SOME REMARKS ON $\text{Tor}_2 \mathbb{R}^\mathbb{P}$

R.O. Nadiradze

Tbilisi Mathematical Institute
Academy of Sciences of the Georgian SSR
Z.Rukhadze Str. 1, Tbilisi 380093, USSR

The $\mathbb{R}^\mathbb{P}$-theory of cobordisms appeared in [4] and was developed in [11], [8], [3] and other works.

A series of free generators was constructed by Stong [14]. Great difficulty was encountered in treating the question on the 2-primary torsion.

By analogy with [10] here we construct a series of finite order elements and relations in the $\mathbb{R}^\mathbb{P}$-theory.

1. Let

$$e(\Theta \bar{\gamma}) = x + y + \sum \phi_k y^k,$$

where Θ is a canonical complex linear fibering over $\mathbb{R}P(\infty)$, $\bar{\gamma}$ a canonical symplectic fibering over $\mathbb{H}P(\infty)$, e - Euler's class in the $\mathbb{R}^\mathbb{P}$-theory, $x = e(\Theta)$, $y = e(\bar{\gamma})$ and $\phi_k \in \mathbb{R}^\mathbb{P}_* \mathbb{R}P(\infty)$.

Remark 1. Let $\varphi: \mathbb{R}P(1) \to \mathbb{R}P(\infty)$ be a canonical imbedding.

Then

$$\nu^k \phi_k = \Theta_k \cdot S,$$

where $\Theta_k \in \mathbb{R}^\mathbb{P}_* \mathbb{R}P(1)$ are Ray's elements [12] and S is the generator $\mathbb{R}^\mathbb{P}_* \mathbb{R}P(1)$.

Remark 2. It follows from [13], [2], [10] that for $k \geq 0$, classes ϕ_{2k+1} depend functionally on classes $\phi_1, \phi_2, \phi_3, \ldots, \phi_k$.
while classes $\psi_1, \psi_2, \psi_3, \ldots, \psi_k$ are functionally independent.

By virtue of the property of two-valued formal groups and Conner-Floyd classes in the $\Omega^\infty_{\mathcal{Z}_p}$-theory [1] we have

Lemma 1. \[4 e(\Theta \otimes 5) = 2 \Theta_1(x, y), \]
\[6 e^2(\Theta \otimes 5) = \Theta_2(x, y) + 2 \Theta_2(x, y) = \sum x_i x_j \]

where $x_i, x_j \in \Omega^\infty_{\mathcal{Z}_p}$,
\[4 e^3(\Theta \otimes 5) = 2 \Theta_1(x, y) \cdot \Theta_2(x, y), \]
\[e^4(\Theta \otimes 5) = \Theta_2(x, y), \]

where $\Theta_1(x, y)$ and $\Theta_2(x, y)$ are coefficients of the two-valued formal group.

Remark 3. In the $\Omega^\infty_{\mathcal{Z}_c}$-theory of cobordisms
\[2 e(\Theta \otimes 5) = \Theta_1(x, y), \]
\[e^2(\Theta \otimes 5) = \Theta_2(x, y). \]

Corollary 1.
\[6 \psi_{2k}^2 = -12 \psi_4 \psi_k x - 12 \sum_{i=1}^{\infty} \psi_i \psi_j + \sum_{i=1}^{\infty} x_{i, 4k} x^i, \]
\[6 \psi_1^2 = -6 - 12 \psi_1 - 12 \psi_2 + \sum_{i=0}^{\infty} x_{i, 2} x^i. \]
Definition. \[R(\omega) = \langle \Phi_1^{k_0} \Phi_2^{k_1} \cdots \Phi_n^{k_1}, \mathcal{R}(4m+3) \rangle = \mathcal{D}_{\mathcal{S}p} \Phi_1^{k_0} \Phi_2^{k_1} \cdots \Phi_n^{k_1} | \mathcal{R}(4m+3) \rangle, \]

where \(k_0 > 0, k_i > 0 \) are integers, \(\mathcal{D}_{\mathcal{S}p} \) the duality operator of Atiyah-Poincaré [7], \(\mathcal{E} \) the argumentation,

\[1 < i_1 < i_2 < \cdots < i_n; \]

\[\omega = (k_0, k_1, \cdots, k_n, 4m+3). \]

