the infinitesimal
automorphism of A induced by £ ¢ Lie(G) . Putting these

maps together, we obtain the mament map:
P: A > Lie(G)* ,

In order to be able to include links in this deneral

theory, we will include the possibilityof I not being closed.

This introduces various boundary terms. From the definition
of PE it is necessary that:
dP.(A,a) = -k I tr(D,£.a) (1)
g 5 A

for A ¢ A, £ ¢ Lie(G) .

However, by integration by parts, this condition can be

written as:

dP,.(A,a) = k J tr(&.DAa) - kI tr(g.a) .
& L P

Hence we can take:



PE(A) = k IZ

since the curvature of the connection A 1is given by:

- 2
FA =dA + A

so that GFA = da
Thus (1i) def

However, if

{p

and P[g}n](A) =k

Thus

(Prg,n1 ~ {5

The right hand sid

an extension gz
gy = QO(BE;Q)

of the gauge group
0 - R » gz -

and the mament map
E:A-* (;z)*

A+ {(}\n‘,'

e Eer -k [ trga)
3z

+ aA + Aa = DAa

ines the moment map.

£:n € Lie(G) + then:

dPn(A,G A)

g

-k I tr(DAn.DAE) from (i)
z

-k J tr(n-D,E) + k I tr(n(F,,ED)
P A 5 A

I £r(Lg,n1+Fy) - Kk f tr((§,nl-a),
z oz

/B 1) (A) = -k Jaztr{ca,nla - n-D,£}

K J tr (ndE)
9L
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(11)

from (ii)

(iii)

e of (*) is a Lie algebra cocycle defining

of the Lie algebra:

+ by R . Thus we have the exact sequence:

gy = 0

can be extended to

)+)\+PE(A) for A e R} .
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;he image of A is thus entirely in the hyperplane:
1xgtecgt .
We can now identify:
2%(z,9) ® aloz,q)
with a subspace of g* , and then :
P(A) = (l,FA,A|aZ) .

The gauge group G acts in a natural way on FA'Alai ;7 on
the right, where we regard Alaz as a connection. The orbits

of G on:
2 1
1 x Q°(z,g) x Q@ (3z,q)

are in one-to-one correspondence with the conjugacy classes of

G :
(1,F,,A|3Z) + (monodromy of A[3E) .

Each G-orbit contains a representative with A|az constant
on each component, when the associated monodromy is exp(ZnA),.
For A|az constant, the isotropy group consists of g ¢ G

for which g|az is constant on each component, and:

on these components.
The quotient symplectic manifold A/G obtained from the

action of G on A 1is now given by:

~

P-l(constant)/(isotropy group) .
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Then P_l(l,O,A) consists of all those connections which are

flat, where A 1is constant.

T_If £ has gemus g, wl(Z) has 29 generators with one

relation. Thus,
Hom (m,2:G)

is the subset of the product of 2g copies of G , obtained

by imposing the relation. The classical phase space is ob-

tained by dividing out by the action of G , by conjugation,

and is thus finite dimensional. In general :

{isomorphism classes of flat bundles}

Han(nlz;G)/(conjﬁgation)

(classical phase space).

In general we get Singularities. However, when G 4is abelian,

there are no singularities.

The case of G abelian

When G = T 1is abelian, its action on an(an;G) given

by conjugation is trivial; and so the phase space is simply:

v = Hi(z;T) .

If g denotes the genus of I , then:

v = 029

One can write this as :

ml(z;m) = ml(z,e)/
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where t = Lie T , A = Hl(Z,nl(T)). So A is a lattice in
Hl(z,t) . This is because one can identify t/nl(T) with
T , »using the exponential map. Hence Hl(Z;T) is compact.

The symplectic structure on Hl(Z,t) is given by:
al(z,t) x #t(z,&) » B2(ZR) +R .

The first part is given by the cup product followed by the

inner product on t ; and the second part is:

kx|
z

where k 1s the 'level'. This defines a non-degenrate skew
form on the vector space Hl(Z,t) .

We must now quantise this space Hl(z,t) . In the semi-
classical approximation the dimension of the Hilbert space #

of the physical system associated to the symplectic structure

is:

(Liouville measure)

classical phase
space

where this Liocuville measure is mn/nl and w is the 2-form
assoclated with the symplectic structure on Hl(Z,t) .

Since the phase space here is compact, the above integral

is finite. The classical phase space has dimension 2¢.dim T .

So dim H is proportional to

(volume form) « k9 dim T

phase space

since the symplectic form is proportional to k .
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Normalisation of the inner product

A compact Lie group has a 3-form:
"‘<Al' [:Az ,A3 ]>

If G is a simple Lie gréup (non-abelian), then there is a
least normalisation for the inner product which makes the
above 3-form into an integral cohomology class; and for SUn
it turns out that this normalisation makes the inner product
just the trace. If G is abelian, one requires that <, >
is integral on T 2. This corresponds to the case

k =1; and other k's correspond to inner products given by

k times that inner product corresponding to k = 1

§-~-functions

Suppose V is a real symplectic vector space with skew

form:
S : VxV-+R .

The Heisenberg group V is defined to be:

T x Vv

where the group law is defined by:

(o)) vy = (uyu,e™S1v2) o 4y ) (1v)

for ul,u2 € T, vl,v2 e VvV .

Suppose that A is a lattice in V on which S 1is

integral. Then A = {21} x A is an abelian subgroup of VvV .

Definition. A splitting of A+A is a map e : A + {x1}
specified by a map:
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ot A~ 0,1}

with € = (-l)o, such that
°(V1+"2) = c(vl) + c(vz) + S(vl,vz) (med 2) .

For any choice of o, let A0 &V be the corresponding

subgroup. On the torus:
T = V/A
we have the T-bundle, P<S = V/Ac . A section of the corres-

ponding complex line bundle: °

Lc = Pc xﬂ@

is amap F : V - ¢ such that:

F(uluz,v) = ulF(uz,v) ¥u,,u, € T
(v)
F((u, v)-(ek,x)) = F(u,v) VA € A 7
where €, = (-1)° )
Clearly F is defined by F(l,v), if it satisfies (v),
since
F{ua,v) = uF(l,v) .

then a section F of L is equiva-

Thus, if £(v) = F(1,v), s

lent to amap £ : Vv + @ such that :

Fivid) = g,e™ AVey) oy ¢ A,

We now want to put a complex structure on V , and hence

T . Write Vo, =W® W where W is a positive isotropic sub-

space. Then:

i

T = V/A W\VG/A .
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The T-bﬁndle Pc is contained in the Qx—bundle:

P

Q_ —
o4 W\VQ/AU

where

V(t =Qq¢" x v

with group law (i), and W denotes the subgroup 1 x W ¢ v

Then L0 = Pg &, and a holanorphic section of L
c

¢ -
is a holamorphic map:

F : Gd - Q
satisfying (v), and:

F((1,w)+(u,v)) = F(u,v) YW e W .

That is, a holomorphic section of L0 is given by a holamorphic
map F : W + @ such that :

Elwrn) = e o eS8l 2wru) o ) (vi)
for u ¢ Ay, =(u e W u+ 0 €A}, Such functions f are

8~-functions; and the choice of splitting € is called a

§-characteristic.

Example

Take V = R? r A= zz + and define a skew form on Vv by

S(vl,vz) = det(vl vz)

*1 X2

i.e. 8 v |7 v ] = XY, - XY, - A complex structure on
1 2

V is described by a point A in the upper half Plane in such

2 way that the corresponding decomposition:
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has W spanned by £ ¢ ¢2, where:

"‘lY
=&+ 8
0}
fow
= 1§ + 1§
LlJ
_ {1 x
i.e. (g8) =1I. Here 1 1is defined so that A is
1

T
generated by 1,t over Z
Define 6(z) = £(z£) for z e Q@ . Then the condition
(vi) , for £ to correspond to a holomorphic section of Ld’

is:

6 (z+1) = Ele-niA.(22+Ll 8 (2)

“TiA.T(22+7T) 5(2)

5(z+r) e

€2
where A = S(£,8) = (?-T)+

and €10 €y denote:

€r1) ¢ €(p
a 1
respectively.

It is usual to define:

2~

eﬂiAz 8(z) .

8(z) =
Then 6 satisfies the conditions:

8 (z+l) = 516(2)

(vii)

8(z+1) = gye 2MLZTMT g(4)
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There are four choices for €y and €5 and for each

choice there is a unique function 8§ . For example, if
€, = %, €5 = € , then (vii) implies that
n %hz 2minz
8(2) = I e'q e
ned

up toc a constant multiple, where q = eZWlT

To obtain a quantisation, we still need to pick a polarisa~

tion of V (i.e. a complex structure) so that

V=Wew.

We think of V as the classical phase space, which is classic-

ally given by parameters pl,...,pn, Qypreeerdy, - The skew

form 6n V is given by:

S((Ql,gl) 1 (Ryrdp)) = P13 - By G, (viii)

where Byr Bar d;- 9, are n-camponent vectors. A quantisation
then requires a choice of 'half' the phase space: for exdmple,
either the Space parametrised by the pi(qi=0) + or the space
pParametrised by the qi(pi=0) . The quantisations obtained
from such a choice are all isomorphic, as was mentioned in the

last seminar. Thus, for the example of the two subspaces above,
the quantisations are:
(a) L2 functions of ql,...,qn

(b) L2 functions of Plr-++sPy

and the isamorphism between them is given by a Fourier transform.

Another way of formulating this discussion is to consider

those holomorphic functions F : VG + @& such that :

F( (uln;) (uz,v)) = u,F (u?_,V)
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i.e. which arae left—(cxxW)—equivariant. These form an

irreducible representation of V , and V¢ » Which acts on:

(a*xw)\Gc

on the right. This is the Helsenberg representation H ; it
is the unique irreducible representation of the Heisenberg

group G with dimension »>1 . Then §-functions form a vector
space which from this point of view is the subspace:

A
H'O < H

pointwise fixed under the action of ACr sV .

From any description of the representation H, one obtains
Ao
H .

a description of The classical description of H is

as LZ(Q) where :
V=Q®e Q*

with Q, Q* isotropic, and skew form defined on V by (viii) .
Here Q, Q* denote the subgroups 1 x Q, 1 x Q* of V

a;ting on LZ(Q) by :
(1,k) : £(q) +~ £(g+k) for k ¢ Q

(1,a) : £(q) + e2"1%% (q) for o e O

and g denotes the contraction between Q, Q* given by § .

Example

Consider the case of V =ZR2, A= ZZ again. The action

of A on LZGR) is given by :
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(ny0) 3 £(q) - £ (g+n)

(0,n) & £(q) + &2™Nd ¢ (g

Then Ho c {functions R -+ ¢} consists of those functions £

such that
£(t+1) = slf(t)
£(t)eTit _ €,£ (t) )

When E2 = 1, this implies:

£(t) = % e?é(t—n)
Ne%
and when €5, = -1, it implies :
£(t) = ¢ e? 8 (t-n-%)
NeZ

Construction of Z(ZL)

Suppose I is a Riemann surface. Then

ul(z,¢) = ¢

canonically splits into two parts gls0 ) Ho’l + namely holo-
morphic and anti-holomorphic differentials, These are complex

conjugate subspaces., A complex structure L on L gives a

natural isomorphism:
ul(z,mr) = gl/0

So V/A is a complex torus, and we have:

~

dim¢V¢.= gdim T + 1 .

