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Introduetion

It appears that there cxists a dual parallelism belween the homological
analysis of the Eilenberg—MacLane spaces K(m,q) and that of the iterated loop
spaces Q121X. In particular, there is an analogy between the Steenrod cohomology
operations and the Dycr—Lashof homology opcrations on thesc spaces (Serre [29],
Araki—Kudo [2], Dyer—Lashof [11])

This is the first in a series of papers to alford some examinations o a more
sullicient understanding of this phenomenon and, further to make a review of
the (co) homology operations with a particular conviction that some new tools
to handle them efliciently may arise Irom this. In the present paper, we shall
show that the above mentioned dual parallelism has the origin in the classical
Poincaré —Lefschetz duality.

Let CG’ denote the category ol compactly generated Hausdorff spaces with
nondenerate base points. Recall that, by a theorem of Dold—Thom, the infinite
symmetric product SP=X is weakly homotopy equivalent 1o a direct productof the
Lilenberg—MacLane spaces il X is an arcwise connected space in CG'. On the other
hand, in this case, there exists a weak homotopy equivalence ay: C(X,q)-»QI39X,
where C(X.g) is a space built up [rom the configuration space F(R%n) and the
smash product X["] (see May [17]). These (undamental results, lead us to make
a review of the infinite symmetric product SP~2X of the g—iterated suspension
s1X of X. and consider the relation between C(X,q) and SP~X9X. It will be easily
observed that SPZ4X is homeomorphic to the space built up from the ng—dimen-
tional sphere (x R7) and X["] by a similar way in the construction of (X, q). From

this remark, with a little care, C(X.q) can be imbedded naturally in.SP(X,q) as
a subspace. Consequently, it is natural to construct the space B(X,q) built up from
F(R%,n) = (X R [T(R%n) with T(R%;n) = (X RY): — F(R%,n). and X["], and then

to consider the relation between B(X,q) and C(X,q).

#*) This work was announced at the sccond Vietnamese Mathematical Congress,
August 15—19, 1977. ]
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From the Poincaré — Lefschetz duality in the sphere (XRY) with respect
n
to ((XRT), T(R%n)), we shall obtain correspondingly a duality in the infinite sym-

metrie. product SP(X,q) with respect to (SP(X,q), D(X.q)) i.e. a duality between
B(X.,q) and C(X,q). Here D(X,q) is a a subspace of SP(X,q) builtup from 7T'(RY,n)
and X["|; we note that B(X,q) = SP(X,q)/D(X ).

B(X.q) and C(X,q) are topological monoids in CG’ (sec § 4). So their singular
chain complexes S, (B(X,q)) and S, (C(X,q)) are DG algebras. Now, the duality
between B(X,q) and C (X,9) appears in the following

Main Theorem. Let X € CG’. Then there exist the morphism ol DG algebras
(1) chgoc*(x—) - S(B(X,q))
(if) FISICy(X) — S«(C(X,))

which are chain equivalences for any DGA-module C,(X) such that Co(X) =S (X)),
Here, B! and F? denote the g-iterated bar construction and cobar construction
respectvetly and—dJ9 the g-iterated suspension.

A direct consequence of this theorem is that the homology algebras
H(B(X.q) ; Z,) and H,(C(X,q); Z,) are completely determined by the method of Car-
tan construction (see Cartan [6], Milgram [21]), whenever H, (X : Z,) is computed,
We shall present the computation in details in a subsequent paper. The compu-
tation of H, (C(X,q); z;) has been done in May [19] and Cohen [7] for g=w=oand
q<lee respectively by a different lines. Mainly, they applied the Dyer—Lashof’s
computation of H, (29X ; Z,) and used the approximation between C(X,q) and
QIZIX. So, the assertion for C(X,q) here is of independent interest. Note that, ins-
tead of for C(X,q) in (ii), Milgram [21] has proved a similar relation for Jq X), a
space of the same homotopy type with Q29X when X is conneeted.

The paper contains 11 section. In §1, we recall some basic facts on the
point set topology for the spaces in CG’ in a convenient form to construct in §2
a class of spaces L(X.gq) including SP (X,q,) B(X;q) and C(X,q) as special cases.
In § 3, we prove a Steenrod’s decomposition theorem for the homology of L,(X,q).
The notion of mDGA — algebras (DGA — algebras with multiplicity) formulated
by Nakamura [26] will be recalled in §4, and the notion of mDGA — coalgebras
will be introduced in §5. These notions are of particular importance, since
they are compatible with respect to the Steenrod’s decomposition theorem.

The main tool of our study will be found in §6. That is the decomposition
of the space X RY given by Nakamura in [26] from which we obtain automatical-

ly a CW — decomposition lor the space F(RY,n) . The section 7 is a homological
study of the space B(S°q), and §8 is a general study of the space B(X.q). Here
the part (i) of the main theorem is proved. By a dual analogy, we proceed to study
homologically the space C (X,q) in the two next sections §9 and § 10, and we shall
prove there the second part of the main thecorem. Notc that we shall prove more
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than what we stated in the main theorem : the morphisms of DGA algebras in (i)
and (ii) are compatible with the Steenrod’s decompositions for the homology
groups of B(X,q) and C(X,q). .

The paper is concluded by section §11 with a proof of the well known
group completion theorem for o, : C(X,q) -> Q% 29X for every X in CG*.

It is a great pleasure to acknowledge the gralitude of the author to Prof.
Tokushi Nakamura {rom whom he has obtained among the green leaves of the
gingkos many valuable -explanations about the notion of mDGA -algebras and
the decomposition of the space X RY,

n

§ 1. PRELIMINARIES ON THE CATEGORY CG

The paper of Steenrod [34] shows why it is convenient to work in the ca-
tegory of compactly generated Hausdorff spaces. In this spirit, we shall work in
this category. All products, mapping spaces et cetera are always assumed to be
given the compactly generated topology. Correspondingly the notion of topolo-
gical monoids, group actions, fiber spaces... are modified in coherence with this
notion of products. The point set topology required here can be found in [34].

Let CG denote the category of compactly generated Hausdorff spaces and
continuous maps. Let CG’ denote the category of based spaces in CG and base
point preserving maps. We shall denote by » the base point unless otherwise spe-
cified, and base points are always assumed to be non-degenerate, in the sensec
that {«} is a ncighborhood deformation retract in X (briefly an NDR in X) for
each X in CG’.

1.1 Let G be a finite group, and X a G-space in CG. Recall that a subspace
A of X is a G-equivariant NDR in X if A is invariant under the action of G and if
there exists a representation (u, k) of (X, A) as an NDR-pair (i.e. a pair of maps
: X -1 = [0,1] such that A = z~! (0), h: I X X — X such that h(0, x) = x,2€X
and h(l, ) € A whenever u(x) << 1) is a pair of G-maps. For instance, as it is
well known, a pair of G-equivariant CW-complexes is a G-equivariant NDR-pair.
If (X, A) is a G-equivariant NDR-pair, then (X/G, A/G) is obviously an NDR-pair
with the representation induced from that of (X, A).

A G-equivariant NDR-pair (X,4) will be said to be relatively G-free if X—4
is frec under the action of G. Particularly, if X € CG’ and A = { # |, we have the
notion of relatively G~free based space or simply G-free based space.

1.2 Suppose that we are given a sequence of spaces in CG:

X, <cXi<C ... CXkC ..

where X is embedded in Xy, as a closed subspace for each k. LetX = U X,
' k>0
have the topology of the union. Then, according to [34; 9.2 and 9.4], we have.
(1.3) If each (X, Xy.1) is an NDR-pair, then X is in CG and each Xy is an
NDRin X.
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By a filtered space X we understand a space X in CG and a sequence of clo-
sed subspaces

0., . § MRl an. Gl

of X such that X'= v X; and X has thc topology of the union. (Note that a
k>0

closed subspace of a space in CG is in CG [34; 2.4], so the definition implies
Xy € CG for éach k). In addition, if each (Xi, Xy_,) is an NDR-pair, X is said to
be filtered by NDR’s.

1.4 Given the filtered spaces X = | X\ }, Y = | ¥i ], » Z = { Z}. Their
product is the space X' X Y X ... X Z filtered by

X XY X XZh= V) X1X¥mX---XZn-
{+m+...+n=k

By [34; 103 and 10.5], X X Y X ... X Z is then a [iltered space. Further, if the
filtrationsof X, Y, ... Z are by NDR’s, then X X ¥ X ...X Z is also filterecd by NDR’s.
1.5 Let (X,A) be an NDR-pair. Consider X as a space filtered by NDR’s with

X, =4 and Xi = X for k > 1. Then the n-fold product X" = J(X"),} is a space
filtered by NDR’s.

Moreover, let G, be the symmetric group of degree n. Let G, operate on X*
by perimuting the factors. Then X" is filtered by G, - equivariant NDR’s according
to the proof of [34; 63] sce also May [17; A.4]).

For later convenience, we introduce the following notion.
1.6. Definition. Let 7 = |Gi] be a sequence of finite groups
Go CGC.., € Gy C...

A filtered space X = |Xi} is called a Z-space if the following conditions (i)
and (ii) hold.

(i) Xy is a Gyg-space for k > 0.
@ii) Set X~ = U g Xix_;. Then the composition of maps

k1
g E€Gx -

Xi/Grwy = X7 [Giy =+ X7 G

is a homeomorphism for k > 1.

In addition, if X satisfies the condition

(iii) (Xx, X7_,) is a Gy -equivariant NDR - pair for [k > 1, X is said to be a
7 -space filtered by NDR’s. In particular, if (Xi, X)) are relatively Gy -frec, we
say that X is ralatively 7 - free.

Given a 7 space X == {X;}. We write

. X/# = Xi/Gy.

Here Xy _i/Gk—1 are.imbedded in Xy/G. (as closed subsets) by use of the
homeomorphisms X;_;/Gx_; = X{._,/Gy in (ii). An immediatc consequence of the
definition and (1. 3) is the following.
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1. 7. Proposition, IfX is a Z-space filtered by NDR’s then X/# is in CG and
filtered by NDR’s.

Now we recall the notion of symmelric produets.

2.8. Let 6 denote the sequence of symmelric groups

G, C G, C..C G, C..
where G, = G, and Gy is the symmetric group on the set {1, 2,...,k}] for each k>=1.
Let (X, %) be a space in CG” and let X™ the filtered space
X=X

where X° = [#]. and X*~'is imbedded in X* by the injection (Zg...,Tx—y)— (Liyerer
Zx—i, #) for each (xy.x¢_) € X*1, Then we have

k
AH7™ =@H = UXx X} XXX,
inl

So we have Xk-1Qy = (X)1—_,/6x. From 1.5, we observe that X — [X¥| is

an G -space filtered by NDR's.

Define

SP=X == X*~/6 = | SPX |
with SP°X=f#}, SP*X=X"/G\. k>1. SP*X and SP>X are called the k-fold symmetric
product and the infinite symmetric product of X respectively. The point % of SP°X
will be considered as their base point. According to Proposition 1.7, SP=X =
{SP"X} is in CG’ and it is a space [iltered by NDR’s (sec May [17; §3]).

For k finite or infinite. SPX is clearly a natural functor in CG’, Further, it is
also a homotopy and limit preserving functor (see Spanier {30; §6]. If (X, ») —
(X’, #) is a map in CG’, then we denote by SP¥f: SP*X — SP*X’ the map induced
by /. In particular, if i: A C X, then SPY% : SC*A — SP*¥ is an injection. Via this
map, SP*4 is regarded as a subspace of SPXX. From 1.5, if 4 is an NDR in X, SP*A
is an NDR in SP*X.

1.9 Let usrecall the iterated suspension functor.

Given a nonnegative integer ¢..Let S be the g-sphere obtained by the one
point compaclification of the euclidean space R of dimension q. Let the point of
compactifcation be its base point. By the standard injection i : 89— ST+, that is the
base point preserving map given by i(d'..., a%) = (al,...a4, 0), ai € R, we regard
ST as a subspace of SI+!.

Let X € CG°. We define 29X, the q—iterated suspension of X, to be the smash
product :

XASt=XXS8UXX[*}u|*]xsT.
If ¢ = 1, 21X is denoted simply by ZX.
By ineans of the injection
LAL:Z2X = X A\ 81— Z91Y = X A Su+1,
we regard 29X asasubspace of Z4+1X, (§1+, $1) is an NDR - pair, so it is easily seen
that (Z7+!X, 39X) is an NDR - pair. Hence define =X == {Z9X}, =X is a space
filtered by NDR’s according to 1.3, 29X is also in CG’.
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Given a map f: X — X’ in' CG’, we have the map 29f = f A 17 : 2IX— XI1X",
It is easily seen that 2%s a natural functorin CG’, and further it is a homotopy and
limit preserving functor for ¢ finite or infinite.