Remark 4. By virtue of Remark 3 we consider in the \(\mathcal{O}_{\mathcal{S}c}^* \) -theory the following elements \(R(\omega) [10] \):

\[\omega = (k, 1, 1, \cdots, 1, 4m+1) \quad \text{where} \quad k = 0, 1. \]

Remark 5. From the formula \(e^4(\Theta \Theta^5) = \Theta_2^2(x, y) \) it follows that \(\Phi_{2i} \) are decomposable elements in the ring \(\mathcal{O}_{\mathcal{S}p}^* \mathcal{R}(\infty) \). Therefore in what follows we shall always consider the case \(k \leq 3 \).

Theorem 1. If \(k_i > 1 \) for some \(i > 0 \), then

\[2 R(\omega) = K(i, \omega), \]

where \(K(i, \omega) \) are decomposable elements in the ring \(\mathcal{O}_{\mathcal{S}p}^* \).

Remark 6. To construct elements \(K(i, \omega) \) we need the definition of \(R(\omega) \), Corollary 1 and the formula

\[\mathcal{D}_{\mathcal{S}p} \langle x \rangle | \mathcal{R}(4m+3) = [I_{P}(4m+3)] \]

in the \(\mathcal{O}_{\mathcal{S}p}^* \) -theory.

Remark 7. The elements \(R(\omega) \) and \(K(i, \omega) \) are defined correctly and Theorem 1 is the analogue of the Massey product in the \(\mathcal{O}_{\mathcal{S}p}^* \) -theory. The Massey product in the cobordism theory has hitherto been the only means for constructing new elements in
the Ω^{*}_{L}-theory [6],[8],[3].

Corollary 2. The element K^{111}_{111} in the dimension 111 coincides with Kochman's element [8].

1. $K^{111}_{111} = \mathcal{R}(\frac{1}{2}, \frac{1}{8}, \frac{1}{16}, 15) = \langle \eta^2, \eta^2 \eta^4, \eta^3 \rangle$.

2. $4K^{111}_{111} = 0$.

Hypothesis. 1. Among $K_{i,\infty}$ there exist non-trivial elements.

2. $2K^{111}_{111} \neq 0$

Remark 8. Kochman [8], Ray, Ivanovski, Vershinin, Botvinik put forward a hypothesis that fourth order appear for the first time in dimension 111.

2. **Definition.** A non-trivial element on which all Landweber-Novikov operations [5],[9] act trivially is called the primitive element in the ring.

Examples of primitive elements:

1. $\vartheta_1 \in \Omega^{1}_{L}$

2. $\vartheta_1^2 \in \Omega^{2}_{L}$

3. $\vartheta_2 \vartheta_4^2 \in \Omega^{31}_{L}$

Theorem 2. For any primitive element ε in the ring Ω^{*}_{L} there exists an element $\delta \in \Omega^{*}_{L}$ such that

$4\varepsilon = 8\delta$.

Remark 9. The theorem is proved using Steenrod-Dick operations, an exact sequence of the covering in the Ω^{*}_{L}-theory, transfer properties for the covering and elements of the two-valued formal group theory.

Definition. OM is a set of maximum order elements in Ω^n_{L}, where n is the minimum dimension in which there exist elements of order higher than 4.
Corollary 2. If in Ω^M there exists a primitive element, then

$$4 \text{Tors} \Omega^*_\mathfrak{s} \mathfrak{p} = 0.$$

Hypothesis. 1. Ω^M contains a primitive element

2. $2 \text{Tors} \Omega^*_\mathfrak{s} \mathfrak{p} \subset \Theta_1 \Omega^*_\mathfrak{s} \mathfrak{p} \cdot$

3. $2 \text{Im} (\text{Tors} \Omega^*_\mathfrak{s} \mathfrak{p} \rightarrow \Omega^*_\mathfrak{sc}) = 0.$

Remark 10. As reported by B.I. Botvinik, $16 \text{Tors} \Omega^*_\mathfrak{s} \mathfrak{p} = 0.$

References

2. B.M. Бухштабер. Современные проблемы математики (в печати).
13. Rouch T.W. On some torsion classes in symplectic bordism (to be published).