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Chapter 13: Decomposition of Projective Modules.

1. The Prime Spectrum
Iet R be a commtative ring, 253 the set of prime ideals in R
and m the set of maximel ideals in R. We define & topology in
IP. Each ideal I in R determines a closed set
W(1) = (o ePlp D1} .
If [IJ] is a family of ideals in R , then
W(IJ) U W(Ik) = W(IJ n Ik)
51 W(IJ)= w()j‘. IJ)
are closed. p resp. D’H endowed with this topology are called

the rrime spectrum resp. maximal ideals spectrum of R.

Pi'oposition l.1 R has non-trivial idempotents if and only if its

prime spectrum is disconnected.

rroof: Suppose e € R is a non-trivial idempotent. Iet
A={pefleep),B= p el?| 1~e ep), I =p§Ap, ‘T”p’ésl"f%
Wehave AB#£ @, ANB3z¢ and AUsz,the latter because
e(l-e) =0 ep implies e € p or 1l-e €ep for v e 'P.
Clearly A =W(I) and B =W(J). Thus 0-=A UB is disconnected.
Conversely, suppose = W(I) UW(I) and W(I) NW(T) =¢, i.e.
I+J=R and INJCVNO. RPick xeI and y e J such that
x+¥=s1 (xy)® =0 for some n since xy €vO. We claim
ka + Ryk =R for every integer k > 0. For if not ka + Ryk
would be conteined in some maximal ideal M , say M e W(I) ; then
yk € M. Since also xiyk":l eM for 1i>0, (x+ y)k =leM, a
contradiction. Thus 1 = ax> + byn for suitable a,b € R. ILet

e=ax"; then e =e¢ and e#0 or 1.



A topological space E 1is noetherian if the descending chain condition
holds for closed sets. Suppose now E 1is noetherian. A closed set
W ;4 ¢ is irreducible if whenever W = Wl U W2 s Wl and W2 closed,

then W =W, or W=W,. Everyclosed set W £¢ in E is union
of a finite number of irreducible closed sets; these irreducible
closed sets are uniquely determined by W. The verification of this

statement is immediate.

Iet W be an irreducible closed set, and

1) <Wl <W2 <--.<Wn

a chain of closed sets (< stands for proper inclusion)e n 1is
called the height of the chain. The supremum over the heights of all
such chains is called the height of W , ht(W). In general, if W
is any closed set, ht(W) is the infimum of the heights of the
irreduciple components of W. We let ht(f) = w.

sup{ht(W)|W # § 1is closed in E)

is the dimension of the noetherian space E.

The prime spectrum and the maximal ideal spectrum of a noetherian ring
R are noetherian. The irreducible closed sets in W are of the
form W(p) where p is prime; for if A 1is closed, let p = C£Aq H

clearly p is prime and A = W(p).

Proposition 1.2 ILet R be a commtative noetherian ring, and P
& projective module over R. ranka depends only on the connected

component of p in U) .
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Proof: p,q € 50 are in the same connected component of p if

and only 1f there is a chain of closed sets Wo’ . ..,wn such that
winwi+l;£¢ end 1eW, QeW . For if p and q are in the
same connected component W of P » consider an irreducible
decomposition of W into irreducible closed sets. These irreducible
closed sets can be arranged into a chain with the desired properties
because W is not the union of two disjoint closed subsets different
from W. For the converse note that an irreducible closed set is
connected. Suppowe W, = W(Pi) with p, being prime ideals. If
W, 0w # ¢ , then there is a maximsl ideal p in this intersection,
P Dpi’Piﬂ‘ In general, if p and q are prime and p ) q , then

P = b P =P,
ranl:p ra.nkqP ecause P:p is free and ( p)q q

Corollary 1.3 For a noetherian ring R the following are equivalent:

(1) R 1is coherent.

(2) R contains no non-trivial idempotents.

(3) The prime spectrum of R is connected.

(4) For any projective R-module P , rank P is independent of the
prime ideal p.

Clearly (2) == (3) == (4) => (1) =>=(2).



2. J.-P. Serre's Structure Theorem

Our aim is the following structure theorem [Module projectifs et
espaces £ibrés & fibre vectorielle ; exposé 23 in Séminaire Dubreiel-
Pisot 11 (1957/58)1. \

Theorem 2.1 Suppose R is a commutative noetherien ring with
connected prime spectrum. Every finitely generated projective
R-module P is of the form F ® P' where F is free and P' 1is

projective of rank < dim 55((5 Krull dimension of R).