§2. INSIDE OF THE SYMMETRIC PRODUCTS

Let (X, %) be a space in CG’.
We first comsider the k-fold symmetric product SPZIX of the g-iterated
suspension Z9X, By definition, we have

SPEiX/SP1seY = (2axy e, o \[k]A(S“)[k]
Thus, we have Gy

smwMWHWXgMHAme.
Gy k

Here and in what follows, X[k} denote the k-fold smash product X A ... AX (k

times), and (X RY): the one point compactification of X R? on which G, operates
k , k
by fixing the point of compactification #, and by permuting the factors of X RY.
! k
(Remind that for k = 0, X R? = ¢ and ()X R?) = | # }.) This homeomorphism leads
k k

us to the following review of the space SP¥Z9X.
Let pyi: (X RY)" = (X RY); 1 < i < k denote the base point preserving maps
x —1
given by

Pl (@15 vvor @) = (@ poves Gy eaey ). (2.1)
Let ~ denote the equivalence relation on X% X (X RY) generated by
k

(€. ;/,, i), @) =5 (Ly seies :, wey Tg)y @) - (2.2)
whenever py,i(¢) = pi,i(a’) with 1 i< k Then we define the spaces

SP(X,q,0) = % SP(X, q k) = X*X(XR)/~, k>1 (2.3)
with quotient topology. Via the embedding of X*-1x (x RY) in X* x (XR‘I) by the
k—1
inclusion X*-1 &~ X*-1 x [*] C X* and the base point preserving map
x-1: (X RY) — (X RT) 2.4)
x—1

I 1(@1seees Ak 1) = (Ag,0e0, Gk 1, Q1)

we consider the space §P (X, q, k— 1) as a subspace of SP(X q, k). The single
point in SP(X, g, 0) is to be taken as the base point of SP (X, q, k). Observing that
SP(X, q, k— 1) is a closed subset of SP(X, g, k), we define
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SPX, ¢) = k;o SP(X,q.5)

with the topology of the union. SP(X, q) is sometimes written by SP (X, ¢, o) for
convenience,

Via the diagonal action of 6, on X* X (X R%): g(x, a) = (g=, ga) for each
k
g € 6, x € X', a € (X RY), the space SP (X, ¢, k) becomes visibly an Gy-space,
k

From this, $P (X, ¢) is an G-space. It is obviouly an G-space filtered by NDR’s (see
also the discussion below Definition 2.9). We define
SP(X,q) = SP (X, ¢)/6 = [ SP(X,q, b))
with SP (X, q, k) = SP (X, q, k)/6,. Then, according to 1.7, SP (X, q, o) = SP (X, q)is a
space filtered by NDR’s. Now, by means of the maps ¥: X* X (X RY) — (24 X)*
k
given by the formula
q’((xla ey xk), (alv erey ak)) = ([xl, al]’ very [xk! ak])

where [z, a;] denotes the equivalence class represented by (x; a;) in 29X, we obtain
immediately from definitions the homeomorphisms

SP(X,q, k) = SP*2IX, 0 k< oo, (2.5)
Let R(q) = (X RY) denote the sequence of Gy-spaces
k

f*} =(XRY) C (X RY) C... € (XRY ..
0 1 X

where the embeddings are the maps iy given in 2.4. Visibly R(q) is an 6. space
filtered by NDR’s. Now, to generalize the construction of SP(X,q), we introduce
the following
2.6 Definition. Let 6 = | Ex| be an G-space filtered by NDR’ s with
E,=*,E. C(XRY andiy|E;: ExC Ex+1, k >>0. Then 6 is said to be an 6-NDR
k

in R(g) if (XRI), Ey), k >0 arc G-equivariant NDR pairs. In addition, if & satisfies
k

the condition
Pui(Ep) = B} ,1<j<kk>1

where El‘z is the complement of Ey in (X R7), then we say that ¢ is an allowable
k

C-NDR in R(q)
Clearly R(q) is itself an allowable G-NDR. Another trivial example of allo-
wable G-NDR is the G-space *(q) = [ Ex} with E, = {*| for every k > 0.
Let A- (resp. A*) denote the one point compactification (resp. one point disjoint
union) of A. Unless otherwise specified, these added points will be regarded as
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their base points, If A is an open set of (X R7), then we have the homeomorphism
k

A~ (>< R?%)/A° with 4° = (X RY) — A 2.7)
k

by which we identify them from now on.

Suppose we arc given an allowable 6-NDR 6 = { Ei | in Q(q) Let £ = { Ly}
denote .one of the following sequences of Gy-spaces.

— |ES oréer = {ESH.

By 2.6, let py,i: Lg —> Ly_ 1(1 =i=k) be the base point preserving maps

mduced canonically from py, i; X RY) ~ (X RY)* given in 2.1, Then for each X
k—1

in CG we define the Gy—spaces.

L(X, £,0) =% LX, 8, k)= X*XLy~, k> 1 (2.8)
with.the quotient topology. Here = is the equivalence relation on X* X L; given
(similarly as in 2.2) by

(T, vovs ¥ s wees i)y @) = (X, coy 35 vens Xy D)

with x; € X, a, b € L, whenever py, ; (@) = py, ; (b). For each (z, a) in X*X Ly, we
let [x, a] denote its equivalence class in L(X, £, k). The action of G; on f(X, L, k)
is given by the relation g[x, a] = [gx, ga), g € Gi. . '

L(X, £, k—1) will be regarded as a subspace of E(X. £, k) by identitying
each point [(x1, ..o Txk—y), ] in E(X, L, k—1) with [(Z1, ..., zx_1, #), Q'] (@-= Dri(@))
in z(X, £, k). The single point in E(X, £, 0) will be taken as the base point of
I:'(X, £, k). Obviously from the relation ;k,i(Lk) = Ly 4, we have

L(X, £, k—1)" =g € v gL(X, ¢, k—1) = (X"} X L)/~

Gy
and the projection

D (XkXLk’ (X]f)k-lek) = (E(X’ ﬁ, k)! Z(X! ﬁv k_l)A) (29)
is a relative Gy - equivariantly homeomorphism. On the other hand, by 1.5,
(X* X Lis (X*)x—1 X Ly) is an Gy - equivariant NDR - pair. Hence, according to
Steenrod [34; 8.4], (L(X, £ k), L(X, &, k — 1)) is an G,-equivariant NDR-pair;
Now the following is evident.

2.10 Proposition.

(i) The space L(X L) = (X, £, k) is an G-space filtered by NDR’s. The-
refore L(X, £) = {L(X, £, k)] defined by

LX, £) =L(X, £)/6 = {LX, 6, k)/G\]
is a space filtered by NDR’s (see 1.7).,
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i) L( . £, k) and L( , £, k) are natural, and homotopy and limit preser-
ving functors in CG".
(itiy £(X, £, ky/L(X, £, k=1)~ =~ XM AL

L(X, £, k)/L(X, £, k—1) == X* A L,
Gy

For convenicnce, Z(X, £) and L(X, £) are sometimes written by E(X. £, )
and L(X, £, «) respectively. Later we also use the convention L(X, £, —1) = ¢.

2.11. Definition. Suppose that we are given an allowable ¢ -NDR ¢ — {Ei}
in R(¢)°. Then we define :
N(X, 6) = [N(X, ¢, k)]
to be the G - subspace of SP(X, q) = [STJ(X, g, k)} with N, ¢, k) the Gi-subspa-
ce of SP(X, q, k) consisting of all elements represented by points in X*X(XRY)-
x

of the lorm g(x, a) with g € 6, and = = (z, ..., Tn, &, o0, #) € XK, 0, € X — {l
for 1i<nitn>1a=(ay ..., an, @, ..., ay), (ag, ..., ay) € B, 1 < n k.
We prove

2.12. Proposition,
(i) N(X. &) is an 6-space filtered by NDR’s. Therefore
N(X, 6) = [N(X, ¢, k)} defined by
N(X, 6) = N(X, 6)/6 = [N(X, 6, k)/Gu}
is a space filtered by NDR’s.
(i) (SP(X, g, k), N(X, &, k)) is an Gy - equivariant NDR pair. Therefore
(SP(X, q. k), N(X, @, k)) is an NDR pair.
(iii) L(X, 6%, k) == SP(X, ¢, k)/N(X. &, k)
L(X, ¢“, k) ~ SP(X, q, k)/N(X, &, k).
Proof. According to 1.7, to prove (i), we need only to prove its first part.
By definition, ¢ is an G-space filtered by NDR’ s. Immediately we have IV(X, e,
k—1) = N(X, 6, k—1)"/G,. So it remains to show that (K?(X, é, k), N(X, 6, k—1)7)
is an Gy-equivariant NDR pair.
Let N = N(X, ¢, k~1)~U | [, a] ; & € (X—o)%, a € Eyy) |
and let (ux, hy) be a representation of (Ej, E;:I) as an Gy - equivariant NDR pair.
Then define the maps u: N (X, &, k)—1and h:Ix N (X, &, k) N(X, &, &) by
u ([z, a]) = w(a), h (L. [z, a]) = [z, hy (@, a)].
Obviously, (u,h) is a representation of (N (X, ¢, k), N’) as an Gy - equivariant V)R

pair. Similarly, by use of a representation of (X*, (Xk);:,), we obtain easily a
representation of (V’, N(X, 6, k—1)7). Now, from the proof of [34 : 7,2] (KT(X, e, k),
ﬁ(X, @, k—1)~) is an Gy-equivariant NDR pair.
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To prove (ii), again we need only to prove the first part. Let N”—N(X, 6. kU
{z, a]; x € X*, a € E, }. By use of the above argument, we have the G - equi-
variant NDR pairs (SP(X, q, k), N») and (N», N(X, ¢, k). Thus (SP (X, q, k),
N(X, ¢, k)) is an G, - equivariant NDR pair.

The assertion (iii) is by definition. The proposition follows.

Apply the above constructions to the obvious allowable G-NDRs R(q): and
*(9) in R(g) (given below 2.6). we observe that

SP(X, q) = L(X, %(@*) = N&X, R(q)).
Thus SP(X, q) is obtained as a special case. It appears quite likely many interesting
filtered spaces may be constructed by this way.

Now we define the filtered spaces B(X, q), and C(X, q) and D(X, q). Note
that €(X, ¢) is (homotopically equivalent to) a space introduced by P. May by use
of the little cubes operads [17]. Let F(A, k) denote as usual the ‘k-th configurati-
on space of a, space A, that is '

F4, k) = [(a1,.a0) ; @i € A, a; 3 a; for i = il (2. 13)
Let @(q) = {T(RY, k)} with T(RY, k) = (X RYy — F(RY, q). Then we have the Gy-
k

equivaréant NDR pairs ((X R, T(RY. k)), and (T (RY, k), T(RY, k — 1)) for each
k
k(see the CW - decomposition of (x RY) given by Nakamura [26] which will be
k

recalled later in Section (§ 6). From this fact, it is easily observed that %(q) is an
G-NDR in R(q):. We define

B(X, ¢, k) = L(X, %(q)*, k)
C(X, q, k) = L(X, @(q)°*, k) (2.14)
D(X, q, k) = N(N, @(q), k),
Thus, we have the filtered spaces B(X, 9, = | B(X, a}, Ic)], C(X,q) = |C(X,q, k)|
and D(X, ¢) = | D(X, g, k)}. Correspondingly we shall use the notation E(X, q, k),
C(X, q, k) and D(X, q. k), etc, |
For each k, the map
C(X, q, k) - SP (X, q, k)
defined canonically by means of the base point prescrving map F(RY, k)*—(XRY).
k

is not an injection of spaces, because not so is F(RY, k)t — (X RY)-.
-k
Let R = (——I.i)x...x(—-l,l) (¢ times), Let f: R?-R’" denote the map (a’,...,
a?) - (tanh a'...., tanh a%). Then we have a homeomorphism (denoted also by) f:
X R — x R with f(ar....,a) = (f(ap. - . ., [(ay)). Let

k k
T (RY, ) = (TR, K) — {o]) U (<RI — (x RA)).
~  k k
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Obviously, by a suitable G - equivariant CW - decomposition on (X RY)-, TR, k)
k

is an Gy-equivariant NDR in (XRY). Further, we haveix_; (I"(RY, k—1))CT°(R%,k),
and (T" (RY, k), " (RY, k—1)") is an G,-equivariant NDR pair. Consequently, we
have an allowable G-NDR @ (q) = {T* (RY, k)} in R(g). Now, let

B (X, q) = L(X, @ (q)), (X, ) = (X, @ (9)°)

D (X, q) = L(X, @ (9)).
We have evidently the following

2. 15. Preposition.
(i) B(X, q) = B (X, q), C(X, q) = C(X, q), and D(X, q) ~ DX, ¢).
(ii) The canonical map C(X, q) — SP(X, q) is an injection of spaces (by which we
consider C'(X, q) as a subspace of SP(X. ¢)), and we have
SP(X’ q) = C,(X- q) U D(X, 9)
CX,q9) nD(X,q) = |#].

§ 3. DECOMPOSITION FORMULA

Let (X, &) be in CG’ . S, (X) denote the (integral) singular chain complex of
X. Let §,(X) = Ker & where &: S, (X) - S, (f«}]) is the augmentation given by
the surjection X — . In this section, we shall analyse the chain complexes S,
(B(A,q9)) and S, (C(X.9))- ]

As it is well known, under the language of complete semi - simplicial com-
plexes, Steenrod has stated in his lecture [33] the decomposition formula

. ko __
S, (SPEX) ~ @ S,(SP"X/SP"-1X) (3.1)

n=o
for each CW - complex X. Thus we have the corresponding formula for
SP(X,q,k) == SP*ZX in this case. Also we have

3. 2. Theorem. If X is a (W —complex with base point, then

Se (L(X, £, k) ~ é Se (L (X, £,n/L(X, £, n— 1))
for £ = [+ or L with { an allowable G - NDR in R(q)".