The quantisation of v = Hl(ZJR) is HV = LZ(Q) where VvV is

split into Q @ Q* by I .
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. Traditionally, one picks a basis for H!(Z,t):

dll--.,d,ﬂl,...,ﬂg

g

such that the intersection form evaluated on ai’Bj is Gij'

Then one thinks of:
Q = <0.l,...,ag>

Q* = <Bll---16g>

and the 8-functions are given by the A-invariant part of H,

the quantisation resulting in:

Q acting as translation
P acting as multiplication by e"isj

on functions on Q .

Relation to knot theory

Suppose L ¢ M is a knot in a closed 3-manifold M .
Cut M 1nto two parts M, M, by a surface I . Then L

cuts I 4in a set of points {Pi} .

On the surface I we thus have a sat of marked points, and the

functor 2 1is extended to assign to such data a vector space.
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The 'phase space' associated to this data increases by the

addition of a flag being chosen on each marked point, giving
an extré parameter in G/T . Details will be explained in

the next seminar.

If M is a 3-manifold with boundary X , then we should

associate to M a vector 2(M) in 2(ZI). Divide the cycles

on I into o cycles and B cycles by considering the image

of the restriction map:
ul m,t) » al(z,t) .

The image is an isotropic subspace of Hl(E,t) on which

the intersection form vanishes: it is a Lagrangian subspace,

using the terminology of Hamiltonian mechanics. This can be
used to assign a basis of a-cycles and B-cycles, and hence
specify a particular 8-function, up to a normalisation factor,
in the space of all 8-functions. This 1s the basic idea used
to specify thedistinguished ray in 2(I) given by M . The

actual normalisation of Z(M) is more tricky to specify.
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Seminar 3

Michael Atiyah : Moduli spaces of vector bundles

Let us first of all recall what has been covered in the

previous two lecturs.

1. We start by fixing a compact Lie group G with an integer
k , called the level. We aim to develop a theory (denoted by

Z) based on this data. This theory associates:

(a) to each (framed surface I , a finite dimensional vector

space 2(L) ;

(b) to each oriented (framed) 3-manifold with boundary I , a

vector Z(M) in the vector space 2(I).

These are required to satisfy certain axioms (see first lecture).

In particular
z2(¢) = ¢

so that for a closed oriented framed 3-manifold M, there is

an invariant 2Z(M) e C.

This story has a generalizatiom for a surface I with

a finite set of marked points Pl,...,Pn on I .
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To each of these points P, + we associate an irreducible

representation, Ai r ©of the Lie group G . Having fixed

the data A, P (and G, k as before), our functor 2z has

to produce a vector space ZﬂZ,g,L) .

We also have to generalize the assigmment of the vector
Z(M) ¢ z(Z) for every 3-manifold M with 9M =L , to the
case with marked points.

Components ol C

We consider the situation in which M is a 3-manifold con=-
tainihg a curve C . To each component of C we require a

representation of G to be assigned giving a collection U

Then, we write:

3 (M,C,u) = (Z,P,)\)

if
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aM

!
™~

aC

l

{Pi} =Cn L

while the representations Ai corresponding to points Pi at
the end of a camponent Cj of the curve C are either U, or
its dual (depending on the orientation of Cj with respect to
the end Pi) .

Under these conditions, we wish to assign a distinguished

vector:
Z (M ’c ’LJ_..)

in the vector space 2Z(I,P,A\), satisfying appropriate properties.
The special case of a closed 3-manifold generalises here
to the situation in which C ¢ M 1is a knot or link. There are

no points Pi , S0 that:
3 (M,C) = (4’ r¢)

and thus 2(i4,C) ¢ 2(¢,9) = &€ giving an invariant of knots and
links.
In all the above consistent framings are needed, as we

shall indicate later.

2. Now we shall review the last seminar explaining how this
construction works in the abelian case : that is, we look at
- 1 {

G = U(l) . To a surface £ , we can associate H"(I,U(l)).

IJf I is a surface of genus g we associate:
ol (z,u(1)) = vl(z,Rr) /e (2,2)

a torus of dimension 29 . This space can be thoughtof as

the space of abelian representations of the fundamental group:
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Ham (H) (2),u(1)) .

So, to each surface we have associated a torus of higher

dimension.

Recall that a symplectic structure on a space of dimension

2n is a closed 2-form with B # 0, On a torus, we can

define a simple symplectic structure which is invariant under
translation. Such a structure is defirned by giving a skew
form on the tangent space to the torus at one point, using

translation to define the structure at other points. Since the

tangent space looks like:
ut (Z‘JR) '

one can define the symplectic structure by using the skew form:
# (. R) o B (z,R) » Y (zR) =

by taking the cup product. Since this procedure is compatible
with Z, thus & is an integral class. Hence there exists
a line bundle L over the torus with a connection, whose curva-
ture is w , up to factors of 2T .

A closed integral 2-form on a simply connected space defines
a line bundle uniquely up to iscmorphism. If the space is not
simply connected then the line bundle is arbitrary up to tensor-
ing by flat line bundles. Of course the torus is far from
sﬁnply connected, and thus the line bundle is not unique : we

shall make some more comments on this below.

In the case of a general level k + We replace the line

bundle L by Lgk to obtain the more general vector spaces
z(z) .
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Quantisation

We have shown how to associate a higher dimensional torus
with a“line bundle over it, to a surface L. Next we must
show how to quantise this to obtain a vector space,

In order to carry out the quantisation, we need scme extra
data, namely a complex structure ¢ on § . This complex

structure induces a complex structure on Hl(Z,U(l))

. When
endowed with a complex structure, Hl(Z,U(l)) is called the
Jacobian Jac(Zc) of ZG .

One can directly define:
Jac(zc) = (isomorphism classes of holanorphic line bundles

of degree zero on Zc)

as a camplex torus, of complex dimension g .
This abelian case is basic to the general case. So we

will look at this in more detail first.

Sheaf theory

We have two exact sequences:

H3(Z_,2)
' (Z,0(1)) > B (Z,.e%)
I T (*)
1l (3 R) > HYE_ )
1 I 1
H (Z,Z) > H (gfz)

with a natural map between them. Here, the right hand side

has:
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C{
It

= sheaf of holamorphic functions on L,

g

sheaf of non-zero holomorphic functions on Zd

and the map:

1 1
HO(Z,, 80 » B (I ,0%)

is given by £ ~» eZTrit

From these sequences it easily follows that there is a

natural isomorphism
BH(Z,U(1) » Jac(z)).
We would now like to define
2(2;) = 8% (gac(z ), LX)

the space of holamorphic sections of the holomorphic line-bundle
Lk on the Jacobian. As we mentioned earlier, although the
curvature of L is fixed by the symplectic structure, this does
not determine L wuniquely because the Jacobian is not

simply connected. The solution to this problem is to shift

from the Jacobian to the copy of J which parametrizes line-

g=-1
bundles of degree g - 1 . This shift can be obtained by
tensoring line-bundles of degree zero on [ by a fixed square
root K!s of the canonical bundle. This is equivalent to a

spin structure. On Jg—l there is a natural choice for L

corresponding to the distinguished @-divisor on Jg—l (representing

effective divisors of degree g - 1). Finally therefore we can

define Z(ZO) N
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All this was explained in greater detail in the last
semina;”where it was shown that for k =1 the space Z(EG)
has dimension 1 and is generated by a classical @-function.

Also it was shown that for k > 1 the space Z(Zc) has dimension
k9 and is spanned by @-functions of level k .

The key proposition in this theory relates the vector spaces
Z(Zc) when we vary the camplex structure ¢ on I . Recall
that a choice of complex structure was necessary to facilitate
the quantisation procedure; but we would like the result Z(Zc)
to depend only on I , and not the particular choice of o .

Fix a basis of cycles for I and then integrate a basis of
holamorphic forms around these cycles. This produces a 29 x g
dimensional matrix, where g is the genus of I, called the

period matrix. So we can think of ¢ as defining an element:

of the Siegel upper half plane, defined analogously to the complex

upper half plane by:

H = {complex symmetric matrices A + 1B where B

is positive definite}.

Just as the complex upper half plane is acted upon by the
symplectic group, so similarly H is acted upon by the symplectic

group Sp(2g9,R) with isotropy group U(g). Hence:
H = Sp(2g,R)/U(qg)

is a hamogeneous subgroup of Sp(2g9,R) .
The period matrix determines the complex structure ¢ of

the Riemann surface and by varying ¢ we get the Teichmuller

subspace T of H . A general point of H arises from an
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Abelian Qariety which is not the Jacobian of a curve. However

the definition of Z(Zﬁ) extends to all Abelian varieties and
so can.be defined for all points of H . The key fact about

this construction can be stated as

Proposition. There is a holamorphic vector bundle:

the fibre over ¢ ¢ H being the space Z(zo) . There is a

natural connection on this bundle whose curvature is a scalar

matrix.

The connection enables one to parallel trapsport around a
path in the base H to nearby fibres. If this connection had
zero curvature, then one could identify all the fibres, and we
would have obtained an intrinsic quantisation Z(Z) independent
of -ag . However, one actually finds that the curvature is not
zero, but a scalar, so that only the projective spaces can be
naturally identified.

The curvature is in fact a scalar multiple of the disting-
uished 2-form on H given by the Kihler metric. The value of
the scalar multiple can be computed and this is needed for the

detailed development.

We shall now go on to discuss the non-abelian case. We

think of k as large. This will not be a great restriction,
since the end product is supposed to be an invariant polynomial
evaluated at eZ"i/kI; and thus the polynomial can be
determined from knowledge for large k only .

So now we start with a compact Lie group G, and consider,

instead of the torus of the abelian theory, the symplectic
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manifold (with singularities) H!(z,G) . Essentially, the
singularities correspond to representations which are reducible.
of cougée, when G = U(l) , all representations are one-dimensional
and thus irreducible, so there are no singularities.

When SU(2) = G , reducible representations reduce to U(1l),
so that the singular points correspond to points on the space
corresponding to U(1l)

We must now show how to define a symplectic structure on this
manifold by giving a skew-symmetric form on the tangent spaces to

Hl(Z,G). However, if:
o ¢ Rep(m, (£),6) = H'(£,q)

is a point on the manifold, then the tangent space at o is

given by
l (z,ad_(G)) .
a

This is the first homology with respect to a flat bundle describing
a twisted coefficient system on f: the coefficients being the
Lie algebra.

The skew form is defined as before:
1 1 2
H (Z’AdG(G)) X H (Z,Ada(G)) - H (ZIR) + R

where the first map is given by the cup preduct, and we contract
on the Lie algebra by using a suitable fixed inner product on the
Lie group .

Thus we have a symplectic manifold associated to ¢, and
since the above form is integral, as before, it defines a line

bundle on the space.
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Notes: Ei) Here we have ignored the singularities, but in fact
that can be treated properly and the line-bundle extends over them
(2) For a semi-simple group (with no abelian factor) Hl(E,G)
is simply-connected so we do not have the spin-structure trouble
of the abelian case.

Just as in the abelian case, once we fix a complex structure

on &L , we can identify HI(Z,G) with the moduli space of

stable holomorphic bundles over ZU with group G°© (the complexi-

fication of G). This is the theorem of Narasimhan and Seshadri
which has been reproved by Donaldson more in the spirit of our

presentation.

Once again, we proceed as we did in the abelian case, putting:

Z

0 ky
o H (MGIL ) .

We now get a counterpart of the key proposition:

Proposition. There is a holomorphic vector bundle

— +— 3

where 7T is Teichmuller space, the fibre over ¢ € T being

Z(Zo) : There is a natural connection on this bundle whose

curvature is a scalar multiple of the natural Kahler metric.

The rest of the discussion that held in the abelian case

holds now, with H replaced by 1t .