Iet P be/:‘initely generated Projective module over R. We write
P(p) for P/pP and p € m Each element s € P induces an element
in P(p) which we will denote by s(p). §1s+++s8, are called
linearly independent at p € JJL if sl(p) yeos ,sk(P) are linearly

independent in the vector space P(p) over the field R(p).

Proposition 2.2 Iet s € P ;

 ‘:R—>P
r —> rs
is an isomorphism of R onto a direct summand of P if and only if

s(p) #0 for p el

Proof: Iet I = im @. Suppose s(p) = O for some p € (¥, but
P=I6Q Then I( pP = pI ® pQ. Consequently I pI, or I = pI,
which is impossible because I is free. Converestly, -suppose

s(p) #0 for all p e §]. Let T = Kernel (9). 0 —>J —>R —> P

is exact, so by locelization,

0 =—>J —>R_—>
T R 3"
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is exact for p e m Pp is free, say with generators yl,...,yr,

and let s(p) = Zx " Then rexy =0 for r e JP. Since not all

191
Xy € pp, one of them is a unit, thus r = 0. Hence Jp =0 for
p e which/™HE%; _ 5. mnerefore 0 —>R —> P —> P/I —> 0
is exact. It remains to.be shown/ tha;/l is projective. By hypothesis
on 8,
0 —>R/P®R —>RP®P —>RHPpP/I =0
o—>Rp) —>pp) —>pd) —o
is exact for p e J§{. Thus since R/p is a field,

0 —> Homg / (P/I(p),R/p) —> Homgy (P(p),B/p) —> Homy s (R/p,R/p) —> 0

If
0 —> HomR(P/I,R/p) — HomR(P:,R/p) — HomR(R,IL/P) —> 0
R/p~® Hom, (P,R) —> R/p ®"i\[ —> 0

is exact for p € §fl. Bence Hom(P,R) —> R is onto, 1i.e. ¢ has

& left inverse.
In order to prove the theorem it suffices now to show

Lemma 2.3 Iet h be a non-negative integer such that h < ranka
for p e §fi; then there is s € P and a closed subset F of

of height > h such that s(p) # 0 for P ¢ F.

In fact, if rank P > din Jil for all p e N, ve can take h = dinmP
(supposirg the prime spectrum of R 1is connected so that dimpP is
independent of the prime p). Then ht(F) > dimm , i:es F=¢,

and we can apply proposition 2.2.

In order to be able to prove the lemma by induction on h, we have

to prove a more general statement (lemma 2.6).



Iemrs 2.4 Iet F C)Jlbe such that B ses+s8 € P ave linearly

dependent exactly at p € F , then F is closed.

Proof: Iet Q be a projective such that P ® Q = E 1is a free

module of finite rank. Pick & basis for E ; this gives a basis

for the homogeneous part Ek(E) of degree k of the exterior

algebra over E. ILet I be the ideal of R generated by the

coeficients of al ~ s2 MNeeen sk in this basis. Now sl(p) Aoeen sk(p) =0

if and only if p DI, i.e. F =W(I).

Lemma 2.5 SUppose DPyse«esPy € I are distinct, and v, € P(pi) s
1 <i < k. Then there exists s € P such that B(Pi) =V,

1

BA

i

A

k.

Proof: Let Ii= n pi;then ZIi=R. So there are eieI

ot
with 2.81--1. Pick s

i

Xs.E..
i’i

4 €P with si(Pi) = vy and let s

lemma 2.6 Iet 8ysee+s8 be linearly dependent exactly at p € F(C m-

k
Suppose DyseeesPy € F, vy € P(Pi) i=1,...,k, and h is a non-
negative integer such that h + k < dimpP for all p € m . Then
[}

there is 8 € P and a closed set EC Ul] such that

1) B(Pi) = vi)

2) 815+++35,8 are linearly dependent exactly at F UE,

3) ht(E) 2 h.

Proof: We proceed by induction on h. This is trivial for h = O:
we solve first 1), and k& E be the set where s;,...,5,,8 are
linearly dependent. Now suppose h > O , and the lemma holds for
h-1. Iet ueP and GC I be a closed set such that 1)
u(py)=v,, 2) 8;5...,8,,u are linearly dependent exactly at

Fue, 3) nt(G) >h~1l. Let Gy,...,G; be the irreducible
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components of G of height h-1 . Pick

Dy € Gp - (F u s‘;aGB) .

sl(pa),... ,sk(pa) are linearly independent in P(pa) , but u(pa)
depends linearly on them, Since h >0, dim P(Poz) = rank p, P>k.
So there are W, € P(pa) linearly independent of sl(pa),... ,sk(pa) .
Using the induction hypothesis again, we can find t € P and a closed
set H(C YY1 such that

1) t(pi) =0, t(Pa) = wa

2) sl,...,sk,u,t are linearly dependent exactly at pe FuGuv H,

3) nt(E) >h -1 .