Proof. (Sketch) The theorem can be proved by the same argument used in
Dold [8; §9] or Spanier [31; 6.7] in the preof of 3. 1:

— Construct the c, s. s. complexes L (K, £, k) for each C.S.S. complex K ;

— Show that there is a natural weak homolopy equivalence L(X, £, k) —
I(K, £, k) where K denotes the geometric realization of K as a €W -complex ;

‘— Prove the decomposition formula for L(K, £, k).

If X is a CW-complex, then there is a weak hemotopy equivalence |S.(X)[—X
according to Milnor [22], and |S, (X)|—X alsois a homotopy equivalence as it is
well known (e. g. Spanier [26; 7.6.24]). So we have

L(X, £, k) >~ L(|Se (X)|, £, k) >~ |L(S,4, (X), k)| (2.10)
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The theorem follows.
We shall prove the following

3. 8. Theorem. Let { = [ Ei| be an allowable 6-NDR in R (g)'. Suppose that
((XR%Y, Ey)is relatively Gy-free for each k. Then we have
k

k
Se (X, £, b))~ & §, (L(X.2, n)/L(X, £, n — 1))

n—_—o

for each X € CG’ where £ = [°+ or £ =,

3.4, Corollary. If X € CG’, then we have

ki =
Se (B(X,q,k)) =~ & §,(B(X, q, n)/B, (X, q. n—1)) ,

k.
S(C(X,q,00) =~ @ 8, (C(X. q,n) | C(X.q,n— 1)),

n=—"e

The proof of Theorem 3.3 is divided into a number of lemmata.

3.5 Lemma.

Se L(X. £, ) = Sy (L (X, Lk—1)")Y @ S, (L(X, LK)/ L (X, £, k—1)7)
Proof. We use the notation given in §2 According to 2.9, we have the
following commutative diagram

(Xk)k~1¢>< Ly — X* i( Ly — X* x Lkl()zf“k)k-a X Ly

L, L k="~ L(X, £, k) - L(X, £ k/L(X,L k—1)~.

By the Eilenberg—Zilber theorem, we have S, (X*X L)~ S, (X)* S, (L)
From tkis we obtain easily

© S (XX L) 2 Sy (Xms X La) ) B (Sa(X)* & Sa(L)). 36)
In the other words, we have the splitting
Hy(X* X Ly; Z) = Hp ((X¥)iey X Ly ; ZY @ Hy (X% X Ly 3 (X1 X Ly 5 Z).

_Since the last vertical map of the above diagram is a homeomorphism, this splitting
implies the splitting

Hy (L(X, £, k)3 Z) = Ho (LY, £, k—1)~ ; 2)@H (X, £, k), L(X, £, k—1)~ : Z)
by means of the homology sequences for the two horizontal sequences of the dia-

gram. Now, according to Proposition 2.10 (i), (I(X, £, k), L(x, 2, k—-1)"isanNDR
pair, we have

Ho(L(X, £,k); Z) ~ HJIUX, £, k=)™ Z)+ HyE(X, £, k)/L(X, £, k—1)™ ; Z).

The isomorphism of the integral homology groups of two free complexes is equi-

valent with the homotopy equivalence of the two complexes. Consequently, the
lemma is proved. '
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3.9 i‘emma. If (X, 4) is a relative (r-free NDR pair, then we have the. ho-

metopy equivalence
S (X, 4) % Z =8, (X/G, A/G).

Therefore we have S, (X/G) g Z = 8. ((X14)/G).

Here as usual S, (X, A) = S, (X)/S4(4) for each pair of spaces (X, A).

Proof. First we let (X, A) be an NDR pair. Let U denote an open DR nei-
ghborhood of 4 in X. Then we have the open covering % = | X — A, U} of X, Let
Su (U) = S, (X — A) + S, (U), the subcomplex of S,(X) generated by S, (X — 4)
and S, (U). Then the inclusion S, (%) C S, (X) is a homotopy equivalence (refer
to Spanier [31; 4.4.14]. ket 7: S, (X) — S, (%) denote the homotopy equivalence
given in the proof of [31; 4.4.14] from there we observe that v|S, (%) =g Uy
Thus 1 (S, (4)) C Se(U) and 7 induces the chain map ¥

SH(X, 4) = SU(X, A) = S, (W)/S, U).

Now we have the commutative diagram

0= 5 (4) > S ()= S, (X, )~ 0
N T it
0 — Se(U) — S, (AU) — SU (X, A) - 0.

The two horizontal sequences are exact. The two first vertical maps are
chain equivalences. By means of the homology sequences for these exact sequen-
ces, it is easily seen that -

7:S.(X, 4) =S¥ (X, 4). (3:8)

Now let (X, A) be a relative G-free NDR pair, and U is a G-equivariang
open DR neighborhood of A in X. Let p: (X,A)— (X/G, A/G) denote the projection,
Then we have the chain map p,:S,(X, A) @Z—>S£U (X/G, A/G) given by p(o®1) =

¢

po for o € S, (X—A). p, is clearly well-defined and injective. On the other hand,

X—A is G-free byassumption, the surjectivity of p, is a direct consequence of the

well known relation S, (X—4) ®Z— S, (X —A)/G) (see MacLane [16; {IV.11.3]. Hence
¢

Dy is an isomorphism. Thus from 3.8 follows the lemma.

Combining Lemmata 3.5, 3.7 and Proposition 2.10 (i), we complele the proof
of Theorem 3.3. Here are some direct consequences of this theorem.

3.9 Corollary. Under the assumplion of Theorem 3.3, we have

ko -
Sa(L (X, 2. 1)) 22 78 (@ 5.(X)" ©5(L).

n

Proof Use the relation 3.6.
3.10 Corollary. Under the assumption of Theorem 3.3, we have

ko -
2 #(L(X: -gt k))z’/‘e; (@IC* (X)n ? C'x- (Ln))
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for any chain complex €. (X)~S8,(X) and any Gq-free chain complexes Cu(L.,)
which are G,-equivariantly homotopic to Sy(L.), n > 1.

Proof. According to the Steenrod’s fundamental theorem on extended ténsor

produets of chain complexes [32;5.2], we have S,(X)" RS, (Ln)~Co(X)" &C,(L,).
The assertion follows from 3.10.

Apply this result to the case where £=%(¢)* or @(g)°* i. e. to the case L, =
F (R%,n) or F(R,n)*; we shall construct in the later sections the chain complexes
V(M,q) ~S,(B(X.q)) and W(M,q)~S§,(C(X,q)) for M ~S§,(X) by which the further
computations become effective.

§ 4. mDGA-ALGEBRAS

Suppose that we are given a filtered space X = § Xi |: Suppose further that
it satisfies the decomposition theorcem, i.e.

k
S*(Xk) o~ @ S*(an Xn-—l)

n=o

for each k(0 < k o) where X_, = X. For simplicity, all homology groups will
have coefficients in a fixed commutative ring A with unit which will be usually
deleted from the notation from now on. In practice, A = Z, Z, (the primne field
with p elements). Saying that elements of Hg (X,, X,_;) are of rank n, we oblain
then a module H, (X) bigraded by dimension and by rank. If H,(X,) is determined
for each k > 0, so is obviously H,(X). However, as usually seen, there exists a
mathematical phenomenon that the' infinite may be well understood before we
know about the finite. Thus suppose that H,(X) has been computed, then there

exists a suitable bigrading by dimension and by rank on H,(\) from which H(X})
are determined.

This general approach is due to Steenrod [33; 22]. He has called attention
that this is an effective method to compute homology groups of the symmetric
products SP*X for a connected CW-complex X. In faet, by a theorem of Dold-
Thom, SPTX is weakly homotopy equivalent to é K(H,(X; Z), n). Tt follows that

n=1
H,(SP*X) can be computed by the method of the Cartan construetion [6]. In [26],
Nakamura has indicated how to give a bigrading on H«(K(Z, n)) and on H.(K(Z,, n))
by which one can determine the homology groups of the symmeltric products of
the n-sphere and the Moore space respectively ; hence one knows how to compute
H,(SP*X) for each connected CW-complex X. Our further studies are substantially
based on the above described approach.

Assuming of familiarity with elementary differential homological algebra
theory, we {irst fix some notation and terminology which will be used later. Let A
be a commutative ring with unit fixed as the ring of coefficients. All D(di{ferential)
G (graded) modules are differential modules M = (M, ay) over A with positive
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gr adatlon i.e. M = & M;, unless otherwise specified, and with differential sy having
i=o

degree —1. An element x € M; is said to have dimension dim x =i. We also

write || = dim x. For each morphism of DC-modules f: M — N, we write fi=f| M.

A itself is considered sometimes as a DG-module with trivial grading A, = A,

A; = 0 for i > 0, and differential o5 = 0.

A DGA-module M is a DG-module (M, ay) together with a morphism of
DG-modules ey: N — A called the augmentation of M. A DGA-module M is said
to be n-connected if (em)i : M;i =< A; for i < n: The 0-connected DGA-modules are
called connected, and the l-connected DGA-modules are also called simply con-
nected. For cach DGA-module M, the kernel Ker ey of gy will be denoted by IM.

By a D(r-algebra A, we mean a DG-module (4,3,) together with a multiplication
®,: A®A - A (which is assumed to be associative) and a unit ma: A = A for @,.
Dually, a {)G-coalgebra C means a DG-module (C, ac) together with a comultipli-
eation Aq: € — (R C (which is assumed to be associative) and a counit n¢: C— A
for A¢. A DG- algebld A (resp.a DG-coalgebra C) is called n-connected if (e4);:
A; ~ Ay (resp. (e)i: A= Gy) for i < n

A DG-algebra A equipped with an augmentalion, i.e. a morphism of
DG-algebras ey : A— A is called a DGA-algebra. Here we consider A as a DG-alge-
bra in a canonical way. If 4 is a DGA-algebra, we have g, My = 1A . From this,
as a DG-module, A may be identified with the direct sum 4 = A @ IA.

A DG-coalgebra C equipped with a coaugmentation, i.e. a morphism of
DG -coalgebras mg:A—C is called a DCA-coalgebra. Here we consider A as a
DG-coalgebra in a canonical way. If € is a DGA-coalgebra, we have g 1c = 14 .
From this, as a DG-module, C may be identified with the directsum C = A @ JC.
Here we let JC denote the cokernel Coker 7¢ of 1.

A differential Hopf algebra is a DG-module 4 equipped with the structure
morphisms @,: AR A > A, Dp:A—>ARA, ea: A— A, Ma: A— A such'that (4, a,,
®,, 85, M) is a DGA-coalgebra and either A, is a morphism of D(;A-algebras or
®, is a morphism of DGA-coalgebras.

Forgelting the differentials, we have the notion of algebras, augmented
algebras, coalgebras, coaugmented coalgebras, Hopf algebras. Now we recall the
following definition.

4.1. Definition (Nakamura {26; 1.2]). Let A be a DG A-algebra. A is called a
DGA-algebra with multiplicity, briefly an mDG A-algebra, if A satisfies the following
properties.

(i) A = @ .4, a direct sum of DG-modules such that

n=o

wA = @ 44, i ANA, 0 20,
=0

[
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(i) ®4GA® nA) € 1A, 1, m>0.

(ifi) 824 = ,4 =~ A (therefore ey (,4) = 0, n> 1).
Forgetting the diflerential, we have the notion of algebra with multiplicity, briefly
m-algebra. For each mDGA-algebra' A, H,(4) is eventually an m-algebra, and

Ha(A) =D H,4)= D Hy(d).
n= n=

If ac A, we define px(a) =n and say that a is a homogeneous element of

k
multiplicity n. We shall denote A(k) = B .4, k=>0. A morphism of mDGA-alge-

n=0

bras [: A — A’ is a morphism of DGA-algebras preserving the multiplicity, i.e.
fGA) C 4%, n>0.

Given two mDGA-algebras 4 and A’ The tensor product of A and A’ is the
DGA-algebra A® A4’ with the multiplicity given by (A®A)= @ 14 ® md’. Re-
; {+m=n

mind that 4 is a commutative mDGA-algebra, if and only if ®s: ARA—> 4 isa
morphism of mDGA-algebras.

An mDGA-algebra A is said to have Irivial multiplicity if IA = A or equiva-
lently ;A = 0 for i > 1. Note that if A has trivial multiplicity, then 4 is clearly an
algebra with trivial multiplication i.e. ab=0 for every a, b € IA.

Here are some examples of mDGA-algebras,

4.2. mDGA-algebras S, q > . For each non-negative integer ¢, J9 is an
mDGA-algebra with trivial multiplicity such that S%=Ac", the free A-module gene-

rated by a single element o9 of dimension q. Necessarily we must have 57 = A (&)
Ae% 209 =0, (692 = 0.

