Chapter 13. Decomposition of Projective Modules

MODERN CLASSICAL ALGEBRA

Professor J. C. Moore

Chapter 13: Decomposition of Projective Modules.

1. The Prime Spectrum

Let R be a commutative ring, \mathcal{V} the set of prime ideals in R and \mathcal{W} the set of maximal ideals in R. We define a topology in \mathcal{V} . Each ideal I in R determines a closed set

$$W(I) = \{ p \in \mathcal{P} | p \supset I \}.$$

If $\{I_{i}\}$ is a family of ideals in R , then

$$W(I_{j}) \cup W(I_{k}) = W(I_{j} \cap I_{k})$$

$$\bigcap_{j} W(I_{j}) = W(\sum_{j} I_{j})$$

are closed. Γ resp. M endowed with this topology are called the prime spectrum resp. maximal ideals spectrum of R.

<u>Proposition 1.1</u> R has non-trivial idempotents if and only if its prime spectrum is disconnected.

Proof: Suppose $e \in R$ is a non-trivial idempotent. Let $A = \{p \in \mathcal{O} \mid e \in p\}$, $B = \{p \in \mathcal{O} \mid e \in p\}$, I = pea p, J = pea p. We have $A, B \neq \emptyset$, $A \cap B \neq \emptyset$ and $A \cup B = \mathcal{O}$, the latter because $e(1-e) = 0 \in p$ implies $e \in p$ or $e \in p$ for $e \in p$. Clearly A = W(I) and B = W(J). Thus $\mathcal{O} = A \cup B$ is disconnected. Conversely, suppose $\mathcal{O} = W(I) \cup W(J)$ and $W(I) \cap W(J) = \emptyset$, i.e. I + J = R and $I \cap J \subset \sqrt{0}$. Pick $e \in P$ and $e \in P$ such that $e \in P$ in $e \in P$ for every integer $e \in P$. For if not $e \in P$ would be contained in some maximal ideal $e \in P$. For if not $e \in P$ would be contained in some maximal ideal $e \in P$ for suitable $e \in P$. Let $e = e \in P$ then $e \in P$ and $e \in P$ or $e \in P$.

A topological space E is noetherian if the descending chain condition holds for closed sets. Suppose now E is noetherian. A closed set $W \neq \emptyset$ is irreducible if whenever $W = W_1 \cup W_2$, W_1 and W_2 closed, then $W = W_1$ or $W = W_2$. Every closed set $W \neq \emptyset$ in E is union of a finite number of irreducible closed sets; these irreducible closed sets are uniquely determined by W. The verification of this statement is immediate.

Let W be an irreducible closed set, and

$$W < W_1 < W_2 < \dots < W_n$$

a chain of closed sets (< stands for proper inclusion.). n is called the height of the chain. The supremum over the heights of all such chains is called the height of W, ht(W). In general, if W is any closed set, ht(W) is the infimum of the heights of the irreduciple components of W. We let $ht(\phi) = \infty$.

$$\sup\{ht(W)|W\neq\emptyset \text{ is closed in } E\}$$

is the dimension of the noetherian space E.

The prime spectrum and the maximal ideal spectrum of a noetherian ring R are noetherian. The irreducible closed sets in \mathcal{V} are of the form W(p) where p is prime; for if A is closed, let $p = \bigcap_{q \in A} q$; clearly p is prime and A = W(p).

Proposition 1.2 Let R be a commutative noetherian ring, and P a projective module over R. rank P depends only on the connected component of p in O.

Proof: p,q \in \mathcal{P} are in the same connected component of \mathcal{P} if and only if there is a chain of closed sets W_0, \ldots, W_n such that $W_i \cap W_{i+1} \neq \emptyset$ and $Q \in W_0$, $Q \in W_n$. For if p and q are in the same connected component W of \mathcal{P} , consider an irreducible decomposition of W into irreducible closed sets. These irreducible closed sets can be arranged into a chain with the desired properties because W is not the union of two disjoint closed subsets different from W. For the converse note that an irreducible closed set is connected. Suppowe $W_i = W(p_i)$ with p_i being prime ideals. If $W_i \cap W_{i+1} \neq \emptyset$, then there is a maximal ideal p in this intersection, $P \supset P_i, P_{i+1}$. In general, if p and q are prime and $P \supset Q$, then rank $P = \operatorname{rank}_Q P$ because P_p is free and $P_p = P_q$.

Corollary 1.3 For a noetherian ring R the following are equivalent:

- (1) R is coherent.
- (2) R contains no non-trivial idempotents.
- (3) The prime spectrum of R is connected.
- (4) For any projective R-module P, rank P is independent of the prime ideal p.

Clearly $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1) \Rightarrow (2)$.

2. J.-P. Serre's Structure Theorem

Our aim is the following structure theorem [Module projectifs et espaces fibrés à fibre vectorielle; exposé 23 in Séminaire Dubreiel-Pisot 11 (1957/58)].

Theorem 2.1 Suppose R is a commutative noetherian ring with connected prime spectrum. Every finitely generated projective R-module P is of the form $F \oplus P'$ where F is free and P' is projective of rank $\leq \dim \mathfrak{M}(\leq \text{Krull dimension of R})$.

Let P be/finitely generated Projective module over R. We write P(p) for P/pP and $p \in \mathcal{M}$. Each element $s \in P$ induces an element in P(p) which we will denote by s(p). s_1, \ldots, s_k are called linearly independent at $p \in \mathcal{M}$ if $s_1(p), \ldots, s_k(p)$ are linearly independent in the vector space P(p) over the field R(p).

Proposition 2.2 Let $s \in P$;

$$\phi : R \longrightarrow P$$
$$r \longrightarrow rs$$

is an isomorphism of R onto a direct summand of P if and only if $s(p) \neq 0$ for $p \in M$.