Iet El,...,Hr be the irreducible components of H of height h-1 .

Choose

eH -(FuGuU H).
7 e 7

sl(qB)"“’sk(qﬁ)’ u(qﬁ) are linearly independent, and t(qB) depends
linearly on these elements, say

u(qs) = 6& * t(%) mOd (Bl(qﬁ)’""sk(qﬁ)) .
Pick £ € R such that

f(py) =1 and  £(gp) # By -

Define s =u -~ ft . Let E' Ve the set vhere ByseeesBys8 are

linearly dependent. Define E +to be union of the irreducible components

of E!' which are not in F .
1) and 2) are fulfilled by construction. Let Eo be an

irreducible component of E . E CGuH, s lit(Eo) >h «1.
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Suppose ht(Eo) =h-1, then E =G, or E = HB for some @ or P .

Suppose E =G, ; s(pa) = u(pa) - t(pa) depends linearly on
sl(pa),...,sk(pa) by definition of E . On the other hend, u(pa)
depends linearly on sl(Pa)" .o ’Sk(Pa) by construction of Ga . Hence

t(p,) = Ve,

to the definition of V. - Suppose E_ = HB . s(qﬁ) =0 mod(sl(qﬁ),

""sk(qﬁ)) by construction of E . On the other hand s(qB) = u(qB) -

depends linearly on al(pa),... ’sk(Pa) , a contradiction

f(qﬂ) . t(qﬁ) # 0 mod (Sl(qB)"“’sk(qB)) by definition of Ha .
Hence ht(Eo) # h-1, i.e. ht(Eo) > h-1 . This shows ht(E) > h-1 .
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3. C. S. Seshadri's Theorem

C. S. Seshadri's theorem [Triviality of vector bundles over
the affine space K2 , Proceedings of the National Academy of Science,
vol. 44 (1958)] states that every finitely generated projective module
over the polynomial ring A[t] over a principal ideal ring A, is a

free module. Or, more generally:

Theorem 3.1. Suppose R is a Dedekind domain, and P a finitely
generated projective R{x]-module of rank n . Then there is a free
R[x]-module F of rank n-1 and an ideal I in R such that
P=Fé&¢ (R[x]®1I).

Before we can prove this theorem, we have to recall some

properties of matrices.

Lemma 3.2, Let K be a field. Every n X n matrix D with coefficients

in K[x] end determinant 1 is product of n X n matrices of the form

J
looto LN g 0... L] 0

0100.. ..-O L) L)

Di'j(p)= LN LN ) LN ] L L
0... olo..Po'.. 0 i

LN ) oo LN L3I Y L)

o.‘. [ N ] L KX ] * 0w Ol
vhere p € K[x] and i #J.

Proof: Multiplying D on the right with Di 3 (p) means: adding to
the J-th column of D the i-th column multiplied by p . Multiplying
D on the right by D, J(-1 D 3 i(1 )1)i j(-l) means: interchanging the i-th

and j-th column and multiplying the J-th column by -1 . Similarly
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with respect to rows of D and multiplication on the left. With these
operations D can be transformed into a diagonal matrix D' = ADB ,

A and B being product of matrices Di 3 (p) (notice that [Di J(p)]":L
= ].)i.j('P)) . Since det D =1, also det D! =1, i.e. the entries in

D* are elements of the field K . Now

D' = | N 0
0 A
n
N ol |1 1 0
Ay wee Ay (x3...xn)‘l 1
-
= 1 - (M) el NN
* .. xh.'.kn
. . 1
0 11 o 1] lo e

and a two-by-two matrix (g g) with xy =1 is easily seen to be &
product of matrices Di J(p) . Therefore D' is again product of

matrices Dij(a) ,aekK.

Let R be a Dedekind domain, p a prime ideal in R . Suppose P 1is a
n

finitely generated projective R-module, say P = ]}.j.@ I 5 where I 5 are

ideals in R. P = P/pP =& f.') is R/p-free with free generators

el,...,en,where e, € I, and e'j generates I.j .

J 7J

Lemma 3.3. Every automorphism of P[x] = R/plx] ® /o P of determinant 1

is induced by an automorphism of P[x] = R[x] ®R P.

*% o ¢
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Proof: It suffices to prove this for an automorphism with matrix
- = =k -
D:I.J(Q)’ q=2 ox € R/plx] . Lift each Gy to an element e of

I iISl via the natural morphism

-1 _ .
LIy =1, ® Hom(IJ.,R) —>R/p &I ®RPCG Hom(.Iﬁ,.R\
—>TI @ Hom(ij,R/p) = Rfp .
- k \ =
Define q = I ¢ x ; clearly D, 3 (g) actingon = €& I, induces D, ;](Q) .