4.3. Iterated suspension. Let g be a non-negative integer and M a mDGA-
module. Then we define S to be the mDGA-algebra such that as a DG-module,
M =A@ (IM ® IS and itis given a trivial multiplicity by ,SIM = IM g IS

If g =1,5'M will be written simply by as SM. Immediately from the definition,
we have d7 M == SST1Y for ¢ > 0, so we call SIM the q-iterated suspension of M.

Let 09: IM — SYM denote the map given by ¢z = (-—l)qlx'x Relforz € IM,
Then obviously we have
3 (09x) = (—~1)%e¢%zx and (¢'x) (c'y) =0 forx,y € IM.

In particular, we suppose that M is a DGA-algebra A. As easily seen, we have
JIA=(ARSY)/(ARISI 1A ® A) as DGA-algebras. Remark that $°4 =~ 4 as DGA-
modules but generally <$°4 -~ A as DGA-algebras. Since (o°a) (o°b) = 0 for a, b < IA,
J°A can be seen as a trivialization of the multiplication of 4, Further, if 4 is an
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mDG A-algebra, we define SYA by neglecting the multiplicity on 4. When ¢ =0,
S°A can be seen also as a trivialization of the mulliplicity of A.
Now, we suppose that M is an n-connected DGA-module. For each negative

integer ¢ such that n 4 ¢ > — 1, we define the mDGA-algebra S'M with trivial
multiplicity-called the g-suspension ((—gq)-desuspension) of M by the conditions

(Icqu)l == (IM)i_q and OéqM =] (‘l)qOM_

We also have the map o%: IM — SIM which is the identity in each dimension.

Note that if M is n-connected, we have by definition SUT M ~ 4" SIM it
n+q > —1and ntq+q > — L.

4.4. Bar conmstruection, Lct A be a DGA-algebra. We recall that the
(reduced normalized) bar construction of A is the DGA-coalgebra BA defined as
follows.

(i) As a graded module, BA = @ (ISA)' where (IS4)° = A.
t=0

If t > 0, the clement of BA corresponding to each element c1®..Roa &<
d S 4)! will be denoted. by [ar |...la]; if £ = 0, [ ] indicates the unit 1 € (I S A)°

t
By definition, we have dim [a; |..Ja] =2, (lail+ 1)
i=1

(ii) The boundary formula :

.t . ¢ a9
opa i | la] = = 2 (— D5 (). | onaiolad + 20 (=D (@] aidtiyg | )

i=1 1221

where e = dim [a; |..|a;] forl <@ =t
(iii) mua(l) = [ 1.
it t=0

. i
ega ([as | la]) = 3 0 it £>0

t
(iv) Apa [y oo} = Z s ] lai] 8 [ ). ]
i=0

(4. 5) Supposc that A is in addition a commutative D(GA-algebra, then the
multiplication @, : AQA—A is by definition a morphism of NGA-algebras. Thus, in
this case, we have a natural morphism of LG A-codlgebras. B(A®A)-»BA. Compo-
sing this with the natural morphism of coalgebras BA ® BA —. B (A ® A), we
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have the commutative multiplication ®p,: BA® BA — BA (see e.g. Cartan [6 ;
Exposé 4]).Thus BA is a Hopf algebra. Now, from [26 ; 1. 2]. we have an explicit
formula for @y, given as follows:

(@]l [ |lacrad =130 (—1°% [ag_it1y |l@s_q(gu) ] Here 7. isthe summation
a X

running over the set of all permutations = & Gy, satisfying the condition.

n(l) <.<z:(t), ; (I+1) < ..<m(t+ )
and ¢, is the exponent given for each & by

ex =2 (lai| + 1) (la} + 1)

where 2’ runs over the set of all couples (i, j) such that 1<i<y t41 <j<t+4u
and x(i) > w()). :

Now let A be a commutative mDGA-algebra, Considercd as an DG A-algebra;
B4 is defined to be an mDGA-algebra with the multiplicity extended from that
given by the relation i

t
paa ([ai] ] @]) = 3 pa(a).

i=1

By iieration, BA = BBv'A, ¢ = 1 are mDGA.algebras. Here, by eonvention, we
let B°4 = 4.

4.6. A (1N, q), 1>0, q=0. Let C be an abelian semigroup and Z(G) its semi-
group ring. With the usual augmentation, we regard Z(G) as a DGA-algebra
where Z(G); = 0 for i > 0. Then we define

4(G, 0) = Z(G), A(G, q) = BA(G, q—1), ¢ = 1.

In particular, we consider the case where G is the semigroup of natural number
N ={a*; n > 0}. We have then Z(N)= @ Z(a—1)". Now, for cach positive
n=0 g

integer ¢, we definc A (N, 0), to be the'mDGA-algebra such that A(tV,0)=Z (N)and

JAUN, 0) = Y Zla—1)"if n=1tm, m > 0
' 0 otherwise.

By iteration, we define the mDG A-algebras A (iN, q) = BA(iN, q— D, ¢g>1.1f
t=1, we write' AN, q) = A (IN,9). This is the DGA-algebra with the multipli-
city defined in [26; 1§2].

Remind that A(Z, q) is not an mDGA-algebra, However, the morphism of
DG A-algebras AN, q) — A(Z, q) induced by the natural injection N — Z is a
chain equivalence see [26; I 1.11)). So H, (Z, 4; A)=H,(AZ. q); A) is an m-alge-
bra with respect to the multiplicity given on A(N. ¢).
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A topological version to the notion of mDGA-algebras appears in the
following

4.7. Definitien. A filfered monoid is afiltered space X = { X; | with X, =+
(see the definition below 1.3) together with a multiplication ®: X x X — X such
that X is also a topological monoid and ® is a morphism of fillered spaces, that
is ®(X;, X Xn) C X, T for every [, m > 0.

As a direct consequence of Definitions 4.1 and 4.6, we have the following

4.8. Proposition If X = [ X ] is a filtered monoid salisfying the decompo-
sition theorem, i.e.

k
Se(X) = @ Su(Xu, Xu1), k>0

then S$,(X) is homotopic to an mDG A-algebra.

Let X € CG’. Then the filteredspace SP(X,q) equipped with the multiplication
given by the relation

(@1 @7 ), (@1es @] (@) 4 goens Ty o) () o ooy @ 4o )] = (4.9)

= [(@ppere, @) L 1)s (@peeens @ 4 )]

is a filtered monoid. Also B(X, q) is a filtered monoid with the multiplication

induced from that of SP(X, q) via the projection SP(x, q) — f(X, q). Further, as
readily seen, SP(X, q) and B(X,q) are abelian filtered monoids.

The relation 4.8 does not induce canonically a multiplication on C‘?X. Q).

However, C(X, q) (then C(X, q) has a filtered monoid structure @ ; E(X, q)xC~(X,q) —
E(X, g) with

®([x, a], [z, ']) = [x X 2", ®; ;. (a, a’)] where z € X!, ’€XPand @, : F(R%]) X
F(RY, m) - F(RY, ¥ 4+ m), the map given by the formula:

(Dl.. m ((925- al)’ (al +10 9 4 m)) (4-10)

(81’ .'..,81,81+1+Z, K] ,81.‘.?‘1"'2 )

1
where z = Xq=X,- (¢ 4R+, Oyeenp0) with ,«:1-:[ Z s,

tS
1 ;m 4 ¥ - ﬁ‘ -
= : . R = max g, = X land ., = \ b4 \
_“‘Zz it 1 1}11)3 1\ 2 5 Y4k
* : el an e}
Here \ \ ¢ notes the distance between =2 & ! ond t e oriai]

of 4 ( ave with Tuxs /13/). o - -y =



§ 5. mDGA-COALGEBRAS

5.1. Definition, Let C be a DGA-coalgebra. C is called a DGA-coalgebra

with multiplicity, bricfly an mDGA-coalgebra, if C satisfies the lollowing propcre
ties.

(i) C)= @ o€, a direct sum of DG — modules such that
n>o
nC =

nCi 'S n.Ci = .C N Ci, n,i % 0
i

V&

o

(i) AcOOC @ €L ®uC. n>0.

{+m=n
(iii) m¢ : A = oG (therefore ec | ,C = 0, n > 1.

Forgetting the differential, we have the notion of coalgebra with multiplicity, brie-

fly m-coalgebra. For each mDG A-algebra mDG A-coalgebra C, H,(C) is eventually
an m-coalgebra.

* The multiplicity of a certain element in an mDG A-coalgebra, morphisms
of mDGA-algebras, the tensor product of two mDG A-coalgebras are defined
by a similar way as in the case of mDG A-algebras.

An mDGA-coalgebra C is said to have frivial multiplicity if JC = C, or
equivalently ;C = 0" for i > 1. Note that if C has trivial comultiplicity, then C is
clearly an cealgebra such that every element ¢ € JC is primitive, i.6. Ac(c) =
=1®ct-c®1. '

A Hopf algebra 4 is called a Hopf mDGA-algebra either if A is an mDGA-
algebra and Ay: A— A % A is a morphism of mDGA-algebras, or if A is an
mDGA-coalgebra and ®, : AQ A > A is a morphism of mDGA-coalgebras.

Here are some examples of mDG A-coalgebras.

5.2. mDCA-coalgebras 5% q > 0. We use the same notation as in 4.2, For
each non-negative integer ¢, 57 is an mDGA-coalgebra with trivial multiplicity
such that as DG-modules it is S of 4.2. Tt is easily seen that &9 together with
its algebra structure is a Hopf mDGA-algebra if and only if g is odd or 2=0 inA.

5.3. q-iterated suspension. Let M be an n-connected DGA-module. For
cach integer g such that n 4 ¢ > — 1, we introduce an mDG A-coalgebra structure
on the DGA-module S defiaed in 4.3 by giving a trivial multiplicity, Again,
we denote this mDGA-coalgebra by SIM and call it the g-iterated suspension of M.
For suitable n, g, ¢’, we have SHTM ~ SISTM,

In particular, we suppose that M is a DGA-coalgebra. Then, we shave
S = CRINVUANRIST @ JC® A) as DGA-coalgebras. for q > 0. Here the
right side has the structure induced (uniquely) from that of C ® SI such that the
projection from € @ J9, is a morphism of DGA-coalgebras.
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Remind that J°C ~ C as DGA-modules but generally S°C @ C as DGA
coalgebras. Since Aéoc (0°¢) =1 R e’ + o°c®1 for ¢ € JC, S°C can be seen
as a trivialization of the comaultiplication of C. Further, if C is an mDGA-coalgebra,

we define SC by neglecting the comultiplicity on €. When ¢ =0, J°C can
be seen also as a trivialization of the multiplicity of C.

5.4, Cobar construction. Le¢t € be a connected DGA—coalgebra. We recall
thal the (reduced normalized) cobar construction of C if the DGA — algebra FC
defined as follows '

(i) As a graded module, FC = @ (JST10).
t>o
If £> 0. the element of I'C corresponding to each element 071¢; @ ... ®
® olc, € (JIIC) will be denote by (¢y | ... [ ¢); if t =0, ( ) indicates the unit
t

1 € (J. d-10)° = A. By definition we have dim {¢; | ... | ¢) = > () ¢; | —1).

i=1
(ii) The boundary formula:
t

) e.—
e <<l |6 >=— 2 (=)<l gl lea>

i=1

t

+ 2 (=D <l bee ]l a>

i—1

t :
wheree; =2 (¢ | —D=dim<¢; | ..|¢ > mod2for 1<i!t,
i=1

Here if Ace = > ¢’ ® ¢”.(the Swedler’s notation), we write
c

&0
l e X

Bee = = (=1

[
(i17) Nrc (1) = < >, epc < O e |Gt > = 1 l.ft=‘— 0
0ift>0

() Qe (<l > @<l ol Cigu >)=<<Cr | | Clyu>

(5.5) In addition, we suppose that C is a commutative DGA-coalgebra. Then,
bydefinition, Aq: C— C Q Cis a morphism of D(rA-coalgebras. Thus, in this case,
we have the nalural morphism of DGA-algebras FC—I' (C® C). Composing this
with the natural morphism of DGA-algebras F(C® €) - FC ® FC, we have the
commutative comultiplication Apc: FC—FCig FC. Thus FC is a Hopf algebra.
An explicit formula for Ay is oblained as follows (refer to [26;1I § 3]).

Ape<ley | el &> = 20 (= 1)°T <ex (1) |- | equ) >@<Cm(u+ 1) | - | Caxy >
x
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Here 5 is the summation running over the set of all permutations % € o, satis-
a

fying the condition

a(h<.<nan@x@+H<..<x@) 0 ugl

and e, is the exponent given for each by
p=2(lc1+)¢lel+1)

where 2’ runs over the set of all couples (i, j) such that'1 i<y, u+ 1 <J<!
and & (i) > ® (j).

Now let C be a commutative connected mDGA-coalgebra. Considered as a
BGA-coalgebra, FC is defined to be an mDGA-coalgebra with the multiplicity
extended from that of C by setting

t
(el e >) = )
i=1

Further, assume that C is n-connecled, FC is then a commutative (n-1)-connected
mDGA-coalgebra. Thus, for 0 ¢ << n + 1, by iteration, we define

F°C = C, FiC = FFY'C,
FiC are commutative (n—g)-eonnected mDGA-coalgebras.