Proof: Let $I = \text{im } \phi$. Suppose s(p) = 0 for some $p \in \mathcal{M}$, but $P = I \oplus Q$. Then $I \subset pP = pI \oplus pQ$. Consequently $I \subset pI$, or I = pI, which is impossible because I is free. Conversely, suppose $s(p) \neq 0$ for all $p \in \mathcal{M}$. Let $J = \text{Kernel } (\phi)$. $0 \longrightarrow J \longrightarrow R \longrightarrow P$ is exact, so by localization,

$$0 \longrightarrow J_p \longrightarrow R_p \longrightarrow P_p$$

is exact for $p \in \mathbb{M}$. P_p is free, say with generators y_1, \dots, y_r , and let $s(\rho) = \sum x_i y_i$. Then $r \cdot x_1 = 0$ for $r \in J_p$. Since not all $x_i \in p_p$, one of them is a unit, thus r = 0. Hence $J_p = 0$ for $p \in \mathbb{M}$ which/implies J = 0. Therefore $0 \longrightarrow R \longrightarrow P \longrightarrow P/I \longrightarrow 0$ is exact. It remains to be shown P/I is projective. By hypothesis on s,

is exact for $p \in M$. Thus since R/p is a field,

$$0 \longrightarrow \operatorname{Hom}_{R/p}(P/I(p),R/p) \longrightarrow \operatorname{Hom}_{R/p}(P(p),R/p) \longrightarrow \operatorname{Hom}_{R/p}(R/p,R/p) \longrightarrow 0$$

$$\parallel \int \qquad \parallel \int \qquad \parallel \int \qquad \parallel \int$$

$$0 \longrightarrow \operatorname{Hom}_{R}(P/I,R/p) \longrightarrow \operatorname{Hom}_{R}(P,R/p) \longrightarrow \operatorname{Hom}_{R}(R,R/p) \longrightarrow 0$$

$$\parallel \int \qquad \parallel \int \qquad \parallel \int$$

$$R/p \otimes \operatorname{Hom}_{R}(P,R) \longrightarrow R/p \otimes R \longrightarrow 0$$

is exact for $p \in \mathcal{M}$. Hence $\text{Hom}(P,R) \longrightarrow R$ is onto, i.e. ϕ has a left inverse.

In order to prove the theorem it suffices now to show

Lemma 2.3 Let h be a non-negative integer such that $h \leq \operatorname{rank}_p P$ for $p \in M$; then there is $s \in P$ and a closed subset F of of height $\geq h$ such that $s(p) \neq 0$ for $P \notin F$.

In fact, if rank $P > \dim M$ for all $p \in M$, we can take $h = \dim_P P$ (supposing the prime spectrum of R is connected so that $\dim_P P$ is independent of the prime p). Then $ht(F) > \dim M$, i.e. $F = \emptyset$, and we can apply proposition 2.2.

In order to be able to prove the lemma by induction on h, we have to prove a more general statement (lemma 2.6).

Lemma 2.4 Let $F \subset M$ be such that $s_1, \ldots, s_k \in P$ are linearly dependent exactly at $p \in F$, then F is closed.

Proof: Let Q be a projective such that $P \oplus Q = E$ is a free module of finite rank. Pick a basis for E; this gives a basis for the homogeneous part $E_k(E)$ of degree k of the exterior algebra over E. Let I be the ideal of R generated by the coefficients of $s_1 \land s_2 \land \cdots \land s_k$ in this basis. Now $s_1(p) \land \cdots \land s_k(p) = 0$ if and only if $p \supset I$, i.e. F = W(I).

Lemma 2.5 Suppose $p_1, ..., p_k \in \mathcal{M}$ are distinct, and $v_i \in P(p_i)$, $1 \le i \le k$. Then there exists $s \in P$ such that $s(p_i) = v_i$, $1 \le i \le k$.

Proof: Let $I_i = \bigcap_{\substack{j \neq i \ \text{with } \Sigma \in i}} p_i$; then $\Sigma I_i = R$. So there are $\varepsilon_i \in I_i$ with $\Sigma \in \varepsilon_i = 1$. Pick $s_i \in P$ with $s_i(p_i) = v_i$ and let $s = \sum s_i \varepsilon_i$.

Lemma 2.6 Let s_1, \ldots, s_k be linearly dependent exactly at $p \in F \subset M$. Suppose $p_1, \ldots, p_k \in F$, $v_i \in P(p_i)$ $i = 1, \ldots, k$, and h is a nonnegative integer such that $h + k \leq \dim_p P$ for all $p \in M$. Then there is $s \in P$ and a closed set $E \subset M$, such that

- 1) $s(p_4) = v_4$,
- 2) s_1, \ldots, s_k , s are linearly dependent exactly at F U E,
- 3) $ht(E) \geq h$.

Proof: We proceed by induction on h. This is trivial for h = 0: we solve first 1), and let E be the set where s_1, \ldots, s_k , s are linearly dependent. Now suppose h > 0, and the lemma holds for h - 1. Let $u \in P$ and $G \subset M$ be a closed set such that 1) $u(p_1)=v_1$, 2) s_1, \ldots, s_k , u are linearly dependent exactly at $F \cup G$, 3) $ht(G) \geq h - 1$. Let G_1, \ldots, G_m be the irreducible

components of G of height h-l. Pick

$$p_{\alpha} \in G_{\alpha} - (F \cup \bigcup_{\beta \neq \alpha} G_{\beta})$$
.

 $s_1(p_{\alpha}),\ldots,s_k(p_{\alpha})$ are linearly independent in $P(p_{\alpha})$, but $u(p_{\alpha})$ depends linearly on them. Since h>0, $\dim P(p_{\alpha})=\operatorname{rank} p_{\alpha} P>k$. So there are $w_{\alpha}\in P(p_{\alpha})$ linearly independent of $s_1(p_{\alpha}),\ldots,s_k(p_{\alpha})$. Using the induction hypothesis again, we can find $t\in P$ and a closed set $H\subset M$ such that

- 1) $t(p_i) = 0$, $t(p_{\alpha}) = w_{\alpha}$
- 2) s_1, \dots, s_k, u, t are linearly dependent exactly at $p \in F \cup G \cup H$,
- 3) $ht(H) \ge h 1$.

Let H_1, \dots, H_r be the irreducible components of H of height h-l . Choose

$$q_{\beta} \in H_{\beta} - (F \cup G \cup \bigcup_{\gamma \neq \beta} H_{\gamma})$$
.

 $s_1(q_\beta),...,s_k(q_\beta)$, $u(q_\beta)$ are linearly independent, and $t(q_\beta)$ depends linearly on these elements, say

$$u(q_{\beta}) = \delta_{\beta} \cdot t(q_{\beta}) \mod (s_1(q_{\beta}), \dots, s_k(q_{\beta}))$$
.

Pick f & R such that

$$f(p_{\alpha}) = 1$$
 and $f(q_{\beta}) \neq \delta_{\beta}$.