D, J(q) hes the inverse D,,(-q) , sc defines gn  automorphism.

i.j(

Proof of the theorem: P is a finitely generated projective R[x]-
module of rank n . Consider all submodules L of P which are iso-
morphic to a module of the form % &€ Ik R Ik being an extended ideal
(1.e. I =R[x]® I} and I} is an an ideal in R). Let K De the
field of fractions of R . Since K ®BL ¥ K N P and P is finitely
generated, we can find r e R[x] such that r # 0 and rPC L.

Now let L be a maximal submodule of P of this kind (which exists
because P is noetherian), and suppose L # P . Let p be a prime ideal
in R which divides the annihilator A # O of P/L . The morphism
j:L—>LfpL —>P/pP has kernel LNpP . Let N and I be the

kernel and imege of i: L/pL —> P/pP .
0 —> N —>LiL 2> I —>0

splits over the principal ideal domaein R/p[x] (because I 1is free
over R/p[x] as a submodule of the free module P/pP) . We claim
that N # O . For, otherwise, i is one-to-one, i.e. L N pP =pL ,
and thus p(p'lA)P CLnpP =7L, p'lAPC L . This is a contradiction

because A was the annihilator of P/L . We select now a basis
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el""’;n for L/pL such that ;l""gs

and 1(‘és+l),...,1(é'n) is & basis for I . Since L=2@1I,, I,

are extended ideals, we can chose a basis e—,l,... ,En for L/pL such

(8 > 1) is a basis for N

that EJ is & generator of 'fj =1 /o1 5 Let T be the automorphism
of L/pL which corresponds to the change of bases (& J) - (E'j) .
We may assume that det T = 1 (changing 'é'l by a factor if necessary).
Let T be an automorphism of L inducing T . Define 15 =TI 3 Cp;
then L = 2@ I} . Moreover, Il"CpP for 1<k<s . Thus
L' = )BZ'. p-lII" oz 15 CP and LC L', a contradiction to the maxi-
1 s+l

mality of L .

Hence L =P ; P is of the form P' @ R[x] , P' being a
finitely generated projective R-module of rank n. The assertion
follows now from the dedomposition theorem for P' (Proposition 5.6

of Chapter).
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4, The Krull-Schmidt Theorem

In the following A will always denote a (not necessarily commutative)
ring.

Definition 4.1. A (left) A-module A is said to be indecomposable

if A 1s not the direct sum of two non-zero A-modules.
The following lemma is easily verified:
Lema 4.2. A is indecomposeble if and only if the ring Hom (A4,A)

has no non-trivial idempotents.

Recell that a ring A is locael if the set of non-units is an ideal
in A ; or A possesses a unique maximal (two-sided) ideal which con-
tains all right and left ideals of A . In the beginning of this
section we will not assume that a local ring is noetherian. The fol-

lowing theorem is well-known from the theory of groups with operators:

Theorem 4.3. Suppose the left A-module M admits two decompositions

M =.§ &)Mi and M = ; €3NJ B s<t,
i=l J=1
into indecompossble submodules M, (resp. Nﬁ) . If Hdm(Mi,Mi) ,
1<i<s, is alocal ring then s =t and Mi'é'NJ after suitable
reordering.

Proof: We proceed by induction. Suppose N& Q'Ni for i<r -1

and

M=NO®..ENEM, ©...8M for k<rl,

where N} is a submodule of M isomorphic to NJ + Consider

=N @ 1 3
M=NE&.. 0N  &eM&..CM .
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Let RyseessTg be the projections determined by this decomposition,
and ril, ee,N, the idempotents of Hom(M,M) determined by the repre-
sentation M = . = =

Z6O NJ Evidently =#, =m0 I ny Z=xo ny -

7.0 'qJ = 7n_on 0113 =0 for J<r-l, hence

rd

L = O + ¢ee + X O .
r rqr nr nt

W s . = -
e operate now in Mr ; here 1 T, =00, + oo # O . Since

B.om(Mr,Mr) is & local ring, one of the =0 1y, 88Y %O N, is an
automorphism of M, . We show N, ¥M |, under q;l , and that (+)

holds for k=1r .
Since :trnr is an automorphism of Mr’ Nyt Mr —_— l\Tr is a monomorphism.
Let

—

Nrﬂ

N, =n,(M) andlet K be the kernel of =, N, —> M, ; we have
K=(0). If ye N, ﬂr(y) = :trnr(x) for some x € M, (stronr

being an automorphism of M J:,) . Thus
y=(- nr(X)) +n(x), ¥ - n.(x) e XK, n(x) e N, ;

il.e. Nr =K GBNr . But Nr is indecomposable, hence Nr = Nr » This

implies that ¢ o’ Mr —_> Nr is an isomorphism. It is now easily
verified that
1

+n;on +

+ LN
b8 + = v v+l

l r"l + oo +“S

maps M isomorphically onto Nle...G}‘NrGMr@...GBMS .