Given a DGA-module M, S*M is then by definition- an (n—1)-connected
commutative mDA-coalgebra. Thus, for 0 < ¢ < n, the g-iterated cobarconstruction
Fi5"M is an (n—q)-connected commutative mDGA-coalgebra. If M = J% F1J5°,
0 < ¢ < n are mDG A-algebras of particular interest.

Examples of Hopf mDG A-algebras can be found in the following proposition
which is ready seen in 4.5 and 5.5.

5.6. Proposition, Let ¢ >> 1. Let A be a commutative mPDGA-algebra and C an
(n—1)-connected commutative mDG A-cgalgebra. Then B4 is a g-connected Hopf
mDGA-algebras with commutative multiplication, and FIC with ¢ < nis an (n—q)-
connected commutative Hopf mDGA-algebra with commutative comultiplication.

Let A be a DG A-algebraandC a connected DG A-coalgebra. Let py: BA — 54
and r¢ : FC — S C be the maps given by
ua, if t=1

P (lay ] Iat]) = i1,

I if t=1
re(< ay o la>)= %0 if 11,
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Then obviously ps is a morphism of DG A-coalgebras and rc is a morphism of DG A-
algebras. Thus, we have the morphism of DG A-algebras

AN = r<5A F(pA) :BA - FJSA —->-c$°[1.
On the other hand, let
Bc : 5°C - Brc
be the map given by B (¢°¢) = [<e>] for ¢ € JC. Then obviously, Bc is a mor-
phism of DG A-coalgebras.

Now, according to Drachmau [10], Husemoller-Moore-Stashe(f [14; I1.4], and
‘Munkholm [23; 2.15], we have the following

5.7. Theorem. as: FBA —» S°A and p.: S°C - BFC are chain equiva-
lences.

§6. NAKAMURA' S CW — DECOMPOSITION OF (XRD
n
In this section, we recall a decomposition of XRY given by Nakamura in
n

{26 ; IL.1] from which we obtain an Gn-equivariant CW-decomposition of
(XR%). Since this will be a main tool of our further study, we shall attempt to

n

present the material in details for the convenience of the readers.

Consider X R = (XRY)* — {]. Let RY be equipped with the lexicographic

order by agreeing that a>b with a = (d...., a), b = (b,..., BI)ERY if and only if

there exists a non-negative integer p such that a® = b%if a<<pand aP1pP+1,

Then an arbitrary point of X RY can be written in the form g(ap.., a,) =

= (ag"(l)""' ag_l(n)) where g€ 6,, ¢, € Rl for 1 <v<n satislying the relation
a > 000 > a,.

Obviously, each point (ay,..., 1,) satisfying this relation determines a sequence of
integer ry,..., ry with r; = gand 0 r, <gq by the condition

v o
a, =a, o<y (6.1)
as‘ij;l> avv+1 if p, < q

where p, = a — r,. Conversely, given a sequence of integers ry,..., r, with r; = q
and 0<r,<q, we can determine a subset of XRY consisting of all points (ay,..., a,)
n
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satisfying (6.1). Let @ = (ry,..., r,) denote this subset and let ga the subset [gP;
PEa} of XR1 for each g€6,. Then the collection R(q, n)= lga; GEG,, a=(liyeess Tn),

r;=gq, 0<r,< q] evidently covers XR.
n

Set [ 1= |#} and
R(g,ny = [[ 1} v R(g n).

R(q, n)’ is an G,-equivariant finite covering of (X R?) by pairwise disjoint sub-

sets. Every ga in R(g, n)' is homeomorphic fo a disk of dimension
[ga|= 2. v
v=1

if @ = (Fqeeer Tn), 96 Or 0 if @ = [ |. Clearly, [gal>¢q ifa=k[ 1. Call ga a cell of
dimension i or an i-cell if |ga| = i. By the condition (6.1), the boundary of every
i-cell in R(q, n)- is contained in an union of cells with lower.dimensions; it is
homeomorphic to an (i-1)-sphere if i > ¢, and it is just the point * Tor any ¢-cell
(q == 0). From the above remarks, we observe that

(6.2) R(g, n) is a cell decomposition of (X RI) as an G,-equivariant CW-
complex.

Suppose that we are given a cell & = (ry,..., 'x)in R(g, n). In order to express
the faces of a, we first infroduce some notations.

Let r be an integer such that 0 < r < ¢. Then we define the monotone in-
creasing sequence

v(r, D), ..., v(r, Kr)) (6.3)
consisting of all indices v’s such that r, > r. This sequence defines the partition
n(r) = (n(r, ),..., n(r, &(r)) 6.4)

of n by putting n(r, i) = v(r, i) = v(r, i+1) — v, i) where v(r, {(r) + 1) = n+ 1.
Here a partition of a non-negative integer n means an ordered sequence (ny, ..., n)
such that n; 4 ... 4 n = n.

Let ¢ = (ny,..., n) be a partition of n and let & be permutation of degree .
Then we define their asseciated element ¢(¢, @) in G, by the formula
i :n(i)—l‘ I
g6, ) (Zni—l— h): > ng_y(pth ISA<H (6.5)
j=1

j=1

with 1 it In particular, we sel
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gu(r, @) = g(n,(r), 7).
Note that for cach ¢ and m given above, the signature e(g, xr) of g (¢, x) is the
integer
e($, ®) = 2’ nin; (6.6)
where X’ is the summation running over the set of all couples (i, j) with i<j
satislying s(i) > ™ (j). The sign of ¢g(#, =) is sign g(¢, ™) = (— l)e(¢’ 7).

Now we consider the boundary of o — (Tis.es o). If & is of the lcast dimen-
sion g (i.e. the cell of the form (¢, 0,...,0) then [ | is the only cell in its boundary-
Hence it has no faces unless q=1

Suppose Ja|>gq. A cell g is a face of a if and only if it is a connected

component of the set of X RY consisting of all points (ay,..., ,) satisfying all rela-

tions in (6.1) except that

[ ] o
a = ( I<e < -+ 1
1 [ 4] ~ Pe

Pp+2 Pp+2
avy a
po1 T

for a certain index p with p==1 and ru =q — pp > 0, From this remark, the
faces of @ can be expressed as follows.

(6.7) Let p be an index such that rp > 0 and p &1, Put r = re,and let i, u, v, w
denote the integers defined by the relations

B = ‘\7(1‘, l)
vr,i—1) = wr -1, u)
v(r, 1) = v(r —1, v)

v, i+ 1) = v(r—1, w)

Then a face gB of a is a cell of the following form:
i) g' = g,(r —1, ) where x €6, | = I(r —1) such that

T << .<axw-—1), n0)<..<a@w-—1)
and that fixes every & with 1 <Ak <<u, w L k<
(i) B= (I‘g(l) . I'g(v)— 1,... I'g(n)) where v is the index such that 9(v) = p.

Let us define an orientation of a cell ga with a = (rq,..., ry) in R(q, n) for
every g € G, by the coordinate system

1 _ e+l q  pPg+1 Pn+1 q i
t = (11 pes Ay U seeny A soes U] (%),
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For a face B e= (I'y, .y 'y — 1,y I'n) Of @, We Obtain its coordinate system by delec-

w1
ting the (1 o 2 ry ) -th coordinate function aa“ *1from the coordinate system
=

of a. So, as in the theory of simplicial complexes, we define the incidence relation

[a:B] by the formula

w1
1+ Z rh
o’ B1 o (=1 1 A=t

Let gp be a face of « as mentioned in 6.7. By definition, the coordinate
system (%) is a reorientation éa’ of the cell o’ = (rg(l.) =S rg(n)), and we have

[@:gB) = (—1) M=

Further, we have

[a:gB] = o[ :gBl = 6.(—1) *=!
To consider

aPl+1 Bl
x 1 n
6 = sgn ’
g Pe(1y aq
g(l) " g(n)
we set '
Sej = T + B iy

Vi, P<AZV(r, j+1) )”
Then, from 6.6, we have

b = (—l)z’sr-w Srty k

where X’ is the summation running over the set of all couples (j, k) such that
j <k and m(j) > w(k).

Summarizing, we have
p—1
1+Z rh + Z’Sr_l,_i Sr—1y k
[a:gB] = (—1) P! (6.8)
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' 6.2, 6.7 and 6.8 determine completely the G,-chain complex C.(R(q, n)").
Concerning the structure of this complex we have the following fundamental
result.

6.9. Theorem (Nakamura). There exisis an isomorphism of DG-modules

Cu(R(q, n)) ¢®Z = L A(N, q)
n
for n, g > 0.

Here C,(R(q, n)) is the kernel of the augmentation ¢ : C,(R(q, n)’) — Z given
by &([]) = 1, and ,A(N, ¢) is defined in 4.5. As we have noted in the beginning
of Section §2, SP"8Y/SP"-181 ~ (X RY) /G, . Hence, according to the decomposition

n
theorem, an important consequence of Therem 6.9 can be found in the following
from which we obtain the assertion of Dold—Thom on the infinile symmetric
products of the spheres,

6.10. Theorem. The singular chain complex S,(SP(S°, q)) of lhe filiered
monoid SP(S°, ¢) (see 4.7) is homotopic to the mD(G A-algebra A(N, q) for g > 0.

For the proof of Theorem 6.9, refer to [26: II.1], or to the proof of Theorem
7.6 in the next section.

§7. THE MDGA—ALGEBRAS V ()

We have observed in 4.9 that S, (B(X.q)) is homotopic to the mDG A-algebra
S, (B(X,) = 30 S. (B(X,q.n), B(X,q, n—1)) for each X in CG’. The purpose
n> '

of this section and the following is to construct an mDG A-algebra V(M, ¢)
for each DGA-module M such that V(M,q) > Sk B(X,q) by a morphism of mDGA-

algebras if M == S, (X). Here, we deal first with the construction of the mDG A-alge-
bra V(q) = V(8°,¢) following the argument used by Nakamura in the proof of Theo-
rem 6.9.

Let T (q,n) denote the Gq-invariant subcomplex of R(q,n) consisting of all
cells ga with g € G,, @ = [] or (1 ,..., ra) such that there exists an index v 4 1
with r, = 0;

and let F(q,n)'=R(q,n)"{ T(q,n) Remind that we have then Fq.n) = {[ 1} V F(q,n)
as sets where F(q,n) = R(¢,n)" — T (¢,n). Remind further that if q =0, we have
by definition
FOn)y = ([[ 1, ()} ifn=1
. [ 1] ifn>1,
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Obviously T(q,n) is an G,-equivariant CW-decomposition of the space T(RY,n), ah
F (q,n) is an G,-equivariant CW-decomposition of F (RY, n) (see 2.13).

Now we define the mDGA-algebra V(q) which will be by definition homo-
topic to S, (B (S°. ¢)). We set

V() = (Z n=20
3 Cu(F(q,n)) n>1.

Here C, (F(q,n)") =~ C, (R(q,n)")/C.(T (¢,n)). First we define V(q) as DGA-module
to be the direct sum of DG-modules

~

Vi = © .V
V(D) £ (@

n
and to be augmented by the projectione : T’(q) — ;,‘17((1) = 7/,
For a € "‘7((1), we let p(a) =n.

If ¢ =0, we have

nﬁo _{Ze® n=1
AL gO n>1 (7.1

Here and in what follows, #° denotes the cell (0) €F(0,1)

Suppose ¢>1. Let a bea cell of the form (ry,...,rs) in F(g.n)- Let v(i)=

= v(q, i) and n; = v(i+1) — v(i) for 1 <i=t=1(q) (see 6.3 and 6.4). Then we obtain
the cells

oy = (q -1, Fy(i)+1see+s r'v(i,'+1)—-'l)

in F(q'—l,n;), 1i<t. Conversely, a such sequence ay,..., «; determines a cell a.
Note that we have the corresponding formula on dimensions

t
\
la) = 20 (la| +1).
i=1
Thus we write formally
a=1{a|...lal.
As easily secn, this correspondence yields an isomorphism

V= & 26y ®  (mVe—1e.8uV(—1) (7.2
Rytetni=n Gnlx---XGnt

of G,-modules. In particular, from 7.1, we haYe

n“;(l) =Z(6.)®Z 0, (1.3)
where we denobe @, =[¢°| ... | 6°] =(1,....,1) € F¢l,n)
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Next, we define the morphism of graded modules Wq) ® ‘7((1)-—»‘7((]) by tflé
morphisms of graded 6! X G,-modules
V(@) ® n:i’(([) — 1+mV(q) t.m>0
given as follows. Later, by the boundary formula, it will be automatically verified
that this morphism is a multiplication of V(q).
If ¢ =0, it is necessary from 7.1 that (¢°)2 = 6.
Suppose ¢>1. Let a=[a; | ... | a], @ =[as; | ... | 2443] be in ﬁ’(q) and mV(q)

respectively. Then we define

85(x,B) }
aB =2 (-1 9(7) [a,c_l(l) oo 1] L T 1 (7.4)
o 4

where the summation runs over the sct ol all premutations
&6y, satisfying () <...<<xm (@), 7+ <...<(t+u); g(@@) = g$,7) €6em
with ¢= (u(2y),.... p(®sa)) (s€ec 6.5); and e; (a,B) is the exponent given by
ex(o, By=2(|ai | +1) (e | +1)

with X* running over the sect of all couples (i, j) such that 1<i, <, (4+1<j<
t+u and (i) > w(j).