Define s = u - ft. Let E^i be the set where $s_1, ..., s_k$, s are linearly dependent. Define E to be union of the irreducible components of E^i which are not in F.

1) and 2) are fulfilled by construction. Let E_0 be an irreducible component of E . E_0 (G \cup H , so $ht(E_0) \ge h - 1$.

Suppose $\operatorname{ht}(E_{\scriptscriptstyle O})=\operatorname{h-l}$, then $E_{\scriptscriptstyle O}=G_{\scriptscriptstyle O}$ or $E_{\scriptscriptstyle O}=H_{\scriptscriptstyle \beta}$ for some α or β . Suppose $E_{\scriptscriptstyle O}=G_{\scriptscriptstyle \alpha}$; $\operatorname{s}(\operatorname{p}_{\scriptscriptstyle \alpha})=\operatorname{u}(\operatorname{p}_{\scriptscriptstyle \alpha})-\operatorname{t}(\operatorname{p}_{\scriptscriptstyle \alpha})$ depends linearly on $\operatorname{s}_1(\operatorname{p}_{\scriptscriptstyle \alpha}),\ldots,\operatorname{s}_k(\operatorname{p}_{\scriptscriptstyle \alpha})$ by definition of $E_{\scriptscriptstyle O}$. On the other hand, $\operatorname{u}(\operatorname{p}_{\scriptscriptstyle \alpha})$ depends linearly on $\operatorname{s}_1(\operatorname{p}_{\scriptscriptstyle \alpha}),\ldots,\operatorname{s}_k(\operatorname{p}_{\scriptscriptstyle \alpha})$ by construction of $G_{\scriptscriptstyle \alpha}$. Hence $\operatorname{t}(\operatorname{p}_{\scriptscriptstyle \alpha})=\operatorname{w}_{\scriptscriptstyle \alpha}$ depends linearly on $\operatorname{s}_1(\operatorname{p}_{\scriptscriptstyle \alpha}),\ldots,\operatorname{s}_k(\operatorname{p}_{\scriptscriptstyle \alpha})$, a contradiction to the definition of $\operatorname{w}_{\scriptscriptstyle \alpha}$. Suppose $E_{\scriptscriptstyle O}=H_{\scriptscriptstyle \beta}$. $\operatorname{s}(\operatorname{q}_{\scriptscriptstyle \beta})=\operatorname{O}\operatorname{mod}(\operatorname{s}_1(\operatorname{q}_{\scriptscriptstyle \beta}),\ldots,\operatorname{s}_k(\operatorname{q}_{\scriptscriptstyle \beta}))$ by construction of $E_{\scriptscriptstyle O}$. On the other hand $\operatorname{s}(\operatorname{q}_{\scriptscriptstyle \beta})=\operatorname{u}(\operatorname{q}_{\scriptscriptstyle \beta})-\operatorname{t}(\operatorname{q}_{\scriptscriptstyle \beta})$ by definition of $H_{\scriptscriptstyle \beta}$. Hence $\operatorname{ht}(E_{\scriptscriptstyle O})\neq\operatorname{h-l}$, i.e. $\operatorname{ht}(E_{\scriptscriptstyle O})>\operatorname{h-l}$. This shows $\operatorname{ht}(E)>\operatorname{h-l}$.

3. C. S. Seshadri's Theorem

C. S. Seshadri's theorem [Triviality of vector bundles over the affine space K^2 , Proceedings of the National Academy of Science, vol. 44 (1958)] states that every finitely generated projective module over the polynomial ring A[t] over a principal ideal ring A, is a free module. Or, more generally:

Theorem 3.1. Suppose R is a Dedekind domain, and P a finitely generated projective R[x]-module of rank n . Then there is a free R[x]-module F of rank n-l and an ideal I in R such that $P = F \oplus (R[x] \otimes I)$.

Before we can prove this theorem, we have to recall some properties of matrices.

Lemma 3.2. Let K be a field. Every $n \times n$ matrix D with coefficients in K[x] and determinant 1 is product of $n \times n$ matrices of the form

where $p \in K[x]$ and $i \neq j$.

Proof: Multiplying D on the right with $D_{ij}(p)$ means: adding to the j-th column of D the i-th column multiplied by p. Multiplying D on the right by $D_{ij}(-1)D_{ji}(1)D_{ij}(-1)$ means: interchanging the i-th and j-th column and multiplying the j-th column by -1. Similarly

with respect to rows of D and multiplication on the left. With these operations D can be transformed into a diagonal matrix $D^* = ADB$, A and B being product of matrices $D_{ij}(p)$ (notice that $[D_{ij}(p)]^{-1} = D_{ij}(-p)$). Since det D = 1, also det $D^* = 1$, i.e. the entries in D^* are elements of the field K. Now

$$D_{i} = \begin{vmatrix} y^{1} & 0 \\ y^{2} & 0 \end{vmatrix}$$

$$= \begin{vmatrix} \lambda_{1} & 0 & 0 & 0 \\ \lambda_{2} & \cdots & \lambda_{n} & 0 \\ 0 & 1 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 & 0 \\ (\lambda_{1}\lambda_{2})^{-1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \cdot \cdots$$

and a two-by-two matrix $\binom{x \ 0}{0 \ y}$ with xy = 1 is easily seen to be a product of matrices $D_{i,j}(p)$. Therefore D^{i} is again product of matrices $D_{i,j}(\alpha)$, $\alpha \in K$.

Let R be a Dedekind domain, p a prime ideal in R. Suppose P is a finitely generated projective R-module, say $P = \sum\limits_{1}^{n} \oplus I_{j}$ where I_{j} are ideals in R. $\overline{P} = P/pP = \Sigma \oplus \overline{I}_{j}$ is R/p-free with free generators $\overline{e}_{1}, \ldots, \overline{e}_{n}$, where $e_{j} \in I_{j}$ and \overline{e}_{j} generates \overline{I}_{j} .

<u>Lemma 3.3.</u> Every automorphism of $\overline{P}[x] = R/p[x] \otimes_{R/p} \overline{P}$ of determinant 1 is induced by an automorphism of $P[x] = R[x] \otimes_{R} P$.