The following proposition guarantees the existence of such decompositions
in certain cases:

Proposition 4,4, Suppose A satisfies the ascending or the descending
chain condition on left ideals., Then every finitely generated (1eft)
A-module admits a decomposition into a finite direct sum of indecomposable

mocdules.
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Proof: Let A be a finitely generated A-module. If A is not inde-
composable, A =A €A, and A £0. If A, is not indecomposable,
Ay =A, €A, and Ay # 0 ; ete. Since A satisfies the ascending
(descending) chain condition , we conclude easily that this process

must stop after a finite number of steps.

Definition 4.5. We say that the Krull-Schmidt theorem holds for a left

A-module A if A 1is the direct sum of indecomposable modules, the

sum being unique up to order and isomorphism.

We give an example:
Lemma 4.6. Suppose A satisfies the descending chain condition for
left ideals. Let R be the radical of A (Definition 8.28 of Chapter 9).

Every idempotent of A/R is induced by an idempotent of A .

Proof: R i1s nilpotent by Theorem 8.35 of chapter 9, say P =0. Let
- 2
e ¢ A/R be an idempotent, say induced by ge A . Then z=g -g€R.

Now define g  and z_ e R°® by induction:

&

B, =& * 2%y " %8 %a

= & Zo=zi

_ 2 o3 - 2,8 2n
2 =8 -8 = l&zn._l 3z, , € R .
- 2 _ _ . -
Thus z = 0, or &n = 8y = © is idempotent and induces e .

Corollary 4,7. Suppose A is noetherian and satisfies the descending

chain condition for left ideals. Then the Krull-Schmidt theorem holds

for finitely generated left A-modules.

Proof: In view of Theorem 4.3 it suffices to prove that the non-units

in Hom(M,M) , M finitely generated and indecomposable, form an ideal.
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that (5,x) —>8x and (x,y) —>x+y from L XA resp. AX A
into A is continuous; if A is an algebra then (x,y) —> xy is

also continuous.

Lemma 4.8. 1) If L is a complete local ring then each finitely
generated left A-module A is also complete. 2) The completion L
of any local ring L is again a local ring with maximal ideal p = pL ;

we have L/P XL/ .

Proof: 1) This is obvious if A is free. Now let A = F/B where
F is free and of finite rank. The canonical map =xn: F —> A 1is easily
seen to be continuous. Now let (a.n) C A be a Cauchy sequence, say

&, =8 2 € pnA (after passing to a subsequence). By induction find

by eF with x(b ) =a suchthst b -b . € p°F ; first £ind
1] ] = . - b? -
b, € F with rz(bn+l) =& ;B b -bl,-ce p°F for some
: = bt < . -
ceBjdefine b, =bl +c. (bn) is Cauchy in F , thus con

verges to b e F. Since = is continuous, an —_— n(b) in A.

2) T is clearly a ring. If % ¢ T is not & unit then there is &
sequence of non-units X, € L converging to X (continuity of

y —> y'l in L) . From this remark it is obvious that the non-units
in I form an idesl which is equel to the closure 5 of p. pf is
an L-module, hence complete, hence closed in L , i.e. PL =D .

L —> T induces L/P 3> L/F , and the image is dense in L/F .

L/F has the discrete topology, hence im(i) = L/P .
Now we can prove Lemma 4.6 for our new setting:

Lemma h.g. Let A be any finitely generated L-algebra, where L is
a complete local ring with maximal ideal p . Every idempotent

€ ¢ A/pA 1is induced by an idempotent e € A .



Proof: The proof is almost the same as that of lemma L4.6;

n 2n . . ' en
2, =8 -8 €D A, thus z —>0, and gn+l-gn=zn(l~23n)ep A,

thus (gn) is Cauchy and convei‘ges therefore to an element e € A .
e2 - ¢ = lim z, = O . Since =n: A —> A/pA is continuous,

n(e) = lim n(gn) =e.

Proposition 4.10. Let A be any finitely generated L-algebra, L being

a complete local ring. The Krull-Schmidt theorem holds for finitely

generated A-modules.