From the incidence relation in R(q, n). given in 6.7 and 6.8, and the above
notion of multiplication, we have the following boundary formula for 17((1):

t €i_q
ol lad==2" (=1 [ag || o]l (7.5)
i=]1 .
t—1
+ 20 (=1)% [y | oo | ihigg | we | @l
i=1

where e, = 3" (] a;! +1) for O<i<?.
=1

This has the same form as the boundary formula of the bar construction.
The construction of the mDGA-algebra V(q) is completed.
The mDGA-algebra V(q) defines the mDG A-algebra V(q) by selting

Vi)=& .V(@), V(@) =% . V(g) for n>0.
n=0

(111

Clearly by definition V(0) = J° and V(q)= BV(¢—1) as mDGA-algebras. From
this fact, we have the following
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7.6 Theorem. We have a canonical isomorphism of zzlb(?xi—aigéliyras
V(g) = BiS°
for every 9>0. In particular, we have ,V(q)=,B3°, n,g=>0.

To determine the homology algebra of V(g), we consider V(1) = BJ°. By |
use the notation in 7.3, we have

. ‘I(l) = @ Zexx; en = [do I aee l O‘UJ E F(l, h)"/cnﬁ
n>o ]
An easy computation shows that

2 ) .
aBn == (I} 01 F= 0, 916211 == 921‘1+1 ’ 921 92n1 = ( l; m) 62(I+m) (77)

for [, m, n > 0. Here as usual, ((, m) = (( +m) 1! ml.

Let P(x; 2i) denote the divided polynomial algebra with a generator x of
even dimension 2{ over Z, and Li(y; 2i + 1) the exterior algebra with a genetator
y of odd dimension 2i 4~ 1 over Z. Then, from 7.7, we have

V(1) = E8;; 1) @ P(By; 2), 30, =0, n = 1, 2)

as mDGA-algebras. Remind here that p(,) = n. Using the notation given in 4.5,

it is well known that, by the method -of Cartan’s construction, we have.the homo-
topy equivalences of mDG A-argebras +

E@; 1) =2 AN, 1) (0 = fa — 1)),
P(8:: 2) = AN, 2) (B, — [[a — I]]).
Consequently, we have V(1) >~ AN, 1) ® A(2N, 2).

Now, by means of the homotopy equivalénce of mDGA - algebras
B(A®R A')~BA ® BA" for mDGA-algebras A and A°, we reach the following
7.8. Theorem. We have the homotopy equivalence of mI)(rA—algebras
V(g) =~ AN, ¢) @ A@N, ¢ + D).

According to the-decomposition theorem, a direct consequence of this theo-

rem is the determination of the homology groups of the spaees F(RY, n)/G,.

7.9. Corollary.

H(F(RY, 0)16,); A) ~ Hy (AN, ) ® AN, ¢ + 1); A)

Let 73, be the braid group of n strings. Then F(R2, n)/G, is a space K(3,, 1)
us proved in Fox—Neuwirth [12]. Thus we have H (B, A) ~ H (F(R% n)/G,); p).
On the other hand, according to the Poincaré — Lefschetz duality, we have

H(F(R?, n)iG,; p) = ﬁm"i(F(Rf, n)/Gy: A), (sce 10.1), Thus, from 7,9, we have the
following
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7.10. Theorem. Hi(B,: p) ~ ( H™ (A(N, 2) ® A2N, 3); p) < i< 2n
0 i > 2n,
Remark that Hi(G,;) is trivial for i > n. (This fact is obvious from 10.3 and

the definition of,W(2, +) in (§9): A related result to the homology groups of €,
will be found in §10.

7.11, Remark. By means of the method of Cartan construetion, the m-al-
gebras H*(V(q); Z,), hence the groups H,(B,; Zp), are easily determined. In 1970,
Fucks [13] has computed labourously H*(F(R?, n)'/G,; Z») to determine H(B,: Zy)
by use of the G,-equivariant CW-decomposition for (F(R?, n) which is in fact
the decomposition denoted by F(2, n)' here.

8.THE mDGA-ALGEBRAS V (M, q)

Let M be a DGA-module over Z, We define now the mDGA-algebra V(M, q)
for each q > 0. First. as a DC-module, it is the direct sum of DC-modules

VM, q) = 9 VM, 9) VM, q)=(IM) &,V (¢), n> 0.
n_=20

The unit will be an identification Z =~ , V(M, ¢), and the augmentation will be the
canonical projection V (M, q) — Z. For every o € ,V (q9) and x € (IM)", we write
(@ @) =(—1) [*1%]ggq
Then, by definition, we have the boundary formula
2 (2,%) = (b, @) + (— 1) [ 2] (a, 2X).

The multiplication on V (M, q) is given by the relation

e ) @ = (=121 %1 g xey).

An easy verification shows that V (M, @) is an mDGA-algebra with multipliciyt
(e, @) = p ()
The mDGA-algebra V (M, q) defines the mDGA-algebra V (M, q) with

VM, =@ .V(M, q), VM, ¢)=Z2 .V (M, ¢.
n>0 Gn

Since V (0) =¢ J° we have obviously V (M, 0 & S° M. In general, we have
the following

8.1 Theorem. There exists a canonical isomorphism of mABDA-algebras
VM, q) = BY(S° M)for ¢ >0,
In particular, we have ,V (M, ¢) ~ ,BY (S° M).
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This theorem is a direct consiquence of our below consideration of the
mDGA-algebra ‘7(1(. q).

If g =2 0, we have already V(M, 0) = S°M.

Suppose g > 1. Let(a, x) € ,V (M, ) with ¢ = [y ]...) &) and = = ;P .. X,
T € IM. If p(a;) = n;, 1 <i<<1 we write

= Tat a1 8 @ T 4oy, ISIKH
Then we write

(e ) = (— )39 [, x) |.ne | (@, x0)]

where d(a, x) is the signature given by the interchanges of [a;] with x; when i > Jz

di,z) = S (Jal+Dixl. -
1 j<ist (8.2)

Here we note that we have the corresponding formula on the dimensions and the

multiplicities as follow :

t
I(d,x)l = Z(Iaisxi)l +1)

i=1

t
(x, X) = 2 (aj, X).

i=1 ¥

This correspondence yields an isomorphism of 6,~modules

VM. ) == b Z(G,) ® (RIV(M»‘]‘I)®-"®"'T’(M'q'i) (8.3)
¢ ‘m4...-fni=n Gan---XGm

according to 7.2. _
Now we prove the lollowing formula for the multiplication.
8.4 Lemma. Letsa = [(ay, x)|...| (@, x)] € |V(M, ¢) and
b = [(@rs1 xi41) | oo | (@04, Xira)] € wV(M, ¢). Then we have
ab = 2 (= D) (o Bt g 1o | @iy Tty )
Here the summation, g(sr) are as in 7.4, and the exponents e (a,b) are given by

ex(@b) = T’ (Joul + | x|+ 1) (Joy| + |25+ 1)
where X’ is again as in 7.4,
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Proof. Lel o = [ai|..|aul B = [apt] | frpa] and Lot & = 2@ .0 2,
¥ =R .. ®%i 4. Then, by definition, we have (_1)|B X1, 2)(B, ) (of. @0}

= Z(_l)en(a, B (g (“)[aﬂf—l(l) |.o.] a“_l(t+u)]’ TR .. R Trn)

= }_‘,(___l)e'n(a, B)+e7c(x. V)g(ﬂf)([an_l(l) |...l an_l(t+“)], g(ﬂ)(ﬂh@ coa ®x1+u))

- 2(___1)61:“‘, B)+ew(x. V)g(fﬂf) ([a:nfu-l(l) I ], T

ol o T
%1yl For—10) B Ty )

= (—1yen(@, B tex(x, v ' +dx(a, B, x, y) .
(CEEe i g(n)[(aﬂ_l(]).x,r-l(”)l- Moty T =1 )

Here we set
ex(Z, §) = X' &} ;).

dy(a, B 2, y) = Z‘ (Ia“—l(i |+~lxﬂ._l(i)‘+1)(|d'q'[’-_1(.)l+'xu...1(,)| + 1.
1<Kt ’ : :

Our purpose s to prove the relation which implies the lemma:
iBllx| + ex(a, B) + ex(x, §) + dx(a, B; @, Y)
w d(x, x) 4+ dB, y) + ex(a, §; %, y mod 2 (¥)
where d(a, ) and d(B. x) are as in (8.2). First we observe

de(a, Bs 2, 9) = (C1+ 2o+ Zg) (s |+ ||+ D(layl + x5+ 1)

where X, Zg, Z3 are the summations

2

1T H<TIGHKE, 12

2.

I

IR IH<H )<t +u, i

Zs

1

1<), ISR+, 1>
Since x(1) <. < @) n(t 4+ 1) < ... < ot + u), we have dy(=, B; x, )

=( 2 + 2 + > ) al iz + (el 4zl + 1)
It 1 rJit—u

== d{e, ©)+dB, P+Z(C o [+ 1oy |+ 1) ;| | 25|+ Qo l+1) fa; | — (o |+ 1) i)

= (e, 2)-+-d(B, y) + rylx, )+ ex(®, P)+Z"(Jou |+ D x|+ (Lol 4 D)) (#»)
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Further, we have
IBllzl+ 2" ((leasl + 1) (@] 4 (o3| + D) |2
=23 ({oy] + D x| + 2 (oui| + | @il + 1) (o) + 23] + 1)
= e, (a, B; x, y) mod 2 (***)

Obviously, from (**) and (***), we obtain (*). The lemma follows.

8.5 Lemma. InV (M, ¢) we have a boundary formula of the same form as
that on the bar construction, i.e.

3 [(a1 1) | .. [ (&1, 2)]

“ (Ffi—
= — Z(‘TI) 1[_(a,l. Z1) |.on] 8 (@i, X)) .0 (o T

i-l

1—1 [ ’

— 2. (=1 [(o, 1) || (@ @) (igty Tisa) || oy T)]

i=1

where 8; = dim [(ay, 1) |...] (&, T)] for 1 i< L

We omit the proof since it is merely a comparision of the signatures as
in 8.4. The proof of Theorem 8.1 is completed.

An important application of the algebras V (M, ¢) can be found in the
following

8.6 Theorem. Let X be in (G’ and let C, (X) be a DGA - module such that
Ca (X) = S, (X). Then the singular chain complex of the filtered monoid B (X,q)
is homotopic to the mDG A -algebra B (J°C, (X)) for ¢ > 0.

Proof. According to the definition of the DGA-module V (M, q) and the
proof of 3.10, we have

V€ o=8,(B X, )= @5 B X, ¢ 5 X ¢ n=1)

n >0

for any X € CG’ and any DGA-module C, (X) =~ §, (X). Thus what we need to
prove is that the multiplication defined on V (Cy (X), q) is an approximation for
the monoid structure B XX B (X, q) =B (X,q)given in 4.9. Again by 3.10, we
have the homotopy equivalence Sk (§ (1 Se X)), @) == S (ﬁ (X, q)) which in obvi-

ously a morphism of mDGA-algebra. So, without loss of generslity, we can assume

that X is a CW - complex. Thus B (X, ¢) becomes then a CM ecomplex according
to Proposition 2.10. Let G, (4) denote the cellular chain complex of a CW - complex

A. Then we have C, (B (X, D) = V (C, (X), ¢) by definition
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Let g: F(RY, ) X F (RY, m) = F(RY, | + m) be the based point preserving
map given by ((ay..., @) (Qistre-s Arem)) = ((ay,o.-, Q141n)). Then we have

[(®Xa, yXPB)=(x Xy, g XB)

where a € F(q, Iy, p € F (9, m) and xand y are cells in X' and X™ respectively.
Hence fin a cellular map,

Because the mulliplication on V (Ce (X), @) is given by the formula (a, z)

B, y)= (—1)“3] l] (aB, xy), it remains to shows thal the formula 7.4 for the defi-

nition of ap can be obtained by of = 9x (2 ® B) where g, is the induced chain
map of g.

Let o, B be as in 7.4, Then we observe that the eells having dimension

fa| + [B| conlained in g(x X B) are Jjust those which appear in the summationz
T

of 7.4. Moreover, the signatures in this summation have been given in concordence
with respect to the orientation of cells delined in’terms of coordinate system asin §6.
These facts show af = g, (« ® B). The proof of the theorem is completed.

§ 9. THE ¢,—FREE COMPLEX 1W(q) AND A FREE RESOLUTION FOR Z(G.,)

In this section we review the structrure of the dual complex n\?T’(n) of lli’u(q)
which has bcen formulated in Nakamura [206; IT § 2]. By definition, it is the
G,-equivariant complex given as follows.