Proof: It suffices to prove this for an automorphism with matrix $D_{i,j}(\overline{q})$, $\overline{q} = \sum \overline{c}_k x^k \in \mathbb{R}/p[x]$. Lift each \overline{c}_k to an element c_k of $I_i I_i^{-1}$ via the natural morphism

Define $q = \sum c_k x^k$; clearly $D_{ij}(q)$ acting on $\sum \oplus I_k$ induces $D_{ij}(\overline{q})$. $D_{ij}(q)$ has the inverse $D_{ij}(-q)$, so defines an automorphism.

Proof of the theorem: P is a finitely generated projective $R[x] \rightarrow$ module of rank n . Consider all submodules L of P which are isomorphic to a module of the form $\overset{n}{\Sigma} \oplus I_k$, I_k being an extended ideal (i.e. $I_k = R[x] \otimes I_k^*$ and I_k^* is an an ideal in R). Let K be the field of fractions of R . Since $K \otimes_R L \cong K \otimes_R P$ and P is finitely generated, we can find $r \in R[x]$ such that $r \neq 0$ and $rP \subset L$.

Now let L be a maximal submodule of P of this kind (which exists because P is noetherian), and suppose $L \neq P$. Let p be a prime ideal in R which divides the annihilator $A \neq 0$ of P/L. The morphism $j: L \longrightarrow L/pL \longrightarrow P/pP$ has kernel $L \cap pP$. Let N and I be the kernel and image of $i: L/pL \longrightarrow P/pP$.

$$0 \longrightarrow \mathbb{N} \longrightarrow L/pL \xrightarrow{1} I \longrightarrow 0$$

splits over the principal ideal domain R/p[x] (because I is free over R/p[x] as a submodule of the free module P/pP). We claim that $N \neq 0$. For, otherwise, i is one-to-one, i.e. $L \cap pP = pL$, and thus $p(p^{-1}A)P \subset L \cap pP = pL$, $p^{-1}AP \subset L$. This is a contradiction because A was the annihilator of P/L. We select now a basis

 $\overline{e}_1, \dots, \overline{e}_n$ for L/pL such that $\overline{e}_1, \dots \overline{e}_s$ $(s \ge 1)$ is a basis for N and $i(\overline{e}_{s+1}), \dots, i(\overline{e}_n)$ is a basis for I. Since $L = \Sigma \oplus I_j$, I_j are extended ideals, we can chose a basis $\overline{e}_1, \dots, \overline{e}_n$ for L/pL such that \overline{e}_j is a generator of $\overline{I}_j = I_j/pI_j$. Let \overline{I} be the automorphism of L/pL which corresponds to the change of bases $(\overline{e}_j) \longrightarrow (\overline{e}_j)$. We may assume that det $\overline{I} = 1$ (changing \overline{e}_1 by a factor if necessary). Let \overline{I} be an automorphism of L inducing \overline{I} . Define $I_j^* = TI_j \subset P$; then $L = \Sigma \oplus I_j^*$. Moreover, $I_k^* \subset pP$ for $1 \le k \le s$. Thus $L^* = \sum_{l=1}^{s} p^{-l} I_k^* \oplus \sum_{s+l=1}^{s} I_j^* \subset P$ and $L \subset L^*$, a contradiction to the maximality of L.

Hence L=P; P is of the form $P'\otimes R[x]$, P' being a finitely generated projective R-module of rank n. The assertion follows now from the decomposition theorem for P' (Proposition 5.6 of Chapter).

4. The Krull-Schmidt Theorem

In the following Λ will always denote a (not necessarily commutative) ring.

Definition 4.1. A (left) Λ -module A is said to be indecomposable if A is not the direct sum of two non-zero Λ -modules.

The following lemma is easily verified:

Lemma 4.2. A is indecomposable if and only if the ring Hom (A,A) has no non-trivial idempotents.

Recall that a ring Λ is local if the set of non-units is an ideal in Λ ; or Λ possesses a unique maximal (two-sided) ideal which contains all right and left ideals of Λ . In the beginning of this section we will not assume that a local ring is noetherian. The following theorem is well-known from the theory of groups with operators:

Theorem 4.3. Suppose the left A-module M admits two decompositions

$$M = \Sigma \oplus M_1$$
 and $M = \Sigma \oplus N_j$, $s \le t$,

into indecomposable submodules M_i (resp. N_j). If $\text{Hom}(M_i, M_i)$, $1 \le i \le s$, is a local ring then s = t and $M_i \cong N_j$ after suitable reordering.

Proof: We proceed by induction. Suppose $M_i \cong N_i$ for $i \leq r-1$ and

$$\texttt{M} = \texttt{N}_1^* \oplus \ldots \oplus \texttt{N}_k^* \oplus \texttt{M}_{k+1} \oplus \ldots \oplus \texttt{M}_s \quad \texttt{for} \quad \texttt{k} \leqq \texttt{r-l} \ ,$$

where N_i^* is a submodule of M isomorphic to N_i . Consider

$$\mathtt{M} = \mathtt{N_1^{\prime}} \oplus \ldots \oplus \mathtt{N_{r-1}^{\prime}} \oplus \mathtt{M_r} \oplus \ldots \oplus \mathtt{M_s} \ .$$

Let π_1, \dots, π_s be the projections determined by this decomposition, and η_1, \dots, η_t the idempotents of Hom(M,M) determined by the representation $M = \Sigma \oplus \mathbb{N}_j$. Evidently $\pi_r = \pi_r \circ \Sigma \eta_j = \Sigma \pi_r \circ \eta_j$. $\pi_r \circ \eta_j = \pi_r \circ \pi_j \circ \eta_j = 0$ for $j \leq r-1$, hence

$$\pi_r = \pi_r \circ \eta_r + \cdots + \pi_r \circ \eta_t$$

We operate now in M_r ; here $1=\pi_r=\pi_r\circ\eta_r+\ldots+\pi_r\circ\eta_t$. Since $\operatorname{Hom}(M_r,M_r)$ is a local ring, one of the $\pi_r\circ\eta_j$, say $\pi_r\circ\eta_r$ is an automorphism of M_r . We show $N_r\cong M_r$ under η_r^{-1} , and that (+) holds for k=r.