There are alternatiVé-approaches to this proposition:

A. Use the theory of Riemann surfaces with boundary. This leads

to the theory of representations of loop groups, conformal field

theory.
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B. Reduction to the abelian case (see Seminar 5 by Nigel

Hitchin) .

We have now described (roughly) how 2Z(f) is defined. The
other part of the functor 2 associates to a 3-manifold M with

boundary L , a distinguished vector :
Z(M) € 2(Z) .

In cur approach this might be done as follows. There is a

natural restriction map:
ut(m,2) -+ u(L,%)

whose image 1s a Lagrangian subspace of Hl(E,z). This should
be used to define a ray in 2(I): the actual multiple is tied
up with the structure of the projective multipliers and is more

subtle.

Generalisation with marked points

When we try to generalise to the case of a Riemann surface

I  with marked points Pi and associated representations Ai p

the two halves of the theory generalise as follows:

1. Unitary theory. We must look at representations of nltz)
taking account of the points Pi . The correct generalisation

is to consider representations:
TTl(Z\{Pl,-.-,Pn}) *G

whose monodromy around the Pi's lie in given conjugacy

classes of elements of order k in G . (The monodromy around
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Pi is the image of a small loop around Pi under the above
map.) The conjugacy classes in G are labelled by the
repregégtations: this is how the data of Ai at the Pi enters

this half of the story (see later for details of this link).

2. Holamorphic theory. We must £ix a camplex structure ¢ on

the Riemann surface I , together with the marked points Pi and
associate representations Ai . One considers holamorphic bundles
on L , lwith given data at the points Pi » dependent on ki/k .
There is then an appropriate moduli space Mo .
A recent theorem of Seshadri states that Mo can be identified
with the spéce of representations obtained frdn 1.
The theory obtained is similar to the basic case of
without marked points.

To understand the labelling of representations of compact Lie
groups and conjugacy classes of the group, recall the first lecture,
in which the different theories were neatly fitted into the
different dimensions 1, 2, 3, 4 . Recall that the theory said
to correspond to dimension zero was that of group représentations.

Let us review the basic facts.

The Borel-Weil theorem

Let G be a compact Lie group and T a maximal torus.

Then G/T is called the flag manifold. It can also be expressed

as a homogeneous space of the complexification G% :
'G/T = G%/B

where B is a Borel subgroup. When G = U(n), G% = GL(n,C)

and B consists of upper triangular matrices. The representation
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theory of G (or G°) can be understood in terms of line-

bundles on the flag manifold.

A unitary character A : T - U(l) extends to a holamorphic
character B + @* and so defines a homogeneous holomorphic line-
bundle LA on GC/B . Then G (or G°) acts on the space
vy of holomorphic sections of LA . For suitably "positive"
this space is non-zero, and the Borel-Weil theorem that these V

A
describe all the irreducible representations of G .

The line-bundle LR has a natural G-invariant connection where

curvature is (for generic A) a symplectic form on G/T. The moment

map
My ot G/T + g*

then identifies G/T as a co-adjoint orbit. The space vy is

the quantization of G/T with the symplectic structure defined

by X .

Using an invariant gquadratic form we can identify the Lie
algebra of G with its dual, so that the representation VX
is associated to the Lie algebra conjugacy class (or G-orbit)

which is the image of By o

c

Unitary group case. When G =U{a), G~ = GL(n,E) and

g consists of skew-Hermitian matrices. A character U(n) -+ U(1l)
is given by a vector A = (kl,...,kn) of integers. The associ-
ated class of skew-Hermitian matrices has (up to a factor 2m)
eigenvalues (iAl,...,an) .

Let us return now to consider (with G = U(n)) a surface
LI with marked points Pl""’Pr and associated integral
vectors A;s...sA. . The relevant moduli space (for level k) now

consists of classes of representations
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nl(z- (Pl,...,Pr}) + U(n)

with the property that the monodromy round each point P has

eigenvalues

Znik 2ﬂil
exp n -exp “—

(We have for simplicity camitted here the index i of Pi and
the corresponding additional index for the 2A) . Note in
particular that such monodromy matrices are of order k . This

means that, passing to a k-fold branched cover of [ ¢+ We get a
flat bundle over the unpunctured surface.

The algebraic geometric approach to these moduli spaces is
to consider holamorphic vector bundles over ZU with a dis-
tinguished flag at each marked point Pi . The moduli space is
then constructed by factoring out by flag-preserving isomorphisms.
Roughly speaking this means that our new moduli space M' (using
- marked points) is fibered over the ordinary moduli space M with
fibre a product of flag manifolds (one copy for each marked point) .
The large moduli space M& will then have a line-bundle (and
associated symplectic structure) which partly comes from the
original line-bundle on Mc and partly from the line-bundles
LA on the flag manifolds. A

The details are of course more intricate than this rough
outline . indicates. In particular care has to be taken with
the notion of stability.

The Hilbert space of the quantum theory, for a surface ¢
with marked points, is obtained by gquantizing the base moduli
space Mé . Again the key proposition will concernthe variation

of this with ¢ having only a scalar curvature.



Much of thim theory has been developed differently in work
on conformal field theory, using the techniques of representations
of loop groups and the Virasoro algebra. This approach, indicated
in Grééﬁe Segal's semirars (2) and (4) , involves cutting out small
holes around the marked points and considering the resulting surface
with boundary. The approach sketched above, in the framework
of algebraic geametry, has been developed (for quite independent
reasons), by Seshadri, who uses the term "vector bundle with
parabolic structure" to indicate the data at the marked points.
The most natural approach (with a view to Witten's theory) is
probably to follow the Atiyah-Bott-Donaldson path to moduli
spaces. This links the differential geometry naturally to the
algebraic geometry.

In algebraicgeometry think of the surface I as an algebraic
curve, over which we have a vector bundle, fibre Q" : the flag
manifold is the space of flags i.e. sets of spaces (Vi) with

V. < Vo & e 2V = a” and:

for j =1,2,...,n . At each point Pi’ we fix a flag.

The moduli space Mc + ©Of vector bundles on I 1is defined
by dividing ocut by the action of isomorphisms between bundles.
If we change the notion of isomorphism by requiring that not only
the vector bundles correspond, but also the flags at each Py o
then we obtain a larger moduli spaci Mé ¢ Slince we are dividing

it by a much smaller group than for Mc .
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Graeme Segal : Fusion rules and the Verlinde algebra

Start with a compact Lie group G and an integer k, the
level, The aim is to Produce a functor 2, associating to
a Riemann surface 1 , 4 finite dimensional vector space zZ(ZL)
(see earlier seminars) . We also require such an association to

exist when we aregiven marked points
xl,...,x£ € I

on the surface ¢ + each of which ig labelled with an irreducible
representation, Vi' of G ,

Once the level k is fixeq, only finitely many labels come
into play,. ‘Representations of G are classified by their
highest weights, Thus, if Vl,...Vz have highest weights
Al,...,xl then the labels that are relevant are Precisely

those for which:

A IF s 2k for i=1,2,...,2,
i

Here || (| comes from the assumed norm on the Lie algebra corres-
ponding to G . 1f g jg simple, || || is normalised so that:
]2 = 2

when o is a short root,

Thus the functor Z maps:

ithrepresentations vi xl,...,xz
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Using ohly the above data, the vector space Z(L) is defined
only as a camplex projective space. To define the vector
space -absolutely, it is necessary that more structure is given
on I : a spin structure or framing. In this lecture, we
shall only look at this projective space, and suppress the
framing.

Instead of considering the Riemann surface I with marked
points, an alternative point of view is to consider taking out

a finite number of discs, giving:
3z =s, s, ...4s,

a disjoint union of circles Si . We shall assume that each
component si has a given parametrization, oriented corres-
ponding to the orientation of I (as a boundary component) .
The data associated with I now reduces to an irreducible
representation of G for each camponent of the boundary 3L .

Given such a I together with the associated data, one
can glue standard discs into the holes in I , and this gives
a Riemann surface with marked points corresponding to the

centres of the discs:

Conversely, starting from a Riemann surface with marked

points, near to ‘each marked point one chooses a local parameter,
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and then one defines discs on I . Thus these two viewpoints

are equivalent.
In what follows, we shall use this alternative viewpoint,
with (Z,3L) where 3L is a disjoint union of Parametrised

circles. The parametrisation gives a preferred method for

gluing boundaries together.

Axioms

The functor 2 is required to satisfy the following axioms

(see [S1]) .

1. Z(D,V) ={m if Vv is trivial

0 otherwise

This gives the vector space associate to a disc, where V

is the representation. given on the boundary circle:

ﬁ.______ V asseciated with 2D

2. Z(f,\?i) = 2(L, V,)*

Here I refers to the surface I with the opposite orienta-
tion; and this axiom states that the vector space changes to
the dual when the orientation of the surface is changed.

One can picture a general surface of the required form as

} 92

shown below:
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The réﬁaining two axiocms 3) and 4) specify how I behaves

under the operations of surgery. Any surgery can be expressed

in terms of simple operations, either gluing two surfaces

) z

1’ £ and identifying their boundaries, or identifying two

components of the boundary of same surface I . To cover all

possibilities, one of the axioms gives 2 for a disjoint union

of two surfaces; and the other axiam specifies the behaviour

of 2 on gluing two coanponents of the boundary of a surface &

3. Z(zl.uzz) = z(zl) ] Z(Zz)

Here I, ll I, denotes the disjoint union of & L,, and

1'
the labels used on the boundary of El ﬂ.Zz are those induced

from the labels on the boundaries of Ly, 22 used in the right

had side.

4, If v : I + I denotes themap which sews together pairs

of boundary compoments (circles) ,using the given parametrisations

on 9L to defining the sewing, then the natural map:

v
3 Z(Ev) + 2(Z)

v
is an isamorphism. Here Zv is obtained from I by cutting

along a simple closed curve, and giving the label. V to the

two new edges.

Using 3), 4) we can see how 2 behaves when we glue two

surfaces Zl, 22 joining same of the boundary components.

Il




Boundary components are glued with parameters 8, -8 on the

two components being corresponded. We need a map:

2z, v is) o 2(25,v 3 1s) ~ Z(Z ULy, V's)

which is defined when the boundary components which are identi-

fied have dual labels. The remaining data on the boundaries
for 1I,, Ly combine to give data on 21 U 22 .

The map is given by axioms 3) and 4) via the space:
Z(z) U £,,v s, v 3 ig)
i.e. we have:

2(z,,v; M) 8 2(z,,v§d))

axiom 3)

z2(2; & z,,vi i3,
‘/axicm 4)

An alternative method for considering these two axioms

Z(ZIUZZ'V)

was suggested by Michael Atiyah. Instead of considering:

Vl""Vl
2|
xl,...,xz
one can define

'Z(E,xl,...,xz) = 8 Z
Vl'.."vgr.

This is a representation of Gz, the tensor product of £

Vi® ...0 ¥,

ZV].’...’VAR'
Xl,...,xz

copies of G . In this notation,

v
L+ 2z

% boundary + (2-2) boundary
components components
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and axiom 4) above states that:
Vv
Z(5)G = z2(I)

where G acts diagonally. This is equivalent to axiom 4),

since by Schur's lemma,

G _ : ~
(vlmvz) = {Q if vy = V5
0 otherwise
Consequences of the axioms
1) In order to obtain examples of functors, we begin by

defining vector spaces 2Z(I) associated to Riemann surfaces,
i.e. surfaces equipped with a complex (or, equivalently,
conformal) structure, We then require Z(I) to have the

following additional property:

“If {Za}aeA is a holomorphic family of Riemann
surfaces parametrised by a camplex manifold A, then

{Z(za)}aeA is a holomorphic vector bundle over A."
One can then prove the following result:

Thecrem. There exists a canonical projective flat connection

on {z(%,)}, _, where {zy} is a holamorphic family of

oeA
Riemann surfaces parametrised by a complex manifold A .
That is, to each path Y from o to B in the parameter

space, A, there is defined a map:

Yo 2 2(Z,) ~ Z(ZB)
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The connection being projective means that this map is
determined by Y up to phase only. The connection being
flat means that the map depends only on the homotopy class of the
path’ y joining o« to B8 .