Proof: Since A is noetherian proposition 4.4 applies. Thus we need
only check the hypothesis of Theorem 4.3. Let M be a finitely
generated indecomposable left A-module. Hom(M,M) has no non-trivial
idempotents (Lemma 4.2). Let R be the radical of Hom(M,M) .

Notice that the image of R in Hom(M,M)/pHom(M,M) is the radical of
Hom(M,M) /pHom(M,M), and pHom(M,M) C R ; for if P is a maximal ideal
in Hom(M,M) and pHom(M,M)( P , then pA = A vhere A = Hom(M,M)/P ;
hence A = O by Naksysma's lemma (Proposition 4.I of Chapter 5), a
contradiction. Hom(M,M)/pHom(M,M) is finite dimensional over L/p ,
hence satisfies the descending chain condition. Thus every idempotent
in Hom(M,M)/R comes from an idempotent in Hom(M,M)/pHom(M,M)

(Lenma %.6). Lemma 4.9 shows that every idempotent in Hom(M,M)/pHom(M,M)
comes from an idempotent in Hom(M,M) . Hence Hom(M,M)/R has no non-
trivial idempotents. Hom(M,M)/R is finite dimensional over L/p .

Thus Hom(M,M)/R is semi-simple, hence a division ring, or R 1is a

maximal ideal in Hom(M,M), i.e. the only maximal ideal in Hom(M,M) .
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5. R. G. Swan's Decomposition Theorem
The General Case

Reference: Induced Representations and Projective Modules, by R. G. Swan,
Annals of Mathematics, vol. T1 (1960).

We stick to the notation used in section 6 of chapter 12.

Let L be a complete local ring, =« a finite group and P(Lx) the
Grothendieck group associated to the class of all finitely generated

projective left Ln-modules.

Proposition 5.1. P(Ln) is free abelian with one generator for each

isomorphism class of indecomposable projectives.

Proof: Let F be the free abelian group with the isomorphism classes
of finitely generated indecomposable projectives as generators. Let
[P] ¢ P(Ix) , 88y P=C €& P, 1s & decomposition of P into indecom-
posable projectives according to Proposition 4.10. Define o[P] =
):[Pi] eF. If 0 ~>pP! —>P —> P" —> 0 is an exact sequence
of finitely generated Lau-projectives, then P = P' & P" . Thus the
uniqueness part of Proposition 4.10 shows that the map o: P(Ln) —> F

is well defined. o is onto and has an obvious inverse, i.e. P(Lx) ¥ F .

Corollary 5.2. If P and P' are finitely generated Lx-projectives

and [P] = [P'] in P(Lx) then P ¥ P! .

Theorem 5.3. Suppose L is a complete local domain, K its field of

fractions, and xt & finite group of order prime to the characteristic
of K. J,: P(Lx) —> P(Kn) (the map induced by Jj: L —>K,

J4[P] = [K®P]) is a monomorphism.
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Proof: 1) Suppose = is abelian. Let Lx =L & I:L be a decomposition
of Ln into indecomposable ideals (Theorem 4.10). Any indecomposable
finitely generated projective is isomorphic to one of the Ii as follows
easily from the uniqueness of decompositions. We have 1 = Zei,ei € Ii’
ee 3 = 51 Je j where 81 3 is the Kronecker symbol. Suppose

Ju([P] - [P*]) =0, i.e. [K®P] =[K®P'], hence K®P ¥K® P!

by Corollary 7.2 of chapter 12, If P =1, @P, then e,P # 0, thus

e, (K®P) ¥e,(K®P') #0,or eP' {0 ;hence P *I, ePp;

(eiI:] = 51,113 since Ln is commutative!); etc. Thus PY¥pr,
2

2) Let = be any group of order n ; then n~ ¢ GC(Zn) by Corollary

T7.10 of chapter 12, i.e. there are cyclic subgroups akC n and

x € G(Zn, ) such that

n® =g i*k(xk) s i w Cxm

If x e P(La) and j,(x) = O then (Proposition 6.7 of chapter 12)
In(xin(x)) = dylx )igdy(x) = 0,

or xki:(x) =0 by 1); thus
(1, (g (x)) = (4 (x )x =0,
1:12 *+ x =0,

vhich implies x = O since P(Lx) is free.

Let R be a Dedekind domain, = & finite group of order n prime to
the characterisitic of the field of fractions K of R . Suppose P
is a Pinitely generated projective Ru~module such that K® P is free
over Kx . If char(k) # 0 then [A) = [B] in G(Kx) or G(R/pn)
(p @ prime ideal in R) implies A ¥ B (Corollary T.2 of Chapter 12).