Since $\pi_r \eta_r$ is an automorphism of M_r , $\eta_r \colon M_r \longrightarrow N_r$ is a monomorphism. Let $\overline{N}_r = \eta_r (M_r)$ and let K be the kernel of $\pi_r \colon N_r \longrightarrow M_r$; we have $\overline{N}_r \cap K = (0)$. If $y \in N_r$, $\pi_r (y) = \pi_r \eta_r (x)$ for some $x \in M_r$ $(\pi_r \circ \eta_r)$ being an automorphism of M_r). Thus

$$y = (y - \eta_r(x)) + \eta_r(x), y - \eta_r(x) \in K, \eta_r(x) \in \overline{N}_r$$
;

i.e. $N_r = K \oplus \overline{N}_r$. But N_r is indecomposable, hence $N_r = \overline{N}_r$. This implies that $\eta_r \colon M_r \longrightarrow N_r$ is an isomorphism. It is now easily verified that

$$\pi_1 + \dots + \pi_{r-1} + \eta_r^{-1} \circ \pi_r + \pi_{r+1} + \dots + \pi_s$$

maps M isomorphically onto $N_1 \oplus \ldots \oplus N_r \oplus M_r \oplus \ldots \oplus M_s$

The following proposition guarantees the existence of such decompositions in certain cases:

Proposition 4.4. Suppose A satisfies the ascending or the descending chain condition on left ideals. Then every finitely generated (left) A-module admits a decomposition into a finite direct sum of indecomposable modules.

Proof: Let A be a finitely generated A-module. If A is not indecomposable, $A = A_1 \oplus A_2$ and $A_i \neq 0$. If A_i is not indecomposable, $A_i = A_{i1} \oplus A_{i2}$ and $A_{ij} \neq 0$; etc. Since A satisfies the ascending (descending) chain condition, we conclude easily that this process must stop after a finite number of steps.

Definition 4.5. We say that the Krull-Schmidt theorem holds for a left A-module A if A is the direct sum of indecomposable modules, the sum being unique up to order and isomorphism.

We give an example:

Lemma 4.6. Suppose Λ satisfies the descending chain condition for left ideals. Let R be the radical of Λ (Definition 8.28 of Chapter 9). Every idempotent of Λ/R is induced by an idempotent of Λ .

Proof: R is nilpotent by Theorem 8.35 of chapter 9, say $R^m = 0$. Let $\overline{e} \in \Lambda/R$ be an idempotent, say induced by $g \in \Lambda$. Then $z = g^2 - g \in R$. Now define g_n and $z_n \in R^{2n}$ by induction:

$$g_0 = g$$
, $z_0 = z$;
 $g_n = g_{n-1} + z_{n-1} - 2g_{n-1}z_{n-1}$,
 $z_n = g_n^2 - g_n = 4z_{n-1}^3 - 3z_{n-1}^2 \in \mathbb{R}^{2n}$.

Thus $z_m = 0$, or $g_m^2 = g_m = e$ is idempotent and induces \bar{e} .

Corollary 4.7. Suppose Λ is noetherian and satisfies the descending chain condition for left ideals. Then the Krull-Schmidt theorem holds for finitely generated left Λ -modules.

Proof: In view of Theorem 4.3 it suffices to prove that the non-units in Hom(M,M), M finitely generated and indecomposable, form an ideal.

that $(\delta,x) \longrightarrow \delta x$ and $(x,y) \longrightarrow x + y$ from $L \times A$ resp. $A \times A$ into A is continuous; if A is an algebra then $(x,y) \longrightarrow xy$ is also continuous.

Lemma 4.8. 1) If L is a complete local ring then each finitely generated left Λ -module A is also complete. 2) The completion \overline{L} of any local ring L is again a local ring with maximal ideal $\overline{p} = p\overline{L}$; we have $L/P \cong \overline{L}/\overline{P}$.

Proof: 1) This is obvious if A is free. Now let A = F/B where F is free and of finite rank. The canonical map $\pi\colon F \longrightarrow A$ is easily seen to be continuous. Now let $(a_n) \subset A$ be a Cauchy sequence, say $a_n - a_{n+1} \in p^n A$ (after passing to a subsequence). By induction find $b_n \in F$ with $\pi(b_n) = a_n$ such that $b_n - b_{n+1} \in p^n F$; first find $b_{n+1} \in F$ with $\pi(b_{n+1}) = a_{n+1}$; now $b_n - b_{n+1}^* - c \in p^n F$ for some $c \in B$; define $b_{n+1} = b_{n+1}^* + c$. (b_n) is Cauchy in F, thus converges to $b \in F$. Since π is continuous, $a_n \longrightarrow \pi(b)$ in A.

2) \overline{L} is clearly a ring. If $\overline{x} \in \overline{L}$ is not a unit then there is a sequence of non-units $x_n \in L$ converging to \overline{x} (continuity of $y \longrightarrow y^{-1}$ in L). From this remark it is obvious that the non-units in \overline{L} form an ideal which is equal to the closure \overline{p} of p. $p\overline{L}$ is an \overline{L} -module, hence complete, hence closed in \overline{L} , i.e. $p\overline{L} = \overline{p}$. $L \longrightarrow \overline{L}$ induces $L/P \xrightarrow{i} \overline{L}/\overline{P}$, and the image is dense in $\overline{L}/\overline{P}$. $\overline{L}/\overline{P}$ has the discrete topology, hence $\operatorname{im}(i) = \overline{L}/\overline{P}$.

Now we can prove Lemma 4.6 for our new setting:

Lemma 4.9. Let Λ be any finitely generated L-algebra, where L is a complete local ring with maximal ideal p. Every idempotent $e \in \Lambda/p\Lambda$ is induced by an idempotent $e \in \Lambda$.

Proof: The proof is almost the same as that of lemma 4.6; $z_n = g_n^n - g_n \in p^{2n} \Lambda \text{ , thus } z_n \longrightarrow 0 \text{ , and } g_{n+1} - g_n = z_n(1-2g_n) \in p^{2n} \Lambda \text{ ,}$ thus (g_n) is Cauchy and converges therefore to an element $e \in \Lambda$. $e^2 - e = \lim z_n = 0 \text{ . Since } \pi: \Lambda \longrightarrow \Lambda/p\Lambda \text{ is continuous,}$ $\pi(e) = \lim \pi(g_n) = \overline{e} \text{ .}$

<u>Proposition 4.10.</u> Let Λ be any finitely generated L-algebra, L being a complete local ring. The Krull-Schmidt theorem holds for finitely generated Λ -modules.