Thus the given data gives a projective space which is

dependent only on the surface [ » 4as a smooth manifold, and

not on any other data. That is, we have 2Z(I,g) defined for
each given complex structure g , If ¢ is another complex

structure, then an isomorphism

i

z(z,g9) 2(z,9) (*)

as projective spaces, is obtained by choosing a path from g
to § in the space of complex structures on I . Since the
space of complex structures is contractible, there is no mono-
dromy'.

If an isomorphism (*) existed as vector spaces, and not
only as projective spaces, then we would have a canonical
vector space independent of additional structure. Even
though (*) is only an isamorphism between projective spaces,
we can still pin the isomorphism down up to an indeterminate

‘root of unity. This is determined by a choice of framing.
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2) The sphere $2 can be obtained by glueing together two

discs, D, along their cammon boundary. Then:

“z2(s%) = g zZ2(D L.D,V,V) by axiom 4)
v
= ® 2(D,V) @ Z2(D,V) by axicm 3)
\"
= by axiom 1)

since the only non-trivial term in the sum comes from the

trivial representation VvV .,

/
v\_

\
v

3) Consider the annulus:

Then the data required is two representations, one for

each component in 3A . We shall now show that:

Ik

Z(A;V,,V,) {c if vi 2V

o if VI # V2

although the isomorphism is not canonical.
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] *
Define nvl'v2 dim z(A,Vl,VZ) when v, V2 are two
representations of G . If we glue two annuli inside each

other as shown below, then by axiom 4),

2
=® Z(A,VH,V.) ® Z(A,V5,V;) by axiom 3)
v 1'v2 3
2

So the matrix n is a matrix of positive (or, at least,
non-negative) integers which is idempotent. Hence n 1is
essentially the identity matrix, with maybe a block of zZeros.

Any such block of zeros corresponds to labels V such that:
vy _
Z(Ex) =0

for all I, . Disregarding thisuninteresting part, n is the

identity, proving the statement.

4) Consider the torus T . This can be obtained from an

annulus A , by glueing together the two boundary circles.

Thus
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2(T) = @& Z2(A,V*,V) by axiom 4)
v
= 3 QEV] by above example

and so dim Z(torus) = number of possible labels.

Verlinde algebra

Consider the surface

Let N, ovv. S dim Z(E,Vl,vz,v3) where I 1is the disc with
17273
two holes cut out, and the representations associated with the

three components of 29I are Vl,Vz,V§ as shown above.

Define R = @ Zev where €y is a formal symbol. This
v .
gives a free abelian group, R, on the labels V ., Make R
into a ring by imposing the multiplication law:
€,, € =3 3 (1)
Viva v, RAATIAS
This makes R into a ring. R 1is commutative since we

can f£lip the holes around, up to an iscmorphism of surfaces.

Associativity of R is proved so long as:

(e., €., )E =, (e, €, ) (ii)
ViV V3 VYV,

for all representations Vl,Vz,V3 of the group G .
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Now

{e €, JE = v €< €
&y v‘2 v ] nvlvzv5 vsvg

(%]
<™

T le .
VsV, RAAS RANY V4

Ey in the left hand side of (i) isgiven
4
by the dimension of the space

The coefficient of

Z(disc with three holes, Vl, V2, V3, V4)

due to the cutting:

This is the same as is obtained by cutting the disc with three

holes in a different way:

This gives rise to the coefficient of € in the right hand
4
side of (ii), and hence we have associativity.
Suppose now that the the ring R was known. Then

one could easily calculate dim Z(f) for any Riemann surface I,
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with afbitrary holes (marked points), by suitably cutting

into elements with three boundary components.

R 1is known as the Verlinde algebra (see [V]) associated to

the canpact Lie group G , and level k . As k increases,

more and more representations come into play, and in fact:
R(k) ' =+ ' R(G)

as k *« , where R(G) 1is the free abelian group on the set

of representations of G, that is, the representation ring

of G . Here '+' means that the coefficients n, vy in
17273

(i), considered as functions of k , have :

()
(k) = some constant
RAAS RANE

for sufficiently large k , and that né“& v is given by:
172°3

For G = SU(2), the structure of R can be quite precisely
determined.

Associated to the group G and closed surface I, consider:

M; = {homomorphisms m;(Z) + G}/conjugation
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where we are dividing out by the action of G given by conju-
gapion. This is equivalent to the space of isomorphism
cl;sses of flat pPrincipal G-bundles on I ., The Narasimhan-
Seshadri theorem shows that the moduli spaces My M2 are
isamorphic, where:

M2 = moduli space of holomorphic Principal Gc-bundles

on I
g

in the sense of algebraic gecmetry .

To define M2 r it is necessary to put a complex stfucture
g on I , Ml is defined without using a complex structure,
and has a natural symplectic structure.

Over the moduli space M of holamorphic vector bundles

there is a hatural line bundle:

L =det(d) .

We then define Z(Z) as the space of the ﬁolomorphic sections
of L. [yote that if G is not SU(n) or Un), det(3) is
not the bgsic line bundle we require; L must be defined as a
root of det(3), determined by the Coxeter number of @ .3J

As pointed out in the previous seminar we should think of
the correspondence getween Ml and M2 as analogous to the

Borel-Weil theorem in the representation theory of compact Lie

groups, In the latter situation, we have the identification

i1}

G/T GQ/B

where T is a maximal torus in G; and B is a Borel sub-~
group in the camplexified group Gc . Here G/T 1is a
symplectic manifold, with a G-invariant integral symplectic

form for each weight X , i.e. for each character:
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A : T>T

and GQ/B has a Kahler structure.

"In the case of G = U(n), the complexified group is:
Gq = GL(n,Q)

and one can use:

H
]

{diagonal matrices} ;

to
i

{upper triangular matrices} .

The symplectic form on G/T is the first Chern class of the

line bundle:

L =G xTG

where T actson € , by A : T ->T ., The character

extends to a holomorphic hamomorphism:
A s B > Q* |

So L can be regarded as a holomorphic bundle c .

Se *B
Holanorphic sections of L +then give representation spaces

of G .

Going back to the case of I with marked points, that is:
9L = Sl.lLSZ ...J.LSQ‘ ’

any connection on I will give rise to a monodromy on going
around the boundary circles. The algebralc structure con-

sidered, as the analogue of M1 . consists of pairs:

(flat G-bundle, element of g for each pole Si )

such that the monodromy around Si is conjugate to:
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exp(ZniEi)

where: Ei are fixed elements of the Lie algebra. So we

fix the conjugacy class of the monodromy of the flat connection,

on going around the components of 3% .
The corresponding holomorphic structure (the analogue of

M2) in the case of marked points, is given by holamorphic

G-bundles equipped with a reduction of the structural group

‘from G¢ to B at each marked point. For example, if

Gq = GL_ (@) , an element of M is given by a holomorphdc

G-bundle together with a choice of a flag in the fibre of the

vector bundle at each marked point.

There are two very different approaches here:

1) 2 - D representation theory, which involves representations
of loop groups, and the structure of Diff(Sl) (G. Segal's

approach) ;

2) theory of D-modules, as developed by Tsuchiya & Yamada

(see [Y]) in which one considers a Riemann surface as an
algebraic curve with marked points. Glueing two such spaces
together along a boundary, is thought of in this interpretation,
as considering the algebraic curve given by the union of the

two other algebraic curves with the marked points corresponding
to the identified boundaries, identified. This algebraic curve
has singularities at the identified marked points, and can be
deformed into a non-singular curve, so that as the singularity is

approached, a cycle is collapsed to a point.
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The technique used is to carefully consider what happens

dur;gg the deformation. The essential point, equivalent to
the axioms (3), (4) given here is that over spaces Zo
extend to the Mumford campactification of the moduli space of

curves.

For the rest of this lecture we will restrict ourselves

to 1). Consider a curve on I which cuts I 4into two parts,

EO and a disc D .

Any holomorphic bundle on I is trivial on 20 and on

D, since éhy non-compact Riemamn surface is a Stein manifold.
Hence, any holamorphic bundle on I «c¢an be produced by glueing
trivial bundles on ZO’ D by an attaching map along the

boundary. This is specified by an element of the loop group

IOGQ L d

Let G, = Hol(ZO,G¢) . Then clearly multiplication of

L
the attaching map by an element of Gy on one side, or by an

element of GD on the other side willonot change the iso-
morphism class of the holamorphic bundle on I .

Thus the set of isomorphism classes of holomorphic bundles
on I 1is in one-one correspondence with the points of :

GZO\LGG/GD .
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In general, moduli spaces arise from the action of a

group H on an algebraic variety A , giving,

A/H

as the moduli space. To define this so as to get a 'good'
moduli space, it is necessary to consider refinements involving
‘semi-stable points in A . For more details, see [A]. A
good check that the moduli space has been defined well, is that
the space of holomorphic functions (or rather sections of the
relevant line-bundle) on it is equivalent to, in our case, the
space of holomorphic functions on LGG invariant under the

actions of GD ’ GZ (and in general, the space of holo-
0

morphic functions on A invariant under the action of H)

Loop groups

If G 1is a compact group with loop group LG then the
tangent space to LG at same point is 1Lg, where g 1is the

Lie algebra of the Lie group G .

There is then an important central extension ig :
0 +R » ig - Lg +-0 .

In the dual situation, we would have
0 «R « (Lg)* « (Lg)* « 0 .

The space (ig)* can be identified with the set of operators

Ad/de + g

on Qo(sl;g) where (A,§) e R @ Lg and g is identified with
g* Dby using the inner product.

Similarly, one can construct a central extension of LG¢ :
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o+ + £G¢ > 16, ~ 0 .

This extension splits when restricted to GD and GZ Q
0

but the lifting maps can be changed by homcmorphisms of G G.

’
D LO

inte a@* . Thus the lifts are unique when G has no abelian
factors, but correspond to choices of a spin structure on ¢
in the abelian case, For more details see [S2).

S0 we have a principal @ ~bund le given by:
Gzo \ LGc / GD
G \ LGQ / GD

X9

and the line bundle associated in the natural way, i.e.
(Gp \LG,/G) x _@ .
20 @ D *
Define Z(I) = HolGz xGDxmx(LGG’c) . Thus Z(g)

consists of those fugctions:

f:EGc - @

which are holomorphic, and:
f(gx) = gf (x) ¥g € GZ x GD x @ .
0

Thus

G

a T Zo
2(L) = HolGDx'ax (LGg /Gg)
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G

where (LGQ,G) Lo denotes the part fixed by GZ .
0
Now the space

~ ~ o X
LG/G = LGG/G = LG¢/¢ X GD

plays the role in loop group theory of the flag manifold:

G/T = GQ/B

in the theory of finite dimensional affine groups. Namely,
irreducible representations of loop groups come from holo-
morphic sections of the above line bundle.