Thus, chasing the diagram in Theorem 4.6 of chapter 12, we find that
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P/pP 1is free. This result, the main lemma for the decomposition
theorem of Swan, is needed without the restriction char(K) # 0. It
is this fact which made necessary Theorem 5.3 and thus the whole

machinery of sections 6 and 7 of chapter 12.

Lemma 5.4. Suppose P is Ra-projective and finitely generated. If

P®K 1is Kn-free then P/pP is R/pn-free for any prime ideal p in R .

Proof: Let L be the completion of Rp , the localization of R at
P, and K the quotient field of L . We have R/p ¥ RP/pRp ¥ L/pL

(Lemma 4.8). Let P =1L ®, P ; then

K@ P¥KQ PYKG K P
is Kn-free. By Theorem 5.3, P is free. Consequently
P/oP¥Rp @ PELALE P¥LALE L& PYL/L & P is free over
(L/pL)x ¥ R/fpn .

Lemma: 5.5.. If A is a finitely generated torsion free (hence pro-

Jective) R-module, then

rank A = ranky /PA/pA
(vhere rank A means the rank of A at the prime O ).

This is immediate if we write A as the sum of ra.nkRA ideals.
If A is a Rax-module and B(C A a submodule of A , then let
B:A={reRlraCB).

Proposition 5.6. let P be a finitely generated Re-module such that

K ®RP is Kn-free. Let Q1 be any non-zero ideal in R . P contains
a free Rr-module F such that

(F: P, 0L)=1.
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Proof: First suppose O = p is prime. P/pP is free. Let El,... ’Ek
be a basis for P/pP (nk = rank P) . The submodule F of P
generated by a.l,...,a.k is free: F/pF = P/pP y 80 ra.n.kRF =

rank, /PF/pF = ranky /PP/pP =nek . It is easily checked that (F:P,p) =1.

In general, o= Hpi . The lest step can be modified. Let

- -4
8),...,8  be a basis for P/piP ,and @ € R such that
mod(pd) (lemma 2.5). Define ag = ):aa.é‘ ) 8 =1,s0e,k &

o =8, 4

Corollary 5.7. P can also be embedded into & free Ra-module F

such that (P: F, O1) =1 .

Let a e OLland be F: P such that a +b=1, F being the

module of Proposition 5.2. Now (bP:F, o) =1 and P ¥ bP .

Lemma 5.8. Suppose I is an ideal in Rr and (I: Rr,n) =1 .

Then I is Rn-projective.

n
Proof: Ra/I is a direct summand of Rx & Ra/I: Let k'n+b =1,

keR eand be I: Rt . Define

Rn/I —4> Rx gn Re/I Rn ;’R Rn/I &> Rn/I

a = kn*a —> ke T x®a x®a —>a
Xexn

Clearly ¢on =1 Choose a projective resolution of Rx/I over R

Ra/I °
0 —>A—>P—>Ra/I —>0,

P finitely generated., Then

X 5T n
O-—>Rn'®RA——>Rn®RP-—->Rn®RRn/I——>O

is & projective resolution over Rn (chapter 12, lemma 6.6). Hence
n
Rn/I (a direct summand of Rx L2 Rn/I) has homological dimension

<1 over Rt . Since 0 —>I —>Rzx —>R /I —>0
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is exact, I must be projective [Proposition 1.2, chapter 10].

Proposition 5.9. Suppose P is a finitely generated projective

Rt-module such that K®R P is Kn-free,. Let & be a non-zero ideal

in R. Then P=X €& IJ , vhere I, are projective ideals in Rn

J
with (I,: Rs, 6)=1.
Proof: Let O7=n*{ # 0 and F the free Rx-module of Corollary 5.3,

say with basis (el,... ,ek) . Define a map

¢: F—> Rn

8 ‘—-'>8 .
0485 1

gP is an ideal I, in Rr, and :Ll:R:t:)P:F. So I;: Re 1is

prime to n and & . Since I, is projective (lemma 5.4), P=L& P'.

We may also assume that K@R IJ =Kn. If R is a field, P 1is free
by assumption and there is nothing to prove. Otherwise we can choose
b #R; then Re/I, 1is an R-torsion module, i.e. K@ Ra/I, =0,
or K®RIJ=K®BRJI=K1: .

Theorem 5.10. Let R be a Dedekind domain, = a finite group of

order n prime to the characteristic of K (the field of fractions
of R), and P a finitely generated projective Ra-module such that
K &R P is Kn-free. Suppose ¥ is a non-zero ideal in R. Then
PYFE&I, vhere F is Rn-free and I is an ideal in Rx with

(I: Rx, &) =1 .