Proof: Since A is noetherian proposition 4.4 applies. Thus we need only check the hypothesis of Theorem 4.3. Let M be a finitely generated indecomposable left A-module. Hom(M,M) has no non-trivial idempotents (Lemma 4.2). Let R be the radical of Hom(M,M). Notice that the image of R in Hom(M,M)/pHom(M,M) is the radical of Hom(M,M)/pHom(M,M), and $pHom(M,M) \subset R$; for if P is a maximal ideal in Hom(M,M) and $pHom(M,M) \not\subset P$, then pA = A where A = Hom(M,M)/P; hence A = 0 by Nakayama's lemma (Proposition 4.I of Chapter 5), a contradiction. Hom(M,M)/pHom(M,M) is finite dimensional over L/p, hence satisfies the descending chain condition. Thus every idempotent in Hom(M,M)/R comes from an idempotent in Hom(M,M)/pHom(M,M)(Lemma 4.6). Lemma 4.9 shows that every idempotent in Hom(M,M)/pHom(M,M) comes from an idempotent in Hom(M,M). Hence Hom(M,M)/R has no nontrivial idempotents. Hom(M,M)/R is finite dimensional over L/p. Thus Hom(M,M)/R is semi-simple, hence a division ring, or R is a maximal ideal in Hom(M,M), i.e. the only maximal ideal in Hom(M,M).

5. R. G. Swan's Decomposition Theorem The General Case

Reference: Induced Representations and Projective Modules, by R. G. Swan, Annals of Mathematics, vol. 71 (1960).

We stick to the notation used in section 6 of chapter 12.

Let L be a complete local ring, π a finite group and $P(L\pi)$ the Grothendieck group associated to the class of all finitely generated projective left $L\pi$ -modules.

Proposition 5.1. $P(L\pi)$ is free abelian with one generator for each isomorphism class of indecomposable projectives.

Proof: Let F be the free abelian group with the isomorphism classes of finitely generated indecomposable projectives as generators. Let $[P] \in P(L\pi)$, say $P = \Sigma \oplus P_1$ is a decomposition of P into indecomposable projectives according to Proposition 4.10. Define $\sigma[P] = \Sigma[P_1] \in F$. If $0 \longrightarrow P^1 \longrightarrow P \longrightarrow P^1 \longrightarrow 0$ is an exact sequence of finitely generated Lx-projectives, then $P = P^1 \oplus P^1$. Thus the uniqueness part of Proposition 4.10 shows that the map $\sigma: P(L\pi) \longrightarrow F$ is well defined. σ is onto and has an obvious inverse, i.e. $P(L\pi) \cong F$. Corollary 5.2. If P and P' are finitely generated Lx-projectives

Theorem 5.3. Suppose L is a complete local domain, K its field of fractions, and π a finite group of order prime to the characteristic of K . $j_*: P(L\pi) \longrightarrow P(K\pi)$ (the map induced by $j: L \longrightarrow K$, $j_*[P] = [K \otimes P]$) is a monomorphism.

and $[P] = [P^i]$ in $P(L\pi)$ then $P \cong P^i$.

Proof: 1) Suppose π is abelian. Let $L\pi = \Sigma \oplus I_1$ be a decomposition of $L\pi$ into indecomposable ideals (Theorem 4.10). Any indecomposable finitely generated projective is isomorphic to one of the I_1 as follows easily from the uniqueness of decompositions. We have $1 = \Sigma e_1, e_1 \in I_1$, $e_1e_j = \delta_{i,j}e_j$ where $\delta_{i,j}$ is the Kronecker symbol. Suppose $j_*([P] - [P^i]) = 0$, i.e. $[K \otimes P] = [K \otimes P^i]$, hence $K \otimes P \cong K \otimes P^i$ by Corollary 7.2 of chapter 12. If $P = I_1 \oplus P_1$ then $e_1P \neq 0$, thus $e_1(K \otimes P) \cong e_1(K \otimes P^i) \neq 0$, or $e_1P^i \neq 0$; hence $P^i \cong I_1 \oplus P_1^i$ ($e_1I_j = \delta_{i,j}I_j$ since $L\pi$ is commutative!); etc. Thus $P \cong P^i$.

2) Let π be any group of order n; then $n^2 \in G_C(Z\pi)$ by Corollary 7.10 of chapter 12, i.e. there are cyclic subgroups $\pi_k \subset \pi$ and $\pi_k \in G(Z\pi_k)$ such that

$$n^2 = \sum i *_k (x_k)$$
, $i_k : \pi_k \subset \pi$.

If $x \in P(L\pi)$ and $j_*(x) = 0$ then (Proposition 6.7 of chapter 12)

$$j_*(x_k^{i_k^*}(x)) = j_*(x_k^{i_k^*}j_*(x) = 0$$
,

or $x_k i_k^*(x) = 0$ by 1); thus

$$(i_k)_*(x_k i_k^*(x)) = (i_k)_*(x_k) \cdot x = 0$$
,
 $n^2 \cdot x = 0$,

which implies x = 0 since $P(L\pi)$ is free.

Let R be a Dedekind domain, π a finite group of order n prime to the characterisitic of the field of fractions K of R. Suppose P is a finitely generated projective R π -module such that $K \otimes P$ is free over $K\pi$. If $char(K) \neq 0$ then [A] = [B] in $G(K\pi)$ or $G(R/p\pi)$ (p a prime ideal in R) implies $A \cong B$ (Corollary 7.2 of Chapter 12). Thus, chasing the diagram in Theorem 4.6 of chapter 12, we find that

P/pP is free. This result, the main lemma for the decomposition theorem of Swan, is needed without the restriction $\operatorname{char}(K) \neq 0$. It is this fact which made necessary Theorem 5.3 and thus the whole machinery of sections 6 and 7 of chapter 12.

Lemma 5.4. Suppose P is R π -projective and finitely generated. If $P \otimes K$ is $K\pi$ -free then P/pP is R/p π -free for any prime ideal p in R. Proof: Let L be the completion of R_p, the localization of R at p, and \overline{K} the quotient field of L. We have R/p \cong R_p/pR_p \cong L/pL (Lemma 4.8). Let $\overline{P} = L \otimes_{\mathbb{R}} P$; then

is $\overline{K}\pi$ -free. By Theorem 5.3, \overline{P} is free. Consequently $P/pP \cong R/p \otimes_{\overline{R}} P \cong L/pL \otimes_{\overline{R}} P \cong L/pL \otimes_{\overline{L}} L \otimes_{\overline{R}} P \cong L/pL \otimes_{\overline{L}} \overline{P} \text{ is free over}$ $(L/pL)_{\pi} \cong R/p\pi .$

Lemma 5.5. If A is a finitely generated torsion free (hence projective) R-module, then

$$rank_R^A = rank_R/p^A/pA$$

(where ${\tt rank}_R{\tt A}$ means the rank of A at the prime O). This is immediate if we write A as the sum of ${\tt rank}_R{\tt A}$ ideals.