In particular,

is called the basic representation of LGc r and thus:

2(Z) = (part of basic representation of LGm invariant

under G. ) .
Lo
From this point of view, we include labels as follows. To
include a label at a marked point x , we put a disc around

X , and then there is a natural map:

GD - G¢

given by evaluation at the centre. This acts on V , and we

generalise the basic representation of LG¢ to:
EHOlGDx¢x (LGG::'V) ]

4 representation induced on LGC fram Vv . The generalised

version of Z(I), for one label, is then:
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-~ G
; Zo

- For a space X with £ marked points, we describe the

associated moduli space as:
2 L
Gzo\(LGG) /(GD)

where ZO is the part of [ outside the & discs. So

(LGc)z is a product of 2 copies of factors IG and

c

Gz corresponds to a trivialisation outside the discs, (GD)
0

corresponds to a trivalisation inside the discs. So we get

L

a representation:

G
Z(z,vl,...,v.z) = (x-:Vl 2 ... 8 EVro)

where Ev denotes the space of holomorphic functions on
~ i
LGG with values in Vi r 1lnvariant under the action of

h

T x GD for the it

disc.

Remark. In comparing the loop group description of the vector
space Z(Z,Vl,...,vl) with the 2-dimensional gauge theory

point of view the following remark may be helpful, The space

A of G-connections on I <can, once we fix a camplex structure
¢ on I, be identified with the space C of coamplex structures

on a fixed GS-bundle over £ . The gauge group G = Map(ZI,G)
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acts on A and its complexification G€ = Map(Z,GC) acts
holamorphically on C .  The natural line-bundle [ on

A =C is holamorphic and acted on by G€ . The vector space

Z(L), at level k , is the space of Gc-invariant (or
G-invariant) holomorphic sections of Lk . Given any finite-
dimensional representation of G we can equally well look for
the space of sections of Lk which transform accordingly.

In particular we get representations of G from marked points

Pi by the evaluation G + G and then using the representation

Vi of. G . Thus we can define
Z(Z,V)00s.,V)) = Homg (V)@ .2V, ,T (LK)

where P(Lk) is the space of all holomorphic sections of Lk
over (C and quG stands for the space of G-equivariant
linear maps. The approach adopted in this section amounts
essentially to cutting out discs around the marked points and
taking boundary values of everything. Thus the 2-dimensional

problem is reduced to a l-dimensional one, which has some

technical advantages.

Verlinde property

To end, we shall explain how to obtain the Verlinde
property (see (V]) from this point of view. Consider a

surface I cut by a curve C into two halves:

We assume I has & (>0) marked points, and C is chosen
so that it does not pass through any of these points. Let

£1+ %2, be numbers of marked points on Ly L, .
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2

Any function on the boundary curve C = —821 = 3;2 can

be written as a product of holamorphic functions defined on

the two sides Zi, Zé s0 long as holes exists on at least

one side. Here, 20 is that part of I outside the discs,
and:

3¢
il
t~

u z!

Thus LG, = G " Gy, ]
2
(ii1)

L2

and Gz =G n G
0

Denote by El, E2 the spaces E, ® ... 2 E

2 ... 2 E21+k_ zespectively.

2' ’ E ]

E
£1+l

We have:

G

2(Z) t(ElQ...QEzl) g (E, +19°'-9Ezl+k’}
1

X
2,%z,765,*¢C

Map(Gc;ElﬂE )
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where 'Map' denotes the space of holamorphic maps fixed under

the action of Gz X GE X Gx . This action is induced from
1 2
the action of G):l X G22 cn G¢ by

-1
(93:92) .93 = 9,959,

which is restricted (by LU]), and has isotropy group G So:

z .

G

N G. x
Z(£) = (Hol, (LGy) ® El o 52} 1L L2

where Holk denotes the space of holomorphic functions:

~

£f : LGE - Q@
such that
k X -
£f(uy) = u"f (y) for ue @ c LGG .

The Peter-Weyl theorem for loop groups (see [S2]) states

that there is an inclusion:
Hol, (LG,) “+ ® E* @ E (iv)
k a E

where E runs through the positive energy irreducible rep-

resentations of level k . The map is given by:

E* 2 E » Hol(LGa)

(n@g) -+ (g + <n,g-5>) .
This defines an inclusion (iv) with dense image, which induces

an isamorphism between the parts of the spaces on either side

of (iv) fixed under the action of:
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for any surfaces Zl, 82 such that:

- - <l

Thus

G XG
Z2(f) = (6 E* @ E ® E- @ g%} 21 L2
E
G G
=@ {E* @ E'} 'l g (£ g2} L2
E
since Gz ’ GE act independently on the two
1 2
halves of E* @ E 2 El 2 E2
= @ Z(ZI,V*) 2 Z(EZ,V)
E
1 Gy
since when E = E,, Z(I,,V) = (E' ® E,) 1,

Hence we have derived the Verlinde property.
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Seminar 5

“Nigel Hitchin: Reduction to the Abelian case

The aim of our programme is to associate to a canpact
surface I , compact Lie group G and integer k (level),
a finite dimensional vector space 2(g) which satisfies
certain axioms, as described in previous seminars.

We recall that 2(I) 1is, strictly speaking, only well-
defined as a projective space.

Choose a complex structure on 1§ . This makes I into

a Riemann surface. One then considers the moduli space:

M = Hom(m, (£),G)/G (*)

where G acts on Han(nltz),G) by conjugation. A complex

structure ¢ on I induces a complex structure Mc on M,

where the suffix o denotes the dependence on the complex
structure, By Narasimhan—Seshadri—Ramanaéhan theory, M, can be
be interpreted as the moduli space of semi-stable G®-bundles.
Thus M has a topological definition, given by (*),
but it acquires a complex structure when one is put on I .

We can think of Hom(m(Z),G) as the space of flat G-

connections, and thus M as the space of equivalence classes

of flat G-connections. To a flat G-connection, one can
associate a covariant derivative. Taking:
G = U(n)

the unitary group, for simplicity, we see that a f£lat G~connection
is associated to a rank n vector bundle V over I . Given

a complex structure ¢ , we obtain a 3 operator
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EN no(z:V) - no'l(z:V) .

We can also consider the determinant line bundle:

L = det(3)
over the moduli space Mb' Then define
= g%m .k
ZO(Z) = H (MG,L )

the space of holomorphic sections of the line bundle Lk

over M ., In fact, if deg V is appropriate, so that .
index 3 = 0 then there is a natural section of L vanishing
on the subspace of M0 for which there is a non-trivial

solution, s, to the equation
3s =0

i.e. for which V has a non-trivial holamorphic section.
This defines a vector space ZG(Z) associated to Zc ’

k and G . To eradicatethe dependence of this vector space

on the complex structure ¢ , our main aim is to produce a

flat connection on the space of ZG(E)'s over Teichmuller

space (the space of camplex structures on I modulo the

action of identity component of Diff+z) .

rdt)

S
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Remark. The complex structure on the moduli space

induced by a complex structure g on I depends in fact

onlyvon the isomorphism class of g . For example for

G U(1l) the canplex structure of the Jacobian is determined

directly by the period matrix of ¢ . The isomorphism

20 - Zc, to be used here should be restricted to those homo-
topic to the identity so that the underlying space | of
(classes of ) representations nl(Z) +~ G is fixed. For general
G recall that for a representation o @ ﬂl(Z) + G giving a

point of M the tangent space Ta to M:at a 4is given by

=
T, = H'(I,Ad_ ()

and the complex structure o on then induces a complex

structure on Ta by the identification
1 0,1
H»(Z,Ada(G)) + H (Z,Ada(G)) .

This shows that isomorphic ¢ give the same complex structure
Tcl . Thus we have a natural family of complex structures on
M parametrised by Teichmiiller space and the associated family
of vector spaces Zc forms a holqnorphié vector bundle 2Z(ZI)
over Teichmiiller space.

Since .Teichmiller space is simply connected, once a flat
connection is defined on the above vector bundle 2(z), we
can identify, by parallel translation, any two vector spaces
corresponding to different complex structures.

In this lecture, we shall give a definition of such a flat
connection. It arises by associating to I, G, a family of
abelian varieties (algebraic tori) . For G = U(n), these

are Jacobians of curves. We shall show how one can define a



connection in the non-abelian case, when one knows how to
define a flat connection for the case of G = U(1) (abelian
éaseT; Thus this has reduced the non-abelian case to an
abelian case. However the reduced system is no longer over
L, but over an n-fold covering of I .

Thus we have translated a non-abelian problem on _I to
an abelian problem on a (higher genus) covering space of [ :
there is a trade-off between complexity of the base, and the
abelian nature of G .

Note that the discrete group T (Z) of components of
Diff (Z) acts on Teichmiller space and on the bundle 2Z(I).
The £lat connection we shall define on 2(I) will not be
invariant under T (L), although the induced projective connection

will be invariant.

Method of construction

The construction of the flat connection on Z(I) over

Teichmiller space uses 'Higgs bundles' (see [N2]). These are

b}

points (V,¢) where:

V = holoamorphic vector bundle ;
$ = Higgs f£ield .
For G = U{(n) , this means that ¢ ¢ HO(Z;End Vv 8 K) where

K is the canonical bundle.
Such a pair (V,$) is said to be stable according to a
condition which is the analogue of the stability condition for

vector bundles.
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We can consider the moduli space Mo of stable vector
bundles Vv . Consider a smooth point in Mc . The tangent

sp&gé at such a point in M is naturally identified with:
Hl (z;End v) .

By Serre duality,
H' (Z;End V)* = BO(5;End v » K)

and so we think of ¢ as a cotangent vector to Md .

+ where M 1is the

Then

we can consider T*MU as a subset of M

moduli space of stable Higgs fields (v,¢); and Mo is the

moduli space of stable bundles Vv . The camplement of:

T*M, = M
has codimension at least g . So TEMQ is a large open
subset of M . Think of M as like the cotangent bundle of

Mc r but slightly enlarged.

The large mcduli space M is a holomorphic symplectic
manifold. That is, there éxists a natural holamorphic skew
form which is non-degenerate and restricts on T*Mc to the
canonical skew. form. In fact Hértog's theorem can be used

(for g 2 2) to extend the canonical 2-form fram T*MU to M

Consider det(r-9) = An + alxn-l + ... + a, . Since

d e HO(Z;End V 2 K)

we have a; e HO(E,Ki) . Note in particular, a, e HO(Z,KZ),
that is, a, is a quadratic differential. The space HO(Z,Kz)

is the cotangent smpace of Teichmiiller space.
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So, given any (V,®¢) the characteristic polynamial of
® gives a collection of differentials of different degrees,

given by the coefficients a; :

This map has same important properties:

1) X 1s proper ([M is not compact, although M& is compact
(1f one adjoints singular points); but

M is compact in fibre directions of the above

maps].

2) The generic fibre is an abelian variety.

Here, an abelian variety refers to a complex compact torus
which is also an algebraic variety. M is a holomorphic
symplectic manifold and it can be checked that the number of
functions in x is precisely % dim(M) .

These functions are Poisson commuting, and there is a
general theorem, on integrable Hamiltonian systems, which states
that in this situation, the generic fibre is a torus.

Now det(\-¢) = 0 defines an algebraic curve:
g s T*%

since ¢ 1is a matrix valued l-form, and )\ is a holomorphic
form. If we think of the cotangent space T*jy as fibred

over I , then on a generic fibre,
det(A-¢) = 0 (1)

has n roots : we think of )\ as a parameter in the fibre

direction:



81

|

" A

1

| // T
m roots of (1) |

Lo | .

|
cotargent sf:occ at P
[}

. =4

Hence I 1is an n-fold branched covering of §

Now Kker(ri-¢) is generically of dimension one, and

~

defines a line bundle U over L. It is not hard to see

that sheaf theoretically,

TLU* = yv*

where m*U* is the direct image sheaf. This means the fibre
of V* at a generic point P of I , is the direct sum of

the fibres of U* over the n points in n-I(p). The

~

equation of § is given by the coefficients of the character-

istic polynomial. The only other data involved in an element

of M 1is the line bundle U .