Proof: It suffices to show that if I and J are projective ideals
in Rx with K& I%'K®RJ"=‘Ka ,then I®JT¥Ri®L , L being

an ideal of Rn such that (L: Rx, of) =1 .
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Let ‘6 =JI: Rt . J is isomorphic to an ideal J' having the property
(7' th,otg) =L . Wereplace J by J' . So there are a ¢ I: Rx
and bedJ: Rt so that a+b =1 . Let F=Rsr°el®Rn-e2 be a
free module of rank 2, and A = Ie; € Je, . Then A¥I@J, and

A: F is prime to <Ubecause (I: Ru+J: R, 0C) =1 . Define a new

basis for F,fl=ael+be2 and f2=e -e

1 .fleA,thus

2

A= R:tfl + Lf2 where

L = {8 e R 8f, € A} .

L: Rt = A: F is prime to O and IE€J ¥Rt @L .

6. R. G. Swan's Decomposition Theorem
The Case of Characteristic O

Ve are golng to prove

Theorem 6.1. Suppose R is a Dedekind domain of characteristic O,

% a finite group of order n , and P a finitely generated projective
Rr-module. Assume that no prime dividing the order n of = is a
unit in R . Then X ®R P is Kn-free, K being the field of fractions
of R.

The proof consists of several steps.

1) If L is a field of characteristic p # O and = & finite group
of order p° , then Lz is a (non-commutative) local ring. For, if

x € Lx , then xPeeL ; thus x is a non-unit in La if and only if

e e
¥ =0. [(xeln, X =0} is the only maximal ideal in Lx .

2) n|ran.kRP . Suppose n = pe'm and (p,m)=1. Let o bea
Sylow subgroup of st of order pe « P lies in a prime ideal q of R.
P/qP is projective over the local ring R/qn ; hence P/qP 1is R/qo-free

[chapter 4, theorem 4.6]. Therefore

o° ‘ra,nkR /qP/qP = rank P .
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3) For any Rr-module A let A" (aeAlxa=a forall xex).

We have K& A" = (k & A .

k) If n is eyclic, then rank P n-rankRPn .

Proof: First suppose n =p 1is prime. Let q be a prime ideal con-
taining p . As in 2), P/qP is R/qu-free, say generated by El"“’;k'
As in proposition 5.6 we see that the submodule F of P generated
by & ,...,8 is free, and (F: P,a) =1 . P/F is a torsion module
over R. Let reR - (0} with rPC F ; then rP"C F, so P'/F'
is a torsion module over R , too. Consequently K QhP = K QRF and
K ®an =K ERF” . In general, we proceed by induction. Let o< =« ,
o ;! {1), be a proper subgroup of =n . P 1is projective over Ro (Rx
being free over Ra); thus rankRP = [o2 1]-rza.nkRI='cI by induction
hypothesis. P° is projective over Rx/o because (Rx)® = Ra/o ;

thus agein by induction hypothesis, rtmkRP'J = [n: c]°re.nk.R(P°)“/ -

[x: o]'ra.nk.RP“ .

5) The theorem holds for =« & cyclic group.

Proof; By 2) there is a free Rrx-module F with rank F = rank P ; hence

K ®RF =K ®RP if we can show that the number k of occurrences of a
of

simple module M in a Jordan-Hoelder decomposition/ K ®RP does only

depend on rank P . For any Kr-modules A,B, we make HomK(A,B) into

a Kn-module setting x-f = xofox L for x e %, £¢ HomK(A,B) . Let

M* = HomK(M,K) , and choose an Rn-module A, torsion free over R, so

that M' = K @A (chapter 12, lemma 7.5). We have

k
‘1‘: Homm(M,M) = HomKn(M,K ®:P) = (* gx (x @RP))“
=K&, (A&P)" vy 3).
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n
A &P is projective (chapter 12, lemma 6.6). Hence

k'dimxgmeI(M,M) =n1. rankR(A.éh?) =n"t . rank A - renk P .

6) Proof of the Theorem. Let X be the character defined by
K &P (chapter 12, proposition 7.:). x(1) = rank P , and x(x) =0
for xen , x #1 since K®RP /f:'ee over K(x) by 5). 2) assures
the existence of a free Rn-module F such that ran.kRF = rankRP ’
80 YXpop = Xmp » OF

Ko YK aF
by (chapter 12, theorem T7.3).

Theorem 5.10 now implies:

Theorem 6.2. Suppose R is a Dedekind domein of characteristic O,
% @& finite group, and P a finitely generated projective Rx-module.
If no prime dividing the order of = is & unit in R, then P has
& decomposition

P=F@&I,

vhere F is a free Ri-module, and I is an ideal in Rx .