In each dimension i, the i-chain group of llﬁ'f(q) is the (ng-i) - cochain group

of ,V(g) = Hom .V (g), Z). 1f we let m: ,W(q); = () denote this identifi-

*
nq-—i

cation, the boundary a of nﬁ’(q) is given by the relation » = n-¢n wheve & is the

cobeundary ofﬁ(q)", and the actionr of G, on nT'V(q) is introduced so that 7 is
G,-equivariant,

For each a& ,,V?q), we shall denote by o = w(a) the corresponding element

of ain I,W/'(q), i.e. w(a) = n(a*) with the dual a* of a« in nW(q). Then we have

m(ga)=gw (a) for 9E€G,, and the incidence relation in nV£7(q) obtained easily by
the formula [w(B): gu(a)] = [a: g-'8].

Suppose that we are given a cella = (ry, ..., r,) in nVm(q). Let us associate
to o(a) the scquence of integers << py,..., pn > with py=q—ry, 1 <v<n We
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shall denote this sequence also by w(a). We note that this notation is compatible
with respect te the dimension of & and w(a) since we have

|o(a) =2, = nq—|a|,

i=1

From the structure of nf;'(q),'.ﬂf"'(q) is obviously the G,-free module having
a G,-basis consistinig of the elements <C py, ..., pn > Withp,; =0, 0< Pv<{q (1<<v<n).

The following is an inductive study on ¢ of the structure of 11\\7((]). If g=0,
we have from 7.1. '

&2 n=1
nWIg) = g n>1

Suppose ¢ = 1. Suppose we arc given an element v = w(a) in “W(q) where
a== (.., ) = [a1}..| o] With a; € n?V(q—l), 1<i<t Then w determines and

is determined uniquely by the sequence i, ..., 0. With w; = w(a:) € aiW(g—1) for
1< i<t From this we write formally

w w = < W1y ees y Wt >¢
As éasily seen, we have

w; == < 0, pV(i)~1 9.0 9 p‘V(i_l_ 1)—-1>

for 1<i<iif w= <py..., on >, Where v(1),..., v(t) is the monotone increasing
sequence consisting of all indices v’s such that p, = 0. We have also the relations

lol =2 (Joi] + nw) — 1),

il
t
w(o) = 3 w(o).
imel
Here and in what follows we write p(w) = nif o€ n“~7(£1)-

'The above correspondence yields an isomorphism

nﬁ](Q) o @) Z(6y ® (nlﬁf(q—j) D . @mﬁf(q—-i)) o1
ni+...+ni=n Gn1+"'+Gm .

ol €,-modules. This is an induétion formula for ,W(g).
To express the boundary formula we define the morphism of DG 6,~-modules

M= ® Lm(@:W(@-> & Z6:) ® (W(Q) BaW(g) 9.2)
l+m=n l+m=n G1X6m
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where ;, ,A(g) is a morphism of DG ¢,.modules given for each pair of nonnegative
integers (I, m) with [ 4+ m = n as follows. Let 0 = < v, ., o > e nV'[Uf(q) with
SEP W’(q~-~1). Then we define

() = 2 (—1)ex(o] Q)g(ﬂ)<“’af(1)’ O = O T Oy Oy

Here: (i) the summation runs over the set of all permutations o & G, such
that (1) <o), w(u4-1), <..<<z:(f) for some u salisfying the conditions

1 t
Z nyy=1, 2 Ny = m;
i=1 ' i=u41

(ii) g(w) = ¢(@, M) with @ = (My,...,n)
(iii) e (w3 ) = Z'(joi]) + (q—1)+1) (jwjl4+n(q—1)+1)

where 2’ runs over the set of all couples (i, j) such that 1<{i<Cu, u + I jsot
and (i) > x(j).

For later convenicnee, we define

AMp= @ 1 m D) (9.3)
l4-m=n
where

L A @o= Z(—1)°5(5 Dy () D) Py @ < Ogigy OS>

with e, (w; q) is the signature given by

14
ox (w05 q) = e (w; ) + Z ““’n‘(n |-} Tty 4y (g—=1) + D).

i=1
Now, under the above notations, we have a formula for the boundary
2(¢) on ,W(q) as [ollows

! .
o) opemo> == T (=D 197 Vg, a(g= Lo o>
=1 '

?
+ 2 (=1 i-1(e (I)<w1.---,é(q—-1)mi...-‘.wl> (‘M4
=1

i i
where ew; ¢) = Z (o] + 1y (g—T1)+1) (== Z (nyg — | <<w;> ) mod 2)
=1 i=1
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The formulation of the chain complex nﬁ’(q) is completed.

Let A (¢) denote the 6-module pon which G, operates trivially if g is even,
and by sign if ¢ is odd, Then, from the above boundary (ormula, we observe
thatwn“’(q) is an DG G,-module augmented by Z(q). Further, if ¢ and g'are two
non-negative integers such that ¢ < ¢’ and q—¢’ is even, then there cxists a
canonical immedding of DG 6,—modules

W) < o W)

Hence we have the limits

ﬁI(Gm +) =] hm ﬂﬁ'r(zq)

q—-)o-

W(Gy, —) = tim ,W(2¢+ 1)

q—boo

Let Z, = Z(q) if q is even, and Z_ = Z(g) if ¢ is odd. We have the following

9.5 Theorem (Nﬁkamuraj. W(6., +) ina free resolution of Z.i over the group
ring Z(G.). '

Proof. By definition we have

® W@y = @® C'(R(g, ny).
o<li<g osi<lg

Since Hi(R(¢, n) ; Z) = H'(S"% ; Z) = 0 for 0 < i< ng, we have Hi(,W(q); Z)=0
for 0 <i<<gq — 1. Letting ¢ — o=, we obtain the theorem.

We take this opportunity to derive some consequences of this theorem on
the homology groups ol the symmetric groups. First we have

- 9.6 Theorem (Steenrod). If i < g, the we have
H(G,; A(y) = H"~'(SP"8Y; A).

This result has stated without proof by Steenrod in his lecture note [33]
for ¢ even, A proof can be found in Nakaoka [25].

Proof. If 0 i <Cq, we have
Hu1-1(SP"SY ; A) = H*1-1 (SP"SYSP™-'87; A)

according to the Steenrod’s decomposition theorem 3.1, because Hra~i (Spr-1g9.
A) = 0 in this case. Further, by the relation SP"89/SP"-!87 ~, (X R%)'/€,, and the

isomorphism in the prool of 1.5, we have
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H™~=1(SP"S1; A) & H™= ((x RY)/€, ; A)

o Hi (A é@ n‘xf(([))'

n

if 0 i<<q. On the other hand, let ¢ = g — 2, we observe then that n\T’(q’)
(resp. nVT/'(q)) is an G,-freec and acyclic in dimensions < ¢’ (resp. in dimensions

< ¢). Consequently, in dimensions i < ¢, the canonical imbedding 11\~‘V(q) C,,ﬁ"(q’)
is an 6,-equivariant chain equivalence. From this, we have ;

Hi(Gu: A(g)) = Hi(A & V@), 0<i<q;

according to 9.5. The theorem follows,

Now, combine Theorems 6,10, 9.5 and 9.6 we obtain the Nakamura's formu-
lation an idea due to Steenrod in [33; 22] for the computation of the homology
groups of symmetric groups in the following

9.7 Theorem, If 0 < i< ¢, we have
Hi(G. 5 Aq)) = H"=(Z, ¢q; A).
Here H*(Z, ¢ ; A) is the algebra with the multiplicity given via the iso-
morphism H*(Z, q; A) = H*(A(N, q); A) (sse 4.5). In the case where ¢ is even

and A = Z,, we reach casily the result of Nakaoka [22; 6.3] on the homology
groups of the symmetric groups.

10. THE mDEA-COALGEBRA W (M, q)

Let Z (q, n) denote the graded G,-module with Z (4. n) ~ Z (q) as €,-mo-
dules gencrated by a single element of dimension ng. Obviously we have then

Hay (CX RYY 3 Z) = Z (g, ).
n

Considering Z (¢, n) as a LG G, - module with the trivial boundary operator, the
Poincaré —Lefschetz duality theorem applied to the spaces (( X RY), T (RY, n)) gives
n

rise to the canonical isomorphism of DG G,-modules
7 (q. ) @ §* (F (RY, n)) =S, (F (R%, n)+). (10.1)
On the other hand, from the definition of ,W (q), we have
Z ()2 W@z @0 ).V (o~
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So, via the €,-equivariant chain equivalence WV (9)* =~ S* (F (RY, n)), we obtain
the G,-equivariant chain equivalence

Z (@) ® W (9) =5, (F (R4, nyb). (10.2)
For later convenience, instead of Z (q) @nﬁ? (q), we shall use the DG G, -
module ,W (¢, +) defined in the following

10.3 Definition Let J’V'(q) denote  the DG G, -submodule of ,,W (q+1)

with a G,-basis consisting of the sequences <C py,....pn >, p; = 0,0 < p; < q. Then
we define:

" W (g, +) = W (9) and W (g, =) = ,:W’ (9) if ¢ is even,
w W (g, +) = W’ (q) and W (¢, =) = W (q) if ¢ is odd.
We prove

10.4 Lemma. W (¢, +) =7 ()-® .1V (¢) =S, (F (RS n)).

Proof. The lemma is clear when n q is even. We suppose that ¢ is odd, Let WV
(¢ + 1) denote the €,-submodule of ,V (¢+ 1) with a 6, - basis consisting of the
sequences (Tisesesln)s ry=gq + 1 and 1<ri g+ 1. Then, according to 7.5, the map

n V(q)—> V' (g +1) given by a — (— 1)"+! [«] is clearly an isomorphism of DG
G, —modules ol degree n. From this and Definition 10.3, we have

!

W (@G F) =WV (@D=Z @+ 1,08 .V (¢g—1)*
Z@® (Z(gn®.V (%

=Z(q) @ .W (q).

Hi

The lemma follows.

Remark. We can prove that nW(q, +) =8, (F (RY, n)) as follows. Suppose ¢
odd. Let

F“ S U{gﬂ, g e Gy, a =(r1,...,rn), ry= q+ 1; 1<ri <q -+ 1}
Then we have I (RY, n) CF,C( X RI+1). Let p,: RI+' — RY+! depnote the ‘map
n
(d\,...,a!, a'+)—(a'..a?, (1 -1 a'*') for each 0 <<?< 1. Then we obtain by a

natural way a 6, -equivariant rctracting deformation of R, onto F(RY, n). Thus
we have S, (Foy =~ 8§, (F (RY, n)),

On the other hand, by use of the Poincaré — Lefschetz duality to the spaces
((X R | (x RIHY — 7y and a similar’ argument in proving 10.2, we obtain
n

the relation nVl“/;(q,-}-) =~ §, (Fy) il q is odd. This is what we necd to prove,
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Let M be a DGA-module. The above lemma and the assertion 3.10 lead us
to the DG-module ﬁ"(M, ¢, ) defined to be the direct sum of DG-modules
W, g 1) = @ WO, g, ), VU ¢, 4) = M) ® W (g, +).

n>>o
For every w € nW(q,) and x € (IM)", we write
(0, 2) = (— Dlellz] £ g,
Then, we have by definition the boundary formula
3w, ) = (3w, 7) + (— D (0, 23).
Further, we define the morphism of DG €,—modules (10.5)
B, g, )= @ AW ¢, +)

+~m=n
where, for each pair ol non-negative integers (/, m) with / -+ m = n, [, M. g, £)
is the following compesition :

nﬁr(M, {1‘ :‘t) id®l.mA(q! "‘*_—)

(hw)"op(Z(Gn)G ® (W(g ) ® nW(g, +))
IX m

~

~ 26D @ (M) 5 Wig, 1) ® (M © wi(g,
X Gy

~

5260 @ (WM, q 4) @ wWl, g, 1),

1 X m

Here, 1m(q, 4): W(q, +) - Z(6,) & W (g +) Om W(q, 4)) is the G,.mor-

1 X6m

phism of DG G,-modules obtained from ;,A(q) delined in 9.2.

From the DG-module W (M, ¢-=-) and the morphisms ,A(M, ¢, +), we define
the mDGA-coalgebra W(M, q, +) with

WM q. )= & WM, q4), WA, q+) =Z @ Wi+
G, .

n_>o

as a DG-module, and with the comultiplication A == @ id ® ,A(M, ¢, +). Further,
n>0 Gn

the coaugmentation of W(M, ¢, 4) is an identification Z =~ W(M, ¢,=4), the counit

is the canonical projection W(H¥, q, 4+) - ;W(M, ¢, --) = Z, and the multiplicity

is given by the relation p((w, 2)) = n for (v, z) € WM, ¢, +).

We shall use also the notations W(M, q):ﬁ'(zl{,q,+) and W(M, )=W(M.q,+)
for the sake of simplicity.
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10.6 Theorem: There exists a canonical isomor phism of mI)(i}A—algel:)r"cis"
WM, ¢) = F1SM
for each g > 0. In particular, we have ,W (M, q) =~ /4 SIM.

Of particular importance is the .case where ¥ = J° Here we have

W)= Wig+) and W (I g)= @& W (g +).
] n 20 n_o
From the abeve theorem, we obtain

10.7 Corollary. There exists a canonical isomorphism of mDGA-algebras
W (S° q) = F1 9. Particularly, we have

n“r (q! +) =+ Z ((j)ég .JX’ (q) f:?’ n]"qd‘q

Further, according to the relation 10.4, we have

10.8 Corollary. H, (I'(RY; n)/6,; A) = H, (F1d9; A).

— n

This assertion permils another method to determine the ho.mology groups
of the spaces I' (RY, n)/G, by the method of the Cartan construction whichis effective
in the case where the coefficients are taken in the field Z, (compare with 7.9).