M, M

‘\\\‘ abeliawn
vonr e.\'n

-3
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The generic fibre is Jac(E) r a non-singular abelian
variety. Scme fibres may be singular: they occur when E
acqu;fes singularities, or even becames reducible.

If deg U =0 , then the trivial bundle gives a cross-
section of M over W . One should think of the fibres of
M as groups, and not merely as inert abelian varieties. In
the case deg U # 0 , we do not get a unique canonical cross-

section, but we still have a finite choice of cross-sections.

Since T U* = V* , we have

1%(z,v*) = 80%(z,u*) .

~

So if V* has a holomorphic sectlion, so does U* on Z.

Thus the line bundle on the moduli space of bundles V*, i.e.
L = det(3)
has sections vanishing where:
0
H(Z,v*) #0 .
This corresponds to a line bundle U* for which :
0,5 ra
H™(Z,U*) #0 .

The locus of such line~-bundles in the Jacobian of line bundles
of degree ; - 1 1is called the 8-divisor. {Narasimhan has
made a detailed study of this situationl].

The determinant line bundle L on Mb ; pulls back to
M, and is such that its restriction to Jac(%) corresponds

to the natural 8-divisor on Jac(I) .
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Abelian theory

Consider an abelian variety A of dimension g which is
priﬁEipally polarised. That is, there exists an integral

cohomology class of w of type (1,1) which is positive and
such that

6 W9
Ja b7

For example, a Jacobian satisfies these requirements.

Suppose Zij isa gxg camplex symmetric matrix, with
1m Zij > 0 . Then the g x 29 matrix:

(x i 2)

defines a lattice A, since its columns are 2g vectors in

@9  which are linearly independent over R . Consider the

abelian variety:
ed/n .

Then for each 2 satisfying the above conditions, we have

shown how to construct an abelian variety.

Y ([’,3//\ = growp

SP*°'°F 71;
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We have a space of abelian varieties of dimension g ,
fibred over the space of complex symmetric matrices with

positive imaginary parts (this is called the Siegel upper

half space). Every principally polarised abelian variety
corresponds to such a 2 : that is, we have a fibration of
the space of all principally polarised abelian varieties over
the Siegel upper half plane,

Now define, for each k and u ¢ €9 :

8, (u,2) = ¥ eTi/k< 2,28 2mic<L,u>

- raf
22m mod k

where m ¢ (Z/k)g . This is the classical theta function.

Properties of theta functions

1. Fix 2Z. Then each 8, can be interpreted as a globally
defined holamorphic section of Ok , where © 1is the line

bundle generalising the classical 8-divisor of the Jacobian.

2. As m varies, we obtain k9 different 8-functions. By
the Riemann-Roch theorem 09 has %9 holcmorphic sections.
The k9 8-functions obtained as m varies are a basis for
the sections of 09 . Thus, for £ixed 2Z, all sections are

linear combinations of em‘s.

3. em satlisfies a differéntial equation:
2
378
1 m Jd8m
T o = i (14§, ) (ii)
k auiauj ij azij

Equation (ii) 4is similar to a heat equation in one
dimension. It specifies the variation of @ ;n the z-direction
in terms of that in the u-direction, and hence effectively
defines a flat connection on the bundle over 2 whose fibre is

the space of holomorphic sections of '@k .
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Consider this vector bundle over the Sieqel upper half
space. By the above, this is a rank k9 vector bundle over
the base.

The flat connection is defined so as to make the 8~functions
qn(u,z) into covariant constant sections over the Siegel upper
half plane, There are enough constant sections to give a
completely flat connection.

The left hand side of (ii) is a differential operator.

If it had been a matrix transformation, then one would immed-
iately recognise (ii) as defining a connection. The fact that

the 8's satisfy (ii) implies that they are covariant constant.

Alternative approach

This definition of the connection does not appear to be
independent of coordinates. To see that it is, we shall give

another way of construction the connection. We have an exact

sequence:

0 > L@ szq:; > J‘Ez.(L) fJi‘.(L) +0

where Jg(L) consists of holomorphic 2-jets of sections of

L along fibres (i.e. given by the first three terms of a



Taylor series expansion). The natural map:
22 1
JF(L) -+ JF(L)

given by "losing one of the terms of the Taylor series expansion"
has kernel L @ SZT§ ¢ Where SZT§ denotes the symmetric square
of the cotangent bundle. There is also an exact sequence given

by:
1 1
0L ® Tg - J° (L) - JF(L) + 0
where the map:
Jh(L) » Jp(L)

is given by restriction to the fibre, and has kernel consisting

of those jets vanishing in the fibre direction. TE ’ T;

denote the cotangent bundles to the base and fibre respectively.
However, here the base is the space of symmetric matrices,

and the tangent bundle of each fibre is trivial. Thus:

2

T* = 87T

* *
B F

(in fact this is the Kodaira-Spencer map). Hence we have:

o -+ res’rg - a2 - Jg(L) + 0
natural || Il

0 - Loty - gl - J;(L) - 0 .

One can show, by carefully considering the two extensions,
that Jg(L) = Jl(L) . The existence of a differential equation
satisfied by the 6's 1is equivalent to the statement that an

isomorphism:
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2 ~ o1
Jp(l) = J° (1)

exists. This isomorphism is not unique; in fact any two such
isomorphisms differ by a differential form. coming from the base.
This is equivalent to the statement that the global connection
does not exist canonically on the vector bundle, but only on
the projective space.

Whichever way one looks at it, ultimately the 8 -function
differential equation (ii) needs to be used. So we have a
family of abelian varieties (Jacobians in G = U{(n) case) and
a flat connection over this space, Restricting to M over

W , we obtain a flat connection on the direct image of corres-

ponding line bundles on W .

Proposition. A key fact which must be proved is: If a section

on Mc is pulled back to the cotangent bundle, and then extended

by Hartog's theorem to a section on the whole of:
.
M>oT U,
then it is covariant constant in the horizontal direction:

\ oy

dlruH«s in whack
S!t.‘ﬂ'tw to be c.mlanan"

c / f—cﬁsh-)t VLLO.

O yweuuo
>3
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MU is a family of abelian varieties, parametrised by the
vector space wo . The suffix ¢ has been introduced to
ind;gate dependence on the complex structure o . We have a
flat connection on the vector bundle over Wo + given by the

direct image sheaf.
As 0 is varied, that is, the modulus of the Riemann
surface is varied, the abelian varieties will vary in a bigger
subspace of all abelian varieties.
Thus the abelian variety will now be parametrised by:
(i) an element of Teichmiller space, giving o ;

’

(ii) an element of:

o abelian yonehes

iru&

Teichmilter \ S B
L

wc- = é H°(§«5 K;)

L=
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Each fibre is an abelian variety, and we can put a flat
connection on this big bundle, since Teichmiller space ig
simply connected and thus SO is the base. The restriction to
Wc is the same as the connection imposed before, and thus we

have a flat connection in oc-directions also:

Theorem. A section form M {pulled back from Mc to T*Mc

and then extended by Hartog's theorem to M) 1is covariant

constant in the wc-directions.

Thus a section of the bundle HO(MO,Lk) on Teichmiller
Space has a covariant derivative which vanishes in the Wcﬂdirection
and hence is well~-defined on Teichmiller space, giving the
required connection.

The argument that proves the theorem can be applied locally:
We can see from the differential equation (ii) that we only need
the 8-function and its first two-derivatives in the u direction,
to determine its first derivative in the parameter direction,

and thus the whole © function for different ¢

So consider M; +» the moduli space of stable bundles over
a point in Teichmiller Space, as a fibre of a bundle over

Teichmliller space:

jikkuﬂbrvpng

! / Cspecifiod by 2.
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We have seen that there exists a differential equation
relating first order derivatives with respect to 2 with
second-order derivatives in the moduli space direction, of

8~functions. Such a differential operator gives a symbol:

2

L @ sr+m + 5%(z;x2) .

Here HO(Z;KZ) is the cotangent bundle of Teichmiller space;
and the above symbol is a holomorphic quadratic form on the co-
tangent bundle of moduli space: in fact it is precisely the
ccefficient a, 1in the characterisﬁic polynanial’ det(A-9) ,
for G = sU(n) .

The differential operator defines a connection, which is
flat because of the existence of sufficiently many 8 -functions.
Generally, when one has a situation of the moduli space of
vector bundles, it is rather difficult to actually find the
symbol.

In the case of a Riemann surface with marked points
Xyree+,Xy- and representations of G attached to each point, we
must replace M_ , the moduli space of bundles by the moduli

a
space of bundles with "parabolic structure".

al eaclh warked
péq'ufd o fe?f:tzhh”eh

of— G i 33-10.&.
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Essentially we are loocking at holanorphic bundles over

which have areduction to a Borel subgroup at each marked point.

Stabiiity is defined in terms of a degree, defined as in the

case without marked points, except that a contribution is

required from each of the marked points. (See Mehta & Seshadri).

Generalise Higgs bundles so that

¢ = meromorphic section of K ® End V having simple poles

at XyreeesXy wWith residues which are nilpotent (in
nilpotent part of Borel subalgebra)

We can then imitate the whole procedure above. Applying this

to a sphere we can actually derive from these methods, a formula

for the flat connection, which is in fact already known: the

Kohno connection (see [K])

A bundle on 52 is generically trivial, and so we can
write:

. Nidz (z-xi)

S
|
Il M o

3

where Ni are nilpotent, and:
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dual to a 2-form is a l-form i.e. *FA is a 2-form. However
A 1s an affine space, and so its tangent space at any point

consists of Lie algebra valued 1-forms.
Thus F is a l-form on A . Its value on a tangent
vector to A is given by multiplying by FA and integrating

over M , contracting on the Lie algebra variables. Define:

@
[l

group of gauge transformations

Map(M,G) .

Clearly G acts on A ; and F 1is G-invariant, Moreover,

in the fibration

A
+G
A/G

F vanishes in the vertical (fibre) direction, and thus comes
from the base,. So F is a well-defined l1-form on A/G .
Also dF = 0 ‘f.e. F 1is a closed l-form. Thus one

would expect F can be expressed in the form:
F = df

for same function £ , where £ is a G-invariant scalar valued
function on A determined up to a constant. One can fix this

constant by requiring that:

on the trivial connection.
This works if A is simply connected. Otherwise, one can

only expect £ to be locally defined, and globally, it will be
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multi-valued. In fact, A 4is not simply connected, and f
is well-defined only up to integral multiples of some constant.

This £ is the Chern-Simons functional. It is well-defined

modulo integers, and is G~invariant.

Explicit formula

Define:
L(A)=-51—J Tr(A A dA + 2/3 A A A A A)
L FYY

where A ¢ A . Here Tr stands for a suitable normalization
of the Killing form, For SU{(n) it is the standard trace.
Here | 1is a multiple of £ the notation L has been used

SO as to be consistent with Witten's paper.

One now verifies that L is invariant under the subgroup:

Go G

given by the connected camponent of G containing tﬁe identity.