If A is a $R\pi$ -module and B \subset A a submodule of A , then let

B:
$$A = \{r \in R | rA \subset B \}$$
.

Proposition 5.6. Let P be a finitely generated Rn-module such that $K \otimes_R P$ is Kn-free. Let O_I be any non-zero ideal in R . P contains a free Rn-module F such that

$$(F: P, o_L) = 1$$
.

Proof: First suppose $\mathcal{O}(P) = P$ is prime. P/pP is free. Let $\overline{a_1}, \dots, \overline{a_k}$ be a basis for P/pP (nk = rank_RP). The submodule F of P generated by a_1, \dots, a_k is free: F/pF = P/pP, so $\operatorname{rank}_RF = \operatorname{rank}_R/pF/pF = \operatorname{rank}_R/pP/pP = n \cdot k$. It is easily checked that (F:P,p) =1. In general, $\mathcal{O}(P) = \mathbb{I}[P] = \mathbb{I}[P]$. The last step can be modified. Let $\overline{a_1}, \dots, \overline{a_k}$ be a basis for P/p_P, and $\alpha_1 \in \mathbb{R}$ such that $\alpha_1 = \delta_1 \pmod{p_1}$ (lemma 2.5). Define $a_1 = \Sigma \alpha_1 a_1^1$, $s_2 = 1, \dots, k$.

Corollary 5.7. P can also be embedded into a free Rx-module F such that (P: F, OI) = 1.

Let $a \in \mathcal{O}$ and $b \in F$: P such that a + b = 1, F being the module of Proposition 5.2. Now $(bP:F, \mathcal{O}) = 1$ and $P \cong bP$.

Lemma 5.8. Suppose I is an ideal in $R\pi$ and (I: $R\pi$,n) = 1. Then I is $R\pi$ -projective.

Proof: $R\pi/I$ is a direct summand of $R\pi \otimes_R^{\pi} R\pi/I$: Let $k \cdot n + b = 1$, $k \in R$ and $b \in I$: $R\pi$. Define

$$R\pi/I \xrightarrow{\eta} R\pi \otimes_{R}^{\pi} R\pi/I \qquad R\pi \otimes_{R}^{\pi} R\pi/I \xrightarrow{\varphi} R\pi/I$$

$$a = kn \cdot a \longrightarrow k \cdot \Sigma \times \otimes a \qquad \times \otimes a \longrightarrow a$$

Clearly $\phi \circ \eta = 1_{R\pi/I}$. Choose a projective resolution of $R\pi/I$ over R $0 \longrightarrow A \longrightarrow P \longrightarrow R\pi/I \longrightarrow 0$,

P finitely generated. Then

$$0 \longrightarrow \operatorname{Rn} \overset{\pi}{\otimes_{\operatorname{R}}} A \longrightarrow \operatorname{Rn} \overset{\pi}{\otimes_{\operatorname{R}}} P \longrightarrow \operatorname{Rn} \overset{\pi}{\otimes_{\operatorname{R}}} \operatorname{Rn}/I \longrightarrow 0$$

is a projective resolution over Rm (chapter 12, lemma 6.6). Hence Rm/I (a direct summand of Rm \otimes_R Rm/I) has homological dimension ≤ 1 over Rm . Since $0 \longrightarrow I \longrightarrow R$ $\pi \longrightarrow R$ $\pi/I \longrightarrow 0$

is exact, I must be projective [Proposition 1.2, chapter 10].

Proposition 5.9. Suppose P is a finitely generated projective Rm-module such that $K \otimes_R P$ is Km-free. Let ℓ be a non-zero ideal in R. Then $P = \Sigma \oplus I_j$, where I_j are projective ideals in Rm with $(I_j \colon Rm, \ell) = 1$.

Proof: Let $Ole = n \cdot \ell \neq 0$ and F the free Rx-module of Corollary 5.3, say with basis (e_1, \ldots, e_k) . Define a map

$$\varphi \colon \mathbb{F} \longrightarrow \mathbb{R}\pi$$

$$\Sigma \delta_{\mathbf{j}} e_{\mathbf{j}} \longrightarrow \delta_{\mathbf{l}} .$$

φP is an ideal I_1 in Rπ, and $I_1: Rπ$) P: F. So $I_1: Rπ$ is prime to n and 𝔞. Since I_1 is projective (lemma 5.4), $P = I_1 \oplus P^*$. We may also assume that $K \otimes_R I_j = Kπ$. If R is a field, P is free by assumption and there is nothing to prove. Otherwise we can choose $𝔞 \neq R$; then $Rπ/I_j$ is an R-torsion module, i.e. $K \otimes_R Rπ/I_j = 0$, or $K \otimes_R I_j = K \otimes_R Rπ = Kπ$.

Theorem 5.10. Let R be a Dedekind domain, π a finite group of order n prime to the characteristic of K (the field of fractions of R), and P a finitely generated projective R π -module such that $K \otimes_R P$ is $K\pi$ -free. Suppose $\mathcal O_K$ is a non-zero ideal in R. Then $P \cong F \oplus I$, where F is $R\pi$ -free and I is an ideal in $R\pi$ with (I: $R\pi$, $\mathcal O_K$) = 1.

Proof: It suffices to show that if I and J are projective ideals in $R\pi$ with $K \otimes_R I \cong K \otimes_R J \cong K\pi$, then $I \oplus J \cong R\pi \oplus L$, L being an ideal of $R\pi$ such that $(L: R\pi, \mathcal{O}) = 1$.