Now we prove Theorem 10.6. This will be a consequence of our below
inductive consideration of the DG A-modules W M, q,+).

If ¢ =0, we have WV (J,0, -4) = S° M from the structure of ¥ (0). We sup-

poseq > 1, Let (w, x) € W (M, q,4+) where w = < wy, ..., 0y > with w; € W (q—1, F)
and =2, R ... ® T, withx, € IM.Ifp (w) = m;, 1 i<, we write

Ty = Ty 4o ponjpgtl B @ Tny ooy 1 <
as in §8:. Then we write
(0, @) = (=13 @2 < (g, B0, (01, T > (10.9)
where d (o, x) is the signature given by the interchanges of <Z o; >> with x, i > ]

dwz)= = (Joil + m + 1) |x;i.
1<lisst
Here we note that we have the corresponding formula on dimensions and multi-

plicities as follows. |

t
L0 ) = (1 (w1 T) [ + (0, T) — 1)

=

t
M (@, 2)) = = (@i %))

i=1
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i'rom the induction formula for . (), the above corespondence yields
an isomorphism of ¢,—modules

Wb = Z6) ©  (FOL-1,F) 6.8
ni+...+ni=n €Gny X...XGn,

nWM, g—1,F)  (10.10)
This is an induction formula for n‘-‘J'V(M, ¢, ).
Now, by a similar way in proving Lemma 8.4, we have the following

10.11 Lemma. Let ¢ = < ¢, ..., € > €, W (M, ¢, +) with ¢;€,., W(H, g—1,F)
1 i L Then, for every couples of non-negative integers (I, m) with l 4+ m=n,
we have

LmB (M, ¢, £) € = (—1)°=1® Bg(31) (< entypenns Ca(a) > @ < Cxutapmen Cx(r)
where the summation, g () are as in 9.2, and the exponent

ex(C.H) =2 (lcil+e(L)m+ 1) (Jei] +e() n+ D)

where X’ is again as in 9.2, Further, herc and in what follows, we lets () =
= 1,¢(—) = 0.

Now, we define
DM, g ) = @ 100 ¢, +) (10.12)

I+m=n
by the formula

Lmd(M, g, ) e = 2(—1)e”(°‘i)9(“)(<°mt)"“’ SR Crutryr o Capy =)

where ¢ and the summation are as in the above lemma, and the cxponent

ex(Cc, 4) = ex(e, ) + 2 (feil +e(4)n + 1),

i=1
Then we have the following

10.13 Lemma. The boundary formula on W(J, q, 4 ) is as follows. Let
€= <Clyer D> E W’(M, g, 4-) with ¢; € mﬁf(ﬂfl, q—1, +). Then

t
pyc=~ > (— I)Ei“l(c':t)<c1,..., Bops Civny G o+
i=1
! eile, +)
+ 2 (=0T e, v ni A ) Gy e 6>
i=1
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Whél'e n;é(j:) 3 mé(M, 1) == 19 ij and
i
eic, ) = 2, (ol +e(£) mc+ 1)
k=1
To show Lemma 10.11 and Lemma 10.13, we need only to compare the
signatures as we have done in proving 8.4. we omit the proofs.
Now, we define the isomorphism of mDGA-coalgebras

Yo : W(M, @) - FW(SM, g —1) (10.14)
for ¢ > 1. Here, by the relations

Wq<(w1, X), vuey (“Jta xt)> = < ((!)1 ) BXI)I ...\ ((1)[, sxt)>
Here s: (IM)" — (ISM)" denotes the map given by

(T ® ... @) = 02, ® 074... B ox,.

Sihee [sx| = |z |+ nfor x € (IM)", Vg is clearly an isomorphism of graded
modules according to 10.10 and (ii) 5. 4. Further, it is a morphism of mDGA -
coalgebras by the above lemmata and the definition 5.4 of cobar construction.

Theorem 10.6 follows by induction from this isomorphism.

Recall that the cobar tonstruction is defined to be an DGA-algebra. Via the
isomorphism W(M. q) ~ FW(SM, q—1), W(M, q) is thus equipped with a DGA -
algebra structure. Clearly it is also an mlGA -algebra with the multiplicity
H(w, ) ) = u(w). Explicitely, we have the multiplication formula on WM, ¢):

< (wln xl)’“': ((A)'[, Xl) > < (wl+1, Xl+1)s-"y ((;Jl.,.ln Xi+ll)> ==
== < (mls Xl)’---; (wl,,,u- xt+ll)> (10.15)

Remark that 10.15 introduces also a multiplication on W (M, q) by which W (M.q)
(particularly, w (¢, +)) becomes an mDG A-algebra.

An important application of the al

gebra W (M, q) can be found in the
following

10. 16 Theorem. Let X be in (G’ and let Ca (X) be a DG A-module such that

Cy (X) =~ 8, (X). Then the singular chain complex of the filtered C(X, q) is homotepic
lo the mDGA-algebra F* S C, (X) for ¢ > 0.

Proof. In this proof, we let F, = F(R% n). Then, we have @ Fy X F,—
P, the map given in 4.10. By a similar argument in proving Theore
observe that the thcorem is proved if we can show that 10.15 for W (9, +) gives
rise to an approximation for the map ¢ : I'y X Fyy = Fy. In the other words,

we need to prove the following diagram of morphisms of DG G, — modules is
homotopically commutative,

m 8.6 we
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\fV M, )y e m‘V (¢, +) —> l;,,,ﬁ} (g. +)

} o, |

u(r) & Se (F'm) '_'* Se(F

lm

where the vertical maps are obtained from Lemma 104.

Set Si,m = ( X RY)' and let 7}, and 1 ., denote the complement of Fiom
1+m

and ®(F, X Fy) in S1,. respectively. Then we have Si,m/71,m==#"1,m-and Sl+n)/'1':+m=
F AF_. Thus applying to the naturality of the Poincaré — Lefschetz duality
with respeet to the inclusion to the case (Si,m T1m) € Siim ’1‘\+m), the following

diagram is commutative

= o
S, (i X FH) —»3 (1)

- | Qi !
Zq4m) @ S, 5 A F) <=, Zig. 1+ m) B 5, ().
I®*

Here we have identified I, XI",, = ® (F'y X I'w), and i: I, X Fy < Fim. Moreover,
let j: Fym— F; X I'n the map (ay,..., ¢1,m) = (@), (d1,1000,01,m)). Then ji = id.
Thus i® j* = id®, and the above diagram with dotted arrows is commutative

Now, let us consider the diagram

SUFD) @ Su(l p——= S, T/ Py s it

I |
{ T R

(Z(g @S DT (Z(g, MBS (Fn))=Z(q, I +m)S*(F) A T, "Ef’ﬂ” I+ m)QSHF,
| |

| ‘ .
(Zg, ) ® V(@) (Z(g, m) @ wV () —L5—— Z(q, 1 +m) @ unV(g)*

| | :

{ +m)

4 !
Wig +) @ Wi, +) W (g, +)

where A* is obtained from the dual of the comultiplication

ALV~ @ TV  with

t+m=—n

t

Aoy | e [ o] = 2 (a1 | v | 3s] @ [asag | o | 4]

=1
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vafciﬁsiy, to show Lhat this diagram is homolopically commutative, wo
need only to show that so is the middle squarc. To this ¢nd, we observe that

il F;_*_m — Fi/\ F‘m is a cell map. Further, for each o = (r,, T..,rp,m) € F(l+m, g),

we have if Y

4 (F1s ooes T1) @ (Fiips sees Trim)/Tiey = q
J*(“) o 5
: 0 .otherwise.
In the other words, we have

o [ | 0s] @ fatina | ooc [ ] &

Jollei 1 o [ ag]) = if i such that (a; | ... | 3;]) =1
0 otherwise.

This shows the commutativity df the middle square. The theorem lollows:

Let RY be imbedded in R+ by (@', ..,d") - (', ...,a%; 0) as ‘usual. Thefi

we have the eanonical inclusions F(RY, n) C PRI, py and C(X, ¢) C GX; g+ 1)
From this. we define

F(R*, n) = lim FRY, n)
g
C(X, o)) = lim C(X. ¢)
—
. q
with the topology of union.

By the remark below Lemma 10.4, we ean prove easily that the diagram

W@ ) -STg+1, +)

4 J (10.17)
S.(F(RY, n)) — S (F(R!, n)
is homotopically commutative for every q > o.

On the other hand‘, by the inclusion W(g, +) ¢ W(g+1, +), W(M, ¢) can

be considered asa mDG A-subalgebra of W(M, ¢+1). Thus, we can define the mDG A-
algebra

WM, o) = lim W(M, ¢)
q

Further, via'the isomorphism W(M, q) ~ FiS"M, we consider I"Ié"lMcl*“f+’c“1+1M,
and then define the mDGA-algebra

FeS*M = lim FiJSIM.
T
Now, from 10,16 and 10.17, we have the following
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10.18 Theovem. nder the assumption of Theorem 10.16, the singular chain
complex of the monoid C(X, o) is homotopic fo the mDG A-algebra F>S>=C(X).

In connection with the results on the homology groups of the symietric
groups and the braid groups given in §7 and §9, here are some immediate con-
sequences of the result in this section. *

First from 10.8 and the proof of 9.6, we have

10.19 Theorem. If 0 {i<<q, we have
Hi(6, 5 pA) = H( IS5 ().
Therefore, we have the isomorphism of groups
Hy(6u5 p) = HyuF "2 ; p).
Further, {rom the proof of 7.10 and 10.8, we have

10.20 Theorem. We have the isomorphism of groups

Ho(Bu 5 A) = HEI?S2 5 ).
Moreover, the diagram

Hy (B, 5 A)— H,(G;; A)

{ Il :
HyGI?S? 3 p) — H (IS5 p)

is commutative. Here, the upper horizonial arrow is induced Jrom ihe canonical
epimorphism B, — G, (see e.g. [12]).

Note that the above results is true also for n = oo when we ‘define
o FIS! = lim FIS1 via the inclusion 989 ¢ 21F1S° given by ¢ — c.¢° for
—

n
¢ € IS where ¢° € (FIS4,

Remark. Theorem 10.19 is an explanation for the theorem of Barratt —
Priddy—Quillen (see [4], [27]) relating to the infinite symmetric group and to
the infinite loop space. i.c. H (G__ ; A) = Hy((Q7Z%),; A). On the other hand, the
first part of Theorem 10.20 is a prool of a Segal’s theorem relating to B__ and
to Q332 ie. Hy(B..; A) o H ((Q%22),; A), (see [5]).

§11. AN APPLICATION

For every X € CG’ and I < ¢ < oo, let us denote as usual by Q121 X the
g-iterated loop space on X9 X, and for ¢ = oo, Q= I ¥ = lim Q1 24 X via the
canonical inclusion Q1 21 X — Q! 39+l X Then we recall from May [17; 5. 2] that
there exists uniquely (up to a homotopy) a natural map ol /l-spaces a, : C(X, q) —
Q1 29X such that the diagram
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C(X, q) ~ QIEIX

g

is commutative. Moreover, the diagram of H-maps

o
C(X, q) —» Q1 Tay

l }

C(X, g+D) —> Q1 394 X

Gq.g

- is commutative for ¢ < o, and a_ is obtained from the @y by passage to limits,

We have the following well known theorem. .

11.1 Theorem. /f X isa path-wise connected space in CG’, then ag : C(X, q) —
QT 29X is a weak homotopy equivalence for 1 < q <o

This theorem has been the object in the works of many authors. For q = [,
it is essentially due to James [15). For q = os, it was obtained by Barratt [3], Segal
(see [1]). For all ¢, it was proved by May (17]. Further we have

11.2 Theorem (May [19], Ségal [28]). For every X € CG’ and I < g o0, &g 2
C(X, q) - Q129 X is a group cempletion.

For the notion of group completion, we refer to May [18 ; 1.3]. Segal reached
to this theorem by a quite sophiscated appreach. For ¢ = oo, May first obtained
it by an extensive homological analysis. Later, F. Cohen has lollowed May to
prove the theorem for ¢ finite in [7 ; 3.3]. Now, we apply our homological study
of the space C(X, q) to prove the theorem. ‘

Proof of Theorem 11, 2. Let BG denote the classilying space of an
H-space G. Then, according to Quillen, the map G — Q BG is a group completion
il G is an admissible H-space (see e.g. [19], [20]). Apply this result to the case of
C(X, q), the map

C(X, q)-»QBC (X, q) (*)

is a group completion. On the other hand, we have from Theorem 5. 7 that
Bt 4§, (X) = I"-! J9§, (X). This implies that s S

BC (X, q) - C(ZX, g—1)

is a weak homotopy eQuivalence according to Theorem 10. 16. Combine this
relation with Theorem 11.1, we have the weak hometopy equivalence

BC(X, q) = Q-1 Fuy (##)
;}inc'e ZX is connected, Theorem 11.2 pow follows from (+) and Crx).
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