Here G, G0 differ by a copy of Z ; and under a-generator of
G/GO, L is not invariant: it pick up a multiple of 27,
Thus eikL(A) is a well-defined function of A ¢ for

k ez . Witten's invariant of 3-manifolds is now defined by:

Z2(M) = J exp(ikL(A))DA
A

This is a very elegant definition provided one believes

that the integral makes sense! More generally, we consider a

closed oriented curve:
CeM

and £ix an irreducible representation, A , of G , in addition

to the data required previously: G,k .
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A connection A on M then defines a parallel transport
along any curve in M . In particular, around C€ , one

obtains a monodromy element Mon.(A).  Then:

TrAMonC(A) = WC(A)

evaluated by taking the trace in the representation A . Here

WC(A) is known as a Wilson line. Define:

2 (M,C) = J exp (kL (A)) “Wo(A)DA .
A
This is a generalization of 2Z(M) . In physicist's language,

Z(M) = <1>

Z(M,C)

<WC(A)>

where < > denotes the expectation value.
Of course, one can similarly deal with several components
Cl""’cr » to each one associating a different irreducible

representation of G . Then

ZM,Crysee.,C) = <W, (A)W., (A) ... W
1 r C1 _C2 Cr

(A) >.

It is important to notice that the above definitiors involve
no metrics or volumes. This is an indication that we have

defined topological invariants.

Stationary phase approximation

To see if the above definitions make any sense, we first

of all consider the stationary phase approximation k + «w, One

should think of the parameter k &as something like 1/h where
h 1is Planck's constant. The classical limit comes fram h + 0 .
For the rest of this talk we shall only be concerned with

Z(M) : the generalisations Z(Mrcl,...,cr) are similar, and only

slightly more complicated. There is enough complexity in 2(M)!
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In the stationary phase approximation, the daminant part
comes from -the stationary points of the exponent. That is,

at points where:

dL = 0

=> FA = 0 , by definition of £

i.e. A 1is a flat connection and thus corresponds to a representa-

tion of nl(M) :
o ﬂl(M) - G .

Then, the stationary phase approximation to zZ(M) gives a sum

of contributions, one from each of the representations ¢« .

Thus we need only look at the integral for 2z (M) locally.

Suppose o is a flat connection, and:

where B8 is "small" .

Then L(A) = L(a) + %7 I Tr(BAdaB)-bcubic terms.

M
There are no linear terms, since dlL = 0 at Q. Here, daB
is the covariant derivative of B with respect to the connect-
ion a .

Define Q(B) = %7 I Tr (B A das) . This is the quadratic

M .
term in the expansion of L(A) above. One can think of Q'

as a quadratic form in an infinite number of variables. Here:
Q(B) = 4m<p,*d B>
where <, > 4is the inner product on l-forms:

<a,B>=TrJ o A*g
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Thus Q 4is given by a self-adjoint operator, *da' This
Q 1s related to the de Rham complex with respect to the coefficient
system given by a . Let g, be the flat G-bundle on M given
by the connection a« , with fibre the Lie algebra g - Then

we have a de Rham camplex:

a a d
0 a 1 o 2 a 3
Qa - ﬂa -+ Qa -+ Qa .
Since o 1s flat, di =0 .

We shall assume for simplicity that a is a non-degenerate

representation; 1.e. that the above complex has no cohomology:
H*(M,%) =0 .

0

since H2, H? are dual to HY, H! , these conditions essentially

reduce to:

0 =0, ul=o0.
Here HO(M,ga) = 0 corresponds to o being an irreducible
representation and Hl(M,ga) = 0 corresponds to this representa-

tion being isolated (since dim Hl 4is essentially the number of

deformation parameters of the representation).

0

In this case, Q(8) is degenerate on dﬂa

*
, 8since da

vanlshes on the image of
d : %+t .

This corresponds to the fact that £ 1is invariant under G;
dng corresponds to infinitesimal gauge transformations. Factor-

ing out dng r we find that Q is non-degenerate on nl/dﬂg .

Classical Gaussian Integrals

We gtart with the one-dimensional integral:
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J" ax ux?_ 1

=T C/E

Analytically continuing, we get putting u = ix

o 2 \
I §§>é+ikx = |A| £ exp[%% sqgn A} .

—oo /77
The n-dimensional form of this is as follows. Suppose Q

is a non-degerate quadratic form on KpreoorX, o Then:

J exp (i Q(x)) —%;7 = |det Q|-% expl%% sgn Ql .
U

This holds for non-degenerate quadratic forms only (no zero
eigenvalues).

Suppose we have the action of a campact group G (e.g. Sl)
on a Euclidean space, X , and Q(x) is a G~-invariant quadratic
form. Take a transversal slice of the space for the G action.
We must take into account scme form of Jacobian: 4in fact, the

appropriate quantity is the volume of an orbit.

id § X
(2

Thus G acts on X . At a point x ¢ X we have a maps

G + X

g + g(x) .

This gives a map, B , from the tangent space of G at the
identity to the tangent space of the orbit at x . The Jacobian

of the map corresponds to the volume of the orbit. Thus:
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- vel, of orbit
(det B*B)Y m Soof oerb

is the appropriate scaling factor.

Hehce we obtain the modulus

(det B*B)*

(1)
| (det Q)|

and phase factor exp I%% sgn Ql . (ii)

Application to our situation

In our case,

w
(l

(infinitesimal map from Lie algebra to tangent space
of manifold)

= . of
= (da : Q}

= * - *
> B*B dada

1
-+ Qa)
0
a ?

0
o

A the Laplace operator on

Now Q is given by *da on Ql/dn0 . Consider the

operator:

Lo=d*+ *d
od | This 1s @l @ 23 ; by duality,

one can replace 93 by Qo » and thus L can be thought of

acting on odd forms @

as acting on qf e ol . L is closely related to Q .

We can think of Qé =V ® W where:

- . a9 1
Vv = Im(da : ﬂa - Qa)
and W = v* in n; . Then Q acts on W ; and I acts on

2 evew by:
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{o B 0
B* 0 0
0 0 Qg

o4
Y S —

. y k
[ | * [T %&m
imd =V (l'mdu.)l--‘-w

A quadratic form of the type:

.

always has zero signature. Of course in this case, we have

not assigned any meanings to det Q or sgn Q; but in any

"sensible" definition one would hope that:

sgn L =sgn Q

|det L| = (det B*B) |det Q| (1i1)

So, if we can make sense of det L, det B*B , then we can

write down the local contribution to the stationary phase

approximation.
Here we have left out the level k ¢ see later. In
finite dimensions, such a factor changes the resultant integral

by an appropriate power of k , which we will see in our case

is zero .

Regularisation of determinants and signatures

Let A be a Laplace operator, with positive eigenvalues 2

Then we can define the zeta function:

Tr A™S = £ 275 = ,(g)
A
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The function t{s) 4is a maramorphiec function, defined in the
first instance for R(s) sufficiently large. It can be
analytically continued to the whole complex plane, leaving
isolated poles. Here s =0 4is not a pole, and ¢(0),z'(0)
are well-defined.

Formally, &(0) 4is the dimension of the Hilbert space.
In odd dimensions, §(0) =0 .

Ray-Singer definition det A = exp(-z'(0))

Formally, one sees that:

5'(0)

-s
§ d/ds(x )| o

Z (-log A)
A )

and thus exp(-z'(0))= NM(A) = det A .
A
The above definition makes sense a8s a real number, and is
used by physicists to make sense of Gaussians occurring in QFT.

We wish to do this for the Laplacian with twisted coefficients,

2d . This makes det(ad) well-defined, and thus gives the B*B
term.
Similarly, L2 = Ao ] Al , the direct sum of the Laplace

operators on 90, Ql . Thus

(det L)2 = (det Ag) . (det Ai)

and hence |det L| is well-defined, giving |det Q|, from
(iii) .
Thus one can evaluate (1), obtaining:
0%
I
(det A7) *

E— ————————

(det A

QR IR
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Ray-Singer proved that:

(det A0)3/2
a

Ta =

1,%
(det Aa)
the square of the above expression, is independent of Riemannian

metric. The Riemannian metric is used to obtain a *-operator,

which is necessary to make sense of the divergent quantities.

To prove independence of metric, one differentiates T

with respect to the metric as parameter, and shows that this

vanishes. Ray and Singer conjectured that Ta was the classical

Reidemeister torsion. This conjecture was proved (independently)

by Cheeger and Miller. This is the first concrete encouragement

for the Witten formula for 2(M) : the limit k + » can be

regularised, and the result is metric independent. This observ-
ation relating Ray-Singer torsion to the abelian Chern-Simons
theory was made by A. Schwarz about 10 Years ago, in the Abelian

theory (and it extends fairly easily to the non-Abelian case).

Phase factor

We now consider the phase factor as given by (ii). This
is given by (sgn Q), which is related to (sgn L) . This
situation was studied by Atiyah-Patodi-Singer,

Consider the situation where L is a self-adjoint operator

with both positive and negative eigenvalues, and:

Define:

n(s) = & (|A]”° sgn 2) .
A#£0

Once again, 1n can be analytically continued, and n(0) is
well defined. Formally,
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n(0) = (no. of +ve eigenvalues) - (no. of -ve eigenvalues)

and it is thus natural to define sgn L = n(0) . Note however
that this quantity is a real number, not an integer. Thus the

resulting phase in (ii) will not be a root of unity in general.

Then we have:
sgn Q = n,(0)

where Ny is the n-function associated with La . We now have
to investigate how sgn Qa depends on the metric.

Here o 1s a representation of ni(M) ¢ Wwith no cohandlogy.

Consider the trivial representation, and put
n,(0) = n (0) = ny(0)

where g = dnl and ny corresponds to ordinary differential
forms, without group fibres; d 1is the dimension of our Lie

group. Then:

1) is independent of metric

2) (0) = 4/7n 8(G) L(a)

Ny
nd.
where §(G) 1is a numerical invariant of G (it is n for
SU(n): 4in general it depends on the value of the Casimir in
the adjoint representation) and L is the Chern-Simons functional.
Thus we obtain from the stationary phase formula:
L (contrib., at a) = A(E)
[0 ]
where A 1is a fixed multiplier, caning from nd'! A contains
the only metric dependence in the formula; E is metric inde-
pendent. The phase factor is independent of G and the chosen
representation, but depends on the choice of ground metric. The

above formula for ;a(O) leads to a shift
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oikl{a) _ i(k+8)L(a)

in the exponential multiplier arising from the value of the

action at the critical point o . Such a shift is well-known

to physicists in various guises.

Comments

1) If we had succeeded in making an expression for Z(M)
independent of metric, we would have shown, for large k , how

to make sense of the determinants and signatures by regularising.
This is very nearly true, but not quite - we have a phase
‘ambiguity.

All the techniques in this theory have counterparts in the
Hamiltonian theory. The phase ambiguity corresponds to
anomalies and central extensions in the Hamiltonian theory.

This relation with the Hamiltonian theory was developed in some

earlier ideas of Witten and rigorously proved by Bismut and Freed.

2) We have seen that one can carry out the stationary phase
approximation, giving an answer in the large k limit. The
question is: can we make sense of the functional integral for
finite kX , 4in a rigorous way? It is fairly clear that a
direct attempt at the analysis is extremely difficult,

The only other way would seem to be to triangulate M ,
and then try to find 2Z(M) by purely combinatorial methods.

Such a programme would involve thinking of connections as

assignments:

edge -+ group element
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(discrete analogue of connection). Using a discrete analogue
of gauge theory, one should express the Chern-Simons functional
in a purely combinatorial framework. If this were possible,
then the functional integral would make sense: one would be
integrating over some power of G . One would then have to
check that this was a topologically invariant definition etec.

Some encouragement comes from the fact the the Reildemeister
torsion already has a combinatorial definition in terms of
triangulation.

The first question to be answered is how to define the
Chern-Simons functional for flat connections (flat meaning
product 1 around any triangle in the triangulation of M), 4n
purely combinatorial terms.