Let $\mathscr{C}=I$: $R\pi$. J is isomorphic to an ideal J' having the property $(J': R\pi, \mathcal{O}(\mathscr{C})) = L$. We replace J by J'. So there are $a \in I$: $R\pi$ and $b \in J$: $R\pi$ so that a + b = 1. Let $F = R\pi \cdot e_1 \oplus R\pi \cdot e_2$ be a free module of rank 2, and $A = Ie_1 \oplus Je_2$. Then $A \cong I \oplus J$, and A: F is prime to \mathscr{O} because $(I: R\pi \cdot J: R\pi, \mathscr{O}) = 1$. Define a new basis for F, $f_1 = ae_1 + be_2$ and $f_2 = e_1 - e_2$. $f_1 \in A$, thus $A = R\pi f_1 + L f_2$ where

 $L = \{\delta \in \mathbb{R} | \delta f_2 \in A\}.$

L: $R\pi = A$: F is prime to \mathcal{O} [and $I \oplus J \cong R\pi \oplus L$.

6. R. G. Swan's Decomposition Theorem
The Case of Characteristic 0

We are going to prove

Theorem 6.1. Suppose R is a Dedekind domain of characteristic O, π a finite group of order n, and P a finitely generated projective R π -module. Assume that no prime dividing the order n of π is a unit in R. Then $K \otimes_R P$ is $K\pi$ -free, K being the field of fractions of R.

The proof consists of several steps.

- 1) If L is a field of characteristic $p \neq 0$ and π a finite group of order p^e , then L π is a (non-commutative) local ring. For, if $x \in L\pi$, then $x^p \in L$; thus x is a non-unit in L π if and only if $x^p = 0$. $\{x \in L\pi, x^p = 0\}$ is the only maximal ideal in L π .
- 2) $n | rank_R P$. Suppose $n = p^e \cdot m$ and (p,m) = 1. Let σ be a Sylow subgroup of π of order p^e . p lies in a prime ideal q of R. P/qP is projective over the local ring $R/q\pi$; hence P/qP is $R/q\sigma$ -free [chapter 4, theorem 4.6]. Therefore

$$p^{e}|rank_{R/q}P/qP = rank_{R}P$$
.

- 3) For any R π -module A let $A^{\pi}=\{a\in A | xa=a \text{ for all } x\in \pi\}$. We have $K\otimes_R A^{\pi}=(K\otimes_R A)^{\pi}$.
- 4) If π is cyclic, then $\operatorname{rank}_{R}P = n \cdot \operatorname{rank}_{R}P^{\pi}$.

Proof: First suppose n=p is prime. Let q be a prime ideal containing p. As in 2), P/qP is $R/q\pi$ -free, say generated by $\overline{a}_1,\ldots,\overline{a}_k$. As in proposition 5.6 we see that the submodule F of P generated by a_1,\ldots,a_k is free, and $(F\colon P,q)=1$. P/F is a torsion module over R. Let $r\in R-\{0\}$ with $rP\subset F$; then $rP^{\mathcal{A}}\subset F^{\mathcal{A}}$, so $P^{\mathcal{A}}/F^{\mathcal{A}}$ is a torsion module over R, too. Consequently $K\otimes_RP=K\otimes_RF$ and $K\otimes_RP^{\mathcal{A}}=K\otimes_RF^{\mathcal{A}}$. In general, we proceed by induction. Let $\sigma<\pi$, $\sigma\neq\{1\}$, be a proper subgroup of π . P is projective over $R\sigma$ ($R\sigma$ being free over $R\sigma$); thus $rank_RP=[\sigma\colon 1]\cdot rank_RP^{\sigma}$ by induction hypothesis. P^{σ} is projective over $R\pi/\sigma$ because $(R\pi)^{\sigma}=R\pi/\sigma$; thus again by induction hypothesis, $rank_RP^{\sigma}=[\pi\colon \sigma]\cdot rank_R(P^{\sigma})^{\pi/\sigma}=[\pi\colon \sigma]\cdot rank_R(P^{\sigma})^{\pi/\sigma}$

5) The theorem holds for π a cyclic group.

Proof: By 2) there is a free Rx-module F with rank $_RF = \operatorname{rank}_RP$; hence $K \otimes_RF = K \otimes_RP$ if we can show that the number k of occurrences of a simple module M in a Jordan-Hoelder decomposition $/ K \otimes_RP$ does only depend on rank $_RP$. For any Kx-modules A,B, we make $\operatorname{Hom}_K(A,B)$ into a Kx-module setting $x \cdot f = \operatorname{xofox}^{-1}$ for $x \in x$, $f \in \operatorname{Hom}_K(A,B)$. Let $M^* = \operatorname{Hom}_K(M,K)$, and choose an Rx-module A, torsion free over R, so that $M^* = K \otimes_R A$ (chapter 12, lemma 7.5). We have

$$\begin{array}{l}
\overset{k}{\Sigma} \operatorname{Hom}_{K\pi}(M,M) = \operatorname{Hom}_{K\pi}(M,K \otimes_{\mathbb{R}} P) = (M^{*} \otimes_{K}^{\pi} (K \otimes_{\mathbb{R}} P))^{\pi} \\
= K \otimes_{\mathbb{R}} (A \otimes_{\mathbb{R}} P)^{\pi} \quad \text{by 3}.
\end{array}$$

A $\overset{\pi}{\otimes}_{R}$ P is projective (chapter 12, lemma 6.6). Hence $k \cdot \dim_{K} \operatorname{Hom}_{K\pi}(M,M) = n^{-1} \cdot \operatorname{rank}_{R}(A \overset{\pi}{\otimes}_{R}P) = n^{-1} \cdot \operatorname{rank}_{R}A \cdot \operatorname{rank}_{R}P .$

6) Proof of the Theorem. Let X be the character defined by $K \otimes_R P \text{ (chapter 12, proposition 7.4). } X(1) = \operatorname{rank}_R P \text{ , and } X(x) = 0$ is for $x \in \pi$, $x \neq 1$ since $K \otimes_R P / \text{free over } K(x)$ by 5). 2) assures the existence of a free R π -module F such that $\operatorname{rank}_R F = \operatorname{rank}_R P$, so $X_{K \otimes F} = X_{K \otimes P}$, or

$$K \otimes_{\mathbb{R}} \mathbb{F} \cong K \otimes_{\mathbb{R}} \mathbb{P}$$

by (chapter 12, theorem 7.3).

Theorem 5.10 now implies:

Theorem 6.2. Suppose R is a Dedekind domain of characteristic 0, π a finite group, and P a finitely generated projective R π -module. If no prime dividing the order of π is a unit in R, then P has a decomposition

$$P = F \oplus I$$
.

where F is a free Rm-module, and I is an ideal in Rm.