These problems are likely to be related to problems in four
‘dimensional manifold theory. In particular there is an interest-
ing formula of Gelfand for the signature of a 4-manifold as a
sum over the vertices of a triangulation of some fairly complicated
expression involving angles of intersection of faces at vertices.

If such a combinatorial approach to the Chern-Simons theory
is possible, it should be related to the 2 dimensional statistical
mechanical models which have been used by Kauffman and others in

relation to the Jones polynomial.
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Seminar 7

Ruth Lawrence: Computing the Invarilants

So far in these seminars, we have seen how the functional
Z has been constructed. In this seminar we shall see how

invariants of knots, and of 3-manifolds, can actually be calcu-

lated.

Recall that, in Witten's theory, we have functor 3 :

(framed) surface [ + 2Z2(L) , a finite dimensional vector

space
(framed 3-manifold M -+ Z2(M), a vector in 2(I)
with aM = ¢

which request as initial data, a campact Lie group G , and

an integer, k , the level. More generally, if (framed)

marked points Pl""’Pn are given on I , then we associate

a finite dimensional vector space :

Z(Z;Pl,oo-'Pn)

so long as data of n representations of G are given, one

representation Ri of G being given for each marked point

Pi L]
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Also, 1f M 1s a 3-manifold containing an oriented

(framed) curve, L , with:
M = [

aL

{Pl,ooolpn} S_ z

then we associate to M, L , a vector 2Z(M,L) in the vector
space Z(Z,Pl,...,Pn) + So long as initial data is given: a
representation of G for each component of L. When such
initial data is given, with the pair (M,L) , the vector

2(M,L) lies in the vector space associated with the surface

L and marked points Pilrece,P where the representations of

n [4

G associated with the Py being given by those associated with

the components of L .

Thus, for each i , Pi must be an end-point of a camponent,

(o of L . 1f Ri is the representation associated to Ci ’

i ’
then the data given on £ associates to Pi the representation

if P is at the end of Ci

I'l-‘-

i

i
| aded

if Pi is at the beginning of Ci
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where R denotes the dual representation to R .

If L 4is a knot, it can be thought of as embedded in
s3 r and then:

z(s3,L)
is a vector in:
z(as3,01) = 2(¢,4) = €

i.e. Z(S3,L) is a complex number, an invariant of the 1link

Les3 ., Similarly, at the other extreme, if M is a closed
manifold,

Z2M,$) = 2(M)

is a vector in Z(3M) = 2(4) =@ i.e. a complex number.

In this lecture we shall investigate various properties of
those invariants of closed manifolds, and of links, obtained by
chopping up manifolds in different ways.

Invariants of links

Consider a 1link L ¢ s3
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There are two ways of viewing this situation.

1) .Consider L as specified by a plane projection, with over
and under crossings. Pick one of these crossings, and consider
cutting out a small disc around this crossing from the plane
projection. This is equivalent to cutting the pair (S3,L)

with a small sphere L which cuts L 4in precisely four points.

%

-y

2) Consider the link L as the closure of some braid, and then

cut (L,s3) by planes as shown below:

—

b SN

Nnne
slices

' D

We shall now consider these two points of view in turn,
and fraom each, we shall obtain interesting results about the

knot invariant 2(53,L).

Skein relation

In the general theory, if I cuts (M,L) into (M,,L;)

and (M2,L2), with:
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3L, = 3L, = (PyreesP ) ok

thenﬁ,(Ml,Ll) distinguishes a vector Z(MI’LI) in
Z(E,Pl,.;.,Pn) .

also Z(Mz,Lz) is a distinguished vector in:
Z(T/Py,eee,P ) = Z(L/Pysees,P)*

where T is I with opposite orientation.

Then 2(M,L) can be calculated by:
Z(MIL) = <Z(Ml lLl) rZ(leLz) >

where <,> is the natural contraction.

However, in the case of :

L = g2

with marked points Pl""'Pn + and associated representations

Rl""’Rn ¢+ the associated vector space is given by:

Z2(2) = (R, ® ... 2 RS
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(where the superfix G denotes the invariant part) for suffictently
large k . When k 1is smaller, 2Z(I) may be smaller than the

above ‘space.

Thus, in particular, for two marked points Pl’ P2 '

2(L) = {o if R; # R}

a if R, = RE .

For four marked points, with associated representations

R R2, RI, R2 , we have:

1'

Z(f) = (R, @ R, ® R} D Ri)G .

2 1

Thus, if R1 f R2 is expanded as a sum of irreducible reprenta-
tions:
8
R, 2R, = & (R}
i=1
then (if the R(i) are distinct) there are s ways to contract

* * .
Rl B R2 2 R1 2 R2 , and thus:

dim(z(Z)) = s

for large k .

In the case of G = SU(n) , with R being the standard
representation, R ® R 1s a sum of two irreducible representa-
tions (symmetric and anti-symmetric parts), and thus Z(Z) is
2-dimensional, for large k .

2=Sl Thus the three curves:

D%

11

A7 o

e



specify three vectors, Ve o V_ o, V0 say, in the vector space

Z(L; 4 points). Since this vector space is two dimensional,

these vectors are linearly dependent, i.e.
aV+ + svo + YV =190

some «,8,Y , not all zero.

Consider three links L+,L0,L_ which are identical, except

in a neighbourhood of one crossing, where they look like:

ARA

+

Then by cutting out the part of the link within a small sphere

L around the crossing, we obtain identical curves, so that:

Z(S3,L+) = <v,v,>

2(s?,L_) = <v,v_»

Z(S3,Lo) = <V, v,>

where V is the vector in 2(T; 4 points) corresponding to the

part of the link ocutside I. Thus:

az(s3,L,) + BZ(s3,L6) +vz(s3,L) = o

This relation is called a Skein relation.

The coefficients «, B8, Y can be calculated by using

conformal field theory, and the result obtained for SU(N) is:

-a¥2 z(,) + (g% - a2y + g2 g1 ) =0
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where:
q = exp(27i/(N+k)) .

This relation is similar to the skein relation satisfied by

the l-variable Jones polynomial, namely that

-tV. + (t;’ - t”)v + £y, =0 .
L, L, L_

Hence, it is clear that, up to a factor, Z(L) £for SU(2)

is simply VL(q) evaluated at:
q = exp(2ni/(k+2)) .

Note that shift '+2' in the denaminotor (or '4N' in the
general case) : this corresponds to the shift §(G) mentioned
in the previous seminar.

In the case of G = SU(N), a,8,Y can still be calculated,
They do not correspond to values of the l-variable Jones poly-
nomial, but this time correspond to values of the 2-variable

generalization.

Braid approach

Alexander's theorem states that any link, L , is iso-
topically equivalent to the closure of a braid 8 e B . for

sufficiently large n . A braid is, by definition, a map:
g : [0,1] + (configuration space of n points in @)

with g(0) = g(l) 4i.e. B is a loop in the configuration
space of n (unordered) points in & .

Let V be the vector space associated with I = S2 and n
marked points. Since the braid is going to be closed, we shall
consider only the case in which the same representation Ry is

associated with all the marked points on the same component of L .
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To each pair of horizontal slices through the braid we

have associated a map:
Vv *+v

given by 2 . In particular B8 < B, induces amap B* ; v + v’

The process of closure also gives amap VvV + v . Let t ¢ 8
be a parameter on the closed braid extending the natural

parameter on the braid. Then we can think of a time evolution

given by the braid; starting from v, eV at t = 0@

Yo s as t

increased, we assign
Ve = BE(v,)

where Bf ¢+ V + V corresponds to the section of the braid between

0 and ¢ .

The time-evaluation is, in the Hamiltonian framework

governed by a zero Hamiltonian. Thus for ¢t > T ,

and hence the invariant is :
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I <yglyy> =2 <yglup
Yo Yo

=1 <!QIB* (‘.Lo)>
Yo

.TI.'.B* S

u:

Note that in the skein theory it is most natural to think

of L as embedded in s3 » whereas in the braid theory, it
1s most natural for L to be embedded in S1 x S2 .

Relations between S3 and S1 X S2

Consider a manifold s! x x . Let Hx be the Hilbert
space corresponding to X . Then on [0,1]1 x X , we can
propagate vectors from Hx to 1tself; however, since the

Hamiltonian vanishes, this map is the identity .

Thus 2 (X x SY)

"
R
oy

:

In particular, H 2 = € , and thus:

z(s? x s!)

]
=




1

Since it is so easy to evaluate 3z(s? x sty , we shall

evaluate z<s3) by obtaining s3 from 82 x st using surgery,

Now 83 g given by:

2 2 2
{((z;,2,) ¢ ¢° |zl| + |z,]¢ = 1},

3

Let T = {(z,,2,) ¢ §° lz,| s 1//2)

T {(zl,zz) ¢ s3 : |22| < 1//2} .

Clearly T y T' = §3 + and the boundary of T ig:

{(z3,2,) ¢ s3 Iz, = 1//2} = st x st

a 2-torus. Thus T is a solid torus; similarly for T'

[4

the map identifying T with T° being
(z;,25) + (z5,2)) .

However, topologically, T = p? x S1 » and thus gluing two
such solid tori together, identifying boundary points one

obtains

Let v, w be the vectors in z(Tz)?, z(Tz) associated

with the solid tori making up S2 x gl + whose boundaries

are Tz‘; respectively. Then:

z(S2 x sl) = <v|w>

However, as we have seen, s3 is oﬁtained by gluing two solid

tori together, with a non-trivial diffeomorphism st x st. Thus:

2(s3) = <v|s|w>
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where §S ; Z(Tz) + Z(T2) is the map corresponding to this

diffeamorphism.

The vector space for a torus is obtained £rom that for an

annulus:

Z(T2) = @ Z(A,V*,V)
v

since T is obtained from an annulus by gluing the boundaries

together.

on
/
)
2%

However, Z(A,V,,V,) = {O if VAV,

c if VI =V,

as was seen in seminar 4. Thus:

Z(torus) = ® (@)
v

i.e. its dimension is the number of labels allowed (limited by
the level k) .

The value of Z(S3) can then be calculated fram the

matrix of the map S . When this is done for G = SU(2) , one

obtains:

z(s3) = //1«2-_2 sin [—-1'—]
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Note, once again the shift by 2 in the 'effective' value of k

Also.observe that 2 4is nommalised with respect to gl x s2

’

but not with respect to s3 ,

If Ml’ Mk are two manifolds whose connected sum is M ,

then we have the following diagram.

Let 21; 22 be two copies of S? in Ml' M2 respectively,
so that they cut off 'caps p3 :

M

fl
=
c
w)

1 1

- 1]
Mz"’M UD .

Then M is the union of Mi and Mé B

Let v, Vv, - be vectors in 2(5?) = z(sz)*, z(s2) corres-
ponding to Mi, Mé i and let - Wi+ W, Dbe vectors in
z(s2), z(szj- corresponding to the caps D3 of My, M

2
respectively. Then:

z(M,) = <v1|w1>

zZ(My) = <w2|v2>

Z2(M) = <V1|V2>

z(s3) = <w2lwl> (since s¥ is two copies of DS glued

together),



_f 121
atta v
My
n
o
sl
7
M,
v, W, Wi Vo
However Z(sz) =@ 1is one dimensional, and thus:

i.e.

Once

<vl|wl><w2|v2> <v1|v2><w2|w1>

Za)) x 2(ey) = 20D x Z(S)

Z(Ml) Z(Mz) 7 (M)

2(s3)  z(sd) z(s3)

jt is not 2(M) that is multiplicative under connected

but it is:

zZ (M) .
z (s83)

again, normalisation with respect to 53 does not come

naturally, but has to be specifically introduced.
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